'5@7”” G’Ay" Rcﬁ'trtwcc Manul fr He F4ov

CONTROL DATA
7600 COMPUTER SYSTEM

Information presented in this edition is preliminary
and subject to change. Any corrections necessitated
by design changes and/or product improvement will
be handled by standard manual revision procedures,
Errors and suggestions should be communicated to
Development Division, Technical Publications Dept,

PRELIMINARY

REFERENCE MANUAL
)’))e$+ l'F "')\l ln"?avmh'}“"\ 'R ’*‘L-.\ R wos avs.dable Cavly 1n 156

T“e Jbeoe Pr.rh *7?‘ chackovy ksaw. avovnd mid 1409
The Swd’ 60> SL-?YQB t/'/‘q :

7-”'“ a"’“hed")’h'b“"'ﬂ “?""b"s ’°3" disgrews & wice "5"5) a3 used Ly Hhe @940n £ees
when checkig ot the prabtype, softunce paapie, fle €E% durdy Fhu enly duys oF
+he 6 o00.

Ths masdel s shl vsed 4dy by didvels w cDE’S T600 seF b svpport depavt mant,

ko

"FOREWORD

7The ideas and designs set forth in this Control Data 7600
‘:Preliminary Reference Manpal are the property of Control Data
Corporation anc¢ are not to be disseminated, distributed, or conveyed
‘to third persons without the express written permission of the

‘Control Data Corporation Patent Department.

o r R ey o . SN — e e w .

SRS Y s

e~

"REV. 4

System parameterscececeoncccne esencss sececcervesaas
System communicationeccee0. Cersecsvecnssescens sevee
Operating system ..ceeossococcccecs ereccessessecencenves .
System MONIitOTceovevovonasccans 4esescscesasscsnan FON
Object programceeese teeaenesccanevns ceseens seceenees

Central processing unit O sescacea sesace
CPU cOre memoOIY ...ocosecsoon tesecseereasscesssncsnny veeoaa
Computation sectionecceeasee sesecenne csecssssesancans
Instruction word stackcc000 sesvecsans sesescessareas
X registerscevvcevccsasconans T
A registersceecesceccctoscnaccncoses sacacsses veosssoa
B registersccecceevae sesesnsee cesveensen seasacecanacae
Functional units ceesens sesesesosestssesancssans
Binary arithmeticc.... erescasessecses saseseenes
Floating point arithmetic sesessssesnns seccances
Integer multiplication teasesssssneesses ceccaseca
Integer divisioncc0v000ne secscsne sesresscesascoaca
CPU instruction format ceesas cesseeccons seseasae
Storage field protectionccc00000 cestecennns cieessans
Program branching seeeancasuesevenns sacasecnen
Exchange jumpccecc0ceesee sesesses scesecsvses sesseennee
Program breakpoint sosscere vereene cevocosensens
Error exitseieecececsncss R
CPU input-output sectioncc00cs vetecssesasacsrenanne
Real time clockv0cceuccnn sevesas tresracsseraacacasns
Real time interruptceveeeee seccocs tsecscserevenns .
External interruptcice00000cae cesres teesesecses .o

System dead Startcececcvessccccnsnonns Gertesecssasenenaa

System operationci0000000 secacas sssessecssccnn vesvaces

114

“TABLE OF CONTENTS

PART : SYSTEM DESCRIPTION

Introductionccccecseccesscscocssses ceseencens seescessannn

[
]

VTTNNTTTYY
oo pppLHO

=
«
]
fre
)
o
o
bl
<
—
v
<

. REV. 8

'PART 2: CPU DESCRIPTION

Introductionseveveccecnns ceeseeen ereasacenens cesessoses
Control flag namescveosevecen tessessacscs cesaasns oo
Data register namescceccooveccs seesssevseeenens oo
Control condition names eesreenessessrressnrses

Instruction stackecveevesocrssscasosssnsoscsasas coeenas

Instruction issue P N resresseesces

Boolean unitc0c00 raeseseses s esessaccane seassesearsens

Shift unit veeserseaanes ceseseversseas sesensvsen .

Normalize unitc.cieecvroccevsvesarecsosscsssnsansssenoss

Long add unit S)

Floating add unitcc0ecvveeercens cevessns eteesesssesran

Floating multiply unit s cetesssssreseraeeasnes

Floating divide unit ceseesecensons vesasssennecan

Population count uniteeecvncccrnnrenconecncrcecns coes

Increment unit coeresseacencns ecsseseessasensnne voen

Branch instructionsc.ccecvecnccccvecse ceessesssesanan .

Exchange sequence casersace wesecesssrensaseserravanes .o

Program status register ceevnsesecnssrsassonses

X registers ...vececescescacens teseavecsesrsensescnacssensns

B registers ...ceceesoncvscces cesees sesscessssssassenaenroes

A registerscioeecessncccnnes vesecessscsssenssesnasarans

Supporting Tregistersocceceene ctcecsscesaneraneoan coes
RAS register R E LR R R
‘FLS regiSterceeesecswoonvscns cssececncsencnsessasse

- RAL register sseeresssencees cesssssecens e sacssssn
FLL register ...cceoeeccces ceesccsane cecseesace secccessass
NEA register teecsesececessesssacavoceosrosons e s
EEA register ..cccvveovsncvccescssccns ceceserenavesssenas
BPA registercceevvenncase evenesestscsssesarasvisncna

Small COTE MEMOTY .vucsvecsoccvcssovessnnscsnsascccscanscsccs

Storage address stack0000 Gesessesniennesstsssesnens

SCM bankscc00ca0ns heeseeserecsssersraancerssaasea sy

Storage word stackn esecsessiasssssesensannts .

SCM data distributionecceecveaves seansses resscsscncns

SCM destination control unitc.cceccorosovscecccanccrans

Exchange destination control unlteevieicecencnccncnns

Input/Qutput sectioncceeveen.. cacorsassensssecene cave

Channel input control unit ceesacees ceseene ceroes .

Input data merge Network ceesnesunn chessccssnes

iv

"REV. 4

PART 3: CPU INSTRUCTIONS

Introduction cerevassoacee secccssssnssacasenes eeeeses 3-0
00xxx Error exiteececececcocccnas - 12
0100x xxxxX RetuIn jUMP ..evsevscscvonnnans teesvenneesnses 32
O0lljx xxxxx Block copy LCM to SCM crecseanae sesesas 3-9
012jx xxxxx Block copy SCM to LCMcceevenene cessans 3-17
013jx xxxxx Exchange exit (exit mode flag set) .oeeeerneee 3-25
01300 Exchange exit (exit mode flag cleared) 3=36
014jk Read LCM creccasanane vecessssccsssans teaean 3-40
015jk Write LCMciiveecvecrcnnnnrsns seecacssoacsnass 3-44
0160k Reset input buffer ecersesasrsraenses 3-47
016jk Read channel input status (j NONZEYO) ..evseesesoess 330
0170k Reset output buffer cesesenes ceeenes 3-52
017jk Read channel output status (j nonzero) 3-56
02i0x xxxxx Jump to B+ K censns ceieveeens eeee. 3-58
030jx xxxxx Branch on X zero cecesscnseroaserosns 3-64
031jx xxxxx Branch on X nonzerooc000. ceeesrasess 370
032jx xoxxx Branch on X positive cevesesssaserenes 3-71
033jx xxxxx Branch on X negative vessesessosanaan . 3-72
034jx xxxxx Branch on X in rangeceeoecennecceen . 3-73
035jx xxxxx Branch on X not in rangecce0e.n cees 3-74
036jx xxxxx Branch on X definitecccvecancene eeee 3-75
037jx xxxxx Branch on X indefinitec0c.0nen eeses 3-76
04ijx xxxxx Branch on B .EQ. B Cheevesesaenaaes 3-77
05ijx xxxxx Branch on B .NE. B ...ivceerecncnccnncnncnnans 3-84
06ijx xxxxx Branch on B ,GE. B i.veeeccverccnvrocncccnns .. 3-85
071jx xxxxx Branch on B .LT. Bveuivvvneninoncrcecanen. 3-86
10ij0 COPY svevcnves cessesecsnsacs cestoesa cesasseesssnees . 3-87
1lijk Logical productces cacsrescans veeesssssesss 3-89
12ijk Logical sumcveecececceacce tesseesssevessasscess 391
13ijk Logical difference vescsescassoscencene 3-93
14i0k Copy complement seseesvosessscracsaness 3-95
15ijk Logical product with complementc.occccnenvnn 3-97
16ijk Logical sum with complement sessssesns 3-99
17ijk Logical difference with complementccec0ncees 3-101
20ijk Left shift X by jkvceeveeen teecessrassrascassss 3-103
21ijk Right shift X by jk ceeesascssnsassesses 3-105
221jk Left shift X by Bcccvennes seessessescans eeeees 3-107
231k Right shift X by B Ceeneeeeaaes veeeereess 3-110
241jk Normalize X to X, B ceseccssnsens eessevesss 3-113
254}k Round normalize X to X, Bcvucvennn cesecnncoanns 3-117
261jk Unpack X to X, B searosens vesesesssssessss 3-121
271jk Pack X, Bto X - 1 v

=

lASL-AECOfFICIAq

30ijk Floating sumcccceveaens Cesessvesenassassens - 3-127

31ijk Floating difference ceserveseves tesaeenn 3-131
32ijk Floating double precision sumececoavusnncnes 3-135
331jk Floating double precision difference eees 3-140
34ijk Round floating sum .,......... scassssaces seascomnsss 3-145
35ijk Round floating difference sesessres ceereoans 3-151
36ijk Integer sum ..,....... Creresseesesene ceseneen ceeunen 3-157
37ijk Integer difference et esacssrentonans . 3-159
40ijk Floating product ceseenns csecereans tesserenes 3-161
41ijk Round floating product cecereassanne 3-165
42ijk Floating double precision product ee.. 3-168
43ijk Form mask jkc0vuvereccaanns e ssesecsasnnonns 3-172
44ijk Floating dividevvvvvnevnnnnns tressatecessases 3-174
45ijk Round floating divide tesessesesnseenes 3-178
46000 PaSS ..uessssveceesncencossoraossssane ceesssesesenen 3-181
47i0k Population COUNL ...ceevevererenarascrcccansasosnns 3-182
50ijx xxxxx Increment A+ K to A Ceststecansasses 3-184
S51ijx xxxxx Increment B+ K to A 3-188
52ijx xxxxx Increment X + K to Aiovvninnnennnnnnnnen 3-192
53ijk Increment X+ B to A seesesiersesrane eees 3-196
54ijk Increment A+ B to A ctecssvseaviassstesans .. 3-200
$5ijk Increment A - B to A ceeescssesrrernsannns eeees 3-204
56ijk Increment B+ B to A Ceeessnsenne veesee 3-205
57ijk Increment B - B to A eesesesnsssssasenecnas 3-209
60ijx xxxxx Increment A+ K to B eeess 3-210
6lijx xxxxx Increment B+ K to B ..vciveveveccncenn. veess 3-212
62ijx xxxxx Increment X + K to B serreaens sevenses . 3-213
63ijk Increment X + B to B ..i.ivvivunnnnn tecoesrecsnassons 3-214
64ijk Increment A+ B to B sesesssersessssenesens . 3-216
65ijk Increment A - Bto B0u00 cevsrssscssasensen 3-217
66ijk Increment B+ Bto B cesocarecsnconsonas 3-218
67ijk Increment B - Bto Bce0vvvuunsn cereaccsareas 3-219
70ijx xxxxx Increment .. + Kto X cessececaranans 3-220
71ijx xxxxx Increment B+ K to X ...ceeverenesens veanrens 3-221
72ijx xxxxx Increment X + K to X cesarresanes crseeeass 3-222
73ijk Increment X + B to X ...veviunccnnssvccnnnaccessane 3-223
74ijk Increment A+ B to Xcceinnnnn cessssceasecasens 3-224
75ijk Increment A -~ B to X vicvasscasune sereseann 3-225
76ijk Increment B+ B to X ceetescarnsrsosaseane 3-226
vi

REV. 4

'REV. 13

'PART 4. PPU DESCRIPTION

Introduction ,....ee.. P
Operand Arithmetic eescnse sesesss Gsssessescosecnsnnas
A TegiSLeY .ieeessercccscsasncene S
Shift count register (sk) arecanes ceeseassessens
Address ArithmeticC ..eeecesscocsososvesscsnossnsosssassnses
Program address register (P) .iceseesesscssnssancansosss
Operand address register (Q) .v.ceveeses cevseseserscanes
Increment adder NetwoTrKk ,.u.svecccsaseccsscvcrsssscacnas
Address adder NetwWork ..ceeecececersescccns sesesssassass

Internal StOTA8e .seeoesevscscensescaansnsasssssosscsssssasnssne
Bank sequence cOntYOl ...iceivecocsansosssescssassoscnsss
Bank busy flag ..eececcececcscccasaconcoconcssssovennoans
S TegBlSter .iieerecevssrososessesscsosassscsssasssssonene
PPU storage MOdUleS ...iveescsvccccocscescnssossccnconcs
Parity generation networkceesssevseccccsccsccanncs
Z TegiSteT suevecenvsovancsnsesacsancssacsasesosssssocsasnsons
X regiSter coeeeeseecccvesssocossoccsnnsssnnassasnsnnoss
Parity detection network casscesssescsns secesssce

Write.-Data Selection ,.ceveeeseeeccscacssvascscasaasscnnsss
Write data mode flags ...eeevevecsssesccnsoe ceesncssnnens

Instruction Translation ...uevesceceoeceoscecesvsvosaccosonsas
D G =Y - 1Y =
kK regiSterveeeeeceeacess ceeseas ceeserasetseceracaae
d TeBISLET seeeucvsnsssscnsassonesascessscasssssscsssasess
Instruction translation NEtWOTK ,.eeeesocccccovcoscooses

Instruction Timing ..eeseeseeesscasccssosssccsscsoscsoascssns
Go registers flag (GRF)cevecooaccscooscosncssncosss
Main timing chain (.eviereetveccverasncocnrecssscsnccnas
Jump delay chain ,..iueeeenssecevescsoasoscnnassassnannsns
Jump delay flag (JDF) cesssesccencas ceevessases .o

Input Channels ® 6 6 & 00 OB 00000 E G Ao € 0 9 5 0 00 B8O N I NSNS
Input channel word flag LU L I B B R B BRI B BN BRI B B B B B AR Y
Input channel record flagc.ovevveovscncncnconcanens

Input channel resume flag seanssscesssnsssonssaas
IWF synchronizing network ..eeeeeceevscocscosscsvonnnans
IRF synchronizing network t.eeeecesccsceccescosassonsasnsa
Input word flag (IWF) tuiueeeaoesnccsoancnnanssoscscoocns
Input record flag (IRF) .eveeeecccovsconsasnccencasscnans
Channel data selection NetWOTKevenncconsessscocsons
Output Channels ...ieeeerevecresrsreoscosessssannnan seesese
Output channel word flag ...eeeeeessveecosscacsecnces cees
Output channel record flag ...ieieesessveosencscncncanas
OWF synchronizing network Cessssatsecsesesceannosna
ORF synchronizing networkceeeesecssccccscasconcs

vii

LASL-AEC - OFFICI

REV. 13

Output word flag (OWF) ..euiiveovecvcceconcnnarasccvecany
Output record flag (ORF) ceccseososastoasanees
Output data selection networkccececevorcccocccens
Channel output regisSters ..e.ieecesccsscsscrccssssancesns
Full Duplex Communicationceceescsvecoesersccacocccnons
Word flag .eeveccesnncns cesena vecssesssvesssasasencescrue
Record flag .e.cecevevesessvoncscvsessancsscncosasscoccene
RESUME +voveeovssoccoosssssssssssscsssncasocssassvsosssvsoccocs
Maximum cable length ,...ccvivereseccocrsasscscccesscnans
MCU Control Cable ..ieeesccocvcnccsscsvscesssscscsssrsnansone
Dead StATL ,eveoveesescscoosssvessacsosssvsnsacnoenscvcae
Dead dUMD .vessvsvcosvscssssassrasssscscsvecssrsoccernoe
Parity error registereeceseccccsrancccocrocenccens
PYOEYam ETYOT ,sesevreesessssoscccsossscorsrneassoscossssos

.
LR

viii

PR SR S S
]

1
munmupsoSppbs s
— =0 m>a>a:c~c~a~u»f:§:§:

-F*D-DJ‘-‘&‘J-\J-\-I-\

'REV. I3

PART 5. PPU INSTRUCTIONS

IntrOdUCtiQn P e e T R R RN N RN NN R RN RN R AR RN AR LSRN

TermiHOIOgy 0P S S S C AP OSSP OLIPENEPP IS RLCFOPOOBEEEOONONSINROISIIIOITPTDS

00XX
0100
01XX
0200
02XX
03xX
04XX
05XX
06XX
07XX
10XX
11XX
12XX
13XX
14XX
15XX
16XX
17XX
20XX
21XX
22XX
23XX
24XX
25XX
26XX
27XX
30XX
31XX
32XX
33XX
34XX
35XX
36XX
37XX
40XX
41XX
42XX
43XX
44XX
45XX
46XX
47XX

ETXYOr StOP vvveesssccsscosoansacascssscosonascsssanns

XXXX Long jump tom

....... FREERE R I IR NI B]

XXXX Long jump tom + (d) .seeececesecosscvacacne ceses
XXXX Return jump tO M .eceencccscossoncsccsosncososness
XXX Return jump to m + (d) civeevcevevesosannns caene
Unconditional jump d .seeececescssoososccosscsccaanss .o

zero ijpd '...................‘.........'.....'.'..
Nonzero juUMp d seeecscesvessveacasosssssossnsssesscnnes
Positive jump d 5 ¢0 0P EEEV0POIECEITEIOVIOIBSEORIOSIIOGEOILOROGBTPRIROLIEGEGETSTES

Negative jump d ssseececessccssoscsscsacssoccccscccas .
Shiftd .’l-‘..........‘.....................‘
Logical difference d ...cceveecnsescsncssesccccccnnns

Logical product d .eeaececessecocsesssssscssososannns
Selective Cleard 'TEEREEREEEENX NI I NI N BN NI S R R R B L

Loal d seceocsacrsssnveces e

20 e8P A0 R EPOOLSIIERIRAESIOSEUVSOGSDS

Load Complement d FEEREEEE X EI N I AR A B A N AR A B R B A B B I

Add G ...eerecvosscocossoscssosssossscnscsocssasscscnone
Subtract d seeceecscessacassss cececsassacssesressasna
XXXX Load dm ..c.seveccecosvcsccscssosassoscscscscssansssnce
XXXX Add dm ,.eeecessvecsocacscssscccssscsoscosnsnana

XXXX Logical product dm

' FEEEENERE N I I I BRI

XXXX Logical difference dm ,.cceoeevecveccsscccsancns

Pass T EEEEEEEEE N I N IR R B BN B A AR S B A I L LB AL B A

PaSS S S 05 0 A 00 CCECE IO SRS C LA NEOLOEPEIIPPISIOILINSIOIETSECRES s

PaSS e s 0s s e s s es s Ve 2@ e B B B AP EIEN GBI DBIEOCEBIT RGNS

Pass .s.00s000e cessses csans
Load (d) @ 8 0 & P W 60900 g NN

5 00 00900 P S 0L ORISR LNt

S0P PSSOV LB OLSCIOIETEISERECSGDS

’Add (d) e 280 0P et ¢te s oo RN R R R RN WA SR B B s e

Subtract (d) s e M s assesosssssIBseRRsclRssRcsar tee s
Logical difference (d) .vvcvececvensenccncanss esecces
Store (d) € ¢ 0 00 O 0LEIBEEPEESIOEIPOIOIOIRITEEERIOIRNBTEOEPRIRROEOIOTS .

Replace add (d) P PP AC ORI NIEOLIIEEETEQROIOIOGIIEAIIDOENESIRTSLS
Replace add one (d) S0 ISP IO IPIORPIINIIOGEOOIOGIPOIEIERIEDRNOITOSDS

Replace subtract one (d)

ooooo 400 E S IBCOBNCLEOOOELELEIPNNSES

Load ((d)) cuivevseceoronccracascacoavasvasnsnosanannse
Add ((d)) seveeesvvecoannanonss ceesssranescssvecssnasas
Subtract ((d)) eseeecevvoscccoassvescasvsasroacssosnosnn

Logical difference ((d))

e0 s 000008 s s0csesn sa0s oo

Store ((d)) ceevevsocvecsrsacesscvsesssocsscssosscssacas
Replace add ((d)) sivseeecscececcrssoossoscccccssosaans
Replace add one ((d)) seeeevevscessoasccscssoosansans
Replace subtract one ((d))

ix

5 0 660008 LI NP OB GNP

UIU\U\U\UIU1$|U1U1U1U1U\U1
000N PWN RO
- O

'
Pt ps
W N

5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-26
5-26
5-26
5-27
5-28
5-29
5-30
5-31
5-32
5-33
5-34
5-36
5-37
5-38
5-40
5-41
5-43
5-45
5-47

LASL-AEC OFFICH

"REV. i3

5000

50XX
5100
51XX
5200
52XX
5300
53XX
5400
54XX
5500
55XX
5600
56XX
5700
57X
60XX
61XX
62XX
63XX
64XX
65XX
66XX
67XX
70XX
71XX
72XX
73XX
74XX
75XX
76XX
77XX

XXXX Load (M) weeeecevncassosoncsssssossnsssssosscsses 5-49
XXXX Load (m + (d)) veueveeveovocecaransssancesnsssss 5-50
XXXX Add () seeuvevoeeencssosensossssnsscsonnssascne 552
XXXX Add (m + (d)) eeevvrecacsonssossnnsscsoansnassss D34
XXXX SUBETACt (M) seveesoonscvnscncsssssssnsnvsssoces 3-56
XXXX Subtract (M 4 (4)) sevececocvovecesassosacscecas =37
XXXX Logical difference (M) ...eeveecvsescccccccsnoce 5-59
XXXX Logical difference (m + (d)) ..ccevvvevesncaosses 53-61
XXXX Store (M) seeeeosnessoceosesassssasassesasanssss 5-63
XXXX Store (M + (d)) cevecesernsscsoseossonssessnssns 5-64
XXXX Replace
XXXX Replace
XXXX Replace
XXXX Replace
XXXX Replace
XXXX Replace

XXX Jump
XXX Jump
XXX Jump
XXXX Jump
XXX Jump
XXXX Jump
XXX Jump
XXX Jump

on
on
on
on
on
on
on
on

add (M) sssveecooccvorevsassasssacsencss =66
add (@ + (d)) cecevevsrscrsvoccscsscssss =68
add one (M) seseeeoescevsscsssasssesnses 9-70
add one (m+ (d)) sesencsssveesasebnc e 5"72
subtract one (M) seoesecoscececsesvsssssee =74
subtract one (m+ (d)) vvesevevevensases 3=76
input word flag .seeessscecsococccoscsces 378
no input word flag s.eeeeeceescccccscaes 9-79
input record flag .s.esesesvesseccsssesss 5-80
no input record flag ..seeseeesccecsssss 5-80
output word flag ...cecieeececcvocecccnce 5-80
no output word flag .essescecscscscsssss 5-81
output record flag ..ceeeccsvossascsssas 3-8l
no output record flagceevescesesnss 5-81

Input to A from channel dcieeeeeressssacsscesns 5-82
XXXX Input (A) words to m from chammel d ceessss D=83
Output from A on channel deceveonsancns eresennee 5-89
XXXX Output (A) words fromm on channel dc0000.. 5-90
OQutput record flag on channel dccvevenvcncncnnnes 5-94

Pass ceeee

80 80 6068 00T S 0PN SR ORI IIRRRERSIPCIOIPPIDISEOIRNRITTSTE 5-95

Pass 2 0 0 9 9 08P GO PSLOEEEVESNEIENQEOESRBErIIIIDIOLIISNSISEOSODS 5-95

EXTOT SEOP eeoerseassoasocsasosssessessssssasseassscs 995

)

)

TREV. I3

1-1.
1-2.
1-3.
1-4.

1-5.

2-3.

2-4.

2-5.

2-6.

2-7.

2-8.

2-9.

2-10.
2-11.
2-12.
2-13.
2-14.

2-15.

FIGURES

7600 System Communication..........ecceeeeecaaonss 1-2
CPU Computation Sectiom.......cvoetuvevecncnscenens 1-7
“CPU Exchange Package......coveerveoroconsosconcens 1-21
'I/0 Section Exchange Package Areas in S(M......... 1-24
'1/0 Section Buffer Areas in SQM......... Ceseseaane 1-25
_Operating System Storage Allocation............... 1-28
CPU Instruction Stack............. cesearessresaren 2-4
CPU INStruction ISSUE....v.veerrsvosanarcosccnnnns 2-14
Boolean Unit....eeecceeeeersroroncenaasssascononsnse 2-22
Shift Unit....oiveeerenneereoenonsoasanccacanannns 2-25
Normalize Unit........0.0.. R R R R 2-30
Long Add Unit..‘ tecsscesenena 2-34
Floating Add Unit............. cescessecetseasanans 2-37
Floating Multiply Unit,.....ccctiucrnerunconrannsns 2-44
Floating Divide Unit.......c.iiiiniaiinarasanncnss 2-51
Population Count Unit........coevv0e tesecevenrenas 2-59
Increment Unit.....oeeveceocoescocsovooscssanssanns 2-61
Instruction Branching........ccveveeennns tesesennns 2-65
Exchange SequUenCe........ccoveesneneceresscssannas 2-73
Program Status Register (PSD)......ccvvvneennnanns 2-81
X RegLBLEYS. . ..uvesveseassossssosnsnssseacsnsossves 2-89

x{

72-180
2-19,
2-20.

2-21.

2-23.
2.24,
2-25.
2-26.
2-27.
2-28.

1229,

-a’lo

7 X Register Access Control....................-..

7B Registers-cooooooooooncoaooocooocoooooc..vtoco

A Registers.......................-.............

_SCH Organixation...............--...............

Storage Address Stack (SAS).....-.....'........I

_SCH Bank..'...'..............l...l'.............

7St°rage Word Stack.ooﬁooovooo-Ooooa.cooc.'ocoocc

SCM Data DistributionNeeccecsvercosccccvocescasnsnss
SCM Destination Control.seceseccecocssscsssscsas
Exchange Destination Controleceseccccosccecacess
1/0 Section OrganizatioNececsccesccscscecocccsne
Channel Input Control Uniteecseecessccsccoscccsnce

Input Data Merge Networﬁooooooooonoooooo-oootbot

7Channe1 Output Control Uniteeeaceosvcecsccsccnces

"PPU Organization.s.eosevevvsscscercscvcscocncnce
70perand Arithmetic...................;..........
"Address Ar{ithmetiC.ccoesecssososccassccovscscses
"PPU Storage Bank.eeeocscssossssnescsccccccsccanne
‘Write Data SeleCtioNeesceccesssssassasecoscoosss
" Instruction TranslatioN...eececscesccscacacccens

7In'truction Timing..-.........................-o

xii

2-92

2-97

2-101
2-108
z2-110
2-119
2-123
2-129
2-132
2-136
2-139
2-141
2-151

2-153

41

4-12
4220
425
4-28

4-34

D

)

EV. I3

4-8.
4-9
4-10.

4-11.

4a12,

Input ChannelScececcecccrnescscoscsenrcncscocscnccce

Output Channeln.-...............................

Full Duplex Communication Channelecccesscccceccee

MCU Control Cablececccrcccvaacscncncosocsnosnssnoses

Error DetectiONececscsoccccsscencavecsccacscnsnoe

xiii

4-38
4-42
4-47
4-50

4+52

| T TP P IWE |

)

SYSTEM
DESCRIPTION

'S

PART I: SYSTEM DESCRIPTION

‘Introduction

The 7600 system is the result of a development program to provide

computing capacity substantially beyond that of the 6600 systems.
Central processor computation is expected to average four times as
fast as corresponding computation in the 6600 system. The 7600 system
is intended to be machine code upward compatible with the 6400/ 6600
systems in the area of central processor routines. It is not com-
patible on the machine code level in the area of system programs or
input-output drivers. The 7600 system input-output provisions have
been generalized and greatly expanded over those provided in the 6400/
6600 systems, Input-output data rates are not expected to average
substantially higher on a per channel basis than the rates in 6600
systems., A much larger volume of input-output data is handled in the
7600 system by a much larger number of input-output channels.

The 7600 system contains a central processing unit (CPU) and a number

of peripheral processing units (PPU). Some of the PPU are physically
located with the CPU and others may be remotely located. The PPU
communicate with the CPU over high speed data links with the data
buffered at the CPU end of the data link, The CPU is interrupted by
the PPU once per data record, or on prescribed quantities of buffer
data for long records. The PPU provide a communication and message
switching function between the CPU and individual peripheral equip-
ment controllers. Each PPU has a number of high speed data links to
individual peripheral equipment controllers in addition to the data
link to the CPU. The PPU time shares the data link to the CPU among
the peripheral equipment controllers on a record by record basis,

The 7600 system is designed to accommodate multiple operating stationms

Each operating station is organized around a PPU which communicates
directly with the CPU over its associated data link. New peripheral
equipment configurations are being developed which will operate from
programable equipment controllers and are specifically intended for
this application. These controllers will be able to communicate with
the PPU on a record by record basis at higher rates than the existing
6400/ 6600 equipment.

1-0

ASL-AEC vomcmq

7600 system parameters

'CPU computation section

- 60 bit internal word

- binary computation in fixed point and floating point format
- nine independent arithmetic units

- twelve word instruction stack

- synchronous internal logic with 27.5 nanosecond clock period

CPU small core memory

- 65,536 words of coincident current memory (60 bit)
- 32 independent banks

- 2048 words per bank

- 275 nanosecond read/write cycle time

- 27.5 nanosecond per word maximum transfer rate

CPU large core memory

- 512,000 words of linear select memory (60 bit)
8 independent banks

64,000 words per bank

1760 nanosecond read/write cycle time

8 words read simultaneously each reference
27.5 nanosecond per word maximum transfer rate

CPU input-output section o

- 15 independent channels (asynchronous)

- each channel full duplex (60 bit)

buffer areas of 64 or 128 words each channel

55 nanosecond per 60 bit word maximum transfer rate

PPU computation section

- 12 bit internal word
- binary computation in fixed point
- synchronous intermal logic with 27.5 nanosecond clock period

"PPU core memory

- 4096 words of coincident current memory (12 bit)
- two independent banks

- 2048 words per bank

- 275 nanosecond read/write cycle time

"PPU input-output section

- 8 independent channels (asynchronous)
- each channel full duplex (12 bit)
- 137.5 nanosecond per 12 bit word maximum transfer rate

UOIDIUNWIWOY WaskS 009L

syuoq 2¢
spIom 9¢ G'GY
(SHG09) WIS

e

S|auuoy2 Gj

(811q 09) uoydes
ndinQ —ynduy

SHUOQ §
spiom 000" 2IS
(841G 09) WO

aEm—"

(s¢:9 09)
UoHIIG
uoipyndwo)

{(nNdD) vun oc_mmou_o& Joauen

e LE
swniq
seuuoyd g 49§1044u0) _
SPIOM 96 0P juswidinby
(84921 Ndd l.l|l;l!|..LA|.V , s Asig
o EEEE—
sjauubyo g JR1044u0) S0 4310
Spiom 9600 juswdinb3
(19 21} Ndd . : e $jiun 3dD}
swwoyog e 181104ju07)
SPIOR 960 e 1 wewdinb3
(80621} Ndd ; < > KoydsiQ
[spuuoyog |
Spiom 96 0Y ..o:o“_.cwu
(s#q21) Ndd _:._nE '3 Je————> sajund 3ui7
S|PUUDYD 8§ . 4ound pio)
SpIoM 9500, AHPIHWD v T
(s#Q21) Ndqg uswdinby
, i - 19pDII pIOD

LASL-AEC-OFFICIAT]

" System communication

"The 7600 system is divided into a number of major sections which

are interconnected as shown in figure 1., All input data enters the
system at a peripheral equipment controller, All output data leaves
the system -at a peripheral equipment controller. The PPU serve to
gather input data from the peripheral equipment controllers for
delivery to the CPU for processing, and distribute processed data

to the equipment controllers for output devices, The communication
between PPU and equipment controller is generally limited by the
rate at which the equipment controller can deliver or accept data,
Most equipment controllers in the 7600 system will contain a core
memory buffer capable of holding one record of data for the attached
input or output devices. The communication between PPU and equip-
ment controller is then a one record burst of data followed by a
relatively long period of inaction. The PPU is then able to time
share its channel to the CPU among a number of equipment controllers
without storing more than one record of data in its own memory at
any one time, -

Communication between a PPU and a peripheral equipment controller

is over a 12 bit full duplex channel, Each channel has a 12 bit
data path from PPU to controller, and a separate 12 bit data path
from controller to PPU, These two data paths are independent and
may operate simultaneously. Each path has two associated control
lines carrying control information in the direction of data flow,
These lines carry a "word flag" to indicate passage of each 12 bit
word of data, and a "record flag' to indicate the completion of a
record of data, Each path has one associated control line carrying
control information against the direction of data flow, This line
carries a 'word resume'" signal to indicate receipt of a data word.
These channels are descrised in detail in part 4 of this manual,

Communication between a PPU and the CPU is over a 12 bit full duplex

channel identical to that described above., The 12 bit data path from
PPU to CPU includes a 60 bit assembly register at the CPU end of the
data link, This register assembles five 12 bit words into a 60 bit
word for entry into the CPU memory. The 12 bit data path from CPU

to PPU includes a 60 bit disassembly register at the CPU end of the
data link, This register disassembles a 60 bit word from the CPU
memory into five 12 bit words for transmission over the data link.

1-3

O

@

'A maximum of 15 PPU may be directly conmected to the CPU., Each CPU

channel has assembly and disassembly registers to convert from 60 bit
to 12 bit word length., All 15 CPU input-output channels may be in
operation at the same time, Data is transmitted to, or from, PPU
on a record by record basis. The CPU program is interrupted at the
end of a.record transmission to exchange control information with
the communicating PPU or to initiate transmission of another record.
On very long records the CPU program is interrupted at prescribed
intervals in the buffer data, The frequency of this interruption

is a function of the buffer size and may be preset individually for
each CPU channel. Details of the CPU buffer operation are described
in detail in part 2 of this manual.

7Operating,system

The 7600 hardware was designed with a particular software approach

in mind, This approach is an outgrowth of experience with the
Chippewa Operating System (COS) for the 6600 system. The 7600
operating system software will be described in a separate manual.
Reference to software in this manual will be limited to those
areas where hardware provisions are a direct result of software
considerations,

" System monitqr

‘The system monitor is a CPU program in the 7600 system. This program

is loaded with the operating system on a machine ''dead start" and
remains in the CPU core memory as long as the operating system is
used. A portion of the system monitor resides permanently in the
small core memory (SCM) section of the CPU., This portion of the
monitor program is called the 'resident monitor" program. The bulk
of the system monitor resides in the large core memory (LCM) section
of the CPU, This portion of the monitor program is called piecemeal
into the SCM for execution as overlays on the resident monitor program,

" Object program

‘An object program is defined in this manual to mean any CPU program

other than the system monitor program, This term is used to describe
generally a job oriented program, An object program may be a machine
language program such as a FORTRAN compiler, or it may be a program
which results from compiling FORTRAN statements with a compiler,

1-4

LASL-AEC OFFICIAT]

.

“Central processing unit (CPU)

"The CPU is a single integrated data processing unit, It consists

of a computation section, small core memory, large core memory, and

input-output section, These sections are all contained in one main

frame cabinet and operate in a tightly synchronous mode with a clock
period of 27,5 nanoseconds., Communication with equipment outside

of the main frame cabinet is asynchronous.

" CPU core memory

‘The CPU contains two types of internal core memory, One type,

designated as the small core memory (SCM), is a many bank coincident
current type memory with a total capacity of 64K words of 60 bit
length (K = 1024). The other type, designated as the large core
memory (LCM) is a linear selection type of memory im which eight

60 bit words are addressed as a single unit. The LCM has a total
capacity of 500K words of 60 bit length. These two types of inter-
nal memory have significantly different system functions in the CPU,

The SCM is arranged in 32 banks of 2K words each, Each bank is

independent of the other 31 banks, Maximum data transfer rate
between the SCM as a unit and other parts of the system is one word
each clock period. Each SCM bank has a four clock period access
time from arrival of the storage address to readout of the 60 bit
word, The total read/write cycle time for a SCM bank is ten clock
periods., It is thus possible for a maximum of ten SCM banks to be
in operation at one time, This maximum occurs during block copy
instructions between SCM and LCM in which the addresses for sequen-
tial words cause no SCM bank conflicts, In random addressing of
the SCM for CPU program data, CPU instructions, and input-output
channel data, an average of four SCM banks in operation at one time
is more normal,

The SCM performs certain basic functions in system operation which

the LCM cannot effectively perform. These functions are essentially
ones requiring rapid random access to unrelated fields of data., The
first 4K addresses in SCM are reserved for input-output buffer and
control areas, These areas are addressed by the CPU input-output
section asg required to service the communication channels to the
PPU. CPU object programs do not have access to these areas., The
next 1K addresses are reserved for the resident monitor program.

1-5

‘The remainder of the SCM is divided between fields of CPU program
code and fields of data for the currently executing program.

The LCM is arranged in eight banks of 64K words each, Each bank is
independent of the other seven banks. A storage reference to a LCM
bank results in a read/write cycle which takes 64 clock periods,
Eight 60 bit words are read simultaneously from a LCM bank whenever

a read/write cycle occurs. These words are held in a 480 bit operand
register for each LCM bank. Subsequent reference to a word residing
in one of these operand registers allows either read or write function
without the delay of a bank read/write cycle. Maximum data transfer
rate between the LCM as a unit and other parts of the system is one
word each clock period. This maximum transfer rate occurs during
block copy instructions between LCM and SCM., LCM bank read/write
cycles are anticipated in the block copy operation to avoid a bank
access delay.

‘The LCM provides the basic working storage for the CPU. All object
programs are assembled here for execution in the SCM., All data files
are buffered through LCM for the object programs. Small object pro-
grams are generally run to completion in SCM with the complete input
file in LCM at the beginning of execution, and the complete output
file in LCM at the end of execution.

The low order addresses in LCM are reserved for monitor program
overlays, mathematic routine library, and FORTRAN compiler. These
areas require approximately 32K of the 500K available storage. The
remainder of LCM is divided into fields for the various operating
stations in the system,

_Computation section

' The computation section of the CPU contains nine segmented arithmetic
units, 24 operating registers, and a 12 word instruction stack. These
units work together to execute a CPU program stored in the SCM. Data
moves into, and out of, the computation section of the CPU through the
operating registers. Data may be directly addressed in either the SCM
or the LCM. The general information flow in this section is illustrated
in figure 1-2,

1-6

O L T e Co-0 Ot ﬁ
\ L N ,r / fvi
{ i - Lot A
uoidag uoioindwod NdY 2-1 B4
R
@
0i0Q SS0.ppY vioQ sseuppy
W WO WOS WIS
I
1
1
1
I
|
(siq 81) _
Eo_wmoom__m (s4q09) sijsiday x nw,.n_mouw:d
. ~
J
juawiesdul
(044u0))
uno) voyoindoy A||_ WOS woi4
21jDULION PIOM UOYONISUT JUBLING
BNS re
uo900g _
sping bunoot 4 I L
Ayduiny Buijooy 4 {
ppy Buyooyy . [L
PPy buoq I L
siun { -
|ouoioun 4
! (SHQ 08) ¥O0IS Prop uONINISUT

1IN0 DIV-15V1Y

‘Instruction word stack

The instruction word stack is a group of twelve 60 bit registers in
the CPU computation section which hold program instruction words for
execution, The instruction stack information is essentially a moving
window in the program code. The stack is filled two words ahead of
the program address currently being executed. A small program loop
may frequently be entirely contained within the instruction stack.
When this happens the loop may be executed repeatedly without further
references to SQM.

The current instruction word is contained in a special register in
the CPU computation section, This register is designated the CIW
register. Program instruction words are read one at a time from the
instruction stack and are interpreted in the CIW register for exe-
cution. This register controls all of the data transmission paths
between the operating registers and the functionmal units in the
computation section.

X registers

There are eight 60 bit X registers in the computation section of the
CPU. These registers are the principal data handling registers for
computation, Data flows from these registers to the SCM and the LCM.
Data also flows from SCM and LCM into these registers. -All 60 bit
operands involved in computation must originate and terminate in
these registers. Detail characteristics of these registers are
provided in part two of this manual,

A registers

There are eight 18 bit A registers in the computation section of the
CPU. These registers are essentially SCM operand address registers.
These registers are associated one-for-one with the X registers. When
an address is entered in an A register the corresponding data in the
X register is normally read from, or storad into, SCM at that address.

B registers

There are eight 18 bit B registers in the computation section of
the CPU. These registers are primarily indexing registers for
controlling program execution. Program loop counts may be incre-
mented or decremented in these registers. Program addresses may be
modified on the way to an A register by adding or subtracting omne
or more B register quantities. Further detall on these registers
is provided in part two of this manual.

1-8

lASL-AEC-OFHCIAq

Functional units

There are nine functional units in the computation section of the

CPU. Each is a specialized arithmetic unit with algorithms for a
portion of the CPU imstructions. Each unit is independent of the
other units, and a number of functional units may be in operation at
the same time, There are no 'visible'" registers in the functional
units from a programing standpoint, A functional unit receives omne or
two operands from operating registers at the beginning of instruction
execution and delivers the result to the operating registers when the
function has been performed. There is no information retained in a
functional unit for reference in subsequent instructions. These units
operate essentially in a three address mode, with very limited source
and destination addressing.

"All functional units with the exception of the floating multiply

and divide units have one clock period segmentation, This means

that the information arriving at the unit, or moving within the

unit, is captured and held in a new set of registers at the end of

every clock period, It is therefore possible to start a new set of

operands for unrelated computation into a functional unit each clock

period even though the unit may require more than one clock period

to complete the calculation. This process may be compared to a

delay line in which data moves through the unit in segments to

arrive at the destination in the proper order but at a later time. -
All functional units perform their algorithms in a fixed amount of (ﬁ)
time. No delays are possible once the operands have been delivered h
to the front of the unit,

" The floating multiply unit has two clock period segmentation,

Operands may enter the multiply unit in any clock period providing
there was no operation initiated in the preceding clock period.
There is a one clock period delay in initiating a multiply instruc-
tion if another multiply instruction has just been started.

The floating divide unit is the only functional unit in which an

iterative algorithm is executed, There is essentially no segmentation
possible in this unit although the beginning of a new operation can
overlap the completion of the previous operation by two clock periods,

1-9

The table below lists the functional units with the number of clock
periods required for execution in each unit. The first column
indicates the number of clock periods in each segment. The second
column indicates the number of clock periods required to execute
the function from the time the operands leave the operating registers
until the ‘result arrives back at the operating registers. Each
functional unit has a fixed execution time which is independent of
its possible modes of operation. For example, a double precision
multiply requires the same amount of time as a single precision
multiply. The list of octal designators for each functional unit
identifies which CPU instructions are performed in that unit.

“segment time ‘execution time

‘Long add unit 1 clock period 2 clock periods
(36, 37)

‘Floating add unit 1 clock perind 4 clock periods
(30, 31, 32, 33, 34, 35)

_Floating nultiply unit 2 clock periods 5 clock periods
(40, 41, 42)

‘Floating divide unit 18 clock periods 20 clock periods
(44, 45)

‘Boolean unit 1 clock period ‘2 clock periods
(10 through 17, 26, 27)

‘Shift unit 1 clock period 2 clock periods
(20, 21, 22, 23, 43)

‘Normalize unit 1 clock period '3 clock periods
(24, 25)

_Population count unit 1 clock period 2 clock periods
(47)

‘Increment unit 1 clock period 2 clock periods

(50 through 77)

1-10

-AlC-Ol-HCiAq

_Binary arithmetic

"All binary arithmetic operations in the CPU computation section are
performed in a ones complement subtractive mode. This is called simply
"ones complement' mode in the remainder of this manual. This mode of
arithmetic is represented by the recursive boolean expressions below
for the sum of two binary numbers.

"A(I) = .NOT. C(I) .AND..NOT. D(I) .AND..NOT. B(I) .OR.
C(I) .AND. D(I) .AND..NOT. B(I) .OR.
C(I) .AND, B(I) .AND..NOT. D(I) .OR.
D(I) .AND. B(I) .AND..NOT. C(I)

"B(I+l) = .NOT. C(I) .AND,.NOT. D(I) .AND,.NOT. B(I) .OR.
B(I) .AND,.NOT. C(I) .AND,.NOT. D(I) .OR.
C(I) .AND. B(I) .AND,.NOT. D(I) .OR.
D(I) .AND. B(I) .AND,.NOT. C(I)

B(0) = B(M)

"where: M = number of bit positions in adder

D(1) addend bit I

C(I) = augend bit I

B(I) = borrow into bit position I
A(D) sum bit 1

I 0,1,2,...,M-1 _(u)

The above expressions for the addition of two integers are symmetrical

in the appearance of the augend and addend bits., The order of addition
is therefore not important. This form of arithmetic creates two
representations of zero. A word of all zero bits 1s positive zero.

A word of all one bits is 1egative zero. A negative zero can be
generated in the addition process only if the addend and the augend

are negative zero. The modulus in the addition process is always the
power of two corresponding to the adder length, minus one.

‘Subtraction is performed by complementing the subtrahend and adding to

the minuend. Multiplication and division are sequences of addition
operations.

Floating point arithmetic

Floating point numbers are represented in a standard format throughout

the CPU. This format is a packed representation of a signed binary
integer coefficient times two with a signed binary integer exponent,
The coefficient {s a 49 bit ones complement integer, The exponent is
an eleven bit ones complement integer. The sign of the coefficient
is separated from the rest of the coefficient as shown in the 60 bit
word organization below.

1-11

‘59 58 48 47 0

! " 48

\

coefficient biased integer coefficient
sign bit exponent

‘Floating point format

"The exponent portion of the floating point format is biased by

complementing the exponent sign bit, This particular format for
floating point numbers is chosen because the packed form may be
treated as a 60 bit integer for sign, threshold, equality, and zero
tests., The same set of branch instructions can therefore be used
for both integer and floating point forms. A threshold test can be
made by subtracting two floating point numbers in the long add unit,
rather than the floating add unit, thus saving two clock periods in
execution,

‘Some examples of packed and unpacked floating point numbers are

shown below in octal notation to illustrate the packing process.

The first two examples are different forms of the integer +1., The
third example is +100 decimal and the fourth example is -100 decimal.
The last two examples are of very large and very small positive
numbers, ' -

‘unpacked coefficient = 0000 0000 0000 0000 0001

unpacked exponent = 00 0000
packed format = 2000 0000 0000 0000 0001

‘unpacked coefficient = 0000 4000 0000 0000 0000

unpacked exponent = 77 7720
packed format = 1720 4000 0000 0000 0000

‘unpacked coefficient = 0000 6200 0000 0000 0000

unpacked exponent = 77 7726
packed format = 1726 6200 0000 0000 0000

‘unpacked coefficient = 7777 1577 7777 7777 7777

unpacked exponent = 77 7726
packed format = 6051 1577 7777 7777 7777

‘unpacked coefficient = 0000 4771 3000 0044 7021

unpacked exponent = 00 1363
packed format = 3363 4771 3000 0044 7021

‘unpacked coefficient = 00 6301 0277 4315 6033

unpacked exponent = 77 6210
packed format = 0210 6301 0277 4315 6033

1-12

lASL-AEC-OH’ICIAq

‘—Special floating point forms

Special values are used in floating point format to indicate over-

flow of the floating point range, underflow of the floating point
range, and indefinite results. These special values are sensed by
the functional units to preserve the significance of the calculation
as long as possible.

Overflow of the floating point range is indicated by an exponent

value of +1777 octal. This is the largest exponent value that can
be represented in the floating point format, This exponent value
may result from the calculation in a floating point unit in which
this exponent value, together with the computed coefficient value,
is a correct representation of the result. This situation is called
a "partial overflow'" in this manual. An overflow error condition

is not indicated by the functional unit generating this result,
Further computation in floating point functional units using this
result will be detected as an overflow, however. A 'complete over-
flow" occurs whenever a floating point functional unit computes a
result which requires an exponent larger than +1777 octal, 1In this
case the functional unit indicates an overflow error condition and
packs a "complete overflow" value for the result. This result has

a +1777 exponent and a zero coefficient., The sign of the coefficient
will be the same as that which would have been generated if the
result had not overflowed the floating point range,

Underflow of the floating point-range is indicated by an exponent

value of -1777 octal, This is the smallest exponent value that can
be represented in the floating point format. This exponent value
may result from the calculation in a floating point unit in which
this exponent value, together with the computed coefficient value,
is a correct representation of the result. This situation is called
a "partial underflow" in this manual. An underflow error condition
is not indicated by the functional unit generating this result,
Further computation in floating point functional units using this
result may be detected as an underflow, however. A "complete under-
flow" occurs whenever a floating point functional unit computes a
result which requires an exponent smaller than -1777 octal., In this
case the functional unit indicates an underflow error condition and
packs a "complete underflow' value for the result. This result has a
-1777 exponent and a zero coefficient., The sign of the coefficient
will be the same as that which would have been generated if the
result had not underflowed the floating point range. The complete
underflow indicator is a word of all zero bits, or all one bits,
depending on the sign. It is the same as a zero word in integer
format.

1-13

An indefinite result indicator is generated by a floatimng point
functional unit whenever the calculation cannot be resolved. This

is the case in division when the divisor is zero and the dividend

i{s also zero. It is also the case in multiplication of an underflow
number times an overflow number. The indefinite result indicator

is a value that cannot occur in normal floating point calculations.
This indicator corresponds to a minus zero exponent and a zero
coefficient. An indefinite error condition is indicated by the
functional unit generating this result. Any floating point functional
unit receiving an indefinite indicator as an operand will generate

an indefinite result no matter what the other operand value. Indefi-
nite indicators are always generated with a positive sign. They may
occur as operands with negative sign, however, because of complementation
in the boolean unit,

‘Normalized floating point

A floating point number in packed format is normalized if the coef-
ficient sign bit is di fferent from bit 47. This condition implies
that the coefficient has been shifted to the left as far as possible,
and therefore the floating point number has no leading zeros in the
coefficient. The normalize unit performs this function, The float-
ing multiply and floating divide units deliver normalized results
when provided with normalized operands. The floating add unit ‘may
deliver un-normalized results even if both operands are normalized.
It is therefore necessary to program the normalize operation in the
normalize unit after each sequence of floating add or subtract
operations if the result is to be kept in a normalized form.

Double precision numbers

Computation in double precision or multiple precision modes may be
performed with the aid of the double precision instructions (32, 33,
42)., The floating add unit and the floating multiply unit perform
all computation in a double precision mode. The single precision
instructions use only the upper half of the 96 bit result. The
double precision instructions perform the same calculation but
deliver the lower half of the 96 bit result with the appropriate
exponent value. Double precision division must be programed using
the single precision divide instruction as a first approximation.

It is necessary to reconstruct the remainder by multiplying quotient
by divisor in a double precision mode and subtracting from dividend,

1-14

LASL-A[C-OFHCMq

"Rounded computation

Optional floating point instructions are provided to round the results

in single precision computation., These instructions are executed in
the same amount of time as the unrounded versions. The operands are
modified in the functional units to accomplish the rounding function.
The amount of bias introduced by the rounding operation varies from
unit to unit and is affected by the coefficient value in the operands.
These effects are described in detail for each of the round instruc-
tions in part 3 of this manual,

Integer multiplication

There is no CPU integer multiply instruction. Integer multiplication

must be performed in the floating multiply unit. This is accomplished
by packing the integers into floating point format using the pack
instruction and a zero exponent value, The product can be formed

for small integers without normalizing the operands by using the
double precision multiply instruction., The result need not be
unpacked if the destination for the product is an A register or a

B register since the increment unit extracts only the lowest order

18 bits of the 60 bit word,

7Intqggr division

There is no CPU integer divide instruction. Integer division must

be performed in the floating point divide unit., This is accomplished
by packing the integers into floating point format using the pack
instruction and a zero exponent value, The divisor must then be
normalized with a 24 instruction. The dividend need not be normal-
ized. The resulting quotient must be unpacked and the coefficient
shifted by the amount of the unpacked exponent using the 22 instruction
to obtain the integer quotient,

'1-15

™

" CPU instruction format

7Program instruction words are divided into four 15 bit fields called

"parcels' in this manual, The first parcel in a word is defined to

be the highest order 15 bits of the 60 bit word, The second, third,
and fourth parcels then follow in order. A CPU instruction may occupy
either one or two parcels, depending on the type of instruction. If
an instruction requires two parcels it must not begin in the fourth
parcel of the word, The possible arrangements of one and two parcel
instructions in a 60 bit word are shown below,

15 15 15 15
[30 5 [5 |
[s | 30 s |
15 15 30
30 1 30

It may be necessary in program code to occasionally complete a 60

bit instruction word with one parcel pass instructions. This must

be done in those cases where a two parcel instruction would require
starting in the fourth parcel of a word. One parcel pass instructions
are also used to complete a 60 bit word in order to place a particular
instruction in the first parcel of a word, This is necessary for
branch entry points because a branch instruction destination address
must begin with a new word,

'A one parcel instruction is composed of five octal digits called

""designators" in this manual. These designators are identified by
the symbols g, h, i, j, and k, The designators are arranged in
order in the 15 bit parcel as shown below,

‘One parcel instruction format

1-16

IAq

P

“The g designator generally identifies the type of instruction and

frequently specifies the functional unit, The h designator completes
the function code specification for all but a few instructions by
specifying the functional unit mode. The i, j, and k designators are
the operand source and destination indicators, These designators
specify which one of the eight possible A, B, or X registers is
referenced, The selection of register type--A, B, or X--is implied

in the instruction function code by the g and h designators. The i
designator is always the destination indicator. If there are two
destinations required for the instruction, both the i and j designators
specify destination,

A two parcel instruction contains an 18 bit operand to be used in the

instruction execution, This is used for branch destination addresses
and for small integer constants, There are five designators in this
instruction format, The g, h, i, and j designators have similar roles
to those described for the one parcel instructions. The k designator
is expanded into the 18 bit K operand as shown below,

Two parcel instruction fogmat
- P s L, S P, -

‘The two parcel instructions should be used only where the operand in

the instruction is an invariant throughout the complete execution of
the program in SCM, Modification of program code during execution of
that code has several problems which are not easily covered in program
layout. There are no hardware provisions to update the content of the
instruction stack, for example, when one of the instructions in the
stack is modified in storage. The two parcel instructions are executed
in the same time as equivalent one parcel instructions. Two parcel
instructions tend to accelerate the program code movement through the
instruction stack, however, which causes increased storage references
for program code and more frequent delays in filling the instruction
stack, As a result, the one parcel instructions should be favored
whenever a choice 1s available in program coding.

1-17

>(*

Storage field protection

Each object program at execution time has a designated field of SCM
and a designated field of LCM in which it may address data. These
fields are specified by the monitor program at the time the object
program is initiated., Each field may begin at an arbitrary address
in storage and continue for an arbitrary length, All addresses in
an object program field must be contiguous.

The storage bounds for an object program are contained in four hardware
registers in the CPU, These registers are:

_(RAS) Reference address for small core memory
This is an 18 bit register which defines the absolute SCM address which
is the first address in the SCM field.

(FLS) Field length for small core memory
This is an 18 bit register which defines the length of the SCM field.

_(RAL) Reference address for large core memory
This is a 24 bit register which defines the absolute L(M address which
is the first address in the LCM field.

(FLL) Field length for large core memory
This is a 24 bit register which defines the length of the LCM field.

All addresses for SCM or LCM contained in the object program code are
relative to the reference address which begins the defined field. It
is therefore not possible for an object program to read or alter any
storage locations with a lower absolute address than the reference
address. Each object program reference to storage is checked against
the appropriate field length to determine if the address is within the
bounds assigned. A storage reference beyond the assigned field length
is prevented from altering the storage content and creates an error
condition which terminates the program execution.

1-18

LASL-AEC-omcmq

Program branching

Program branching presents some special situations because of the

instruction stack. The current program address is maintained at all
times in a program address register (P). This register contains the
relative address in SCM for the word currently in the CIW register,
When program instruction words are read sequentially from the instruc-
tion stack into the CIW register, the P register is advanced one count
for each word. The instruction stack contains 12 words of instruction
code in a group of registers called the instruction word stack (IWS).
Associated with each word in the instruction word stack is an 18 bit
address. The 12 addresses in the instruction stack are contained in
twelve 18 bit registers called the instruction address stack (IAS).
The addresses in the IAS move with the words in the 1WS so that the
one-for-one relationship between address and program instruction word
is maintained as the words move through the instruction stack,

‘When a program branch point is reached and the current program sequence

is terminated with a jump to a new program address, the new program
address is entered in the P register. This new program address is then
compared with the 12 addresses in the IAS to determine if the jump is
within the instruction stack, If a coincidence is found between the
new address in the P register and one of the 12 addresses in the IAS,
the associated word in the IWS is read immediately into the CIW register
and the jump instruction has been executed, If no coincidence is found
between (P) and the addresses in the IAS, the jump is "out of stack.,"
In this case a new sequence of instructions must be read from SCM at
the new program address (P) and entered in the instruction stack.
Completion of the jump instruction is delayed in this case by the
amount of time required for the first word to be read from SCM,

‘The old instruction words in the IWS are not cleared when a jump out

of stack occurs, The old words are simply shifted along in the IWS as
the new program sequence enters the instruction stack. It is therefore
possible to have several sequences of noncontiguous program code in

the instruction stack at one time., The program execution may jump

back and forth between these program sequences without leaving the
instruction stack as long as the current program address (P) does not
come within two words of the end of the program sequences held in the
instruction stack,.

1-19

" Exchange jump

‘The CPU exchange jump is a mechanism for switching CPU execution
between object program and monitor program., An object program which
requires monitor action for a library call, input-output request,

or error treatment performs an exchange jump to terminate its own
execution and begin the monitor program. Similarly, the monitor
program performs an exchange jump to initiate execution of a particular
object program,

The execution of an exchange jump involves the simultaneous storing

of all pertinent information in the CPU operating registers and con-
trol registers into SCM, and the reading of new information from SCM
into these same registers, This block of data is called an '"exchange
package.'" The execution of an exchange jump then involves the storing
of the exchange package for the terminating program and the reading

of the exchange package for the initiating program. The information
contained in an exchange package is shown in figure 3 on the following
page.

An "execution interval' for an exchange package is defined in this
manual to mean a period of time during which the particular exchange
package resides in the CPU hardware registers. The execution inter-
val begins with an exchange jump which reads the exchange package

from SCM and enters these parameters in the CPU registers, The
execution interval ends with another exchange jump which stores the
exchange package back into SCM. The complete execution of an object
program may then be composed of a number of execution intervals for
the object program exchange package interspersed with monitor activity.

An exchange package contains all of the information necessary to
resume the execution of a terminating program. The contents of the
operating registers A, B, and X are contained in the exchange package
along with the current program address P. The four storage bounds
registers RAS, FLS, RAL, and FLL are represented, In addition the
following four registers of special information are included in the
exchange package,

_(NEA) Normal exit address - This is a SCM absolute address for an
object program exchange exit instruction,

" (EEA) Error exit address - This is a SCM absolute address for an
exchange jump on error termination,

(BPA) Breakpoint address - This is a SCM relative address for
breakpointing an object program.

(PSD) Program status designation - This is a register of control
information, ‘

1-20

LASL-ALC omcmq

REV. 3

SCM locotion n 7/ P AO BPA
ol P2 RAS Al BI
w2 P4 FLS A2 52
ne3 P PSD A3 B3
n+4 RAL A4 B4
n+5 FLL A5 85
n+6 NEA A6 B6
ne7 EEA A7 B7
n+8 X0
n+9 XI
. n+10 X2
n+li X3
n+l2 X4
n+l3 - x5
n+l4 X6
ne!S X7
Fig.1-3 CPU Exchange Package
1-21
s

TN

_Program breakpoint

An object program may be executed in small sections during a debug-
ging phase by using the breakpoint address register (BPA). This is
a hardware register in the computation section of the CPU which is
loaded from the object program exchange package. A coincidence test
is made between (BPA) and the program address register (P) as each
program instruction word is read from the IWS to the CIW register,
When a coincidence occurs the program execution is terminated with
an exchange jump to the error exit address (EEA).

The monitor program controls the breakpoint address for debugging

an object program by altering the exchange package for the object
program before each execution interval. The monitor program receives
instructions for breakpoint control from an operator console or from
control cards in a job stack. It is possible to step through a
program one instruction word at a time using an operator console

to monitor the register values at each step.

" Error exits

Execution of an object program may be terminated by an exchange jump
to the error exit address (EEA) under certain conditions. Some of
these conditions may be selected by ‘mode declarations through the
monitor program, and some are unconditionmal. In general, errors
due to arithmetic overflow, underflow, or indefinite results during
computation may be allowed to proceed through the calculation, or
may cause an error exit, depending on mode selection, Errors due
to hardware failure or program addressing out of an assigned field
in storage cause unconditional error exits. In any error exit case
the monitor program has the ability to continue the object program
where the error can be corrected or ignored,

The error condition flags and mode selection flags are all contained
in an 18 bit program status designation (PSD) register, This register
is loaded from the exchange package for each object program, The mode
selections are made in the exchange package prior to the execution
interval by the monitor program. If an error condition occurs during
the execution interval the monitor program can determine the type of
error by analyzing the terminating exchange package parameters. Each
bit in the PSD register has significance either as a mode selection

or an error condition flag. These flags are described in detail in
part 2 of this manual.

1-22

LASL-AEC-OFH

T~

"CPU input-output section

The CPl' input-output section includes the mechanism to buffer data

to (or from) the directly connected PPU. Each PPU communicates with
the CPU over a 12 bit full duplex chanmel. Each channel has assembly
and disassembly registers to convert the 12 bit channel data to 60
bit CPU words. The function of the CPU input-output section is to
deliver these 60 bit words to the SCM for incoming data, read 60 bit
words from the SCM for outgoing data, and interrupt the CPU program
for monitor action on the buffer data as required.

The input-output section is able to process a maximum of one 60 bit

word each two clock periods. The effective processing rate is some-
what lower than this because of bank storage conflicts in SCM. When-
ever a bank conflict occurs on an input-output section request, the
communication path to the SCM is held up until the conflict is resolved,
Channel requests for a SCM word reference are processed on a priority
basis whenever the I/O section is not able to keep up with the channel
requests. The priority is assigned in order by channel number, with

the lowest order channels having the highest priority.

7There are a total of 15 channels in the 1/0 section of the CPU. These

channels are numbered in octal beginning with 01 and ending with 17,

Each channel has a SCM buffer area for incoming data and a separate

SCM buffer area for outgoing data. In addition each channel has an W
exchange package for incoming data and an exchange package for out- ()
going data. Each buffer area is’ divided into two fields, a lower

field and an upper field. Data is entered (or removed) from the

buffer area in a circular mode. The last word in the lower field

is followed by the first word in the upper field. The last word in

the upper field is followed by the first word in the lower field.

Whenever a buffer area has been filled (or emptied) to the point

where a field boundary is crossed, the CPU is interrupted through

the associated exchange package to process the buffer data. The

channel continues to fill (or empty) the other buffer field while

the CPU is processing this buffer data. For further details on this

buffer operation see part 2 of this manual.

‘The 1/0 section exchange package areas are permanently assigned in

the lowest order addresses of SCM. These areas are arranged as shown
in figure 1-4. The 1/0 section buffer areas are assigned in the next
higher order address positions of SCM. These areas may be changed
both in size and order (wiring change) to accommodate various types
of channel volume. A typical arrangement for the buffer areas is
shown in figure 1-5. Total I/0 section space in SCM cannot exceed
abgolute address 10,000 octal.

1-23

1000~

Channel 16 Chonnei 16 Channel 17 Channel {7
B) input package [output package) input packoge outpu? package
700 Chonnel 14 “Channel 14 Channel 15 “Channel 15
B “input package) output pockage input package) output pockage
800 Channel 12 Channel 12 Channel (3 Channel {3
_ 7inpu1 package “output pockoge input package output pockage
500 Channel 10 Channel {0 Chaonnel i1 Channel |}
_) input packaoge | output pockage _input pockoge output packoge
400 Channel 6 Channel 6 Channel 7 Channel 7
. “input pockage | output package input pockage | output package
300 Channel 4 Chonnet 4 Channel 5 Channel 5
_] input packoge output pockage input package | outpu! packoge
200 Chonnel 2 Chonnel 2 Channel 3 Chonnel 3
_) input pockage i output package | input packoge output packoge
100 “Mcu Real time Channel | Channel |
packoge package) nput package | output package
0o 20) 40 €0 100

{octal addresses)

7Fig. {~4 I/0 Section Exchange Package Areas In SCM

1-24

LASL-AEC - OFFICIAT

[.

10,000
Channel 15 Channei 15 Ch. I6 Ch.16 Ch.I7 Ch.i7
input buffer output buffer input output input output
7000
Channel |13 Channel 13 Channet 14 Channel 14
input buffer output buffer input buffer output buffer
6000
Chonnel {1 Channel 11 Channel 12 Channel (2
input buffer output buffer input buffer output buffer
5000
Chonnel 7 Chonnel 7 Channel 10 Chonnef 10
input buffer output buffer input buffer output buffer
4000
Channel S Channel S Channel 6 Channel 6
input buffer output buffer input buffer output buffer
3000
Chonnel 3 Chonnel 3 Channel 4 Channel 4
input buffer output buffer input buffer output buffer
2000
- Channel | Channel | . Channel 2 Channel 2
input buffer output buffer nput buffer output buffer
1000
Input — Output section exchange packages
o]
0 200 400 600 1000

(octal addresses)

-25

Fig. 1-5 I1/0 Section Buffer Areas In SCM

SELgs
I

k%
QA
&

TN

TN

L d

e

"Real time clock

'CPU programs may be timed precisely by using the CPU clock period
counter. This counter is essentially a real time clock which is
advanced one count each clock period of 27.5 nanoseconds. Since
the clock is advanced synchronously with the program execution, the
program may be timed to an exact number of CPU clock periods.

The CPU clock period counter contains a 17 bit register which can be
read by a CPU program with an 016 instruction. This register con-
tains the lowest order 17 bits of the real time count. An overflow
of the highest order bit in this register sets a real time interrupt
flag. This flag reads as an 18th bit on an 0l6 instructicn. In
addition, this flag causes an exchange jump to the real time exchange
package at absolute address 0020 in SCM.

" Real time interrupt

"The CPU clock period counter causes an interrupt of the CPU program
every 3.6 milliseconds (approx.). This corresponds to the modulus

of the 17 bit register in the clock period counter. This interrupt
causes an exchange jump to absolute address 0020 in SCM, The real
time exchange package at this SCM address executes a CPU program in
monitor mode which advances the count in a 60 bit SCM storage location
to continue the real time clock function of the clock period counter,
This program also tests time limit for the currently active object
program. The real time interrupt flag is cleared at the end of the
execution interval for real time exchange package. This flag is read
as an 18th bit on an 016 instruction in order to avoid erroneous
timing indication where the reading of the clock period counter
coincided with the setting of the interrupt flag. This bit is an
indication that the counter has passed its modulus but the interrupt
to advance the SCM word has not yet occurred.

"External interrupt

The CPU computation may be interrupted from an external source through
the directly connected PPU., Each such PPU has the ability to interrupt
the execution of an object program and call the system monitor by sending
a control message over the associated channel to the CPU. The interrupt
occurs whenever a record flag arrives at the CPU input-output section on
an incoming data link. Interpretation of message content is a function
of the system monitor program,

1-26

LASL-A[C-OH!CiAq

P

_System dead start

The system is initially started through the maintenance control unit
(MCU'). This mechanism is used whenever power is turned on after an
idle period or when the system is restarted after hardware failure,
The MCU is essentially a PPU with specially adapted input-output
channels. This unit is used exclusively for maintenance functions
and is described in part 6 of this manual.

The dead start sequence begins with a deck of binary cards for the

MCU program. These cards are loaded through the MCU card reader and
activate the MCU. The MCU program then dead starts the CPU and all
other PPU in sequence. A bootstrap program is entered directly into
SCM from the MCU. The CPU program is then initiated by the MCU
through the MCU exchange package at absolute address zero in SCM.
This bootstrap program transmits a resident PPU program to all
directly connected PPU to initiate their activity. The system is
then loaded completely from a system library tape associated with
one of the system PPU, This library tape may be any tape in the sys-
tem and may be declared at dead start time through the maintenance
console.

System operation

The operating system software consists of the CPU monitor program,
with its overlays, plus the PPU programs to drive the peripheral
equipment., The operating system forms a software framework in.SCM
and LCM to hold the object programs for execution. Organization of
CPU storage is illustrated in figure 1-6 on the following page. The
I/0 section storage areas are fixed by hardware addressing in SCM.
The remaining areas are stcictly software organizationm.

The resident monitor program resides immediately above the 1/0

section in SCM. This program is a permanent part of the operating
system and is never moved during system execution, This program
handles all I/0 section interrupt requests as well as object program
requests. The remaining portion of SCM beginning at octal address
12,000 and continuing to 200,000 is available for object program
code and data.

The low order addresses in LCM are used for permanent storage of

frequently used programs and overlays. The system tables are kept
here and are directly addressed by the monitor program. Library
routines and compiler code may vary with installation requirements.
Approximately 100,000 octal words of LCM are expected to be used
for these permanent storage requirements.

1-27

)

SCM LCM

200,000 l.?SO,OOCi'L ,.lJ
~N, Y
~ Current
,.,: Object :“
Data ul ~N, Controt Point ~
—~ Y *4 Field Y%
o ~, Contro! Point ~N
» %3 Field a
I A Current pu W 3 Fe ~
) qu Objeci pu
I -~ Program od
o o Control _Poim ~
— 12,000 ~ %2 Field o
‘ . Resident
e 11,000 ;dom?or ~ Control Point ~
rogrom ~N %! Field V)
r 10,000 100,000
o 7000 70,000
Library
Routines
/C) : €000 60,000
I 5000 I/OArEg:'" 50,000
~ 4000 40,000
FORTRAN
i Compiler
r 3000 30,000
~ 2000 20,000
Monitor
. Overiays
1000 10,000
I1/0 exchange System
pockoges Tables
o]
—~ (Octal oddresses)
—~ Fig. |-6 Operating System Storage Allocation
~
/.

—~ 1-28

ASL AEC -omcmq

The remainder of LCM beginning at octal address 100,000 and continuing
to address 1,750,000 is available for object program code and data.
This area is divided into a number of control point fields. Each
control point field contains a single job oriented program code and
data. In addition, each control point contains the necessary control
information for continuity from one program to the next. These areas
vary in size as required for each job., When a job is completed and

a new job is assigned to a control point, the storage areas are read-
justed by moving the data in each control point field through the SCM
as a buffer to a new LCM locationm,

Job execution proceeds through the system in three phases. 1In the

first phase cards are read at an operating station and an input file
is generated on a disk pack, tape unit, or disk file. This input
file may physically reside at the operating station or it may reside
in a central disk file,

‘In the second phase the input file is copied into a control point

field in LCM. If the input file is small the entire file may then
reside in LCM. If the input file is large the first portion of the
file is copied into a buffer area in the control point field. The
control cards in the input file are then interpreted by the monitor
program and the necessary compiler or library routines are read from
outside the LCM if necessary for program execution. When the control
point information is ready for execution the program code is trans-
ferred to SCM. If the program and associated data are too large to
fit entirely in SCM a portion of the data must be retained in LCM
and directly addressed there, This must be done by declaration at
compile time in order to designate certain arrays of data to reside
in LCM for execution.

Only one program at a time is executed in SCM. The entire SCM object

program field may thus be used for each program, Data is read from
the input file in LCM and results are stored in an output file in LCM.
If the amount of input and output data is small the job may be run

to completion in one execution interval, If job execution is delayed
by buffer size or by intermediate file references the program code is
returned to LCM and another control point uses the SCM while buffer
data is transferred to (or from) LCM. The second phase is completed
when the output data has been delivered to the output file buffer in
LCM and this buffer has been emptied onto a disk pack, tape, or disk
file for listing.

'The third phase consists of copying the output file from the magnetic

storage to a printer at the operating station. During this phase the
LCM control point field has been released for another job,

1-29

-

CLASL-ARC-LRETIVIALL

CPU

2

DESCRIPTION ..

"PART 2: CPU DESCRIPTION

“Introduction

This part of the reference manual describes the various units of the
CPU in detail, Each unit is described from the standpoint of its
logical functions and the time relationships between signals arriving
and departing to other units, Electrical pulses travel between units
at approximately 7.5 inches per nanosecond. This is the propagation
rate on twisted pair wires of the type used in interchassis wiring
for the main frame cabinet. This travel time is a major factor in
execution time for the functional units,

All timing within the main frame cabinet is controlled by a single
phase synchronous clock network, This clock has a period of 27.5
nanoseconds and a pulse duration of 8 nanoseconds. The signal on a
clock line would therefore appear as in the waveform below.

_ pe————27.5ns —>|

—){ 8ns]»(—

"CPU clock waveform

The lines which carry the clock timing information from the central
clock pulse source to the individual units of the CPU are all made
of uniform length so that the leading edge of a clock pulse arrives
at all parts of the CPU cabinet at the same time., This network of
timing signals is then the framework for all interunit commuunication,

The individual units in the CPU are composed of "registers' and "static
networks,'" The static networks form the logical combinations necessary
to perform the desired computation., The registers serve as storage
locations between the logical networks. During a clock period informa-
tion moves from registers along transmission paths and through static
networks to the inputs of other registers. The leading edge of a

clock pulse terminates a clock period. At this time the information

is sampled and stored in the registers and a new clock period begins.

2-0

LASL AEC omcmq

CPU registers are generally of the clear/enter type., That is, new

information may be entered in the register at the same instant that
the old information is destroyed, The information in a given register
may move through a static network and return to the same register at
the end of the clock period, This creates two timing limits for the
hardware circuits: a minimum "short path' time, and a maximum "long
path'" time, The short path limit is the same as the clock pulse
duration., This means that there must be no path through a static
network which returns to a register input with less than an 8 nano-
second delay. The long path limit is the same as the clock period,
This means that there must be no path through a static network which
returns to a register with more than 27.5 nanoseconds delay,

Timing charts in this manual are organized around clock period activ-

ity. The charts list the events which are taking place as information
is in transition from one set of registers to another, Generally many
activities are taking place in parallel during the same clock period.
The order of the listed events within a given clock period is not
important since they are really occurring simultaneously,

Frequent use is made in this manual of parenthesized register names.

This is a shorthand notation for the expression ''the contents of
register ----," For example, a timing chart listing may say "transmit
(P) to the NSA register." This means, "transmit the contents of the

P register to the NSA register,'" Extensive use is also made of sub-
scripteddesignation for the A, B, and X registers, For examplé, a
timing chart may say 'transmit (Xk) to the boolean unit,'" This means,
"transmit the contents of the X register specified by the k designator
to the boolean unit.,"

Control information is generally held in one bit registers called

"flags'" in this manual, Some flags are cleared at the end of each
clock period unless they are reset specifically. These bit registers
are of the clear/enter type, Other flags are set in one clock period
and remain set until the information is specifically cleared. Each
flag type is identified individually in this part of the manual.

‘Most of the registers in the CPU have no special name and are not

"visible'" to the programer. These registers are generally cleared
at the end of each clock period unless they are reset specifically
with new data. Most of the named registers have clock pulse gates
to allow the information in the register to remain unaltered for
indefinite periods of time, These registers are simultaneously
cleared and entered with new data at the end of those clock periods
in which new data is specifically transmitted to them,

2-1

Control flag names

‘Control flag names individually identify a one bit register with

control information. These one bit registers exist throughout the
CPU wherever control information must be stored at the end of a
clock period for use during the following clock period. A number

of control flag names are abbreviated with three characters, the

last of which must be F. Many data registers are also identified
with three character abbreviations, but none of these have a terminal
letter F.

"Data register names

‘The A, B, X, and P registers are identified with single letter

abbreviations. All other named data registers are identified with
a three character abbreviation not ending in F. The lowest order
bit in a data register is always called bit zero. This bit is
considered to be on the right end of the vegister. The bits are
then arranged in order with the highest order bit on the extreme
left end. The first bit in a data register is then the same as bit
zero. The 18th bit in a data register is the same as bit 17. Both
types of terminology are used to refer to individual data bits in
this manual. All references to register bit position are decimal
rather than octal. .

Control condition names

“Control conditions frequently become complex, and occasionally a

group of control conditions appears repeatedly in a number of areas
of the CPU. When this happens the group may be identified by a
name to save repetitive listing of the members of the group. These
names are multiple word designations which are exactly repeated in
identifying the control condition wherever it is mentioned in this
manual. All such group names are listed in the glossary at the end
of this manual, together with the location in this section where
the group name is defined. 1In no case is a control group name
abbreviated into a three character designation.

'All control conditions must be statically resolved in the 27.5

nanoseconds of one clock period. Any condition lasting longer than
one clock period must appear as a control flag. It is therefore
possible to reduce all control conditions to a logical expression
involving only flag names and data tregister names.

2-2

C-OFFIC

LASL-AE

Instruction stack

The CPU instruction stack consists of a number of parts as illustrated

in figure 2-1 on the following page. The principal units in the
instruction stack are the IAS and the IWS. A coincidence test is made
between (P) and the content of each IAS rank during each clock period.
Whenever a coincidence occurs, the corresponding 60 bit instruction
word in the IWS is sent to the CIW register. If more than one coin-
cidence occurs, all are sent simultaneously to the CIW register and
the results are merged as a logical sum,

Instruction word stack (IWS)

‘The IWS is a group of twelve 60 bit registers which hold program

instruction words for execution. The twelve registers are individ-
uvally identified by rank. The rank one register contains the oldest
data in the stack. If the IWS contains sequential program instruction
words, the rank one register content will correspond with the lowest
storage address in the instruction stack. The rank 12 register con-
tains the last word to enter the stack. This register is loaded
directly from SCM.

‘All registers in the IWS are clear/enter type registers with gated

clock pulse control. That is, the information in each rank of the
IWS will remain there indefinitely until a specific control condition
gates a clock pulse to clear/enter the rank with new information.
This condition is the "shift stack'" condition. The information in
each rank of the IWS moves through a delay path to the input of the
next lower rank during each clock period. At the end of a clock
period in which a '"shift stack'" condition exists, each rank is
cleared and simultaneously entered with the information from the

next highest order rank. The information in rank one is discarded.
New information arriving from SCM is entered in rank 12,

‘Instruction address stack (IAS)

‘The IAS is a group of twelve 18 bit registers which hold relative SCM

program addresses on 2 one-for-one basis with the program words in

the IWS. The rank one register in the IAS contains the oldest address
in the stack, and this address corresponds to the SCM location from
which the word in rank one of the IWS was read. All ranks of the IAS
are clear/entered with information from the next highest order rank
on a '"'shift stack" condition in a manner analogous to that for the
IWS. The address in rank one of the IAS is discarded. An address

is read into rank 12 of the IAS from the NSA register. This address
corresponds to the SCM address for the word arriving at rank 12 of

the IWS,

2-3

O

AOD4S UOHINUSUT NdD |- Big

sbojj j01ju0d
Ry)
Jor :
480 _ ppo — SYd
Hg 9|
SVS 0 < (s#q90) vdl d
sBoy} Joxsow
dIN ¥O04S LjIys A
Er4, | i
i+
sboy Y29y _
313 v41 92uDApD {49 8i) VSN &— d
424 :
Wos d
€——2| piom (si909) SMI (s#qgh Svr

<— || piom
<— 0| piom

saisibas M1 o4

pIBOSIP pIoISIP

o
/{—\
~
—
o~
—~
o~
e
g
_ :
U
o~
—~
—~
—~
—~
—~

2-4

" LASL-ALC OFFICIA

Next stack address register (NSA)

‘The NSA register is an 18 bit register which contains the SCM rela-

tive address for the next sequential word required by the IWS. This
register is a clear/enter type register with gated clock pulse control.
There are two possible sources for data entering this register, The
content of the P register is entered in the NSA register at the end

of a clock period in which a "P to NSA" condition exists. The content
of the NSA register is increased by one count from the previous value
at the end of a clock period in which the ASF is set, If both con-
ditions exist in the same clock period the "P to NSA" condition takes
priority.

If a "shift stack" condition exists during a clock period in which

the ASF is not set, the address entered in the IAS rank 12 register
is a copy of the content of the NSA register. If a 'shift stack"
condition exists during a clock period in which the ASF is set, the
address entered in the IAS rank 12 register is one count greater
than the value in the NSA register. In this second case the address
entered in the IAS rank 12 register is generally the same as the new
address being simultaneously entered in the NSA register, The only
exception would be when a "P to NSA" condition and ASF occur in the
same clock period.

" Instruction fetch address register (IFA)] (i)

The IFA register is a 16 bit register which contains the next sequential
absolute SCM address for fetch reference to the IWS, This register is

a clear/enter type register with two possible sources of data. The sum
of (P) + (RAS) is entered in the IFA register at the end of a clock
period in which an "enter IFA" condition exists. This sum is formed

in a static network treating both quantities as 18 bit positive integers
and saving only the lowest order 16 bits. The IFA register content is
increased one count from its previous value at the end of a clock period
in which an "advance IFA" condition exists, If neither of these two
conditions exists the IFA register is reset to its previous value at the
end of the clock peried. 1If both conditions exist in the same clock
period the "enter IFA" condition takes priority,

‘The content of the IFA register is sent to the SAS for a SCM read

reference when a program instruction fetch occurs. This reference
is requested by the F1F and is described in the section on SCM.

‘—,4 N

|-

"REV 4

_(1) "Read stack' & "'go issue'

(1) "Read stack"

' Fetch one word flag (F1F)

"The FIF is set whenever the instruction stack requires a word from

SCM and the request has not yet been honored by the SAS. This flag
is a clear/enter bit register which is forced clear on a dead start,
The bit is set at the end of a clock period in which any one or more
of the following conditions are satisfied,

' & no "coincidence" & OSF & no M1F & no JOF
no "'coincidence" & JCF & no F1F

"word 12" & no M2F

"word 11" & no MIF

(2) "Read stack'" & ''go issue'
(3) "Read stack" & '"go issue”
(4) "Read stack" & ''go issue"
(5) F1F & no "advance IFA"
(6) FIF & F2F

PRRe

Fetch two words flag (F2F)

The F2F is set whenever the instruction stack requires two words from

SCM and neither request has yet been honored by the SAS, The FIF is
always set when F2F is set. This flag is a clear/enter bit register
which is forced clear on a dead start. The bit is set at the end of
a clock period in which any one or more of the following conditions
are satisfied,

& '"'go issue” & no "coincidence" & OSF & no MIF & no JOF
(2) "Read stack'" & '"go issue' & no "coincidence" & JCF & no F1F

(3) "Read stack" & "go issue" & '"word 12" & no M2F & F1F & no "advance IFA"
(4) "Read stack" & "go issue" & 'word 12" & no MIF

(5) F2F & no '"advance IFA"

‘One word marker flag (MLF)

‘The MIF is set whenever the instruction stack requires a word from

SCM which has not yet arrived at the IWS, This flag is a clear/enter
bit register which is forced clear on a dead start. The bit is set

at the end of a clock period in which any one or more of the following
conditions are satisfied,

_(1) "Read stack'" & '"go issue" & "word 12"

(2) "Read stack' & "go issue" & "word 11" & no "shift stack"
(3) MIF & no ''shift stack"

(4) "P to NSA"

(5) MIF & M2F

LASL- ALC-OFFICIAT

"REV 4

"Two word marker.flag (M2F)

The M2F is set whenever the instruction stack requires two words

from SCM which have not yet arrived at the IWS. The MLF is always
set when the M2F is set. This flag is a clear/enter bit register
which is forced clear on a dead start, The bit is set at the end of
a clock period in which any one or more of the following conditions
are satisfied.

(1) "Read stack“r& "go issue" & '"word 12" & no "shift stack”
(2) M2F & no "shift stack"
(3) "P to NSA"

" Jump out of stack flag (JOF)

The JOF is set when a branch instruction is executed which requires

jumping to a program address not currently held in the IAS. This
flag is a bit register with a separate set and a separate clear input
path, The bit remains one from the time the flag is set until it is
specifically cleared. The set and clear conditions can never exist
in the same clock period.

Set condition: ''read stack" & "'go issue' & no "coincidence"” & OSF &

no MLF & no JOF o (ﬂ
or: "read stack" & "go issue" & no '"coincidence" & JCF & gy)
no F1F ‘ »

‘Clear condition: "P to NSA"

Out of stack flag (OSF)

Set condition: '"read stack" & ''go issue'" & no "coincidence”

‘The OSF is set whenever the CIW register is ready for the next word

from the IWS and no word is available. This flag is a bit register
with a separate set and a separate clear input path which is forced
clear on a dead start. The bit remains one from the time the flag

is set until it is specifically cleared. The set and clear conditions
can never exist in the same clock period.

"Clear condition: "read stack' & 'go issue" & "coincidence"

2-7

"Advance stack flag (ASF)

The ASF is a clear/enter bit register which is set at the end of a
clock period in which a "shift stack' condition exists. The sole
purpose of this flag is to advance the count in the NSA register in
the clock period following a "shift stack' condition.

"Set condition: ‘"shift stack” & no "P to NSA"

_“P to NSA" condition

This condition gates a clock pulse which causes the NSA register to
clear and enter the contents of the P register. This condition also
clears the JOF and sets both marker flags. This condition signals

the arrival of the last fetch word requested prior to a program branch
The NSA register is then set to the new program sequence address, and
the marker flags are set in anticipation of the instruction words for
the new program sequence.

‘Condition: JOF & no MLF
or: JOF & no M2F & "shift stack"

7"WOrd 11" condition

This condition exists whenever the content of IAS rank 11 is the same
as (P). This coincidence implies that the CIW register is about to
read the next to last word in the IWS., When this word is read to the
CIW register the F1F is set to request an instruction word from SCM.

:"WOrd 12" condition

"This condition exists whenever the content of IAS rank 12 is the same
as (P). This coincidence implies that the CIW register is about to
read the last word in the IWS. When this word is read to the CIW
register the fetch flags are set so as to request a total of two
instruction words from SCM,

“"Coincidence' condition

"This condition exists whenever an IAS rank contains the same address
as the P register. This condition exists whenever the 'word 11"
condition or the '"word 12" condition exists.

2-8

LASL-AEC - OFFIC

:"Enter IFA'" condition

This condition causes the IFA register to clear and enter the contents
of the P register, This occurs on a program branch resulting in a

jump out of stack. This condition exists when one or more of the three
groups listed below are satisfied.

Condition: No "coincidence" & JCF & no F1F

or: No "coincidence'" & OSF & no M1F & no JOF
or: RJF & no MIF

" Other conditions

There are four conditions mentioned in this section which are not
defined here because they originate in other parts of the CPU. The
“"shift stack” condition originates in the SCM destination control,
This condition exists when a word is moving from SCM to the instruc-
tion stack. The "advance IFA" condition originates in the SCM access
control, This condition exists when (IFA) has been accepted by the
SAS as a result of a FIF request. The 'read stack' and 'go issue"
conditions originate in instruction issue control. These two con-
ditions taken together imply that the CIW register is ready for an
instruction word from the IWS, 3

A

:Straigbt line code

The program address is advanced sequentially in straight line code.
The instruction words are requested for the stack two words ahead of
the word currently being executed. As a result, coincidence between
(P) and (IAS) occurs only on rank 11 and rank 12 registers., When a
word is read from the IWS rank 1l register, the FIF is set to request
another word., If the requested word arrives before program execution
advances to the next word, the stack will have shifted data one rank
and the next word will again be in rank 11, If the requested word
does not arrive before program execution advances to the next word,

a word will be read from rank 12 of the IWS, When this occurs a
second word is requested from SCM to accelerate the stack filling
process,

The chronological sequence of events in fetching a new instruction
word is shown in the following timing chart, This chart assumes no
delays in the SCM access control due to conflicts with other SCM
references. If conflicts occur the arrival of the instruction word
at the IWS will be delayed.

2-9

"REV. 4

CPOO

“CPO1

“rona

CPO4
CPO5
CP06

CPO7

CPO8

"Rank 11 coincidence in the IAS.

Transmit IWS rank 11 word to the CIW register.
Set FIlF.
Set MIF.

‘Transmit (IFA) to the SAS. Tag for read to IWS.

Advance (IFA).
Clear F1F.

"Fetch address leaves SAS for a SCM bank.

'SCM bank read/write cycle begins.

‘Instruction word reads to SCM bank operand register

‘Transmit instruction word to the IWS.

Shift the IAS and the IWS one word position.
Transmit (NSA) to the IAS.

Set ASF.

Clear MIF. N

“Advance (NSA).

Clear ASF.

If program execution in the sequence listed above has progressed to
the next instruction word before clock period 8, the next word for
the CIW register will be read from IWS rank 12, When this happens,
a second SCM request is initiated and another sequence of events
similar to those listed above will overlap the above sequence. The
amount of overlap will depend on the time the next instruction word
is required.

‘It is possible for program execution to proceed so rapidly that the
instruction word read from rank 12 of the IWS has been executed before
the first of the two requested words has arrived. When this happens,
the OSF is set and the program execution must wait for the arrival of
the first instruction word.

2-10

LASL AEC-OFFiClAq

_Rranch in stack

Program execution may reach a branch instruction and the destination
address is already in the IAS. When this occurs the P register
content is altered to the new program address. A coincidence occurs
in the IAS during the following clock period, and the corresponding
word is read from the IWS to the CIW register., The jump is then
completed without a SCM reference for a new instruction word, When
this situation occurs the branch instruction is executed in a total
of three clock periods.

Timing charts for this case are listed in part three of this manual
under the branch instruction description.

‘Branch out of stack

Program execution may reach a branch instruction and the destination
address is not in the IAS, When this occurs the P register content
is altered to the new program address, No coincidence occurs in the
IAS during the following clock period, and the OSF and JOF are both
set. A new address is entered in the IFA register and two words
\are requested from SCM to begin the new program sequence. When this
‘situation occurs the branch instruction is executed in a total of

11 clock periods, assuming no conflicts delay the first instruction
fetch in SCM. ’

Timing charts for this case are listed in part three of this manual
under the branch instruction description.

It is possible that a branch out of stack occurs when the destination
address corresponds to a program word which has already been requested
from SCM as a result of sequential two word read ahead. If the word
has not actually arrived at the IWS at the time of the branch test,
the jump out of stack occurs and a duplicate of the first word in the
new sequence is read from SCM. Execution of the new sequence can
begin as soon as the earlier word arrives at the IWS,

ﬁ(»

A

)

:Hole in the stack

It may happen that several small program sequences reside in the

instruction stack at the same time, Program execution may branch
back and forth between two such sequences, The execution of the
sequence occupying the lower ranks of the instruction stack may
branch in such a way as to continue sequential execution into a
program area not loaded into the stack on the initial pass. When
this happens it is possible for the next sequential instruction
word to be missing in the stack and no request has been made for
it because rank 11 or rank 12 were not involved,

This situation is equivalent to a branch out of stack with no branch
instruction involved, The OSF is set as soon as the missing word is
detected. The combination of OSF and no MIF sets the JOF and begins
the jump out of stack sequence as if a branch instruction had been
executed,

Duplicate entries in stack

It is possible for duplicate words to appear in the instruction stack.

One way this may happen is on a jump out of stack with the first word
of the new sequence already on the way to the IWS because of two word
read ahead. Another way this may happen is on a jump backward in the
program code and then sequential advancing into the area of program
code already in the stack. No harm is done by duplicate words in the
stack as long as the program code has not been altered in SCM between
the two references, Coincidence occurs on both words simultaneously
and both are sent to the CIW register., The data is merged in a logical
sum network and the result will be the same as either individual word.

2-12

ASL-AEC OFFICIAQ

Instruction issue

Program instruction words are read one at a time from the instruction
stack into the current instruction word (CIW) register for execution.
Each instruction word is divided into four 15 bit parcels as described
in part one of this manual. There may be as many as four instructions
in the CIW register at one time. These instructions must be executed
in sequence and the proper allowance made for the mixture of one parcel
and two parcel instruction formats.

An instruction "issues" from the CIW register when the conditions in

the functional units and operating registers are such that the functionms
required in the instruction execution may be performed to completion
without conflicting with a previously issued instruction. The issue
process requires one clock period. During this clock period the g, h,
i, j, and k designators in the instruction are sent to all appropriate
parts of the CPU. The proper control flags are set at the end of this
clock period to execute the functions required in the instruction. At
the end of the clock period the data in the CIW register is altered to
position the next instruction for execution. Once an instruction has
issued from the CIW register it must be executed to completion in a
fixed time framework. No delays are allowable from issue to delivery
of data to the destination operating registers.

0

Current instruction word register (CIW)

The CIW register is a 60 bit register which is divided into four 15

bit parcels. All four parcels are loaded in one clock period when an
instruction word is read from the IWS., The highest order parcel in the
instruction word is issued iirst. The other parcels are then shifted
left in the CIW register by either 15 bits or 30 bits, depending on the
instruction format for the instruction issued. The lower order parcels
are replaced with zeros as the data is shifted left in the register.
This process is illustrated in figure 2-2 on the following page.

This register is a clear/enter type register with gated clock pulse

control. There are three sources of data for each bit of the CIW
register. These sources are the IWS, a one parcel shift path, and

a two parcel shift path, The register is cleared and entered with
new data only at the end of those clock periods in which conditions
""go issue" and ''registers free' exist. One of the three data sources
is selected by the conditions listed below. If no data source is
selected a 60 bit word of zeros is read into the CIW register.

2-13

19451081 HNd

2+
0+

$i4 2

)

ONSSY UCINMSUT NdD 2-2 Did

Rsibas MIO

Sml SMI SMI SMI
._.. X , %
109)9 siqgGl 3 . SiqGl T Siq Gl siq Gl

sHoy} uoypAaIasas idsibay

2-14

VASL ALC 'OHICIA[]

‘Condition: "go issue" & "registers free" & ''read stack"

This condition causes the selected contents of the IWS to enter the

CIW register. If there is no coincidence between (P) and any rank of
the IAS, zeros are read into the CIW register. If there is more than
one rank of the IAS which coincides with (P), the selected words in
the IWS are merged in a bit by bit logical sum network, The resulting
60 bit word is then entered in the CIW register,

Condition: "go issue” & "registers free'" & 'one parcel”

This condition causes the contents of the CIW register to shift left

one parcel position. The instruction in the upper parcel position is
discarded, The lowest order parcel position is filled with zeros.

Condition: "go issue" & '"registers free' & "two parcel

This condition causes the contents of the CIW register to shift left two

parcel positions. The information in the upper two parcel positions is
discarded. The lower two parcel positions are filled with zeros,

‘parcel counter register (PKR)

The PKR register is a two bit clear/enter type register with gated
clock pulse control, The content of this register indicates which
parcel in the original instruction word is currently positioned in
the CIW register for execution. A zero quantity in the PKR register
indicates that the original word is in the CIW register and no shifts
have taken place. (PKR) = 1 implies that the original instruction
word has been shifted one parcel position in the CIW register prior
to this clock period. The second parcel is then positioned for
execution. (PKR) = 2 implies a two parcel shift., (PKR) = 3 implies
a three parcel shift,

The PKR register is cleared and entered with a new value whenever the

conditions '"go issue' and "registers free' exist, The value entered
is a function of the conditions listed below,

Set (PKR) to l: 'one parcel” & (PKR) = 0

7Set (PKR) to 2: 'one parcel" & (PKR) = 1
or: "two parcel” & (PKR) = 0
‘Set (PKR) to 3: "one parcel" & (PKR) = 2
or: "two parcel” & (PKR) = 1

2-15

REV. 2

X reservation flags

There are eight control flags associated with the X registers. These

flags are bit registers with separate set and separate clear inputs
which are forced clear on a dead start, The bit remains one from the
time the flag is set until it is specifically cleared. The set and
clear conditions can never exist in the same clock period. A flag

is set to reserve a specific X register when an instruction issues
from the CIW register which will deliver a result to that register,
The flag is cleared when the result is actually transmitted to the

X register, This flag prevents subsequent instructions from reading
the contents of this X register until the new data has been delivered.

One of the X register reservation flags is set at the end of a clock

period in which the condition "go issue" & "registers free' & "set Xi
reservation" exists. The X register reservation flag is specified by
the i designator in the CIW register,

One of the X register reservation flags is set at the end of a clock

period in which the condition ''go issue" & "'registers free'" & '"set Xj
reservation' exists. The X register reservation flag is specified by
the j designator in the CIW register,

One of the X register reservation flags is cleared at the end of a

clock period in which a "clear Xd reservation' condition exists..

This condition originates in the register access control and indicates
that the designated X register is receiving data from a functional
unit., Only one X register can receive data in a given clock period.

" A reservation flags

There are eight control flags associated with the A registers. These

flags are bit registers with separate set and separate clear inputs
like the X reservation flags, The A reservation flags perform the
same function for the A registers as the X reservation flags perform
for the X registers. There is a ''set Al regservation' condition and

a "clear Af reservation' condition which perform functions equivalent
to the corresponding conditions for the X registers. There is no
condition "set Aj reservation,"

2-16

"B reservation flags

There are eight control flags associated with the B registers. These
flags are bit registers with separate set and separate clear inputs
like the X register flags. The B reservation flags perform the same
function for the B registers as the X reservation flags perform for
the X registers. There is a "set Bi reservation' condition, a "set
Bj reservation' condition, and a ''clear Be reservation' condition
which perform equivalent functions to the corresponding X register
conditions,

YGo issue" condition

This condition indicates that the functional units, register destination
paths, and storage access path are such as to allow issue of the current
instruction in the CIW register. This condition does not take into
account the possible register reservation problems. This condition is
defined as follows:

Condition: NBF & g = 4 & h = 4,5 & no divide busy flag
or: NBF & g=3 & h=0,1,2,3,4,5 & no register #4 mark bit &
no go multiply flag
“or: NBF & g = 4 & h = 0,1,2 & no "read to X reference' & no
divide time 15 & no go multiply flag o

‘ortr NBF & g=0&hbh=1&1i=26,7
or: NBF & g=0&h=16&1i=4,5& no LCM busy flag
or: NBF & g= 2 & h = 4,5 & no register #3 mark bit & no go
add flag
‘or: NBF & g=0&h =20
or: NBF & g = 6 & no go normalize flag & no go read channel flag
or: NBF & g=5
or: NBF & g = 4 & h = 3,7 & no register #2 mark bit & no go

normalize flag
“or: NBF & g = = 6,7 & no register #2 mark bit & no go
normalize flag -
or: NBF & g=2&h=20,1,2,3,6,7 & no register #2 mark bit &
no go read channel flag & no go normalize flag
" or: NBF & g = 1,7 & no register #2 mark bit & no go normalize flag
or: GJF & "fall through"
or: g=4&h=26
or: PXF
ors JCF
or: '"block copy completed"

w

@

=
|

2-17

REV 4

ASL ALC omcmq
]

"Registers free' condition

This condition indicates that the operating registers involved in

the instruction waiting to issue are now free. That is, there are no
register reservation flags set for an A, B, or X register that is either
an operand or a destination register for the current instruction in

the CIW register. This condition is defined as follows:

not: Xi reservation flag & g = 1,2,3,7

nor: Xi reservation flag & g = 4 & h = 0,1,2,3,4,5,7
nor: Xi reservation flag & g = 5 & i 1,2,3,4,5,6,7
nor: Xj reservation flag & g = 0 & h=1&1i=4,5
nor: Xj reservation flag & g = 0 & h =23

nor: Xj reservation flag & g l1&h=0,1,2,3,5,6,7
nor: Xj reservation flag & g = 3

nor: Xj reservation flag & g = 4 & h = 0,1,2,4,5
nor: Xj reservation flag & g = 5,6,7 & h=2,3

nor: Xk reservation flag & g = 0& h=16&1= 4,5
nor: Xk reservation flag & g =1 & b 1,2,3,4,5,6,7
nor: Xk reservation flag & g = 2 & h 2,3,4,5,6,7
nor: Xk reservation flag & g = 3

nor: Xk reservation flag & g = & & h = 0,1,2,4,5,7
nor: Bi reservation flag & g = 0 & h = 2

nor: Bi reservation flag & g = 0 & h = 4,5,6,7

nor: - Bi reservation flag & g = 6 -
nor: Bj reservation flag & g = 0 & h 1 &1i=3,6,7
nor: Bj reservation flag & g = 0 & h 4,5,6,7

nor: Bj reservation flag & g = 2 & h = 2,3,4,5,6,7
nor: Bj reservation flag & g = 5,6,7 & h = 1,6,7
nor: Bk reservation flag & g = 5,6,7 & h = 3,4,5,6,7
nor: Bk reservation flag & g = 0 & h=1&1i = 6,7
nor: Ai reservation flag & g = 5

nor: Aj reservation flag & g = 5,6,7 & h = 0,4,5

" "Iwo parcel' condition

This condition indicates that the instruction currently positioned in

the upper parcel of the CIW register is a two parcel instruction and
there are more instructions in the word. When the current instruction
issues this condition causes the data in the CIW register to shift left
two parcel positions. This condition is defined as follows:

“Condition: no JCF & (PKR) = 0,1 & g = 0 & h = 2,3,4,5,6,7
or: mno JCF & (PKR) = 0,1 & g 0&h=1&1= 0,1,2
or: no JCF & (PKR) = 0,1 & g = 5,6,7 & h = 0,1,2

2-18

LASL-AEC-OFFICI

"One parcel' condition

“not: ''dead start"

This condition indicates that the instruction currently positioned in

the upper parcel of the CIW register is a one parcel instruction and
there are more instructions in the word., When the current instruction
i1ssues this condition causes the data in the CIW register to shift left
one parcel position, This condition is defined as follows:

‘not: JCF

nor: (PKR) = 3

nor; g=0&h=20 _
nor: g=0&h=1&1=20,1,2,3

nor: g = 5,6,7 & h = 0,1,2

nor: g=0&h=2,3,4,5,6,7

“"Read stack' condition

This condition indicates that the instruction currently positioned in
the upper parcel of the CIW register is the last inmstruction in the
word, When this instruction issues the CIW register will be loaded
with a new 60 bit word from the IWS. This condition is defined as
follows:

i
-~
Q
\

nor: JOF
nor: RIF
nor: XSF

nor: g=0&h =0 & no JCF & no OSF
nor: 'one parcel"
nor: ''two parcel”

"Set Xi reservation" condition

This condition together with '"go issue" & ''registers free' causes the

Xi reservation flag to set, This condition is defined as follows:

‘not: g =0

nor: g = 6

nor: g=4&h=26
nor; g=5&1i=20,6,7

2-19

"Set Xi reservation' condition

This condition together with "go issue" & ''registers free' causes the
Xj reservation flag to set. This condition is defined as follows:

"Condition: g=0&h=1&1i =24

"Sat Ai reservation' condition

This condition together with "go issue'" & "registers free' causes the

Ai reservation flag to set. This condition is defined as follows:

Condition: g =5

"Set Bi reservation' condition

This condition together with "go issue" & ''registers free' causes the
Bi reservation flag to set. This condition is defined as follows:

Condition: g =6 & i = 1,2,3,4,5,6,7

"Set Bj reservation' condition

This condition together with "go issue" & 'registers free' causes the
Bj reservation flag to set, This condition is defined as follows:

QR

Condition: g =2 & h

1,2D
or: g 0 &h-= j

4,5,6
1 i & j

5
& i

W

)a) ’6’7
1,2,3,4,5,6,7

~

b
=6’

2-20

LASL AEC-OFFICIA

Boolean unit

The boolean unit executes those CPU instructions which require bit
by bit data manipulation. This includes the logical operations for
instructions 11, 12, 13, 15, 16, and 17 plus the transmissive opera-
tions for instructions 10, 14, 26, and 27. Data transmission paths
to, and from, the boolean unit are illustrated in figure 2-3 on the
following page.

'There are three data input registers for the boolean unit. These

are clear/enter type registers which are cleared and entered with
new data at the end of each clock period. The contents of the Bj,
Xj, and Xk registers are transmitted to the boolean unit each clock
period without regard to the instruction in the CIW register. These
operands are then available in the boolean unit in the following
clock period.

‘There are several bits of control information stored in the boolean

unit at the end of each clock period. The g and h designators are
sent to the boolean unit from the CIW register in much the same man-
ner as the data to the data input registers. In addition the go
boolean flag is set only at the end of a clock period in which an
instruction requiring the boolean unit issues from the CIW register.
The go boolean flag is therefore set during the clock period following
issue of a boolean instruction.

‘Data in the boolean unit input registers is merged in a static network

for transmission to the destination registers. The type of logical
operation and selection of data paths in this static network is deter-
mined by the control flags with the delayed g and h designator values,
The data is actually transmitted to the destination registers only
during a clock period when the go boolean flag is set. 1If the go
boolean flag is set during a given clock period, a boolean instruction
must have issued during the previous clock period. The data in the
input registers must therefore correspond with the data described by
the j and k designators in that instruction. The g and h values stored
in the boolean unit must also describe the mode of operation for the
instruction. The go boolean flag is then a necessary and sufficient
condition for transmitting the output of the static network to the
destination registers.

‘Data from the several functional units is merged into the operating

registers with one common data path to the X registers, one to the
A registers, and one to the B registers. It is important that only
one functional unit transmit data on an input path during any given
clock period. This is controlled by the conditions for issue and is
not a concern of the individual functional units.

2-21

(@)

yun uoejoog g¢-2big

sbo|} _Oh._COu

(vq| u08{00q 0B $48is16a1 yndul
. 1)
(99 je—
| 3 D PR
| (siag) b [09) |
(e
(511909} Px «—
e
(suqgy) Pge— _
L I
($i1Q f
g€ @

2-22

LASL-AEC - OFFIC

" Go boolean flag

‘The go boolean flag is set in the boolean unit at the end of a clock

period in which an instruction requiring the boolean unit issues

from the CIW register. Data is transmitted to the boolean unit input
registers concurrent with the instruction issue. The go boolean flag
then gates the data to the destination register. Two clock periods

are therefore required to execute a boolean type instruction. During
one clock period data moves from the operating registers to the boolean
unit input registers. During the following clock period data moves
from the boolean unit input registers through the static selection
network and back to the operating registers,

Conditions for setting the go boolean flag are as follows:

‘Condition: 7"go issue" & "registers free" & g =1

or: "go issue'" & ''registers free" & g

2 &h=26,7

Timing charts for the individual instructions involving the boolean

unit are listed in part three of this manual, Each such instruction
is executed in two clock periods. The boolean unit is free to begin
executing a new instruction every clock period. If a boolean type
instruction does not issue in a given clock period the data in the
boolean unit input registers is simply discarded in the following

clock period. A typical timing sequence is listed below for the 15
instruction. ’

15 instruction in the upper parcel of the CIW register,
Instruction issues.

Transmit the next instruction to upper parcel of CIW register.
Transwmit (Xj) to the boolean unit,

Transmit (Xk) to the boolean unit.

Set Xi reservation flag.

Set go boolean flag.

‘Transmit data from the boolean unit to the Xi register.
Clear Xd reservation flag.
Clear go boolean flag.

2-23

"REV. |

Shift unit

‘The shift unit executes those CPU instructions which require shifting

the entire 60 bit field of data within the operand word. This is
required on instructions 20, 21, 22, 23, and 43, Organization and
data paths within the shift unit are illustrated in figure 2-4 on the
following page.

"All instructions performed in the shift unit require two clock periods

for execution. Data moves from the operating registers to the shift
unit in the same clock period in which a shift instruction issues from
the CIW register, Data moves from the shift unit back to the operating
registers during the following clock period. A new instruction may be
issued for execution in the shift unit each clock period.

‘Operands for the shift unit are of two types. A 60 bit word may be

read from either the Xi register or the Xk register, depending on the
type of instruction, A second operand is read from the Bj register,
or from the CIW register, to determine the amount of shift for the

60 bit word. Those instructions reading the shift count from the CIW
register treat the j designator and the k designator as a single six
bit shift count.

‘The shift unit contains a single level of registers to hold the data

and the control information at the end of a clock period in which a
shift instruction issues from the CIW register. These registers are
all of the clear/enter type, and are cleared at the end of every clock
period. The principal input register holds 60 bits of data for the
destination X register. This data passes through two levels of static
networks before reaching the input register. The first network makes
the selection between Xi or Xk on the basis of the instruction code

in the CIW register. The Xk path is selected if the h designator in
the CIW register has a value of 2, 3, 6, or 7. The Xi path is selected
if the h designator has a value of 0, 1, 4, or 5.

‘The second level of static selection for the input register has three

possible modes. One mode is used for the 20 series instructions which
require a left shift of data. Another mode is used for the 20 series
instructions which require a right shift of data. The third mode is
used for the 43 instruction,which requires neither Xk nor Xi for an
operand. In this last mode no data is selected for the input register,
and all zeros are entered for the operand.

2-24

,

vx]

_m 10 X[
10995

|

WOM 3y ‘g
pys M

Ay 1o 'y
FLETE

Lo

wn yus -2 By
Boiy 1jys 0 AI.._I_.Tl 4 ob
suoINISN
_ 22'02 104
ST-1331 7 jusws|Cwod
[04}u0D
Hiys ,_\
¥ a
\ _ YIOM 13U _
&~ _ »oys _)
pepus uado :o:u.E 100
Jo Jotndad LS e
s bl Jnisiby,
{ndyy ,_‘
[.
Ni0miou
< 09 |e Y10M0U
_ozuﬁ 1 018

Bt

«— X
WIOM DU
Hgoys

boyy ubis s <

2-25

REV.{

12O DIV-18VT

The shift unit has the provision for shifting a 60 bit field of data
circularly to the right by any arbitrary number of bit positions, It
also may shift the 60 bit field open ended to the right by blocking
the flow of data around the end of the data field, In this later case
zero bits are entered in the leftmost positions in the field as the
data is shifted. There is no provision for shifting data to the left
in the shift unit,

A left shift of data is simulated by a correction shift in the static
network in front of the input register, and then a right circular shift
between the input register and the destination X register. The static
network between the input register and the destination X register is
able to shift the data right by any value in a six bit shift count held
in the shift control register. The static network shifts right in a
circular mode, or in an open ended mode, depending on a seventh bit in
the shift control register.

The shift control information held in the shift unit passes through
two static networks before reaching the shift control register.

The first static network selects either Bj or the CIW register as
the source of the shift count, The Bj register path is selected

for instructions 22 and 23. The jk portion of the CIW register is
selected for instructions 20, 21, and 43. The second static network
then complements the shift count for instructions 20 and 22, The
resulting six bit quantity from the jk portion of the CIW register,
or from the lowest order six bits of the Bj register, is entered in
the shift control register. The seventh bit in the shift control
register is set for a circular mode. This bit is set on the following
condition:

‘condition: g =2 & h =0
or: g=2 &h =2 & (Bj) positive
or: g=2 &h =23 & (Bj) negative

A special test is made to determine if (Bj) has more than six bits
of significance. The lowest order 12 bits of (Bj) plus the sign bit
of (Bj) are included in this test, The other five bits of (Bj) are
ignored. If the Bj path is selected, and if the shift is open ended,
the presence of higher order bits in (Bj) will cause the operand to
shift off the end of the destination field and deliver all sign bits
as a result, If the mode of the shift is circular, the lowest order
six bits determine the shift count module 64, and the higher order
bits are ignored.

2-26

LASL ALC-OFFICIA])

"Go shift flag

The go shift flag is set in the shift unit at the end of a clock period

in which a shift instruction issues from the CIW register. This flag
then gates the data from the static network in the shift unit to the
destination X register input path., 1If the go shift flag is not set in a
given clock period, the data from the shift unit in that clock period is
discarded, The condition for setting the go shift flag is as follows:

‘condition: ''go issue' & '"'registers free" & g = 4
2

h=3
or: '"'go issue' & "registers free" & g h

&
& h=0,1,2,3

Shift sign flag

‘The shift sign flag is set when a negative operand is processed by

the shift unit. The static network between the input register and
the destination X register shifts data in a positive mode only. A
negative operand is complemented at the front of this network before
the shift is performed. The result is then complemented again at
the input to the destination X register. The shift sign flag con-
trols both of these operations. The condition for setting this flag
is as follows:

condition: _g =2,3,6,7 &h =2,3,6,7 & (Xj) negative
or: g =2,3,6,7 & h =0,1,4,5 & (Xi) negative
or: g =0,1,4,5

" Left shift mode

A left circular shift is simulated in the shift unit whenever the

circular mode bit is set in the shift control register. A left shift
correction occurs in the static network feeding the input register.

This correction causes the 60 bit data word to shift left circularly

by three bit positions. The static network between the input register
and the destination X register shifts the data word right circularly

by the shift count in the shift control register. This shift count

is the modulo 63 negative of the desired left shift count. Since the
field length is 60 the desired shift is simulated in a somewhat indirect
manner as shown in the expression below:

3 - (63 - n) = n - 60 = n, where n is the desired shift count

2-27

N’

" Right shift mode

A right open ended shift is performed in the shift unit whenever the
circular mode bit in the shift control register is not set. In this
mode the left shift correction in the static network feeding the input
register is omitted. This network transmits the unaltered operand into
the input register. The static network between the input register and
the destination X register performs a right open ended shift by the
amount of the shift count in the shift control register,

Form mask mode

The shift unit operates in a special mode for executing the 43 instruction.
In this mode the static network feeding the input register blocks the
operand and enters all zeros in the input register. The shift sign flag
is always set for this instruction. The circular mode bit in the shift
control register is never set for this instruction, The static network
between the input register and the destination X register then comple-
ments a field of all zeros, shifts the resulting field of all ones open
ended to the right, and delivers the result to the X register input path.
The data is complemented again at the input to the X register because

the shift sign flag is set. The result is a variable field of ones in
the upper portion of the word as controlled by the j and k designators

in the 43 instructiomn. :

Timing charts for inmstructions executed in the shift unit are listed
individually for each inmstruction in part three of this manual, A
typical timing sequence is listed below for the 20 instruction.

CPO0O 20 instruction in the upper parcel of the CIW register,
Instruction issues,
Transmit (Xi) to the shift unit,
Set Xi reservation flag.
Set go shift flag.

"CPO1 Transmit data from the shift unit to the Xd register.

Clear Xd reservation flag.
Clear go shift flag.

2-28

Normalize unit

LASL-AEC O

The normalize unit executes CPU instructions 24 and 25, These two
instructions are identical except that instruction 25 adds a round
bit to the operand coefficient which is not present on instruction
24, Organization of the normalize unit is illustrated in figure 2-5
on the following page.

The normalize instructions require three clock periods for execution,
Data moves from the operating registers to the normalize unit in the
same clock period in which the instruction issues from the CIW regis-
ter, At the end of this clock period all of the information necessary
to complete the instruction is captured in a set of input registers,
During the next clock period the coefficient and exponent portiomns

of the floating point operand move through separate static networks

to a set of normalize unit output registers, During the third clock
period the data moves from the output registers through static net=-
works to the destination operating registers, The contrcl iaformation
flows through the normalize unit along with the operand c<ata, This
allows a new normalize instruction to issue every clock period for
execution in the same normalize unit,

All registers in the normalize unit are of the clear/enter type and
are cleared at the end of each clock period, The data and the control
information flows continuously through the unit, When a normalize
instruction issues from the CIW register the go normalize flag is set
in the input register area, This flag is copied into a corresponding
flag in the output register in the following clock period, When this
later flag is set the data in the normalize unit output registers is
sent to the X register and B register input data paths. When this
flag is not set the data in the normalize unit output 1egisters is
discarded,

" The content of register Xk is entered in the nommalize unit input
register at the end of every clock period, The exponent portion of
the word is treated in one part of the normalize unit and the coef-
ficient portion in another part. Both portions of the operand are
complemented in a static network immediately following the input
register if the original operand was negative, The remainder of
the normalize operation is then performed on the resulting positive
operand value, A static network in the coefficient part of the
nomalize unit determines the shift count required to normalize the
coefficlent, This is the same as the number of leading zeros in
the coefficient at this point in the process, The shift count
detector delivers a six bit shift quantity to the output register
for use in normalizing the coefficient in the third clock period of
the sequence, The shift count detector also delivers the same six
bit quantity to the exponent part of the normalize unit for exponent
correction,

2-29

HUN SZIDWION

G-2 By

WIOMIBU {Iys Ul §G punol ppo €——f | | pe— (04
boj; punos ez210WIOU
$10)51091 LOLOULSIP O} DOP 3job «—1 | | | ozyowiou ob
8oy ezypwaou ob

JUBII 80D s9is1dau jndino 920|d suo sayobau) 1931000 ndua

IiNSas way 912111002 BMs juawsidwod . JUNDL 1002
P HIOM}BU Wiomau fofoc M
X € ONDYS 8t 21j0js . o) 8t € X

3
[N
i0400j8p
$unod s
$unoY Hiys \
RoMiau /
Pg « f 9 4ois
\
juduodxs aayobeu p
HNS3 Wioy jueweidwod
92UBIRYIP
juauodxa {oy4od jusvodxe
9
p WIOM U HIOMIOU WIOM U ¥
X <€ aois | m.._ 0js ois b e X
ubis ;
ubis 920w ——f |

®)

LASL-AEC - OFFICIAG

One bit position of coefficient shift is executed between the

coefficient input register and the coefficient output register,

If the shift count from the shift count detector is odd a shift

of one bit position in the coefficient is performed in this static
network, If the shift count is even no shift occurs in this net-
work, The remaining five bits of the shift count are interpreted
and executed by the static network between the coefficient output
register and the destination X register,

The exponent portion of the operand is complemented if the original

word was negative, The highest order bit of the packed representa-
tion for the exponent is independently complemented to remove the
bias and form an 11 bit ones complement value for the exponent, This
quantity then enters a static network along with the six bit shift
count from the shift count detector, This network forms a partial
difference in an 11 bit ones complement mode, The 11 partial dif-
ference bits and the six possible borrow bits are held in the output
register, The subtraction of the six bit shift count from the 11
bit operand exponent is then completed in a static network between
the output register and the destination X register, The haighest
order bit of the exponent field is recomplemented in this netwotrk

to restore the bias for packed floating point representation,

'The sign of the original operand is held in a separate control

flag in the normalize output register area, This flag controls
the complement of the result at the input to the destination X
register, If the original operand was negative this flag will
be set and the sign of the result will be corrected at the input
to the X register,

A test for special case operand is made on the exponent after the

exponent is corrected for sign, If the operand is an overflow
quantity or an indefinite quantity the shift count from the shift
count detector is blocked, The operand then passes through the
normalize unit unaltered, The quantity delivered to the destination
B register in this case is zero, ‘

'1f the coefficient portion of the operand is all zeros after the

correction for operand sign, the shift count detector indicates a
shift of 48 decimal bit positions, If this situation occurs in
execution of a 25 instruction the round bit results in a normalized
coefficient, If this situation occurs in execution of a 24 instruc-
tion the shift count of 48 decimal is treated as a special case,

and the result delivered to the destination X register input path

is all zeros., The ghift count delivered to the destination B
register is 48 decimal in either of these cases,

2-31

The subtraction of the six bit shift count from the operand exponent

may result in an underflow of the floating point exponent range. This
situation is detected, and the outputs from the static networks to the
destination X register are blocked. 1In this case all zeros are sent
to the X register data input path. The shift count delivered to the
destination B register is not affected by this situation.

Go normalize flag

The go normalize flag is set at the end of every clock period in

which a normalize instruction issues from the CIW register. This
flag is copied during the following clock period to another flag in
the normalize unit output register area. This flag in turn gates the
data to the destination operating registers, If this flag is not set
the data in the normalize unit output registers is discarded. The
condition for setting the go normalize flag is as follows:

‘condition: "go issue" & '"registers free'" & g = 2 & h = 4,5

" Normalize round flag

The normalize round flag is set at the end of every clock period in

which. a round normalize instruction issues from the CIW register.
This flag has no significance unless the go normalize flag is also
set. As a result, the normalize round flag can be set from a single
bit of the h designator in the CIW register. This flag distinguishes
between the 24 instruction and the 25 instruction in the operation
of the normalize unit. When the normalize round flag is set, a 49th
bit is added to the coefficient for the operand. The condition for
setting the normalize round flag is as follows:

‘condition: h = 1,3,5,7

The timing charts for the 24 instruction and 25 instruction are

essentially the same. These are listed in part three of this manual,

2-32

C-Q

LASL-AE

Long add unit

ICIAL

The long add unit cxecutes CPU instructions 36 and 37. These two

instructions involve 60 bit integer addition of two operands to form
a 60 bit sum; The two instructions are executed in the same manner
except that one operand is complemented prior to the addition in
executing the 37 instruction, The organization of the long add unit
is illustrated in figure 2 - 6 on the following page.

The long add instructions require two clock periods for execution,

Data moves from the operating registers to the long add unit in the

same clock period in which the instruction issues from the CIW register,
Data moves from the long add unit back to the operating registers

during the following clock period, A new instruction may be issued

for execution in the long add unit each clock period.

The long add unit contains a single level of registers to hold the

data and control information at the end of a clock period in which a
long add instruction issues from the CIW register. These registers
are all of the clear/enter type, and are cleared at the end of every
clock period,

The contents of the Xj register and the contents of the Xk register

are sent to the long add unit during each clock period, The quantity
(Xk)‘is complemented in a static network if the current instruction
in the CIW register is a 37 instruction, Specifically, the network
complements (Xk) if the h designator has the value 1, 3, 5, ox 7,

The output of this static network and (Xj) are then merged in a second
static network to form the partial sum of these two quantities in a

60 bit ones complement mode, The 60 partial sum bits and 60 possible
carry bits from this second static network are then held in the long
add unit registers for use in the following clock period,

During the second clock period in the execution of a long add instruction

the 60 partial sum bits and 60 carry bits are merged in a static network
to complete the addition operation in a 60 bit ones complement mode,

The output of this static network then goes to the data input path to
the X registers,

2-33

sun ppy Buol g-g Big

boy} ,%o buoj ob
op 9ob —xo | e ppo buoj ob
I'x
uouoNISUl ¢E uo
uswedwod
wns &
9jojdwo? s4951004 wns jP40d
na
omjay M HIOM iU HIOMIOU "
P xu:o“m i .g nwvw ouos sqos [€ X

2-34

tASL-AECvOFHCIAq

“Go long add flag

The go long add flag is set in the long add unit at the end of a clock
period in which a long add instruction issues from the CIW register,
This flag then gates the data from the static network in the long add
unit to the destination X register input path during the following
clock period, If the go long add flag is not set during a given clock
period, the data in the long add unit is discarded, The condition for
setting the go long add flag is as follows:

Condition: "go issue" & "registers free" & g = 3 & h = 6,7

Timing charts for instructions executed in the long add unit are
listed separately for each instruction in part three of this manual,
The timing is essentially the same for the 36 and 37 instructions
and is listed below for the 36 instruction,

CPOO 36 instruction in the upper parcel of the CIW register,
Instruction issues,
Transmit (Xj) to the long add unit,
Transmit (Xk) to the long add unit,
_Set Xi reservation flag,
Set go long add flag.

CpOl Transmit data from the loﬁg add unit to the X&»registeﬁ.

Clear Xd reservation flag.
Clear go long add flag.

2-35

Floating add unit

The floating add unit executes those CPU instructions which require
addition of operands in floating point format, This requirement exists
for instructions 30, 31, 32, 33, 34, and 35, The organization of the
floating add unit is illustrated in figure 2-7 on the following page,

All instructions performed in the floating add unit require four clock
periods for execution, Data moves from the operating registers to the
floating add unit input registers in the same clock period in which a
floating add instruction issues from the CIW register, Data moves from
the input registers to intermediate registers in the second clock period
of instruction execution, Data moves from the intermediate registers

to the floating add unit output registers during the third clock period,
Data moves from the output registers back to the destination X register
in the last clock period,

All registers in the floating add unit are of the clear/enter type and
are cleared at the end of every clock period., The data and the asso-
ciated control information flow continuously through the unit, When

a floating add instruction 1ssues from the CIW register the go floating
add flag is set in the floating add unit, This flag corresponds to
data entering the input registers. The go floating add flag is copied
through the following two clock periods as the data moves through the
floating add unit. In the last clock period of execution the presence
of this flag gates the data from the floating add unit output registers
to the X register data input path, When this flag is not set the data
in the floating add unit output registers is discarded,

A floating add instruction may issue from the CIW register each clock
period for execution in the same floating add unit, The contents of
the Xj register and the Xk register are stored in the floating add
unit input registers at the end of every clock period, Two bits of
the h designator are also stored in the input register area, These
two bits of control information determine the mode of operation of
the floating add unit as the data is processed,

The lowest order bit of the h designator in the CIW register determines
vhether the floating add unit performs an addition, or a subtractionm,
operation, If h = 1,3,5,7 a static network in the floating add unit
complements (Xk) on the way to the input register area., The remainder
of the floating add unit operation is always in an addition mode,

2-36

aun ppy bunooly ;-2 Biy
, boys ppo buijony ob
Diop 8400 «— | | | je— ppo Buyooy}
Boy uoisdaid ajqnop
wins 1Dy J3MO) §93]35 «— | | 1 pe— (1 QY
boy punos
| | t&— (2 Q)
SUOLINISUE
suoytsod §1q suawsod g ge'eg'igvo
021-8 Hus {u919154909 4-0Wws juduwedwod
. ounseds d
90U818}9)
1oo1as (349 09)
wns ipiyiod RIOM U RJOM}BU ,_‘ » Niomjau .xx
uoisia.d ajgnop ouois 96 ouoys 09 %i0is
$U8I144800
MO|§JBAO OU\P NJOM}3u
10y ~o!o_v X €— 1UBIDI}J303 5UBIBJ0.) ois
T_nm_wwﬂ,%_vvx €1 yiomiau €6 ¢ oayobeu (y) 4
‘ + < Jueweidwod
MO} 18A0 QU D, - L1
"Jio4 seddn) X € 2uois 66 wOomeu 6 (| ﬁ..uxowv i
A lo:..o_.ova DS v 09
$loy sedan € YoM {siq 2
1
1014103 ogys [€ X
Hiys
UOH384409 U01}991.109 duaJejal ooueia P
MO1313A0 jsuodxa uois1oesd 8ignop euodxa 1o8ies 101408
e Hnses e 85UB13)04 % Jueucdxe
P »
(mO154340 QU)X €. JOMIOU { womieu yiomeu [€ It }i0mjou 3 I0M 40U ?«Ma an
< < e—"
{moyj1980) Px € o4US " Mo H 240§ H < dloys yois X
% [
L saiobeu (-
|044U02 IS «— G Eoc!%:“w:
subis
’ z 2 2 fe
ss9)sthas $10;s159. sJ0)51004
indino QDIpALIDIUL nduw

hvioiao 23v sV

2-37

The upper 12 bits of (Xj) and (Xk) are transmitted to the floating add
unit simultaneously over two data paths, One set of these exponent
values is processed along with the coefficient values in complete 60
bit words, The other set of exponent values is treated in a special
portion of the floating add unit which determines the difference of

the two exponents, The upper 12 bits of (Xj) and the upper 12 bits of
(Xk) each pass through a static network on the way to the input area in
this special portion of the floating add unit, These static networks
sense the sign of each operand and complement the exponent field if the
word was negative, In addition, these networks complement the highest
order bit in the exponent field to remove the bias associated with
packed floating point representation of the numbers., The resulting

two 11 bit exponents then merge in a static network which forms the
partial difference in a 12 bit ones complement mode,

The partial difference of the exponent values is held in the input
register for use during the following clock period. During this clock
period a static network completes the subtraction process and determines
the sign of the exponent difference, The Xj exponent is subtracted from
the Xk exponent, If the sign of the difference is negative, the Xj
quantity is selected as the reference operand and the Xk quantity is
selected as the operand to be shifted, If the sign of the exponent
difference is positive, the Xk quantity is selected as the reference
operand and the Xj quantity is selected as the operand to be shifted,
This same static network determines the amount of shift required to
align the coefficients for addition, If the exponent difference is
negative its value is complemented, The value of this resulting integer
is the number of bit positions of shift required to align the coefficients,

The two 60 bit operands are held in the input register area while the
exponent difference is determined., During the second clock period of
execution a selection is made between the two operands, One exponent
18 selected as the reference exponent and is stored in the intermediate
register area for use in the third clock period of execution, This
exponent is formed from the selected 60 bit word by removing the packed
format bias and complementing the exponent field if the selected word
was negative, The exponent field for the other operand is discarded
at this point in the process,

The coefficient for the reference operand is stored in the intermediate
register area for use during the third clock period. This quantity
retains the sign of the original word. A round bit is added to the
reference coefficient {f the round flag is set, This bit is equal to
the complement of the reference sign bit and appears just below the
least significant bit of the coefficient,

- 2-38

LASL-AEC orncnaq

The coefficient for the shifted operand is partially aligned for

addition with the reference operand coefficient before entering the
intermediate register area, The lowest order three bits of the align-
ment shift count are interpreted by a static network which positionms
the 48 bit coefficient in a 56 bit intermediate register, A round
bit may be added to this coefficient value if the round flag is set.
This round bit is added only if the two coefficients in the original
operands were both normalized, or if the two coefficients have dif-
ferent signs, If the round bit is added, it is set equal to the
complement of the shifted coefficient sign bit, and is positioned
just below the lowest order bit of the coefficient in the 56 bit
register., The remaining positions in the 56 bit register are filled
with shifted coefficient sign bits,

" The alignmment of the shifted coefficient for addition with the reference

coefficient is completed during the third clock period of instruction
execution, A static network receives the 56 bits of shifted coefficient
from the intermediate register area and shifts this quantity by an
additional 8, 16, 32, 64, or combination of these values of bit positions,
The resulting quantity is sign extended to fill a 99 bit field.

If the shift count required for aligmment of the coefficients is 128

bit positions or greater, the output of the shifting network is blocked
and all zeros are delivered to the following adder, This is equivalent
to shifting off the end of the field of the adder except for one special
situation which can cause an ancmaly in the results from the floating
add unit., If the shifted coefficient is negative, the higher order
bits in the 99 bit field are replaced with sign bits as the coefficient
is shifted right by the amount of the shift count, The value of the
coefficient and the amount of shift may be such as to leave the 99 bit
field filled with sign bits for a negative zero value, If the shift
count is 128 or more, the result is blocked and the 99 bit field is
filled with zeros for a positive zexo value, The difference between
the positive zero value and a negative zero value is unimportant unless
the reference coefficient is also a negative zero value, If both
coefficients are negative zero the result is negative zero, If either
is positive zero the result is positive zero, The result of adding

two floating point numbers, both negative, and the larger with a zero
coefficient, may be elther a positive zero coefficient value or a
negative zero coefficient value depending on the amount of the exponent
difference,

"The 49 bits of reference coefficient data are sign extended during the

third clock period of instruction execution to fill a 99 bit field,
The reference coefficient is positioned in the upper half of the field,

2-39

O

and the lower half is filled with reference coefficient sign bits,
This data is then merged with the corresponding field of data from
the shifted coefficient in a 99 bit ones complement adder, A partial
sum 1s formed prior to the output register for the result coefficient,
The 99 partial sum bits and the 99 possible carry bits are held in
the output register area for use during the fourth clock period of
instruction execution,

' The reference exponent is transmitted from the intermediate register
area to the output register area during the third clock period of
instruction execution, This transmission is through a static net-
work which modifies the exponent value if the double precision flag
is set, The exponent value is reduced by 48 decimal in a 12 bit ones
complement mode if the double precision flag is set, If the double
precision flag is not set the exponent value is copied unaltered from
the intermediate register to the output register area,

During the fourth clock period of instruction execution the results
of a floating add unit computation are transmitted to the destination
X register, There are four data paths from the coefficient portion
of the floating add unit to the X registers, One of these four paths
is selected on the basis of the instruction mode and the character
of the coefficient sum, The upper portion of the 99 bit double
precision sum is transmitted to the X register data input path on
instructions 30, 31, 34, and 35, The lower portion of the 99 bit

sum 15 transmitted to the X register data input path on instructions
32 and 33, A further selection is necessary because of the pos-
sibility of coefficient overflow in the double precision additiom,

If the sum overflows the highest order bit position occupled by the
reference coefficient, an alternate output to the destination X
register is selected in which the result coefficient bits are taken
from the 99 bit field one bit position higher than 1f no overflow
occurs, The combination of double precision mode, and possible
coefficient overflow, require the four independent data paths.

There are four possible exponent values to be selected corresponding to
the four coefficient values, The correction for double precision mode
i3 made on the exponent during the third clock period of instruction
execution, The remaining possible exponent values depend on the sign
of the result coefficient and the possible overflow of the coefficient
field, These conditions are resolved by a static network between the
output register for the exponent and the destination X register data
input path, There are two transmission paths for this information,
Path selection depends on the existence of the coefficient overflow,
The sign correction and packed floating point bias correction are
handled in the static network,

2-40

LASL-AEC-OFF

"Go floating add flag

The go floating add flag is set in the floating add unit at the end

of a clock period in which a floating add instruction issues from the
CIW register, This flag is copied to other ranks of registers in the

floating add unit as the data progresses through the unit. The presence

of the copied version of this flag during the fourth clock pericd of

instruction execution causes the data in the floating add unit output
register to be gated to the destination X register, If this flag is

not set the associated data is discarded, The condition for setting

the go floating add flag is as follows:

‘Condition: 7"go issue" & "registers free" & g= 3 & h = 0,1,2,3,4,5

Floating add round flag

_The floating add round flag controls the rounding of the coefficients

for the data in the floating add unit, This flag is sct along with
the data in the floating add unit input register when an instruction
requiring rounding issues from the CIW register, This flag is copied
to another register rank as the data moves through the unit, The
condition for setting the floating add round flag is as follows:

7Cond;tion: h = 4,5,6,7

_Floating add double precision flag

The floating add double precision flag controls the selection of

coefficient outputs from the floating add unit and the exponent cor-
rection associated with the double precision mode., This flag is set
along with the data in the floating add unit input register area
when a double precision instruction issues from the CIW register,
This flag is copied to other register ranks as the data moves through
the unit, The condition for setting this flag is as follows:

‘Condition: h = 2,3,6,7

2-41

B lall]

Special cases

A number of special cases of operation are sensed by the floating add
unit, One category of these special cases involves overflow and
indefinite operand values, These situations are sensed during the
second clock period of instruction execution, The nommal output from
the floating add unit to the destination X register is blocked for
these cases, The proper special format for the floating add result
is determined in the X register input control portion of the CPU
rather than in the floating add unit, The static network outputs
indicating overflow or indefinite result are transmitted from the
floating add unit to the X register input control during the third
clock period of instruction execution., The formation of the proper
word delivered to the destination X register is then performed in

the X register input control unit,

A second type of special case occurs if the double precision exponent
correction in the third clock period of instruction execution causes
underflow of the floating point exponent range, This case is treated
much like the special case operand tests in that a static network out-
put goes to the X register input control unit indicating underflow,
The output of the floating add unit is blocked in the fourth clock
period of instruction execution, and the X register input control unit
generates the resulting special format word,

"Execution timing

The timing charts for instructions executed in the floating add unit
are listed individually for each instruction in part three of this
manual. The detail execution of the various portions of the floating
add unit are the same for each of these instructions, The timing of
these portions is indicated in the special timing chart below,

CPO0 Floating add instruction issues from the CIW register,
Transmit (Xj) to the floating add unit input register,
Transmit (Xk) to the floating add unit input register,
Set the go floating add flag,

'CPO1 Form the difference of the operand exponents,
Select the reference operand and the shifted operand.
Perform initial coefficient aligmment,

CP02 7Comp1ete the coefficient alignment,
Form partial coefficient sum in double precision mode,
Perform the double precision exponent correction if required,

"CP03 Complete the double precision coefficient sum,
Transmit result to destination X register,

2-42

Floating multiply unit

The floating multiply unit executes the three CPU instructions, 40,

41, and 42. The organization of this unit {is illustrated in figure 2-8
on the following page. This unit differs from the functional units
previously described in that the data does not flow continuously through
the unit with new data entering each clock period. Data may enter the
floating multiply unit every clock period until a multiply instruction
{ssues from the CIW register. Inputs to this unit are blocked in the
clock period following issue. Inputs resume again two clock periods
after instruction issue., The maximum rate at which instructions may

be executed in the floating multiply unit is, therefore, one instruction
every other clock period.

All instructions performed in the floating multiply umnit require five
clock periods for execution. Data moves from the operating registers
to the multiply unit input registers in the same clock period in which
a floating multiply instruction issues fro: the CIW register., The
input registers in this unit are of the clear/enter type but are not
cleared automatically at the end of every clock period. The data in
the input registers is cleared and new data entered whenever the mul-
tiply busy flag is cleared. When the multiply busy flag is set, the
data in the input registers is held over into the following clock
period, This data then resides in the input register for a total of
two clock periods. These are the second and third clock periods of
instruction execution.

The two operands, (Xj) and (Xk), are individually complemented on the
way to the multiply unit input registers if their sign is negative. The
input registers then hold only positive operand values, In addition,
the input registers hold control information to complete the execution
of the instruction. The signs of the operands are merged in a static
network which forms the logical difference of the two sign bits. The
result is stored in the input register area as the sign of the resulting
product, Two bits of the h designator are stored in the input register
area to determine mode of the unit as the data progresses through the
unit. The multiply busy flag serves the purpose of a go multiply flag
as well as blocking further entry to the unit in the clock period
following issue. This multiply busy flag 1is copied from register rank
to register rank as the data moves through the unit, This flag serves
as the basic timing control which gates data into the clear/enter
registers of the unit at the proper time,

2-43

010p 9400 «€—i

pun Aidiinw Buniool4 8-z Big

Boty Asng

Aidynw

UOH3D]9% BPOW €—

le—— Asnq Aidyinw jos

Boij uoisiaasd agqnop Aidiinw

t

pe— (1 Q)Y

0014 punos Kidiynw

#q punol «—1 | | {0 o)y
wns |py0d aAoBau (%yy gt
uois1oaxd ajgnop o :var
(s~ o |
! ; 8b [€ e——~ Y
abiow abiaw sjonpoad | o :
puo pup B Xp2
A:NLWMRV PX] , peo ppo w0y
| 96 _ J1oy samoy
< + < 25k N 10 3addn saodau(x) p
S S6 \p 96 [RTE Juawaidwoo WeEny902
Axon ggv X < _..o:w*.)o_
, {84 $2)
NIOM U WIOMidU y40Mjou HI0MidU yiomjeu 0MI0U {
s19 96 i onioys onoss ooy ve, 1 ouois ags [X
() f f
1oy Jaddn
ﬁ g sayobau (x) 1
%20Qpee; ssod siy WawRdurd 100011800
310y seddn
NIOM DU na._z_QNv
ve K.J_ mois 1€ ‘X
weauodxd o}
UOYIVII0D QY+
1uauodxd o} saynBeu (*x)
uoy282409 |- e juawsydwos
& juauodxa _ {siq 1)
, womjgu |y
I wmoys [€ X
(w0130 4q G6) Px <— wompu | WIOMBU 1upBaeu (Txy
04s " o8 ewsdwod
(Wa12134900 4G 96) Px «— X R
WIompeu (s
9302 (019905 ¢
. i ubss s
< oM jou € UWIs X
1043u0d ubs &« | { | & o038 ubs _x

S0 DIV

2-44

The floating multiply unit forms a 96 bit double precision product

from the two operand coefficients. This product is formed in two steps,
Each step utilizes 24 bits of the Xj coefficient and all 48 bits of

the Xk coefficient. The process may be indicated mathematically as

follows:
Let (Xj) coefficient magnitude = if: 7ai 21 where 731 = (0,1)
1=
) 47T - . i
Let (Xk) coefficient magnitude = 2:: bj 2J "where b; = (0,1)
,_ =0
) 47 . .
Then the desired product = }E: a; 2> times if: by 2]
=0 i=0
23 47 144 47 47 s
i
Y ag by 2+)) g by 2t
0 =0 {24 }0

Each step in the two step process involves forming 1152 binary products
consisting of one bit from the Xj coefficient and one bit from the Xk
coefficient. These 1152 bits of data must then be added in the proper
groupings to form a combined sum.

The lower half of the Xj coefficient and the complete Xk coefficient are
merged during the second clock period of instruction execution, During
this clock period the feedback path indicated in figure 2-8 is blocked.
One static network forms the 1152 bit products, and a second static net-
work partially sums these products. The resulting partially merged data
is stored in a 452 bit register for use during the third clock period of
instruction execution.

During the second clock period of instruction execution a static network
selects the upper half of the Xj coefficient and delivers this data to the
input register currently holding the lower half of the Xj coefficient. At
the end of the second clock period this 24 bit input register is cleared
and entered with the upper half data, This is the only register data in
the input register area which is altered at this time.

During the third clock period of instruction execution the upper half of
the Xj coefficient is merged with the complete Xk coefficient, During
this clock period the feedback path indicated in figure 2-8 permits the
data formed in the previous clock period to merge with the new data.
This feedback data is merged with a 24 bit offset so that the bit posi-
tions of the two data fields are properly aligned. A round bit is added
to bit position 46 of the merged data if the multiply round flag is set.
The combined partial sum of product bits is entered in the 452 bit
register for use in the fourth clock period of instruction execution,

bASL-AEC

_During the fourth clock period of instruction execution the data in the

452 bit register is further summed and merged until there remains but
two bits of data in each bit position of the 96 bit double precision
sun., This data is delivered to two 96 bit output registers for use
during the fifth clock period of execution, In this last clock period
the addition process is completed, and the 96 bit product is available
for transmission to the destination X register,

"The two 11 bit operand exponents are processed in a separate portion of

the floating multiply unit, The exponents are complemented during the
first clock period of execution if the sign of the associated coefficient
is negative, The packed floating point format bias is also removed from
the exponents in this clock period by complementing the highest order
exponent bit, The two resulting 11 bit ones complement exponents are
stored in the input register area for use during the second and third
clock periods of instruction execution,

‘During the second and third clock periods of instruction execution the

exponents are held in the input registers., A static network adds the
two exponents in a 13 bit ones complement mode., In addition, this static
network adds a third quantity which is dependent on the instruction mode.
If the multiply double precision flag is set this third quantity is zero,.
If the multiply double precision flag is cleared the third quantity has

a value of +48 decimal, This exponment correction is necessary to com-
pensate for the truncation of the integer coefficient product in a

single precision mode, At the end of the third clock period the results
from this static network are entered in an 11 bit output register for
use during the fourth and fifth clock periods, The upper two bits in
the 13 bit ones complement sum are interpreted for overflow or underflow
of the floating point exporent range, This information is stored in a
separate control register area to handle special case results,

‘During the fifth clock period of instruction execution the results of

the coefficient calculation and the exponent calculation are transmitted
to the destination X register, There are four data paths from the
coefficient portion of the floating multiply unit to the X register.

One of these four paths is selected on the basis of the instruction

mode and the magnitude of the result coefficient, If the sign of the
result is negative the entire 60 bit word is complemented at the input
to the X register, This function is performed by the X register input
control unit rather than the multiply unit, The sign control bit is
transmitted from the multiply unit to the X register input control

unit during the fourth clock perxiod of instruction execution.

2-46

Selection of the multiply coefficient output path is a function of
the mode of the instruction, 1If the double precision flag is cleared
the upper half of the double precision result is transmitted. If the
double precision flag is set the lower half of the double precision
result is transmitted., A further selection of output path is based

on the number of significant bits in the double precision result,

If the result has 96 bits of significance the instruction mode selects
between the upper 48 bits or the lower 48 bits. If the result has

95 bits of significance, and the operand coefficients were both
normalized, the instruction mode selects between the most significant
48 bits or the lower 47 bits with a padded zero bit. This alternate
set of data paths insures that normalized operands result in a normal-
ized product., If the operands were not both normalized the result

is treated as if there were 96 bits of significance,

There are two data paths from the multiply unit exponent area to the
destination X register, Selection of the data path is made on the basis
of the number of significant bits in the coefficlient, The instruction
mode correction on the result exponent is completed during the second
and third clock periods of execution, A static network forms an exponent
value for a 9€ bit coefficient and an alternate exponent value for a

95 bit coefficient, This static network also corrects each exponent
value for the packed floating point format bias, The selection of the
two exponent values occurs during the fifth clock period of instruction
execution and corresponds to the selection of the coefficient output
path,

Multiply busy flag

The multiply busy flag is set in the floating multiply unit at the

end of a clock period in which a floating multiply instruction issues
from the CIW register. This flag is copied to other register ranks as
the data is processed by the multiply unit, This flag blocks input to
the multiply unit in the clock period immediately following instruction
issue. This flag, and copies of this flag, control the data movement
through the multiply unit, A copy of this flag controls the trans-
missfion of data from the multiply unit to the destination X register
during the fifth clock period of instruction execution. The condition
for setting this flag is as follows:

Condition: _"go issue™ & "registers free" & g = 4 & h = 0,1,2

2-47

c-O

§ASL-AL

FraCIAL

Multiply double precision flag

The multiply double precision flag controls the mode of instruction
execution in the floating multiply unit, This flag is set along with
the data in the multiply unit input register area when a double pre-
cision multiply instruction issues from the CIW register. This flag
is copied to other register ranks in the multiply unit as the data

is processed, The condition for setting this flag is as follows:

“Condition: h = 2,3,6,7

‘Multiply round flag

The multiply round flag controls the addition of a round bit to the
double precision coefficient during the third clock period of instruc-
tion execution. This flag is set during the first clock period of
instruction execution and is copied to another register rank for use
during the third clock period of execution, The condition for setting
the multiply round flag is as follows:

Condition: h = 1,3,5,7

Special cases

A number of special cases of operation are provided in the floating
multiply unit, One category of special cases involves overflow,
underflow, or indefinite operand values. These situations are sensed
during the third clock period of instruction execution, and special
case flags are set to block the normal output from the multiply
unit to the destination X register during the fifth clock period of
execution, These special case flags are copied to the X register
input control unit during the fourth clock period of instruction
execution, The formation of the proper word delivered to the
destination X register is then performed in the X register input
control unit,

A second type of special case occurs during the third clock period

of execution 1f the exponent arithmetic results in an overflow, or
an underflow, of the floating point exponent range. The special case
flag is set in this case, and the word delivered to the destination
X register is formed in the X register input control unit,

2-48

Execution timing

The timing charts for instructions executed in the floating multiply
unit are listed individually in part three of this manual. The timing
of the data movement through the multiply unit is the same for each
of these instructions, This common timing sequence is listed below:

Ccro0

CP02

CPO4

Floating multiply instruction issues from the CIW register.
Transmit (Xj) to the multiply unit input register,

Transmit (Xk) to the multiply unit input register,

Set the multiply busy flag.

‘Form the first 24 by 48 bit product.

Begin exponent arithmetic.
Hold the data in the input register area,
Clear the multiply busy flag.

‘Form the second 24 by 48 bit product,

Partially merge the data from the previous clock period,
Sense special case exponent values.
Complete exponent arithmetic,

Complete merge of coefficient data to two bits per position,

Form alternate exponent value,

7Form 96 bit coefficient value,

Select data path for transmission to X register.
Transmit result from multiply unit to destination X register,

249

b aoy ALC OFRICIAC

Floating divide unit

The floating divide unit executes the two CPU instructions, 44 and

45, The organization of this unit is illustrated in figure 2-9 on
the following page. This unit involves a seventeen step iterative
process to form the quotient from the two operands. Only one divide
instruction may be executed in the iterative portion of the divide

unit at a given time.

The divide instructions require 20 clock periods for execution, Data
moves from the operating registers to the divide unit input registers
each clock period in which the divide busy flag is cleared. This data
is used for instruction execution only if a divide instruction issues
from the CIW register and sets the divide busy flag. The divide busy
flag blocks the inputs to the divide unit in the 17 clock periods
following issue of a divide instruction. The data which arrived at
the divide unit during the clock period of instruction issue is then
used in the execution of the following divide sequence., A second
divide instruction may issue from the CIW register 18 clock periods

after the previous divide instruction,

The divide unit input registers are of the clear/enter type but are
not cleared automatically at the end of each clock period. The data
in the input registers is cleared and new data entered only at the

end of those clock periods in which the divide busy flag is cleared.
When the divide busy flag sets the data in the input registers is held
over for the following 17 clock periods. One bit of the h designator
is held in the input register area along with the operand data (Xj)
and (Xk). This bit is the divide round flag which distinguishes
between the two instruction modes.

‘The divide unit operates on positive coefficient values only. The

coefficients for (Xj) and (Xk} are individually complemented in
static networks if their sign is negative. The sign of the result

is determined at the input to the destination X register by the X
register input control unit., This sign bit is the logical difference
of the two operand sign bits.

The divide busy flag initiates a chain of divide sequence control flags

which sequence the remainder of the steps in the instruction execution.
This sequence control provides a static condition to distinguish each
of the 19 clock periods following the issue of the divide instruction.
These static conditions then control the data movement within the divide
unit and the data transmission to the X register input path at the end
of the divide sequence.

2-50

Hun apiaig Buyooly 6-2 By

Bojj punos epiarp

#q punos —{ | | je— (0 4}y
Boy, ksnq epiap
040p $ndino 906 «—f 104,u03 @2uanbes epiaIp | je— 3piap 0B
X2 sAioBau (Ux)
soidiyinw | § puawadwod
d0s1A1p XS
_ ¢ 10M{QU ﬁu«_.n w.s
— X3 Xe «—" 8p le— x
— MOE | \
Xb Xe'Xt
: WJOM |3 O13D}S
) & , ,
xe FEYCILEY) b9 Jo eayodau ([y}
S$YJ0Mj3u XS puapiap $U0 ¥21d PTG TCTTETY. TPt
voDAIGNS {0I14 , '
Xv
XS womau | %I0M jBu . An:n" 8v)
<« “ 1S k onots - av - Ix
X9 _
Xl , , -— , —
%JOMIU D|{04S _ X0 “
, L XXX XP XE'X2'XI _
r {IG X L)
© "
&/ i
J9i9163a s w_m
100 AN
_ REReLy 9A4060u (X}
(luaond 419 §t)PX € [weuwddwod
, Jomiou | polsad %2019 sed
IS omt suonsod §ig ¢ Yiomiau (81 21)
! s DIOP JJiNS 2l e Ay
{suationb 41 6p)PX €—u . ouos _
, sjusuodaa jo
' = gt—10 Lp~ QUIRIP
UOII0LI00 JUBIDY4903 wioj t:“_.._wahu:.awo
RIOM iU NIOMjau NIOM U Anu—ﬁ 2
e—-
Py enti0dee T MHois aoys Hois e X
(_—
Si38iB3s indino UOSS JO UBIS

ss45002 induy

2-5i

C-OFFICIALL _,\

The dividend for the divide sequence is the coefficient magnitude of
(Xj). This quantity is entered in a 51 bit dividend register during
the second clock period of instruction execution. The dividend
register is a clear/enter type register which is cleared at the end
of each clock period., The initial 48 bit dividend value is entered
{n the lower 48 bits of the dividend register. The upper three bits
of thls register are entered with zero bits,

The divisor for the divide sequence is the coefficient magnitude of

(Xk). This quantity is delivered to four static networks which form
multiples of the divisor. Each multiple of the divisor from one
through seven is formed. Multiplication by one, two, and four is
accomplished by shifting the bit positions of the divisor value.
Multiplication by six is similar to the multiplication by three,
with a one bit shift of data. These seven sets of numbers are held

statically throughout the 17 step divide sequence.

The quotient from the divide sequence is determined three bits per
clock period. This is accomplished by trial subtracting the seven
multiples of the divisor from the value currently in the dividend
register. One of these seven values, or the previous dividend
register value, is then selected for entry in the dividend register
at the end of each clock period. The choice between the eight
possible values is made on the basis of the signs of the trial
differences. The largest multiple of the divisor is picked which
will cause the new dividend value to be positive. The new dividend
value is entered in the dividend register with a three bit position
shift. The lowest order three bits in the dividend register are
entered with zero bits. The three bits of quotient data are entered
in a quotient shift register at the end of each clock period. This
shift register is a clear/enter type register which is cleared at
the end of each clock period. The data is re-entered with a three
bit position shift at the end of each clock period. The three bits
of new quotient data enter the lowest order three bit positions in
the quotient shift register. At the end of 17 iterative steps there
are 51 accumulated bits of quotient data.

The operand exponents are processed in a separate section of the

divide unit. The upper 12 bits of (Xj) and (Xk) are held in the
divide unit input register area for the 17 clock periods of the
iterative process. A static network is provided for each of the
exponents to complement the exponent value if the sign of the
operand is negative. These static networks also remove the packed
floating point format bias by complementing the highest order
exponent bit. The lcgical difference of the sign bits is delivered
to the X register input control unit to specify the sign of the
result.

'2-52

The operand expoments are subtracted in a 13 bit ones complement mode.
The Xk exponent is subtracted from the Xj exponent. A correction

is then made for the integer coefficient in the resulting quotient
representation. This correction is either -47 or -48 depending on
the number of significant bits in the integer coefficient for the
quotient. The resulting exponent value may overflow or underflow
the floating point exponent range. The upper two bits of the 13 bit
exponent are used to sense these conditions and set an appropriate
special case flag, The lower order 1l bits are delivered to the
divide unit output register at divide time 18, This corresponds to
the 19th clock period of instruction execution. In the 20th, or
last, clock period of instruction execution the data is transmitted
from the divide unit output registers to the X register data input
path.

The result coefficient is assembled three bits per clock period in

the quotient shift register. This register also serves as the
coefficient output register. There are two sets of data paths from
this register to the X register data input path. The first three

bits to enter the 51 bit quotient shift register contain the informa-
tion necessary to make the exponent correction and choose the output
transmission path., If this first octal digit has a value of zero,

the lower order 48 bits of the 51 bit shift register will be trans~
mitted to the destination X register. If the octal digit has a

value of one, the 48 bits transmitted to the X register will originate
one bit position higher in the 51 bit register. The lowest order bit
of the computed quotient will be discarded in this case. If the octal
digit has a value greater than one, the divide sequence result will

be treated as a special case, and the indefinite condition flag will
be set for interpretation by the X register input control unit.

There is only one data transmission path from the exponent portion of
the divide unit output register to the X register data input path. The
exponent correction corresponding to the 48, or 49, bit quotient coef-
ficient is made prior to the data entry in the exponent output register,
The exponent bias for packed floating point format is added in the
transmission path from the divide unit to the destination X register.
The sign of the result is determined by the X register input control
unit, The entire 60 bit word {s complemented at the input to the X
register 1f the result is negative.

2-53

CIAD
¢

“L-AEC -\‘(\H

‘Divide busy flag

The divide busy flag is set in the floating divide unit at the end

of a clock period in which a divide instruction issues from the CIW
register. This flag remains set in the following 17 clock periods.
It is cleared by the divide sequence control at divide time 17.
This flag holds the data in the divide unit input registers for the
17 clock periods required for the iterative divide sequence. The
conditions for setting and clearing this flag are as follows:

‘Set condition: 'go issue" & "registers free" & g = 4 & h = 4,5

‘Clear condition: ‘"divide time 17"

‘Divide round flag

The divide round flag is set in the floating divide unit at the end

of a clock period in which a round floating divide instruction issues
from the CIW register. This flag modifies the dividend in the third
clock period of imstruction execution. An octal digit with a value
of four is entered in the lowest order bits of the dividend register
if this flag is set. This occurs only for the one clock period.

7ero bits are entered in these bit positions during all other clock
periods in the divide sequence. This modification of the dividend
has the effect of increasing the dividend value by one half of the
least significant bit in the original operand. The condition for
setting the divide round flag is as follows:

‘Condition: h = 1,3,5,7

" "pivide time 13" condition

This condition originates in the divide sequence control and is used

in the SCM access control, This static condition exists during the

l4th clock period of execution for a divide instruction. It is used
in the SCM access control to block initiation of a SCM storage ref-

erence that would conflict with the delivery of data from the divide
unit to the X register data input path.

254

"Divide time 15" condition

This condition originates in the divide sequence control and is used

in instruction issue control and in the X register access control unit,
This static condition exists during the 16th clock period of execution
for a divide instruction. It is used in the instruction issue control

to block issue of an instruction which would conflict with the delivery
of data from the divide unit to the X register data input path. It is
used in the X register access control to initiate the process of register
access for the destination X register.

-

This condition originates in the divide sequence control and is used

to clear the divide busy flag and enter the exponent value in the output
register. This static condition exists during the 18th clock period

of execution for a divide instruction.

Special cases

A number of special cases are treated in the floating divide unit., One
such category involves overflow, underflow, or indefinite operand val-
ues. These situations are sensed in the static network which forms

the difference of the exponent values. The combinations of special
operand values which cause specific results are listed in part three

of this manual for the individual instructions. The static condition
specifying a special case result is delivered to the X register access
control unit. The transmission of data from the divide unit output
registers to the destination X register is blocked for these cases.

The special case word is then formed in the X register access control.

A second category of special cases occurs if there is an underflow, or
an overflow, of the floating point exponent range during the exponent
calculation in the divide unit. In these cases the special case result
is indicated to the X register access control unit, and the output from
the divide unit is blocked in the same manner as for the special case
operands.

A third special case category occurs if the initial trial subtraction
in the coefficient calculation results in an octal digit with a value

of 2 or more. This is a divide fault situation which occurs if the
divisor is not normalized. The indefinite condition result is indicated
for this case, and it is treated in the same manner as the other special
cases.

'2-55

1L AEC -OFFICIAT

Execution timing

The timing charts for the two divide instructions are listed in part
three of this manual. These two charts are essentially the same, and
the common portion related to the internal timing of the divide unit
is listed below in somewhat greater detail,

CPOO

CcpPO1

CPO2

CPO3

CPO4

CPO6

Cp08

Divide instruction issues from the CIW register.

Transmit (Xj) to the divide unit,
Transmit (Xk) to the divide unit,
Set divide busy flag.

Transmit magnitude of Xj coefficient to the dividend register.

Begin translation of divisor multiples.
Begin exponent calculation,

'First trial subtraction.

Transmit picked value to the dividend register.
Transmit round bit (if any) to the dividend register.
Transmit first octal digit to quotient shift register.

7Second trial subtraction.

Transmit picked value to the dividend register.
Transmit second octal digit to the quotient shift register.

Thixd trial subtraction.

Transmit picked value to the dividend register.
Transmit third octal digit to the quotient shift register.

_Fourth trial subtraction.

Transmit picked value to the dividend register.
Transmit fourth octal digit to the quotient shift register.

"Fifth trial subtraction.

Transmit picked value to the dividend register.
Transmit fifth octal digit to the quotient shift register,

"§ixth trial subtraction.

Transmit picked value to the dividend register.
Transmit sixth octal digit to the quotient shift register.

‘Seventh trial subtraction.

Transmit picked value to the dividend register.
Transmit seventh octal digit to the quotient shift register.

'2-56

CP10

CPl4

"CP16

CP17

CPp18

Eighth trial subtraction.

Transmit picked value to the dividend register.
Transmit eighth octal digit to the quotient shift register.

‘Ninth trial subtraction.

Transmit picked value to the dividend register.
Transmit ninth octal digit to the quotient shift register.

‘Tenth trial subtraction.

Transmit picked value to the dividend register.
Transmit tenth octal digit to the quotient shift register

‘Eleventh trial subtraction.

Transmit picked value to the dividend register.
Transmit eleventh octal digit to the quotient shift register,

‘Twelfth trial subtraction,

Transmit picked value to the dividend register.
Transm't twelfth octal digit to the quotient shift register,
Transmit block SAS issue signal to SCM control,

‘Thirteenth trial subtraction,

Transmit picked value to the dividend register.
Trensmit thirteenth octal digit to the quotient shift register,

‘Fourteenth trial subtraction.

Transmit picked value to the dividend register.

Transmit fourteenth octal digit to the quotient shift register.
Block issue of multiply instructions.

Initiate X register access control,

Fifteenth trial subtraction.

Transmit picked value to the dividend register,
Transmit fifteenth octal digit to the quotient shift register.

Sixteenth trial subtraction.

Transmit picked value to the dividend register,

Transmit sixteenth octal digit to the quotient shift register.
Clear divide busy flag.

Transmit exponent value to the output register.

‘Seventeenth trial subtraction.

Transmit picked value to the dividend register,.
Transmit seventeenth octal digit to the quotient shift register.

Transmit result from divide unit to destination X register,

2-57

ALC-OHHCIAQ

»

[

Population count unit

The population count unit executes CPU imstruction 47. This instruction
counts the number of bits in the 60 bit operand which have a value of

one. There is only one mode of operation for this unit., The organization
of the data paths is illustrated in figure 2-10 on the following page.

The population count instruction requires two clock periods for execution,

Data moves from the operating register to the population count unit in the
same clock period in which the instruction issues from the CIW register.
Data moves from the population count unit back to the operating registers
during the following clock period., A new instruction may be issued for
execution in the population count unit each cleck period.

The contents of the Xk register are transmitted to the population count
unit each clock period. This data enters a static network which partially
sums the one bits and enters the partially reduced data in a 27 bit input
register. This data is used during the following clock period only if the
go pop count flag is set. If the go pop count flag is set, the count is
completed in a static network following the input register. The resulting
six bits of count data plus 54 bits of zero data are then transmitted to
the destination X register. The count is transmitted in the lower order
six bit positions in the word.

The 27 bit input register for the population count unit is a clear/enter

type register which is cleared at the end of each clock period.

' Go pop count flag

The go pop count flag is set in the population count unit at the end of

a clock period in which a 47 instruction issues from the CIW register.
This flag then controls the transmission of data from the population
count unit to the destination X register., If the go pop count flag is
not set during a given clock period, the data in the population count
unit is discarded. The condition for setting the go pop count flag is
as follows:

Condition: _“go issue" & "register free" & g = 4 & h = 7

The timing chart for the 47 instruction is listed in part three of this

manual.

2-58

an.».mr.xupm_n_)%_\

ﬁ

(

(

{(uotsuaixe Y24
s $4q 9)

Py < -

e 4 r roC r ﬁ ﬁ

sun junod uotioindod 012 B4

Hoy} junod dod ob

ojop 906 «—| | je—— junoo dod ob

4un0d ~ qunod
94i0wo2 WJo) 1945100 (01408 w0}
, 1 — — — !
HOMay NIOMPU (s49 09)
L2« ; le— Ny
Moy Hois

2-59

1

C L ALC OTFICIAT

Increment unit

The increment unit executes CPU instructions 50 through 77. These

instructions involve address length arithmetic., This unit is somewhat
special in that those instructions with an A register destination cause
a SCM storage reference in addition to the arithmetic computation. The
address delivered to the SAS for the SCM storage reference is computed
in a separate portion of the increment unit. The organization of this
unit is illustrated in figure 2-11 on the following page.

‘The increment instructions require two clock periods for executionm.

Data moves from the operating registers to the increment unit in the
same clock period in which the instruction issues from the CIW register.
Data moves from the increment unit to the destination operating register
during the following clock period. A new instruction may be issued for
execution in the increment unit each clock period.

‘The increment unit contains a single level of registers for data and

control information., These registers are all of the clear/enter type,
and are cleared at the end of every clock period. A portion of the
arithmetic operation is performed in static networks prior to the entry
of data in the increment registers. ’

‘Data arrives at the increment unit from five differemt input paths.

One group of data paths consists of inputs from the Xj, Bj, and Aj
registers. A static network selects one of these three data paths
for an increment operand. This selection is determined by the value
of the h designator in the CIW register. A second static network
selects the second operand. This group consists of the K field in
the CIW register,.the Bk register data, and the complement of the Bk
register data. This selection is also made on the basis of the h
designator value. The two selected 18 bit operands are partially
added, and the resulting sum bits and borrow bits are stored in
increment unit registers for use during the second clock period of
instruction execution,

‘The two selected 18 bit increment operands are partially merged with

the SCM reference address in a separate static network., This con-
putation is independent of, and proceeds in parallel with, the operation
described above. A data path from the RAS register to the increment
unit merges with the selected operands for the increment unit. This
static network forms the partial sum of the three operands simultaneously.
This information is held in two 18 bit registers for use during the
second clock period of instruction execution,

2-60

Mun uewWeIuT |1-2 il

Boi} eboi0}s 0} juswesaul od

1043U0D $S900 WIS O «—— |

Boy) juswaidu; ob

040p 90d i |

l———— 86010}s 0} jUSWRIDUL OB

€~ WU 0B i

sBny} apow
2 e (1'0 4q)0
wauNdwod g
_:.:,.JEDD
uoi}ajas |ndyno puo Wiomau e— M
wns eidwod A9sibas wns [piso0d
—~ : MoS Lo g
8 S 4 O
P T T <]
g0 <« 10 8l 1€ Hois uoyoeies
Px o1 <l e e— ly
— NIOMJOU f
<— 'g
20l
fe— x
NiOMiaU 8l € NIOM}RU
SYS OF «— 03 + e— VY
JHD}s 8l Hiois

2-6l

§ 47U ALC OFRICIAD

‘The two portions of the increment unit complete the two arithmetic

calculations during the second clock period of instruction execution.
One static network completes the addition of the two selected operands
for the destination operating register. The output of this network is
then transmitted to the required register input path under the control
of the go increment flag and two increment unit mode flags. A second
static network completes the addition of the two selected operands plus
the SCM reference address. This network output data is transmitted
to the SAS under control of the go increment to storage flag,

"Go_increment flag

"The go increment flag is set in the increment unit at the end of a

clock period in which an increment instruction issues from the CIW
register. This flag then gates the data from a static network to the
destination operating register during the following clock period. 1If
the go increment flag is not set during a given clock period, the data
in the increment unit during that clock period is discarded. The
condition for setting this flag is as follows:

‘Condition: '"go issue” & "registers free" & g = 5,6,7

'Go increment to storage flag

The go increment to storage flag is set in the increment unit at the
end of a clock period in which an instruction issues from the CIW
register which requires a SCM storage reference. The go increment
flag is set at this same time. The go increment to storage flag gates
the data from the second portion of the increment unit to the SAS.
This data transmission occu:s in the same clock period as the trans-
mission of data from the increment unit to the destination operating
register. The condition for setting this flag 1s as follows:

‘Condition: "go issue" & "registers free" & g=5&1i=1,2,3,4,5,6,7

Increment unit mode flags

There are two mode flags in the increment unit which control the
selection of destination operating register type when the go incre-
ment flag is set, These two mode flags are copies of the lowest
two bits of the g designator in the instruction. If g = 5 in the
executed instruction, the destination operating register is an A
register. If g = 6 in the executed instruction, the destination
register is a B register. If g = 7 in the executed instruction,
the destination register is an X register.

There is a fourth data transmission path from the first portion of
the increment unit to the error detection unit. The data transmitted
to the error detection unit is the same 18 bit quantity that is trans-
mitted to the destination operating register, This data is used to
test against the SCM field length only if the increment unit causes

a SCM storage reference, The data transmission occurs during every
clock period, and the selection is performed in the error detection
unit.

Instruction timing

Timing charts for the instructions executed in the increment unit are
listed for each case in part three of this manual; The timing is
complex in the case of instructions 50 through 57 where a SCM storage
reference is involved. The result of the increment calculation is
always delivered to the destination operating register at the end of
the second clock period of instruction execution. If a SCM reference
is also involved, the timing of the transmission of data from the SCM
to the destination X register is under the control of the SCM portion
of the CPU. The timing of this data delivery will depend on storage
conflicts in SCM and will not be a constant delay.

2-63

JALL

P RULARC Y

Branch Instructions

Branch instructions are executed in a portionm of the CPU which is not

well defined as a functional unit. This portion of the CPU contains
the program address register (P), and those control flags required to
sequence the entry of a new address into the P register. This portion
of the CPU also contains the register and control flags required to
execute the return jump instruction. These registers and flags are
illustrated in figure 2-12 on the following page.

P _register

The P register is logically an 18 bit register which contains the

current program execution address. This register enters into a large
number of functions in the CPU, and a large number of interconnecting
transmission paths are required. As a result, the P register is
physically reproduced a number of times in hardware to allow the
proper fanout of information. Each hardware copy of the P register
is entered with new data at the same clock period and under the same
conditions. The P register is referenced in this manual as a single
register even though multiple hardware copies exist.

_The P register is a clear/enter type register with gated clock pulse

control. There are four possible sources of data for entry into the
P register. A static network selects one of the four data paths as

illustrated in figure 2-12, The current contents of the P register

are cleared, and new data is entered at the end of a clock period in
which the following condition exists.

‘Condition: APF & no OSF

or: GJF & no '"fall through"
or: SXF & NBF
or: 'XJ enter P"

The selection of data for entry into the P register is made on the

basis of three control conditions. Each condition specifies one of
the data paths. The absence of any of the three specific conditions
selecta the fourth data path. This last path is the one which increases
the contents of the P register by one count. The three specific control
conditions are as follows:

2-64

np,.pmN

”nts) 00 -

Clely

Buiyounig uoydnysul Zi-2 B4
HIOM DU JOMjOU W
4xs MM e ary e o 4r9 te—— Gwnf 0d
oS LT NS
o 9IUDAPD —~ h Allaﬂl SM] WOl poss
DS L=="] !
B |
1051602 . 0ds
, Xy Jopstbas 4 ﬁ
NIOM{BU NJomieu | |
<— ‘g
SMS % «—— @) va 8l ol e Hois
uoINes ‘qeyn [
VoY J01IR O} A P »
SMS O} €——] WJonjou
ETLIC
IS0 VAT O e A
i+
13;$169) YSN O} « A
_ WPBUDI Ul X e
¥I0i$ UOYONIISUL O} -— WULSP X €— Womin [
, , [} " e— x
..O.—ON x._AI'..ll Otbhﬂ
..o>_:aoa X, €—1
lg a0 lg e womw |e—'8
Jaozlg e M le—1'g

2-65

‘Select the information in the K field of the CIW register for entry

into the P register on the following condition:

‘Condition: GJF & h = 0,1,3,4,5,6,7

Select the output of a static network which forms the 18 bit ones
complement sum of K + (Bi) on the following condition:

‘Condition: GJF & h = 2

Select bits 36 through 53 of the word currently in the SRO register

for entry into the P register on the following condition:

‘Condition: ''XJ enter P"

"RJX register

AEC OFHCIAD

The RJX register holds the return jump exit address during execution of
a return jump instruction., This is an 18 bit clear/enter type register
with gated clock pulse control. The current contents of the P register
are entered into the RJX register at the end of a clock period in which
the following condition exists:

‘Condition: GJF & g=0&h=1&1=0

The information in the RJX register is transmitted to the SWS at the

proper time to store the special word in SCM for the called subroutine
exit. The address for the SCM storage reference is processed through
the IFA register. Control for the storage reference is via the SXF. A
60 bit word is formed from the 18 bits in the RJX register. The lowest
order 30 bits in this word are zeros. The next 18 bits are transmitted
from the RJX register. The uppermost 12 bits are a constant instruction
code for the subroutine exit. This portion of the word has an octal
value of 0400.

_The RJX register is not cleared after the data is transmitted to the

SWS. The last return jump exit address resides in this register until
the execution of the next return jump instructionm.

\ 2-66

“Fall through' condition

This control condition occurs whenever a branch instruction is executed

in which the jump to a new program sequence is not taken.

When this

condition exists the program continues with the current program sequence.

"X zero" condition

This control
for use when
whenever all

D' positive”

This condition is defined as follows:

Not: g=0&h=1&1=20

nor: g=0&h=2

nor: g=0&h=3&1i=0&"X zero"

nor: g=0&h=23&1=1%&mno'X zero"
nor: g=0&h=3&1i=2& "X positive"
nor: g=0&h=23&i=3&mno "X positive"
nor: g=0&h=36&1i=24%&"Xin range"
nor: g=0&h=3&1i=5&mno "X in range"
nor: g=0&h=3&1=26&" definite"
nor: g=0&h=3&1i=7&mno'X definite"
nor: g=0&h =4 & "Bi .EQ. Bj"

nor: g=0&h =5 &no "Bi .EQ. Bj"

nor: g=06&h=26& "Bl .GE, Bj"

nor: g=0&h=7&mo "Bi .GE. Bj"

condition is formed in a static network every clock period

a branch instruction is executed,

This condition exists

60 bits in the Xj register are zero.

condition

This control
for use when
whenever the

"X definite"

condition is formed in a static network every clock period

a branch instruction is executed.

This condition exists

highest oxder bit in the Xj register is zero.

condition

This control
for use when
mined by the

condition exis

1777
6000

"Not:
nor:

condition is formed in a static network every clock period

a branch instruction is executed.
value of the uppermost 12 bits in the Xj register.
ts when these 12 bits have the following octal digit values:

This condition is deter-
This

2-67 /

"X in range" condition

This control condition is formed in a static network every clock period
for use when a branch instruction is executed. This condition is deter-
mined by the value of the uppermost 12 bits in the Xj register. This
condition exists when these 12 bits have the following octal digit values.

Not: 1777
nor: 6000
nor: 3777
nor: 4000

"tRi .EQ. Bj" condition

This control condition is formed in a static network every clock period
for use when a branch instruction is executed. This condition is deter-
mined by comparing the contents of the Bi and the Bj registers. This
condition exists when (Bi) is identical with (Bj) on a bit by bit basis.
This condition does not exist when one register contains all one bits
and the other register contains all zero bits.

""Bi .GE. Bi" condition

This control condition is formed in a static network every clock period
for use when a branch instruction is executed, This condition is deter-
mined by comparing the contents of the Bi and the Bj registers. This
condition exists when (Bi), considered as a signed integer, is greater
than, or equal to, (Bj), also considered as a signed integer. In this
case a quantity consisting of all zero bits is greater than a quantity
consisting of all one bits.

Advance P flag (APF)

The APF is a clear/enter type bit register which is cleared at the end
of every clock period. This control flag is set at the end of a clock
perfod in which the folluwing condition exists:

Condition: 'go issue' & "registers free" & ''read stack

This flag is used to advance the contents of the P register by one count
whenever a new word is read from the IWS to the CIW register. The flag
is set in the same clock period in which the data is transmitted to the
CIW register. The content of the P register is advanced in the following
clock period,

2-68

REV.I

“Condition: ''registers free" & g

"Go jump flag (GJF)

The GJF is a clear/enter type bit register which is cleared at the end

of every clock period. This control flag is set at the end of a clock
period in which the following condition exists:

0&h=1&1=0 & no SXF & no RJF

]

& no JCF & no GJF
or: ‘'registers free" &g =0 & h =2,3,4,5,6,7 & no SXF & mno
RJF & no JCF & no GJF

This flag is set whenever a branch instruction is ready for execution.

If the jump to a new program sequence occurs, the RJF or the JCF is
set in the following clock period. If the jump is not taken, the
branch instruction in the upper parcel of the CIW register is issued
as a pass.

Retumn jump flag (RJIF)

The RJF is a bit register with a separate set and separate clear input.
This flag is set at the end of a clock period in which the CIW register
contains a return jump instruction and the GJF is set. This flag remains
set until any words requested from SCM for the IWS have arrived at the
IWS. The SXF is then set and the RJF cleared. The conditions for setting
and clearing this bit register are as follows:

‘Set condition: GJF & g=0&h=1&1=0

‘Clear condition: "RIF & no MIF

Store exit flag (SXF)

The SXF is a bit register with a separate set and separate clear input.

This flag is set at the same time that the RJF is cleared. This flag
then continues the sequence for the return jump instruction. This flag
remains set until the SCM access control has accepted the address for
writing the RJX register data into SCM. This flag then clears and the
JCF is set. The conditions for setting and clearing this flag are as
follows:

"Set condition: RJF & no MIF

" Clear condition: SXF & NBF

or: GJF & no '"fall through" & h = 0
or:; GJF & no "fall through” & i = 1

2-69

o

C-OFFICIAT
&

§ 2L AE

“Jump completed flag (JCF)

The JCF is a clear/enter type bit register which is cleared at the end

of every clock period., This control flag is set at the end of a clock
period in which the following condition exists:

Condition:‘"go issue'" & "XSK = 15"

or: SXF & NBF
or: GJF & no "fall through" & h =
or: GJF & no "fall through" & i

|
-0

‘This flag sequences the last step in either a normal branch instruction

or a return jump instruction. The presence of this flag allows the branch
instruction to issue from the CIW register and the program sequence to
continue,

Normal branch execution

A normal branch instruction, as distinguished from a return jump instruction,

has three cases to consider in execution timing. One case occurs when the
jump criterion is not met in a conditional branch instruction. This is the
"fall through'" case. A second case occurs when the jump is taken and the
destination address is currently within the IAS., A third case occurs when
the jump is taken out of the range of the instruction stack., Each of these
cases has a separate timing sequence,

"All normal branch instructions begin execution with the setting of the GJF.

This occurs when the conditions specified by the instruction have been
resolved. These conditions involve register data which may be in process
in functional units as a result of previously issued instructions., The
conditions for setting the GJF are therefore similar to the conditions for
issue of a computation instruction. The GJF allows the branch instruction
to issue from the CIW register only in the 'fall through' case. The other
two cases involve further sequence control flags.

A branch instruction in which the jump criterion is met requires the entry

of a new program sequence address in the P register. The P register is
cleared and entered with a new address at the end of the clock period in
which the GJF is set. The JCF is set at this same time to indicate that
the jump has been completed. The branch instruction then issues from the
CIW register in the following clock period. If the new program address

1s in the IAS, the next instruction word may read directly into the CIW
register in this clock period. If the new program address is not in the
IAS, a SCM reference must be initiated to read the new program instruction
word. This process is a function of the instruction stack control.

2-70

"Return jump execution

Execution of a return jump instruction begins with the setting of the
GJF in a manner similar to that required for a normal branch instructionm.
The GJF causes two register actions in the one clock period in which it
is set, The content of the P register is cleared and the new program
sequence address is entered. This is the address of the exit word for
the called subroutine. During this same clock period the previous
address in the P register is copied into the RJX register. This is the
address of the instruction word currently in the CIW register, plus one.
The RJF is set at the end of this clock period to continue the sequence.

The RJF is a delay mechanism to allow any SCM instruction word references
to be executed to completion. The RJF statically clears all ranks of

the IAS for as long as it is set. When all instruction words previously
requested have arrived at the IWS, the RJF clears and the SXF is set to
continue the sequence. The contents of the P register are transmitted

to the IFA register during the last clock period in which the RJF is set.

The SXF causes the SCM reference to store the special word required
for the called subroutine exit. The data for this word is in the RJX
register, The address for the SCM reference is in the P register.
This address is also in the IFA register. The SXF remains set until
the SCM reference has been initiated by the acceptance of (IFA) in the
SAS. The SXF then clears and the JCF is set to complete the sequence.
The content of the P register is advanced one count during the last
clock period in which the SXF is set.

The JCF allows the return jump instruction to issue from the CIW register.
This flag is set for only one clock period. During this clock period

the P register contains the entrance address for the called subroutine.
The IFA register contains this same address. No coincidence is possible
between (P) and the IAS because of the previous clearing of the IAS. The
instruction stack control will therefore initiate the SCM references to
read up the beginning of the called subroutine.

2-71

Exchange sequence

b2 OUAEC-OFRICIAD

The exchange sequence involves the interchange of data between the

operating registers in the CPU computation section and a package of 16
consecutive storage locations in SCM, Information from the operating
registers is written into the same 16 storage locations which provide
the new operating register information. The exchange of data in this
sequence terminates the execution of one CPU program and begins the
execution of a new CPU program.

‘The package of data read from SCM into the CPU operating registers

in the exchange sequence is called the "exchange package' for the
associated CPU program., This exchange package resides in the CPU
computation section throughout a period of time called the 'execution
interval' for the exchange package. The execution interval is ter-
minated by another exchange sequence which returns the exchange pack-
age to SCM and initiates the execution interval for another exchange
package. An exchange package for a CPU object program normally resides
in a specific SCM location. The execution interval for this exchange
package is initiated by the system monitor program. The monitor
program exchange package then resides in the object program exchange
area during the object program execution interval. At the end of the
execution interval the object program exchange package is returned

to SCM and the monitor program is continued,

The execution interval for an object program exchange package may

be terminated by an input/output interrupt, or by an error condition
In these cases the exchange package for the object program is tem-
porarily stored in a SCM area other than its normal location. The
exchange package for the interrupting program will be returned to
this location and the object program resumed when the interrupt
requi rement has been satisfied,

70rganization of hardware for the exchange sequence is illustrated in

figure 2-13 on the following page. Address flow is illustrated in the
upper portion of this figure, and control organization in the lower
portion. The data format for the information in the exchange package
is described in part one of this manual. This format is illustrated

in figure 1-3 on page 1-21. Data format will not be discussed in this
section of the manual, The following information will deal with the
hardware mechanism for implementing the interchange of the data between
SCM and the operating registers.

2-72

SMS 04 DiOp DD el

_so:oo. WOS «<— dIX

@ouanbag BOUDYIXT gy-z ‘bi4

104u0d Bupyoxa

Svs o
$69.ppO

o1}
FIIT) Y — P—
ﬂ FEYCLEY) Q o/1
HSX N -
OYIXd &—oF e .
HIOMIBU v e 19ppo 0/1
dois I+ Boj;
€ WBuoyoxs «—
10419 ,
ﬂ wod woesq
_SIGP-
RIOM|PU RIOMIBU $J0M|BU < " sbuoyom /1
il ST ~—{ asx e 2018 — S fioud [
. . o imod
"
1 R
~
opow dajs :
862.pp0 -8bubDYOXd
b&—— %
9ysiboa sppo
WO VX NIom U
FETLEY] ssesppo ebuoyoxe 24DJs
yve & 8iN10SGD WIS W0} l— (9
WIOM U 2ppo .w+._
<—— 9| UO1 9|08 1 ¥omjeu 9l < ,nnfuvn .
2048 2iD}s < yomjou ,oococea 0 /.
_ «— v33
Uoio#es
aos [€— VAN
15ppo €— SV
I+

4L AEC-OFFICIAT

"Exchange address

There are several modes of initiating an exchange sequence and several

sources for the exchange package initial address. The normal ter-
mination for an exchange package execution interval is caused by an
exchange exit instruction in the associated program. In this case
the exit mode flag in the PSD register determines the source of the
exchange sequence initial address. Abnormal terminations for an
exchange package execution interval are caused by 1/0 section inter-
rupt requests or by error condition flags in the PSD register. The
four combinations of situations are individually described below.

_Exit instruction - Exit mode flag:

These conditions normally occur in the termination of a monitor program
execution interval. 1In this case the exchange sequence address is
formed by adding (Bj) + K + (RAS). The quantity (Bj) + K is formed

in a static network as illustrated in figure 2-13. This addition is

in an 18 bit ones complement mode. The lowest order 16 bits of this
result are transmitted to the XJA register. Concurrently the RAS input
path is selected for the second input to the XJA register. The abso-
lute SCM address for the exchange sequence is formed in a static net-
work following the XJA register., This arithmetic is performed in a
positive integer mode with the lowest order 16 bits delivered to the
BAK register for execution of the exchange sequence., An overflow of
the 16 bit length in this addition process is an error condition.

This error condition is not sensed in the hardware. Should a monitor
program erroneocusly execute an exchange éxit instruction with this
condition, the exchange sequence will begin at the SCM address
corresponding to the lowest order 16 bits of this sum.

Exit instruction - No exit mode flag:

These conditions normally occur in the termination of an object program
execution interval. 1In this case data transmission from the (Bj) + K
static network to the XJA register is blocked. All zero bits enter the
XJA register in this position. The NEA input path is selected for the
second input to the XJA register. The resulting positive integer sum
delivered to the BAK register is simply (NEA),

'1/0 section interrupt:

This condition blocks the (Bj) + K network data transmission to the
XJA register. All zero bits enter the XJA register in this position,
The I/0 exchange address is transmitted from the I/0 section of the
CPU to the XJA register for the second input. The resulting positive
integer sum delivered to the BAK register is simply the I/0 section
exchange address,

2-74

Error interrupt:

This condition blocks the data transmission from the (Bj) + K static

network to the XJA register. All zero bits enter the XJA register imn “~N
this position. The EEA input path is selected for the second input

to the XJA register. The resulting positive integer sum delivered to

the BAK register is simply (EEA). N\

The BAK register and its associated static networks form the mechanism
for counting through the 16 address values required in the exchange N
sequence. This mechanism is also used during the execution of a LCM
block copy instruction. A static network at the input to the BAK
register selects the proper source for the initial address. In this N
case the initial address for the exchange sequence enters the BAK
register. The address value is increased by one count as each address
is delivered to the SAS during the execution of the exchange sequence. ™
This counting process is controlled by the SCM access control unit.

/\
XJA register
The XJA register is a 32 bit clear/enter type register with gated ™
clock pulse control, The register is arranged in two groups of 16
bits each. These two 16 bit quantities determine the absolute address
for the exchange sequence, The data in the register is cleared, and
new data entered at the beginning of each exchange sequence. This
occurs at the end of a clock period in which the following condition
exists:
‘Condition: I/0 exchange flag

or: Error exchange flag
or: PXF
The data entered in the XJA register is determined by four control
conditions. These four conditions are mutually exclusive. A pair
of 16 bit addresses is entered in the XJA register for each of the
four control conditions. These pairs are identified below for each
condition.
(Bj) + K, (RAS); on condition: PXF & exit mode flag
zero, (NEA); on condition: PXF & no exit mode flag
zero, (EEA); on condition: Error exchange flag
zero, 1/0 exchange address; on condition: I/0 exchange flag
T -

2~175

) ARL-ARC -OF‘HCMG

"REV. 4

" Exchange control

The exchange sequence control mechanism is illustrated in the lower
portion of figure 2-13 on page 2-73. The exchange sequence begins
with the request interrupt flag (RIF). This flag is set by a number
of control conditions as described below. The RIF prevents the current
program sequence from advancing beyond the current program instruction
word. A static network following the RIF determines when the execution
of the current program instruction word is completed, At this time
the exchange sequence flag (XSF) is set to begin the interchange of
data between the operating registers and the SCM. This interchange
requires 16 SCM storage references. The exchange sequence counter
(XSK) advances one count as each SCM word reference is made. Con-
currently, the block address counter (BAK) advances one count to form
the SCM address for the SAS., Data is transmitted from the operating
registers to the SWS under the control of a static network following
the XSK register. The register content is translated by this static
network to select one set of operating registers for each value in

the XSK. The presence of the XSF causes the i, j, and k designators
in the CIW register to count synchronously with the lower three bits
of the XSK. These designator values select the proper X, A, and B
registers for the exchange data. When the 16 storage references have
been made the JCF is set to complete the exchange sequence and begin
execution of the new program sequence.

_Request interrupt flag (RIF)

The RIF is a bit register with a separate set and separate clear
input, This control flag is set whenever a control condition exists
which requires an exchange sequence. One of several mode flags may
be set at the same time to determine which of the several control
conditions caused the interruption. The RIF remains set until

the currently executing program has completed the current program
instruction word. The RIF is then cleared and the XSF is set to
continue the exchange sequence. The conditions for setting and
clearing the RIF are listed below:

Set condition: '"'go exit" & no "dead start”
or: "I/O exchange request' & no "monitor mode'" & neo ''dead
start" & no RIF & no XSF & no 'go exit"
“or: ‘'breakpoint" & no '"dead start'" & no RIF & no XSF & no
"go exit"
or: ''step mode" & no ''dead start'" & no RIF & no XSF & no
"go exit"
‘or: "error" & no '"dead start" & no RIF & no XSF & no "go exit"

‘Clear condition: '"registers quiet" & no FIF & g = 0 & h = 0 & RIF

2-76

Exchange sequence flag (XSF)

The XSF is a bit register with a separate set and separate clear input.
This control flag is set at the same time that the RIF is cleared. This
flag remains set during the period of time required to initiate 16 SCM
storage references for the exchange sequence. The XSF is then cleared
and the JCF is set to begin execution of the new program sequence. The
conditions for setting and clearing the XSF are listed below:

"Set condition: "registers quiet" & no FIF & g = 0 &
h = 0 & RIF

‘Clear condition: "go issue” & "XSK = 15"

Program exit flag (PXF)

The PXF is a clear/enter type bit register which is cleared at the end
of every clock period. This flag is set simultaneously with the setting
of the RIF when the cause of the interruption is an exchange exit
instruction in the current program sequence. This flag controls the
selection of address data for the XJA register and provides the con-
dition for entering the XJA register with the exchange address data.
This flag is then cleared in the following clock period. The condition
for setting this flag is as follows:

‘Condition: "go exit" & '"registers free"

"Error exchange flag

The error exchange flag is a clear/enter type bit register which is
cleared at the end of every clock period. This flag is set simultan-
eously with the setting of the RIF when the cause of the interruption
is an error condition, breakpoint condition, or & step mode condition.
This flag controls the selection of address data for the XJA register
and provides the condition for entering the XJA register with the
exchange address data. This flag is then cleared in the following
clock period. The condition for setting this flag is as follows:

“Condition: "breakpoint" & no RIF & no XSF & no "go exit" & no "I/0
exchange request"
‘or: 'breakpoint" & no RIF & no XSF & no "go exit'" & "monitor mode"
or: "error" & no RIF & no XSF & no "go exit" & no "I/O exchange
request"
“or: “error" & no RIF & no XSF & no '"go exit' & "monitor mode"
or: "step mode"” & no RIF & no XSF & no "go exit” & no "I1/0
exchange request"
or: "step mode" & no RIF & no XSF & no '"go exit'" & "monitor mode"

2-717

1A
{

<

L ALC O

"1/0 exchange flag

“The 1/0 exchange flag is a clear/enter type bit register which is

cleared at the end of every clock period. This flag is set simultan-
eously with the setting of the RIF when the cause of the interruption
is an I1/0 exchange request. This flag controls the selection of
address data for the XJA register and provides the condition for
entering the XJA register with the exchange address data., This flag
is then cleared in the following clock period. The condition for
setting this flag is as follows:

‘Condition: "I/O exchange request" & no "monitor mode" & no RIF &
no XSF & no ''go exit"

'1/0 resume flag

The I/0 resume flag is a bit register with a separate set and separate
clear input. This control flag is set at the same time as the I/0
exchange flag. This flag remains set, however, until the exchange
sequence actually begins, or until a higher priority interrupt request
supersedes this I/0 request. If this flag is still set at the time
the exchange sequence begins, an "I/0 exchange resume" condition is
transmitted to the I/0 section of the CPU. The conditions for setting
and clearing this flag are as follows:

‘Set condition: "I/O exchange request” & no "monitor mode" & no RIF &

no XSF & no "go exit"

“Clear condition: '"go exit"

or: XSF

'"1/0 exchange resume" condition

"This condition exists when an I/0 exchange request has been honored

by the exchange sequence control and the exchange sequence has been
initiated. This condition exists for only one clock period. This
condition is transmitted to the I/0 section of the CPU to acknowledge
the I/0 exchange request. This condition is defined as follows:

“Condition: XSF & I/0 resume flag

2-78

7Exchange issue flag (XIF)

The XIF is a clear/enter type bit register which is cleared at the end
of every clock period. This flag requests a S storage reference for
the exchange sequence using an address from the BAK register. This
flag is set for a total of 16 clock periods during the execution of an
exchange sequence. These 16 clock periods are generally contiguous,
but may be scattered by bank conflicts in SCM as a result of previously
initiated SCM references. The condition for setting this flag is as
follows:

‘Condition:; XSF & " go issue"

_Exchange sequence count register (XSK)

The XSK register is a four bit clear/enter type register with gated
clock pulse control. This register counts through the 16 storage
references in the execution of the exchange sequence. Each of the
16 values in the XSK register is translatcd to select a particular
register combination for data to the SWS. This register is cleared
and entered with the next sequential count at the end of each clock
period in which the following condition exists:

‘Condition: XSF & "go issue"

“"XSK = 15" condition

This condition exists when the XSK register is set to all one bits.
This is the last step in the 16 step exchange sequence. As this last
step is executed the XSF is cleared and the XSK is reset to all zero
bits. The JCF is set at this same time to begin execution of the new
program sequence.

2-79

M

\

-A[C-O‘[\Flv(

Program status register

“The program status register (PSD) is a collection of individual program

status designation flags. There are 18 flags in this register. Six
of these flags are mode designators, and 12 are condition designators.
The arrangement of these flags in the bit positions in the register is
shown in figure 2-14 on the following page.

‘The PSD register is loaded along with the other CPU registers during an

exchange sequence. All 18 bits are entered in the register at this time,
The six mode designators remain unaltered throughout the execution inter-
val for the exchange package. The 12 condition designators may be set

by transient conditions which occur during the execution interval. All
flags are stored in the SCM exchange package at the end of the execution
interval.

'The execution interval for an exchange package may be terminated by

an error conditicn which occurred during this interval. The monitor
program must determine the nature of the error condition by analysing
the flags in the PSD portion of the exchange package in SCM. This
monitor program may then clear the flag in the exchange package and
resume execution of the object program, or it may take some alternate
action.

Exit mode flag (PSD bit 17)

The exit mode flag is cleared and entered with data from the exchange

package during an exchange sequence. This flag is not altered during
the execution interval for the exchange package. This flag controls
the source of the exchange package address for the execution of an
exchange exit instruction (013). If this flag is set, the exchange
package address is (Bj) + K + (RAS), 1If this flag is not set, the
exchange package address is (NEA).

2-80

(0SQ) ¥Y3LSI93¥ SNOILVYNOISIA SNLIVLIS WYHNOOUd

A9NVYH X008 WIS —,

— JONVYH %2078 WKI

’ I

JONVY 123410 KT — — ALINVd WOS
JONVYH LOIMIO WIS — . ALINVd WO
FONVYYH WY HOONd — — MQOJYIANN
LNIOdHVINE _ MOT4Y¥IAO
d431s ILINIA3ONI
3LINI43GNI 431s
MOT4HIAO | . HOLINOW
MOTAH3ANN LIX3
] ,
ol 1|zl e|ev]s|olzsls]|e ._l_o_ ._J_;JN_I_JQ vl ._Jm_ ﬂjw_ Ll u
Hre | \

Yo

, $OV14 NOILIONOD

SOV14 3Q0N

LA

"REV 8

" Monitor mode flag (PSD bit 16)

The monitor mode flag is cleared and entered with data from the exchange

package during an exchange sequence. This flag is not altered during
the execution interval for the exchange package. This flag controls

the mode of input/output activity. If this flag is set, the currently
executing program can not be interrupted by an I/0 interrupt request,

1f an 1I/0 interrupt request occurs, it will not be honored until the end
of the execution interval for the current exchange package.

‘The monitor mode flag also controls the execution of the reset buffer

instructions (0160, 0l70). 1If the monitor mode flag is set, the reset
buffer instructions may be executed as described. If the monitor mode
flag 1s not set, a reset buffer instruction 1s executed as a pass. This
provision is to prevent an object program from interfering with I/0
activity,

‘Step mode flag (PSD bit 15)

" The step mode flag is cleared and entered with data from the exchange

package during an exchange sequence, This flag is not altered during
the execution interval for the exchange package., If this flag is set,
the current program will be interrupted at the end of each program
instruction word. This flag causes the step condition flag to set

as the first instruction is issued from the CIW register. The step
condition flag then generates an error exit request which terminates
the execution interval at the end of the current program instruction
word. The terminating exchange package is at absolute address (EEA)
in SCM.

Indefinite mode flag (PSD bit 14)

The indefinite mode flag is cleared and entered with data from the

exchange package during an exchange sequence, This flag is not altered
during the execution interval for the exchange package. This flag
enables interruption of the current program on the condition of an
indefinite floating point result. The combination of this flag set and
the indefinite condition flag set generates an error exit request which
terminates the execution interval at the end of the current program
instruction word. This program instruction word is not necessarily the
word containing the instruction which caused the indefinite condition.
Rather, it is8 the current instruction word at the time the error con-
dition is generated in a functional unit, The terminating exchange
package is located at absolute address (EEA) in SCM for this case.

2-82

Overflow mode flag (PSD bit 13)

The overflow mode flag is cleared and entered with data from the
exchange package during an exchange sequence. This flag is not
altered during the execution interval for the exchange package.

This flag enables interruption of the current program on the con-
dition of an overflow of the floating point range in a floating
point calculation. The combination of this flag set and the overflow
condition flag set generates an error exit request which terminates
the execution interval at the end of the current program instruction
word. This program instruction word is not necessarily the word
containing the instruction which caused the overflow condition.
Rather, it is the current instruction word at the time the error
condition is generated in a functional unit. The terminating
exchange package is located at absolute address (EEA) in SCM for
this case.

Underflow mode flag (PSD bit 12)

The underflow mode flag is cleared and entered with data from the
exchange package during an exchange sequence. This flag is not
altered during the execution interval for the exchange package.

This flag enables interruption of the current program on the condi-
tion of an underflow of the floating point range in a floating point
calculation. The combination of this flag set and the underflow
condition flag set generates an error exit request which terminates
the execution interval at the end of the current program instruction
word, This program instruction word is not necessarily the word
containing the instruction which caused the underflow condition.
Rather, it is the current instruction word at the time the error
condition is generated in a functional unit. The terminating
exchange package is located at absolute address (EEA) in SCM for
this case.

LCM parity condition flag (PSD bit 11)

The LCM parity condition flag is cleared and entered with data from
the exchange package during an exchange sequence. In addition, this
flag is set whenever a LCM parity error is detected during a LCM read/
write cycle. If this flag 1s set, either from the exchange sequence
or from the parity error detection, it generates an error exit request
which terminates the execution interval for the exchange package at
the end of the current program instruction word. The terminating
exchange package 1s located at absolute address (EEA) in SCM for this
case,

2-83

“L-AEC OFEICH

'SCM parity condition flag (PSD bit 10)

The SCM parity condition flag is cleared and entered with data from

the exchange package during an exchange sequence., In addition, this
flag is set whenever a SCM parity error is detected during a SCM read/
write cycle, If this flag is set, either from the exchange sequence
or from the parity error detection, it generates an error exit request
which terminates the execution interval for the exchange package at
the end of the current program instruction word, The terminating
exchange package for this case is located at absolute address (EEA)

in SCM.

"LCM block range condition flag (PSD bit 09)

This condition flag is cleared and entered with data from the exchange

package during an exchange sequence. 1In addition, this flag is set
whenever a block copy instruction is issued from the CIW register
which would cause a LCM reference to an address equal to, or greater
than, (FLL). The block copy imstruction is issued as a pass instruc-
tion in this case. If this flag is set, either from the exchange
sequence or from the range error detection, it generates an error
exit request which terminates the execution interval for the exchange
package at the end of the current program instruction word. The
terminating exchange package for this case is located at absolute
address (EEA) in SCM,

_SCM block range condition flag (PSD bit 08)

" This condition flag is cleared and entered with data from the exchange

package during an exchange sequence. In addition, this flag is set
whenever a block copy instruction is issued from the CIW register
which would cause a SCM reference to an address equal to, or greater
than, (FLS). The block copy instruction is issued as a pass instruc-
tion in this case. If this flag is set, either from the exchange
sequence or from the range error detection, it generates an error
exit request which terminates the execution interval for the exchange
package at the end of the current program instruction word. The
terminating exchange package for this case is located at absolute
address (EEA) in SCM.

2-84

LCM direct range condition flag (PSD bit 07)

This condition flag is cleared and entered with data from the exchange
package during an exchange sequence. In addition, this flag is set
whenever a read LCM (0l4) or write LCM (0l5) instruction causes a LCM
reference to an address equal to, or greater than, (FLL). Writing into
LCM is inhibited in such a case. If this flag is set, either from the
exchange sequence or from the range error detection, it generates an
error exit request which terminates the execution interval for the
exchange package at the end of the current program instruction word,
The terminating exchange package for this case is located at absolute
address (EEA) in SCM.

SCM direct range condition flag (PSD bit 06)

This condition flag is cleared and entered with data from the exchange
package during an exchange sequence. In addition, this flag is set
whenever a SCM reference other than a block copy instruction occurs
with an address equal to, or greater than, (FLS). Writing into SCM

is inhibited in such a case. If this flag is set, either from the
exchange sequence or from the range error detection, it generates an
error exit request which terminates the execution interval for the
exchange package at the end of the current program instruction word.
The terminating exchange package for this case is located at absolute
address (EEA) in SCM,

Program range condition flag (PSD bit 05)

This condition flag is cleared and entered with data from the exchange
package during an exchange sequence. In addition, this flag is set
whenever (P) equals zero, (P) equals or exceeds (FLS), or an error exit
(00) code is issued from the CIW register. If this flag is set, either
from the exchange sequence or from an error detection, it generates

an error exit request which terminates the execution interval for the
exchange package at the end of the current program instruction word,.
The terminating exchange package for this case is located at absolute
address (EEA) in SCM. The program address (P) is advanced as soon as
execution of an instruction word has begun, As a result, this con-
dition flag will set if the last word of the SCM field is used for a
program instruction and this word is executed.

2-85

Breakpoint condition flag (PSD bit 04)

This condition flag is cleared and entered with data from the exchange
package during an exchange sequence. In addition, this flag is set
whenever (P) is equal to (BPA). If this flag is set, either from the
exchange sequence or from the breakpoint test, it generates an error
exit request which terminates the execution interval for the exchange
package at the end of the current program instruction word. The ter-
minating exchange package for this case is located at absolute address
(EEA) in SCM.

This condition flag normally sets in time to terminate the execution
interval before execution of the instruction word located at program
address (BPA). In one case, however, it is possible for execution of
the instruction word at address (BPA) to begin before this condition
flag has taken effect. This case occurs when two increment instruc-
tions with 30 bit formats are contained in a single instruction word
and both are issued without delays. In this case the error exit
request terminates the execution interval for the exchange package

at the end of execution of the instruction word located at address
(BPA).

7Step condition flag (PSD bit 03)

This condition flag is cleared and entered with data from the exchange
package during an exchange sequence. In addition, this flag is set
whenever the step mode flag is set and an instruction issues from the
CIW register, This combination of conditions has the effect of allow-
ing only one instruction word to be executed in this execution interval
for the exchange package. If this flag is set, either from the exchange
sequence or from the step mode conditions, it generates an error exit
request which terminates the execution interval for the exchange package
at the end of the current program instruction word. The terminating
exchange package for this case is located at absolute address (EEA) in
SCM,

2-86

Indefinite condition flag (PSD bit 02)

This condition flag is cleared and entered with data from the exchange
package during an exchange sequence. In addition, this flag is set
whenever an indefinite floating point result is generated in a float-
ing point functional unit. An indefinite result may occur during
execution of instructions 30, 31, 32, 33, 34, 35, 40, 41, 42, 44, and
45, 1f this flag is set, either from the exchange sequence or from

an indefinite result, and if the indefinite mode flag is also set,
then an error exit request is generated which terminates the execution
interval for the exchange package at the end of the current program
instruction word. The terminating exchange package for this case is
located at absolute address (EEA) in SCM.

Overflow condition flag (PSD bit 0Ol)

This condition flag is cleared and entered with data from the exchange
package during an exchange sequence. In addition, this flag is set
whenever an overflow of the floating point range occurs in the result
from a functional unit. A floating point overflow result may occur

in the execution of instructions 30, 31, 32, 33, 34, 35, 40, 41, 42,
44, and 45. 1f this flag is set, either from the exchange sequence or
from an overflow result, and if the overflow mode flag is also set,
then an error exit request is generated which terminates the execution
interval for the exchange package at the end of the current program
instruction word. The terminating exchange package for this case is
located at absolute address (EEA) in SCM,

Underflow condition flag (PSD bit 00)

This condition flag is cleared and entered with data from the exchange
package during an exchange sequence. In addition, this flag is set
whenever an underflow of the floating point range occurs in the result
from a functional unit, A floating point underflow result may occur
in the execution of instructions 32, 33, 40, 41, 42, 44, and 45. If
this flag is set, either from the exchange sequence or from an under-
flow result, and if the underflow mode flag is also set, then an error
exit request is generated which terminates the execution interval for
the exchange package at the end of the current program instruction
word. The terminating exchange package for this case is located at
absolute address (EEA) in SCM.

2-87

.

AEC-FEICIAD

X registcrs

“The eight X registers are the principal operating registers for the

CPU. They are individually designated in this manual by the symbols
X0, X1, X2, X3, X4, X5, X6, and X7. These registers are each 60 bits
in length and serve as the source and destination for operands in
execution of the arithmetic instructions. Each register is a clear/
enter type register with gated clock pulse control. Data will remain
in an X register until a control condition generated in the X register
access control unit specifically gates a clock pulse to clear the
data and enter new data. At most one X register can be cleared and
entered with new data at the end of any given clock period. The
control condition which causes this entry is the "enter register Xd"
condition. The selection of the proper X register is specified by

a three bit designator (d) originating in the X register access
control unit, &

Communication between the X registers and the functional units involves

a substantial merging of 60 bit data paths and distribution of 60 bit
data paths, Almost every functional unit has at least one data path

to the X registers and one data path from the X registers. Several of
the floating point units have multiple 60 bit data paths. This merging
and distribution function is performed in 60 bit static networks pre-
ceding and following the X registers themselves. This is illustrated
in figure 2-15 on the following page.

Data flow from the functional units to the X registers is treated in

two groups. One group, consisting of the multiply, divide, shift,

and normalize units, is treated in a static merge network as shown in
figure 2-15. Data from these units flows through a complement control
network before entering the X registers. The second group, consisting
of the remaining functional units and the storage units, merges with
the data from the complement control network in a second static merge
network. The 60 bits of data from this last network are delivered

to all eight of the X registers. The data is entered in one of these
registers only when the "enter register Xd" condition is present,

‘Data flow from the X registers to other parts of the system is

treated in a static distribution network following the X registers
This network receives 60 bits of data from each of the X registers
plus nine bits of control information from the CIW register. This
control information corresponds to the i, j, and k designators in
the CIW register. Data paths from this distribution network to
other parts of the system are divided into three groups. Each
group of data paths carries information from a single X register

'2-88

sseisibos X Gi-26i4

:n_ﬁm:oo hun ppo duypoyy wouy
‘ s60}; 9509 DjOp 500 |010Ads
_\ _ torads h jun Kidiinw wouy
Bo|} UOIFIPUCY djtulapuL) , . . OJDp 9502 {DIDads
(Boyj uoiIPuOT MO|Ja3pUNY
(601} UCHHIPUOD MO[}JBAO) YUR SZHOWIoU WO}
10381084 QSd Of € HHomiBu 9 le HHomidu . uoypuojul ubs
, 214048 ! 40js
, , $Un JIys woly
UOHDWIO0jUE (044300
H $Un SPIAIp WOy
> DlOp 9503 |DIOUS
{iun 821{dWICU
LR YITEN
{lun uoajoog
4un ppo buoj : |0JjUO3 $$320D %
Pun Junod uoyoindod _ 81635 ¥ ~
{1044u00 559200 43451681 X Wi01}) WOl WOS'
W1 W' px 19451621 s0jue woJy Wouay (8198 p) yun
aun ppo Burooy ,_‘ ,_‘ ,_‘ ,_‘ ﬁl Aduinw wosy
un Lidnnw ' : 514 09) |] : (s4082) pun
4lun aptAip Of XX €— Hj ssois1004 X € NIOM}U sIomau Hc—— OPIAID Woly
4S84 younug HIOM U Le =0 T|”, Niomjeu € J.h._,,%,wo ebiaw sun
< | i | _ i :
WO uoy I — T sbisw -01dw0d | MBS 1 gs woyy
$iun ubajoog -NaspL = , : ,
. HoIs | ”ﬁ s 30 048
jiun ppo buoy , - L A : HL
Jlun Juswaidul - T — e _on.:o:toc wody

Wun ppo buijooy ¥ a
| Hun uDalOOg WOJ}

fun Ajdiinw

Jun apiaip of [A|k

WIS
s o 1x AlL , un ppo Buoj wouy
WOl 9 ox, A|\ . /[| {8495) 4un ppo Builoo|; woly

HUN JUSWRIIUY WO

un Junod uotoindod wouy

.,

-AECC

in a given clock period. The X register for each group is specified

by the i, j, or k designator in the CIW register, The destinations
for each of these groups are listed in figure 2-15, 1In addition to
these three groups, there is a single data path from the X0 register
to the LCM. No selection is involved in this data path.

X register complement control

FFICIAL

" That portion of the X register control which treats special floating

point cases and complement of results is illustrated in figure 2-15,
A static network merges the special case and sign treatment informa-
tion from the functional units into six special case flags. These
flags are clear/enter type bit registers which are cleared at the
end of every clock period. The control information in these flags
plus the go shift flag is resolved in a static network to determine
the mode of operation in the X register merge networks,

' The special case flags in the X register complement control are not

named. Two of these flags contain sign information for the shift

and normalize functions. One flag contains sign information for the
multiply and divide functions. The other three flags hold the special
case information for overflow, underflow, and indefinite results.

The go shift flag information enters the static network following the
special case flags. This is necessary because of the two clock period
timing for the shift instruction. The other furictional units involved
have execution intervals longer than two clock periods and the go unit
information is included in the special case flags.

‘Data arriving at the X registers from functional units in the first

merge group is complemented in the complement control network when
the result from the functional unit should be negative. The mode

of operation of the complement control network is determined by the
special case flags., The complement condition for each functional
unit involved is described in the corresponding section of this part
of the manual. In addition to this complement control function, the
special case flags enter the bit patterns for the special floating
point formats in the first static merge network when required by the
functional units. 1In these cases the functional units do not trans-
mit a result to the X registers directly. The complement control
network operates in a normal manner in these cases to complement the
special floating point format if required for a negative result.

The X register complement control transmits the overflow, underflow,

or indefinite case information to the PSD register to set the cor-
responding condition flag. This transmission occurs in the same
clock period that the data arrives at the X register.

2-90

X register access control

The access control mechanism for the X registexrs is illustrated in
figure 2-16 on the following page. These circuits determine the
timing and the register selection for each word entered in an X
register. In addition, this unit releases the X register reserva-
tion flags at the proper time to correspond with information arrival
at the X registers,

The X register access control contains four clear/enter type registers,
each of four bit length. These registers are cleared and entered with
new data at the end of every clock period. They are individually
designated as register #l, register #2, register #3, and register #4
in the X register access control unit. Information flows from regis-
ter #4 through the other three registers at a rate of one register
each clock period. The group of registers constitutes a delay mecha-
nism for the destination X register specification in an instruction
execution,

Data enters the four registers through static selection networks.

Such a network precedes each register. A delay of zero to four clock
periods may be obtained from these circuits, depending on which static
network is entered with the data. Each static network contains a data
switch which chooses between the data from the preceding register in
the chain or new data from outside of the X register access control
unit. This data switch is controlled by a functional unit flag for
the unit with the corresponding execution time, Data flows from
register to register unless the controlling functional unit flag is
set, If the flag is set the data relative to that functional unit

is entered in the static network and processed down the chain of
registers.

No two functional units may deliver data to an X register in the same
clock period. The responsibility for avoiding conflicts of this type
rests with the instruction issue control rather than the X register
access control unit. An instruction is not allowed to issue if the
data to the destination X register will conflict with data from another
functional unit which is already in process. As a result, the func-
tional unit control of the static network switches in the access
control chain will never discard useful data from a higher order
register in the chain,

The functional unit with the longest execution time is the divide
unit, This unit is not segmented to the degree of the other units,
and essentially only one divide operation may be in process at one
time. When the divide instruction issues from the CIW register, the
i designator is captured in a three bit register in the X register

2-91

J o)

)

y

)

[043u0) 85920y Joysibey X 91-2 Did

€ 1
X 0f 94942 2 ob 9Zljowiou ob ppo Buyooyy ob Adiyirw ob
DUCIRIN X
| % 28 % pe Opowd
18455004 1981604 Joiuibos sys1Bas 10400
€ ME—— UOlDUNSOP
UODAIBSR) PY IDBD «— } W3S
WIOM QU NOM |3U Wi0m ey oM jou $IOM DU ~
PX 494s1D0) JauD «—f UO1}D9)3S j€ 14 uotiod|es b je— uohdees 14 Uotjo9j08 v uoyseles m.
o~
10,0UBISIP P «—| sysibe %oy oS oDIs 04
_ € !
\—, , 1 QW 9ptalp ﬂ
104U02 £snq jou epiaIp
UoDUNSIP
2bupyoxa
c | {

ksnq jou WO

\ (~ A 4 { \ VI IO DIV Y

access control unit, This register is a clear/enter type register
with gated clock pulse control. The register is cleared and entered
with the current value of the i designator only when the divide busy
flag is cleared. This register receives a copy of the i designator
from the CIW register at the end of every clock period until the
divide busy flag is set, This designator value is then held in this
three bit register until later in the divide sequence. This desig-
nator value specifies the X register to which the quotient is to be
delivered.

At divide time 15 in the divide unit sequence the data in the three
bit register is gated into the X register access chain through a
static selection network. The data switch in this static network
is controlled by the '"divide time 15" condition in the divide unit.
During the clock period in which this condition exists, the data in
the three bit register is transmitted to register #4 along with a
one bit mark to indicate that a three bit code is present. These
four bits then move from register to register and control the data
entry to the X register four clock periods later,

The SCM access time is longer than any functional unit execution time
other than the divide unit, A SCM reference which results in reading
a word into a destination X register must be treated in a manner
similar to that for a functional unit. Conflicts between a SCM
reference and a previously issued divide instruction are prevented

in the SCM access control. A SCM reference is delayed if such a
conflict would occur, A three bit code is transmitted from the SCM
destination control to the X register access control each clock
period. This code is entered in a three bit register as shown in
figure 2-16. This register is a clear/enter type register which is
cleared at the end of every clock period.

A "read to X reference'" condition is transmitted from the SCM
destination control to the X register access control when the X
register destination code is present in the three bit register.
This condition causes the static network preceding register #4 to
gate the three bit code along with a one bit mark into register #4.
These four bits then move from register to register and control the
data entry into the proper X register four clock periods later.

Most of the entries to the access control chain require a delayed i
designator value. This function is performed by a three bit register
in the X register access control unit. This is a clear/enter type
register which is cleared and entered with the i designator value at
the end of every clock period.

"2-93

J

J o))

5

A multiply instruction requires five clock periods for execution.

The go multiply flag is set during the second of these clock periods,
and the data is transmitted from the multiply unit to the destination
X register in the last clock period. The go multiply flag controls
the static network data switch between register ##4 and register #3

in the X register access chain., This switch is thrown during the
second clock period of the multiply instruction execution, At the
end of this clock period the delayed i designator value is entered

in register #3 along with a one bit mark. Three clock periods later
this code will control the entry of the multiply result into the
appropriate X register.

"The floating add instructions require four clock periods for execution,

The go floating add flag controls the data switch in the static network
between register #3 and register #2 in the access chain. The go float-
ing add flag is set during the second clock period of a fioating add
instruction execution., At the end of this clock period the delayed i
designator value is entered in register #2 along with a one bit mark,
Two clock periods later this code will control the entry of the floating
add result in the appropriate X register,

‘The normalize unit requires three clock periods to execute an instruction.

The go normalize flag controls the data switch in the static network
between register #2 and register #l in the access chain. The go normalize
flag is set during the second clock period of normalize instruction
execution. At the end of this clock period the delayed i designator
value is entered in register #1 along with a one bit mark. One clock
period later this code will control the entry of the normalize unit

result in the appropriate X register,

"Go two cycle to X flag

‘This control flag is set whenever an instruction issues from the CIW

register which will deliver a result to an X register in the following
clock period. This is a clear/enter type bit register which is cleared
at the end of every clock period. This flag is set at the end of a
clock period in which the following condition exists:

Condition: '"go issue' & '"registers free" & g = 1
or: '"go issue' & '"registers free" & g =2 & h = 0,1,2,3,6,7
or: '"go issue' & '"registers free" &g = 3 & h = 6,7
or: '"go issue' & ''registers free" & g = 4 & h = 3,7
or: '"go issue" & '"registers free'" & g = 7

2-94

X register selection network

The register selection network in the X register access control unit
is a static network which directly controls the clock pulse gates for
each of the eight registers, This network includes.a data switch to
select from one of four possible register designator sources. The
delayed i designator value is selected whenever the go two.cycle to
X flag is set. The content of register #l is selected whenever the
mark bit is set in that register. A three bit code from the exchange
destination control unit is selected whenever an associated mark bit
is transmitted. These three selections should never conflict because
of the mutual exclusion of their origins. If none cf these three
selections are present, a fourth three bit code for the LCM direct
access control unit is selected. This three bit code is a delayed

j designator value and is used in entering an X register only if an
"enter X from LCM' condition is present,

The three bit register for LCM direct access is contained in the X
register access control unit. This register is a clear/enter type
register with gated clock pulse control, The register is cleared

and entered with the j designator value from the CIW register at the
end of every clock period in which the LCM busy flag is cleared. When
the LCM busy flag is set this code is held in the three bit register
until the "enter X from LCM" condition occurs. The three bit code is
then used to select the proper X register for the data transmission
from LCM,

The register selection network performs two basic functions. It
generates the "enter register Xd" condition which gates a clock pulse
to clear/enter an X register. It also generates the '"clear Xd
reservation' condition which is used in the instruction issue control
unit to clear the proper X register reservation flag. (See page 2-16.)

""d'" designator

The d designator is the three bit code transmitted from the X register
selection network to the X registers and to the X register reservation
flags to specify the proper register or flag when the "enter register
Xd" or "clear Xd reservation' condition is present. This designator
is present every clock period as a result of one of the four possible
switch positions in the X register selection network. It is used only
when the appropriate control condition is present,

2-95

)

AEC-OTRICIAD

ft)

B registers

The eight B registers are intended primarily for indexing functions

in program execution., These registers are 18 bits in length and are
individually identified in this manual by the symbols BO, Bl, B2,
B3, B4, B5, B6, and B7. The BO register does not physically exist
in the hardware. 1In the execution of instructions this register
appears to contain all zero bits. Information stored in the BO
register is, in effect, discarded.

‘Each B register is a clear/enter type register with gated clock pulse

control. Data will remain in a B register until a control condition
generated in the B register access control unit specifically gates

a clock pulse to clear the data and enter new data. At most one B
register can be cleared and entered with new data at the end of any
given clock period. The control condition which causes this entry
is the "enter register Be' condition. The selection of the proper

B register is specified by a three bit designator (e) originating in
the B register access control.

Communication between the B registers and other parts of the system

involves a merging and a distribution of 18 bit data paths. These
functions are performed by static networks preceding and following
the actual B registers. The individual source and destination for
these data paths is indicated in figure 2-17 on the following page.

Phere are four sources for data to the B registers as indicated in

figure 2-17. These data paths are merged without selection at the
B register end of the data paths. Only one of these sources may
transmit data in a given clock period. This merging is performed
in a static network which then delivers a copy of the merged data
to each of the seven physical B registers. The data is entered in

a B register only when the control condition "enter register Be' is

present,

The data from the B registers is distributed through a second static

network. This network receives 18 bits of data from each of the B
registers plus nine bits of control information from the CIW register.
This control information corresponds to the i, j, and k designators

in the CIW register. Data paths from this distribution network to
other parts of the system are divided into three groups. Each group
of data paths carries information from a single B register in any
given clock period. The B register for each group is specified by

the i, j, or k designator appropriate for that group. The destinations
for each of these groups are listed in figure 2-17.

2-96

WOS

Hun JuswaIdul o) ug

{say dwnl

$S94ppo 8buUDYIXI
Hun uos|oog
194un0d %30iq WO
fun Lays

Hun Juaweiow o g «—

8@y dwnl
$$8.ppo dunl o4 1g

c o

sJoisib0y g

J0iouUBEIP 9 «—
UOIDAIIS9) 9Q JDID i

9g 19451034 J0jue €«

f:_g:aL L

O

L G G R O I G A ¢
21-2°0ig4
R R RN
R L A
1044u02
uot{Duysap {SuuDys 8ZDWIOU
ebupyoxa poss ob ob
NIoM{u yiomiou
J40is v OIS £ T—

t pakojep

AIJ ,_.,_‘._

og seisibas Jjue

!

18 o4 9j94a 2 ob .IL

Ao:nom_v
Y
WI0M §2U 4848] yiomjou
voynquisp € _Je obiow
M il
DS — — 508
'
} 2
| d

-

WIS
{lun sZiouiioy
jun ubsjoog

Hun Juaweou]

2-97

y

LAEC-OFFICIAT

%

€

1

\

B register access control

The access control mechanism for the B registers is illustrated in

figure 2-17, These circuits determine the timing and the register
selection for each word entered in a B register. In addition, this
unit releases the B register reservation flags at the proper time to
correspond with information arrival at the B registers.

The B register access control consists of two small registers and two

static networks. The first register provides a delayed j designator

value for use in register selection, This is a three bit clear/enter
type register which is cleared at the end of every clock period. The
j designator value is received every clock period, and this value is

delayed by the register for use during the following clock period,

The normalize unit is the only functional unit with a three clock

period execution time which delivers results to a B register. The

go normalize flag is set during the second clock period of a normal-
ize instruction execution. This flag enters the static network in
the B register access control and gates the delayed j designator
value into the second register along with a one bit mark to indicate
that a valid code is present. The gating function is inhibited if
the delayed j designator value is zero. In this case the destination
B register is B0, and the data is to be discarded.

The 016 instruction causes data to be read from an I/0 section channel

address register to a B register. This instruction requires three
clock periods for execution. The go read chamnel flag is set during
the second clock period of instruction execution. This flag enters
the static network in the B register access control in the same manner
that the go normalize flag does. The data is gated from the delayed

j designator register to the second register along with a one bit mark
unless the delayed j designator value is zero. .

The second register in the B register access control unit is a four

bit clear/enter type register which is cleared at the end of every
clock period. This register holds a three bit register designation
code plus a one bit mark to indicate a valid reference.

The second static network in the B register access control unit

directly controls the clock pulse gates for each of the seven B
registers. This network includes a data switch to select from one
of four possible register designator sources. These designator
sources should never conflict because of the mutual exclusion of
their origins. The second register value is selected whenever the
mark bit is set in that register. The delayed j designator value is
selected whenever the go two cycle to Bj flag is set. The delayed

2-98

REV.II

i designator value is selected whenever the go two cycle to Bi flag

is set. A three bit code from the exchange destination control unit is

selected whenever an associated mark bit is transmitted. The delayed

i designator value for this switch originates in the X register access
control and is transmitted to the B register access control unit every
clock period.

The static network performs two basic functions. It generates the

"enter register Be' condition which gates a clock pulse to clear/
enter a B register, It also generates the '"clear Be reservation"
condition which is used in the instruction issue control unit to

clear the proper B register reservation flag. (See page 2-17.)

“e'' designator

The e designator is a three bit code transmitted from the B register
access control unit to the B registers and the B register reservation
flags. This code specifies the proper regisiter or flag when the
“enter register Be' or "clear Be reservation' condition is present.
This designator is present during any clock period in which one of
the four selection conditions is present in the second static network
in the B register access control unit.

" Go two cycle to Bi flag

This control flag is set whenever an instruction issues from the CIW
register which will deliver a result to B register i in the following
clock period., This flag is not set if i = 0. In this case the data
is discarded., This is a clear/enter type bit register which is
cleared at the end of every clock period. This flag is set at the
end of a clock period in which the following condition exists:

Condition: _“go issue'" & 'registers free" & g= 6 & i = 1,2,3,4,5,6,7

Go two cycle to Bi flag

This control flag is set whenever an instruction issues from the CIW

register which will deliver a result to B register j in the following
clock period. This flag is not set if j = 0. 1In this case the data
is discarded. This is a clear/enter type bit register which is
cleared at the end of every clock period. This flag is set at the
end of a clock period in which the following condition exists:

‘Condition: "go issue" & "registers free" & g=2 & h = 6 &

j = 1’!2’3)4!5’6)7

2-99

)

7

1 CAEC - OFFICIAU

A registers

The eight A registers in the CPU are the vehicle for addressing the

SCM for operands. These registers are 18 bits in length and are
individually. identified in this manual by the symbols A0, Al, A2,
A3, A4, A5, A6, and A7, The AO register is special in that it is
not used in SCM addressing. This register is intended for storing
a reference address or a limit address for comparison with another
A register value, It may also be used for some indexing functions
in a manner similar to the B registers.

The registers Al, A2, A3, A4, and A5 are used to address the SCM in

reading data from SCM to an X register. A read SCM reference is
initiated whenever one of these A registers is the destination in
execution of an increment instruction. The data from that SCM address
is delivered to the corresponding X register. That is, an increment
instruction with a destination of the A2 register causes a SCM ref-
erence and a data transmission to the X2 register. Such an increment
instruction reserves both the A register and the corresponding X
register. The A register reservation flag is cleared when the incre-
ment unit data arrives at the A register. The X register reservation
flag is not cleared until the data arrives from SCM at the X register.

" The registers A6 and A7 are used to address the SCM in writing data

into SCM from an X register. A write SCM reference is initiated
whenever one of these A registers is the destination in execution of
an increment instruction. The data from the corresponding X register
is delivered to the SWS to be written into the SCM address specified
in the A register. Such an increment instruction reserves the A
register but not the X register. The X register data is copied into
the SWS in the same clock period that the increment inst~uction issues
from the CIW register. The X register is then free in the following
clock period. The A register reservation flag is cleared when the
increment unit data arrives at the A register,

‘Each A register is a clear/enter type register with gated clock pulse

control. Data will remain in an A register until a control condition
generated in the A register access control specifically gates a clock
pulse to clear the register and enter new data. At most one A regis-
ter may be cleared and entered with data at the end of any given clock
period. The control condition which causes this entry is the "enter
register Af" condition. The selection of the proper A register is
specified by a three bit designator (f) originating in the A register
access control,

2-100

|

|

WIS .
HUN JUWRIDUE Of _.4 —

H20M j2U

uoy
-nquysip
upjs

sisiboy v gi-2 By

Iy 0} 9{9hd 2 ob

Jojpufsep §} <«—

UO||DAIBS DL jy JOND €

$v aeisibes 0jue i

YoM ieU

pakoiep |

1024U00 UOYOULSIP

MO fe— eBunyoxe

v sesibes sewe

|

A A

WO 0§ oy A'L

(849 gI)
$i9isib31 vy
—{ le——— | wioma
} 73
et)
Je sbiew
| ™3
 pd
13 Ajois
“A
fe

€~ WOS

Le— HIUn JUBtLRLOUI

2-10¢

T ALC OEHICIAD

j -

Communication between the A registers and other parts of the system
is illustrated in figurc 2-18 on the preceding page. There are two
sources for data to the A registers, the increment unit and SCM.
These data paths are merged without selection in a static network
prior to the A registers, Only one of these sources may transmit
data in a given clock period. The static merge network delivers a
copy of the merged 18 bits of data to each of the eight A registers.

The data is entered in an A register only when the control condition
"enter register Af" is present,

Data from the A registers is distributed through a second static
network, This network receives 18 bits of data from each of the A
registers plus three bits of control information from the j desig-
nator portion of the CIW register. Data paths from this static
distribution network go to three destination units. The data in
the A0 register is delivered to the LCM access control each clock
period. The data in the A register specified by the j designator
is delivered to the increment unit and the SCM each clock period.
The data path from this static network to the SCM is not used for
transmitting a SCM reference address, This data path is used for
storing the A register data in the exchange package in SCM during
an exchange sequence. The address data for SCM is transmitted
directly from the increment unit.

'Go two cycle to Ai flag

This control flag is set whenever an instruction issues from the
CIW register which will deliver a result to A register i in the

following clock period. This is a clear/enter type bit register
which is cleared at the end of every clock period. This flag is

set at the end of a clock period in which the following condition
exists:

“Condition: 'go issue" & 'registers free" & g = 5

CMEM" designator

‘The f designator is a three bit code transmitted from the A register

access control to the A registers and to the A register reservation
flags. This code specifies the proper register or flag when the
"enter register Af" or '"clear Af reservation' condition is present.

2-102

A register access control

The access control mechanism for the A registers is illustrated in
figure 2-18, This function is performed in a single static network.
This network receives three bits of delayed i designator value from
the register in the X register access control unit used for a similar
function., A data switch in the static network selects the delayed

i designator information only when the go two cycle to Ai flag is
set. When this flag is set the static network generates the "enter
register Af" condition and the "clear Af reservation' condition. The

f designator in this case is set equal to the delayed i designator
value,

The exchange destination control unit transmits three bit code plus
an associated mark bit to the A register access control during an
exchange sequence., The static network in the A register access
control selects this three bit code when the associated mark bit is
present and transmits this value for the f designator. The "enter
register Af" and '"clear Af reservation'" conditions are also generated
in this situation. This sequences the data from SCM into the A
registers during an exchange sequence,

2-103

1*

w{AECJNFHCIAﬂ

Supporting registers

" The CPU contains a number of registers which support the operating

registers in the execution of programs. These registers are loaded
with new information during the execution of an exchange sequence,

The information is not altered during the execution interval for an
exchange package. These registers are listed below with a description
of the individual function performed.

"RAS register

'This register holds the reference address for SCM during the execution

interval for each exchange package. It is an 18 bit clear/enter type
register with gated clock pulse control. The data in the RAS register
is cleared, and new data entered, only during the exchange sequence.
The old data in the RAS register is stored in the terminating exchange
package, and the new data is entered from the originating exchange
package. The content of the RAS register is used as a reference address’
in most SCM references from the CPU. Absolute SCM addresses are formed
by adding (RAS) to the relative address specified in the CPU instruc-

tions. SCM references for instruction fetch or for operands are relative

to address (RAS). SCM references from the I/0 section of the CPU are
absolute addresses and do not use the RAS register.

"FLS register

A

"This register holds the field length for SCM during the execution

interval for each exchange package. It is an 18 bit clear/enter type
register with gated clock pulse control. The data in the FLS register
is cleared, and new data entered, only during the exchange sequence.
The old data in the FLS register is stored in the temminating exchange
package, and the new data is entered from the originating exchange
package. The content of the FLS register is used as a limit address
for relative. SCM references, both for instruction fetch and for
operand reference. Any SCM relative address which is equal to, or
greater than, (FLS) causes an error exit request which terminates

the execution intexrval for the exchange package.

2-104

RAL register

This register holds the reference address for LCM during the execution
interval for each exchange package. It is a 24 bit clear/enter type
register with gated clock pulse control. The data in the RAL register

is cleared, and new data is entered, only during the exchange sequence.
The old data in the RAL register is stored in the terminating exchange
package, and the new data is entered from the originating exchange
package. The content of the RAL register is used as a reference address
in all LCM references from the CPU. Absolute LCM addresses are formed

by adding (RAL) to the relative address specified in the CPU instructions.

FLL register

This register holds the field length for LCM during the execution
interval for each exchange package. It is a 24 bit clear/enter type
register with gated clock pulse control. The data in the FLL register
is cleared, and new data entered, only during the exchange sequence.
The old data in the FLL register is stored in the terminating exchange
package, and the new data is entered from the originating exchange
package. The content of the FLL register is used as a limit address
for relative LCM references. All LCM addresses from the computation
section of the CPU are compared with (FLL). Any address which is
equal to, or greater than, (FLL) causes an error exit request which
terminates the execution interval for the exchange package.

NEA register

This register holds the normal exit address for each exchange package
during the execution interval for that exchange package. 1t is a 24
bit clear/enter type register with gated clock pulse control. Only
the lowest order 16 bits of this register are significant. The higher
order bits are loaded and stored in the exchange package areas but are
not used in the execution of programs. The data in the NEA register
is cleared, and new data entered, only during the exchange sequence,
The old data in the NEA register is stored in the terminating exchange
package, and the new data is entered from the originating exchange
package. This register is used during the execution of an exchange
exit instruction with the exit mode flag cleared, 1In this case the
current program is terminated with an exchange sequence using (NEA)

as the absolute SCM address for the exchange package.

2-105

3\

1 AEC - OFFCIAL

L

i

"EFA register

7This register holds the error exit address for each exchange package

during the execution interval for that exchange package. It is a 24
bit clear/enter type register with gated clock pulse control. Only
the lowest order 16 bits of this register are significant. The higher
order bits are loaded and stored in the exchange package areas but are
not used in the execution of programs. The data in the EFA register
is cleared, and new data entered, only during the exchange sequence.
The old data in the EEA register is stored in the terminating exchange
package, and the new data is entered from the originating exchange
package. This register is used whenever an error exit occurs during
the execution interval for an exchange package. In this case (EEA)

is the absolute address in SCM for the terminating exchange sequence.

" BPA register

“This register holds a break point address for each exchange package

during the execution interval for that exchange package. It is an

18 bit clear/enter type register with gated clock pulse control. The
data in the BPA register is cleared, and new data entered, only during
the exchange sequence. The old data in the BPA register is stored in
the terminating exchange package, and the new data is entered from

the originating exchange package. The content of the BPA register

is compared with the content of the P register each clock period.

An error exit request is generated whenever these two quantities are
identical. This allows a program to be executed to a particular

program address and the execution interval terminated for debugging
purposes.

2-106

Small Core Memory

‘The description of the small core memory (SCM) hardware is divided
into several sections. The overall organization of these sections

is illustrated in figure 2-19 on the following page. Addresses arrive
at the storage address stack (SAS) from other parts of the CPU., The
SCM access control unit determines the priority of SCM requests when
two requests occur simultaneously, This unit also controls the entry
of addresses in the SAS. When the SAS data backs up because of SCM
bank conflicts the SCM access control stops instruction issue until
the conflicts have been resolved.

The SAS provides a buffer area for addresses arriving at SCM from
other parts of the CPU, A maximum of three addresses may be held

in this area when a backup situation occurs. The SCM destination
control monitors the addresses leaving the SAS for individual SCM
banks. This unit is responsible for determining when a bank conflict
would occur and blocking the address in the SAS until the conflict

is resolved. The SCM destination control is also responsible for

the timing of data leaving the SCM banks for other parts of the CPU,

There are 32 SCM banks in the system, Each bank has its own sequence
control and address and operand register. Each bank executes a stor-
age read/write cycle independent of the timing of other SCM banks.
Data is transmitted from the SCM bank operand registers to other parts
of the CPU over a common data transmission path. There are three
destinations for this data as illustrated in figure 2-19., The SRO
register is a distribution point for data to all parts of the system
other than the instruction stack and the X registers. The instruction
stack and X registers receive data directly from the individual bank
operand registers.

‘Data is transmitted from other parts of the CPU to the SCM bank write
operand registers via the storage word stack (SWS). This is a stack
of seven 60 bit registers which shifts data along from one register
to the next until the proper time for entry in the designated SCM
bank operand register., This is a delay mechanism to compensate for
the read access time in the SCM bank read/write cycle. Shifting in
the SWS is controlled by the SCM access control so that the address
and the associated data arrive at a SCM bank at the proper time.

2-107

"

%0048
UOLONAISYY

sJi9ysibas x

A

uoyoziuobio WIS 61-2 Bid

uoyoes o/1
Wo1

sJ9ysiboa buiioddns

sJ0s1B04 g
$J9i81004 y

I

oys

J

C

10

(S41Q.09) onis piom edoso)s

aejsder yry
uoydes O/1

N1

$19)5150.2 Dungsoddns
81031592 g
si5i3ibas y

€ sesiba ¥

f 9
[3
f 3
| i Q
i o}
g
v %upl
pl
3 (s31902) wooys
[o $s9.ppo 9bpiojs
[< <
ML - (91] N (on
uDi4
—) v ®)
WOS
1653u0d JOHU0d
UOLDUI{Sep $38220
Wos WS

uoydYs /1
UN UwWeJduUT
Hsibaa yyg
Jnsibas y4I

3

¥

ov

2-108

(]

/ .
EE(Rign) 4

\

1

Storage address stack

‘The storage address stack (SAS) is a buffer area for addresses arriving
at SCM from other parts of the CPU. There are three registers in the
SAS, each of 20 bit length, These registers hold a 16 bit SCM address
plus a four bit destination code for interpretation by the SCM des-
tination control unit. Each register has an associated control flag
which is set when a valid address is present in the register. These
parts are illustrated in figure 2-20 on the following page.

" Rank A of the SAS is used as a buffer register for incoming addresses
when no conflicts are present in the SCM. An address arrives at rank
A in any given clock period and leaves for a SCM bank address register
in the following clock period. No other register is involved even if
a new address arrives every clock period, When a storage bank con-
flict occurs, the address in rank A is held in that register until the
conflict is resolved, This may be for one clock period, or for as
many as nine clock periods. Should another address arrive at the SAS
during this period it will be routed to rank B. When this occurs the
SCM access control unit signals the instruction issue control to stop
issuing new instructions until the backup condition has been resolved.
There may be one address in process in the increment unit at this time
which cannot be stopped. Should this be the case, the address from
the increment unit will arrive at the SAS in the following clock period
and will be routed to rank C. No further addresses will be accepted
by the SAS until the backlog has been cleared up.

‘When a storage bank conflict has caused a backup situation in the

SAS the addresses must leave the SAS in the same order in which they
arrived. The address in rank B or the address in rank C cannot leave
the SAS until the address in rank A has been transmitted. When rank
A has been cleared the address in rank B must follow next, and finally
rank C. When the address in rank C has been transmitted the SAS is
ready to receive new addresses. These will be routed to rank A,

‘There are four sources for addresses to the SCM as illustrated in
figure 2-20. Two of these sources are used for multiple functions.
There are six basic functions which require a SCM reference. The SCM
access control unit determines the priority when two or more of these
functions request a SCM reference in the same clock period. Only one
address may be accepted in a given clock period, and the choice is
dictated by the following priority table,

2-109

juoq ob

(SVS) %o0iS ssesppy eBoioys 02-2 Dy

{044U03 $$9320 WIS

$$2ippo 00—

2D0D UOHDUISEP omsmmn]

$S8.PPD YUOG €—il

8oy}
14juod
SPIAP 48N
40N
n
sboi) poes
] -
v T
e—————— - « N
NIOM{0U NIOMiQU
&———— SYS IUe
) oS sboy yun o4 0
[@ _ <
(—
MuDs
) o A..,.wazl BP0 VO DU
) NI0M DU RIOM U .m..ﬂw_lv!‘ uoijaes 0/1
uoloe|as g Xuos uolI8es Adu.ll IO UL YEITT]
Jpis A0S <o 10451082 yyg
v o b
nws Aw_w 2081001 d_n_n

C C C C C «

VI

\ .

e D

W el

First priority - Exchange sequence request
Second priority - Increment unit request
Third priority - Return jump exit request
Fourth priority - 1/0 section request
Fifth priority - Instruction fetch request
Sixth priority - LCM block copy request

Some of the requests in the above table cannot conflict because of
exclusion in the source of the requests., For example, an exchange
sequence request cannot occur in the same clock period with an
increment unit request because all instructions must be completed
before the exchange sequence begins. The table illustrates the
manner in which the hardware decides the priority where conflicts
can occur,

The SCM access control unit selects the data transmission paths
from the four source registers to the SAS. These paths are selected
by static control conditions as described below,

Enter an address from the increment unit:
Condition: go increment to storage flag

Enter an address from the 1/0 section:
Condition: IOF & NBF & no SXF & no go increment to storage flag

Enter an address from the IFA register:
Condition: FIF & NBF & no IOF & no go increment to storage flag
or: SXF & NBF

Enter an address from the BAK register:

Condition: NBF & no IOF & "go block copy'
or: XIF

"Enter SAS" condition

This condition is present whenever an address is being transmitted
to the S5AS. It is generated in the SCM access control unit and is
essentially a merging of the four specific data transmission con-

ditions listed above, This condition is present in the following

cases:

Condition: go increment to storage flag
or: 1IOF & NBF
or: SXF & NBF
or: FIlF & NBF
or: '"go block copy' & NBF
or: XIF

T2-111

5 AECY-'\f\FIClAU

£

 SCM address tags

_Each address which enters the SAS has associated with it a four bit

destination code, This code is interpreted by the SCM destination
control unit when the address leaves the SAS for a SCM bank. The

code is generated in the SCM access control unit as a result of
interpreting the individual access requests from other parts of the
CPU. The SCM access control unit makes use of a delayed i desig-

nator value in forming the four bit destination code., This value

is transmitted every clock period from a register in the X register
access control unit to the SCM access control unit. The table below
lists the octal tag values which are encoded for each of the requesting
functions.

00 - not used 10 - not used

0l - read to instruction stack 11 - read to Xl register

02 - exchange sequence 12 - read to X2 register

03 - return jump exit 13 - read to X3 register

04 - read to LCM o . 14 - read to X4 register

05 - read to 1/0 section 15 - read to X5 register

06 - write from LCM 16 - write from X6 register
07 - write from I/0 section 17 - write from X7 register

'The information in the above table may be more precisely expressed

in terms of the logical conditions for each bit of the four bit tag.
The conditions expressed below are those which the hardware uses in
generating each of the tag bits. ‘ ‘

'Bit O of the address tag is present omn:

Condition: FIlF & NBF & no IOF & no go increment to storage flag
or: SXF & NBF
or: IOF & NBF & no SXF & no go increment to storage flag

or: go increment to storage flag & delayed i designator = 1,3,5,7

'Bit 1 of the address tag is present on:
Condition: go increment to storage flag & delayed i designator = 2,3,6,7

or: NBF & no IOF & "go block copy" & "LCM block write"
or: IOF & no SXF & NBF & no go increment to storage flag &

"I/0 write"
or; SXF & NBF
or: XIF

"Bit 2 of the address tag is present on:

Condition: NBF & no IOF & "go block copy"

or: go increment to storage flag & delayed i designator = 4,5,6,7

or: IOF & NBF & no SXF & no go increment to storage flag

2-112

‘Bit 3 of the address tag is present on:
Condition: go increment to storage flag

"Advance TIFA" condition

‘This condition is generated in the SCM access control unit when an
address is entered in the SAS from the IFA register. This condition
causes the content of the IFA register to be increased by one count
at the end of the clock period in which the condition exists.

‘Condition: FIF & NBF & no IOF & no go increment to storage flag

‘“"Advance BAK" condition

‘This condition is generated in the SCM access control unit when an
address is entered in the SAS from the BAK register. This condition
causes the content of the BAK register to be increased by one count
at the end of the clock period in which the condition exists.

Condition: NBF & no IOF & "go block copy"
or: XIF

"Reduce LCM block count'" condition

This condition is generated in the SCM access control unit when an
address is entered in the SAS for a LCM block copy instruction. This
condition causes the content of the LCM block counter register to be
decreased by one count at the end of the clock period in which the
condition exists,

Condition: NKBF & no IOF & "go block copy"

“"Accept I/0'" condition

This condition is generated in the SCM access control unit when an
address is entered in the SAS from the I/0 section of the CPU. This
condition releases the I/0 section address mechanism and allows it
to advance to the next channel requirement,

Condition: IOF & NBF & no SXF & no go increment to storage flag

"2-113

A

{* _,\Ec.ﬁffl:

'SAS rank A register

"This is a 20 bit clear/enter type register with gated clock pulse

control. This register is used as the principal buffer register
in the SAS. It is the only rank of the SAS which is used when the
SCM is free .of bank conflicts. This register is cleared, and new
data entered, at the end of a clock period in which the following
condition is present:

‘Condition: ''go bank" & no rank B flag

or: no rank A flag & no rank B flag

'SAS rank B register

"This is a 20 bit clear/enter type register with gated clock pulse

control. This register is used as a backup for the rank A register,
When the rank A register is filled and the address cannot be delivered
to a SCM bank address register, this register receives the next
incoming address to the SAS. This register is cleared, and new data
entered, at the end of a clock period in which the following condition
is present:

‘Condition: rank A flag & no rank B flag & no ''go bank"

" SAS rank C register

‘This is a 20 bit clear/enter type register with gated clock pulse

control. This is the third and last register in the SAS. It is
used as a final backup for the arrival of an address at the SAS when
the rank A and rank B registers are both filled, This r~gister is
cleared, and new data entered, at the end of a clock period in which
the following condition is present:

‘Condition: rank B flag & no rank C flag

‘Rank A flag

‘This flag is a clear/enter type bit register which is cleared at the

end of every clock period. This flag is set whenever the data in
the SAS rank A register is a valid address for SCM. The condition
for setting this flag is as follows:

‘Condition: 'enter SAS" & "go bank" & no rank B flag

or: ‘"enter SAS" & no rank A flag & no rank B flag
or: rank A flag & no "go bank"

2-114

"Rank B flag

This flag is a clear/enter type bit register which is cleared at the
end of every clock period, This flag is set whenever the data in
the SAS rank B register is a valid address for SCM. The condition
for setting this flag is as follows:

‘Condition: rank A flag & no rank B flag & no "go bank" & "enter SAS"
or: rank A flag & rank B flag
or: rank B flag & no '"go bank"

" Rank C flag

‘This flag is a clear/enter type bit register which is cleared at the
end of every clock period. This flag is set whenever the data in
the SAS rank C register is a valid address for SCM. The condition
for setting this flag is as follows:

Condition: rank B flag & no rank C flag & "enter SAS"
or: rank B flag & rank C flag
or: rank C flag & no "go bank"

‘Read A flag

This flag is a clear/enter type bit register which is cleared at the
end of every clock period, This flag is set whenever the SAS rank A
register data is transmitted to the SCM bank address registers. The
condition for setting this flag is as follows:

‘Not: rank B flag & no rank A flag & no "go bank"

nor: rank A flag & rank B flag & '"go bank"

nor: rank C flag & no rank B flag & no '"go bank"

nor: rank C flag & rank B flag & no rank A flag & "go bank"

" Read B flag

This flag is a clear/enter type bit register which is cleared at the
end of every clock period. This flag is set whenever the SAS rank B
register data is transmitted to the SCM bank address registers. The
condition for setting this flag is as follows:

‘Condition; rank B flag & no rank A flag & no "go bank'
or: rank B flag & rank A flag & 'go bank"

2-115

w{A[c-\(HCtAU

ad

“Read C flag

"This flag is a clear/enter type bit register which is cleared at the

end of every clock period, This flag is set whenever the rank C
register data is transmitted to the SCM bank address registers., The
condition for setting this flag is as follows:

‘Condition: rank C flag & no rank B flag & no 'go bank"

or: rank C flag & rank B flag & no rank A flag & ''go bank"

Divide conflict flag

‘This flag is a clear/enter type bit register which is cleared at the

end of every clock period. This flag is set by a condition in the
divide unit at the proper time to block SCM activity which might
conflict with the divide result arriving at the destination X regis-
ter. No test is made to determine if the SCM reference will actually
deliver a result to an X register. The condition for setting this
flag is:

‘Condition: '"divide time 13"

‘No conflict flag (NCF)

‘This flag is a clear/enter type bit register which is cleared at the

end of every clock period. This flag is set at the end of a clock
period when the SAS is idle, or is active and is delivering a result
to a SCM bank address register., This flag is cleared and left cleared
at the end of a clock period in which an address is present in the

SAS but has not been tran.mitted to a SCM bank. The condition for
setting this flag is:

‘Condition: 'go bank"

or: mno rank A flag & no rank B flag & no rank C flag

No backup flag (NBF)

‘This flag is a misnomer as it is actually a static condition resulting

from two other flags. This flag is normally set. The flag appears
to clear when the rank B register receives an address. It appears
to remain cleared until the rank B register and rank C register have
been cleared. Where this flag is referenced it is the equivalent of
the following condition:

‘Condition: no rank B flag & no rank C flag

2-116

REV. 13

"Go address' condition

"This condition is generated in the SAS when an address is present

in one of the three register ranks and the divide conflict flag is
cleared. It does not necessarily assure the delivery of an address
to a SCM bank address register, This may be prevented by a busy
flag at the designated bank. The "go address'" condition is defined
as follows:

‘Condition: rank A flag & no divide conflict flag

or: rank B flag & no divide conflict flag
or: rank C flag & no divide conflict flag

' “Go bank" condition

‘This condition is generated in a SCM bank when the bank is addressed

and the bank is idle. Each of the 32 banks has the ability to gen-
erate this condition, but only one (the addressed bank) may generate
the condition in a given clock period. This condition is defined as
follows:

Condition: 'go address’" & no bank 00 busy flag & '"bank 00 addressed"
or: "go address" & no bank Ol busy flag & '"bank 0l addressed"
or: 'go address'” & no bank 02 busy flag & "bank 02 addressed"
or: ''go address' & no bank 03 busy flag & 'bank 03 addressed"
or; '"go address" & no bank 36 busy flag & "bank 36 addressed"
or: ''go address' & no bank 37 busy flag & '"bank 37 addressed"

 "Bank 00 addressed" condition

Y"Bank 01 addressed" condition

“Bank 37 addressed'" condition

_These conditions refer to the lowest order five bits of the address

leaving the SAS for a SCM bank address register,

is made on the basis of these five bits.

The bank selection

If the lowest order five

bits have a value 00, the "bank 00 addressed'" condition exists, If
the lowest order five bits have a value 01, the "bank 01 condition"
exists, Etc,

2-117

ALl
£

<

YA

SCM banks

There are 32 SCM banks in the system. Each has its own independent
sequence control, address register, and write operand register. Any
one bank may begin a read/write cycle in a given clock period and
complete that operation nine clock periods later, It is thus possible
to have ten SCM banks in various phases of activity in any one clock
period. Each of the 32 SCM banks has the same configuration. The
remainder of this section describes one of these banks as illustrated
in figure 2-21 on the following page,

A SCM bank read/write cycle is initiated by a 'go bank xx" condition.
This condition is generated in the SCM bank sequence control unit from
information transmitted from the SAS and information within the bank
sequence control, The "bank xx addressed'" condition is determined
from the lowest order five bits of the address transmitted from the
SAS. Each of the 32 SCM banks essentially recognizes its own code in
these lowest order five bits,

"Go bank xx" condition

'This condition is a component of the "go bank" condition described

in the previous section. Each of the 32 SCM banks generates a ''go
bank xx" condition when the corresponding bank read/write cycle is
initiated. The merging of these 32 conditions constitutes the 2o
bank" condition. The "go bank xx" condition is present on the fol-
lowing condition:

‘Condition: "go address" & "bank xx addressed” & no bank xx busy flag

‘The xx in this expression refers to the specific bank number,

" Bank xx busy flag

This flag is the mechanism to lock out further initiations of a bank
read/write cycle until a previously initiated cycle is completed,
This flag is a bit register with a separate set and separate clear
input. The flag is set by a "go bank xx" condition when the bank
read/write cycle begins and remains set until the last clock period
of that cycle. It is set for a total of nine clock periods,

2-118

PO SLALL AT PO
ey

JERILTY]

puDJedo ppeJ jubq

D{Dp PRI €&—

09

4

Kipd poes €—

A

S G N S G G S G N G GG
yuog WOS 12-2Bid
&
Ajriod o)iim DIBP BJlIM
QP Jeisibe. vco..vao,ro:; ¥uoq
4 juoq ob
G Q9 _
(€— $80:ppO od
\ [YNTR]
sounbss - {+~0)
washs aaup g €= $53ippO
{
(i-0)
€2~-21) < “
S9ES84PPO
opo (Se-¥2) @ {[1-0})
hre— {i¥-9%) (ge-21)
Joydwn (65-8t) (sg-+2) wojshs
MR
osuUes NPow (1p-9€) {BIIOZLAR
ob0J0s (66-8¥) $9550.pp0 .
UGAD
A iipow <
odp.ioys
s
{
(6-9)
it j&— $$34ppo
WISAS OALAD 1DD1340A ©

Ky91024 $531pPD WCQ

2-1i19

).

*AL-AEC OFFIC

" Bank sequence control

Each SCM bank has its own sequence control unit. This unit forms a
sequence of ten conditions which control the activity within the SCM
bank in ten consecutive clock periods. The chronological sequence
of events in a SCM bank read/write cycle is listed below.

"CPO0 Transmit address from SAS to SCM.bank address register
Go addréss condition
Bank xx addressed condition
Go bank xx condition
Set bank xx busy flag
CPOl Begin read drive current
CPO2
CPO3

'CP04 End read drive current .
Sample sense amplifier output to read operand register

CPO5 Transmit read data to distribution network
Transmit write data to write operand register

'CP06 Begin write drive current
Begin selected inhibil drive cuicrents

CPO7
CPO8
"CP09 End write drive current

End selected inhibit drive currents
Clear bank xx busy flag

SCM storage modules

Each SCM bank contains ten storage modnles, Thozz modules consist
of a core memory stack containing 32 x 32 x 13 cores plus the asso-
ciated supporting circuits. These modules each supply 1024 twelve
bit words plus a parity bit for each 12 bit word. The 60 bit SCM
word is formed from five storage modules. All of the storage loca-
tions with address bit 5 a zero value are contained in one set of

2-120

REV. 8

" Read operand register

five storage modules. All of the storage locations with address bit

5 a one value are contained in the other set of five storage wodules

Consecutive addresses in SCM then proceed through the lower set of

five storage modules in all 32 banks and then the higher set of five “~N
storage modules in all 32 banks. The horizontal and vertical drive

system for the storage modules is distributed throughout the ten

physical modules. Bits 6 through 10 of the SCM address are trans- ~
lated into the vertical drive selection. Bits 11 through 15 are

translated into the horizontal drive selectiomn.

"Four SCM banks share a 65 bit read operand register, This register

holds 60 bits of data plus five bits of parity information. This is)
a clear/enter type register which is cleared at the end of every clock N
period. The data from a given SCM bank resides in this register for
only one clock period in the bank read/write cycle. The four SCM
banks sharing each read operand register can never conflict in its ™
use because only one SCM bank read/write cycle can be initiated in

any given clock period. From a logical standpoint one read operand

register would suffice for all 32 SCM banks. There are physically

eight of these registers because of the extensive data path problems

associated with them.

‘Data is transmitted to the read operand register from the bank sense

amplifiers. There are 65 sense amplifiers in each SCM bank, These
amplifiers contain a static network which gates the data to the read
operand register during one clock period in the read/write cycle.
The control for this gate is in the bank sequence control unit,

‘Write operand resister

"Each SCM bank has a 65 bit write operand register. This is a clear/

enter type register with.gated clock pulse control, The register

is cleared and new data entered at the end of CPO5 in the bank read/
write sequence, This data remains in the register until CP0O5 in the
vext read/write cycle in that bank. The data in the write operand
register is used during the last four clock periocds in the read/write
cycle. Data is entered in the core memory stack by selactively
inhibiting the coincident current action in individual planes of

the stack., The five parity bits are treated in the same manner zs
the data bits in this process. .

2-121

4}'

trep ARC-OTHICH

Storage Word Stack

The storage word stack (SWS) is a buffer area for 60 bit data words

which are to be written into SCM. There are seven ranks of 60 bit
registers in this stack., This is substantially more than the number
of ranks in the SAS because the SWS must delay the write data by the
read access time in the SCM bank read/write cycle. The organization
of the SWS is illustrated in figure 2-22 on the following page.

“Rank A, rank B, and rank C in the SWS correspond with the three

register ranks in the SAS., These three registers have gated clock
pulse control and may hold information when a SCM conflict causes

a backup condition in the SAS, The last four ranks of the SWS have
no clock pulse control and continuously shift data toward the SCM
write data paths. These four ranks correspond to the read access
time in the SCM bank read/write cycle.

Data arrives at the SWS from a number of other CPU registers as well

as the LCM and I/0 section. The data from these sources enters the
SWS in a number of locations. Those data paths which enter the rank
A and rank B registers are supervised by the SCM access control unit,
Those data paths which enter the rank E and rank F registers are
supervised by the SCM destination contrcl unit, Each of the static
networks illustrated in figure 2-22 which has multiple data input
paths contains a switch which may be thrown to one of two positions,
These switches are thrown by the supervising control unit at the
proper time to gate data into the SWS, The data then moves from
rank to rank and arrives at the SCM bank write operand register in
the proper clock period for controlling the write data.

‘The static selection netwovk preceding the rank A register in the

SWS is more elaborate than the other selection networks. This net-
work includes an eight position selection switch in one branch of
the basic two position switch. The result is effectively a nine
position selection switch. The normal position for the basic two
position switch selects the contents of register Xi. The alternate
position of this basic switch has the eight additional selection
possibilities., The eight position switch is controlled by the low-
est order octal digit in the XSK register. This switch scans the A,
B, P, and supporting registers during the execution of an exchange
sequence, The timing of the register data transfers in this sequence
is listed in part 3 of this manual under the 013 instruction,

2-122

A ,.;P.‘,._ﬁ_r._&u

9
¥UDJ
syjod
DIOPp LM
WIS 01 «— 9 €
J
yuo4
<« 09

WODIS piom ebosoys 22-2014 -

fe— 0wy

2-123

<—— $19)81681 Buijioddns

Wo1 uoldes /1
4 3 a
Wups 3uDJ WDJ
yJomjau YoM iU yJomisu ,,toicc
Kj1and 09 te uoioe|es 09 uoHINRS L 09 Koep
4048 0y Ot{0}s 21)048
ysibes Xry Jysibas 1)
g v
¥uod & NuDJ &
¥JOM{ou WioMjau yiomou ¥iomiou
he— 4045163
Apjep 09 UoHIRPS ¢ 09 le uold8|es uoijoo|es 1o e
le— qysi0ou {
Nios i0is Ainys AHjois v

le—— 19481604 g

'SWS rank A register (SWA)

‘The SWA register is a 60 bit ‘clear/enter type register with gated

clock pulse control. This is the first rank of the SWS., The SWA
register is normally cleared and entered with (Xi) at the end of
each clock period. This data is then passed along to the rank B
register (SWB) in the following clock period. The data is used for
writing into SCM only when an increment instruction is executed
which requires a SCM store operation. In all other cases the infor-
mation is shifted through the seven ranks of the SWS and discarded.
This normal mode of operation is altered in the event of a SCM
conflict, or in the case of executing an exchange sequence.

‘A SCM conflict occurs when a SCM bank is not able to accept an

address from the SAS because the previous read/write cycle has not
been completed. 1In this case the data in the SWA register is held
until the conflict has been resolved. The data must move through
the SWS in the proper sequence so that the address leaving the SAS
and the data word leaving the SWS are in the right time relation-
ship to match the bank read/write cycle. The condition for clearing
and entering the SWA register with new data is as follows:

‘Condition: NCF

or: NBF

"Switch SWA" condition

"This condition is present only during the execution of an exchange

sequence. It causes the data switch in the static network before
the SWA register to switch from the Xi register path to an alternate
path, This switch is throim for the amount of time required to
transfer data for the first eight words in the exchange package.
These eight words are normally transferred in comsecutive clock
periods. A delay may occur in this sequence if a SCM bank conflict
exists., In this case, the SWA register holds the information until
the conflict is resolved in the same manner described above. The
data switch returns to its normal position during the time of the
last half of the exchange package data transfer. During this inter-
val the X register data is stored in the exchange package. The i,
j, and k designators in the CIW register are used to select the
specific X, A, and B registersduring the exchange sequence. These
three octal values are entered in the CIW register by the exchange
sequence control unit and have the same value in each clock period
of the exchange sequence as is contained in the lowest octal digit
of the XSK register.

2-124

'The scanning of the P register and the supporting registers is
accomplished by the eight position switch at the SWA register during
the first half of the exchange package data transfer. The i, j, and
k designators in the CIW register are not used in this selectionm,
The data from these registers is routed to the uppermost 24 bits of
the 60 bit data path to the SWA register. Concurrently, the j and
k designators in the CIW register route the appropriate A register
and B register values to the lowest order 48 bit positions., A
special data path is provided to gate the BPA register data to the.
position in the exchange package which would normally be occupied
by the BO register value. This selection is performed by the same
eight position switch which controls the upper 24 bits of the data
flow,

‘The "switch SWA' condition is present on the following:

‘Condition: XSF & (XSK) = 0,1,2,3,4,5,6,7

' SWS rank B register (SWB)

The SWB register is a 60 bit clear/enter type register with gated
clock pulse control. This is the second rank of the SWS, The SWB
register is normally cleared and entered with data from the SWA
register at the end of each clock period. This normal mode of
operation is altered in the event of a SCM conflict, or in the case
of executing a return jump instruction. The data in the SWB reg-
ister is held in the event of a SCM conflict until the conflict is
resolved. The conditions for clearing and entering new data in the
SWB register are the same as those for the SWA register and are as
follows:

Condition: NCF
or: NBF

"Switch SWB" condition

"This condition is present only during the execution of a return jump
instruction, It causes the data switch in the static network before
the SWB register to switch from the SWA data path to an alternate
path. This alternate path contains data from the RJX register which
has been positioned in the 60 bit data word and supplemented with a
constant background field as described under the return jump instruc-
tion in part 3 of this manual. The data switch is thrown for only
one clock period. During this clock period the data in the RJX
register is entered in the SWB register along with the background
field, The "switch SWB" condition is defined as follows: .

‘Condition: NBF & SXF

2-125%

JoJJ))

J

J

SWS rank C register (SWC)

The SWC register is the third rank of the SWS., It is a 60 bit clear/
enter type register with gated clock pulse control. The SWC register
is normally cleared and entered with data from the SWB register at the
end of each clock period. This function is not performed when a SCM
conflict exists., In this case the data in the SWC register is held
until the NCF is reset. This condition-is somewhat different from the
condition for clearing and entering data in the SWA and SWB registers.

There is no data switch in the static network before the SWC register.
This static network provides a delaying function to cover the short
path problem described on page 2-1. The register is cleared and
entered with new data on:

‘Condition: NCF

SWS rank D register (SWD)

The SWD register is the fourth rank of the SWS. It is a 60 bit clear/
enter type register which is cleared at the end of every clock period.
There is no clock pulse control on this register. The static network
before the SWD register has no data switch and provides only a delaying
function to cover the short path problem., The data in the SWC register
is copied into the SWD register at the end of every clock period. This
register begins thac portion ot the SWS which delays the data by an
amount of time corresponding to the read access portion of the SCM bank
read/write cycle.

SWS rank E register (SWE)

The SWE register is the fifth rank of the SWS. It is a 60 bit clear/
enter type register which is cleared at the end of every clock period.
There is no clock pulse control on this register. The static network
before the SWE register contains a data switch which can select between
the SWD register data and a data path from the I/0 section of the CPU.
This switch is controlled by a static condition "switch SWE" which
originates in the SCM destination control unit. The switch normally
selects the data from the SWD register. It is thrown to the data path
from the I1/0 section for a single clock period when data from the I/0
section is written into SCM. Data is entered in the SWE register at
the end of every clock period from whichever source is selected by the
data switch.

2-126

 SWS rank F register (SWF)

' The SWF register is the sixth rank of the SWS. It is a 60 bit clear/
enter type register which is cleared at the end of every clock period,
There is no clock pulse control on this register., The static network
before the SWF register contains a data switch which can select between
the SWE register data and a data path from the LCM section of the CPU.
This switch is controlled by a static condition "switch SWF" which
originates in the SCM destination control unit. The switch nomally
selects the data from the SWE register. It is thrown to the data path
from LCM each clock period in which a LCM word is transmitted in a
block copy mode. Data is entered in the SWF register at the end of
every clock period from whichever source is selected by the data switch.

' SWS rank G register (SWG)

The SWG register is the seventh and last rank of the SWS. It is a 65
bit clear/enter type register which is cleared at the end of every
clock period. There is no clock pulse control on this register. The
static network before the SWG register forms an odd parity bit for
every 12 data bits in the 60 bit data word., The lowest order 12 data
bits are summed as a group to form the lowest order parity bit. The
next 12 data bits are summed to form the second parity bit. There
are five parity bits formed in this manner, A parity bit is chosen
zero if an odd number of bits in the associated 12 bit group have a
value of one. A parity bit is chosen one if an even number of bits
in the associated 12 bit group have a value of one.

There is no data switch in the static network before the SWG register.
The 60 bits of data in the SWF register are transmitted to the SWG
register at the end of every clock period along with the five newly
formed parity bits., 1In the following clock period this data is either
discarded or delivered to a bank write operand register in SCM.

2-127

)

ALY

} AL ARC R E

SCM Data Distribution

‘Communication of data within the SCM system and with other parts of

the CPU generally involves 65 bit parallel data transmission paths.
These paths involve rather substantial static networks for merging
of data and distribution of data. The logical interconnection of

the data lines is illustrated in figure 2-23 on the following page.

‘There are eight bank read operand registers in the SCM system as

described earlier in this section. Each of these registers serves
four SCM banks. Each register is 65 bits in length. The eight sets
of 65 bit data paths from these registers merge in a static network

as illustrated in figure 2-23, There is no control or selection of
these data paths. Only one SCM bank may be initiated in any one clock
period. As a result, only one SCM bank can read data into a bank

read operand register in any one clock period. This static network
provides a common point for SCM read data from all 32 banks. This

one 65 bit data word is then distributed to a number of destinatioms.

‘Data is transmitted to the IWS and to the X registers directly from

the static merge network., The data is gated into the registers by
control conditions appropriate for each register., Only the 60 useful
data bits are transmitted to the IWS and the X registers. All 65 bits
are transmitted to the SRO regxster as 111ustrated in figure 2-23.,
This register then relays the duia to the Lilicd uugLLHJLLOBQ ia tne
following clock period.,

A 65 bit static distribution network handles all data going to SCM

banks. This network receives data from the last rank of the SWS,

It also receives data from the bank read operand registers via the
static merge network. The static distribution network contains a
data switch which selects one of these two possible sources of data.
The selection is based on the 'write SCM" condition generated in the
SCM destination control unit. This condition is present when a SCM
bank is in the proper portion of its read/write cycle and data is to
be written into that bank from the SWS. The switch is then thrown
to the SWS information and that data is transmitted to the bank write
operand register. When the switch is not thrown, the data read from
a SCM bank is routed back to the bank write operand register for the
same bank. This is the normal path for restoring data in the second
half of a SCM read reference. The data from the static distribution
network is routed to all 32 bank write operand registers. The data
is gated into the proper register by the local bank sequence control,

2-128

1981802 J0209
Kyiod §os o ml.@l

v3i3

4

‘uounqiusIQ PIog WIS

£2-2°014

NIOM|oU
UGLNGLSIP
uois

30y51504
TA G9 TI - DMS Wo4y

)

Xi0Mmjou
" ebiow
214D4S

sigs1des

pudiado poo

sisided
, PUDISCO 1am
Wog 2¢ 0 T@Il
RioMmjpu
¥oeyd , 6 ,
A4and ,
_ 1aysibos
. ~ . '} ous
19451691 yd8
ss0481601 § O} Ale,
81051801 y o, Al,el g9 ke @’.
] dsd \
S14
I Svy I_' Tle|
 d
sio81b84 X
SMI o4 e
uoIee O/ 1 |

NI =

e||

2-129

)

L ARG OHHCIAE

_Storage readout register (SRO)

The SRO register is a 65 bit clear/enter type register which is cleared

at the end of every clock period. New data is entered in this register
at the end of every clock period from the static merge network in the
SCM data paths, This data corresponds to the data in a SCM bank read
operand register if that bank has just completed the sample of the
sense amplifier outputs. Only one SCM:-bank can be transmitting data

on this network in a given clock period. If no SCM bank is transmit-
ting data, the SRO register is entered with 65 bits of ones. This is
the normal case when the SCM is idle, Data in the SRO register lags
the data in the SCM bank read operand registers by one clock period.

‘The SRO register relays the SCM read data to other parts of the CPU.

The 60 useful data bits are transmitted to the LCM and the I/0 sectiom
of the CPU., The data is gated at the receiving end of these trans-
mission paths by the appropriate sequence control. The highest order
24 bits of the 60 useful data bits are transmitted to the P register
and to the supporting registers as illustrated in figure 2-23, The
gating of this data to the proper register is controlled by the exchange
sequence destination control unit, These paths are not used except
during an exchange sequence, The lowest order 36 bits of the 60 useful
data bits are transmitted to the A registers, B registers, and the BPA
register. The gating of this data to the proper register is also under
the control of the exchange sequence destination control unit,

The 65 biis in tue. SKO regiscer ate dielged i & sCaii¢ pairlly check
network. This network forms the modulo two sum of the 13 bits in each
of five fields in the 65 bit word. Each field corresponds to the 13
bits in a SCM storage module. This is the reverse process of that
formed in the rank G register of the SWS. The output of this static
network is five bits of parity check information. A parity check bit
has a zero value if the modulo two sum is odd, The parity check bit
has a one value if the modulo two sum is even. These five bits are
transmitted to the SCM parity error register, All five of these bits
will have a zero value if the word read from SCM is correct. If any
single bit in one of the 13 bit fields is incorrect, the corresponding
parity check bit will have a one value. A clock period in which the
SCM is idle will result in 65 one bits in the SRO register. This
value is processed by the static parity check circuit in a nommal
manner and-results in a parity correct indication,

2-130

SCM Destination Control Unit

‘The SCM destination control unit receives a four bit code from the
SAS each clock period. This code is translated to determine the des-
tination for each address processed by the SAS. The proper control
condition is then generated to prepare the destination register for
receiving the data from SCM. The address tags which are encoded
into the four bits are listed on page 2-112, The translated control
signals are illustrated in figure 2-24 on the following page.

‘The static translation network illustrated in figure 2-24 receives the
address tag with the destination code directly from the SAS. This code
is translated and one or more of the delay chains is set at the end
of each clock period in which a valid address is transmitted from the
SAS to a SCM bank address register. The delay chains consist of one
bit registers separated by static delay networks to delay the control
condition by the proper number of clock periods, Each box illustrated
in figure 2-24 contains one bit of register which is cleared and entered
with data from the preceding box at the end of every clock period. Each
box then represents a one clock period delay for the associated control
bit,

"™JIrite SCM" condition

"This condition is generated in the SCM destination control unit and
controls the 65 bit data switch in the SCM data distribution network.
When this condition exists the data in the SWS rank G register is
routed to the SCM bank write operand registers. When this condition
is absent the data in the SCM data merge network is routed to the SCM
bank write operand registers. This condition is defined as follows:

‘Condition: Five clock period delay of destination code 02,07 & "go
bank'
‘or: Five clock period delay of destination code 03,06,16,17 &
"go bank" & no '"'range error"

2-131

J)))

J

N

[0:ju0y uoypulseq WOS H2-2 Did

/
,80URISj81 X 0} POOL €—
..omcoaoxo oo. | €— o ’ < < €
XO0IS 434S €t . > <
WX 08 NOS 910D «— 13 <
ROS @M €«—1 < € * ¥JOM QU
" f P02
e (5 e vauoaisep o
WOS m
,YO0Iq PUO €~ | UonouNTeq 3
WZIMS YIS € 03
wIMS YIIME €
._:UJ g..lr\’ . B € -
Kojep Kojep . Kojep Lojep Aoisp Aojep
49 euo 40 euo a9 euo 49 euo 40 o 49 suo

X . { _4 .. 0 v
NN N VI DIY

"Gate SCM to X" condition

This condition is generated in the SCM destination control unit and
opens a gate for the 60 bit data path from the SCM data merge network
to the X register data input path. The gate is open when the ''gate
SCM to X" condition is present. The gate is closed when the condition
is absent. The condition is defined as follows:

Condition: Five clock period delay of destination code 02,11,12,13,
14,15 & '"go bank"

“Shift stack' condition

This condition is generated in the SCM destination control unit and
causes the IAS and IWS to shift data by one rank. The IAS receives a
new address from the NSA register, and the IWS receives a 60 bit data
word from the SCM data merge network. This condition is defined as
follows: '

1"t

Condition: Five clock period delay of destination code Ol & "go bank"

"Go exchange' condition

This condition is generated in the SCM destination control unit and
is transmitted to the exchange sequence destination control unit.

It causes the exchange sequence destination control unit to gate omne
word of an initiating exchange package to the proper destination
registers and to advance the exchange package count register by one
count., This condition is defined as follows:

‘Condition: Five clock period delay of destination code 02 & "go bank"

"Read to X reference' condition

This condition is generated in the SCM destination control unit and
is transmitted to the X register access control unit. It causes the
X register access control unit to enter the destination X register
number in the access control chain, The condition is defined eas
follows: : ‘

‘Cordition: One clock period delay of destination code 11,12,13,14,
15 & "go bank" ’

2-133

hnd Al

-\i‘ Al

""Go LCM" condition

‘This condition is generated 'in the SCM destination control unit and
is transmitted to the LCM control unit, It indicates to the LCM
control unit that an address has gone to a SCM bank for a LCM block
copy instruction. This condition is defined as follows:

‘Condition: Six clock period delay of destination code 04 & "go bank'
or: One clock period delay of destination code 06 & ''go bank"

'Switch SWE'" condition

"This condition is generated in the SCM destination control unit and
is transmitted to the SWS rank E register. The data switch before
the SWS rank E register is thrown to the I/0 section data path when
this control condition is present. The data swiich is thrown to the
SWS rank D register data path when this control condition is absent.
The condition is defined as follows:

‘Condition: Two clock period delay of destination code 07 & "go bank"

"Switch SWF'" condition

This condition is generated.in_the SCM destinati-n co=rral unit ard
is transmitted to the SWS rank F register. The data switch before
the SWS rank F register is thrown to the LCM data path when this
control condition is present. The data switch is thrown to the SWS
rank E register data path when this control condition is absent,
The condition is defined as follows:

Condition: Three clock period delay of destination code 06 & '"go bank"

"End block condition

‘This condition is generated in the SCM destination control unit and is
transmitted to the LCM control unit. It indicates to the LCM control
unit that a block copy instruction has been executed to the point where
all data references to SCM have cleared the SAS. The condition is
defined as follows:

‘Condition: One clock period delay of destination code 00,01,02,03,
10,11,12,13

2-134

Exchange Destination Control Unit

The exchange destination control unit is an appendage to the SCM
destination control unit, It sequences the data in the initiating
exchange package from SCM to the proper operating registers. Its only
control input information comes from the SCM destination control unit
in the form of the '"go exchange" condition. This unit is illustrated
in figure 2-25 on the following page.

‘The execution of an exchange sequence is controlled by two separate
mechanisms, The terminating exchange package data is delivered to the
SWS, and corresponding addresses to the SAS, under the control of the
exchange sequence described on page 2-72, A four bit counter (XSK)
in this control unit counts through the 16 steps of the terminating
exchange package. The address codes for the 16 SCM references must
pass through the SAS before reaching the exchange destination control
unit to be described in this section. SCM bank conflicts may occur
which will delay the addresses for the exchange sequence in the SAS,
As a result the initiating exchange package data may not be delivered
to the operating registers with a uniform lag in time from the ter-
minating exchange package data, The exchange destination control must
deliver data to the operating registers as specified by the timing of
the SCM destination codes leaving the SAS.

‘The exchange destination control unit consists primarily of the ‘16
position counter illustrated in figure 2-25 and the translation net-
works to select the destination registers. The counter in this unit
is cleared on a CPU "dead start" condition, The register content

is advanced one count as each SCM destination code for an exchange
reference leaves the SAS. The 16 such codes for an exchange sequence
thus return the four bit register content to a zero value.

Exchange package count register

This is a four bit clear/enter type register with gated clock pulse
control. It is cleared to zero during a CPU '"dead start" conditiom.
It is cleared and entered with a new count at the end of a clock
period in which the '"go exchange" condition is present. The new
count is always one more than the previous value in the register
modulo 16, .)

"2-135

$191%1692 Buipsoddns pup‘g‘y Wive

[024U0D usyDUNSeq eBUDYIX:

3...62 d Bue <«

JeisiBes Burjaoddns $09es Al.@'

AIOMBU
|
wumiTul L
RIS

sJoisider X 194u9

AioMjou
TREITY
AL0s

e

10151001
junos 9Bpyood
obuoyoxe

..ooco._o.a oo..

|

NiOM}ou
1+
214048

2-136

Exchange destination sequencing

The X register data in the initiating exchange package is delivered
to the X registers under the control of the exchange package count
register. The lowest order three bits of the exchange package count
register specify the X register destination, The highest order bit
in the exchange package count register is used as a control bit to
request entry in the designated register., These four bits are trans-
mitted to the X register access control unit. The X register data

is transmitted directly from the SCM data merge network to the X
register data input path. This data does not pass through the SRO
register,

The remainder of the initiating exchange package data is processed
through the SRO register and arrives at the destination register one
clock period later in the sequence than the corresponding X register
data. The control information for this data must also be delayed by
one clock pericd, This function is performed by a second four bit
register in the exchange destination control unit as illustrated in
figure 2-25. The content of the exchange package count register is
copied into this second four bit register at the end of every clock
period. This second register is a clear/enter type register which
is cleared at the end of every clock period, The lowest order three
bits of this second register are transmitted to the A register access
control unit and to the B register access control unit to specify
register number,

A one bit flag in the exchange destination control unit is used for
control of data entry in the P register. This is a clear/enter type
bit register which is cleared at the end of every clock period. It
is set for one clock period when the exchange package data for the P
register is in the upper portion of the SRO register. The conditicn
for setting this flag is the presence of the '"go exchange" condition
and a zero value in the exchange package count register.

A one bit flag in the exchange destination control unit is used for
control of data entry in the A, B, and supporting registers. This
flag is set at the end of a clock period when the "go exchange"
condition is present and the highest order bit in the exchange
package count register is zero. It is a clear/enter type bit
register which is cleared at the end of every clock pexriod. This
flag is transmitted to the A register access control umit and to

the B register access control unit to request entry in the selected
register. This flag also controls the data entry in the supporting
registers RAS, FLS, PSD, RAL, FLL, EEA, and NEA. A special static
translation network in the exchange destination control unit provides
the selection for these seven registers. - The BPA register is treated
as B register 0 in the processing of the initiating exchange package
data.

)

y

) D)

J

A

)

SL-AEC - OFFICIAL

L)

A

Input /Output Section

‘The input/output (I/0) section of the CPU contains 15 full duplex

channels for communication with the PPU and the mechanism for control
and data transfer to S(M. This section of the CPU is described in
the following portion of this manual. The description is divided
into several sections by function. The overall organization of these
sections is illustrated in figure 2-26 on the following page.

"Each channel provides an input data path from a PPU, This is a 12

bit parallel transmission path with associated control lines as
described in part 4 of this manual., The channel data is assembled
into a 60 bit input register for transmission to the SCM buffer area
for that channel, The 60 bit data transmission is time shared through
an input data merge network common to all 15 channels, The SCM buffer
address is maintained in the channel input control unit, and this

unit interrupts the CPU program on a buffer threshold address or on

an end of record signal from the PPU,

"Each channel provides an output data path to a PPU. Data in a 60

bit disassembly register is shifted off into a 12 bit parallel data
transmission path, The channel data register is refilled from the
associated SCM buffer area as required to satisfy the PPU data
requirements, The data is transmitted from SCM to the 60 bit chan-~
nel disassembly register via the output data distribution network
illustrated in figure 2-26. This distribution network is time
shared by all 15 channels, The SCM buffer address for the output
data is maintained in the channel output control unit. This unit
interrupts the CPU program on a buffer threshold address.

‘The MCU communicates with SCM over a special set of data paths which

are not illustrated in figure 2-26, This unit utilizes the input data
merge network and output data distribution network in much the same
manner as a normal channel. There is no buffer area in SCM for the
MCU, however, and the control is handled in a special unit which is
not like the normal channel control units, The MCU communication is
mentioned in this section as if a channel 0 existed for this purpose.
The details of the MCU to SCM control are treated in part 6 of this
manual,.

2-138

F———3 to SCM

> { hang: trol
[€——— from SCM

Input data

merge network

distribut
twork

Interrupt control
k
Output dat

—

A

an 2-26 1/0 Section Organization

.
>

A
<N
|
=
!
|
!
|
|

1
Channel
#2
Channel
#3

#15

Channet
%4
45
th
%14

Channe!

Output date €——— o 1
Input datq ———>
Output daty €———
Input datq ——>

Input data
Output dotc «

|
\ \
NI

“““

Output data €—
Input date ———o>

[

|
Cutput data €——q Channels
Output date <€—!
Input data ~———>f

2-139

Channel input control unit

Each of the 15 input/output channels has a channel input control unit
which is independent of the other channels, This control unit handles
the control signals associated with the input data path from a PPU.

It is not involved with the output data path which is handled in
another control unit. The channel input control unit includes a par-
cel counter for the five parcels in a 60 bit word and an input buffer
address counter for the current input address in the SCM buffer area,
These two counters plus the associated control flags are illustrated
in figure 2-27 on the following page.

‘Input address register

The input address register is a 12 bit clear/enter type register with
gated clock pulse control. A portion of this register is connected
to a static network which advances the content of the register by one
count each time it is cleared and entered with new data. This portion
of the register corresponds to the size of the buffer area in SCM
reserved for the input buffer function. Figure 2-27 illustrates a
seven bit counter for a 128 word SCM buffer area. This is the most
common size buffer area. Other buffer sizes may be obtained by dif-
ferent hardware configurations, but all must be a power of two in
size. The highest order bits in the input address register are wired
to a censtant valiue by paugable waius Ll L€ wru Ciladboas. Lilese DLLS
determine the location of the SCM buffer area in the absolute address
structure., All buffer areas must be located in the lowest 4096
addresses in SCM, Each buffer area must begin at an address which
is a multiple of the power of two represented by the buffer size.
The location of a particular buffer area in the SCM address structure
may be changed by moving wires in the CPU chassis. The size of the
buffer area may be changed by replacing the channel input control
unit module with a module with a different input address register
configuration,

The input address register is cleared to zero (in the counting portion)
at the end of a clock period in which the input reset flag is set.

This occurs whenever a CPU program in a monitor mode executes a reset
input buffer instruction. The content of the input address register

is advanced one ccunt modulo buffer size at the end of a clock period
in which the input word resume flag is set. This occurs whenever a

60 bit word has been delivered to SCM from the associated input data
path.

2-140

::m.%

(000

HUN [o4juod ynduy jeuuny) L2-2'0ig

boyy ysenbes
piom induy

M DS 1sonbes]

Boj; suinses
piom indy

¥ = Junos
1925040 jndui

bo);
PioM Jnduy

PR2Iu0i2uLs

Bo)y
Pa0234 {nduyy
PanIuOIYOUAS

NC 0 g
boy
19804 {ndul
[
boyy
Piom jnduy
NiGMjeu »
Butzivoayouks [€ I 1€
Goy}

P40294 {ndu

N40MjoU

6oy}
ownsas Jndu)
Ndd o4 Riomiau
esind wwunsgy < 214Dis
boyy ysandbea
idnaiaui jndu
NIOM§U
fdnasepun jsonbes tys
1945169,
$$9Jpp0 jnduy
NJOM U
Ni0Migu , ”
960w ssouppo o) € € I+
214D

___J

AIOMJou

ebsow sseippo o €

JUD§SUOY
> panm

Butzivoxyouds

< I pe—

/‘\:

idd woxy
9%ind prom

Ndd wosy
asind paooays

/beu nos
193nd indu
194{u00 NioMou
0SB0 «—] ¢ |g 1+
Kiqwesso o} 048

—

2-14i

)

AL O At

7Input parcel count register

The inpui parcel count register is a three bit clear/enter type
register which is cleared at the end of every clock period. New
data is entered in this register at the end of every clock period
from a static network which conditionally advances the register
value by one count., This register holds the parcel count for the
next 12 bit parcel in the 60 bit assembly register. The highest
order parcel in the assembly register corresponds to a zero value
in the input parcel count register. The lowest order parcel in
the assembly register corresponds to a value of four in the input
parcel count register. The input parcel count register is cleared

to zero at the end of a clock period in which the following condition
exists,

‘Condition: 7input word request flag
or: input reset flag

The input parcel count register is reset to a value one count larger

than its previous value at the end of a clock period in which the
following condition exists. '

Condition: _synchronized input word flag & no synchronized input

record flag & no input word request flag & no interrupt
lockout condition

The input parcel count register is.reset to its pravicus vzlue at

the end of all clock periods other than those defined in the two
conditions above.

7Input reget flag

The input reset flag is a one bit clear/enter type register which
is cleared at the end of every clock period. This flag is set at
the end of a clock period in which an input reset condition exists
and the channel number for this input control unit is selected,
These conditions will be present for one clock period on execution

of & CPU instruction 0160 (reset input buffer) with the proper
channel number selected in register Bk.

2-142

“Input word flag

‘The input word flag is a one bit register with a separate set and a
separate clear input. This flag is set on the arrival of a word pulse
over the associated input data path. This pulse is generated in a
PPU when data is transmitted over the input data path. The pulse is
not necessarily synchronous with the CPU clock since the PPU may be
remote from the CPU main frame and operating from a separate clock
source. This flag is cleared during the clock period in which the
input resume flag is set, This flag is also cleared on an I/0 clear
condition for the CPU. This condition is programed in the MCU on a
CPU dead start only.

Input record flag

The input record flag is a one bit register with a separate set and
a8 separate clear input. This flag is set on the arrival of a record
pulse over the associated input data path. This pulse is generated
in a PPU whe: a 74 instruction is executed. The pulse is not neces-
sarily synchronous with the CPU clock since the PPU may be remote
from the CPU main frame and operating from a separate clock source.
This flag is cleared at the end of a clock period in which the
following condition exists:

‘Condition: 7synchronized input record flag & no input word request
flag & no input interrupt request flag & input parcel
count = 0

This flag is also cleared on an I/0 clear condition for the CPU.
This condition is programed in the MCU on a CPU dead start only.

Synchronized input word flag

This flag is a one bit clear/enter type register which is cleared
at the end of every clock period, It is set at the end of a clock
pericd in which the synchronize condition is present and the input
word flag has been set for three clock periods, The synchronize
condition occurs every fourth clock period. The synchronizing net~
work between the input word flag and the synchronized input word
flag introduces a three clock period delay. The setting of the
synchronized input word flag therefore lags the setting of the
input word flag by a minimum of three clock periods and a maximum
of six clock periods depending on the time of arrival of the word
pulse with respect to the synchronize condition.

2-143

_Synchronized input record flag

'This flag is a one bit clear/enter type register which is cleared

at the end of every clock period. It is set at the end of a clock
period in which the synchronize condition is present and the input
record flag has been set for three clock periods. The synchronize
condition occurs every fourth clock period. The synchronizing net-
work between the input record flag and the synchronized input record
flag introduces a three clock period delay. The setting of the syn-
chronized input record flag therefore lags the setting of the input
record flag by a minimum of three clock periods and a maximum of six
clock periods depending on the time of arrival of the record pulse
with respect to the synchronize condition.

" Input interrupt request flag

This flag is a one bit register with a separate set and a separate
clear input. It is set whenever the buffer associated with this
input data path has been filled to an interrupt threshold address.
There are two such addresses: one located in the center of the buffer
area, and one located at the end of the buffer area, This flag is
also set whenever a record pulse has been received from the PPU and
has been synchronized. The precise condition for setting the input
interrupt request flag for a 128 word buffer is at the end of a clock
period in which the following condition is satisfied. :

Condition: lowest order six bits in the input address register all
have a value of one & an input word resume condition
exists for this channel

or: synchronized input record flag & no input word request
flag & no inp-.t interrupt request flag & input parcel
count = 0

The input interrupt request flag is cleared at the end of a clock
period in which an input interrupt resume condition exists for this
channel, This flag is also cleared on an I/0 clear condition for
the CPU. This condition is programed in the MCU on a CPU dead start
only.

2-144

Input resume flag

The input resume flag is a one bit clear/enter type register which
is cleared at the end of every clock period, This flag is set for
one clock period, and generates a one clock period wide resume pulse,
when the incoming data from the PPU has been accepted in the 60 bit
input assembly register. The resume pulse formed by this flag is
transmitted to the PPU over the associated input data path. This
flag is normally set a few clock periods after the receipt of the
word pulse from the PPU. The minimum time is four clock periods.
The maximum time may be very long, however, because of backup con-
ditions which may exist in SCM. This flag is set at the end of a
clock period in which the following condition exists.

‘Condition: synchronized input word flag & no synchronized input

record flag & no input word request flag & no interrupt
lockout condition

Input word rzaquest flag

The input word request flag is a one bit register with a separate set
and a separate clear input. It is set whenever the 60 bit assembly
register associated with this channel input control unit has been
filled and is ready for entry in the SCM buffer area. This flag is
get at the -end-of 2 clock period in which the following condition
exists,

Condition: synchronized input word flag & ne synchronized input
record flag & no input word request flag & no interrupt
lockout condition & input parcel count = 4

'or:‘_synchrbnized input record flag & mo input word request
flag & no input interrupt request flag & input parcel
count is not zero

The input word request flag is cleared at the end of a clock period
in which an input word resume conditior is present for this channel.
This condition occurs when SCM has received the 60 bit entry from
the input assembly register. ne iaput werd request flag is alsc
statically cleared by the I/0 clear condition for the CPU. This
condition i8 programed in the MCU on a CPU dead start only.

24145

)

4 ALC i

_Input word resume flag

' This flag is a one bit clear/enter type register which is cleared

at the end of every clock period. This flag is set at the end of a
clock period in which an input word resume condition is present for
this channel. This condition occurs when the SCM has received a 60
bit data word from the associated input assembly register. The
input word resume flag remains set for only one clock period.

Normal input sequence

The following description lists chronologically the events in a nomal

record input sequence. The sequence begins with a CPU instruction
which resets the channel input control unit for receipt of a new rec-
ord, This is an 0160 instruction with the channel number in B register
k. The input reset condition sets the input reset flag in the channel
input control unit. At the end of the following clock pericd the input
parcel count register and the input address register are cleared, The
channel input control unit is now ready for a new record beginning with
the first word in the SCM buffer area.

The PPU connected to the input channel must next be notified that the

input buffer is ready to receive data., This must be accomplished by
the transmission of a message over the associated output channel,.

The PPU then enters the first 12 bit word in its output register.
This entry causes tile vransmission of a word pulse to the input word
flag in the channel input control unit. Between three and six clock
periods later the synchronized input word flag will set. At the end
of the following clock period the 12 bits of data are sampled into
the upper parcel of the 60 bit assembly register and the input resume
flag is set. At this same time the content of the input narcel count
register is advanced from zero to one.

'The input resume flag sends a one clock period wide resume pulse to

the PPU. This resume pulse is synchronized at the PPU and clears
the word flag in the PPU., The second 12 bit word may now be entered
in the PPU output register. The sequence of word pulse and resume
pulse continues as each 12 bit word is transmitted over the data path.
The next significant event occurs as the fifth word pulse arrives at
the channel input control unit and is synchronized. At this time
the input parcel count register contains a value of four. The input
data is sampled into the lowest order parcel of the 60 bit assembly
register. In this case the input resume flag is set and the input
word request flag is also set. A resume pulse is transmitted to the
PPU and an input word request condition exists in the CPU.

2-146

"The input word request flag clears the input parcel count register
in preparation for the arrival of the next PPU word. However, the
input word request flag blocks the processing of a new 12 bit word
should one arrive while the input word request flag is set. The
input word request flag remains set until the 60 bit word in the
input assembly register has been accepted by SCM. This may be only
a few clock periods, or it may be many clock periods, depending on
the SCM bank conflicts and higher priority SCM references that may
exist, When the 60 bit word has been accepted by SCM the input word
resume flag is set in the channel input control unit. At the same
time the input word request flag is cleared. In the following clock
period the content of the input address register is advanced onme
count to the second address in the SCM buffer area and the 60 bit
assembly register is cleared. The first 60 bit word has now been
stored in the first location in the SCM buffer area.

"As soon as the input word request flag clears, the next 12 bit PPU
word may be entered in the highest order parcel of the 60 bit assembly
register., The sequence of word pulse and resume pulse communication
between the PPU and the channel input control unit continues until
the 60 bit assembly register has again been filled. The process of
setting the input word request flag and transmitting the 60 bit word
to SCM then repeats. The next significant event occurs as a 60 bit
word is stored in SCM with the input address register set to a value
so that the lowest order six bits are all one, At this time the
input interrupt request flag is set.

‘The input interrupt request flag does not normally interfere with
the operation of the rest of the channel input control unit. The
communication between the PPU and the channel input control unit
continues; 12 bit words are assembled into 60 bit words, and the 60
bit words are stored in SCM. The input interrupt request flag causes
an I/0 interrupt request condition in the CPU which is independent
of the I/0 word requesting mechanism., The I/0 interrupt request
condition causes a CPU exchange sequence to an exchange package
address associated with the input channel, A CPU program resulting
from the exchange sequence then processes the data in the first half
of the SCM buffer area for the input chamnel, The input interrupt
request flag remains set until the CPU program has been completed
and an exchange exit instruction returns the CPU to its previous
program,

2-147

))

J

)

y

5

§

o)

Ve LALC O FHCIAT

‘Terminating an input record

An input record may contain data of any length, The buffer in SCM
operates in a circular mode with threshold interrupt addresses in
the center of the buffer area and at the end of the buffer area,

The record is terminated by the transmitting PPU at any 12 bit word.
The PPU program terminates the record by setting the record flag

for the PPU output channel. The PPU program must sense the output
channel word fldg to make sure that the word flag has been cleared
by a resume pulse before setting the record flag.,'

The PPU transmits a record pulse over the input data path to the CPU
when the record flag is set in the PPU, This pulse sets the input
record flag in the channel input control unit., Several clock per-
iods later the synchronized input record flag is set. This begins
the process of terminating the input record by completing the data
in the SCM buffer area,.

'The input assembly register may contain one or more parcels of data

at the time the input record flag is set. This constitutes a partial
60 bit word which must be stored in the SCM buffer area before inter-
rupting the CPU program, The partial word will have the data left
justified with zero parcels in the lowest order bit positions. The
input word request flag is set by the combination of a synchronized
input record flag and an input parcel count not equal to zero. If
the parcel count is -zero at the time of the input record flag, no
partial word exists. The input word request flag causes the entry

of the partial 60 bit word in the SCM buffer in a normal manner.

When this entry has been made, and the input word request flag has
been cleared, the input interrupt request flag sets to initiate the
interrupt of the CPU program, The CPU program is able to distinguish
the interrupt due to a record flag from that due to a SCM buffer
threshold. It does this by sampling the SCM buffer address to deter-
mine if a threshold has been crossed since the last interrupt. The
CPU program then recognizes the end of record situation and processes
the remaining buffer data accordingly,.

The PPU must not begin transmitting a new record of input data before

the CPU has completed processing the data in the SCM buffer area.
There is no hardware mechanism to prevent the PPU from beginning a
new record. The PPU program must wait for a positive response from
the CPU program over the associated output data path before beginning
a2 new record. Should the PPU proceed before the CPU has reset the:
input buffer, the data would appear in the buffer as a continuation
of the last record and would be partially lost,

2-148

Interrupt lockout cendition

This is an abnormal condition which may occur in the channel input
control unit when an interrupt request is not processed by the CPU
program for a long time., This condition occurs when the input
interrupt request flag is still set from the last buffer threshold
when the next threshold is reached. This condition may be precisely
stated as follows:

Condition: _input interrupt request flag & lowest crder six bits
in the input address register all have a value of one

This condition prevents further processing of input data from the
PPU until the CPU has cleared the work backlog. When the CPU pro-
gram has completed processing the data in the SCM buffer associated
with the first threshold interrupt, the input interrupt request flag
will clear., It will reset in the following clock period for the

data in the other half of the SCM buffer, The input data path is
then released to resume input in a normal manner as the CPU processes
the second interrupt request.

Short input records

An ipput record may be less than one 60 bit word in length, In this
case the data is left justified in the 60 bit word and the lowest
order parcels are filled with zeros. One word is stored in the SCM
buffer in the same manner as for a longer record with a record length
which is not a multiple of five 12 bit words.

An input record may be processed with a zero length. In this case
the SCM buffer receives no data at all. The CPU program is able to
detect the zero length record by the fact that an interrupt occurred
and no data was present.

2-149

4 ARG ¢ WHCIA

Input Data Merge Network

The input data merge network illustrated in the general I/0 section

diagram of figure 2-26 receives data from each of the 15 channel
input assembly registers plus an assembly register for the MCU. This
data merging network is illustrated in greater detail in figure 2-28
on the following page. .

Each of the 15 input assembly registers associated with the 1/0
channels is controlled by the corresponding channel input control
unit. This control unit sequences the entry of the five parcels of
data into the 60 bit register and requests access to the SCM with
the setting of the input word request flag. The SCM access control
unit processes this request and enters an address in the SAS from
the channel input address register. This address later emerges,

and the associated address tag is interpreted by the SCM destination
control unit. This last unit then selects the data path in the input
data merge network and throws a switch in the SWS at the proper time
to gate the 60 bits of merged input data into the rank E register

of the SWS, ’

_Input assembly register

The input assembly register is a 60 bit clear/enter type register

with gated clock pulse controi., 'There is one such register asso-
ciated with each of the 15 I/0 channels plus one associated with
the MCU. The clock pulse control for these registers is divided
into five sections of 12 bits each. In effect there are five reg-
jsters, each of 12 bit length, in the input assembly register. Each
of the five sections has its own clock pulse control for clearing
and entering data in that portion of the register. The control
information for this register originates in the channel input con-
trol unit, The input parcel count register designates which of the
five sections will next be entered. The designated section is
cleared and entered with new data at the end of a clock period in
which the following condition exists,

‘Condition: synchronized input word flag & no synchronized input

record flag & no input word request flag & no interrupt
lockout condition

In addition to the above control, the lowest order four parcels of

the input assembly register are statically cleared during the clock
period in which the input word resume flag is set.

2-150

T C ¢ (C ¢y T o

¥JomiaN ebiow pjog ndur g2-2 Bi4

NoW .
WO} D 10451694 , .
} DIop Alquessp
,_, V indut
2 o
20451694 i i ,
a
Jnysi6oa Wuoz
,.u SMS
uDJ € 2l {Ee—
SMS ,_\
NIOMBU
P TY) ¥i0MBu \ XI0M piop
4 XDt GMS «———{ 09 uoK O89S ebiow < - 2i e e [FUGTAD
0} oS . ﬂ 0is NG
204
2l AL :
2t fe—" _

[

SQUUDYD Iy
woiy Dop

1Al

¢ LU AEC -OFR

Channel output control unit

"Each of the 15 input/output channels has a channel output control

unit which is independent of the other channels., This control unit
handles the control signals associated with the output data path to
a PPU, It is not involved with the input data path which is handled
in another control unit. The channel output control unit includes

a parcel counter for the five parcels in a 60 bit word and an output
buffer address-counter for the current output address in the SCM
buffer area. These two counters plus the associated control flags
are illustrated in figure 2-29 on the following page.

‘_Output address register

7The output address register is a 12 bit clear/enter type register

with gated clock pulse control. A portion of this register is con-
nected to a static network which advances the content of the register
by one count each time it is cleared and entered with new data. This
portion of the register corresponds to the size of the buffer area

in SCM reserved for the output buffer function. Figure 2-29 illus-
trates a seven bit counter for a 128 word SCM buffer area. This is
the most common size buffer, Other buffer sizes may be obtained by
different hardware configurations, but all must be a power of two in
size. The highest order bits in the output addrozz register arve
wired to a constant value by plugable wires in the CPU chassis. These
bits determine the location of the SCM buffer area in the absolute
address structure. All buffer areas must be located in the lowest
4096 addresses in SCM., Each buffer area must begin at an address
which is a multiple of the power of two represented by the buffer
size, The location of a particular buffer area in the SCM address
structure may be changed by moving wires in the CPU chassis., The
size of the buffer area may be changed by replacing the channel out-
put control unit module with a module with a different output address
configuration,

‘The output address register is cleared to zero (in the counting

portion) at the end of a clock period in which the output reset

flag is set. This occurs whenever a CPU program in a monitor mode
executes a reset output buffer instruction for this channel. The
content of the output address register is advanced one count (mod-
ulo buffer size) at the end of a clock period in which the following
condition exists.

‘Condition: 7synchronized output resume flag & no interrupt lockout

condition & parcel count is zero

2-152

1 AEC \vu.:n_)%w. 2 .. m.%ﬂﬁsﬁ\;xz

dnugu §gonbo) —

poRa WS isenbes €«—

Ndd o}

osind piom <«

WOMISU
sbiew sseuppp 0}

Hun 044u0) indinQ |euuoyy 62-2 Bid

boj; isenbas 0oy} swnsaa bojs
idnnaju {ndno piom indino 19831 jndino '
Ndd o4
! 9sind pioded < i
¥
bojy ysenbes A
piom (ndino .
P = Junod
M
1820d ndyno
boyy
foyy awnss. ndino b0y}
piom ynding POZILOIYIUAS awnsds jndino
_ Niomisu \ Niomisu L Ndd wion
! oiois ! Suizuosouls . N e eRjnd QUAIEES
51004
£89.ppo jndino
womiau 1gsibas yunoa
«— L i+ [9210d |ndino
oS
6 Womjeu
{043u00 Joisibes . :
: r “ A|lQuessDsip O} € €€ I+
s

RIOM{PU
obiow ssauppo 0f

«—

G je—o

UL E]
poim

o J

2-153

' - SLAEC-OFFICIAN \'

‘Output parcel count register

"The output parcel count register is a three bit clear/enter type
register which is cleared at the end of every clock period. New data
is entered in this register at the end of every clock period from a
static network which conditionally advances the register content by
one count. This register holds the parcel count for the next 12 bit
parcel in the 60 bit disassembly register. The highest order parcel
in the disassembly register corresponds to a zero value in the output
parcel count register. The lowest order parcel in the disassembly
register corresponds to a value of four in the output parcel count
register. The output parcel count register is statically cleared
during those clock periods in which the output word request flag is
set. It is reset to a value one count larger than its previous value
at the end of a clock period in which the following condition exists.

‘Condition: ‘synchronized output resume flag & no interrupt lockout
condition

‘The output parcel count register is reset to its previous value at

the end of all clock periods other than those defined above.

Qutput reset flag

‘The output reset flag is a one bit clear/enter type register which

is cleared at the end of every clock period. This flag is set at

the end of a clock period in which an output reset condition exists
for this channel. This condition will be present for ome clock per-
iod on execution of an 0170 instruction with the proper channel number
selected in register Bk,

‘The output reset flag will remain set for one clock period. During

that clock period the chamnnel output control unit will transmit a
one clock period wide record pulse to the PPU over the associated
output data path. This pulse will set the record flag for the PPU
input channel to indicate that a record has been completed and a
new record will begin,

2-154

" Qutput resume flag

‘The output resume flag is a one bit register with a separate set and

a separate clear input. This flag is set on the arrival of a resume
pulse from the PPU connected to the output data path. This pulse is
generated in the PPU when the data on the channel is sampled into the
PPU registers by an input instruction. The pulse is not necessarily
synchronous with the CPU clock since the PPU may be remote from the

CPU main frame and operating from a separate clock source. This flag

is cleared at the end of a clock period in which the following condition
exists,

‘Condition: synchronized output resume flag & no interrupt lockout
condition

This flag is also cleared statically by an I/0 clear condition for

the CPU. This condition is programed in the MCU on a CPU dead start
only. .

Synchronized output resume flag

"This flag is a ome bit clear/enter type register which is cleared

at the end of every clock period. It is set at the end of a clock
period in which the synchronize condition is present and the output
resume flag has been set for three clock periods. The synchronize
condition is generated by the CPU clock period counter and occurs
every fourth clock period. The synchronizing network between the
output resume flag and the synchronized output resume flag introduces
a three clock period delay. The setting of the synchronized output
resume flag therefore lags the setting of the output resume flag by
2 minimun of three clock periods and a maximum of six clock periods,
depending on the time of arrival of the resume pulse with respect to
the synchronize condition.

‘Qutput word flag

The output word flag is a one bit clear/enter type register which is
cleared at the end of every clock period.” This flag is set for one
clock period, and generates a one clock period wide word pulse, when
a 12 bit parcel of data in the disassembly register is ready for
transmission to the PPU. The word pulse generated by this flag is
transmitted to the PPU where it sets the word flag for the PPU input
channel. The associated data from the disassembly register may then
be sampled into the PPU registers.

2-155

IR

fl

s AEC-O

"REV. 6

'The output word flag is normally set a few clock periods after the

receipt -of a resume pulse from the PPU, The minimum time is four
clock periods, The maximum time is very long, however, because of
possible backup conditions in SCM which may delay the reading of a
new 60 bit word to the disassembly register. This flag is set at
the end of a clock period in which the following condition exists.

‘Condition: output word resume flag

or: synchronized output resume flag & no interrupt lockout
condition & parcel count not equal four

70utput word request flag

The output word request flag is a one bit register with a separate

set and a separate clear input. It is set whenever the data in the
60 bit disassembly register has been transmitted to the PPU and a
new word is required from SCM. This flag is set at the end of a
clock period in which the following condition exists,

‘Condition: 7output reset flag

or: synchronized output resume flag & no interrupt lockout
condition & parcel count equal four

' The output word request flag is cleared at the end of a clock period

in which the output word resume condition is nresent for this chan-
nel. This condition occurs when SCM has delivered a new 60 bit word
to the disassembly register. The output word request flag is also
statically cleared by the I/0 clear condition for the CPU. This
condition is programed in the MCU on a CPU dead start only.

I

_Output word resume flag

" This flag is a one bit clear/enter type register which is cleared

at the end of every clock period. This flag is set at the end of a
clock period in which the output word resume condition is present

for this channel, This condition occurs when SCM has delivered a

60 bit word to the SRO register which is intended for transmission

to the output channel disassembly register. The output word resume
flag remains set for only one clock period. During this clock period
the data is transmitted to the 60 bit disassembly register,

2-156

Qutput interrupt request flag

This flag is a one bit register with a separate set and a separate
clear input. It is set whenever the buffer associated with this
output data path has been emptied to an interrupt threshold. There
are two such addresses: one located in the center of the buffer area,
and one located at the end of the buffer area. The precise condition
for setting the output interrupt request flag for a 128 word buffer
is at the end of a clock period in which the following condition is
satisfied.

Condition: lowest order six bits in the output address register all
have a value of one & parcel count is zero & synchronized
output resume flag & no interrupt lockout condition

This flag is cleared at the end of a clock period in which an interrupt
resume condition exists for this channel. The interrupt resume con-
dition will be present for one clock period when the CPU program asso-
ciated with the interrupt request for this channel has been completed
and is terminating with an exchange exit instruction. This flag is
also cleared on an I/0 clear condition for the CPU. This condition

is programed in the MCU on a CPU dead start only.

Interrupt. lockout -condition

This is an abnormal condition which may occur in the channel output
control unit when an interrupt request is not processed by the CPU
program for a long time. This condition occurs when the output
interrupt request flag is still set from the last buffer threshold
when the next threshold is reached. This condition may be precisely
stated as follows:

Condition; output interrupt request flag & lowest order six bits in
the output address register all have a value of one &
parcel count i{s zero

This condition prevents further processing of output data to the PPU
until the CPU has cleared the work backlog. When the CPU program has
completed processing the first threshold interrupt request, the out-
put interrupt request flag will clear., It will reset again for the
new interrupt reques:. The output data path is then released for the
data in the SCM buffer associated with the first interrupt request.

2-157

Normal output sequence

The following description lists chronologically the events in a normal
output record sequence, The sequence begins with a CPU instruction
which resets the channel output control unit, This is an 0170
instruction with the channel number in register Bk. The output reset
condition resulting from execution of this instruction is present for
one clock period. At the end of this clock period the output reset
flag is set in the channel output control unit,

The output reset flag remains set for only one clock period. At the
end of this clock period the counting portion of the output address
‘register is cleared to zero. This resets the buffer address to the
first location in the SCM buffer, At this same time the output word
request flag is set. This flag then requests a SCM reference to read
the first word from the SCM buffer to the output disassembly register.

The output parcel count register is statically cleared to zero by the
output word request flag. Some number of clock periods later, when
SCM is ready to deliver the 60 bit word to the output disassembly
register, an output word resume condition will be present for this
channel, This condition lasts for one clock period, and the output
word request flag is cleared at the end of this clock period. The
output word resume flag is set at this same time,

The output word resume flag causes two actions in the chamnel nntput
control unit. At the end of the one clock period in which the output
word resume flag is set, the 60 bit disassembly register is cleared
and entered with data from SCM. At this same time the output word
flag is set. The output word flag generates a one clock period wide
word pulse which is transmitted to the PPU over the output data chan-
nel., Concurrent with the word pulse, the upper parcel of the data in
the disassembly register is transmitted to the PPU. This data remains
static on the 12 data lines as long as the parcel counter has a zero
value. The word pulse sets the PPU input channel word flag when it
arrives at the PPU, This flag then allows the PPU to sample the 12
data lines and transmit a resume pulse to the channel output control
unit,

The output resume flag in the channel output control unit is set when

the resume pulse from the PPU arrives at the CPU. This flag is then
synchronized and the synchronized output resume flag is set. This

last flag then sets in motion the mechanism for advancing the disassembly
register to the next parcel position,

2-158

The synchronized output resume flag is set for one clock period. At
the end of this clock period a number of actions occur. The output
parcel count register is entered with a new parcel count one greater
than the previous value. In this case the parcel count will advance
from zero to one. This change in parcel count switches the static
network associated with the 60 bit disassembly register so that the
second parcel of the register content is transmitted to the PPU over
the output data path. At this same time the content of the output
address register is advanced to the next address in the SCM buffer
(modulo buffer size). The advance of the buffer address occurs at
this time rather than earlier in order that the CPU program in moni-
toring the channel status may determine when the PPU has accepted
the first parcel of a new 60 bit word. The output resume flag is
cleared and the output word flag is set at the end of this clock
period,

The output word flag transmits a one clock period wide word pulse to
the PPU for the second parcel of the data in the disassembly register.
The cycle of communication then repeats., The parcel count is advanced
each time the synchronized output resume flag is set. The output
address register content is altered only for a parcel count of zero,
The next special action occurs when the synchronized output resume
flag sets and the parcel count is four. At this time the parcel count
is advanced to five and the output resume flag is cleared. The output
word flag is not set, however, and the output word request flag is

set instead.

The output word request flag clears the parcel count to zero and
requests a SCM reference for the next word in the SCM buffer area,
Some number of clock periods later the output word resume condition
appears and the cycle of delivering a new 60 bit word to the PPU
begins. This process continues until the content of the output
address register has been advanced to the point where the lowest
order six bits all have a value of one. When the synchronized out-
put resume flag is set, the parcel count is zero, and the lowest
order six bits of the address are ones, the output interrupt request
flag is set in addition to the previously described actions,

The output interrupt request flag does not normally interfere with
the operation of the rest of the channel output control unit. The
communication between the channel output control unit and the PPU
continues; 60 bit words are disassembled into 12 bit words, and the
12 bit words are delivered to the PPU., The output interrupt request
flag causes an I/0 interrupt request condition in the CPU which is
independent of the I/0 word requesting mechanism. The I/0 inter-
rupt request condition causes a CPU exchange sequence to an exchange

2-159

package address associated with the output channel. A CPU program
resulting from the exchange sequence then refills the portion of the
SCM buffer area which has been emptied by the channel output control
unit, The output interrupt request flag remains set until the CPU
program has been completed and an exchange exit instruction returns
the CPU to its previous program.

Terminating an output record

The length of an output record is determined by the receiving PPU

and not by the transmitting CPU program. The PPU program must know
the record length by prearranged convention or by data content of the
transmitted record. When the PPU has received the expected amount

of data it simply stops reading data from the PPU input channel,

This stops further transmitting action on the part of the channel
output control unit, The PPU program must sense the record flag on
the PPU input channel to determine when the CPU program has cleared
the SCM buffer area and begun a new record transmission.

2-160

Output Data Distribution Network

The output data distribution network illustrated in the general I/0
section diagram of figure 2-26 delivers data to the 15 channel out-
put disassembly registers plus a disassembly register for the MCU,
This network is illustrated in greater detail in figure 2-30 on the
following page. Data read from SCM for delivery to an output channel
passes through the SRO register. The 60 data bits are then transmit-
ted to an output data buffer register through a static delay network.
From the buffer register the data is distributed to the 15 output
disassembly registers and the MCU disassembly register.

70utput data buffer register

The output data buffer register is a 60 bit clear/enter type register
which is cleared and entered with new data at the end of every clock
period. The data in the SRO register is transmitted to the output
data buffer register during each clock period, The data in the buffer
register is then one clock period later than the corresponding data

in the SRO register. The output data buffer register distributes this
data to the 15 output disassembly registers and the MCU disassembly
register through a static data distribution network. The entry of
data in the individual disassembly registers is under the control of
the associated channel control unit,

Qutput disassembly register

The output disassembly register is a 60 bit clear/enter type register
with gated clock pulse control. There is one such register associated
with each output channel and one with the MCU. The data in the reg-
ister is cleared and new data entered at the end of a clock period in
which the output word resume flag is ser in the associated channel
output control unit., This clock period corresponds to the time at
which the data requested by the channel output control unit has arrived
at the output data buffer register and is available in the static dara
distribution network.

A static selection network chcoses one 12 bit parcel from the output
disassembly register for transmission over the channel output data
path to a PPU. This selection is controlled by the output parcel
count register in the channel outpur control unit., The highest order
parcel in the disassembly register correspends to a2 zero value in

the output parcel count register. The lowest order parcel in the
disassembly register corresponds to a value of four in the output
parcel count register, :

2-161

{8119 21} ojop
|guupyd ndino €E——

¥i0m}ou
uonaojes
o1404s

¥1oMmieN uounqiusig pyng indng 0g-2Biy

Y]
oys

_:oz o A.L

sysibey 19161604
»_asonncn_u 494nq piop
' inding indino
pILUYETT]
uonnqlys),
< 09 < ooop 09 fe
{048
S[8ULTYD Joyo 0 €——.]

$JOM DU
fojep
140§

2-162

|
. ﬂr-__ _
Vo

I/0 Word Request Control

The 15 channel input control units and 15 channel output control
units each contain a word request flag. These flags are set when
the associated control unit requires a SCM storage reference for
reading an output word or for storing an input word. Figure 2-31
on the following page illustrates the common control mechanism for
processing these requests.

At the left edge of figure 2-31 are the flags and address registers
representing the channel input and channel output control units,
Only one set of flags and registers are illustrated. There are
actually 15 such sets plus a set for the MCU., There is no dis-
tinction between input and output devices in the merging mechanism
for the request flags. The flags are treated as 32 word request
flags each independently requesting the use of SCM,

7Priori;y requast flag

There are 32 priority request flags in the I/0 word request control,
These flags are one bit clear/enter type registers which are cleared
at the end of every clock period. There is one priority request flag
associated with each input word request flag and another associated
with each output word request flag. The priority request flag is
cleared and entered with data from the associated word request flag
at the end of every clock period, The priority request flag there-
fore is a copy of the word request flag with a one clock period delay.

_Priority resume flag

There are 32 priority resume flags in the 1/0 word request control.
These flags are one bit registers with a separate set and a separate
clear input. A flag is set when the associated channel control unit
has completed a SCM reference. The flag remains set during the
requesting process for the next SCM reference. A priority resume
flag is cleared when_the associated priority request flag has been
recognized by the prlority selection netwnrk and the request is in gy
process by SCM. These two flags work toge;::ftsgrzggggﬁg_g,scuf
reference and then quickly remove the ¢ the mechanism
for a different channel. In this map«€r the priority selection
_network may operate at a higher g»<€d than if communication were
required directly with the chg~del control units.

//

2-163

lo)juoy ysenbey piom 0/1 1£-2 Bid

=
bo(} toyy
Boy ssenbos isonbaa
NS &paoisd piOM ndino
s|suuoyd Kond
Jey;0 wouy
! !
NOW woJ} |
boyy bot
Bo)y »mo:us isonbey
awnssl jaoud paom indul
NI0M U Apaoud
401 VITEI- T 1
CEOEIETEY) fusopd _ _
WIS isanbas «—— | < l
JoisiBos
1951694 $$2:pp0 ndjno
nRqunu | [+
Kyraoud
el
Niomjau .
(s41q 91) uon o088 sjpuunyd
SVS 0} €« e———— 10440 WOy 19451802
ssouppo $$0sppo {ndul
uoys
2l

{

(s41q 9))
NOW wosy

CC O L«

CC <«

\

2-164

.c<_u:V,..;<;f. ,

‘A priority resume flag is set at the end of a clock period in which
the following condition is satisfied.

‘Condition: mno word request flag (input or output)

A priority resume flag is cleared at the end of a clock period in
which the following condition is satisfied.

‘Condition: "accept I/O" & this flag designated in priority number

“register
“or: 'dead start"

Input/output flag (IOF)

‘This flag is a clear/enter type bit register which is cleared at the
end of every clock period. This flag may be set by the priority
selection network at the end of a clock period in which a priority
request flag and a priority resume flag are set for the same channel.
The conditica for setting the IOF is as follows:

Condition: no "accept I/0" & no XSF & priority request flag 0 &
priority resume flag 0

“or: no "accept I/0" & no XSF & priority request flag 1 &
priority resume flag 1

or: mno "accept I/0" & no XSF & priority request flag 2 &
priority resume flag 2

‘or: no "accept I/0" & no XSF & priority request flag 3 &
priority resume flag 3

or: no "accept I/0" & no XSF & priority request flag 37
(octal) & priority resume flag 37 (octal)

Priority selection network

The priority selection network illustrated in figure 2-31 is a static
network which chooses the highest priority channel request for SCM
processing at the end of every clock period. A channel request exists
when the priority request flag and the priority resume flag are both
set for that channel. If no channel request exists during a par-
ticular clock period, the IOF is not set at the end of that period
and a zero value is entered in the priority number register. If one
channel request exists during a particular clock period, a request
priority number for that channel is entered in the priority number
register. The IOF will be set at this same time unless a conflict
exists with the XSF or the "accept I/0" condition.

2-165

If more than one channel request exists during a given clock period,
the priority selection network chooses the highest priority channel
for processing. The channel priority numbers are listed below with
the highest priority first,

_Priority 00 - MCU input

)

SL-AEC OFFICIAN

Priority 01 - MCU output

Priority 02 - Channel one input
Priority 03 - Channel one output
Priority 04 - Channel two input
Priority 05 - Channel two output
Priority 06 - Channel three input
Priority 07 - Channel three output
Priority 10 - Channel four input
Priority 11 - Channel four output
Priority 12 - Channel five input
Priority 13 - Channel five output
Priority l4 - Channel six input
Priority 15 - Channel six output
Priority 16 - Channel seven input
Priority 17 - Channel seven output
Priority 20 - Channel ten input
Priority 21 - Channel ten output
Priority 22 - Channel eleven input
Priority 23 - Channel eleven output
Priority 24 - Channel twelve input
Priority 25 - Channel twelve output
Priority 26 - Channel thirteen input
Priority 27 - Channel thirteen output
Priority 30 - Channel fourteen input
Priority 31 - Channel fourteen output
Priority 32 - Channel fifteen input
Priority 33 - Channel fifteen output
Priority 34 - Channel sixteen input
Priority 35 - Channel sixteen output
Priority 36 - Channel seventeen input
Priority 37 - Channel seventeen output

2-166

Priority number register

‘This is a five bit clear/enter type register which is cleared at the
end of every clock period. This register holds the current highest
priority channel request number for processing by the SCM access con-
trol. The number held in this register is used by the static address
selection network to select the proper input address register value,
or output address register value, for transmission to the SAS. This
same number is used to clear the priority resume flags and in the

I/0 word resume control. A new value is entered in this register
from the priority selection network at the end of every clock period.

‘Static address selection network

'This network selects the proper input address register value, or
output address register value, for transmission to the SAS as
illustrated in figure 2-31. Selection of the proper register value
is based on the contents of the priority number register. One
register value is selected in each clock period and transmitted to
the SAS. This address is not entered in the SAS unless the IOF

is set and no conflict exists in the SCM access control unit. All
addresses are treated as 16 bit quantities. The channel address

registers which contain only 12 bits are extended with four higher
order zero bits,

2-167

I/0 Word Resume Control

This portion of the CPU I/0 section controls the processing of an
1/0 word reference from the time of address arrival at SCM to the
resume of the channel control. The organization of the I/0 word
resume control is illustrated in figure 2-32 on the following page.

A sequence of events in the 1/0 word resume control begins with the

setting of the IOF in the I/0 word request control, Simultaneously
the priority number register is set with the designation of the proper
channel and mode for the requested reference. This flag and register
value are transmitted through a chain of six bit registers and static
networks as illustrated in figure 2-32. The progress of the six bit
code through this chain parallels the progress of data through the
SWS. The rank designations in this chain correspond to the same

ranks in the SWS, There are two major points in the chain at which
the control interfaces to other parts of the I/0 section. The I/0O
resume rank D register value selects the proper input data path for
data transmitted to SCM, The I/0 resume rank H register value selects
the proper control path for clearing a word request flag in a channel
input control unit or a channel output control unit,

'1/0 resume rank B register

7This is a six bit clear/enter type register with gated clock pulse

control., The highest order bit in this register is a copy of the IOF
from the I/0 word request control unit. The lowest order five bits
in this register are copies of the data in the priority number regis-
ter, The control information stored in this register corresponds to
the data stored in rank B of the SWS. This register is cleared and

new data entered at the end of a clock period in which the following
condition exists, '

‘Condition: NBF

or: NCF

‘_I/O resume rank C register

‘This is a six bit clear/enter type register with gated clock pulse

control. The control information stored in this register corresponds
to the data stored in rank C of the SWS, This register is cleared
and new data is entered from the I/0 resume rank B register at the
end of a clock period in which the following condition exists.

‘Condition: NCF

2-168

c ¢ C ¢ ¢ C r (X

'
[03uo) swnsey piom O/1 zg-2 By 4
_ H jubd _ _ © U4 4 uou 3 yupd
Qwnses Q/1 swnses O/1 NS /1 unsal /1
ety e ! !
S|OJ§U0) ' [
[duuoyd yndyno
pup ynduj 40y Yomipu |l 4 G ke ¥ i0M{3u S HIOMPAU e G e ¥10M}0U S
BWINSR PIOM o | UGyo9es Apjap Aojop ! Apjap
_ ! 01§04$ duDs d4ois 408

he—1 | < = ! [»wis:bos
- I_, L— Jequnu
, {ous) . ' , Kisoud

G Yuo4 9 3upi g uo, [

swnsal /1 ownzes O/1 Qwnseu /1 ﬁ
Ni0mau absew ¥i0Mj3u S ¥I0midU S ¥40m|3u G 110m iU
D§Op jndul 0 €——rf £ojep fojep fojop fojep
08 34048 4048 Mos
| | feo] | | 401
40N -ON 40N .
' : 10
48N

2-169

)

AL AEC OFFHCIAD

"1/0 resume rank D register

" This is a six bit clear/enter type register which is cleared at the

end of every clock period, The control information stored in this
register corresponds to the data stored in rank D of the SWS. This
register has two basic functions. It relays the six bits of control
information to the I/0 resume rank E register, and it controls the
input data merge network for data transmitted to SCM. The input data
merge network is illustrated in figure 2-28, There are sixteen sets
of 60 bit data paths merged in this network for transmission to the

SWS rank E register. The selection of one of these sixteen data paths

is controlled by the center four bits of the data in the I/0 resume
rank D register.

The data in the I/0 resume rank D register is cleared at the end of
every clock period and new data is entered from the rank C register.
The highest order bit in this transmission path is treated in a spe-
cial manner., This bit corresponds to the IOF for the word request,

The bit is set in the rank D register only on the following condition.

‘Condition: NCF & highest order bit set in rank C register

"1/0 resume rank E register

"This is a six bit clear/enter type register which is cleared at the

end of every clock period. The control inforuation stored in this
register corresponds to the data stored in the SWS rank E register.
The data is cleared in this register, and new data is entered from
the rank D register, at the end of every clock period.

'1/0 resume rank F register

"This is a six bit clear/enter type register which is cleared at the

end of every clock period., The control information stored in this
register corresponds to the data stored in the SWS rank F register,
The data is cleared in this register, and new data is entered from
the rank E register, at the end of every clock period.

"1/0 resume rank G register

"This is a six bit clear/enter type register which is cleared at the

end of every clock period. The control information stored in this
register corresponds to the data stored in the SWS rank G register,
The data is cleared in this register, and new data is entered from
the rank F register, at the end of every clock period,

2-170

1/0 resume rank H register

This is a six bit clear/enter type register which is cleared and
entered with data from the rank G register at the end of every clock
period. This is the last rank in the I/O resume chain. The control
information in this register corresponds to the data in the SRO
register, The highest order bit is set in this register when the
data in the SRO register is intended for transmission to an output
channel disassembly register. In this case the lowest order five
bits in the I/O resume rank H register determine the proper channel
control unit for the resume information. If the lowest order bit is
zero, an input word resume condition is present for the input channel
designated by the next highest order four bits, If the lowest order
bit is one, an output word resume condition is present for the output
channel designated by the next highest order four bits. 1In this last
case the output word resume flag is set for the appropriate channel
output control unit. This flag will then be set at the same time

as the data in the SRO register arrives at the output data buffer
register illustrated in figure 2-30. The output word resume flag
then contro's the data transmission from the output data buffer
register to the output disassembly register for the appropriate
channel. ~

2-171

J

)

Wl

AL AEC OFFHe

I/0 Interrupt Control

"This portion of the CPU I/0 section controls the processing of input

channel and output channel interrupt requests. These requests are
processed in a section of the CPU which is completely separate from
the processing of input channel and output channel word requests.
The organization of this control section is illustrated in figure
2-33 on the following page.

'A sequence of events in the I/0 interrupt control begins with the

setting of an input interrupt request flag or an output interrupt
request flag. One of each of these flags is illustrated at the left
edge of figure 2-33, There are 15 such input interrupt request flags
and 15 output interrupt request flags in the various chamnel control
units. In addition, there are two interrupt request flags associated
with the MCU, These last two flags are treated in the I/0 interrupt
control as if they were the input and output flags associated with

a channel zero,

The 32 independent interrupt request flags are connected to an interrupt
selection network as illustrated in figure 2-33. This network senses

the presence of an interrupt request and encodes an identifying number
in the I/0 exchange request register. The following static network

then creates an "I/0 exchange request' condition which is transmitted

to the exchange sequence control unit. This static network also forms

a SCM address from the information in the 1/0 exchange request register.
The exchange sequence control then causes the current CPU program to

be interrupted with an exchange sequence using the specified SCM address.

A CPU program associated with the referenced exchange package performs

the necessary functions for the requesting channel, Ccacurrently,

an "I/0 exchange resume'" condition is generated in the exchange sequence
control unit and is transmitted to the I/0 interrupt comntrol where it
sets the I/0 exchange accepted flag. This flag remains set during the
execution of the CPU program for the channel interrupt. The next action
in the I/0 interrupt control occurs when the CPU program is completed
and an 013 instruction is executed to return the CPU to the previous
program., The execution of the 013 instruction sets the PXF in the
exchange sequence control unit., This flag is transmitted to the I/0
interrupt control and begins the process of releasing the interrupt
request mechanism.

2-172

ASLAEC M HILIAS! N

¢ C C ¢«

c c

{03juoy dnissiur 0O/1

(s1Q 9I) Swnses §AnsSLUL INdUI €]

(S41G 91) dwnsd) fdnuidjul {NdiN0 €——

CoC C C C i N

¢cg-2 B

boj; @SD9IAL
abuoyoxd Q/1

s60|4 {sonbau
jdnaasul gndui

sBoy} isonbas
jdnugu ndino

sysibs
aWNSe. 4Xd
obupyoxe
o1 |
60|} peydeaon
abubyoxe O/
NIOM U
o] WIOMSU 1044u02 oduenbos
TEEIES | pe— oBuDydX® Woly
oUDIS
21}048
| pe—
N
boj} xd
pelojep sboj} Jsenboy
jdnassui gndul
H4OM{QU P JaYio woy
24048 { &
19}51502
1senbal .
ebuoydxe
/1
(s41q 91) $$93pp0 86UDYIXS O/] € NIOMU
%IOM}ISU G | U01§09|8S
IS ansaaan
1s9nba. ebuDYIXd Q1 €——— |

!

sb0)}
sonbes jdniieu
INAIN0 JSY0 Wl

2-173

REV. 11

%

h

OFHCIAD

+SL-AL

"REV. I3

‘The PXF causes the data in the I/0 exchange request register to be

copied into the I/0 exchange resume register. It also sets the delayed
PX flag illustrated in figure 2-33, A static network following the I1/0
exchange resume register translates the number in the register and sends
an input interrupt resume, or an output interrupt resume, to the request-
ing channel control unit., This resume clears the interrupt request flag
in the charnel control unit and completes the interrupt sequence. Con-
currently, the I/O exchange release flag frees the I/0 exchange request
register for use in the next interrupt request sequence.

“Interrupt selection network

‘This is a static network in the I/0 interrupt control unit which senses

an interrupt request from a channel control unit and encodes an iden-
tifying number in the I1/0 exchange request register. If more than one
input interrupt request flag (or output interrupt request flag) is set
in a given clock period, the interrupt selection network encodes the
identifying number associated with the flag having the highest priority.
The priority numbers for interrupt control are the same as the corres-

ponding numbers for word requests. These numbers are listed on page
2-166,

'I/0 exchange request register

‘This is a six bit clear/enter type register with gated clock pulse

control. This register is cleared and entered with data from the
interrupt selection network at the end of a clock period in which the
following condition exists.

‘Condition: 1I/0 exchange release flag

or: no tag bit in I/0 exchange request register

‘This register is cleared and entered with data from the interrupt

selection network at the end of each clock period until an interrupt
request is encoded by the interrupt selection network, This encoded
value plus a tag bit is then held in the register until the I/0
exchange release flag is set.

‘A "dead start' condition for the CPU forces the contents of the I/0

exchange request register to an interrupt for input channel 0, The
final action for the CPU on release from '"dead start' will be an
exchange sequence to SCM address zero,

2-174

“"1/0 exchange request' condition

"This condition is generated in the I/0 interrupt control unit when an
interrupt request has been encoded into the I/0O exchange request regis-
ter. This condition is present whenever the highest order bit in the
1/0 exchange request register is set. This bit is a tag bit which is
set whenever an input interrupt request flag or an output interrupt
request flag has been processed by the interrupt selection network.

The bit remains set until the I/0 exchange release flag causes a new
entry into the I/0 exchange request register.

"I/0 exchange address

A 16 bit I/0 exchange address is generated in the I/0 interrupt control
unit in a static network following the I/0 exchange request register.
This address is generated from the lowest order five bits in the I/O
exchange request register. The highest order seven bits of the 16 bit
address are always zero. The lowest order nine bits are formed by
shifting the five bit encoded priority number in the 1/0 exchange request
register left by four bit positions. This address then specifies the
proper exchange package location in SCM as illustrated in figure 1-4 in
part one of this manual,

" 1/0 exchange accepted flag

‘This flag is a one bit register with a separate set and a separate
clear input. The flag is set at the end of a clock period in which
the following condition is present.

‘Condition: "I/O exchange resume"

‘This flag is cleared at the end of a clock period in which the following
condition exists,

Condition: 1I/0 exchange release flag
or: no tag bit in I/0 exchange request register

This flag remains set from the time the exchange sequence control unit
begins the initial exchange for the interrupt request until the CPU
program associated with the interrupt request has been completed and
an exchange exit instruction is executed,

2-175

' SL-AEC OFFICIAN N
]

"Delayed PX flag

This flag is a one bit clear/enter type register which is r ared at

the end of every clock period. The flag is reset at the e f a
clock period in which the PXF is set. This flag is theref a copy
of the PXF.with a one clock period delay.

'1/0 exchange release flag

This flag is a one bit clear/enter type register which is " red at

the end of every clock period. This flag is set at the e f a clock
period in which the following condition is present,

Condition: _Delayed PX flag & I/0 exchange accepted flag

"1/0 exchange resume register

‘This is a six bit clear/enter type register which is cleared at the

end of every clock period. This register is entered with a copy of
the contents of the I/0 exchange request register at the end of a
clock period in which the following condition is present.

‘Condition: PXF & I/0 exchange accepted flag

'This register is entered at the same time as the delayed PX flag is

set. A static network following this register translates the lowest
order five bits in the register and forms an interrupt resume for a
specific input or output channel control unit. The interrupt request
flag in that channel control unit will then be cleared at the same
time as the I/0 exchange release flag is set in the I/0 interrupt
control.

2-176

INSTRUCTIONS

CPU

3

TOVIDHEIO DIV YL«

)

SL-AEC ngncmﬂ

PART 3: CPU INSTRUCTIONS

:Introduction

This section of the reference manual is devoted to describing the CPU
instructions in considerable detail, Each instruction is described
separately as to what it does, briefly how it does it, how long it

takes to do it, and what happens if unusual or special situations

arise. Extensive use is made of three letter abbreviations and spe-
cial terms which are defined in part two of this manual. These terms
and abbreviations are listed in the index at the back of the manual,
together with the page reference in part two where each term is defined,

The CPU instructions tend to fall into two distinct categories: those

causing computation, and those causing storage references or program
branching. The CPU instructions causing computation are generally
executed in a fixed amount of time after they have issued from the
CIW register. A string of such instructions may issue in consecutive
clock periods and perform a large amount of computation in a very
short time., More generally, each instruction waits for one or more
clock periods before it issues from the CIW register because one or
both of the operands required for that instruction have not yet arrived
at the operating registers. Careful coding of critical program loops
can therefore result in subgtantial improvements in execution time,
The detail timing information provided in this part of the reference
manual is intended to allow a complete analysis of these situations
where the programing effort is warranted,

Instructions involving storage references for operands or program

branching cannot be preciscly timed. The relatively random SCM
storage bank conflicts resulting from I/0 section storage references
reduce this area of programing to a statistical problem. Program
branching within the instruction stack causes no storage references,

and small program loops can therefore be precisely timed for this
case,

'3-0

REV. &

00xxx Error exit

This instruction format is treated as an error condition and, if

executed, will set the program range condition flag in the PSD
register. This condition flag will then generate an error exit
request which will cause an exchange jump to address (EEA). In
this case all instructions which have issued prior to this instruc-
tion will be run to completion. Any instructions following this
instruction in the current instruction word will not be executed.
When all operands have arrived at the operating registers as a
result of previously issued instructions, an exchange jump will
occur to the exchange package designated by (EEA).

The i, j, and k designators in this instruction are ignored. The

program address stored in the exchange package on the terminating
exchange jump is advanced one count from the address of the current
instruction word., This is true no matter which parcel of the current
instruction word contains the error exit instruction.

"This instruction format is not intended for use in normal program

code., The program range condition flag is set in the PSD register
to indicate that the program has jumped to an area of the SCM field
which may be in range but is not valid program code. This should
occur when an incorrectly coded program jumps into an unused area
of the SCM field or into a data field. The program range condition
flag is also set on the condition of a jump to address zero, or a
jump beyond the SCM field length. These conditions can be deter-
mined by the system monitor program on the basis of the register
contents in the exchange package. The existence of an error exit
condition resulting from execution of this instruction format may
thus be deduced by the monitor program.

Special situations

A special situation may occur when a program is terminated with an
error exit format and a previously issued instruction stores a result
operand in SCM. The error exit is treated as a SCM range error which
blocks a write operation in SCM as soon as the error is detected. A
legitimate SCM write operation may be blocked by the error condition
even though the instruction causing the write issues substantially
before the error exit. The timing in this case will depend on the
SCM bank conflicts which may have occurred.

* 0 SLAEC ORHICIAR 1

0100x | xomxxx Return jump

This is a two parcel instruction in which the lower order 18 bits
are used as an operand K, This instruction writes a special word
into the SCM field at relative address K, The instruction stack is
cleared, and the current program sequence is then terminated by a
jump to address K+ 1 in the SCM field, The word stored in SCM
contains a jump instruction which, when executed, will cause an

unconditional jump to the address of this return jump instruction
plus one,

This instruction is intended to call a subroutine and insert execution
of this subroutine between execution of the current instruction word
and the following instruction word, Instructions appearing after the
return jump instruction in the current instruction word will not be
executed, The called subroutine exit must be at address K in the SCM

field, The called subroutine entrance address must be K + 1 in the
SCM field,

This instruction stores a full 60 bit word at address K in the SCM
field, The upper half of this word contains an unconditional jump
instruction (0400) with an address which is equal to the current
program address plus one, The lower half of the stored word is all
zeros, The octal digits in the stored word then appear as shown
below with the xxx field indicating the location of the current
program address plus one,

X 0400x xooock 00000 00000 subroutine exit
K+ 1 yyyyy yyYyy YyYYYY Yyyyy subroutine entrance

‘Execution time

‘The minimum execution time for a return jump instruction is 13 clock

periods, The return jump sequence begins as soon as the instruction
enters the upper parcel of the CIW register, The sequence does not
wait for the completion of previously issued instructions, The
following 1s a chromological listing of events in the return jump
sequence for the case of minimum execution time,

Cr0O0

Crol

CPO2

CrO4

010 instruction in the upper parcel of the CIW register.

Instruction does not issue.
Set GJF, ‘

010 instruction in the upper parcel of the CIW register.
Instruction does not issue,

Transmit (P) to the RIX register,

Transmit K to the P register.

Set RJF,

Clear GJF.

010 instruction in the upper parcel of the CIW register.
Instruction does not issue,

Void (IWS). Clear (IAS).

Transmit (P) + (RAS) to the IFA register.

Set SXF,

Clear RJF.

010 instruction in the upper parcel of the CIW register,
Instruction does not issue,

Transmit (IFA) to the SAS. Tag for store exit address,
Transmit (RJX) to the SWS.

Advance (P).

Set JCF.

Clear SXF.

010 instruction in the upper parcel of the CIW register,
Instruction issues.

No coincidence in the IAS.

Read a blank word from the IWS to the CIW register,

Set JOF,

Set OSF.

Transmit (P) + (RAS) to the IFA register.

Set F1F, F2F.

Clear JCF,

No instruction in the upper parcel of the CIW register,

Tranemit (P) to the NSA register,

Set M1F, M2F,

The OSF remains set,

Transmit (IFA) to the SAS, Tag for read to IWS,
Advance (IFA).

Clear JOF,

Clear F2F,

'3-3

NN

)

S$L-AEC OFFICIAN

CPO6

"CPO7

CPO8

CPO9

CP10

CPll

No instruction in the upper parcel of the CIW register.

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register,
The OSF remains set,

Transmit (IFA) to the SAS. Tag for read to IWS,
Advance (IFA).

First fetch address leaves the SAS for a SCM bank.
Clear FLF.

‘No instruction in the uppexr parcel of the CIW register,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register,

The OSF remains set,

First fetch memory read/write cycle beglns in a SCM bank,
Second fetch address leaves the SAS for a SCM bank.

‘No instruction in the upper parcel of the CIW register,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register,

The OSF remains set,

Second fetch memory read/write cycle begins in a 'SCM bank.

No instruction in the upper parcel of the CIW register.
No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.

The OSF remains set,

No instruction in the upper parcel of the CIW register.

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register,

The OSF remains set.

First fetch inmstruction word reads to SCM bank operand register

No instruction in the upper parcel of the CIW register,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.

The OSF remains set.

Transmit the first fetch instruction word to the IWS.

Transmit (NSA) to the IAS,

Shift the IWS and the IAS one word position,

Advance (NSA).

Second fetch instruction word reads to SCM bank operand register.
Clear M2F,

No instruction in the upper parcel of the CIW register.
Coincidence in the IAS.

Read a valid instruction word from the IWS to the CIW register.
Clear the OSF,

Transmit the second feteh instruction word to the IWS.

Transmit (NSA) to the IAS,

Shift the IWS and the IAS one word position.

Advance (NSA),

Clear MIF,

Next instruction in the upper parcel of the CIW register
Instruction may issue.

Execution delavs

A delay will occur in the execution of the return jump sequence if
M1F is set during CP0O2 in the timing sequence listed above. This
condition will exist if the instruction stack control unit has
requested one or more fetch instruction wo.ds which have not arrived
at the instruction stack by CP02, This is likely to be the case if
the sequence of instructions prior to the return jump instruction
has been straight line coding for several instruction words. The
SXF will not set until the M1F has been cleared indicating that all
instruction words requested for the instruction stack have arrived.
Execution of the commands indicated in CP0O2 of the listing above
will be delayed in this case by the number of clock periods required
to complete the instruction fetches and clear the MIF., All sub-

sequent commands in later clock periods will be delayed by the same
amount,

A delay will occur in the execution of the return jump sequence if a
backup condition exists in the SAS during CPO3 in the timing sequence
listed above, This condition may exist if SCM storage references
unrelated to the return jump sequence caused a storage bank conflict
just prior to CP03. Execution of the CP03 commands will be delayed
in this case until the NBF sets indicating the SAS backup situation
has been resolved. All subsequent commands in later clock periods
will be delayed by the same amount.

3-5

o’

“QL-AEC OFFICIAT)

A delay will occur in the execution of the return jump sequence if
(IFA) is not able to be transmitted to the SAS during CPO5 because
of a conflict with an 1/0 section word request or because of a SAS
backup condition., The I/0 section has priority over instruction
stack fetch requests in the SCM access control unit. If such a
request happens to occur during CPOS5 of the timing sequence listed
above, the instruction stack fetch is delayed by one clock period,
A backup condition can exist in the SAS during CPO5 due to a SCM
bank conflict between the store exit reference of the return jump
sequence and an unrelated SCM reference, or between two unrelated
SCM references. In any of these cases the remainder of the return
jump sequence is delayed by the number of clock periods required to
resolve the conflict or backup condition.

A delay will occur in the execution of the return jump sequence if
a SCM bank conflict exists during CP06 of the timing sequence listed
above, This situation will occur if the address of the first fetch
instruction word requires a SCM bank which is busy with a prior
reference, The arrival of the first fetch instruction word at the
IWS will be delayed in this case by the number of clock periods
required for the SCM bank to complete the read/write cycle required
in the previous reference,

7Specia1 situations

_Designator j not zero

The j designator in the return jump instruction is normally zero
This designator is ignored, however, in the execution of the
instruction, and a non-zero value will have no effect on the
results,

‘Last parcel

The return jump instruction requires two parcels of an instruction
word for normal use. If a return jump instruction begins in the
first, second, or third parcel of an instruction word the following
parcel completes the instruction., If a return jump instruction
begins in the last parcel of an imstruction word it will not be
continued in the following word. 1In this case the instruction will
be executed as if there were a fifth parcel in the instruction word
and this parcel contained all zeros,

3-6

Jump out of range

A special situation exists if the value of K in a return jump
instruction is greater than the SCM field length. In this case
the instruction is executed with the store of the exit word in
SCM inhibited, The program address is altered to the value K
and advanced by one count in a normal manner, The program range
condition flag is set in the PSD register to indicate the jump
out of range. The program sequence is then terminated with an
exchange jump to (EEA). The resulting exchange package will
contain a program address equal to K+ 1, and a bit set in the
PSD area corresponding to the program range condition flag.

Jump to zero

A special situation exists if the value of K in the return jump
instruction is zero. In this case the instruction is executed in
a normal manner, and the exit word is stored at address zero in
the SCM field, 1In the process of executing the instruction (P)

is momentarily set to zero, This is sensed as an error condition,
and the program range condition flag is set in the PSD register,
As a result, the program sequence will be terminated at the com-
pletion of the return jump instruction with an exchange jump to
(EEA), The return jump instruction will have advanced the program
address one count so that the exchange package will indicate a
program address of one rather than zero,

Jump to breakpoint address

A specital situation exists if the value of K in the return jump
instruction is equal to (BPA). In the process of executing the
instruction (P) will momentarily be set equal to (BPA). This will
be detected as a breakpoint condition, and the breakpoint condition
flag will set in the PSD register, The return jump instruction
will advance (P) one count in the process of completing execution.
This final value of (P) will appear in the exchange package when
the breakpoint interrupt occurs,

\

An)

SL-AEC OFFH

"Error condition during execution

A number of error conditions may occur during the execution of

a return jump sequence. Some possible conditions are arithmetic
errors due to previously issued instructions and parity errors

in SCM or LCM. If any error conditions occur during the return
jump sequence, the proper flags are set in the PSD register and
the return jump instruction is executed to completion in a normal
manner, The program sequence is then terminated with an exchange
jump to (EEA). The resulting exchange package will contain a
program address equal to K + 1 from the return jump instruction
and one or more error flags set in the PSD area.

'I/0 interrupt during execution

An I/0 section interrupt request may occur during the execution
of a return jump sequence. In such a case the return jump instruc-
tion is completed, and an exchange jump to the proper I/0 channel

exchange package occurs with the program address equal to K +.1
from the returm jump instruction.

‘3-8

Ol1lix | xxxxx Block copy LCM to SCM

This is a two parcel instruction in which the lower order 18 bits
are used as an operand K, This instruction reads a sequence of 60
bit words from consecutive addresses in LCM and copies them into a
block of consecutive addresses in SCM, The block of words begins
at address (X0) in the LCM field, The words are stored in the SCM
field beginning at address (AO0). The number of words to be copied
is determined by the sum of K + (Bj).

This instruction is intended to move a quantity of data from the
large core memory into the small core memory as quickly as pos-
sible. All other activity in the CPU, with the exception of I/0
word requests, is stopped during this block transfer of data. All
instructions which have issued prior to this instruction are executed
to completion, No further instructions are issued until this block
transfer is nearly completed. As a result of these restrictions
the data flow from LCM to SCM can proceed at the rate of ome 60 bit
word each clock period, When an I/0 section word request for SCM
occurs during this transfer, the data flow is interrupted for one
clock period, The I/0 word address is inserted in the stream of
addresses to the SAS, and the addresses for the block transfer are
resumed with a one clock period delay,

The maximum number of words which can be copied from LCM to SCM with
this instruction is determined only by the size of the SCM field and
LCM field. Any block size from a one word block to a field length
block can be moved as a unit. The length of the block is determined
by adding the quantity K from the instruction to the contents of
register Bj, Either quantity may be used to increment, or decrement,
the other. The addition is performed in an 18 bit ones complement
mode. The resultant sum is treated as an 18 bit positive integer.

A zero result will cause this instruction to be executed as a pass
instruction,

"Three of the parameters for this instruction reside in operating

registers (A0, X0, Bj). The contents of these registers are not
altered by the execution of this instruction,

3.9

N’

2

SL-AES OFFICIA

Execution time

‘This instruction remains in the CIW register until the block copy

sequence has progressed to the point where all SCM addresses have
been delivered to the SAS, This prevents issue of this instruction,
and therefore all following instructions, until near the end of the
instruction execution, When this instruction issues, a LCM busy
flag is set which prevents further LCM references until the block
copy has been entirely completed., The program sequence will con-
tinue and the following instructions will be executed unless they
make reference to large core memory.

The nminimum time to issue this instruction for a block of N words is

N + 13 clock periods. The minimum time to execute this instruction to
completion and clear the LCM busy flag is N + 15 clock periods. A sub-
sequent LCM (0ll, 012, 014, 015) instruction may then begin execution
N + 15 clock periods after beginning execution of this instruction,

Any other type of instruction may begin execution N + 13 clock periods
after beginning execution of this imstruction.

The LCM block access control unit initiates a read/write cycle in
three LCM banks at the beginning of this instruction sequence. The
first LCM bank will produce a block of eight words which will contain
the first LCM word requested in the current instruction. The second
and third LCM banks will produce the next consecutive block of 16
words. Additional LCM bank read/write cycles are initiated when
required as the transfer progresses. A read/write cycle is initiated
in bank n + 3 when the last word is read from bank n, This procedure
assures the uninterrupted flow of data as the addressing crosses LCM
bank boundaries.

The following is a chronolegical listing of events in a three word
block copy in which no conflicts or delays occur.

3-10

011 instruction in the upper parcel of the CIW register.
Instruction does not issue,

All operating registers free.

F1F not set.

LCM busy flag not set,

Transmit (X0) + (RAL) to LCM word address register.

Set go LCM block flag.

‘011 instruction in the upper parcel of the CIW register.
Instruction does not issue.
Transmit K + (Bj) to LCM block counter.

011 instruction in the upper parcel of the CIW register.
Instyuction does not issue,

Transmit first bank address to LCM bank address register,
Transmit (AQ) + (RAS) to BAK register,

011 insgruction in the upper parcel of the CIW register.
Instruction does not issue.

Begin read/write cycle in first LCM bank.

Transmit second bank address to LCM bank address register,

01l instruction in the upper parcel of the CIW register.
Instruction does not issue.

Begin read/write cycle in second LCM bank.

Transmit third bank address to LCM bank address reglster.

CPO5 Ol1 instruction in the upper parcel of the CIW register,
Instruction does not issue.
Begin read/write cycle in third LCM bank.

CP06 Oll instruction in the upper parcel of the CIW register,
Instruction does not issue,

CP11 Ol1 instruction in the upper parcel of the CIW register,
Instruction does not issue,
Set go block copy flag.

CP12 Oll instruction in the upper parcel of the CIW register.
Instruction does not issue,
Transmit (BAK) to the SAS, Tag for LCM to SCM.
Advance (BAK).
Reduce LCM block count.

3-11

FHICIATL
)

OO
N

*SL-AE

CP13

CPl4

CP15

CPlé

CP17

CP18

011 instruction in the upper parcel of the CIW register.

Instruction does not issue,

First LCM bank reads 8 words to LCM bank operand register,
First SCM address leaves SAS for SCM bank address register,
Transmit (BAK) to the SAS. Tag for LCM to SCM.

Advance (BAK). '

Reduce LCM block count.

011 instruction in the upper parcel of the CIW register.
Instruction does not issue. '
Second LCM bank reads 8 words to LCM bank operand register.
Begin read/write cycle for first word in. SCM bank,

Second SCM address leaves SAS for SCM bank address register
Transmit (BAK) to the SAS. Tag for LCM to SCM.

Advance (BAK).

Reduce LCM block count.

Clear go block copy flag.

Advance LCM word address,

011 instruction in the upper parcel of the CIW register,

Instruction issues,
Third LCM bank reads 8 words to LCM bank operand register.

Transmit next instruction to upper parcel of the CIW register,

First 60 bit word arrives at LCM read register. - v
Begin read/write cycle for second word in SCM bank.

Third SCM address leaves SAS for SCM bank address register.
Advance LCM word address.

Set LCM busy flag.

‘Next instruction in the upper parcel of the CIW register

Instruction may issue,.

Transmit first word from LCM read register to SWS,
Second 60 bit word arrives at LCM read register,
Begin read/write cycle for third word in SCM bank,
Advance LCM word address.

LCM busy flag remains set,

First SCM reference reads to SCM bank operand register.

Transmit second word from LCM read register to SWS.
Third 60 bit word arrives at LCM read register.
Clear LCM busy flag.

Transmit first word from SWS to SCM bank operand register.
Second SCM reference reads to SCM bank operand register.
Transmit third word from LCM read register to SWS.

'3-12

CP19 Transmit second word from SWS to SCM bank operand register
Third SCM reference reads to SCM bank operand register,

CP20 Transmit third word from SWS to SCM bank operand register.

Execution delays

‘The execution of this instruction will not begin until the three
conditions listed below have been satisfied.

All operating registers must be free: This implies that all previously
issued instructions have delivered their results to the operating
registers. This will normally not be the case in the clock period in
which this instruction first appears in the CIW register., A delay of
two or three clock periods would be normal for this condition.

The F1F must not be set: This will be the case unless a SCM bank
conflict has caused a SAS backup condition which prevented an instruc-
tion fetch address from leaving the IFA register, This condition is
not likely to occur often enough to cause a significant average delay.

The LCM busy flag must not be set: This will be true unless another
LM (011, 012, 014, 015) instruction has just preceded this instruction.

A delay will occur at CPOl in the sequence above if any LCM bank is
in the process of completing a read/write cycle from a previous LCM
reference. A LCM read/write cycle requires 64 clock periods for
completion. A significant portion of this time could appear as a
delay in the execution of this instruction if a LCM instruction has
been recently executed.

A delay will occur during the block transfer of data from LCM to SCM
whenever an I/0 section word request is made. A minimum delay of

one clock period is required to enter the I/0 word address in the
address stream to the SAS, An additional delay will occur if the I/0
reference causes a bank conflict in SCM with one of the block copy
references. The block copy references to SCM cannot cause a bank con-
flict among themselves since the addresses in the block are sequential
and the SCM read/write cycle is less (10 clock periods) than the number
of banks (32) available. The probability of a bank conflict between

a random I/0 address and one of the block copy addresses preceding

or following it 1s, however, rather high (18/32).

3-13

Y

' ‘S.t.AEL"L‘\FnC

‘The average delay caused by each I/0 word request during the block

copy is 3.81 clock periods. The gross effect of light I/0 volume

(6 million bits/sec) is a 1 per cent increase in the block copy time
over no I1/0 activity. The gross effect of heavy 1/0 volume (60
million bits/sec) is a 10 per cent increase in block copy time.

Special situations

(X0) negative
(X0) greater than 19 significant bits

‘The lowest order 19 bits of (X0) are used to determine the initial

address in the LCM field for the block copy. The higher order bits
are ignored. If (X0) is negative the lowest order 19 bits are masked
out and treated as a positive integer.

LCM out of range

A test against LCM field length is made at the beginning of the block
copy sequence. The length of the block is determined by adding the
quantity K to (Bj) in an 18 bit ones complement mode. The resulting
sum is treated as an 18 bit positive integer. This integer,is added

to the lowest order 19 bits of (X0), also treated as a positive integer.

The resulting sum is compared with (FLL). 1If the resulting sum is
greater than (FLL), indicating that the block copy will go beyond the
assigned LCM field, the block copy is not executed, In this case the
LCM block range condition flag is set in the PSD register, and the
block copy instruction is issued as a pass with a four clock period
execution time. The exchange jump to (EEA) resulting from setting
the LCM block range condition flag will not occur before execution

of the next program instruction word unless a delay is introduced by
subsequent instructions in the current Iinstruction word.

3-14

'SCM out of range

‘A test against SCM field length is made at the beginning of the block
copy sequence. The length of the block is determined by adding the
quantity K to (Bj) in an 18 bit ones complement mode. The resulting
sun is treated as an 18 bit positive integer. This integer is added
to (A0), also treated as an 18 bit positive integer. The resulting
sun is compared with (FLS). If the resulting sum is greater than
(FLS), indicating that the block copy will go beyond the assigned SCM
field, the block copy is not executed. In this case the SCM block
range condition flag is set in the PSD register, and the block copy
instruction is issued as a pass with a four clock period execution
time. The exchange jump to (EEA) resulting from setting the SCM block
range condition flag will not occur before execution of the next
program instruction word unless a delay is introduced by subsequent
instructions in the current instruction word, ’

‘Block length negative

The length of the block is determined by adding the quantity K from
the instruction to the contents of register Bj. The addition is
performed in an 18 bit ones complement mode. The resultant sum is
treated as an 18 bit positive integer. A negative result will
therefore appear as a large positive integer. In this case the SCM
block range condition flag, and possibly the LCM block range con-
dition flag, will set in the PSD register, indicating too large a
block for the assigned fields. The block copy instruction will issue
as a pass with a four clock period execution time. The exchange jump
to (EEA) resulting from setting the SCM block range condition flag
will not occur before execution of the next program instruction word
unless a delay is introduced by subsequent instructions in the current
instruction word.

Block length zero
A zero block length is treated as a normal situation. No error flags

are set. The block copy instruction is executed as a pass with a
four clock period execution time,

3-15

SLAEC OF

'LCM words already in bank operand register

The LCM words required for the block copy instruction may already
be in one of the LCM bank operand registers from the execution of a
previous instruction, This situation is not sensed., The words in
the LCM bank operand register are discarded and are reread from the
LCM bank.

Last parcel

The block copy inmstruction requires two parcels of an instruction
word for normal use, If this instruction begins' in the first, second,
or third parcel of an instruction word the following parcel completes
the instruction. If a block copy instruction begins in the last
parcel of an instruction word it will not be continued in the fol-
lowing word, In this case the instruction will be executed as if
there were a fifth parcel in the instruction word and this parcel
contained all zeros,

Error condition during execution

A LCM or SCM parity error may occur during the execution of 3 block

copy instruction, An arithmetic error from a previous instruction
may also occur during the beginning of the block copy sequence. If
any error conditions occur, the proper flags are set in the PSD
register and the block copy instruction is executed to completion,
There are no error conditions which will interrupt the instructiomn
before completion,)

1/0 interrupt during execution

An I/0 section interrupt request may occur during the execution of
a block copy instruction, In this case the interrupt request is not
honored until the block copy instruction has been completed and any
subsequent instructions in the current instruction word have been
completed,

'3-16

0123x | xxxxx ‘Block copy SCM to LCM

This is a two parcel instruction in which the lower order 18 bits
are used as an operand K, This instruction reads a sequence of 60
bit words from comsecutive addresses in SCM and copies them into a
block of consecutive addresses in LM, The block of words begins
at address (AO) in the SCM field, The words are stored in the LCM
field beginning at address (X0). The number of words to be copied
is determined by the sum of K + (Bj).

This instruction is intended to move a quantity of data from the small
core memory into the large core memory as quickly as possible, All
other activity in the CPU, with the exception of I/0 word requests, is
stopped during this block tranafer of data, All instructions which
have issued prior to this instruction are executed to completion., No
further instructions are issued until this block transfer is nearly
completed, As a result of these restrictions the data flow from SCM
to LCM can proceed at the rate of one 60 bit word each clock period,.
When an 1/0 cection word request for SCM occurs during this transfer,
the data flow is interrupted for one clock period. The I/0 word
address is inserted in the stream of addresses to the SAS, and the
addresses for the block transfer are resumed with a one clock period
delay. ,

' The maximum number of words which can be copied from SCM to LCM with
this instruction is determined only by the size of the SCM field and
LM field, Any block size from a one word block to a field length
block can be moved as a unit, The length of the block is determined
by adding the quantity K from the instruction to the contents of
register Bj, Either quantity may be used to increment, or decrement,
the other. The addition is performed in an 18 bit ones complement
mode, The resultant sum is treated as an 18 bit positive integer,

A zero result will cause this instruction to be executed as a pass
instruction,

‘Three of the parameters for this instruction reside in operating

registers (A0, X0, Bj). The contents of these registers are not
altered by the execution of this instruction,

3-17

S AEC OFFICIAD
3) }

iExecution time

"This instruction remains in the CIW register until the block copy

sequence has progressed to the point where all SCM addresses have
been delivered to the SAS. This prevents issue of this instruction,
and therefore all following instructions, until near the end of the
instruction execution. When this instruction issues, a LCM busy
flag is set which prevents further LCM references until the block
copy has been entirely completed. The program sequence will con-
tinue and the following instructions will be executed unless they
make reference to large core memory.

"The minimum time to issue this instruction for a block of N words is

N + 4 clock periods. The minimum time to execute this instructiom
to completion and clear the LCM busy flag is N + 11 clock periods,
A subsequent LCM (011, 012, 014, 015) instruction may then begin
execution N + 11 clock periods after beginning execution of this
instruction. Any other type of instruction may begin execution

N + 4 clock periods after beginning execution of this instruction.

The LCM block access control does not initiate a LCM bank read/write

cycle until all words destined for the first bank have arrived at
the corresponding LCM bank .operand register. When the last woxd
arrives at the LCM bank operand register, a LCM bank read/write
cycle is initiated. As the block copy addressing crosses each bank
boundary a LCM bank read/write cycle is initiated for the completed
LCM bank entries. At the end of the block copy sequence a LCM bank
read/vwrite cycle is initiated for the last LCM bank entered. This
procedure assures an uninterrupted flow of data during the block
copy sequemnce,

‘The following is a chronological listing of events in a three word

block copy in which no conflicts or delays occur.

3-18

- CPOO

CPO5

012 instruction in the upper parcel of the CIW register

Instruction does not issue.

All operating registers free,

F1F not set.

LCM busy flag not set.

Transmit (X0) + (RAL) to LCM word address register.
Set go LCM block flag.

012 instruction in the upper parcel of the CIW register.

Instruction does not issue,
Transmit K + (Bj) to LCM block counter.

012 instruction in the'upper parcel of the CIW register.

Instruction does not issue,
Transmit (AQ) + (RAS) to BAK register,
Set go block copy flag.

012 instruction in the upper parcel of the CIW register.

Instruction does not issue.

Transmit (BAK) to the SAS. Tag for UCM to LCM.
Advance (BAK).

Reduce LCM block count.

012 instruction in the upper parcel of the CIW register,

Instruction does not issue.

Transmit (BAK) to the SAS. Tag for SCM to LCM,

Advance (BAK).

Reduce LCM block count,

First SCM address leaves SAS for SCM bank address register.

012 instruction in the upper parcel of the CIW register.

Instruction does not 1issue.

Transmit (BAK) to the SAS. Tag for SCM to LCM.

Advance (BAK),

Reduce LCM block count.

Begin read/write cycle for first word in SCM bank,

Second SCM address leaves SAS for SCM bank address register.
Clear go block copy flag.

3-19

) ‘A[C.OFFICIA‘G

A

CP06

CPO7

CPO8

CP09

CP10

CP11

‘012 instruction in the upper parcel of the CIW register.

Instruction issues,

Transmit next instruction to upper parcel of the CIW register,
Begin read/write cycle for second word in SCM bank.

Third SCM address leaves SAS for SCM bank address register,
Set LCM busy flag.

‘Next instruction in the upper parcel of the CIW register.

Instruction may issue,
Begin read/write cycle for third word in SCM bank.
LCM busy flag remains set,

First word reads from SCM bank to SCM bank operand register.

LCM busy flag remains set,

First word leaves SCM bank operand register for SRO register.
Second word reads from SCM bank to SCM bank operand register.
LCM busy flag remains set.

Transmit first word from SRO register to LCM write register.
Second word leaves SCM bank operand register for SRO register.
Third word reads from SCM bank to SCM bank operand register.
LCM busy flag remains set,

"First word leaves LCM write register for bank operand register.

Transmit second word from SRO register to LCM write register,
Third word leaves SCM bank operand register for SRO register,
Advance LCM word address.

LCM busy flag remains set,

"First word arrives at LCM bank operand register.

Second word leaves LCM write register for bank operand register.
Transmit third word from SRO register to LCM write register.
Advance LCM word address. .

LM busy flag remains set,

‘Second word arrives at LCM bank operand register.

Third word leaves LCM write register for bank operand register.
Advance LCM word address.
Clear LCM busy flag.

‘Third word arrives at LCM bank operand register,

3-20

Execution delays

The execution of this instruction will not begin until the three
conditions listed below have been satisfied,

All operating registers must be free: This implies that all
previously issued instructions have delivered their results to
the operating registers., This will normally not be the case in
the clock period in which this instruction first appears in the
CIW register. A delay of two or three clock periods would be
normal for this condition,

The F1F must not be set: This will be the case unless a SCM bank
conflict has caused a SAS backup condition which prevented an
instruction fetch address from leaving the IFA register. This con-
dition is not likely to occur often enough to cause a significant
average delay.

The LCM busy flag must not be set: This will be true unless
another LCM (011, 012, 014, 015) instruction has just preceded
this instruction,

A delay will occur at CPOl in the sequence above if any LCM bank

is in the process of completing a read/write cycle from a previous
LCM reference, A LCM read/write cycle requires 64 clock periods
for completion., A significant portion of this time could appear as
a delay in the execution of this instruction if a LCM instruction
has been recently executed,

A delay will occur during the block transfer of data from SCM to
LCM whenever an I/0 section word request is made, A minimum delay
of one clock period is required to enter the I/0 word address in
the address stream to the SAS, An additional delay will occur if
the I/0 reference causes a bank conflict in SCM with one of the
block copy references. The block copy references to SCM cannot
cause a bank conflict among themselves since the addresses in the
block are sequential and the SCM read/write cycle is less (10 clock
periods) than the number of banks (32) available, The probability
of a bank conflict between a random 1/0 address and one of the
block copy addresses preceding or following it is, however, rather
high (18/32), The average delay caused by each 1/0 word request
during the block copy is 3.81 clock periods., The gross effect of
light 1/0 volume (6 million bits/sec) is a 1 per cent increase in
the block copy time over no I/0 activity. The gross effect of heavy
1/0 volume (60 million bits/sec) is a 10 ‘per .cent increase in block
copy time,

3.21

h

L AQLAEC OFFICIALL

Special situations

(X0) negative

(X0) greater than 19 significant bits

‘The lowest order 19 bits of (X0) are used to determine the initial

address in the LCM field for the block copy. The higher order bits
are ignored, If (X0) is negative the lowest order 19 bits are masked
out and treated as a positive integer,

'LCM out of range

A test against LCM field length is made at the beginning of the block

copy sequence, The length of the block is determined by adding the
quantity K to (Bj) in an 18 bit ones complement mode. The resulting
sum is treated as an 18 bit positive integer, This integer is added
to the lowest order 19 bits of (X0), also treated as a positive
integer, The resulting sum is compared with (FLL), If the resulting
sum is greater than (FLL), indicating that the block copy will go
beyond the assigned LCM field, the block copy is not executed, In
this case the LCM block range condition flag is set in the PSD regis-
ter and the block copy instruction is issued as a pass. The exchange
jump to (EEA) resulting from setting the LCM block range condition
flag will not occur before execution of the next program instruction
word unless a delay is introduced by subsequent instructions in the
current instruction word,

'SCM out of range

A test against SCM field length is made at the beginming of the block

copy sequence, The length of the block is determined by adding the
quantity K to (Bj) in an 18 bit ones complement mode. The resulting
sum is treated as an 18 bit positive integer., This integer is added
to (AO0), also treated as an 18 bit positive integer., The resulting
sum is compared with (FLS), If the resulting sum is greater than
(FLS), indicating that the block copy will go beyond the assigned SCM
field, the block copy is not executed. In this case the SCM block
range condition flag is set in the PSD register and the block copy
instruction is issued as a pass, The exchange jump to (EEA) resulte-
ing from setting the SCM block range condition flag will not occur
before execution of the next program instruction word unless a delay
is introduced by subsequent instructions in the current instruction
word,

T 3=22

Block length negative

The length of the block is determined by adding the quantity K from
the instruction to the contents of register Bj, The addition is
performed in an 18 bit ones complement mode. The resultant sum is
treated as an 18 bit positive integer., A negative result will
therefore appear as a large positive integer. In this case the

SCM block range condition flag, and possibly the LCM block range
condition flag, will set in the PSD register, indicating too large
a block for the assigned fields, The block copy instruction will
issue as a pass, The exchange jump to (EEA) resulting from setting
the SCM block range condition flag will not occur before execution
of the next program instruction word unless a delay is introduced
by subsequent instructions in the current instruction word,

Block length zero

A zero block length is treated as a normal situation. No error
flags are set, The block copy instruction is executed as a pass,

Last parcel

The block copy instruction requires two parcels of an imstruction word
for normal use, If this instruction begins in the first, second, or
third parcel of an instruction word the following parcel completes the
instruction, If a block copy instruction begins in the last parcel

of an instruction word it will not be continued in the following word,
In this case the instruction will be executed as if there were a fifth
parcel in the instruction word and this parcel contained all zeros.

3.23

wuje-

§ A< AEC-OFFICIAT

Error condition during execution - -

A LCM or SCM parity error may occur during the execution of a block
copy instruction, An arithmetic error from a previous instruction
may also occur during the beginning of the block copy sequence, If
any error conditions occur, the proper flags are set in the PSD
register, and the block copy instruction is executed to completion.
There are no error conditions which will interrupt the instruction
before completion,

1/0 interrupt during execution

‘An I1/0 section interrupt request may occur during the execution of

a block copy instruction, In this case the interrupt request is
not honored until the block copy instruction has been completed and

any subsequent instructions in the current instruction word have
been completed.

- 3-24

Al G s i . -

- eage

013jx | xoxxx | Exchange exit (exit mode flag set)

This 1s a two parcel instruction in which the lower order 18 bits are
used as an operand K., This instruction causes the current program
sequence to terminate with an exchange jump to an address in the SM
field for the current program, The exchange package in this case

is located at relative address K + (Bj) in the SCM field, The two
quantities, K and (Bj), are added in an 18 bit ones complement mode,
The result is treated as an 18 bit positive integer, This integer

is added to (RAS), also treated as an 18 bit positive integer, to
form the absolute address of the exchange package in SCM.

'This form of the 013 instruction is used by the monitor program only,
The exit mode flag in the PSD register is cleared during execution
of object programs, The monitor program uses this instruction to
exchange jump to one of a number of possible object program exchange
packages. Each of these exchange packages will normally specify a
cleared exit mode flag, A selected object program exchange package
will then return to this same area of SCM and resume the monitor
program when its execution interval has been completed (see alternate
form of 013 instruction),

This instruction has priority over all other types of exchange jump
requests, If an I/0 interrupt request or an error exit request has
occurred prior to the execution of this instruction, this request

is denied, and the exchange jump specified by this instruction is
executed, The rejected interrupt request is not lost in this process
since the conditions which caused it will be reinstated when the
exchange package enters its next execution interval,

The remaining instructions, if any, in the current program instruction
word will not be executed, The program address stored in the exchange
package for the current program will be advanced one count from the
address of the current instruction word. The program will therefore
continue at the first parcel of the following instruction word during
the next execution interval for this exchange package.

‘The current contents of the instruction word stack are voided by the
execution of this instruction,

3-25

)AL ALC-OFEICIATLL

R
\

‘Execution time

‘The minimum execution time for this instruction is 28 clock periods.

This is the minimum time from the arrival of this instruction in
the upper parcel of the CIW register until the arrival of the first
instruction for the next program, This instruction issues from the
CIW register in the second clock period of the sequence, A 60 bit
word of all zeros is read into the CIW register at this time, void-
ing any following instructions in the current instruction word.

The IAS is cleared to all zeros, which voids the contents of the
IWS. No further instructions can enter the CIW register until the
exchange sequence has been completed and the IWS is loaded with a
new sequence of instructions.

‘The following is a chronological listing of events in the execution

of this instruction for the case of minimum execution time.

"CPO0 013 instruction in the upper parcel of the CIW register,

Instruction does not issue.
Register Bj free.

Set PXF,

Set RIF.

"CPO1 013 instruction in the upper parcel of the CIW register.

Instruction issues,

Transmit a blank word to the CIW register.
Transmit K + (Bj) + (RAS) to the XJA register,
RIF remains set,

Clear PXF.

"CP02 No instruction in the upper parcel of the CIW register

All operating registers free.
F1F not set,

Set XSF,

Clear RIF,

"No instruction in the upper parcel of the CIW register
Void (IWS). Clear (IAS).

Transmit (XJA) to the BAK register,

Transmit (BPA), (AQ), and (P) to the SWA reglster.
Advance (XSK) to 01,

XSF remains set,

Set XIF,

3-26

‘No instruction in the upper parcel of the CIW register.

CPO5

CP0O6

CPO7

Transmit (BAK) to the SAS. Tag for exchange jump.
Advance (BAK).

Transmit (Bl), (Al), and (RAS) to the SWA register.
Advance (XSK) to 02.

XSF remains set,

XIF remains set,

No instruction in the upper parcel of the CIW register.
Transmit (BAK) to the SAS., Tag for exchange jump,

Advance (BAK).

First SCM address leaves SAS for SCM bank address register,
Transmit (B2), (A2), and (FLS) to the SWA register,

Advance (XSK) to 03,

XSF remains set.

XIF remains set,

'No instruction in the upper parcel of the CIW register.

Transmit (BAK) to the SAS, Tag for exchange jump.

Advance (BAK),

Begin read/write cycle for first reference in SCM bank.
Second SCM address leaves SAS for SCM bank address register.
Transmit (B3), (A3), and (PSD) to the SWA register.

Advance (XSK) to 04,

XSF remains set,

XIF remains set.

No instruction in the upper parcel of the CIW register,
Transmit (BAK) to the SAS, Tag for exchange jump,

Advance (BAK),

Begin read/write cycle for second reference in SCM bank,
Third SCM address leaves SAS for SCM bank address register,
Transmit (B4), (A4), and (RAL) to the SWA register,

Advance (X8K) to 05,

XSF remains set,

XIF remains set,

‘No instruction in the upper parcel of the CIW register.

Transmit (BAK) to the SAS, Tag for exchange jump.

Advance (BAK). ,

Begin read/write cycle for third reference in SCM bank.
Fourth SCM address leaves SAS for SCM bank address register,
Transmit (BS), (AS), and (FLL) to the SWA register.

Advance (XSK) 'to 06,

XSF remains set,

XIF remains set,

.27

ALC OFFL AT

\

"CPO9 No instruction in the upper parcel of the CIW register,

Transmit (BAK) to the SAS, Tag for exchange jump,

Advance (BAK).

First SCM reference reads to SCM bank operand register,
Begin read/write cycle for fourth reference in SCM bank.
Fifth SCM address leaves SAS for SCM bank address register,
Transmit (B6), (A6), and (NEA) to the SWA register.

Advance (XSK) to 07,

XSF remains set,

XIF remains set,

No instruction in the upper parcel of the CIW register,

Transmit (BAK) to the SAS, Tag for exchange jump,

Advance (BAK).

Transmit first SCM reference word to the SRO register,
Transmit first word from SWS to SCM bank operand register.
Second SCM reference reads to SCM bank operand register,
Begin read/write cycle for fifth reference in SCM bank.
Sixth SCM address leaves SAS for SCM bank address register.
Transmit (B7), (A7), and (EEA) to the SWA register,
Advance (XSK) to 10.

XSF remains set,

XIF remains set.

‘No instruction in the upper parcel of the CIW register.

Transmit (BAK) to the SAS, Tag for exchange jump.

Advance (BAK).

Transmit (SRO) to the BPA, A0, and P registers,

Transmit second SCM reference word to the SRO register.
Transmit second word from SWS to SCM bank operand register,
Third SCM reference reads to SCM bank operand register.
Begin read/write cycle for sixth reference in SCM bank.
Seventh SCM address leaves SAS for SCM bank address register,
Transmit (X0) to the SWA register,

Advance (XSK) to 11,

XSF remains set.

XIF remains set,

3-28

CcP12

CP13

CPl4

/
No instruction in the upper parcel of the CIW register.
Transmit (BAK) to the SAS. Tag for exchange jump.
Advance (BAK). «
Transmit (SRO) to the Bl, Al, and RAS registers,
Transmit third SCM reference word to the SRO register,
Transmit third word from SWS to SCM bank operand register.
Fourth SCM reference reads to SCM bank operand register.
Begin read/write cycle for seventh reference in SCM bank,
Eighth SCM address leaves SAS for SCM bank address register.
Transmit (X1) to the SWA register,
Advance (XSK) to 12,
XSF remains set,
XIF remains set,

No instruction in the upper parcel of the CIW register.
Transmit (BAK) to the SAS, Tag for exchange jump,

Advance (BAK).

Transmit (SRO) to the BZ, A2, and FLS registers,

Transmit fourth SCM reference word to the SRO register,
Transmit fourth word from SWS to SCM bank operand register,
Fifth SCM reference reads to SCM bank operand register,
Begin read/write cycle for eighth reference in SCM bank.
Ninth SCM address leaves SAS for SCM bank address register,
Transmit (X2) to the SWA register.

Advance (XSK) to 13,

XSF remains set,

XIF remains set,

No instruction in the upper parcel of the CIW register.
Transmit (BAK) to the SAS., Tag for exchange jump.

Advance (BAK).

Transmit (SRO) to the B3, A3, and PSD registers.

Transmit fifth SCM reference word to the SRO register,
Transmit fifth word from SWS to SCM bank operand register,
Sixth SCM reference reads to SCM bank operand register,
Begin read/write cycle for ninth reference in SCM bank.
10th SCM address leaves SAS for SCM bank address register,
Transmit (X3) to the SWA register,

Advance (XSK) to 14,

XSF remains set,

XIF remains set,

"3-29

N

~ "CP1l5 No instruction in the upper parcel of the CIW register.
Transmit (BAK) to the SAS, Tag for exchange jump,
Advance (BAK),)
Transmit (SRO) to the B4, A4, and RAL registers,
Transmit sixth SCM reference word to the SRO register.
Transmit sixth word from SWS to SCM bank operand register.
Seventh SCM reference reads to SCM bank operand register.
Begin read/write cycle for 10th reference in SCM bank,
11th SCM address leaves SAS for SCM bank address register,
Transmit (X4) to the SWA register,
Advance (XSK) to 15,
XSF remains set,
XIF remains set,

CP16 No instruction in the upper parcel of the CIW register,
Transmit (BAK) to the SAS, Tag for exchange jump.
Advance (BAK),
Transmit (SRO) to the B5, A5, and FLL registers.
Transmit seventh SCM reference word to the SRO register,
Transmit seventh word from SWS to SCM bank operand register,
Eighth SCM reference reads to SCM bank operand register.
Begin read/write cycle for 1llth reference in SCM bank.
12th SCM address leaves SAS for SCM bank address register,
Transmit (X5) to the SWA register,
Advance (XSK) to 16,
XSF remains set.
XIF remains set,

CPl7 No instruction in the upper parcel of the CIW register,
Transmit (BAK) to the SAS, Tag for exchange jump,
Advance (BAK).
Transmit (SRO) to the B6, A6, and NEA registers,
Transmit eighth SCM reference word to the SRO register.
Transmit eighth word from SWS to SCM bank operand register.
Ninth SCM reference reads to SCM bank operand register,
Begin read/write cycle for 12th reference in SCM bank,
13th SCM address leaves SAS for SCM bank address register,
Transmit (X6) to the SWA register.,
Advance (XSK) to 17.
XSF remains set,
XIF remains set,

3-30

100 ALC .\f:itlAfT.ﬁ)
I

CP18 No instruction in the upper parcel of the CIW register.
Transmit (BAK) to the SAS. Tag for exchange jump,
Advance (BAK).

Transmit (SRO) to the B7, A7, and EEA registers.

Transmit ninth SCM reference word to the X0 register.
Transmit ninth word from SWS to SCM bank operand register.
10th SCM reference reads to SCM bank operand register.
Begin read/write cycle for 13th reference in SCM bank,
l4th SCM address leaves SAS for SCM bank address register.
Transmit (X7) to the SWA register.

Clear (XSK).

Set JCF.

Clear XSF.

XIF remains set,

No instruction in the upper parcel of the CIW register.
No coincidence in the IAS.

Read a blank word from the IWS to the CIW register.

Set OSF.

Set JOF.

Transmit (P) + (RAS) to the IFA register.

Set F1F, F2F.

Clear JCF,

Transmit (BAK) to the SAS. Tag for exchange jump.
Advance (BAK).

Transmit 10th SCM reference word to the X1 register,
Transmit 10th word from SWS to SCM bank operand register.
11th SCM reference reads to SCM bank operand register.
Begin read/write cycle for l4th reference in SCM bank,
15th SCM address leaves SAS for SCM bank address register,
Clear XIF.

No instruction in the upper parcel of the CIW register.
Transmit (P) to the NSA register.

Set MIF, M2F,

Clear JOF,

The OSF remains set,

Transmit (IFA) to the SAS, Tag for read to IWS.

Advance (IFA),

Clear F2F,

Transmit llth SCM reference word to the X2 register.
Transmit llth word from the SWS to SCM bank operand register.
12th SCM reference reads to SCM bank operand register.
Begin read/write cycle for 15th reference in SCM bank,
16th SCM address leaves SAS for SCM bank address register.

3-31

cp21

“cp22

CP24

‘No instruction in the upper parcel of the CIW register,

No coincidence in the IAS,
Read a blank word from the IWS to the CIW register,
The OSF remains set, '

Transmit (IFA) to the SAS, Tag for read to IWS,

Advance (IFA),

First fetch address leaves the SAS for a SCM bank,

Clear F1lF.

Transmit 12th SCM reference word to the X3 register.

Transmit 12th word from the SWS to SCM bank operand register.
13th SCM reference reads to SCM bank operand register,

Begin read/write cycle for 16th reference in SCM bank.

No instruction in the upper parcel of the CIW register,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.

The OSF remains set,

First fetch memory read/write cycle begins in a SCM bank.
Second fetch address leaves the SAS for a SCM bank.

Transmit 13th SCM reference word to the X4 register.

Transmit 13th word from the SWS to SCM bank operand register.
14th SCM reference reads to SCM bank operand register,

'No imstruction in the upper parcel of the CIW register,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register,

The OSF remains set,

Second fetch memory read/write cycle begins in a SCM bank.
Transmit l4th SCM reference word to the X5 register,

Transmit 14th word from the SWS to SCM bank operand register.
15th SCM reference reads to SCM bank operand register.

No instruction in the upper parcel of the CIW register.

No coincidence in the IAS.

Read a blank word from the IWS to the CIW register,

The OSF remains set,

Transmit 15th SCM reference word to the X6 register.

Transmit 15th word from the SWS to SCM bank operand register.
16th SCM reference reads to SCM bank operand register,

3-32

CP25

CP26

Ccp27

CP28

'No instruction in the upper parcel of the CIW register,

No coincidence in the IAS.

Read a blank word from the IWS to the CIW register, “

The CSF remains set,

First fetch instruction word reads to SCM bank operand register,
Transmit 16th SCM reference word to the X7 register,

Transmit 16th word from the SWS to SCM bank operand register.

No instruction in the upper parcel of the CIW register.
No coincidence in the IAS.,

Read a tlank word from the IWS to the CIW register,

The OSF remains set.

Transmit the first fetch instruction word to the IWS
Transmit (NSA) to the IAS.

Shift the IWS and the IAS one word position,
Advance (NSA).

Second fetch instruction word reads to SCM bank operand register.
Clear M2F,

;\Q;

‘No instruction in the upper parcel of the CIW register.

Coincidence in the IAS,

Read a valid instruction word from the IWS to the CIW register,
Clear the OSF.

Transmit the second fetch instruction woxrd to the IWS,

Transmit (NSA) to the IAS.

Shift the IWS and the IAS one word position,

Advance (NSA).

Clear M1F,

‘Next instruction in the upper parcel of the CIW register.

Instruction may issue.

3-33

b

“L-AEC OFFICH

" Execution delays

The PXF will not set in this mode of the 013 instruction until the

Bj register is free, The RIF will set without this condition, but
the sequence will not proceed to the commands listed for CPOl until
the PXF is set.

The XSF will not set as indicated in CP02 in the above sequence

until two conditions are satisfied:

All operating registers must be free: This implies that all pre-

viously issued instructions have delivered their results to the
operating registers, This will normally be the case in the clock
period CP02 because of the delay from the preceding two clock
periods,

The F1F must not be set: This will be the case unless a SCM bank

conflict has caused a SAS backup condition which prevented an
instruction fetch address from leaving the IFA register, This con-
dition is not likely to occur often enough to cause a significant
average delay.

A delay will occur during the flow of data in the 2xchange sequence

if a SCM bank conflict exists, This will occur if a SCM bank is
still completing a read/write cycle from a previous reference at the
time the exchange sequence reference is made to that bank, The
remainder of the exchange sequence is delayed in this case until

the conflict is resolved.

The exchange sequence has priority over I/0 section word requests

for SCM. If an I/0 section word request occurs during the block of
16 exchange sequence entries to the SAS, this request is not honored
until the 16th address has arrived at the SAS.

There may be a delay in reading the instruction fetches from SCM

because of a SCM bank conflict. A conflict may occur between the
instruction fetch addresses and the exchange sequence addresses.

An I/0 section word request has priority over instruction fetch
references to SCM., An I/0 section reference to SCM may therefore
occur between the last word reference in the exchange sequence and
the first reference for instruction fetch, In this case a one clock
period delay results from the address insertion to the SAS and a
possible nine clock period delay if the 1/0 section reference and
the instruction fetch reference are to the same bank. '

3-34

Special situations

_Exchange address out of range

There is no protection for addressing out of the SCM field on this
instruction, Any error in the calculation of the exchange package
address, either in range, or out of range, will almost certainly
result in complete system failure. The exchange package address is
determined by adding K to (Bj) in a ones complement mode. The result
is treated as an 18 bit positive integer and is added to (RAS), also
treated as an 18 bit positive integer. The lowest order 16 bits of
this last addition are used as the absolute address in SCM for the
exchange package.

‘Last parcel

This instruction normally requires two parcels of an instruction
word. If this instruction begins in the first, second, or third
parcel of an instruction word the following parcel completes the
instruction, If this instruction begins in the last parcel of an
instruction word it will not be continued in the following woxd.
In this case the instruction will be executed as if there were a
fifth parcel in the instruction word and this parcel contained all
zeros,

"Exrror condition

This instruction takes priority over an error exit request. The flag,
or flags, associated with the error exit request are preserved in the
exchange package. The error exit request will be regenerated at the
beginning of the next execution interval for the exchange package.
This will cause an error exit in the next execution interval for the
exchange package before the execution of the first instruction,

'I/0 section interrupt
‘This instruction takes priority over an I/0 section interrupt request.
The I/0 section request is not honored until the exchange jump has

been completed and a new exchange package has been loaded into the
computation section of the CPU,

3-35

01300 _Exchange exit (exit mode flag cleared)

An exchange exit instruction executed in this mode causes the cur-
rent program sequence to terminate with an exchange jump to address
(NEA)., This is an absolute address in SCM and is generally not in
the SCM field for the current program, This mode makes no use of
the j or k designators in the instruction.

This instruction is the vehicle for switching rapidly from an object
program to a monitor program, All operating register values, pro-
gram address, and mode selections are preserved in this process in
order that the object program may be continued at a later time. The
program address in the object program exchange package will be
advanced one count from the address of the instruction word con-
taining the exchange exit instruction, The monitor program will
normally resume the object program at this address,

This instruction is intended for use in calling the system monitor
program for input-output requests, library calls, storage assign-
ments, etc, The operating register values at the time of execution
of this instruction are intended as the vehicle for parameter
interchange between the object program and the monitor program.

This instruction has priority over all other types of exchange jump
requests. If an I/0 interrupt request or an error exit request has
occurred prior to the execution of this instruction, this request
is denied and the exchange jump specified by this instruction is
executed, The rejected interrupt request is not lost in this proc-
ess since the conditions which caused it will be reinstated when
the exchange package enters its next execution interval.

The remaining instructions, if any, in the current instruction word
will not be executed. The program address stored in the exchange
package for the current program will be advanced one count from the
address of the current instruction word., The program will therefore
continue at the first parcel of the following instruction word dur-
ing the next execution interval for this exchange package unless

the monitor program alters the exchange package,

‘The current contents of the instruction word stack are voided by
the execution of this instruction,

3-36

Execution time

The minimum execution time for this instruction is 28 clock periods.
This is the minimum time from the arrival of this instruction in

the upper parcel of the CIW register until the arrival of the first
instruction for the next program, This instruction issues from the
CIW register in the second clock period of the sequence, A 60 bit
word of all zeros is read into the CIW register at this time, void-
ing any following instructions in the current instruction word, The
IAS is cleared to all zeros, which voids the contents of the IWS.

No further instructions can enter the CIW register until the exchange
sequence has been completed and the IWS is loaded with a new sequence
of instructions,

Timing considerations for this mode of the exchange exit instruction
are essentially the same as for the alternate mode. The only dif-
ferences in the command timing occur in the initial clock periods

of the sequence, These are listed below for the case of minimum
execution time,

CPOO 013 instruction in the upper parcel of the CIW register,
Instruction does not issue,
Set PXF,
Set RIF,

013 instruction in the upper parcel of the CIW register.
Ingtruction issues.

Transmit a blank word to the CIW register.

Transmit (NEA) to the XJA register,

RIF remains set,

Clear PXF,

No instruction in the upper parcel of the CIW register,
All operating registers free.

All instruction fetches completed.

Set XSF,.

Clear RIF.

(See alternate mode of 013 instruction for rest of listing)

3-37

b

b AEC OFFIC

Execution delays

"The XSF will not set as indicated in CPO2 in the above sequence

until two conditions are satisfied:

All operating registers must be free: This implies that all pre-

viously issued instructions have delivered their results to the
operating registers, This will normally be the case in the clock
period CP0O2 because of the delay from the preceding two clock
periods,

"The F1F must not be set: This will be the case unless a SCM bank

conflict has caused a SAS backup condition which prevented an
instruction fetch address from leaving the IFA register., This con-
dition is not likely to occur often enough to cause a significant
average delay, '

A delay will occur during the flow of data in the exchange sequence

if a SCM bank conflict exists. This will occur if a SCM bank is
still completing a read/write cycle from a previous reference at the
time the exchange sequence reference is made to that bank, The
remainder of the exchange sequence is delayed in this case until

the conflict is resolved,

The exchange sequence has priority over I/0 section word requests

for SCM, If an I/0 section word request occurs during the block of
16 exchange sequence entries to the SAS, this request is not honored
until the l6th address has arrived at the SAS,

‘There may be a delay in reading the instruction fetches from SCM

because of a SCM bank conflict. A conflict may occur between the
instruction fetch addresses and the exchange sequence addresses,

An I/0 section word request has priority over instructioa fetch
references to SCM, An I/0 section reference to SCM may therefore
occur between the last word reference in the exchange sequence and
the first reference for instruction fetch, In this case a one clock
period delay results from the address insertion to the SAS and a
possible nine clock period delay if the I/0 section reference and
the instruction fetch reference are to the same bank,

3-38

Special situations

7Designator j, k, not zero

A nonzero j or k designator will have no effect on the results of
this instruction, If the j designator is nonzero a test will be made
for register Bj free, This may delay execution of the instruction
but will not affect the results,

(NEA) out of range

There are no protective tests made on the exchange jump address for
this instruction. The assignment of (NEA) is a responsibility of
the system monitor program, Normally the SCM field for an object
program does not include the address (NEA)., If (NEA) has more than
16 bits of significance, considered as a positive integer, the upper
bits are discarded and the lower 16 bits used as the absolute address
in SCM for the exchange jump.

Error condition

This instruction takes priority over an error exit request. The

flag, or flags, associated with the error exit request are preserved
in the exchange package., The error exit request will be regenerated
at the beginning of the next execution interval for the exchange
package. This will cause an error exit in the next execution interval
for the exchange package before the execution of the first instruction,

1/0 section interrupt

This instruction takes priority over an 1/0 section interrupt request,
The 1/0 section request is not honored until the exchange jump has
been completed and a new exchange package has been loaded into the
computation section of the CPU. The I/0 section request will then be
honored before execution of the first instruction in the new program.

3-39

: [n\‘L-AﬁC-OFFIC!?ﬂ. .

014jk | Read LCM

‘This instruction reads one word from the LCM and enters this word

in an X register, The word is read from the LCM field at relative
address (Xk)., The word is then entered in register Xj. The SCM
is not involved in this process,

‘This instruction is intended for direct addressing of the LCM for

individual words, It may also be used to advantage in addressing

a string of words in consecutive storage locations, This is par-
ticularly true if a string of words is to be read, modified, and
written back into the same storage locations. The process of read-
ing and writing will proceed in this case without a LCM read/write
cycle delay until the addressing crosses a LCM bank boundary.

" This instruction is buffered to the extent that it issues in one

clock period unless a previous LCM reference is in process. When
this instruction issues the LCM busy flag is set and remains set
until the requested word has been delivered to the designated X
register, The destination X register is reserved in a manner
analogous to a reference to the SCM, This process differs from
a SCM read reference in that only one LCM read or write may be

in process at one time,

‘Execution time

A read LCM instruction for a word not currently residing in one of

the LCM bank operand registers will normally require 14 clock per-
iods to deliver the requested word to the designated X register., A
LCM bank read/write cycle will be initiated in the proper LCM bank,
and a field of 8 words will be read to the corresponding LCM bank
operand register, A read LCM instruction for a word already residing
in a LCM bank operand register as a result of a previous instruction
will require 3 clock periods to deliver the requested word to the
designated X register.

‘The following is a chronological listing of events in a read LCM

instruction in which the required word is already residing in a
LCM bank operand register as a result of a previous instruction,

3-40

CPO0 Ol4 instruction in the upper parcel of the CIW register.
LCM busy flag not set.
Xj register free.
Xk register free.
Instruction issues.
Transmit next instruction to upper parcel of CIW register.
Transmit (Xk) + (RAL) to LCM word address register.
Set LCM busy flag.
Set Xj reservation flag.

Next instruction in the upper parcel of the CIW register.
Instruction may issue.

Test LCM word address against LCM bank addresses.
Transmit bank address to LCM bank address register.

LCM busy flag remains set.

_Transmit word from LCM bank operand register to Xd register.
Clear LCM busy flag.
Clear Xd reservation flag.

The following is a chronological listing of events in a read LCM
instruction in which the required word is not residing in a LCM
bank operand register.

CPOO 014 instruction in the upper parcel of the CIW register.
LCM busy flag not set.
Xj reglster free.
Xk register free.
Instruction issues.
Transmit next instruction to upper parcel of CIW register.
Transmit (Xk) + (RAL) to LCM word address register.
Set LCM busy flag. ’
Set Xj reservation flag.

CPO1 Next instruction in the upper parcel of the CIW register.
Instruction may issue,
LCM busy flag remains set.
Transmit bank address to LCM bank address register.

_Begin LCM bank read/write cycle,
LCM busy flag remains set.

'LCM bank reads 8 words to LCM bank operand register.
LCM busy flag remains set.

3-41

Sy

b,

1 AS1L.AEC-OFFIC

CPl4 Requested word leaves LCM bank operand register for Xd.
LCM busy flag remains set.

"CP15 Requested word arrives at Xd register
Clear LCM busy flag.

Clear Xd reservation flag.

'CP65 Complete LCM bank read/write cycle.

" Execution delays

‘This instruction will not issue, and the sequences listed will not
begin, until three conditions have been satisfied:

‘LM busy flag not set: This will be true unless another LCM (011

012, 014, 015) instruction has just preceded this instruction.

'Xj register free: This will normally be true since the result is

to be stored here,

Xk register free: This will depend on the previous instructions and

will involve a one clock period delay if the preceding instruction
was an increment instruction to this destination register.

'A delay will occur at CPOl in the second sequence listed above if

the LCM bank required for the requested word is still completing a

read/write cycle from a previous reference, The bank address will

be transmitted to the LCM bank address register as soon -as the bank
read/write cycle has been completed.

A delay will occur in either of the two sequences listed above if

another functional unit is transmitting data to an X register in the
same clock period in which the LCM transmission is indicated. 1In
this case the LCM transmission is blocked and is repeated each clock
period until the X register input path is free.

3-42

Special situations

(Xk) negative
(Xk) greater than 19 significant bits

The lowest order 19 bits of (Xk) are used to determine the address
in the LCM field. The higher order bits are ignored. If (Xk) is
negative the lowest order 19 bits are masked out and treated as

a positive integer, No error flags are set for these conditions
unless the resulting address is out of range,

Address out of range

The lowest order 19 bits of (Xk) are compared with (FLL) to deter-
mine if the requested address is in the assigned LCM field, If
the requested address is greater than, or equal to, (FLL) the LCM
direct range condition flag is set in the PSD register. This flag
will cause an error exit request to interrupt the program with an
exchange jump to address (EEA). The instruction will be executed
in this case with a LCM read reference beyond the assigned field,
and a word will be entered in the Xj register from this location.
The absolute address in LCM for this reference will be the lowest
order 19 bits in the sum resulting from adding (RAL) to the lowest
order 19 bits of (Xk), The exchange jump resulting from the error
exit request will generally not occur before one or more subsequent
instructions have been executed,

Use of the X0 register

The XO register may be used for either Xj or Xk in this instruction,

Xj and Xk same register

The j and k designators may have the same value in this instruction.
In this case the requested address is lost when the word arrives at
the Xj register,

Read from block copy field
The requested word may reside in a LCM bank operand register as a
result of a previous block copy instruction., This condition is

sensed, and the word is read directly from the LCM bank operand
register in this case.

3-43

1AB
¢

<

DA AEC-OFF

0l5jk | Write LCM

This instruction writes one word directly into LCM from an X
register. The word is read from register Xj and is written
into the LCM field at relative address (Xk). The SCM is not
involved in this process.

This instruction is intended for direct addressing of the LCM for

individual words. It may also be used to advantage in addressing
a string of words in consecutive storage locations. This is par-
ticularly true if a string of words is to be read, modified, and
written back into the same storage locations, The process of
reading and writing will proceed in this case without a LCM bank
read/write cycle delay until the addressing crosses a LCM bank
boundary,

‘This instruction is buffered to the extent that it issues in one

clock period unless a previous LCM reference is in process, When
this instruction issues the LCM busy flag is set and remains set
until the word has been delivered to the proper LCM bank operand

register. No X register reservations are made for this instruction,

The following instruction may issue in the next clock period and
may use either of the X registers designated in this instruction.
If the word cannot be entered immediately in the proper LCM bank
operand register it is held in the LCM write register until the
LCM bank operand register is free., This process differs from a
SCM write reference in that only one LCM read or write may be in
process at one time, ~-

"Execution time

' This instruction normally requires 3 clock periods to deliver the

word to the proper LCM bank operand register., The instruction
normally issues in one clock period and sets the LCM busy flag.
The LCM busy flag remains set for two clock periods. A subsequent
LCM instruction may then begin 3 clock periods after this instruc-
tion. A delay in clearing the LCM busy flag will occur if the
required LCM bank is busy completing a bank read/write cycle for a
different block of 8 words than that required for this instruction,
The LCM busy flag will clear as soon as the LCM bank is free.

The following is a chronological listing of events in a write LCM
instruction for the case of minimum execution time.

CPO0 015 instruction in the upper parcel of the CIW register,
LCM busy flag not set, '
Xj register free.
Xk register free.
Instruction issues,
Transmit next instruction to upper parcel of CIW register,
Transmit (Xk) + (RAL) to LCM word address register.
Transmit (Xj) to LCM write register,
Set LCM busy flag.

CPO1 Next instruction in the upper parcel of the CIW register.
Instruction may issue,
Test LCM word address against LCM bank addresses.
Transmit bank address to LCM bank address register.
Word leaves LCM write register for bank operand register.
LCM busy flag remains set.

'CP02 Begin read/write cycle in LCM bank.

Word arrives at LCM bank operand register.
Clear LM busy flag.

" Execution delays

This instruction will not issue, and the sequence listed will not
begin, until three conditions have been satisfied:

Lo busy flag not set: This will be true unless another LCM (Ol1,
012, 0l4, 015) instruction has just preceded this instructionm.

7Xj register free: This will depend on previous instruction timing
and may vary from no delay to a 19 clock period delay for a just
issued divide result.

Xk register free: This will depend on the previous instructions
and will involve a one clock period delay if the preceding instruc-
tion was an increment instruction to this destination register.

A delay will occur at CPOl in the sequence listed above if the
required LCM bank is busy completing a bank read/write cycle for

a different block of 8 words than that required for this instruc-
tion. In this case the word will be held in the LCM write register
until the LCM bank is free,

3-45

* L AEC-OFFICIAD

_Special situations

(Xk) negative :
(Xk) greater than 19 significant bits

The lowest order 19 bits of (Xk) are used to determine the address
in the LCM field. The higher order bits are ignored. If (Xk) is
negative the lowest order 19 bits are masked out and treated as

a positive integer. No error flags are set for these conditions
unless the resulting address is out of range.

"Address out of range

The lowest -order 19 bits of (Xk) are compared with (FLL) to deter-

mine if the requested address is in the assigned LCM field. If the
requested address is greater than, or equal to, (FLL) the LCM direct
range condition flag is set in the PSD register. This flag will
cause an error exit request to interrupt the program with an exchange
jump to address (EEA). In this case the word will not be written
into LCM. The exchange jump resulting from the error exit condition
will generally not occur before one or more subsequent instructions
have been executed,

‘Use of the XO register

The XO register may be used for either Xj or Xk in this instruction,

_Xj and Xk same register

‘The j and k designators may have the same value in this instruction,

In this case the requested address is also the operand.

3-46

REVY 2

0160k ‘Reset input buffer

-

This instruction resets the channel (Bk) input buffer in preparation
for the next incoming record. The channel (Bk) input buffer address
register is cleared to zero. The channel input assembly register is
reset to first position.

This instruction is intended for execution in the monitor program

input routine which terminates a record of incoming data and pre-
pares for the next record, The monitor input routine is called

by an 1/0 section interrupt request when the record flag is set on
the channel input data path. The data in the channel input buffer
is then normally transferred to the LCM, and this instruction is
executed to clear the buffer for the next incoming record.

"This instruction is effective only if the monitor mode flag is set

in the PSD register. If the monitor mode flag is cleared this
instruction becomes a pass instruction. There are no interlocks
for this instruction other than the monitor mode flag. When this
instruction issues it will execute the required channel functions
without regard to the current status or activity at the channel
input register,

This instruction is normally never executed except in response to

an I/0 section interrupt request resulting from the setting of the
channel input record flag. The record flag is cleared when the
interrupt request is generated. Further entries to the channel
input buffer are not locked out by the interrupt request flag in
the channel access control during the execution interval for the
interrupt exchange package. The PPU must wait for a positive
response from the monitor program over the output channel before
beginning the next record. '

"Execution time

"This instruction requires four clock periods to clear the channel

input buffer address register and reset the channel input assembly
register. The timing for the events in the execution of this
instruction is as follows.

3-47

1 <L AEC OFFIC

"CPOO 0160 instruction in the upper parcel of the CIW register.
Monitor mode flag set.
Bk register free.
Instruction issues.
Transmit next instruction to upper parcel of CIW register.
Transmit (Bk) to I/O section access control,
Set go reset channel flag.

“CpPO1 ‘Next instruction in the upper parcel of the CIW register.
Instruction may issue.
Clear go reset channel flag.
Ga reset signal arrives at channel access control,

"CP03 Clear channel input buffer address register.

Reset channel input assembly register,

" Execution delays

This instruction will not issue, and the sequence will not begin,
until the Bk register is free. This register contains the channel
number and will generally be a constant during the execution inter-
val for this monitor exchange package. A delay in this instruction
issue is unlikely,

_Special situations

(Bk) not a valid channel number

The lowest order four bits of (Bk) are used in this instruction,

The higher order bits are ignored. If higher order bits are set in
(Bk) the lowest order four bits are masked out and used to determine
the channel number, If (Bk) = O, this instruction becomes a pass
instruction,

‘Monitor mode flag not set

I1f the monitor mode flag is not set in the PSD register when this
instruction is executed, this instruction becomes a pass instruction.

3-48

REV 2

Channel active

'The channel input buffer is normally inactive when this instruction

is executed because the PPU has transmitted a record flag and is
waiting for monitor response on the output channel. If the PPU has
for some reason continued transmitting data, a word may be waiting
to enter the channel input buffer and a word request flag may be
set, These two operations may occur in the same clock period with
conflicting commands to the registers from the channel access con-
trol. In this case the commands associated with this instruction
take priority, and the result is a loss of data in the input buffer
for the incoming record. The incoming record will continue in this
case with no indication of error except that the record will be
shortened by the lost data.

Consecutive resets for different channels

Two or more reset input buffer instructions may occur in comnsecutive

program instruction locations referencing different channels. These
instructions may issue in consecutive clock periods, and no inter-
ference will result in the I/0 section access control.

“Consecutive resets for same channel

Two or more reset input buffer instructions may occur in consecutive

program instruction locations referencing the same channel. These

instructions will issue in consecutive clock periods and repeatedly
perform the same functions. No interference will occur other than

the obvious repetitive functioms.

3-49

§ACAECOFFICIALL

¢

0l6jk "Read channel input status (j nonzero)

‘This instruction reads the current value of the channel (Bk) input

buffer address register contents to register Bj, The status of the
channel (Bk) input buffer address register is not altered.

'This instruction is intended for use in monitoring the progress of

the channel input buffer. The channel input buffer area is divided
into two fields by the threshold testing mechanism, The first half
of the buffer area constitutes one field and the last half of the
buffer area the other field. An I/O section interrupt request is
generated by the threshold testing mechanism whenever the channel
input buffer address is advanced across a field boundary. This will
occur at the center of the buffer area and at the end of the buffer
area,

‘This instruction is the only vehicle for a monitor program to

determine whether an I/0 section interrupt request was generated

by a buffer threshold test or by a record flag, The monitor pro-
gram must retain the buffer address from one interrupt period to

the next. If the buffer address is in the same field as for the

previous interrupt, the interrupt request was from a record flag.
1f the buffer address is in the opposite field from the previous

interrupt, the interrupt request was from a threshold test.

‘This instruction has a special use if the channel number (Bk) is

zero., There are no buffer areas for the MCU which use the 1/0
section channel zero access position, In this case the current
contents of the CPU clock period counter are read into the Bj
register. This is a 17 bit counter which is advanced one count
in a twos complement mode zach clock period, This count is
intended for timing measurements in CPU programs, Timing con-
siderations for this special use are the same as the normal timing
from a channel input buffer address register,

‘Execution time

‘This instruction requires 3 clock periods to deliver the channel

input buffer address to the Bj register. The timing for the events
in the execution of this instruction is as follows.

3-50

CPOO 016 instruction in the upper parcel of the CIW register,
Bk register free,
Bj register free.
Instruction issues.
Transmit next instruction to upper parcel of CIW register,
Transmit (Bk) to I/0 section access control,
Set go read channel flag,
Set Bj reservation flag.

Next instruction in the upper parcel of the CIW register.
Instruction may issue.
Clear go read channel flag. -

‘Channel input buffer address arrives at Bd register.
Clear Bd reservation flag.

Execution delays

This instruction will not issue, and the sequence will not begin,
until the Bj and Bk registers are free. These registers will
normally both be free since one is the result destination and the
other the channel number,

Special situations

7(Bk) not a valid channel number

The lowest order four bits of (Bk) are used in this instruction,

The higher order bits are ignored. If higher order bits are set in
(Bk) the lowest order four bits are masked out and used to determine
the channel number. If (Bk) = 0, this instruction reads the contents
of the CPU clock period counter.

Consecutive executions

Two or more read channel input status instructions may occur in
consecutive program instruction locations referencing the same or
different channels, These instructions may issue in consecutive
clock periods providing the Bj register reservations do not cause
a delay. No interference will result in the I/0 section access
control in these situations,

3-51

~ 0170k ‘Reset output buffer

This instruction resets the channel (Bk) output buffer in prepara-
tion for the next record transmission. The channel (Bk) output
buffer address register is cleared to zero. A record pulse is
transmitted over the channel output data path. The channel output

word request flag is then set to read the first word from the
channel output buffer,

This instruction is intended for execution in the monitor program
output routine to initiate a new record transmission over a channel
output data path, The channel output buffer is normally inactive
when this instruction is executed. The channel output buffer is
loaded with the data for the next record, and this instruction is
executed to initiate the transmission., A record pulse is trans-
mitted at the time this instruction is executed to indicate the
beginning of a new record. The first word of data will follow as
soon as the channel output word request flag has caused the first
word to be read from the output buffer to the channel output
disassembly register.

This instruction is effective only if the monitor mode flag is set
in the PSD register. If the monitor mode flag is cleared this
instruction becomes a pass instruction, There are no interlocks
for this instruction other than the monitor mode flag. When this
instruction issues it will execute the required chanmel functions
without regard to the current status or activity at the channel
output register., The channel output disassembly register is reset
by the channel output word request flag.

"Execution time

This instruction requires four clock periods to clear the channel
output buffer address register, A record pulse is transmitted over
the channel output data path in the fourth clock period. If no
conflicts occur the first word pulse is transmitted over the chan-
nel output data path in the 16th clock period, The timing for the
events in the execution of this instruction is as fellows,

3-52

34U AEC-OHRICIAL _))

CPO0

0170 instruction in the upper parcel of the CIW register,
Monitor mode flag set.

Bk register free.

Instruction issues.

Transmit next instruction to upper parcel of CIW register,
Transmit (Bk) to I/0 section access control,

Set go reset channel flag.

‘Next instruction in the upper parcel of the CIW register.

Instruction may issue.
Clear go reset channel flag.

"Go reset signal arrives at chanmel access control

CPO3

Clear channel output buffer address register.
Transmit record pulse over output data path,
Set channel output word request flag.

‘Reset channel output disassembly register,

‘Set IOF.

‘Transmit first buffer address to the SAS, Tag for output,

Clear IOF.
Set word accepted flag in I/0 access control,

"'Address leaves the SAS for a SCM bank address register,

CPO8

Begin read/write cycle for first word in SCM bank,

‘First word reads from SCM bank to SCM bank operand register.

‘First word leaves SCM bank operand register for SRO register

CP13

CPl4

‘Transmit (SRO) to I/0 output buffer register,

Clear channel output word request flag,

Transmit first word to channel output disassembly register.
Clear word accepted flag in I/0 access control,

‘Transmit word pulse over output data path.

1-~573

J

)

Y

R‘

¥ 4SLAEC-OFFk

Execution delays

This instruction will not issue, and the sequence will not begin,
until the Bk register is free. This register contains the channel
number and will generally be a constant during the execution interval
for this monitor exchange package.

The IOF will not set for this channel in CPO5 in the sequence listed
above if a higher priority channel also has a word request flag set.
Fach channel word request requires a minimum of two clock periods to
clear through the I/0 access control and release this mechanism for
the next request,

The first buffer address will be delayed in entering the SAS in CPO6
in the sequence listed above if a higher priority address is on the
way to the SAS in this clock period. The addresses with higher
priority are from the increment unit, return jump exit address, and
exchange sequence address.

A delay will occur in entering the SAS if a backup condition exists
in CPO6 in the sequence above. A delay will also occur in CPO7 if
this address causes a storage bank conflict in SCM.

7Special situations

(Bk) not a valid channel number

The lowest order four bits of (Bk) are used in this instruction.

The higher order bits are ignored. If higher order bits are set in
(Bk) the lowest order four bits are masked out and used to determine
the channel number. If (Bk) = 0, this instruction becores a pass
instruction,

‘Monitor mode flag not set

If the monitor mode flag is not set in the PSD register when this
instruction is executed, this instruction becomes a pass instructionm,

3-54

Channel active

The channel output buffer is normally inactive when this instruction
is executed because the monitor program has detected completion of
the previous record before beginning this routine. There are two
methods that the monitor program can use to detect end of record.
One method is to read the channel output buffer address and compare
with a known record length. The other is a positive response from
the peripheral unit over the corresponding channel input data path,
If for some reason the channel output buffer is actively moving data
over the channel output data path at the time this instruction is
executed, conflicting commands may be sent to the channel registers,
In this case the commands associated with this instruction have
priority, and the result is a loss of data in the previous record,

Consecutive resets for different channels

Two or more reset output buffer instructions may occur in consecu-
tive program instruction locations referencing different channels,
These instructions may issue in consecutive clock periods and no
interference will result in the I/0 section access control,

Consecutive resets for same channel

Two or more reset output buffer instructions may occur ih consecu-
tive program instruction locations referencing the same channel,
These instructions will issue in consecutive clock periods and
repeatedly perform the same functions, A record pulse will be
transmitted over the channel output data path for each instruction
execution. The channel output buffer will be repeatedly restarted,
and a data word may, or may not, be transmitted over the channel
output data path depending on the timing of the instructions and
the conflicts that occur,

' 3-55%

AEC-OFHCiﬂiﬂ.

017k ‘Read channel output status (j nonzero)

This instruction reads the current value of the channel (Bk) output
buffer address register contents to register Bj. The status of the
channel (Bk) output buffer address register is not altered.

This instruction is intended for use in monitoring the progress of
the channel output buffer. The channel output buffer area is divided
into two fields by the threshold testing mechanism, The first half
of the buffer area constitutes one field and the last half of the
buffer area the other field. An I/0 section interrupt request is
generated by the threshold testing mechanism whenever the channel
output buffer address is advanced across a field boundary. This will
occur at the center of the buffer area and at the end of the buffer
area.

"Execution time

This instruction requires three clock periods to deliver the channel
output buffer address to the Bj register. The timing of the events
in the execution of this instruction is as follows.

017 instruction in the upper parcel of the CIW register,
Bk register free,

Bj register free,

Instruction issues.

Transmit next instruction to upper parcel of CIW register.
Transmit (Bk) to I/0 section access control.

Set go read channel flag.

Set Bj reservation flag.

Next instruction in the upper parcel of the CIW register,
Ingtruction may issue,
Clear go read channel flag.

‘Channel output buffer address arrives at Bd register.
Clear Bd reservation flag.

3-56

Execution delays

This instruction will not issue, and the sequence will not begin,
until the Bj and Bk registers are free. These registers will
normally be free since one is the result destination and the other
the channel number,

Special situations

(Bk) not a valid channel number

The lowest order four bits of (Bk) are used in this instruction,

The higher order bits are ignored. If higher order bits are set in
(Bk) the lowest order four bits are masked out and used to determine
the channel number, If (Bk) = 0, this instruction reads all zeros
into Bj.

Consecutive executions

Two or more read channel output status instructions may occur in
consecutive program instruction locations referencing the same or
different channels, These instructions may issue in consecutive
clock periods providing the Bj register reservations do not cause
a delay. No interference will result in the I/0 section access
control in these situatioms,

3-57

SN

02i0x | xxxxx|{ Jump to B + K

This instruction is a two parcel instruction in which the lower order

18 bits are used as an operand K. This instruction causes the current
program sequence to terminate with a jump to address (Bi) + K in the
SCM field,

‘This instruction is intended as a vehicle to allow computed branch

point destinations. This is the only CPU instruction in which a com-
puted parameter can specify a program branch destination address., All
other jump instructions have preassigned destination addresses, Pro-
gram modification to implement changes in a branch point destination
address is not recommended in general because of the complications
agsgoclated with the instruction stack.

The quantities (Bi) and K are added in an 18 bit ones complement mode.

The result is treated as an 18 bit positive integer., This resulting
sum specifies the beginning address in the SCM field for the new pro-
gram sequence, The remaining instructions, if any, in the current
program instruction word will not be executed. The instruction word
stack is not altered by the execution of this instructionm,

"Execution time

‘One of two possible sequences will be executed for this instruction

depending on whether the branch point destination address is, or
is not, currently in the imstruction stack. If the branch point
destination address is currently in the instruction stack, this
instruction may be executed in a minimum of three clock periods,
1f the branch point destination address is not currently in the
instruction stack, and is not in the process of arriving there,
the minimum execution time is 11 clock periods. If the branch
point address is not in the instruction stack, but is in process to
the instruction stack as a fetch instruction address, the second
sequence is executed and the execution time will be between three
and 11 clock periods,

3-58

The following is a chronological listing of the events in the
execution of this instruction for the case of branching within
the instruction stack,

CPO0 02 instruction in the upper parcel of the CIW register,
Bi register free.
Instruction does not issue.
Set GJF.

02 instruction in the upper parcel of the CIW register,
Instruction does not issue,

Transmit (Bi) + K to the P register,

Set JCF,

Clear GJF,

02 instruction in the upper parcel of the CIW register.
Instruction issues,

Coincidence in the IAS,

Read a valid instruction word from IWS to the CIW register.
Clear JZTF,

CP03 Next instruction in the upper parcel of the CIW register.
Instruction may issue,

The following is a chronological listing of the events in.tfa
execution of this instruction for the case of branching out of
the instruction stack.

02 instruction in the upper parcel of the CIW register.
Bi register free,

Instruction does not issue, ,
Set GJF, e
02 instruction in the upper parcel of the CIW register,
Instruction does not issue,

Transmit (Bi) + K to the P register.

Set JCF,

Clear GJF,.

02 instruction in the upper parcel of the CIW register.
Instruction issues,

No coincidence in the IAS.

Read a blank word from the IWS to the CIW register,

Set OSF,

Set JOF.

Transmit (P) + (RAS) to the IFA register,

Set F1F, F2F,

Clear JCF,

'3-59

(

i ngL.AiC-OIHClAﬂ‘

"CP03 No instruction in the upper parcel of the CIW register.

Transmit (P) to the NSA register,
Set MIF, M2F, :

The OSF remains set,

Transmit (IFA) to the SAS, Tag for read to IWS.
Advance (IFA).

Clear JOF,

Clear F2F,

'No instruction in the upper parcel of the CIW register,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register,
The OSF remains set,

Transmit (IFA) to the SAS. Tag for read to IWS,
Advance (IFA).

First fetch address leaves the SAS for a SCM bank,
Clear FI1F,

‘No instruction in the upper parcel of the CIW register.

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.
The OSF remains set.

First fetch read/write cycle begins in a SCM bank,
Second fetch address leaves the SAS for a SCM bank, ~

'CP06 ..No instruction in the upper parcel of the CIW register.

CPO7

CPO8

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.
The OSF remains set,

Second fetch read/write cycle begins in a SCM bank,

'No instruction in the upper parcel of the CIW register,

No coincidence in the IAS.
Read a blank word from the IWS to the CIW register.
The OSF remains set.

"No instruction in the upper parcel of the CIW register,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.
The OSF remains set.

First fetch instruction word reads to SCM bank operand register,

3-60

‘No instruction in the upper parcel of the CIW register.

No coincidence in the IAS.

Read a blank word from the IWS to the CIW register,

The OSF remains set,

Transmit the first fetch instruction word to the IWS,

Transmit (NSA) to the IAS.

Shift the IWS and the IAS one word position,

Advance (NSA).

Second fetch instruction word reads to SCM bank operand register.
Clear M2F, ’

CPl0 No instruction in the upper parcel of the CIW register.
Coincidence in the IAS.
Read a valid instruction word from the IWS to CIW register.
Clear the OSF,
Transmit the second fetch instruction word to the IWS.
Transmit (NSA) to the IAS,
Shift the IWS and the IAS one word position,
Advance (NSA),
Clear MIF.

‘Next instruction in the upper parcel of the CIW register.
Instruction may issue,

Execution delays

This instruction sequence will not begin until the Bi register is
free. This is true of either of the two possible sequences.

The second sequence (for branching out of the instruction stack)
will be delayed at CP02 i{f the F1F is set during this clock period.
The JOF will not set in CPO2 unless the FlF is cleared, The FIF
will be cleared at this time unless a SCM bank conflict has caused
a SAS backup condition which delayed an instruction fetch address
in leaving the IFA register. If the FIF is set in CP02, the rest
of the sequence will be delayed and the JOF will not set until all
fetch instruction words have arrived at the IWS and the MIF has
been cleared.

3-61

1 ASLAEC OFFICIALL

t

‘The transmission of (P) to the NSA register, the setting of MIF and

M2F, and the clearing of JOF will not take place in CP0O3 if an
instruction fetch is still in process and MIF is set for this ear-
lier reference., This will not delay the execution of the remainder

of this instruction. These commands will be issued and the functions

performed when the previous fetch instruction word arrives at the
IWS, ‘

‘The transmission of (IFA) to the SAS will be delayed in CP03 or in

CP04 if a backup situation exists in the SAS. The remainder of the
sequence will be delayed by the amount of time required to resolve
the SCM bank conflict and clear up the SAS backlog.

‘A delay in the arrival of the first fetch instruction word at the

IWS will occur if a SCM bank conflict prevents the first fetch
address from leaving the SAS in CP04. This will delay the com-
pletion of this instruction by the time required to resolve the
SCM bank conflict.

" Special situationms

‘Designator j not zero

‘The j designator in this instruction is normally zero. This desig-

nator is ignored, however, in the execution of the instruction, and
a nonzero value will have no effect on the results,

‘Last parcel

‘This instruction requires two parcels of an instruction word for

normal use., If this instruction begins in the first, second, or
third parcel of an instruction word the following parcel completes
the instruction. If this instruction begins in the last parcel of
an instruction word it will not be continued in the following word,
In this case the instruction will be executed as if there were a
fifth parcel in the instruction word and this parcel contained all
zeros.

'I/0 interrupt or error condition

'If an I/0 interrupt request or an error exit request exists at the

time this instruction is executed, the instruction is executed to
completion before the interrupt occurs,

3-62

Previous fetch is destination address

If the branch point destination address is not in the instruction
stack at the beginning of this instruction sequence, but is in
process to the instruction stack as an instruction fetch address,
this fetch instruction word will arrive at the IWS and enter the
CIW register in less than the minimum 11 clock periods normally
required for a jump out of stack. The remainder of the instruction
sequence will be completed and a duplicate word will be read to the
IWS as a normal initial instruction fetch, This will not cause any
special problems in the IWS,

Jump out of range

1f the branch point destination address is greater than the SCM
field length the program range condition flag is set in the PSD
register. The instruction will execute to completion, but the
first instruction word for the next program sequence will not read
from the IWS to the CIW register. At this point an error interrupt
will occur as a result of the program range condition flag, and an
exchange jump will occur to address (EEA) in the SCM., The terminat
ing exchange package will contain the out-of-range address in the
program address field.

Jump to zero

A jump to relative address zero in the SCM field is treated in the
game manner as a jump out of range. The program range condition
flag is set in the PSD register, and the program will be terminated
with an error exit to address (EEA). The terminating exchange
package will contain a zero quantity in the program address field,

_Jump to breakpoint address
A jump to address (BPA) will set the breakpoint condition flag in
the PSD register. The instruction will be executed to completion,

and the exchange jump to address (EEA) will occur before the first
instruction is executed at the branch point destination address.

3-63

*SL-AEC OFFI

030jx | xxxxx ‘Branch on X zero

Jump to K if: (Xj)

This instruction is a two parcel instruction in which the lower

order 18 bits are used as an operand K, Execution of this instruc-
tion will cause the program sequence to terminate with a jump to
address K in the SCM field, or to continue with the current program
sequence, depending on the contents of register Xj. This decision
will not be made, and the instruction will not issue from the CIW
register, until the Xj register is free, The branch to address K
will occur only on the conditions listed below. The current program
sequence will be continued for all other cases.

0000 0000 0000 0000 0000 plus zero
7777 7777 7777 7777 7771 minus zero

(X3)

This instruction is intended for branching on a zero result from
either a fixed point or a floating point operation.

"Execution time

There are three normal cases to be considered in the execution time
for this instruction. These are the following:

Branch fall through: (Minimum time two clock periods)

If the jump condition is not met this instruction is executed, and
issues from the CIW register, in two clock periods, Execution will
be delayed if the Xj register is not free.

‘Branch in stack: (Minimum time three clock periods)

If the jump condition is met and the destination address K is in
the instruction stack, this instruction is executed in three clock
periods, Execution will be delayed if the Xj register is not free,

‘Branch out of stack: (Minimum time 11 clock periods)

If the jump condition is met and the destination address K is not
in the instruction stack, this instruction is executed in a2 minimum
of 11 clock periods., Execution will be delayed if the Xj register
is not free, Execution may also be delayed by bank conflicts in
the SCM,

3-64

The following is the sequence of events in the execution of this
instruction for the case of branch fall through.

CP0OO

CpOl

‘Branch instruction in the upper parcel of the CIW register.
Instruction does not issue,.

Jump condition not satisfied,

Set GJF.

Branch instruction in the upper parcel of the CIW register.
Instruction issues,

Transmit next instruction to upper parcel of CIW register.
Clear GJF.

‘Next instruction in the upper parcel of the CIW register.
Instruction may issue.

The following is the sequence of events in the execution of this
instruction for the case of branch in stack.

CP0OO

‘Branch instruction in the upper parcel of the CIW register.
Instruction does not issue.

Jump condition satisfied,

Set GJF,

Branch instruction in the upper parcel of the CIW register,
Instruction does not issue.

Transmit K to the P register.

Set JCF.

Clear GJF,

Branch instruction in the upper parcel of the CIW register,
Instruction issues.

Destination address in instruction stack,

Coincidence in the IAS.

Read a valid instruction word from IWS to the CIW register.
Clear JCF.

‘Next instruction in the upper parcel of the CIW register.
Instruction may issue,.

3-65

Y

< or}lCtAB..\

“SL-AL

1

The following is the sequence of events in the execution of this

instruction for the case of branch out of stack.

CP0OO

CPO1

CP02

" CPO3

" CPO4

Branch instruction in the upper parcel of the CIW register.

Instruction does not issue,
Jump condition satisfied.

Set GJF.

Branch instruction in the upper parcel of the CIW register,

Instruction does not issue,
Transmit K to the P register,
Set JCF,

Clear GJF.

Branch instruction in the upper parcel of the CIW register.

Instruction issues,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.
Transmit (P) + (RAS) to the IFA register,

Set OSF.

Set JOF,

Set F1F, F2F,

Clear JCF,

‘No instruction in the upper parcel of the CIW register,

Transmit (P) to the NSA register,

Set M1F, M2F,

The OSF remains set,

Transmit (IFA) to the SAS. Tag for read to IWS,
Advance (IFA).

Clear JOF,

Clear F2F,

No instruction in the upper parcel of the CIW register,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.
The OSF remains set,

Transmit (IFA) to the SAS, Tag for read to IWS,
Advance (IFA),

First fetch address leaves the SAS for a SCM bank.
Clear FIlF,

3-66

CPO9

CP11

‘No instruction in the upper parcel of the CIW register,

No coincidence in the IAS.

Read a blank word from the IWS to the CIW register,
The OSF remains set,

First fetch read/write cycle begins in a SCM bank.
Second fetch address leaves the SAS for a SCM bank,

'No instruction in the upper parcel of the CIW register.

No coincidence in the IAS.

Read a blank word from the IWS to the CIW register.
The OSF remains set,

Second fetch read/write cycle begins in a SCM bank.

‘No instruction in the upper parcel of the CIW register,

No coincidence in the IAS.
Read a blank word from the IWS to the CIW register.
The OSF remains set, ’

‘No instruction in the upper parcel of the CIW register,

No coiucidence in the IAS,

Read a blank word from the IWS to the CIW register,

The OSF remains set,

First fetch instruction word reads to SCM bank operand register.

‘No instruction in the upper parcel of the CIW register.

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.

The OSF remains set,

Transmit the first fetch instruction word to the IWS,

Transmit (NSA) to the IAS.

Shift the IWS and the IAS one word position,

Advance (NSA),

Second fetch instruction word reads to SCM bank operand register.
Clear M2F,

‘No instruction in the upper parcel of the CIW register.

Coincidence in the IAS,

Read a valid instruction word from the IWS to CIW register
Clear the OSF.

Transmit the second fetch instruction word to the IWS.
Transmit (NSA) to the IAS, ’

Shift the IWS and the IAS one word position.

Advance (NSA),

Clear MLF,

Next instruction in the upper parcel of the CIW register,
Instruction may issue,

"3.67

"(LA[CJ“F”C‘Anv\:

“Execution delays

The following delays may occur in the execution of the third sequence
listed above for the case of a jump out of the instruction stack.

A delay in the execution of the instruction will occur if the FIF is

set in CP02., The JOF will not set in CPO2 unless the F1F is cleared,
indicating all instruction fetch requests have been sent to the SAS.
If the F1F is set in CPO2 the rest of the sequence will be delayed,
and the JOF will not set until all fetch instruction words have
arrived at the IWS and the MIF has been cleared.

The transmission of (P) to the NSA register, the setting of MIF

and M2F, and the clearing of JOF will not take place in CPO3 if an
instruction fetch is still in process and MIF is set for this ear-
lier reference. This will not delay the execution of the remainder
of this instruction. These commands will be issued and the functions
performed when the previous fetch instruction word arrives at the
IWS., ’

The transmission of (IFA) to the SAS will be delayed in CPO3 or in

CPO4 if a backup situation exists in the SAS. The remainder of the
sequence will be delayed by the amount of time required to resolve
the SCM bank conflict and clear up the SAS backlog.

A delay in the arrival of the first fetch instruction word at the

IWS will occur if a SCM bank conflict prevents the first fetch
address from leaving the SAS in CPO4, This will delay the com-
pletion of this instruction by the time required to resolve the
SCM bank conflict.

Special situations

‘Last parcel

This instruction requires two parcels of an instruction word for

normal use. If this instruction begins in the first, second, or
third parcel of an instruction word the following parcel completes
the instruction, 1If this instruction begins in the last parcel of
an instruction word it will not be continued in the following word.
In this case the instruction will be executed as if there were a
fifth parcel in the instruction word and this parcel contained all
zeros.

3-68

‘Previous fetch is destination address

If the branch point destination address is not in the instruction
stack at the beginning of this instruction sequence, but is in
process to the instruction stack as an instruction fetch address,
this fetch instruction word will arrive at the IWS and enter the
CIW register in less than the minimum 11 clock periods normally
required for a jump out of stack., The remainder of the instruction
sequence will be completed and a duplicate word will be read to the
IWS as a normal initial instruction fetch. This will not cause any
special problems in the IWS. :

“Jump out of range

If the branch point destination address is greater than the SCM
field length the program range condition flag is set in the PSD
register. The instruction will execute to completion, but the
first instruction word for the next program sequence will not read
from the IWS to the CIW register, At this point an error interrupt
will occur as a result of the program range condition flag, and an
.exchange jump will occur to address (EEA) in the SCM. The terminat-
ing exchange package will contain the out-of-range address in the
program address field.

“Jump to zero

A jump to relative address zero in the SCM field is treated in the
same manner as a jump out of range. The program range condition
flag is set in the PSD register, and the program will be terminated
with an error exit to address (EEA). The terminating exchange
package will contain a zero quantity in the program address field.

7Jump to breakpoint address

A jump to address (BPA) will set the breakpoint condition flag in
the PSD register, The instruction will be executed to completion,
and the exchange jump to address (EEA) will occur before the first
instruction is executed at the branch point destination address.

'1/0 interrupt or error condition

If an I/0 interrupt request or an error exit request exists at the
time this instruction is executed, the instruction is executed to
completion before the interrupt occurs.

3-69

N

Vg AEC OFFICIAN

031jx | xotxxx | Branch on X nonzero

Continue if: (Xj)

‘This instruction is a two parcel instruction in which the lower order

18 bits are used as an operand K. Execution of this instruction will
cause the program sequence to terminate with a jump to address K in
the SCM field, or to continue with the current program sequence,
depending on the contents of register Xj., This decision will not be
made, and the instruction will not issue from the CIW register, until
the Xj register is free. The program sequence will be continued only
on the conditions listed below, The branch to address K will occur
for all other cases, '

0000 0000 0000 0000 0000 plus zero
7777 7777 7777 7777 7777 minus zero

X1

This instruction is intended for branching on a nonzero result from

either a fixed or a floating point operation.

_Execution time

‘There are three normal cases to be considered in the execution time

for this instruction, These are the following:

‘Branch fall through: (Minimum time two clock periods)

Branch in stack: (Minimum time three clock periods)
Branch out of stack: (Minimum time 11 clock periods)

‘Details of the execution timing for this instruction are the same

as those for the 030 instru=tion,

Execution delays

‘The execution delays for this instruction are the same as those

listed for the 030 instruction.

7Specia1 situations

The special situations for this instruction are the same as those

listed for the 030 instruction,

3-70

032jx | xooomx ‘Branch on X positive

‘' This instruction is a two parcel instruction in which the lower order
18 bits are used as an operand K. Execution of this instruction will
cause the program sequence to terminate with a jump to address K
in the SCM field, or to continue with the current program sequence,
depending on the contents of register Xj. This decision will not be
made, and the instruction will not issue from the CIW register, until
the Xj register is free, The branch decision for this instruction
is based on the value of the sign bit in (Xj).

‘Jump to K if: Bit 59 of (Xj) = 0 (positive)
Continue if: Bit 59 of (Xj) = 1 (negative)

'This instruction is intended for branching on a positive result from
either a fixed point or a floating point operation,

Execution time

‘There are three normal cases to be considered in the execution time
for this instruction., These are the following:

‘Branch fall through: (Minimum time two clock periods)

Branch in stack: (Minimum time three clock periods)

Branch out of stack: (Minimum time 11 clock periods)

Details of the execution timing for this instruction are the same as

those listed for the 030 instruction,

Execution delays

The execution delays for this instruction are the same as those listed
for the 030 instructiom,

Special situations

The special situations for this instruction are the same as those
listed for the 030 instruction,

3-71

A GLAEC-OFFIC

033jx | xoxx ‘Branch on X negative

This instruction is a two parcel instruction in which the lower order

18 bits are used as an operand K, Execution of this instruction will
cause the program sequence to terminate with a jump to address K

in the SCM field, or to continue with the current program sequence,
depending on the contents of register Xj, This decision will not be
made, and the instruction will not issue from the CIW register, until
the Xj register is free, The branch decision for this instruction

is based on the value of the sign bit in (Xj),

‘Jump to K if: Bit 59 of (Xj) = 1 (negative)

Continue 1f; Bit 59 of (Xj) 0 (positive)

‘This instruction is intended for branching on a negative result from

either a fixed point or a floating point operation,

‘Execution time

‘There are three normal cases to be considered in the execution time

for this instruction, These are the following:

‘Branch fall through: (Minimum time two clock periods)

Branch in stack: (Minimum time three clock periods)
Branch out of stack: (Minimum time 11 clock periods)

‘Details of the execution timing for this instruction are the same as

those listed for the 030 instruction,

Execution delays

‘The execution delays for this instruction are the same as those listed

for the 030 instruction.

Special situations

‘The special situations for this instruction are the same as those

listed for the 030 instrxuction,

3-72

034jx | xoox | Branch on X in range

This instruction is a two parcel instruction in which the lower order
18 bits are used as an operand K, Execution of this instruction will
cause the program sequence to terminate with a jump to address K in
the SCM field, or to continue with the current program sequence,
depending on the contents of register Xj., This decision will not be
made, and the instruction will not issue from the CIW register, until
the Xj register is free., The program sequence will be continued only
on the conditions listed below, The branch to address K will occur
for all other cases.

‘Continue if: (Xj) 3777 00X 0OEX XXXX OOKXK 7(positive overflow)

Xi) 4000 xoox xxxx xxxx xoxx (negative overflow)
(X3) = 1777 xxxx xooxx xxxx xox (positive indefinite)
(Xj) = 6000 xxoxx xxxx xxxx xxxx (negative indefinite)

'This instruction is intended for branching on a floating point quantity
within the floating point range, The value of the coefficient is ignored
in making this branch test. An underflow quantity is considered in range
for purposes of this branch test,

Execution time

‘There are three normal cases to be considered in the execution time
for this instruction. These are the following:

‘Branch fall through: (Minimum time two clock periods)

Branch in stack: (Minimum time three clock periods)

Branch out of stack: (Minimum time 11 clock periods)

‘Details of the execution timing for this instruction are the same as
those listed for the 030 instruction,

"Execution delays

‘The execution delays for this instruction are the same as those listed
for the 030 instruction,

_Specisl situations

‘The special situations for this instruction are the same as those
liated for the 030 instruction,

3-73

A)

)

) oSl AEC-OFRICIATY

035)x | yooxxx ‘Branch on X not in range

This instruction is a two parcel instruction in which the lower order
18 bits are used as an operand K. Execution of this instruction will
cause the program sequence to terminate with a jump to address K

in the SCM field, or to continue with the current program sequence,
depending on the contents of register Xj., This decision will not be
made, and the instruction will not issue from the CIW register, until
the Xj register is free, The branch to address K will occur only on
the conditions listed below. The current program sequence will be
continued for all other cases,

Jump to K if: (Xj) 3777 xxxx xxxx xxxx xxxx (positive overflow)
X3) 4000 xxxx XxxXxX xxxX xxxx (negative overflow)
(Xj) = 1777 xxxx xxxx xxx xxxx (positive indefinite)
Xj) 6000 xoox xox xxxx xxxx (negative indefinite)

]

' This instruction is intended for branching on a floating point quantity

which is not in the floating point range., The value of the coefficient
is ignored in making this branch test, An underflow quantity is
considered in range for purposes of this branch test,

Execution time

There are three normal cases to be considered in the execution time

for this instruction, These are the following:

Branch fall through: (Minimum time two clock periods)

Branch in stack: Minimum time three clock periods)
Branch out of stack: (Minimum time 11 clock periods)

‘Details of the execution timing for this instruction are the same as

those listed for the 030 instruction,

" Execution delays

'The execution delays for this instruction are the same as those listed

for the 030 instruction,

7Special situations

‘The special situations for this instruction are the same as those

listed for the 030 instruction,

374

036jx | oooxx | Branch on X definite

"This instruction is a two parcel instruction in which the lower order
18 bits are used as an operand K. Execution of this instruction will
cause the program sequence to terminate with a jump to address K in
the SCM field, or to continue with the current program sequence,
depending on the contents of register Xj, This decision will not be
made, and the instruction will not issue from the CIW register, until
the Xj register is free, The program sequence will be continued only
on the conditions listed below., The branch to address K will occur
for all other cases,

Continue if: (Xj) = 1777 oo 3o xxxx xxxx (positive indefinite)
(Xj) = 6000 xxxx xxxx xxxx xxxx (negative indefinite)

‘This instruction is intended for branching on a floating point
quantity which may be out of range but is still defined, The value
of the coefficient is ignored in making this branch test. An over-
flow quantity or an underflow quantity is considered defined for
purposes of this branch test,

"Execution time

There are three normal cases to be considered in the execution time
for this instruction, These are the following:

‘Branch fall through: (Minimum time two clock periods)

Branch in stack: (Minimum time three clock periods)

Branch out of stack: (Minimum time 11 clock periods)

‘Details of the execution timing for this instruction are the same as
those listed for the 030 instruction,

"Execution delays

‘The execution delays for this instruction are the same as those listed
for the 030 instruction,

Special situations

‘The special situations for this instruction are the same as those
listed for the 030 instruction,

375

S’

' -q-A{c-OFHCéAﬂ

037 3x | xoomxx ‘Branch on X indefinite

"This instruction is a two parcel instruction in which the lower order
18 bits are used as an operand K, Execution of this instruction will
cause the program sequence to terminate with a jump to address K in
the SCM field, or to continue with the current program sequence,
depending on the contents of register Xj, - This decision will not be
made, and the instruction will not issue from the CIW register, until
the Xj register is free, The branch to address K will occur only on.
the conditions listed below., The current program sequence will be
continued for all other cases.

Jump to K if: (Xj) = 1777 xxxx xxxx xxxx xxxx (positive indefinite)
Xj) 6000 xxxx xxxx xxxx xxxx (negative indefinite)

'This instruction is intended for branching on a floating point quantity

which is not defined, The value of the coefficient is ignored in making
this branch test, An overflow quantity or an underflow quantity is
considered defined for purposes of this branch test,

"Execution time

"There are three normal cases to be considered in the execution time

for this instruction, These are the following:

‘Branch fall through: (Minimum time two clock periods)
Branch in stack: (Minimum time three clock periods)
Branch out of stack: (Minimum time 11 clock periods)

‘Details of the execution timing for this instruction are the same as

those listed for the 030 instruction,

"Execution delays

'The execution delays for this instruction are the same as those listed

for the 030 instruction,

 Special situations

‘The special situations for this instruction are the same as those

listed for the 030 instruction,

" 3-76

04ijx | xooxx ‘Branch on B .EQ. B

This instruction is a two parcel instruction in which the lower order
18 bits are used as an operand K. Execution of this instruction will
cause the program gsequence to terminate with a jump to address K in
the SCM field, or to continue with the current program sequence,
depending on a comparison of the contents of register Bi with the
contents of register Bj. This decision will not be made, and the
instruction will not issue from the CIW register, until the Bi regis-
ter and Bj register are free, The branch to address K will occur
only i1f the two quantities are identical on a bit by bit comparison
basis. The current program sequence will be continued for all other
cases,

‘This instruction is intended for branching on an index equality test.

A quantity consisting of all zeros and a quantity consisting of all
ones are not equal for this test.

Execution time

There are three normal cases to be considered in the execution time
for this instruction, These are the following:

Branch fall through:. (Minimum time two clock periods)

If the jump condition is not met this instruction is executed, and
issues from the CIW register, in two clock periods. FExecution will
be delayed if the Bi register or Bj register is not free.

Branch in stack: (Minimum time three clock periods)

I1f the jump condition is met and the destination address K is in

the instruction stack, this instruction is executed in three clock
periods. Execution will be delayed if the Bl register or Bj register
is not free,

Branch out of stack: (Minimum time 1l clock periods)

If the jump condition 1is met and the destination address K is not
in the instruction stack, this instruction is executed in a minimum
of 11 clock perfods. Execution will be delayed if the Bi register

or Bj register is not free, Execution may also be delayed by bank
conflicts in the SCM.

3-77

)

‘The following is the sequence of events in the execution of this
ingstruction for the case of branch fall through,

'CPO0 Branch instruction in the upper parcel of the CIW register.
Instruction does not issue,
Jump condition not satisfied,.
Bi register free,
Bj register free.
Set GJF,

Branch instruction in the upper parcel of the CIW register,
Instruction issues,

Transmit next instruction to upper parcel of CIW register,
Clear GJF. :

CP02 Next instruction in the upper parcel of the CIW register.
Instruction may issue.

‘The following is the sequence of events in the execution of this
instruction for the case of branch in stack.

'CPO0 Branch instruction in the upper parcel of the CIW register
Instruction does not issue,
Jump condition satisfied,
= Bi register free.
Bj register free,
Set GJF,

Branch instruction in the upper parcel of the CIW register.
Instruction does not issue,

Transmit K to the P register.

Set JCF.

Clear GJF. -

‘Branch instruction in the upper parcel of the CIW register.
Instruction issues,.

Destination address in instruction stack.,.
Coincidence in the IAS.

Read a valid instruction word from IWS to the CIW register,
Clear JCF,

'Next instruction in the upper parcel of the CIW register.
Instruction may issue,

3-78

ce GL-AECJ"NICIA“)

The following is the sequence of events in the execution of this
instruction for the case of branch out of stack.

cp02

CP03

‘Branch instruction in the upper parcel of the CIW register.

Instruction does not 1issue,
Jump condition satisfied.
Bi register free.

Bj register free.

Set GJF,

Branch instruction in the upper parcel of the CIW register,
Instruction does not issue,

Transmit K to the P register,

Set JCF,

Clear GJF.

"Branch instruction in the upper parcel of the CIW register,

Instruction issues,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.
Transmit (P) + (RAS) to the IFA register.

Set OSF,

Set JOF,

Set FlF, F2F,

Clear JCF,

‘No instruction in the upper parcel of the CIW register.

Transmit (P) to the NSA register.

Set M1F, M2F.

The OSF remains set,

Transmit (IFA) to the SAS. Tag for read to IWS.
Advance (IFA),
Clear JOF.
Clear F2F.

)

‘No instruction in the upper parcel of the CIW register,

No coincidence in the IAS,

Read a blank word from the IWS to the CIW register,
The OSF remalns set,

Transmit (IFA) to the SAS. Tag for read to IWS,
Advance (IFA),

First fetch address leaves the SAS for a SCM bank.
Clear F1F,

3-79

q,A(CAﬂfHCIAﬂ~\

“CPOS

CPO7

CP10

‘No instruction in the upper parcel of the CIW register.
No coincidence in the IAS,

Read a blank word from the IWS to the CIW register.

The OSF remains set,

First fetch read/write cycle begins in a SCM bank.
Second fetch address leaves the SAS for a SCM bank.

‘No instruction in the upper parcel of the CIW register.
No coincidence in the IAS,

Read a blank word from the IWS to the CIW register,

The OSF remains set,

Second fetch read/write cycle begins in a SCM bank,

‘No imstruction in the upper parcel of the CIW register.
No coincidence in the IAS, ‘
‘Read a blank word from the IWS to the CIW register.

The OSF remains set,

‘No instruction in the upper parcel of the CIW register,

No coincidence in the IAS.

Read a blank word from the IWS to the CIW register.

The OSF remains set,

First fetch instruction word reads to SCM bank operand register.

‘No instruction in the upper parcel of the CIW register,

No coincidence in the IAS.,

Read a blank word from the IWS to the CIW register,

The OSF remains set,

Transmit the first fetch instruction word to the IWS.

Transmit (NSA) to the IAS.

Shift the IWS and the IAS one word position,

Advance (NSA),

Second fetch instruction word reads to SCM bank operand register,
Clear M2F, '

No instruction in the upper parcel of the CIW register.
Coincidence in the IAS.

Read a valid instruction word from the IWS to CIW register,
Clear the OSF,

Transmit the second fetch instruction word to the IWS,
Transmit (NSA) to the IAS,

Shift the IWS and the IAS one word position,

Advance (NSA).

Clear MIF,

3-80

'CP1ll Next instruction in the upper parcel of the CIW register.
Instruction may issue,

Execution delays

‘"The following delays may occur in the execution of the third sequence
listed above for the case of a jump out of the instruction stack.

A delay in the execution of the instruction will occur if the FIF is
set in CPO2, The JOF will not set in CP02 unless the FIF is cleared,
indicating all instruction fetch requests have been sent to the SAS.
If the FIF is set in CPO2 the rest of the sequence will be delayed,
and the JOF will not set until all fetch instruction words have
arrived at the IWS and the MLF has been cleared.

The transmission of (P) to the NSA register, the setting of MIF

and M2F, and the clearing of JOF will not take place in CP0O3 if an
instruction Zetch is still in process and MIF is set for this ear-
lier reference. This will not delay the execution of the remainder
of this instruction. These commands will be issued and the functions
performed when the previous fetch instruction word arrives at the
IWS,

‘The transmission of (IFA) to the SAS will be delayed in CPO3 or in
CPO4 if a backup situation exists in the SAS, The remainder of the
sequence will be delayed by the amount of time required to resolve
the SCM bank conflict and clear up the SAS backlog.

'A delay in the arrival of the first fetch instruction word at the
IWS will occur if a SCM bank conflict prevents the first fetch
address from leaving the SAS in CPO4. This will delay the com-
pletion of this instruction by the time required to resolve the
SCM bank conflict,

3-81

SL-AEC nmcw’\

 Special situations

Designators i and j have same value

The i and j designators may have the same value in this instruction,
In this case the designated B register is compared against itself,
The branch condition test is made in the same manner for this case
as would be made if two different B registers were designated and
the contents of the two B registers were identical,

‘Last parcel

This instruction requires two parcels of an instruction word for
normal use, If this instruction begins in the first, second, or
third parcel of an instruction word the following parcel completes
the instruction, If this instruction begins in the last parcel of
an instruction word it will not be continued in the following word
In this case the instruction will be executed as if there were a
fifth parcel in the instruction word and this parcel contained all
zeros,

‘Previous fetch is destination address

"If the branch point destination address is not in the instruction

stack at the beginning of this instruction sequence, but is in
process to the instruction stack as an instruction fetch address,
this fetch instruction word will arrive at the IWS and enter the
CIW register in less than the minimum 11 clock periods normally
required for a jump out of stack, The remainder of the instruction
sequence will be completed and a duplicate word will be read to the
IWS as a normal initial instruction fetch. This will not cause any
speclal problems in the IWS,

“Jump out of range

"If the branch point destination address is greater than the SCM

field length the program range condition flag is set in the PSD
register. The instruction will execute to completion, but the

first instruction word for the next program sequence will not read
from the IWS to the CIW register, At this point an error interrupt
will occur as a result of the program range condition flag, and an
exchange jump will occur to address (EEA) in the SCM, The terminate~
ing exchange package will contain the out-of-range address in the
program address field,

3-82

Jump to zero

A jump to relative address zero in the SCM field is treated in the
same manner as a jump out of range, The program range condition
flag is set in the PSD register, and the program will be terminated
with an error exit to address (EEA)., The terminating exchange
package will contain a zero quantity in the program address field.

Jump to breakpoint address

A jump to address (BPA) will set the breakpoint condition flag in
the PSD register. The instruction will be executed to completion,
and the exchange jump to address (EEA) will occur before the first
instruction is executed at the branch point destination address.

I/0 interrupt or error condition

If an I/0 interrupt request or an error exit request exists at the
time this instruction is executed, the instruction is executed to
completion before the interrupt occurs,

'3-83

! *QL»AI’:C-O?HCIA[H

051 jx | oooxx ‘Branch on B ,NE, B

"This instruction is a two parcel instruction in which the lower order
18 bits are used as an operand K. Execution of this instruction will
cause the program sequence to terminate with a jump to address K in
the SCM field, or to continue with the current program sequence,
depending on a comparison of the contents of register Bi with the
contents of register Bj, This decision will not be made, and the
instruction will not issue from the CIW register, until the Bi regis-
ter and Bj register are free, The program sequence will be continued
only if the two quantities are identical on a bit by bit comparison
basis., The branch to address K will occur for all other cases.

'This instruction is intended for branching on an index inequality

‘test. A quantity consisting of all zeros and a quantity consisting
of all ones are not equal for this test,

Execution time

There are three normal cases to be considered in the execution time
for this imstruction, These are the following:

‘Branch fall through: (Minimum time two clock periods)
Branch in stack: (Minimum time three clock periods)

Branch out of stack: Minimum time 11 clock periods)

‘Details of the execution timing for this instruction are the same
as those for the 04 instruction,

" Execution delays

'The execution delays for this instruction are the same as those
listed for the 04 instruction,

Special situations

‘The special situations for this instruction are the same as those
listed for the 04 instruction,

3-84

06ijx | socoox | Branch on B ,GE, B

This instruction is a two parcel instruction in which the lower order
18 bits are used as an operand K. Execution of this instruction will
cause the program sequence to terminate with a jump to address K in the
SCM field, or to continue with the current program sequence, depending
on a comparison of the contents of register Bi with the contents of
register Bj. Both quantities are treated as signed integers., This
decision will not be made, and the instruction will not issue from the
CIW register, until the Bi register and Bj register are free, The
branch to address K will occur if the content of register Bi is greater
than, or equal to, the content of register Bj. The current program
sequence will be continued if the content of register Bi is less than
the content of register Bj,

This instruction is intended for branching on an index threshold test,
The test is made in a 19 bit ones complement mode, The quantity (Bi)
and the quantity (Bj) are sign extended one bit to prevent an erroneoug
result caused by exceeding the modulus of the comparison device, The
quantity (Bj) is then subtracted from the quantity (Bi). The branch
decision is based on the sign bit in the 19 bit result, A branch to
address K occurs if the sign of the result is positive, The current
sequence i8 continued if the sign of the result is negative, A positive
zero quantity and a negative zero quantity are not treated as equal

in this test. The four possible combinations of positive and negative
zero values are summarized below,

Jump to K 1f: (BL) = 000000 and (Bj) = 000000
(Bi) = 777777 and (Bj) = 777777
(B1) = 000000 and (Bj) = 777777
‘Continue if: (Bi) = 777777 ‘and (Bj) = 000000

Execution time

Execution delays

Special situations

Details of the execution timing, execution delays, and special
situations for this instruction are the same as those listed for
the 04 instruction,

' 3-85

T4 SL-AEC OFFICIAT

071)x | xxxxx ‘Branch on B .LT, B

‘This instruction is a two parcel instruction in which the lower order
18 bits are used as an operand K, Execution of this instruction will
cause the program sequence to terminate with a jump to address K in
the SCM field, or to continue with the current program sequence,
depending on a comparison of the contents of register Bi with the
contents of register Bj, Both quantities are treated as signed
integers, This decision will not be made, and the instruction will
not issue from the CIW register, until the Bi register and Bj regis-
ter are free, The branch to address K will occur if the content of
register Bi is less than the content of register Bj, The current
program sequence will be continued if the content of register Bi is
greater than, or equal to, the content of register Bj.

This instruction is intended for branching on an index threshold
test. The test is made in a 19 bit ones complement mode, The
quantity (Bi) and the quantity (Bj) are sign extended one bit to
prevent an erroneous result caused by exceeding the modulus of the
comparison device. The quantity (Bj) is then subtracted from the
quantity (Bi). The branch decision is based on the sign bit in the
19 bit result, A branch to address K occurs if the sign of the
result is negative. The current sequence is continued if the sign
of the result is positive, A positive zero quantity and a negative
zero quantity are not treated as equal in this test. The four
possible combinations of positive and negative zero values are
summarized below.

‘Jump to K if: (Bi) = 777777 and (Bj) = 000000
Continue if: (Bi) = 000000 and (Bj) = 000000
(BL) = 777777 and (Bj) = 777777
(Bi) = 000000 and (Bj) = 777777

_Execution time

"Execution delays

Special situations

‘Details of the execution timing, execution delays, and special
situations for this instruction are the same as those listed for
the 04 instruction,

3-86

10130 _Copy

This instruction causes the boolean unit to read a 60 bit word from
register Xj and copy this word into register Xi.

'This instruction is intended for moving data from one X register to
another X register as rapidly as possible. No logical function is
performed on the data.

_Issue conditions

Xi register is free,
Xj register is free,
X register input path will be free in next clock period.

No SAS backup condition.

" Execution time

No execution delays are possible after this imstruction issues from
the CIW register, The result will be delivered to the Xi register
one clock period after the instruction issues, The Xi register will
be reserved for the one clock period from issue to delivery of data.
The command timing for this instruction is listed below,

"CPO0 10 instruction in the upper parcel of the CIW register,

Instruction issues,
Transmit the next instruction to upper parcel of CIW register.

Transmit (Xj) to the boolean unit,
Set Xi reservation flag,
Set go boolean flag.

CPOlL Next instruction in the upper parcel of the CIW register,
Instruction may issue,
Transmit data from boolean unit to Xd register,

Clear Xd reservation flag.
Clear go boolean flag.

" 3-87

w;i xﬁyi

S AEC-OFFICIAN \)

 Special situations -

‘Designator k not zero

The k designator in this instruction is normmally zero. This designator
is ignored, however, in the execution of the instruction, and a nonzero
value will have no effect on the results,

Designators i and j have the same value

If the i and j designators have the same value this instruction will
read a 60 bit word from the designated X register and then write the
same information back into that X register, The timing for this case

will be the same as the timing for the general case, and no special
conflicts will occur.

_\,Q AN
¥

- 3-88

111jk | Logical product

This instruction causes the boolean unit to read operands from two

X registers, operate upon them to form a single word result, and
deliver this result to a third X register., The operands for this
instruction are (Xj) and (Xk)., The resultant word delivered to the
Xi register is the bit by bit logical product of the two operands,
Each of the 60 bits in (Xj) is acted upon by the corresponding bit

of (Xk) to form a single bit in (Xi). A sample computation is listed
below 1in octal notation to illustrate the operation performed and
includes the four possible bit combinations that may occur,

I

7777 7000 0123 4567 1010
0123 4567 0077 7700 1100
0123 4000 0023 4500 1000

‘Sample operands:_ 0:4))
(Xk)
(X1)

nn

This instruction is intended for extracting portions of a 60 bit
word during data processing as distinguished from numerical com-
putation, This instruction together with the other boolean and
shift instructions may be used to manipulate alphanumeric or other
coded data not related to the 60 bit machine word length.

7Isaue conditions

"X1i register is free.

Xj register is free.

Xk register is free,

X register input path will be free in next clock pericd,
No SAS backup condition,

_Execution time

No execution delays are possible after this instruction issues from
the CIW register, The result will be delivered to the Xi register
one clock period after the instruction issues, The Xi register will
be reserved for the onme clock period from issue to delivery of data.
The command timing for this instruction is listed below.

3-89

CP00 11 instruction in the upper parcel of the CIW register,
Instruction issues.
Transmit the next instruction to upper parcel of CIW register,
Transmit (Xj) to the boolean unit,
Transmit (Xk) to the boolean unit,
Set Xi reservation flag.
Set go boolean flag.

CPOl Next instruction in the upper parcel of the CIW register,
Ingstruction may issue,
Transmit data from boolean unit to Xd register,
Clear Xd reservation flag,
Clear go boolean flag.

Special situations

Designators j and k have the same value

I1f the j and k designators have the same value in this instruction
the designated X register content is operated upon by a copy of
this same quantity, The instruction in this case degenerates into
a copy instruction, The timing for this case will be the same as
the timing for the general case, and no special conflicts will
occur,

Degignators i and j have the same value

If the i and j designators have the same value in this instruction
the quantity (Xj) is replaced by the resultant quantity (Xi) at the
end of the operation., No special conflicts will occur as a result

of this combination,

Designators 1 and k have the same value

If the i and k designators have the same value in this instruction
the quantity (Xk) is replaced by the resultant quantity (Xi) at the

end of the operation. No special conflicts will occur as a result
of this combination,

3-90

121jk ‘Logical sum

This instruction causes the boolean unit to read operands from two
X registers, operate upon them to form a single word result, and
deliver this result to a third X register., The operands for this
instruction are (Xj) and (Xk). The resultant word delivered to the
Xi register is the bit by bit logical sum of the two operands, Each
of the 60 bits in (Xj) 1s acted upon by the corresponding bit of
(Xk) to form a single bit in (Xi)., A sample computation is listed
below in octal notation to illustrate the operation performed and
includes the four possible bit combinations that may occur,

0000 7777 0123 4567 1010
0123 4567 7777 0000 1100
0123 7777 7777 4567 1110

‘Sample operands: (Xj)
(Xk)
(x1)

on

"This instruction is intended for merging portions of a 60 bit word
into a composite word during data processing as distinguished from
numerical computation, This instruction together with the other
boolean and shift instructions may be used to manipulate alphanumeric
or other coded data not related to the 60 bit machine word length.

" Issue conditions

X1 register is free.

Xj register is free,

Xk register is free,

X register input path will be free in next clock period,
No SAS backup condition,

Execution time

‘No execution delays are possible after this instruction issues from
the CIW register. The result will be delivered to the Xi register
one clock period after the instruction issues, The X{i register will
be reserved for the one clock period from issue to delivery of data.
The command timing for this instruction is listed below,

3-91

CPOO

CpPOl

12 instruction in the upper parcel of the CIW register.

Instruction issues,

Transmit the next instruction to upper parcel of CIW register,
Transmit (Xj) to the boolean unit,

Transmit (Xk) to the boolean unit,

Set Xi reservation flag.

Set go boolean flag,

‘Next instruction in the upper parcel of the CIW register,

Instruction may issue,

Transmit data from boolean unit to Xd register.
Clear Xd reservation flag,

Clear go boolean flag,

_Special gsituations

‘Designators j and k have the same value

If the j and k designators have the same value in this instruction
the designated X register content is merged with another copy of
the same quantity, The instruction in this case degenerates into a
copy instruction, The timing for this case will be the same as the
timing for the general case, and no special conflicts will occur,

‘Designators i and j have the same value

If the i and j designators have the same value in this instruction

the quantity (Xj) is replaced by the resultant quantity (Xi) at the
end of the operation, No special conflicts will occur as a result

of this combination,

‘Designators i and k have the same value

"If the 1 and k designators have the same value in this instruction
the quantity (Xk) is replaced by the resultant quantity (Xi) at the
end of the operation, No special conflicts will occur as a result
of this combination,

- 3-92

13ijk | Logical difference

This instruction causes the boolean unit to read operands from two

X registers, operate upon them to form a single word result, and
deliver this result to a third X register, The operands for this
instruction are (Xj) and (Xk). The resultant word delivered to the
Xi register is the bit by bit logical difference of the two operands,
Each of the 60 bits in (Xj) is acted upon by the corresponding bit

of (Xk) to form a single bit in (Xi). A sample computation is listed
below in octal notation to illustrate the operation performed and
includes the four possible bit combinations that may occur.

0123 7777 0123 4567 1010
0123 4567 7777 3210 1100
0000 3210 7654 7777 0110

‘Sample operands: (Xj)
(Xk)
(X1)

(LI

This instruction is intended for comparing bit patterns or for com-
plementing bit patterns during data processing as distinguished from
numerical computation, This instruction together with the other
boolean and shift instructions may be used to manipulate alphanumeric
or other coded data not related to the 60 bit machine word length.

"1Issue conditions

Xi register is free,

Xj) register is free.

Xk register is free,

X register input path will be free in next clock period.
No SAS backup condition,

_Execution time

No execution delays are possible after this instruction issues from
the CIW register, The result will be delivered to the Xi register
one clock period after the instruction issues., The Xi register will
be reserved for the one clock period from issue to delivery of data.
The command timing for this instruction is listed below.

3-93

CPOO 13 instruction in the upper parcel of the CIW register.
Instruction issues,
Transmit the next instruction to upper parcel of CIW register,
Transmit (Xj) to the boolean unit,
Transmit (Xk) to the boolean unit,
Set Xi reservation flag,
Set go boolean flag.

"CPOl Next instruction in the upper parcel of the CIW register,
Instruction may issue,
Transmit data from boolean unit to Xd register,
Clear Xd reservation flag.
Clear go boolean flag.

Special situations

‘Designators j and k have the same value

If the j and k designators have the same value in this instruction
a logical difference is formed between two identical quantities,
The result will be a word of all zeros written into register Xi,
The timing for this case is the same as the timing for the general
case,

Designators 1 and j have the same value

If the 1 and j designators have the same value in this instruction

the quantity (Xj) is replaced by the resultant quantity (Xi) at the
end of the operation, No special conflicts will occur as a result

of this combination,

_Deaignators i and k have the same value
"If the i and k designators have the same value in this instruction
the quantity (Xk) is replaced by the resultant quantity (Xi) at the

end of the operation., No special conflicts will occur as a result
of this combination,

3-94

1410k | Copy complement

"This instruction causes the boolean unit to read a 60 bit word from
register Xk, complement the word, and write the result into register Xi.

‘This instruction is intended for changing the sign of a fixed point

or floating point quantity as quickly as possible, This instruction

is also useful in data processing for inverting an entire 60 bit field,
The result is generally, but not necessarily, returned to the same X
register,

" Issue conditions

X1 register is free.

Xk register is free.

X register input path will be free in next clock period,
No SAS backup condition,

:Execution time

'No execution delays are possible after this instruction issues from
the CIW register. The result will be delivered to the Xi register
one clock period after the instruction issues, The Xi register will
be reserved for the one clock period from issue to delivery of data.
The command timing for this instruction is listed below.

14 instruction in the upper parcel of the CIW register.
Instruction issues.

Transmit the next instruction to upper parcel of CIW register,
Transmit (Xk) to the boolean unit.

Set Xi reservation flag,

Set go boolean flag,

‘Next instruction in the upper parcel of the CIW register,
Instruction may issue,

Transmit data from boolean unit to Xd register,

Clear Xd reservation flag,

Clear go boolean flag,

3-95

st Atcorncm&\:

‘_Special situations

‘Designator j not zero

The j designator in this instruction is normally zero. This designator
is ignored, however, in the execution of the ingtruction, and a nonzero—
value will have no effect on the results,

Designators i and k have the same value

The 1 and k designators will frequently have the same value in this
instruction., In this case the quantity read from the designated X
register is complemented and returned to the same X register. The
timing for this case is the same as the timing for the general case.

'3-96

151jk | Logical product with complement

‘This instruction causes the boolean unit to read operands from two

X registers, operate upon them to form a single word result, and
deliver this result to a third X register. The operands for this
instruction are (Xj) and (Xk), The resultant word delivered to the

Xi register is the bit by bit logical product of (Xj) with the
complement of (Xk). Each of the 60 bits in (Xj) 1s acted upon by

the corresponding bit of (Xk) to form a single bit in (Xi), A

sample computation is listed below in octal notation to illustrate

the operation performed and includes the four possible bit combinations
that may occur,

‘Sample operands: (Xj) = 7777 7000 0123 4567 1010
(Xk) = 0123 4567 0007 7700 1100
(X1) 7654 3000 0120 0067 0010

'This instruction is intended for extracting portions of a 60 bit
word during data processing as distinguished from numerical com-
putation, This instruction together with the other boolean and
shift instructions may be used to manipulate alphanumeric or other
coded data not related to the 60 bit machine word length.

’Issue conditions

X1 register is free,

Xj register is free.

Xk register is free,

X register input path will be free in next clock period.
No SAS backup condition,

Execution time

No execution delays are possible after this instruction issues from
the CIW register. The result will be delivered to the Xi{ register
one clock period after the instruction issues, The Xi register will
be reserved for the one clock period from issue to delivery of data.
The command timing for this instruction is listed below,

3-97

A SLAEC-OFFICIAD

CPO0 15 instruction in the upper parcel of the CIW register.
Instruction issues,
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xj) to the boolean unit,
Transmit (Xk) to the boolean unit,
Set Xi reservation flag.
Set go boolean flag.

CPO1 Next instruction in the upper parcel of the CIW register,
Instruction may issue,
Transmit data from boolean unit to Xd register,
Clear Xd reservation flag.
Clear go boolean flag.

Special situations

7Designators j and k have the same value

If the j and k designators have the same value in this instruction

a logical product is formed between two complementary quantities.
The result will be a word of all zeros written into register Xi.
The timing for this case is the same as the timing for the general
case,

Designators i and j have the same value

If the i and j designators have the same value in this instruction

the quantity (Xj) is replaced by the resultant quantity (Xi) at the
end of the operation. No special conflicts will occur as a result

of this combination,

_Designators i and k have the same value

If the i and k designators have the same value in this instruction

the quantity (Xk) is replaced by the resultant quantity (Xi) at the
end of the operation, No special conflicts will occur as a result
of this combination,

' 3-98

16ijk | Logical sum with complement

This instruction causes the boolean unit to read operands from two
X registers, operate upon them to form a single word result, and
deliver this result to a third X register. The operands for this
instruction are (Xj) and (Xk). The resultant word delivered to

the Xi register is the bit by bit logical sum of (Xj) with the
complement of (Xk). Each of the 60 bits in (Xj) is acted upon by
the corresponding bit of (Xk) to form a single bit in (Xi). A sam-
ple computation is listed below in octal notation to illustrate the
operation performed and includes the four possible bit combinations
that may occur.

“Sample operands: (Xj) = 0000 7777 0123 4567 1010
(Xk) = 0123 4567 7777 0000 1100
(Xi) = 7654 7777 0123 7777 1011

This instruction is intended for merging portions of a 60 bit word
into a composite word during data processing as distinguished from
numerical computation. This instruction together with the other
boolean and shift instructions may be used to manipulate alphanumeric
or other coded data not related to the 60 bit machine word length.

‘Issue conditions

Xi register is free.
Xj register is free,
Xk register is free,
X register input path will be free in next clock period
No SAS backup condition,

~—
~

"Execution time

No execution delays are possible after this instruction issues from
the CIW register. The result will be delivered to the Xi register
one clock period after the instruction issues, The Xi register will
be reserved for the one clock period from issue to delivery of data,
The command timing for this instruction is listed below.

3-99

e *SLAEC-OHICIAU\

"CPO0 16 instruction in the upper parcel of the CIW register,

"Instruction issues,

Transmit the next instruction to upper parcel of CIW register.

Transmit (Xj) to the boolean unit,
Transmit (Xk) to the boolean unit,
Set Xi reservation flag,

Set go boolean flag.

"CPO1 Next instruction in the upper parcel of the CIW register.

Instruction may issue,

Transmit data from boolean unit to Xd register,

Clear Xd reservation flag.
Clear go boolean flag.

7Special situations
Designators j and k have the same value

If the j and k designators have the same value
a logical sum is formed from two complementary
result will be a word of all ones written into
timing for this case is the same as the timing

‘Designators i and j have the same value

If the i and j designators have the same value

in this instruction
quantities, The
register Xi. The
for the general case,

in this instruction

the quantity (Xj) is replaced by the resultant quantity (Xi) at
the end of the operation., No special conflicts will occur as a

result of this combination,

_Designators i and k have the same value

'If the i and k designators have the same value in this instruction

the quantity (Xk) is replaced by the resultant quantity (Xi) at
the end of the operation. No special conflicts will occur as a

result of this combinationm.

3-100

17ijk 7Logical difference with complement

This instruction causes the boolean unit to read operands from two

X registers, operate upon them to form a single word result, and
deliver this result to a third X register, The operands for this
instruction are (Xj) and (Xk). The resultant word delivered to

the Xi register is the bit by bit logical difference of (Xj) with

the complement of (Xk). Each of the 60 bits in (Xj) is acted upon

by the corresponding bit of (Xk) to form a single bit in (Xi). A
sample computation is listed below in octal notation to illustrate

the operation performed and includes the four possible bit combinations
that may occur,

0123 7777 0123 4567 1010
0123 4567 7777 3210 1100
7777 4567 0123 0000 1001

‘Sample operands: _(Xj)
(Xk)
(Xi)

This instruction is intended for comparing bit patterns or for
complementing bit patterns during data processing as distinguished
from numerical computation. This instruction together with the
other boolean and shift instructions may be used to manipulate
alphanumeric or other coded data not related to the 60 bit machine
word length,

_Issue conditions

Xi register is free,

Xj register is free.

Xk register is free, .

X register input path will be free in next clock period.
No SAS backup condition, ;

Execution time

No execution delays are possible after this instruction issues from
the CIW register. The result will be delivered to the Xi register
one clock period after the instruction issues. The Xi register will
be reserved for the one clock period from issue to delivery of data.
The command timing for this instruction is listed below.

3-101

\,

*ASL-AET-QFF

'CPO0 17 instruction in the upper parcel of the CIW register,
Instruction issues, '
Transmit the next instruction to upper parcel of CIW register,
Transmit (Xj) to the boolean unit,
Transmit (Xk) -to the boolean unit,
Set Xi reservation flag.
Set go boolean flag, . ‘

'CPO1 Next instruction in the upper parcel of the CIW register,.
Instruction may issue,
Transmit data from boolean unit to Xd register.
Clear Xd reservation flag,
Clear go boolean flag,

‘_Special situations

‘Designators j and k have the same value

If the j and k designators have the same value in this instruction

a logical difference is formed between two complementary quantities,
The result will be a word of all ones written into register Xi. The
timing for this case is the same as the timing for the general case,

‘Designators i and j have the same value

I1f the i and j designators have the same value in this instruction

the quantity (Xj) is replaced by the resultant quantity (Xi) at the
end of the operation. No special conflicts will occur as a result

of this combination.

‘Designators i and k have the same value

'If the i and k designators have the same value in this instruction

the quantity (Xk) is replaced by the resultant quantity (Xi) at the
end of the operation, No special conflicts will occur as a result
of this combination,

- 3-102

20ijk { Left shift X by jk

This instruction causes the shift unit to read one operand from the
Xi register, shift the 60 bit word left circularly by jk bit posi-
tions, and then write the resulting 60 bit word back into the same
Xi register. The designators j and k are treated as a single six
bit positive integer operand in this instruction,

A left circular shift implies that the bit pattern in the 60 bit word
is displaced toward the higher order bit positioms. The bits which
are shifted off the upper end of the 60 bit word are inserted in the
lowest order bit positions in the same sequence., The resulting 60
bit word has the same quantity of bits with a value of one, and the
_.same quantity with a value of zero, as in the original operand.

A sample computation is listed below in octal notation to illustrate
the operation performed, The j designator has a value of 1 and the
k designator a value of 2 in this example. These octal quantities
are treated as a shift count of 12 octal, or 10 decimal.

i

‘sample operands: Initial (Xi) = 2323 6600 0000 0000 0111
jk = 12

Terminal (Xi) 7540 0000 0000 0022 2464

This instruction is intended for use in data processing as distin-
guished from numerical computation, This instruction, together
with the companion instruction 21, may be used whenever a data word
is to be .shifted by a predetermined amount, If the amount of shift
is derived in the execution of the program, instruction 22 or 23
should be used.

_Issue conditions

Xi register is free,
X register input path will be free in next clock period.,
No SAS backup condition,

'3-103

FRICIA
1}

C-Q

t T 1 ASL-AL

_Execution time

No execution delays are possible after this instruction issues from
the CIW register, The result will be delivered to the Xi register
one clock period after the instruction issues, The Xi register will
be reserved for the one clock period from issue to delivery of data.
The command timing for this instruction is listed below,

CPO0 20 instruction in the upper parcel of the CIW register.
Instruction issues, .
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xi) to the shift unit.
Set Xi reservation flag.
Set go shift flag.

CPO1 Next instruction in the upper parcel of the CIW register.
Instruction may issue,
Transmit data from shift unit to Xd register.
Clear Xd reservation flag.
Clear go shift flag.

" Special situations

"Shift count is zero

If the j and k designators are zero this instruction reads the
operand from register Xi and returns the result unaltered to the
same register. The timing for this case is the same as the timing
for the general case,

‘Shift count is greater than 60

"If the shift count is greater than the 60 bit register length the

shift is performed modulo 60, For example, if the shift count is
63 (decimal) the result is a three bit position shift,

_Operand all ones or all zeros

An all ones or all zeros word is treated in the same manner as any

other bit pattern. The timing for this case is the same as the
timing for the general case,

13-104

21ijk | Right shift X by jk

' This instruction causes the shift unit to read one operand from the

Xi register, shift the 60 bit word right with sign extension by jk
bit positions, and then write the resulting 60 bit word back into
the same Xi register, The designators j and k are treated as a
single six bit positive integer operand in this instruction.

A right shift with sign extension implies that the bit pattern in

the 60 bit word is displaced toward the lower orxrder bit positions,
The bits which are shifted off the lower end of the word are dis-

carded. The highest order bit positions are filled with copies of
the original sign bit,

“Two sample computations are listed below in octal notation to illus-

trate the operation performed, The first example contains a positive
operand and the second example a negative operand.

‘Sample operands: Initial (Xi) = 2004 7655 0002 3400 0004

jk = 30 (octal)
Terminal (Xi) = 0000 0000 2004 7655 0002

“Initial (Xi) = 6000 4420 2222 0000 5643
jk = 10 (octal)
Terminal (X1) = 7774 0011 0404 4440 0013

‘This instruction may be used whenever a data word is to be shifted

right with sign extension by a predetermined amount. If the amount
of shift is derived in the execution of the program, instruction 22
or 23 should be used,

7Issue conditions

X1 register is free.

X register input path will be free in next clock period
No SAS backup condition,

3-105

¥

3

COFRCIALT

' ASLAE

"Execution time

No execution delays are possible after this instruction issues from
the CIW register, The result will be delivered to the Xi register
one clock period after the instruction issues. The Xi register
will be reserved for the one clock period from issue to delivery of
data. The command timing for this instruction is listed below,

21 instruction in the upper parcel of the CIW register,
Instruction issues.

Transmit the next instruction to upper parcel of CIW register,
Transmit (Xi) to the shift unit.

Set Xi reservation flag,

Set go shift flag.

Next instruction in the upper parcel of the CIW register,
Instruction may issue,

Transmit data from shift unit to Xd register,

Clear Xd reservation flag.

Clear go shift flag.

“Special situations

‘Shift count is zero

If the j and k designators are zero this instruction reads the
operand from register Xi and returns the result unaltered to the

same register., The timing for this case is the same as the timing
for the general case.

Shift count is greater than 60

If the shift count is greater than the 60 bit register length the
resulting word will contain 60 copies of the sign bit., If the
operand was positive, a positive zero word will result, If the
operand was negative, a negative zero word will result,

‘Operand all ones or all zeros

'An 81l ones or all zeros word is treated in the same manner as any

other bit pattern, The timing for this case is the same as the
timing for the general case,

3-106

22ijk { Left shift X by B

This instruction causes the shift unit to read a 60 bit operand
from the Xk register, shift the data either left or right as
specified by (Bj), and then write the resulting 60 bit word into
the Xi register. If (Bj) is positive the data is shifted to the
left in a circular mode the number of bit positions designated

by (Bj). If (Bj) is negative the data is shifted to the right
with sign extension the number of bit positions designated by the
magnitude of (Bj).

A left circular shift implies that the bit pattern in the 60 bit
word is displaced toward the higher order bit positions. The bits
which are shifted off the upper end of the 60 bit word are inserted
in the lowest order bit positions in the same sequence., The result-
ing 60 bit word has the same quantity of bits with a value of one,
and the same quantity with a value of zero, as in the original
operand,

A right shift with sign extension implies that the bit pattern in

the 60 bit word is displaced toward the lower order bit positions.
The bits which are shifted off the lower end of the word are dis-

carded., The highest order bit positions are filled with copies of
the original sign bit,

Three sample computations are listed below in octal notation to
illustrate the operation performed. The first example contains a
positive shift count resulting in a left circular shift, The last
two examples illustrate the right shift with sign extension.

“sample operands: (Xk) = 2323 6600 0000 0000 0111

nn

(Bj) = 00 0012
(X1) = 7540 0000 0000 0022 2464
(Xk) = 1327 6000 0000 3333 2422
(Bj) = 77 77171

(Xi) = 0013 2760 0000 0033 3324

(Xk) = 5327 6000 0000 3333 2422
(Bj) = 77 7771
(X1) = 7753 2760 0000 0033 3324

9.107

SLAEC OFFICIAT

This instruction is intended for use in data processing where the
amount of shift is derived in the computation, This instruction is
also useful for correcting the coefficient of a floating point
number when the exponent has been unpacked into a B register,

Issue conditions

Xi register is free,

Bj register is free,

Xk register is free,

X register input path will be free in next clock period.
No SAS backup condition,

Execution time

No execution delays are possible after this instruction issues from
the CIW register. The result will be delivered to the Xi register
one clock period after the instruction issues., The Xi register will
be reserved for the one clock period from issue to delivery of data.
The command timing for this instruction is listed below.

"CPO0 22 instruction in the upper parcel of the CIW register.
Instruction issues, .
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xk) to the shift unit,

Transmit (Bj) to the shift unit,
Set Xi regservation flag.
Set go shift flag.

CP01 Next instruction in the upper parcel of the CIW register,
Instruction may issue,
Transmit data from shift unit to Xd register,
Clear Xd reservation flag.
Clear go shift flag.

'3-108

Special situations

_(BJ) is zero

1f (Bj) is zero, either 000000 or 777777, this instruction reads

the operand from the Xk register and copies it unaltered into the
Xi register. The timing for this case is the same as the timing

for the general case,

(B)) positive with magnitude greater than 60 decimal

L]
1f (Bj) .is positive only the lowest order six bits are used ‘in
determining the shift count. The higher order bits are ignored.
The resulting six bit shift count is treated modulo 60 decimal.
For example, a shift count of 63 decimal results in a left circular
shift of three bit positions.

7(Bj) negative with magnitude greater than o0 decimal

If (Bj) is negative only the lowest order 12 bits are used in
determining the shift count., The higher order bits are ignored.

The lowest order 12 bits of (B)) are complemented, and the resulting
positive integer determines the shift count, If this shift count

is greater than 60 decimal the resulting word stored in the Xi
register will consist of 60 copies of the original operand sign bit.

‘Operand all ones or all zeros
"An all ones or all zeros word is treated in the same manner as any

other bit pattern, The timing for this case is the same as the
timing for the general case,

'3-109

-

NARIN

M

23ijk ‘Right shift X by B

This instruction causes the shift unit to read a 60 bit operand

from the Xk register, shift the data either left or right as
specified by (Bj), and then write the resulting 60 bit word into
the Xi register, If (Bj) is positive the data is shifted to the
right with sign extension the number of bit positions designated
by (Bj). If (Bj) is negative the data is shifted to the left in
a circular mode the number of bit positions designated by the
magnitude of (Bj).

‘A left circular shift implies that the bit pattern in the 60 bit

word is displaced toward the higher order bit positions. The bits
which are shifted off the upper end of the 60 bit word are inserted
in the lowest order bit positions in the same sequence. The result-
ing 60 bit word has the same quantity of bits with a value of one,
and the same quantity with a value of zero, as in the original
operand,

A right shift with sign extension implies that the bit pattern in

the 60 bit word is displaced toward the lower order bit positions.
The bits which are shifted off the lower end of the word are dis-
carded. The highest order bit positions are filled with copies of
the original sign bit.

Three sample computations are listed below in octal notation to

illustrate the operation performed. The first two examples contain
a positive shift count and result in a right shift with sign exten-
sion. The last example contains a negative shift count and results
in a left circular shift,

‘Sample operands: (Xk) = 1327 6000 0000 3333 2422

(Bj) = 00 0006
(Xi) = 0013 2760 0000 0033 3324

(Xk) = 5327 6000 0000 3333 2422
(Bj) = 00 0006
(Xi) = 7753 2760 0000 0033 3324

]

(Xk) = 2323 6600 0000 0000 0111
(Bj) = 77 7765
(Xi) = 7540 0000 0000 0022 2464

"3-110

‘This instruction is intended for use in data processing where the
amount of shift is derived in the computation. This instruction
is also useful for correcting the coefficient of a floating point
number when the exponment has been unpacked into a B register.

Issue conditions

Xi register is free.

Bj register is free,

Xk register is free,

X register input path will be free in next clock period,
No SAS backup condition.

Execution time

No execution delays are possible after this instruction issues from
the CIW register, The result will be delivered to the Xi register
one clock period after the instruction is.ues, The Xi register will
be reserved for the one clock period from issue to delivery of data.
The command timing for this instruction is listed below.

CPO0 23 instruction in the upper parcel of the CIW register.
Instruction issues.
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xk) to the shift unit,
Transmit (Bj) to the shift unit.
Set Xi reservation flag.
Set go shift flag.

CPO1 Next instruction in the upper parcel of the CIW register
Instruction may issue.
Transmit data from shift unit to Xd register.
Clear Xd reservation flag.
Clear go shift flag.

3-111

AL

~ AfL “J\HU

Special situations

7(Bj) is zero

1f (Bj) is zero, either 000000 or 777777, this instruction reads

the operand from the Xk register and copies it unaltered into the
Xi register. The timing for this case is the same as the timing
for the general case.

7(Bj) positive with magnitude greater than 60 decimal

1f (Bj) is positive only the lowest order 12 bits are used in

determining the shift count, The higher order bits are ignored.
If this resulting 12 bit shift count is greater than 60 decimal
the resulting word stored in the Xi register will consist of 60
copies of the original operand sign bit.

(Bj) negative with magnitude greater than 60 decimal

If (Bj) is negative only the lowest order six bits are used in

determining the shift count. The higher order bits are ignored.
The lowest order six bits of (Bj) are complemented, and the result-
ing positive integer shift count is treated modulo 60 decimal. For
example, a shift count of 63 decimal results in a left circular
shift of three bit positions,

7Operand all ones or all zeros

An all ones or all zeros word is treated in the same manner as any

other bit pattern. The timing for this case is the same as the
timing for the general case, '

3-112

24ijk | Normalize X to X, B

This instruction causes the normalize unit to read one operand from
the Xk register, perform a normalizing operation on this word in a
floating point format, and then deliver the normalized result to
the Xi register. In addition the normalize unit will deliver a
positive integer shift count to the Bj register. This shift count
will be the number of bit positions of shift required to normalize
the original operand coefficient.

The normalizing operation performed by the normalize unit in execut-
ing this instruction consists of repositioning the coefficient
portion of the operand and then adjusting the exponent portion of
the operand to leave the value of the resulting word unaltered.

The coefficient portion of the operand is displaced toward the
higher order bit positions of the word. The coefficient is shifted
the minimum number of bit positions required to make bit 47 differ-
ent from the sign bit 59, This places the most significant bit of
the coefficient in the highest order bit position of the coefficient
portion of the word. The exponent portion of the word is then
decreased by the number of bit positions shifted.

Two sample computations are listed below in octal notation to
illustrate the operation performed, The first example involves

a positive floating point number and the second example a negative
number,

‘Sample operands: (Xk) = 2034 0047 6500 0000 2262
(Xi) = 2026 4765 0000 0022 6200
(Bj) = 00 0006

(Xk) = 5743 7730 1277 7777 5515
(X1) = 5751 3012 7777 7755 1577
(Bj) = 00 0006

f

This instruction is intended for use in normalized floating point
computation in which rounding is not desired. If rounding is
desired the 25 instruction should be used.

3-113

Nty

Issue conditions

Xi register is free.

Xk register is free.

Bj register is free.

X register input path will be free two clock periods hence.
B register input path will be free two clock periods hence.
No SAS backup condition.

Execution time

No execution delays are possible after this instruction issues from
the CIW register. The results will be delivered to the Xi register
and the Bj register two clock periods after the instruction issues.
The Xi register and the Bj register will be reserved for the two
clock periods from issue to delivery of data. The command timing
for this instruction is listed below.

CPO0 24 instruction in the upper parcel of the CIW register.
Instruction issues.
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xk) to the normalize unit.
Set Xi reservation flag.
Set Bj reservation flag.
Set go normalize flag.

CP0l Next instruction in the upper parcel of the CIW register.
Instruction may issue.
Calculate the normalize shift count.
Move operand from input register to internal register.
Clear go normalize flag.

CP02 Transmit data from normalize unit to Xd register,
Transmit data from normalize unit to Be register.
Clear Xd reservation flag.

Clear Be reservation flag.

J

3-114

AL AL

Al

Special situations

‘Special case operand

‘The normalize unit makes a special case test on (Xk) at the beginning
of execution for this inmstruction. If ome of these special cases is
present the operand is copied unaltered to the Xi register. The shift
count entered in the Bj register is zero for these cases. There are
no condition flags set in the PSD register by the normalize unit. The
special case formats are listed below and consist of partial overflow,
complete overflow, and indefinite forms,

3777 OOX XXXX XXXX XXXX

"Special case formats:; (Xk)

(Xk) = 4000 xxXXX XXXX XXXX XXXX
(Xk) = 1777 XXXX XXXX XXXX XXXX
(Xk) = 6000 XxxXx{ XXAX XXXX XXXX

‘Complete underflow

A complete underflow occurs for this instruction whenever (Xk) is
not a special case and the normalizing process results in an unpacked
exponent more negative than -1777 octal, In this situation a zero
word is delivered to the Xi register., The sign of the operand is
preserved in this process and (Xi) is either all zero bits, or all
one bits, depending on the sign of the original operand. The shift
count delivered to the Bj register is a result of considering the
coefficient field of (Xk) without regard to the expoment., This
quantity is therefore the value which would be appropriate for
normalizing the operand if the exponent were in range. There are
no condition flags set in the PSD register by the normalize unit.

‘Partial underflow

'A partial underflow occurs for this instruction whenever (Xk) is not
a special case and the normalizing process results in an unpacked
exponent exactly equal to -1777 octal. 1In this situation the result
is delivered to the Xi register and the Bj register as for a normal
case even though subsequent computation may detect this operand as
an underflow case,

" 3-115

WHIC AL

Af

‘Underflow formats: (Xk)

Coefficient is zero

The normalize unit in execution of this instruction treats an oper-

and with a zero coefficient as a special underflow situation. This
special situation exists for either positive or negative numbers
whenever the sign bit is the same as each bit in the coefficient
field of the operand and the exponent field does not qualify the
operand as a special case format. There is no possibility of
creating a normalized coefficient for this case. In this gituation
a zero word is delivered to the Xi register, The sign of the oper-
and is preserved in this process and (Xi) is either all zero bits,
or all one bits, depending on the sign of the original operand.

The shift count delivered to the Bj register is 48 decimal for this
case. There are no condition flags set in the PSD register by the
normalize unit,

‘Underflow operand

A special situation exists for executing this instruction if (Xk)

is in one of the two formats listed below,

0000 xxXXx XXXX XXXX XXXX
7777 XXXX XXXX XXXX XXXX

it

(Xk)

These formats include positive and negative numbers in either a

partial underflow or a complete underflow form. These cases are
generally covered by one of the other special situations listed
above, If (Xk) is a partial underflow quantity and the coefficient
is normalized, the execution of this instruction will proceed as
for a normal operand and the result will be an unaltered copy of
the original operand. The shift count delivered to the Bj register
will be zero. If (Xk) is a partial underflow quantity and the
coefficient is not normalized, a complete underflow will occur as
described under that heading.

1f (Xk) is a complete underflow quantity the execution of this

instruction will be dominated by the fact that the coefficient 1is
zero. This special situation is described under that heading above,
The net result will be an unaltered complete underflow quantity
delivered to the Xi register and a shift count of 48 decimal delivered
to the Bj register,

3-116

25ijk [Round normalize X to X, B

This instruction causes the normalize unit to read one operand from
the Xk register, perform a rounding operation and then a normalizing
operation on this word in floating point format, and finally deliver
the round normalized result to the Xi register. In addition the
normalize unit will deliver a positive integer shift ccunt to the

Bj register. This shift count will be the number of bit positions
of shift required to normalize the original operand coefficient,

The rounding operation performed in the execution of this instruction
consists of adding a bit to the coefficient portion of the operand in
a bit position immediately below the least significant bit position
of the original operand coefficient, This round bit has a value
equal to the complement of the operand sign bit. The net result of
this rounding operation is to increase the magnitude of the operand
coefficient by one half,

The normalizing operation performed in the execution of this instruc-
tion consists of repositioning the coefficient and adjusting the
exponent to leave the value of the resulting floating point quantity
unaltered, The coefficient portion of the operand is displaced
toward the higher order bit positions in the word. The round bit

is shifted along with the coefficient. The displacement is the
minimum number of bit positions required to make bit 47 different
from the sign bit 59, This places the most significant bit of the
coefficient in the highest order bit position of the coefficient
portion of the word., The exponent portion of the word is decreased
by the number of bit positions shifted,

Two sample computations are listed below in octal notation to
illustrate the operation performed., The first example involves a
positive floating point number and the second example a negative
number,

2034 0047 6500 0000 2262
2026 4765 0000 0022 6240
00 0006

_Sample operands : _(Xk)
(xX1)
(33)

(Xk) = 5743 7730 1277 7777 5515
(Xi) = 5751 3012 7777 7755 1537
(Bj) = 00 0006

L]

3-117

k

)

\ ARG A

Issue conditions

Xi register is free,

Xk register is free.

Bj register is free,

X register input path will be free two clock periods hence.
B register input path will be free two clock periods hence,
No SAS backup condition,

Execution time

No execution delays are possible after this instruction issues from
the CIW register., The results will be delivered to the Xi register
and the Bj register two clock periods after the instruction issues.
The Xi register and the Bj register will be reserved for the two
clock periods from issue to delivery of data. The command timing
for this instruction is listed below,

CPO0 25 instruction in the upper parcel of the CIW register,
Instruction issues,
Transmit the next instruction to upper parcel of CIW register,
Transmit (Xk) to the normalize unit,
Set Xi reservation flag,
Set Bj reservation flag.
Set go normalize flag.

CPOl Next instruction in the upper parcel of the CIW register,
Instruction may issue.
Calculate the normalize shift count,
Move operand from input register to internal register.
Clear go normalize flag,

CP02 Transmit data from normalize unit to Xd register.
Transmit data from normalize unit to Be register.
Clear Xd reservation flag.

Clear Be reservation flag.

3-118

Special situations

Special case operand

The normalize unit makes a special case test on (Xk) at the beginning
of execution for this instruction. If cne of these special cases is
present the operand is copied unaltered to the Xi register, The shift
count entered in the Bj register is zero for these cases. There are
no condition flags set in the PSD register by the normalize unit. The
special case formats are listed below and consist of partial overflow,
complete overflow, and indefinite forms,

3777 XXXX XXXX XXXX XXXX

Special case formats: (Xk)

(Xk) = 4000 XXXX XXXX XXXX XKXX
(Xk) = 1777 xxXxxX XXXX XXXX XXXX
(Xk) = 6000 xxxxX XXXX XXXX XXXX

Complete underflow

A complete underflow occurs for this instruction whenever (Xk) is not
a special case and the normalizing process results in an unpacked
exponent more negative than -1777 octal. In this situation a zero
word is delivered to the Xi register, The sign of the operand is
preserved in this process and (Xi) is either all zero bits, or all
one bits, depending on the sign of the original operand. The shift
count delivered to the Bj register is a result of considering the
coefficient field of (Xk) without regard to the exponent., This
quantity is therefore the value which would be appropriate for
normalizing the operand if the exponent were in range. There are
no condition flags set in the PSD register by the normalize unit.

Partial underflow

A partial underflow occurs for this instruction whenever (Xk) is not
a special case and the normalizing process results in an unpacked
exponent exactly equal to -1777 octal. In this situation the result
is delivered to the Xi register and the Bj register as for a normal
case even though subsequent computation may detect this operand as
an underflow case.

"3-119

AR OLFICIA

¥

Coefficient is zero

A zero coefficient in the operand for this instruction becomes

nonzero with the addition of the round bit. 1In this case the round
bit is shifted to the left by 48 bit positions in the normalizing
process to become the most significant bit of the result coefficient.
The shift count delivered to the Bj register is 48 decimal for this
case, This case is superseded by one of the first two special
situations described above if the operand is in a special case
format, or if a complete underflow occurs,

Underflow operand

A special situation exists for executing this instruction if (Xk)

is in one of the two formats listed below.

‘Underflow formats: (Xk)
(Xk)

0000 xxXX XXXX XXXX XXXX
7777 XXXX XXXX XXXX XXXX

]

These formats include positive and negative numbers in either a

partial underflow or a complete underflow form. These cases are
generally covered by one of the other special situations listed
above, If (Xk) is a partial underflow quantity and the coefficient
is normalized, the execution of this instruction will proceed as
for a normal operand and the result will be an unaltered copy of
the original operand, The shift count delivered to the Bj register
will be zero, If (Xk) is a partial underflow quantity and the
coefficient is not normalized, a complete underflow will occur as
described under that heading.

If (Xk) is a complete underflow quantity the execution of this

instruction will be dominated by the fact that the coefficient is
zero. The round bit will be added and the shift count will be 48
decimal, This will cause a complete underflow and the result

delivered to the Xi register will be the same as the original
operand,

'3-120

26ijk | Unpack X to X, B

This instruction causes the boolean unit to read one operand from
the Xk register, unpack this word from floating point format, and
then deliver the coefficient to the Xi register and the exponent
to the Bj register, The 60 bit word delivered to the Xi register
consists of the lowest 48 bits unaltered from the original operand
plus the upper 12 bits each equal to the original sign bit. This
is a signed integer equal to the value of the coefficient in the
original operand,

The 18 bit quantity delivered to the Bj register is a signed integer
equal to the value of the exponent in the original operand. The 11
bit exponment field in the operand is altered to remove the bias and
then sign extended to fill out the 18 bit quantity. The sign of
the coefficient is removed In this process,

Four sample sets of operands and unpacked results are listed below
in octal notation to illustrate the operation performed. These
examples contain the four combinations of coefficient sign and
exponent sign.

2034 4500 3333 2000 0077
0000 4500 3333 2000 0077
00 0034

_Sample operands;: ‘ka)
(X1)
(Bj)

tono#

(Xk) = 1743 4500 3333 2000 0077
(Xi) = 0000 4500 3333 2000 0077
(Bj) = 77 7743

(Xk) = 5743 3277 4444 5777 7700
(Xi) = 7777 3277 4444 5777 7700
(Bj) = 00 0034

(Xk) = 6034 3277 4444 5777 7700
(Xi) = 7777 3277 4444 5777 7700
(Bj) = 77 7743

n

This instruction is intended for converting a number from floating
point format to fixed point format as quickly as possible, This
process is the reciprocal of the process used to implement the 27
instruction,

3-121

at!
3

{\nfrqsu

REV 2

Issue conditions

Xi register is free,

Xk register is free,

Bj register is free,

X register input path will be free in next clock period.
B register input path will be free in next clock period.
No SAS backup condition.

"Execution time

No execution delays are possible after this instruction issues from
the CIW register. The results will be delivered to the Xi register
and the Bj register one clock period after the instruction issues.
The Xi register and the Bj register will be reserved for the one
clock period from issue to delivery of data. The command timing for
this instruction is listed below.

"CPO0 26 instruction in the upper parcel of the CIW register,
Instruction issues,
Transmit the next instruction to upper parcel of CIW register,
Transmit (Xk) to the boolean unit.
Set Xi reservation flag.
Set Bj reservation flag.
Set go boolean flag.

CP0l Next instruction in the upper parcel of the CIW register,
Instruction may issue,
Transmit data from boolean unit to Xd register.
Transmit data from boolean unit to Be register,
Clear Xd reservation flag,
Clear Be reservation flag.
Clear go boolean flag,

3-122

Special situations

There are no special case tests made in the execution of this
instruction. There are no condition flags set in the PSD register
by the boolean unit, The special operand formats are treated

in the same manner as a normal operand. Various combinations of
special floating point quantities are listed in octal notation

in the examples below to indicate the unpacked results.

Special Operandszi (Xk) 3777 0000 0000 0000 0000

nn

(X1) = 0000 0000 0000 0000 0000
(Bj) = 00 1777
(Xk) = 4000 7777 7777 7777 77177
(XL) = 7777 7777 7777 1777 77177
(B§) = 00 1777
(Xk) = 1777 0000 0000 0000 0000
(Xi) = 0000 0000 0000 0000 0000
(Bj) = 77 7777

(Xk) = 6000 7777 7777 7777 7777
(X1) = 7777 7777 77717 7777 7777
(8§) = 77 7777
(Xk) = 0000 0000 0000 0000 0000
(X1) = 0000 0000 0000 0000 0000

(Bj) = 77 6000 .

(Xk) = 7777 7777 7777 7777 7777
(X1) = 7777 7777 7777 7777 7777
(Bj) = 77 6000

T

S 3-123

-lezm‘

°}-AEC

27ijk | Pack X, B to X

This instruction causes the boolean unit to read (Xk) and (Bj), pack

them into a single word in floating point format, and deliver this
result to the Xi register., The coefficient for (Xi) is obtained
from (Xk) treated as a signed integer. The exponent for (Xi) is
obtained from (Bj) treated as a signed integer.

The lowest order 48 bits of (Xi) are copied directly from the lowest
order 48 bits of (Xk). The sign bit in (Xi) is copied directly from
the sign bit in (Xk). The exponent field in (Xi) is derived from
(Bj) by extracting the lowest order 11 bits of (Bj) and modifying
this quantity for exponent bias and coefficient sign,

Four sample sets of operands and packed results are listed below
in octal notation to illustrate the operation performed. These
examples contain the four combinations of coefficient sign and
exponent sign. -
‘Sample operands: (Xk) = 0000 4500 3333 2000 0077
(Bj) = 00 0034
(Xi) = 2034 4500 3333 2000 0077

(Xk) = 0000 4500 3333 2000 0077
(Bj) = 77 7743
(Xi) = 1743 4500 3333 2000 0077

(XK) = 7777 3277 4444 5777
(Bj) = 00 0034
(Xi) = 5743 3277 4444 5777

(Xk) = 7777 3277 4444 5777 7700
(Bj) = 77 7743 '
(Xi) = 6034 3277 4444 5777 7700

This instruction is intended for converting a number in fixed point

format to floating point format as quickly as possible. This process
is the reciprocal of the process used to implement the 26 instruction.

3-124

Issue conditions

Xi register is free,

Xk register is free.

Bj register is free,.

X register input path will be free in next clock period.
No SAS backup condition,

Execution time

No execution delays are possible after this instruction issues from
the CIW register, The result will be delivered to the Xi register
one clock period after the instruction issues. The Xi register
will be reserved for the one clock period from issue to delivery of
data. The command timing for this instruction is listed below,

CPO0 27 instruction in the upper parcel of the CIW register,
Instruction issues,
Transmit the next instruction to upper parcel of CIW register,
Transmit (Xk) to the boolean unit.
Transmit (Bj) to the boolean unit,
Set Xi reservation flag.
Set go boolean flag,

"CPO1 Next instruction in the upper parcel of the CIW register,
Instruction may issue.
Transmit data from boolean unit to the Xd register,
Clear Xd reservation flag,
Clear go boolean flag.

Special situations

_(Xk) has magnitude greater than 48 bits

If (Xk) has more than 48 bits of significance the higher order bits
will be ignored in packing this quantity into the floating point
format. The lowest order 48 bits of (Xk) are masked out of the

60 bit word for the coefficient in (Xi). The sign bit in (Xk) is
copled into (Xi) for the sign of the coefficient., The remaining
bits of (Xk) are ignored.

"3-125

TRl ,.;\))l'

[EIRAL N

L AlY ‘.\

(Bj) has magnitude greater than 10 bits

"If (Bj) has more than 10 bits of significance an erroneous exponent

will be packed into floating point format for (Xi). 1In this case
the lowest order 11 bits of (Bj) will be masked out of the 18 bit
quantity. The highest order of these 11 bits will be interpreted

as the sign bit for the exponent, There are no error condition
flags set in the PSD register by the boolean unit in this situationm,

‘Designator j is zero

‘The j designator may be set to zero in this instruction to pack a

fixed point integer into floating point format without using one of
the active B registers.

‘Packing an indefinite quantity

"If the lowest order 11 bits of (Bj) all have a value of one, an

indefinite quantity will result in the floating point format., This
will be the case if (Bj) is a negative zero quantity. There are no
error condition flags set in the PSD register by the boolean unit
in this situation,

‘Packing an overflow quantity

“An overflow quantity will be generated in floating point format if

(Bj) = 00 1777 octal, There are no error condition flags set in the
PSD register by the boolean unit in this situation,

_Packing an underflow quantity

"An underflow quantity will be generated in floating point format if

(Bj) = 77 6000 octal. There are no error condition flags set in the
PSD register by the boolean unit in this situation.

3-126

30ijk | Floating sum

‘This instruction causes the floating point add unit to read operands

from two X registers, operate upon them to form a floating point
sum, and deliver this result to a third X register, The operands
for this instructicn are (Xj) and (Xk). These operands are assumed
to be numbers in floating point format. They may, or may not, be
normalized. The result of the floating point add operation is
delivered to the Xi register in floating point format, This result
is not necessarily normalized,

The operands are not rounded in this operation., The two operands
are unpacked from floating point format and the exponents compared.
The unpacked coefficients are then positioned in a 99 bit ones
complement adder so as to align bits of corresponding significance.
A double precision ones complement sum is formed. A 48 bit result
coefficient is then read from the upper half of this sum, If an
overflow of the highest order coefficient bit occurred during the
addition process the result coefficient ic read from an alternate
adder output path with a one bit displacement to include this over-
flow bit. The result exponent is corrected by ome count in this
case,

"If the two operands have unlike signs the result coefficient may
have leading zeros. There is no normalize operation built into
‘this instruction to correct this situation. A separate normalize
instruction must be programed if the result is to be kept in a
normalized form,

This instruction is intended for use in floating point calculations
where rounding of operands is not desired., This 1s the case in
multiple precision arithmetic and in calculations involving error
analysis,

‘Issue conditions

Xi register is free,

Xj register is free.

Xk register is free,

X register input path will be free three clock periods hence.
No SAS backup condition,

3-127

—~

~

A
&

34At a,\,

_Execution time

'No execution delays are possible after this instruction issues from
the CIW register, The execution time is a constant for all cases
of operands, The result will be delivered to the Xi register three
clock periods after the instruction issues. The Xi register will
be reserved for the three clock periods from issue to delivery of
data. The command timing for this instruction is listed below.

CPOO 30 instruction in the upper parcel of the CIW register,
Instruction issues,
Transmit the next instruction to upper parcel of CIW register
Transmit (Xk) to the floating add unit,
Transmit (Xj) to the floating add unit.
Set Xi reservation flag.
Set go floating add flag.

'CPO1 Next instruction in the upper parcel of the CIW register.

Instruction may issue,

Compare exponents,

Transmit coefficients from input register to shift register.
Clear go floating add flag.

"CP02 Shift coefficients for alignment,

Transmit coefficients from shift register to adder.

"CP03 "Form double precision sum,

Transmit result from floating add unit to Xd register,
Clear Xd reservation flag.

7Special situations

‘Clean miss

'If the exponents of the two operands differ by more than 48 decimal

the coefficient of the operand with the smaller exponent will be
shifted off the end of the double precision adder. If the exponent
difference is exactly 48 decimal the two coefficients will be aligned
in a 96 bit field in the double precision adder with no bits matched
in the add operation. In either of these cases the result of the
floating add operation will be a copy of the operand with the larger
exponent.

3-128

Result coefficient is zero

If the two operands are of equal magnitude and opposite sign the
resulting sum will have a zero coefficient. The exponent delivered
to the Xi register will be the same as the exponent for the operands
even though the coefficient is zero. The sign of the result will be
positive, - No error condition flags will be set in the PSD register
for this case,

Partial overflow

If the two operands are beth in floating point range and one operand
is at the upper limit of the floating point range, the resulting sum
may overflow. In this case the resulting exponent will indicate the
overflow condition, but the coefficient will be processed in a normal
manner and the resulting floating point number will in fact be a
correct representation of the sum. No error indication is made for
this case, and no condition flags will be set in the PSD register.
Subsequent use of this number as an operand in a floating point unit
will, however, result in overflow detection.

One operand indefinite

I1f either operand is indefinite, or if both operands are indefinite,
the result is indefinite. The operand coefficients are ignored in
this case, and the resulting word delivered to the Xi register is
positive indefinite with a zero coefficient, The indefinite condition
flag is set in the PSD register for this case,

Both operands overflow with different signs
I1f both operands have overflow exponents and the operand coefficients
have different signs, the resulting word delivered to the Xi register

is positive indefinite with a zero coefficient. The indefinite
condition flag is set in the PSD register for this case.

3-129

(TR

Aby l)|

\

—

“One operand overflow

1f either operand has an overflow exponent, or if both operands

have an overflow exponent and the coefficient signs agree, the
result is an overflow word, In this case the operand coefficients
are ignored, and the word delivered to the Xi register is a complete
overflow with a zero coefficient. The sign of the resulting word

is the same as the sign of the operand with the overflow exponent.
The overflow condition flag is set in the PSD register for this
case,

Underflow operand

An operand with an underflow exponent is treated as a normal operand
in this instruction., No condition flags are set in the PSD register
for this case. If both operands are zero and one operand is positive,
the result will be a positive zero word. 1If both operands are nega-
tive zero words the result will be a negative zero word.

3-130

31lijk ‘Floating difference

This instruction causes the floating point add unit to read operands
from two X registers, operate upon them to form a floating point
difference, and deliver this result to a third X register. The
operands for this instruction ars (Xj) and (Xk). These operands

are assumed to be numbers in floating point format, They may, or

may not, be normalized. The result of the floating point subtraction
(Xj) minus (Xk) is delivered to the Xi register in floating point
format, This result is not necessarily normalized,

The operands are not rounded in this operation, The two operands are
unpacked from floating point format and the exponents compared. The
unpacked coefficients are then positioned in a 99 bit ones complement
adder so as to align bits of corresponding significance, A double
precision ones complement difference is formed, A 48 bit result
coefficient 1s then read from the upper half of this difference. If
an overflow of the highest order coefficient bit occurred during the
subtraction process the result coefficient is read from an alternate
adder output path with a one bit displacement to include this over-
flow bit. The result exponent is corrected by one count in this
case,

I1f the two operands have like signs the result coefficient may have
leading zeros. There is no normalize operation built into this
instruction to correct this situation. A separate normalize
instruction mugst be programed if the result is to be kept in a
normalized form.

This instruction is intended for use in floating point calculations
where rounding of operands is not desired, This is the case in
multiple precision arithmetic and in calculations involving error
analysis.

‘Issue conditions

Xi register is free,

Xj register is free,

Xk register is free,

X register input path will be free three clock periods hence,
No SAS backup condition.

3-131

Ayt
t

1 ARL u\uu

"Execution time

No execution delays are possible after this instruction issues from
the CIW register. The execution time is a constant for all cases
of operands. The result will be delivered to the Xi register three
clock periods after the instruction issues, The Xi register will
be reserved for the three clock periods from issue to delivery of

data,

CPOLl

" CPO2

The command timing for this instruction is listed below.

"31 instruction in the upper parcel of the CIW register.

Instruction issues,

Transmit the next instruction to upper parcel of CIW register.
Transmit (Xk) to the floating add unit.

Transmit (Xj) to the floating add unit,

Set Xi reservation flag.

Set go floating add flag.

Next instruction in the upper parcel of the CIW register,
Instruction may issue,

Compare exponents.

Transmit coefficients from input register to shift register.
Clear go floating add flag.

Shift coefficients for alignment.

Transmit coefficients from shift register to adder,

"Form double precision difference.

Transmit result from floating add unit to Xd register.
Clear Xd reservation flag.

Special situations

"Clean miss

"If the exponents of the two operands differ by more than 48 decimal
the coefficient of the operand with the smaller exponent will be
shifted off the end of the double precision adder., 1If the exponent
difference is exactly 48 decimal the two coefficients will be aligned
in a 96 bit field in the double precision adder with no bits matched
in the subtract operation, In either of these cases the result of
the floating subtract operation will be a copy of the operand with
the larger exponent,

3-132

Result coefficient is zero

If the two operands are identical the resulting difference will
have a zero coefficient, The exponent delivered to the Xi register
will be the same as the exponent for the operands even though the
coefficient is zero. The sign of the result will be positive. No
error condition flags will be set in the PSD register for this case.

"Partial overflow

1f the two operands are both in floating point range and one operand
is at the upper limit of the floating point range, the resulting
difference may overflow, In this case the resulting exponent will
indicate the overflow condition, but the coefficient will be proc-
essed in a normal manner and the resulting floating point number
will in fact be a correct representation of the difference. No
error indication is made for this case, and no condition flags will
be set in the PSD register, Subsequent use of this number as an

operand in a floating point unit will, however, result in overflow
detection,

One operand indefinite

If either operand is indefinite, or if both operands are indefinite,
the result is indefinite, The operand coefficients are ignored in
this case, and the resulting word delivered to the Xi register is
positive indefinite with a zero coefficient. The indefinite condition
flag is set in the PSD register for this case,

Both operands overflow with same sign

If both operands have overflow exponents and the operand coefficients
have the same sign, the resulting word delivered to the Xi register
is positive indefinite with a zero coefficient. The indefinite
condition flag is set in the PSD register for this case.

3-133

H\,l’“

3

\'{ At

‘Both operands overflow with different signs

I1f both operands have overflow exponents and the coefficient signs

differ, the result is an overflow word. In this case the operand
coefficients are ignored, and the word delivered to the Xi register
is a complete overflow with a zero coefficient, The sign of the
resulting word is the same as the sign of (Xj). The overflow
condition flag is set in the PSD register for this case.

One operand overflow

If either operand has an overflow exponent and the other operand is

in floating point range, or has an underflow exponent, the result
is an overflow word. In this case the operand coefficients are
ignored, and the word delivered to the Xi register is a complete
overflow with a zero coefficient, The sign of the resulting word
is the same as the sign of the operand with the overflow exponent.
The overflow condition flag is set in the PSD register for this
case,

‘Underflow operand

An operand with an underflow exponent is treated as a normal operand
in this instruction, No condition flags are set in the PSD register
for this case, If (Xj) is a negative zero word and (Xk) is a posi-
tive zero word, the result will be a negative zero word., The other
three cases of both operands zero words will result in a positive
zero word.

3-134

32ijk | Floating double precision sum

"This instruction causes the floating point add unit to read operands
from two X registers, operate upon them to form a double precision
floating point sum, and deliver the lower half of this result to a
third X register. The operands for this instruction are (Xj) and
(Xk). These operands are assumed to be numbers in floating point
format. They may, or may not, be normalized. The result of the
double precision add operation is delivered to the Xi register in
floating point format. This result is not necessarily normalized,

The operands are not rounded in this operation, The two operands
are unpacked from floating point format and the exponents compared.
The unpacked coefficients are then positioned in a 99 bit ones
complement adder so as to align bits of corresponding significance.
A double precision ones complement sum is formed, A 48 bit result
coefficient is then read from the lower half of this sum. The
result exponent is exactly 48 decimal less than the exponent which
would be delivered with the upper half of the double precision sum,
If an overflow of the highest order coefficient bit occurred during
the addition process the result coefficient is read from an alternate
adder output path with a one bit displacement to take into account
the overflow bit, The result exponent is corrected by one count in
this case,

If the two operands have unlike signs the double precision sum may
have leading zeros, There is no normalize operation built into
this instruction to correct this situation, Whether this situation
exists or not, there may be leading zeros in the lower half of the
double precision sum. These zero bits are not detected, and the
coefficient in the result for this instruction may have leading
zeros,

This ingtruction is intended for use in floating point calculations
involving double precision or multiple precision. This instruction
together with the 30 instruction forms a double precision sum in
two X registers with no loss of significance.

3-135

Issue conditions

Xi register is free,

Xj register is free,

Xk register is free,

X register input path will be free three clock periods hence
No SAS backup condition.

r)

Execution time

No execution delays are possible after this instruction issues from

the CIW register, The execution time is a constant for all cases

of operands. The result will be delivered to the Xi register three

clock periods after the instruction issues, The Xi register will

be reserved for the three clock periods from issue to delivery of

data, The command timing for this instruction is listed below.
32 instruction in the upper parcel of the CIW register.
Instruction issues.
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xk) to the floating add unit,
Transmit (Xj) to the floating add unit,
Set Xi reservation flag,
Set go floating add flag.

CPO0l Next instruction in the upper parcel of the CIW register,
Instruction may issue,
Compare exponents,
Transmit coefficients from input register to shift register,
Clear go floating add flag.

CP02 Shift coefficients for alignment.)
Transmit coefficients from shift register to adder,

'CP03 Form double precision sum,
Transmit result from floating add unit to Xd register.
Clear Xd reservation flag.

<- 3-136

"< ALC

Special situations

Clean miss

If the exponents of the two operands differ by more than 48 decimal
the coefficient of the operand with the smaller exponent will be
shifted off the end of the double precision adder. If the exponent
difference is exactly 48 decimal the two coefficients will be aligned
in a 96 bit field with no bits matched in the add operation. In
either of these cases the result delivered to the Xi register will
contain a coefficient from the 48 bit field in the double precision
adder corresponding to the lower half of a 96 bit sum, The exponent
delivered to the Xi register will be exactly 48 decimal less than
the exponent which would be delivered with the upper half of the 96
bit sum. If the difference of the operand exponents is greater

than 48 decimal the lower half of this 96 bit sum will have leading
zeros. If the difference of the operand exponents is 96 decimal or
greater, the lower half of the 96 bit sum will be all zeros.

Coefficient sum is zero

If the two operands are of equal magnitude and opposite sign the
resulting double precision coefficient sum will be zero. This
condition is not sensed as a special case, and the exponent field
in the result delivered to the Xi register will be the same value
as for a nonzero coefficient., The sign of the resulting zero
coefficient will be positive in this case., No error condition
flags will be set in the PSD register for this case,

Partial overflow

If the two operands are in floating point range and one operand is

at the upper limit of the floating point range, the resulting double
precision sum may overflow and cause the exponent for the upper half
to go out of range., This condition is not sensed in this instruction
The exponent for the lower half of the double precision sum is 48
decimal less than this overflow value. The result delivered to the
Xi register in this case is processed as a normal floating point
result and no error condition flags are set in the PSD register,

3-137

'S Al

"Partial underflow

'If the two operands are near the lower limit of the floating point

range the exponent for the lower half of the double precision sum
may be exactly -1777 octal. This result is processed as a normal
floating point number, and no error condition flags are set in the
PSD register. The resulting coefficient may be nonzero even though
the exponent in the resulting word indicates an underflow condition,
Subsequent use of this number as an operand in a floating point unit
may, however, result in underflow detection.

_Complete underflow

"If the two operands are near the lower limit of the floating point

range the exponent for the lower half of the double precision sum
may be less than -1777 octal, This condition is sensed as a special
case, and the result delivered to the Xi register is a complete
underflow word with a zero coefficient., The sign of the result

will be the same as the sign of the operand with the larger exponent,
If the two operands have identical exponents the sign of the result
will be the same as the sign of (Xk). The underflow condition flag
will be set in the PSD register for this case., The special case
test is made before the coefficients are added, The result of this
addition is ignored in this case, and an overflow of the highest
crder coefficient bit will not bring the result back into range,

‘Underflow operand

An operand with an underflow expoment is treated as a normal operand

in this instruction. No condition flags are set in the PSD register
if the other operand is sufficiently large so that the result does
not underflow the floating point range, If the other operand is
near the lower limit of the floating point range the result may be
either a partial underflow, or a complete underflow, as described
above.

3-138

One operand indefinite

If either operand is indefinite, or if both operands are indefinite,
the result is indefinite., The operand coefficients are ignored in
this case, and the resulting word delivered to the Xi register is
positive indefinite with a zero coefficient. The indefinite condition
flag is set in the PSD register for this case.

Both operands overflow with different signs

If both operands have overflow exponents and the operand coefficients
have different signs, the resulting word delivered to the Xi regis-
ter is positive indefinite with a zero coefficient. The indefinite
condition flag is set in the PSD register for this case.

One operand overflow

If either operand has an overflow expoment, or if both operands

have an overflow exponent and the coefficient signs agree, the
regsult is an overflow word. In this case the operand coefficients
are ignored, and the word delivered to the Xi register is a complete
overflow with a zero coefficient, The sign of the resulting word

is the same as the sign of the operand with the overflow exponent.
The overflow condition flag is set in the PSD register for this
case,

3-139

\! Alby XHL,I.‘_\'.«\

33ijk ‘Floating double precision difference

‘This instruction causes the floating point add unit to read operands

from two X registers, operate upon them to form a double precision
floating point difference, and deliver the lower half of this result
to a third X register, The operands for this instruction are (Xj)
and (Xk). These operands are assumed to be numbers in floating point
format. They may, or may not, be normalized, The result of the
double precision subtraction (Xj) minus (Xk) is delivered to the Xi
register in floating point format., This result is not necessarily
normalized.

‘The operands are not rounded in this operation, The two operands

are unpacked from floating point format and the exponents compared,
The unpacked coefficients are then positioned in a 99 bit ones
complement adder so as to align bits of corresponding significance.
A double precision ones complement difference is formed. A 48 bit
result coefficient is then read from the lower half of this dif-
ference. The result exponent is exactly 48 decimal less than the
exponent which would be delivered with the upper half of the double
precision difference, If an overflow of the highest order coefficient
bit occurred during the subtraction process the result coefficient
is read from an alternate adder output path with a one bit displace-
ment to take into account the overflow bit, The result exponent is
corrected by one count in this case,

'If the two operands have like signs the double precision difference may

have leading zeros. There is no normalize operation built into
this instruction to correct this situation. Whether this situation
exists or not, there may be leading zeros in the lower half of the
double precision difference. These zero bits are not d-tected, and
the coefficient in the result for this instruction may have leading
zeros,

‘This instruction is intended for use in floating point calculations

involving double precision or multiple precision, This instruction
together with the 31 instruction forms a double precision difference
in two X registers with no loss of significance,

3-140

Issue conditions

Xi register is free,

Xj register is free.

Xk register is free,

X register input path will be free three clock periods hence.
No SAS backup condition.

‘Execution time

No execution delays are possible after this instruction issues from
the CIW register., The execution time is a constant for all cases
of operands. The result will be delivered to the Xi register three
clock periods after the instruction issues. The Xi register will
be reserved for the three clock periods from issue to delivery of
data., The command timing for this instruction is listed below.

CPO0 33 instruction in the upper parcel of the CIW register,
Instruction issues,
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xk) to the floating add umnit.
Transmit (Xj) to the floating add unit,
Set Xi reservation flag.
Set go floating add flag.

"CPOl Next instruction in the upper parcel of the CIW register.
Instruction may issue,
Compare exponents,
Transmit coefficients from input register to shift register.
Clear go floating add flag.

"CP02 Shift coefficients for alignment,
Transmit coefficients from shift register to adder.

'CP03 Form double precision difference.

Transmit result from floating add unit to Xd register.
Clear Xd reservation flag.

3-141

z:_l"‘”r)';]

v iAd

~j¥ Al ‘x

" Special situations

Clean miss

"If the exponents of the two operands differ by more than 48 decimal

the coefficient of the operand with the smaller exponent will be
shifted off the end of the double precision adder. If the exponent
difference is exactly 48 decimal the two coefficients will be aligned
in a 96 bit field with no bits matched in the subtract operation,

In either of these cases the result delivered to the Xi register
will contain a coefficient from the 48 bit field in the double pre-
cision adder corresponding to the lower half of a 96 bit difference,
The exponent delivered to the Xi register will be exactly 48 decimal
less than the exponent which would be delivered with the upper half
of the 96 bit difference. If the difference of the operand exponents
is greater than 48 decimal the lower half of this 96 bit difference
will have leading zeros., If the difference of the operand exponents
is 96 decimal or greater, the lower half of the 96 bit difference
will be all zeros,

Coefficient sum is zero

"If the two operands are identical the resulting double precision

coefficient difference will be zero. This condition is not sensed
as a special case, and the exponent field in the result delivered to
the Xi register will be the same value as for a nonzero coefficient,
The sign of the resulting zero coefficient will be positive in this
case, No error condition flags will be set in the PSD register for
this case.

‘Partial overflow

"If the two operands are in floating point range and one operand is

at the upper limit of the floating point range, the resulting double
precision difference may overflow and cause the exponent for the
upper half to go out of range. This condition is not sensed in this
instruction, The exponent for the lower half of the double precision
difference is 48 decimal less than this overflow value. The result
delivered to the Xi register in this case is processed as a normal
floating point result and no error condition flags are set in the

PSD register.

3-142

Partial underflow

If the two operands are near the lower limit of the floating point
range the exponent for the lower half of the double precision dif-
ference may be exactly -1777 octal. This result is processed as a
normal floating point number, and no error condition flags are set
in the PSD register, The resulting coefficient may be nonzero even
though the exponent in the resulting word indicates an underflow
condition, Subsequent use of this number as an operand in a float-
ing point unit may, however, result in underflow detection,

Complete underflow

If the two operands are near the lower limit of the floating point
range the exponent for the lower half of the double precision dif-
ference may be less than -1777 octal. This condition is sensed as
a special case, and the result delivered to the Xi register is a
complete underflow word with a zero coefficient, The sign of the
result will be the same as the sign of (Xj) if (Xj) has the larger
exponent, The sign of the result will be the complement of the
sign of (Xk) if (Xk) has the larger exponent, or if the exponents
are equal, The underflow condition flag will be set in the PSD
register for this case., The special case test is made before the
coefficients are subtracted. The result of this subtraction is
ignored in this case, and an overflow of the highest order coefficient
bit will not bring the result back into range.

Underflow operand

An operand with an underflow exponent is treated as a normal operand
in this instruction. No condition flags are set in the PSD register
if the other operand is sufficiently large so that the result does
not underflow the floating point range. If the other operand is
near the lower limit of the floating point range the result may be
either a partial underflow, or a complete underflow, as described
above,

"3-143

3l Mi'Ci;KWAUq)

)

'

‘One operand indefinite

1f either operand is indefinite, or if both operands are indefinite,
the result is indefinite, The operand coefficients are ignored in
this case, and the resulting word delivered to the Xi register is
positive indefinite with a zero coefficient, The indefinite condition
flag is set in the PSD register for this case,

‘Both operands overflow with similar signs

If both operands have overflow exponents and the operand coefficients
have similar signs, the resulting word delivered to the Xi register
is positive indefinite with a zero coefficient, The indefinite
condition flag is set in the PSD register for this case,

One operand overflow

If either operand has an overflow exponent, or if both operands

have an overflow exponent and the coefficient signs disagree, the
result is an overflow word. In this case the operand coefficients
are ignored, and the word delivered to the Xi register is a complete
overflow with a zero coefficient. The sign of the resulting word

is the same as the sign of (Xj) if (Xj) has the overflow exponent,
The sign of the resulting word is the complement of the sign of

(Xk) if (Xk) has the overflow exponent. The overflow condition

flag is set in the PSD register for this case.

3-144

341jk | Round floating sum

This instruction causes the floating point add unit to read operands
from two X registers, operate uponr them to form a rounded floating
point sum, and deliver this result to a third X register, The
operands for this instruction are {Xj) and (Xk), These operands are
assumed to be numbers in floating point format, They may, or may not,
be normalized, The result of the floating point add operation is
delivered to the Xi register in floating point format. This result

is not necessarily normalized.

"The floating point add unit unpacks the two operands from floating
point format and compares the exponents., The unpacked coefficients
are then positioned in a 99 bit ones complement adder so as to align
bits of corresponding significance, The two coefficients are rounded
according to the rules described below. A double precision omes
complement sum is formed. A 48 bit result coefficient is then read
from the upper half of this sum, If an overflow of the highest order
coefficient bit occurred during the addition process the result
coefficient is read from an alternate adder output path with a one
bit displacement to include this overflow bit. The result exponent
is corrected by one count in this case.

If the two operands have unlike signs the result coefficient may
have leading zeros. There is no normalize operation built into
this instruction to correct this situation, A separate normalize
instruction must be programed if the result is to be kept in a
normalized form,

‘This instruction is intended for use in floating point calculations
involving single precision accuracy, For multiple precision
calculations the 30 instruction and 32 instruction must be used,

Rounding

Rounding of the operand coefficients occurs just prior to the double
precision add operation, At this time the two 48 bit coefficients
are positioned in the 99 bit ones complement adder with an offset
corresponding to the difference of the exponents, A round bit is
always added to the coefficient corresponding to the larger exponent,
If the exponents are equal the round bit is added to the coefficient
for (Xk). The round bit is equal to the complement of the sign bit
and {s inserted immediately to the right of the lowest order bit in
the coefficient, This has the effect of increasing the magnitude

3145

Min ')‘ v i "2

* At

‘of the coefficient by one half of the least significant bit., A

second round bit is added in a corresponding manner to the other
coefficient if both operands were normalized, or if the operands
had unlike signs.

‘The amount of error introduced by the rounding operation is a

function of the relative magnitudes of the operands., If the two
operands differ significantly in the exponent field the rounding
is relatively free of bias and the maximum error is bounded by +%
and -% of the least significant bit of the larger coefficient, If
the operands differ by only a few counts in the exponent field the
rounding introduces some bias because of the discrete combinations
involved. An additional complication is introduced by the possi-
bility of overflow during the additional process, If an overflow
occurs the result coefficient is truncated one bit position higher
in the double precision sum. This introduces a negative bias omn
the rounding operation whenever it occurs,

‘Three tables are presented on the following page to indicate the

rounding error for various combinations of operand values. The first
of these tables considers the case of both operands normalized and
the signs of the operands alike. It assumes a random distribution
of bits at the lower order end of the coefficients in determining

the round bias, It also assumes a random distribution of bits near
the upper end of the coefficients in determining the probability of
overflow. The dissymmetry of the maximum round error in this table
is due to the overflow effects on the rounding position.

‘The second table presented on the following page is intended to

indicate the rounding errors for the case of non-normalized operands.
This table is not quite correct for this case because there is

some probability of overflow even with one operand not —~ormalized.
The rounding error for operands that are nearly normalized will

fall somewhere between the results of the first and second tables.

‘The third table presented on the following page is for the case of

floating addition with the operand signs different, There is no
possibility of overflow during the addition process for this case.
The results are the same for normalized or non-normalized operands,

"3-146

Rounding error tables

EXD =

POV =

NOB = Average
OVB = Average
AVB = Average
LPE = Largest
LNE = Largest

Floating add
EXD POV

1,00

.60

.30

.14

.06

.03

arge .00

=N =0

Floating add

EXD NOB

0 - 0.00
1 +.20
2 +.10
3 +.04
4 +,02
5 +.01
1

arge 0,00

Floating add
EXD “AVB

0 0.00
1 -.20
2 -.10
3 -.04
4 -.02
5 -.01
1

arge 0.00

+++++00

Exponent difference.
Probability of overflow (in octal),
round bias for no overflow cases (in octal).
round bias for overflow cases (in octal).

round bias considering probability of overflow (in octal).
positive round error for all cases (in octal).
negative round error for all cases (in octal).

Signs alike

Both operands normalized

NOB OVB AVB
0,00 4,20 +.20
+.20 -.10 -.02
+.10 -.14 +,004
+.04 -.16 +,005
+.02 -.17 +,0032
+.01 -.174 +.00164
+.00 -.20 +.,00

Signs alike

LPE LNE
0,00 0,00
+.40 0.00
+.40 -.20
+.40 -.30
+.40 -.34
+.40 -.36
+.40 -.40

'Signs unlike

"LPE "LNE

0 0.00
0 -.40
0 -.40
0 -.40
4 -.40
6 -.40
0 =.40

EWWWHNOO

No overflow

- 3-147

LPE

+.40

+.40
+.40
+.40
+.40
+.40
+.40

LNE

~.40
-.40
-.50
-.54
-.56
-.57
-.60

‘| Aty A.‘%' 1CHAL w

Issue conditions

Xi register is free,

Xj register is free,

Xk register is free,.

X register input path will be free three clock periods hence.
No SAS backup condition,

Execution time

No execution delays are possible after this instruction issues from
the CIW register, The execution time is a constant for all cases
of operands. The result will be delivered to the Xi register three
clock periods after the instruction issues. The Xi register will
be reserved for the three clock periods from issue to delivery of
data., The command timing for this instruction is listed below.

34 instruction in the upper parcel of the CIW register.
Instruction issues,
Transmit the next instruction to upper parcel of CIW register,
Transmit (Xk) to the floating add unit,
Transmit (Xj) to the floating add unit,
Set Xi reservation flag.
Set go floating add flag. .
CPO1 Next instruction in the upper parcel of the CIW register.
Instruction may issue,
Compare exponents,
Transmit coefficients from input register to shift register.
Clear go floating add flag.

"CP02 Shift coefficients for alignment,
Transmit coefficients from shift register to adder,

"CP03 Form rounded sum.

Transmit result from floating add unit to Xd register.
Clear Xd reservation flag.

3-148

Special situations

Clean miss

If the exponents of the two operands differ by more than 48 decimal
the coefficient of the operand with the smaller exponent will be
shifted off the end of the double precision adder, 1In this case
the result of the floating add operation will be a copy of the
operand with the larger exponent, If the exponents of the two
operands differ by exactly 48 decimal the two operand coefficients
will be aligned in a 96 bit field in the double precision adder
with no bits matched in the add operation, However, the round bit
for the larger number will be aligned with the highest order bit
for the smaller number. In this case the result of the floating
add operation will be a rounded version of the operand with the
larger exponent,

Result coefficient is zero

If the two operands are of equal magnitude and opposite sign the
resulting sum will have a zero coefficient., The exponent delivered
to the Xi register will be the same as the exponent for the operands
even though the coefficient is zero, The sign of the result will be
positive. No error condition flags will be set in the PSD register
for this case.

Partial overflow

If the two operands are both in floating point range and one operand
is at the upper limit of the floating point range, the resulting sum
may overflow, In this case the resulting exponent will indicate the
overflow conditfon, but the coefficient will be processed in a normal
manner and the resulting floating point number will in fact be a
correct representation of the sum, No error indication 1s made for
this case, and no condition flags will be set in the PSD register,
Subsequent use of this number as an operand in a floating point unit
will, however, result in overflow detection,

One operand indefinite

If either operand is indefinite, or if both operands are indefinite,
the result is indefinite, The operand coefficients are ignored in
this case, and the resulting word delivered to the Xi register is
positive indefinite with a zero coefficient. The indefinite condition
flag is set in the PSD register for this case,.

'3-149

)

IR

)

/

\‘L Al

/

‘Both operands overflow with different signs

"If both operands have overflow exponents and the operand coefficients
have different signs, the resulting word delivered to the Xi register
is positive indefinite with a zero coefficient, The indefinite
condition flag is set in the PSD register for this case,

‘One operand overflow

If either operand has an overflow exponent, or if both operands

have an overflow exponent and the coefficient signs agree, the
result is an overflow word. 1In this case the operand coefficients
are ignored, and the word delivered to the Xi register is a complete
overflow with a zero coefficient, The sign of the resulting word

is the same as the sign of the operand with the overflow exponent,
The overflow condition flag is set in the PSD register for this
case,

Underflow operand

An operand with an underflow exponent is treated as a normal operand
in this instruction. No condition flags are set in the PSD register
for this case, If both operands are zero, either positive zero, or
negative zero, in any combination, the result will be a positive
zero word.

"3-150

35ijk | Round floating difference

‘This instruction causes the floating point add unit to read operands
from two X registers, operate upon them to form a rounded floating
point difference, and deliver this result to a third X register. The
operands for this instruction are (Xj) and (Xk). These operands are
assumed to be numbers in floating point format, They may, or may not,
be normalized. The result of the floating point subtraction (Xj)
minus (Xk) is delivered to the Xi register in floating point format,
This result is not necessarily normalized,

The floating point add unit unpacks the two operands from floating
point format and compares the exponents, The unpacked coefficients
are then positioned in a 99 bit ones complement adder so as to align
bits of corresponding significance., The two coefficients are rounded
according to the rules described below, A double precision ones
complement difference is formed, A 48 bit result coefficient is then
read from the upper half of this difference. If an overflow of the
highest order coefficient bit occurred du:zing the subtraction process
the result coefficient is read from an alternate adder output path
with a one bit displacement to include this overflow bit., The result
exponent is corrected by one count in this case.

If the two operands have like signs the result coefficient may have
leading zeros., There is no normalize operation built into this
instruction to correct this situation. A separate normalize instruc-
tion must be programed if the result is to be kept in a normalized
form,

‘This instruction is intended for use in floating point calculations
involving single precision accuracy. For multiple precision
calculations the 31 instruction and 33 instruction must be used,

‘_Rounding

‘Rounding of the operand coefficients occurs just prior to the double
precision subtract operation. At this time the two 48 bit coefficients
are positioned in the 99 bit ones complement adder with an offset
corresponding to the difference of the exponents. A round bit is
always added to the coefficient corresponding to the larger exponent,
If the exponents are equal the round bit is added to the coefficient
for (Xk). The round bit is equal to the complement of the sign bit
and i{s inserted immediately to the right of the lowest order bit in
the coefficient. This has the effect of increasing the magnitude

"3-151

p.

\

U ARG OFHCIAG

‘of the coefficient by one half of the least significant bit. A

second round bit is added in a corresponding manner to the other
coefficient if both operands were normalized, or if the operands
had like signs, ’

'The amount of error introduced by the rounding operation is a

function of the relative magnitudes of the operands., If the two
operands differ significantly in the exponent field the rounding
is relatively free of bias and the maximum error is bounded by +%
and -% of the least significant bit of the larger coefficient., If
the operands differ by only a few counts in the exponent field the
rounding introduces some bias because of the discrete combinations
involved, An additional complication is introduced by the possi-
bility of overflow during the additional process, If an overflow
occurs the result coefficient is truncated one bit position higher
in the double precision difference., This introduces a negative
bias on the rounding operation whenever it occurs,

‘Three tables are presented on the following page to indicate the

rounding error for various combinations of operand values. The first
of these tables considers the case of both operands normalized and
the signs of the operands unlike. It assumes a random distribution
of bits at the lower order end of the coefficients in determining

the round bias, It also assumes a random distribution of bits near
the upper end of the coefficients in determining the probability of
overflow., The dissymmetry of the maximum round error in this table
is due to the overflow effects on the rounding position,

The second table presented on the following page is intended to
indicate the rounding errors for the case of non-normalized operands,
This table is not quite correct for this case because there is

some probability of overflow even with one operand not normalized,
The rounding error for operands that are nearly normalized will

fall somewhere between the results of the first and second tables.

"The third table presented on the following page is for the case of

floating subtraction with the operand signs alike. There is no

possibility of overflow during the subtraction process for this

case, The results are the same for normalized or non-normalized
operands.,

3-152

"Rounding error tables

EXD

= Exponent difference,

POV = Probability of overflow (in octal).
NOB = Average round bias for no overflow cases (in octal).
OVB = Average round bias for overflow cases (in octal),
AVB = Average round bias considering probability of overflow (in octal).
LPE = Largest positive round error for all cases (in octal).
LNE = Largest negative round error for all cases (in octal),
‘Floating subtract - Signs unlike - Both operands normalized
EXD POV 'NOB OVB AVB LPE LNE
0 1,00 0,00 +.20 +.20 +.40 -.40
1 .60 +.20 -.10 -.02 +.40 -.40
2 .30 +.10 -.14 +.004 +.40 -.50
3 14 +.04 -.16 +.005 +.40 -.54
4 .0€ +.02 -.17 +,0032 +.40 -.56
5 .03 +,01 -.174 +.00164 +,40 -.57)
large .00 +,00 -,20 +,00 +.40 -.60
_Floating subtract - Signs unlike - No overflow

"NOB LPE LNE
0 0.00 0.00 0.00
1 +.20 +,40 0.00
2 +,10 +.40 -.20
3 +.04 +,40 -.30
4 +.02 +.40 -.34
5 +.01 +,40 -.36
large 0.00 +.40 -.40
‘Floating subtract - Signs alike

“AVB "LPE "LNE
0 10.00 0,00 0.00
1 -.20 0.00 -.40
2 -.10 +.20 -.40
3 -.04 +.30 -.40
4 -.02 +.34 -.40
5 -.01 +.36 -.40
large 0.00 +,40 -.40

'3-153

)

SL-AEC OFRICIA

Issue conditions

Xi register is free,

Xj register is free,

Xk register is free.

X register input path will be free three clock periods hence.
No SAS backup condition,

Execution time

No execution delays are possible after this instruction issues from
the CIW register. The execution time is a constant for all cases
of operands. The result will be delivered to the Xi register three
clock periods after the instruction issues. The Xi register will
be reserved for the three clock periods from issue to delivery of
data, The command timing for this instruction is listed below,

CPO0 35 instruction in the upper parcel of the CIW register.
Instruction issues.
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xk) to the floating add unit,
Transmit (Xj) to the floating add unit,
Set Xi reservation flag.
Set go floating add flag.

"CP0Ol Next instruction in the upper parcel of the CIW register.
Instruction may issue,
Compare exponents,
Transmit coefficients from input register to shift register.
Clear go floating add flag.

"CP02 Shift coefficlents for alignment.
Transmit coefficients from shift register to adder.

"CP03 TForm rounded difference.

Transmit result from floating add unit to Xd register.
Clear Xd reservation flag.

3-154

Special situations

Clean miss

I1f the exponents of the two operaunds differ bv more than 43 decimal
the coefficient of the operand with the smailer exporent will be
shifted off the end of the double precision adder., In this case
the result of the floating subtract operation will be a ccpy of the
operand with the larger exponent. If the exponents of the two
operands differ by exactly 48 decimal the two operand coefficients
will be aligned in a 96 bit field in the double precision adder
with no bits matched in the add operation., However, the round bit
for the larger number will be aligned with the highest order bit
for the smaller number. In this case the result of the floating
subtract operation will be a rounded version of the operand with the
larger exponent.

Result coefficient is zero

If the two operands are identical the resulting difference will have
a zero coefficient, The exponent delivered to the Xi register will
be the same as the exponent for the operands even though the coef-
ficient is zero. The sign of the result will be positive. No error

condition flags will be set:in the PSD register for this case.
95 -

Partial overflow

If the two operands are both in floating point range and one operand
is at the upper limit of the floating point range, the resulting
difference may overflow. In this case the resulting exponent will
indicate the overflow condition, but the coefficient will be proc-
essed in a normal manner and the resulting floating point number
will in fact be a correct representation of the difference., No
error indication is made for this case, and no condition flags will
be set in the PSD register. Subsequent use of this number as an
operand in a floating point unit will, however, result in overflow
detection,

One operand indefinite

If either operand is indefinite, or if both operands are indefinite,
the result is indefinite. The operand coefficients are ignored in
this case, and the resulting word delivered to the Xi register is
positive indefinite with a zero coefficient, The indefinite condition
flag is set in the PSD register for this case,

"3-155

Y]

‘Both operands overflow with same sign

1f both operands have overflow exponents and the operand coefficients
have the same sign, the resulting word delivered to the Xi register is
positive indefinite with a zero coefficient., The indefinite condition
flag is set in the PSD register for this case,

" One operand overflow

If either operand has an overflow exponent, or if both operands-
have an overflow exponent and the coefficient signs disagree, the
result is an overflow word, In this case the operand coefficients
are ignored, and the word delivered to the Xi register is a complete
overflow with a zero coefficient. The sign of the resulting word

is the same as the sign of (Xj) if (Xj) has the overflow exponent.
The sign of the result is the complement of the sign of (Xk) if (Xk)
has the overflow exponent, The overflow condition flag is set in
the PSD register for this case,

Underflow operand

An operand with an underflow exponent is treated as a normal operand
in this instruction., No condition flags are set in the PSD register
for this case, If both operands are zero, either positive zero, or
negative zero, in any combination, the result will be a positive
zero word.

L
¢
b

"
on

SIS Integer sum

(O3]

This instruction causes the long add unit to vead operands from two
X registers, operate upon them to form a 50 it integer sum, and
deliver this result to a third X register., The operands for this
instruction are (Xj) and (Xk)., These operands are assumed to be
signed integers, The resulting integer sum is delivered to the Xi
register.

The long add unit executes this instruction in a 60 bit ones com-
plement mode. The two operands are read directly to a 60 bit integer
adder, The resulting sum is delivered directly to the Xi register.
There are no special cases sensed. No detection is made of overflow,

"This instruction is intended for addition of integers too large for

handling in the increment unit. This instruction is also useful in
merging and comparing data fields during data processing.

_Issue conditions

X1 register is free.

Xj register is free,

Xk register is free.

X register input path will be free in next clock period,
No SAS backup condition,

“Execution time

No execution delays are possible after this instruction issues from
the CIW register., The result will be delivered to the Xi register
one clock period after the instruction issues., The Xi register will
be reserved for the one clock period from issue to delivery of data,
The command timing for this instruction is listed below,

"3-157

)

CPO0 36 instruction in the upper parcel of the CIW register.
Instruction issues, .
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xj) to the long add unit,
Transmit (Xk) to the long add unit.
Set Xi reservation flag.
Set go long add flag.

CPO01 Next instruction in the upper parcel of the CIW register,
Instruction may issue.
Transmit result from long add unit to Xd register.
Clear Xd reservation flag,
Clear go long add flag.

“Special situations

‘Both operands zero

If both operands are zero the result is zero. If either operand is
positive zero the result is positive zero, If both operands are
negative zero the result is negative zero,

‘Designators j and k have the same value

If the j and k designators have the same value the dusiguaééd 60
bit operand is added to itself and the resulting sum delivered to
the Xi register,

‘Designators i and k have the same value
Designators i and j have the same value

If the i designator has the same value as the j designator, or the
k designator, this instruction becomes a replace add instruction.
The initial (Xi) is added to the other operand and the result then
stored back in the Xi register.

N
o

o
_
4
e
L
"
[+#]

6.0
{
{ia
'-I
re
Lo r)
o
"
£
]
%]
T

This irstruccicn causes the long add unit to read operands from wo

X registers, opevate upon them to form a 60 bit integer difference,
and deliver this result to a third X register, The operands for
this instruction are (Xj) and (Xk). These operands are assumed to
be signed integers, The resulting integer difference (Xj) minus
(Xk) is delivered to the Xi register,

The long add unit executes this instruction in a 60 bit ones comple-
ment mode., The two operands are read directly to a 60 bit integer
adder. (Xj) is transmitted unaltered from the register to the adder.
(Xk) is complemented in the transmission from the register to the
adder. The resulting sum of (Xj) and the complement of (Xk) is
delivered directly to the Xi register. There are no special cases
sensed, No detection is made of overflow,

‘This instruction is intended for subtraction of integers too large
for handling in the increment unit., This instruction is also useful
in comparing data fields during data processing.

Issue conditions

Xi register is free,

Xj register is free,

Xk register is free,

X register input path will be free in next clock period
No SAS backup condition,

_Execution time

No execution delays are possible after this instruction issues from
the CIW register, The result will be delivered to the Xi register
one clock period after the instruction issues, The Xi register will
be reserved for the one clock period from issue to delivery of data.
The command timing for this instruction is listed below.

"3-159

CP00 37 instruction in the upper parcel of the CIW register.
Instruction issues, *
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xj) to the long add unit,
Transmit (Xk) to the long add unit.
Set Xi reservation flag.
Set go long add flag.

CPOl Next instruction in the upper parcel of the CIW register,
Instruction may issue,
Transmit result from long add unit to Xd register.
Clear Xd reservation flag,
Clear go long add flag.

Special situations

Both operands zexo

1f (Xj) is a negative zero quantity, and (Xk) is a positive zero
quantity, the result is a negative zero quantity. The other three
combinations of positive and negative zero operands result in a
positive zero quantity,

Designators j and k have the same value

If the j and k designators have the same value the designated 60
bit operand is subtracted from itself. The result is a positive
zero result in the Xi register.

Designators i and j have the same value
Designators i and k have the same value

1f the i designator has the same value as the j designator, or the k
designator, this instruction becomes a replace subtract instruction,
The initial (Xi) is read as an operand, and the resulting difference
is then stored in the same register.

3-150

- i "y .
I 4Cii< Flcating product

"This instruction causas the multiply unir to raad operands from two
X registers, operate upon them to form a ficating point product, and
deliver this result to a third X register. The operands for this
instruction are (Xj) and (Xk), These operands are assumed to be num-
bers in floating point format. They may, or may not, be normalized.
The result of the floating point multiply operation is delivered to
the Xi register in floating point format., If both operands were
normalized the result will also be noxrmalized. If both operands
were not normalized the result will not be normalized.

The operands are not rounded in this operation, The two operands
are unpacked from floating point format. The exponents are added
with a correction factor to determine the exponent for the result.
The coefficients are multiplied as signed integers to form a 96 bit
integer product. The upper half of this product is then extracted
to form the coefficient for the result., An alternate output path

is provided with a one bit position displacement to normalize the
result coefficient if the original operands were normalized and the
double precision product has only 95 significant bits., The exponent
for the result is corrected by one count in this case,

If the twb operands are not both normalized the resulting double
precision product will have less than 96 significant bits. No test
is made for the position of the most significant bit in the product
for this case, The upper 48 bits are read from the 96 bit positions
in the double precision product register, and leading zeros will
occur in the result coefficient, The alternate path is not used in
this case even though the one bit displacement may have normalized
the result,

This instruction is intended for use in floating point calculations
where rounding of operands is not desired, This is the case in
multiple precision arithmetic and in calculations involving error
analysis,

ilapug_;gnditipns

Xi register free.

Xj register free.

Xk register free,

Multiply unit free.

X register input path will be free four clock periods hence.
No SAS backup condition,

3-161

)ﬁl\ 1i

"Execution time

No execution delays are possible after this instruction issues from
the CIW register, The result will be delivered to the Xi register
four clock periods after the instruction issues, The Xi register
will be reserved for the four clock periods from issue to delivery
of data. The multiply unit will be free two clock periods after
this instruction issues, The command timing for this instruction
is listed below.

" CPO0 40 instruction in the upper parcel of the CIW register,
Instruction issues.
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xj) to the multiply unit.
Transmit (Xk) to the multiply unit,
Set Xi reservation flag,
Set multiply unit busy flag.

"CPO1 Next instruction in the upper parcel of the CIW register,
Instruction may issue.
Form first 24 by 48 bit product.
Clear multiply unit busy flag,

CPO2 Form second 24 by 48 bit product.
_Merge two 24 by 48 bit products into 99 bit adder.
‘Transmit result from multiply unit to Xd register,

Clear Xd reservation flag.

_Special situations

"Result coefficient is zero

If the two operands are not both normalized the upper half of the
double precision product may be all zeros, This situation is not
sensed, and the exponent for the result will be processed without
regard to the zero coefficient. This will result in a zero coef-
ficient and a nonzero exponent. No error flags are set in the PSD
register for this case,

"Partial overflow

A partial overflow occurs for this iastruction whenever the exponent
computation results in exactly +1777 octai and toae result coefficient
is taken from a double precision product with 96 bits of significance,
There are no error condition flags set in the PSD register for this
case, and the result is delivered to the Xi register in a normal
manner, Subsequent use of this result as an operand in a floating
point unit will, however, result in overflow detection, If the
exponent computation in this instruction results in exactly +1777
octal and the alternate output path is used, the exponent delivered
to the Xi register will be reduced one count and the result will be
in floating point range.

Complete overflow

A complete overflow occurs for this instruction whenever the exponent
computation results in an exponent greater than +1777 octal, This
situation is sensed as a special case, and a complete overflow word
with proper sign, overflow exponent, and zero coefficient is delivered
to the Xi register. The coefficient calculation is ignored for this
case, and the overflow condition flag is set in the PSD register.

‘Partial underflow

A partial underflow occurs for this instruction whenever the exponent
computation results in exactly -1776 octal and the alternate output
path is used from the double precision adder to normalize the result
coefficient. In this case the exponent delivered to the Xi register
is reduced one count and creates an underflow exponent with a valid
coefficient, There are no condition flags set in the PSD register
for this case., Subsequent use of this result in a floating point
unit may, however, result in underflow detection.

Complete underflow

A complete underflow occurs for this instruction whenever the exponent
computation results in less than -1776 octal. This situation is
sensed as a special case, and a complete zero word with proper sign

is delivered to the Xi register. The coefficient calculation is
ignored in this case, and the underflow condition flag is set in the
PSD register.

3-163

One operand indefinite

If either operand is indefinite, or if both operands are indefinite,
the result is indefinite, The operand coefficients are ignored in
this case, and the resulting word delivered to the Xi register is
positive indefinite with a zero coefficient., The indefinite condition
flag is set in the PSD register for this case,

‘One operand overflow

If one operand has an overflow exponent and the other operand is in
floating point range, or if both operands have overflow exponents,
the result is a complete overflow word delivered to the Xi register,
The coefficients of the operands are ignored in this case, and the
result has a zero coefficient. The sign of the result is calculated
in the same manner as for operands in range. The overflow condition
flag is set in the PSD register for this case,

‘One operand underflow

If one operand has an underflow exponent and the other operand is in
floating point range, or if both operands have underflow exponents,
the result is a complete underflow word delivered to the Xi register.
The coefficients of the operands are ignored in this case, and the
result has a zero coefficient. The sign of the result is c¢alculated
in the same manner as for operands in range. The underflow condition
flag is set in the PSD register for this case.

‘Underflow times overflow

If one operand has an underflow exponent and the other operand has an
overflow exponent the result is indefinite. The operand coefficients
are ignored in this case, and the word delivered to the Xi register
is positive indefinite with a zero coefficient. The indefinite
condition flag is set in the PSD register for this case.

4iijk | Round floating product

This instruction causes the wmeleinly unit <o rzad operands from two
X registers, opecrate upon them o form a rounded floating point
product, and deliver this result to a third X register. The operands
for this instruction are (Xj) and (Xk). These operands are assumed
to be numbers in floating point format, They may, or may not, be
normalized. The result of the floating point muitiply operation

is delivered to the Xi register in floating point format. If both
operands were normalized the result will also be normalized. 1If

both operands were not normalized the result will not be normalized,

The multiply unit unpacks the two operands from floating point for-
mat, The exponents are added with a correction factor to determine
the exponent for the result. The coefficients are multiplied as
signed integers to form a 96 bit integer product. A rounding bit is
added in bit position 46 of this product. The upper half of this
product is then extracted to form the coefficient for the result,

An alternate output path is provided with a one bit position dis-
placement to normalize the result coefficient if the original operands
were normalized and the double precision product has only 95 bits of
significance. The exponent for the result is corrected by one count
in this case.

If the two operands are not both normalized the resulting double
precision product will have less than 96 significant bits. No test
is made for the position of the most significant bit in the product
for this case, The upper 48 bits are read from the 96 bit positions
in the double precision product register in this case, and leading
zeros will occur in the result coefficient, The alternate path is
not used in this case even though the one bit displacement may have
normalized the result,

'This instruction is intended for use in single precision floating

point calculations. For multiple precision calculations the 40
instruction and 42 instruction must be used.

3-165

7Rounding

Rounding of the result coefficient occurs in the final addition of
the partial products to form a 96 bit double precision result. The
rounding is accomplished by adding a bit in position 46 of the adder
This additional bit has the effect of reducing the maximum amount of
truncation error and also reducing the average bias.

If both operands are normalized there are two cases to consider in
the calculation of rounding error., One case, with a 60 per cent
probability of occurring, results from reading the result coefficient
from the upper 48 bit positions in the 96 bit product register. The
other case, with a 40 per cent probability of occurring, results from
reading the coefficient from the altermate output path with a one bit
displacement to normalize the result. These two cases are summarized
in the table below. The third table entry indicates the error for
both operands normalized with random coefficient values. The fourth
table entry indicates the error for both operands not normalized.

'LPE - Largest positive round error (decimal).

LNE - Largest negative round error (decimal),
AVB ~ Average bias for random coefficients (decimal).

"LPE LNE AVB
Normal path (60%) +,25 -,75 -.25
Alternate path (40%) +.50 -.50 0.0
Random normalized +.50 -, 75 -,15
Random not normalized +,25 -.75 -.25

:155ue conditions

Xi register free,

Xj register free,

Xk register free.

Multiply unit free,

X register input path will be free four clock periods hence.
No SAS backup condition,

Execution time

. » ‘. 1 o ;3 - "f‘ . ," H -3 T g -
No exacurion delays ave pessible pires this irmstructicn issues from
the CIW register. The resulc willi ne delivercd to the Xi register

four clock periods after the inscruction issues. The Xi register
will be reserved for the four clock periods from issue to delivery
of data. The multiply unit will be free two clock periods after
this instruction issues, The command timing for this instruction
is listed below, : ' ;

CPO0C 41 instruction in the upper parcel of the CIW register.
Instruction issues.
Transmit the next instruction to upper parcel of CIW register.
Transmit (Xj) to the multiply unit,
Transmit (Xk) to the multiply unit,
Set Xi reservation flag,
Set multiply unit busy flag.

‘Next instruction in the upper parcel of the CIW register.
Instruction may issue,
Form first 24 by 48 bit product,
Clear multiply unit busy flag.
"Form second 24 by 48 bit product.
‘Merge two 24 by 48 bit products into 99 bit adder.
CP04 Transmit result from multiply unit to Xd register.

Clear Xd reservation flag.

Special situations

The special situations for this instruction are the same as the
special situations for the 40 instruction.

3.167

421jk Floating double precision product

.

This instruction causes the multiply unit to read operands from two
X registers, operate upon them to form a floating point double pre-
cision product, and deliver the lower half of this result to a third
X register. The operands for this instruction are (Xj) and (Xk).
These operands are assumed to be numbers in floating point format.
They may, or may not, be normalized. The lower half of the double
precision product is delivered to the Xi register in floating point
format, This result is not necessarily normalized,

The operands are not rounded in this operation, The two operands
are unpacked from floating point format. The exponents are added
to determine the exponent for the result. The result exponent for
this instruction is exactly 48 less than the exponent calculation
for a 40 instruction, The coefficients are multiplied as signed
integers to form a 96 bit integer product, The lower half of this
product is then extracted to form the coefficient for the result,
An alternate output path is provided with a one bit position dis-
placement to correspond with the normalizing alternate path for the
40 instruction when both operands are normalized and the double
precision product has only 95 significant bits, The exponent for
the result is corrected by one count if this path is used.

If the two operands are not both normalized the resulting double
precision product will have less than 96 significant bits,. The
alternate output path will never be used in this case, No test is
made for the position of the most significant bit in the product,
The lower 48 bits are always read from the 96 bit product register
in this case,

‘This instruction is intended for use in multiple precision floating
point calculations. This instruction is also intended for integer
multiplication where the operands have non-normalized integer
coefficients with less than 24 significant bits,

" Issue conditions

Xi register free,
Xj register free,
Xk rezister free.
Multiply unit free.
X register input path will be free four clock periods hence,
"No SAS backup condition.

Executics Tze

e dmim
“RY CULE

,
}
5
&

]

&g’

No execution delays are pozsi ruzrion Issues from
the CIW register, 7“n2 tesulc wiil be delivered to the Xi IegniterT
four clock periods after the instruction issues, The Xi register
will be reserved for the four clock periods from issue to delivery
of data. The multiply unit will be free two clock periods after
this instruction issues. The command timing for this instruction
is listed below.

CPO0 42 instruction in the upper parcel of the CIW register,
Instruction issues.
Transmit the next instruction to upper parcel of CIW register
Transmit (Xj) to the multiply unit,
Transmit (Xk) to the multiply unit,
Set Xi reservation flag,
Set multiply unit busy flag.

‘Next instruction in the upper parcel of the CIW register.
Instruction may issue,

Form first 24 by 48 bit product,

Clear multiply unit busy flag.

Form second 24 by 48 bit product,

‘Merge two 24 by 48 bit products into 99 bit adder.
Transmit result from multiply unit to Xd register,

Clear Xd reservation flag.

Special situations

Integer product

This instruction may be used to form the product of two integers
providing the resulting product will not exceed 48 bits of sig-
nificance, The operands must be packed into floating point format
(generally by using register BO) before executing this instruction,
The result must be unpacked to obtain the integer product,

3-169

‘Partial overflow

A partial overflow occurs for this instruction whenever the exponent
computation results in exactly +1777 octal and the result coefficient
is taken from a double precision product with 96 bits of significance,.
There are no error condition flags set in the PSD register for this
case, and the result is delivered to the Xi register in a normal
manner, Subsequent use of this result as an operand in a floating
point unit will, however, result in overflow detection, If the
exponent computation in this instruction results in exactly +1777
octal and the alternmate output path is used, the exponent delivered
to the Xi register will be reduced one count and the result will be
in floating point range,

7C0mplete overflow

A complete overflow occurs for this instruction whenever the exponent
computation results in an exponent greater than +1777 octal. This
situation is sensed as a special case, and a complete overflow word
with proper sign, overflow exponent, and zero coefficient is delivered
to the Xi register. The coefficient calculation is ignored for this
case, and the overflow condition flag is set in the PSD register,

Partial underflow

A partial underflow occurs for this instruction whenever the exponent
computation results in exactly -1776 octal and the alternate output
path is used from the double precision adder, In this case the
exponent delivered to the Xi register is reduced one count and cre-
ates an underflow exponent with a valid coefficient, There are no
condition flags set in the PSD register for this case, Subsequent
use of this result in a floating point unit may, however, result in
underflow detection, .

‘Complete underflow

A complete underflow occurs for this instruction whenever the exponent
computation results in less than -177% octal, This situationm is
senged as & special case, and a complete zero word with proper sign

is delivered to the Xi register, The coefficient caiculation is
ignored in this case, and the underilow condition flag is set in the
PSD register.

3-176

On operand indefinite

If either cperand is indefinire, or if hevh sperznds are indefinit |
the result is indefinite, The cnerand coefiizients are igmorsol in
this case, and the resulting word delivered to the Xi register is
positive indefinite with a zero coefficient, The indefinite condition

flag is set in the PSD register for this case,

One operand overflow

'If one operand has an overflow exponent and the other operand is in
floating point range, or i{f both operands have overflow exponents,
the result is a complete overflow word delivered to the Xi register.
The coefficients of the operands are ignored in this case, and the
result has a zero coefficient, The sign of the result is calculated
in the same manner as for operands in range., The overflow condition
flag is set in the