
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95045 U.S.A.
650 960-1300

http://www.sun.com/blueprints

Migrating From Tru64 UNIX to
the Solaris™ Operating System

Ken Pepple, Brian Down, David Levy

Sun BluePrints™ OnLine—March 2005

Part No. 819-2274-10
Edition: March 2005

Please
Recycle

Copyright 2003—2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, California 95045 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document.
In particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and in other countries.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation.
No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors,
if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark
in the U.S. and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, JumpStart, N1, and Solaris are trademarks or
registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are
trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are
based upon an architecture developed by Sun Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges
the pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry.
Sun holds a non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement
OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

U.S. Government Rights—Commercial use. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-
INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2003—2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, Californie 95045 Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. détient les droits de propriété intellectuels relatifs à la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et ce sans limitation, ces droits de propriété intellectuelle peuvent inclure un ou plus des brevets américains listés à
l’adresse http://www.sun.com/patents et un ou les brevets supplémentaires ou les applications de brevet en attente aux Etats - Unis et
dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie
relative aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Certaines parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
enregistree aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Sun BluePrints, SunSolve, SunSolve Online, docs.sun.com, JumpStart, N1, et Solaris sont des marques de
fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées
sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les
produits portant les marques SPARC sont basés sur une architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun
reconnaît les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique
pour l’industrie de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence
couvrant également les licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux
licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS
DES GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

Migrating From Tru64 UNIX to
the Solaris™ Operating System

Editor’s Note - This Sun BluePrint™ article is the complete tenth chapter of the Sun
BluePrints™ book, Migrating to the Solaris Operating System: The Discipline of
UNIX-to-UNIX Migrations by Ken Pepple, Brian Down and David Levy (November,
2003, 272 pages, ISBN 0-13-150263-8).

This book presents an established methodology for transitioning the people,
processes, and technologies in IT environments to the Solaris Operating System.
It steps you through the various phases of the migration process, using detailed case
studies to illustrate the benefits, costs, and requirements associated with a migration
project. While this book focuses on UNIX server migrations, the methodology and
best practices presented apply for most migrations to the Solaris environment.
They can be used for projects ranging from the smallest data conversion to the
largest legacy migration.

Using a fictional case study, this article illustrates the methodology, tools, and best
practices used to migrate a Tru64 environment to the Solaris environment. In this
study, we examine a simple, custom-written application that uses a Sybase database
to store information about the company’s inventory, as well as client-specific data.
This application is converted to run under the Solaris Operating System (Solaris OS)
and is integrated with directory services. Additionally, the database vendor is
changed from Sybase to Oracle.

This article contains the following sections:

■ “Overview of Tru64” on page 2

■ “64-Bit Computing” on page 3

■ “Clustering” on page 5

■ “Justifying the Migration” on page 7

■ “Architecting the Migration” on page 10
 1

http://www.sun.com/books/catalog/pepple_migrating.xml
http://www.sun.com/books/catalog/pepple_migrating.xml

■ “Implementing the Migration to the Solaris Environment” on page 22

■ “Managing the New Solaris Environment” on page 29

■ “Related Resources” on page 30

■ “About the Authors” on page 30

■ “Ordering Sun Documents” on page 31

■ “Accessing Sun Documentation Online” on page 31

Overview of Tru64
Tru64 was the first commercially available UNIX environment that supported a
64-bit data model and computing environment. Originally released to support the
Alpha hardware platform from the Digital Equipment Corporation (DEC), this
operating environment and hardware combination formed a powerful computing
environment that overcame the barriers associated with 32-bit computing.

The Tru64 kernel architecture is based on Carnegie-Mellon University’s Mach V2.5
kernel design, with components from Berkeley Software Distribution (BSD) 4.3 and
4.4, UNIX System V, and other sources. Tru64 implements the Open Software
Foundation (OSF) OSF/1 R1.0, R1.1, and R1.2 technology. The Tru64 UNIX operating
system complies with numerous other standards and industry specifications,
including the X/Open XPG4 and XTI, POSIX, and the System V Interface Definition
(SVID). Additionally, Tru64 UNIX is compatible with Berkeley 4.3 and System V
programming interfaces and conforms to the OSF application environment
specifications (AES), the last that specifies an interface for developing portable
applications.

Tru64 and the Solaris OS share a common ancestry. In addition, the development of
standards and the willingness of vendors to faithfully implement them ensures that
porting an application from Tru64 to the Solaris OS should not prove to be too
daunting.

In the following sections, we examine the benefits and drawbacks of 64-bit
computing and explore the data models supported by Tru64 and the Solaris OS.
Then, we provide a little background on workarounds that were in place before the
advent of 64-bit operating environments that permitted us to use files larger than
2 gigabytes.
2 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

64-Bit Computing
As the complexity and functionality of applications increase, their data sets and
address space requirements increase as well. Many applications (databases, web
caches, simulation and modeling software, and the like) run more effectively if they
are not subject to the 4-gigabyte address space limitation imposed by a 32-bit
architecture.

The ability to support larger amounts of primary memory allows the 64-bit
architecture to afford performance benefits to a broad class of applications, including
the following:

■ A greater proportion of a database can be held in primary memory.
■ Larger CAD/CAE models and simulations can fit in primary memory.
■ Larger scientific computing problems can fit in primary memory.
■ Web caches hold more data in memory, reducing latency.

The following are also compelling reasons for creating 64-bit applications:

■ To improve performance by performing several computations on 64-bit integer
quantities, using the wider data paths of a 64-bit processor

■ To improve efficiency with arithmetic and logical operations on 64-bit quantities

■ To enable operations to use full-register widths, the full-register set, and new
instructions

■ To improve efficiency with the improved parameter passing of 64-bit quantities

Not all applications are well suited to a 64-bit data model. If your application does
not use or require any of the features listed above, it should probably be left as a
32-bit application. 32-bit applications usually run without problem in a 64-bit
environment. 64-bit applications are usually larger in size. Additionally, the use of
longer pointers in the 64-bit version could degrade performance because of cache
misses. Doubling the size of pointers means that the cache cannot hold as many
entries as om the 32-bit version of the application.
 64-Bit Computing 3

Understanding Differences Between
32-Bit and 64-Bit Data Models
Like Tru64, the Solaris OS supports the LP64 data model. In this convention, longs
and pointers are 64 bits in length (hence the acronym LP64) and an integer is 32 bits
in length. This is in contrast to the data model used in 32-bit environments, referred
to as an ILP32, in which integers, longs, and pointers are all 32 bits in length (hence
the acronym ILP32). The following table highlights the differences between these
two models:

Most of the problems associated with migrating an application to 64 bits arise from
the following differences:

■ Long values (long) are 64 bits in length, not 32.
■ Pointers are 64 bits in length, not 32.
■ Integers (int) are not the same size as longs and pointers in a 64-bit environment.

Many of these size issues can be mitigated if the developer uses derived types.
These definitions and others can be found in /usr/include/sys/types.h and
/usr/include/sys/inttypes.h in both the Solaris and Tru64 environments.
A derived type can specify the size of the attribute (for example, int32_t) or its
intended use (for example, blksize_t), a capability that increases program clarity.
The derived types themselves are safe for both ILP32 and LP64 environments,
making them 32-bit and 64-bit safe.

All releases of the Solaris OS after—and including—the Solaris 7 OE support both
32-bit and 64-bit data models. Under most circumstances, binaries that were created
under the 32-bit environment can be run in the 64-bit environment.

TABLE 1 Differences Between 32-Bit and 64-Bit Data Models

C Data Type ILP32 LP64

char 8 unchanged

short 16 unchanged

int 32 unchanged

long 32 64

long long 64 unchanged

pointer 32 64

enum 32 unchanged

float 32 unchanged

double 64 unchanged

long double 128 unchanged
4 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

Using Large Files to Overcome 32-Bit Limitations
DEC was one of the first computer manufacturers to understand the limitations of a
32-bit environment as it related to file size. In the past, under a 32-bit environment,
files could not exceed 2 gigabytes in length. Files are typically accessed relative to a
pointer that points to a location within the file. Programmers can move this pointer
by specifying an offset, but this offset is a signed quantity because the pointer can be
moved forward and backward within the file. Consequently, the maximum offset
that could be specified was 31 bits, limiting the file size to less than 2 gigabytes
(2**31 = 2 gigabytes).

Vendors created a “large file” option that allows the offset variable to be a long
quantity. This enables the file to grow well beyond the 2 or 4 gigabyte limit, because
the offset variable used to move the pointer is much larger (2**63). This technology
can be found in many legacy applications but is not necessary in a 64-bit computing
environment like Solaris or Tru64.

Clustering
In today’s business environment, time really is money. In the financial markets,
applications can be responsible for moving literally trillions of dollars a day.
Any significant unavailability of such an application—or even an outage on a
smaller system that is responsible for only billions or possibly millions of dollars of
daily revenue—can have a significant impact on a company’s bottom line.
Consequently, highly available (HA) environments are required for certain
applications. One strategy for creating an HA environment might include a cluster of
computing devices and related storage.

In the following sections, we provide an overview of clustering technology and
focus on TruCluster and Sun Cluster 3.0 software. Although our example does not
involve the migration from one clustering technology to another, we discuss the
technology here to provide background information that will be helpful if you
encounter an opportunity to migrate from using TruCluster to using Sun Cluster
software.
 Clustering 5

Overview
A cluster is a group of two or more computers (nodes) that share a common storage
device and are connected in a way that allows them to operate as a single,
continuously available system. Should an application on one of the computers, or
the computer itself, fail, a companion machine in the cluster takes over to provide
the same functionality as the failing computer. Whereas fault-tolerant hardware can
provide near-continuous uptime by providing specialized proprietary hardware
sharing the same memory, clustering technology provides highly available
applications through the use of redundancy (redundant servers and redundant
interconnects, networking, and storage, even redundant adapters and controllers).
All of this redundancy allows work to continue if a hardware or software failure
occurs, by transparently switching to a working component.

Clusters provide an enterprise a cost-effective and flexible method for deploying
technology. Machines can be added or removed from a cluster as business demands
vary. As newer technology becomes available, it can be added incrementally to the
cluster, thereby reducing the need to perform a “forklift” upgrade. Clustering
provides the following benefits:

■ High availability
■ Scalability in several directions
■ Ease of use and administration
■ Cost-effective, incremental growth path

TruCluster software was a pioneering version of cluster technology. Simple to
configure and highly reliable, this framework allowed the deployment of campus
clusters as well as machines located over great distances.

Sun Cluster 3.0 software is a scalable and flexible solution that is equally suited for a
small local cluster or larger extended clusters.
6 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

Cluster Agents—TruCluster and Sun Cluster 3.0
Software
The ability to detect when an application or resource is no longer operating as it was
designed to is an integral component of any cluster. When the cluster detects these
types of changes, the application can be restarted or moved to a different node.

In the TruCluster environment, this functionality is provided by the Cluster
Application Availability (CAA) subsystem. This facility provides a way for the
environment applications to determine whether they are operating properly, and it
allows administrators to specify what actions should be taken if problems are
detected.

Sun Cluster 3.0 software supports a similar framework that enables IT staff to
develop a customized agent that can be used to monitor the health of the clustered
application.

Although these subsystems provide similar functionality, they have significantly
different implementations. Porting an application from one clustered environment to
another requires you to not only transform the application source code to adhere to
the new OS APIs, but also that you integrate the application into the high
availability framework of that cluster so that application failure can be detected.
The framework will also need to be programmed to specify the actions that should
take place if an application fails.

Justifying the Migration
The first stage in any migration project involves justifying the migration. In this
particular case study, a manufacturing company has a number of systems deployed.
Although the company has numerous Sun platforms in place, its inventory
application and the associated database run under the Tru64 OS. The custom-written
application was written in the C programming language and uses a Sybase database
to store inventory data. This database uses third-party tools to manage the database
and produce reports.

The following figure shows a simplified overview of the application and the
supporting environment.
 Justifying the Migration 7

FIGURE 1 Overview of Application and Supporting Environment

Sybase RDBMS communication layer for Tru64

Sybase RDBMS
for Tru64

Tru64

C compiler and linker for Tru64

13

14

Executable

12
Report programs
using SQL-like

syntax

3rd party reporting
tool for Tru64

7

8

9

DBA maintenance
scripts for Sybase

3rd party Sybase
DBA tools for

Tru64

11

10

5

C embedded SQL
programs for Sybase

Sybase embedded SQL
precompiler for Tru64

Generated C programs
calling Sybase database API

1

2

3

Custom C programs
implementing business logic

Sybase database access
libraries for Tru64

Tru64 system libraries

Sybase database
communication

libraries for Tru64

Inventory application

4

6

16

17
Sybase Tables
Sybase T-SQL stored procedures and triggers
Other Sybase database objects

15
8 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

Identifying Migration Motivators
The platform supporting this application is running out of capacity. The enterprise
must decide whether it wants to purchase another Alpha server to provide the
required capability, or to migrate the application to another vendor’s platform that
has the capacity to support the enterprise requirements. Two issues suggest that
migration to a different platform would be the preferred choice:

■ End of life (EOL) of the Alpha processor. Industry consolidation has led to the
acquisition of DEC by Compaq Computer Corporation. This consolidation
resulted in the announcement of the EOL of the Alpha processor after its
manufacturing was turned over to Intel.

■ Changes to the Tru64 roadmap. After Compaq acquired DEC, they were in turn
acquired by Hewlett Packard (HP). HP already has its own version of the UNIX
OS, HP/UX. The new HP/COMPAQ entity has stated that they will be phasing
out Tru64 and consolidating on the HP/UX version of UNIX. To compound the
problem, HP has also elected to use the Itanium processor as the basis for its new
platform. If the client migrated to HP/UX, they would need to migrate again
when the Itanium platform is introduced.

If the enterprise chooses to migrate its inventory application to Sun’s Solaris
environment, it can leverage its existing Oracle licensing agreement and can reduce
expenses by switching their database from Sybase to Oracle.

You will explore these issues during a one-day meeting with all stakeholders from
the enterprise. By performing that due diligence, you will gain a better
understanding of the drivers and end goals of the migration.

Identifying Migration Strategies
In this case, the benefits of the migration are well understood. The application
provides the business functionality that the enterprise requires. It does not want to
move to a COTS application. Because the enterprise’s problems relate to IT
effectiveness, the system has run out of cycles, and the platform/environment
product line they are using has a limited life expectancy, the recommended solution
is to rehost the application. The benefits of the migration will be that the IT
effectiveness of the platform will be improved and the required capacity will be
achieved.

In other situations, the drivers might not be as obvious as they are in this case study.
If poor total cost of ownership (TCO) or return on investment (ROI) was the driver,
and the goal was to improve TCO or ROI, a more detailed investigation might need
to be completed to determine whether rehosting is the correct migration solution.
 Justifying the Migration 9

The result of the meeting is an agreement to proceed with a more detailed
assessment of the application environment to determine the associated migration
costs. The executive responsible for this initiative then releases a mission statement
and the detailed assessment begins.

Architecting the Migration
The first phase in the SunTone migration methodology involves architecting the
solution. At this stage, you assess the existing environment and design a first-cut
architecture.

Assessing the Current Environment
The next step in the migration is the assessment of the existing application and the
associated environment. This will allow you to create a risk list that can be used to
identify any areas of the project that might require a proof of concept to ensure that
the project can be completed. The outcome of the assessment is a risk list (where
appropriate) and a work breakdown structure that details the amount of effort
required to migrate the application and the associated environment. This work
breakdown structure is then used to create a plan and schedule various activities,
overlapping independent subtasks, where appropriate.

For custom-written applications, provide the migration team with a snapshot of the
application source and associated infrastructure to serve as a baseline for the
migration activity. When possible, you should also acquire a build log for the
application. This log will provide the following information:

■ Tools used
■ Options provided to these tools
■ Source that is compiled
■ Libraries that are linked
■ Order in which symbols are resolved

Although development documentation is welcome, a simple build log can serve as a
guide to the “facts on the ground.” It will show how the application is actually built.

In the following sections, we explore the assessment process.
10 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

Assessing the Application Infrastructure
Scripts provide an easy way for IT staff or administrators to create tools to
administer an application, analyze or modify data, and provide functional support
for an application. Scripts can leverage utilities that exist elsewhere in the operating
environment to perform various administrative tasks. In addition, scripts will
identify which utilities are used, as well as the options that are specified.

When the application is migrated, the associated scripts must be migrated to the
new environment as well. Although the script tool (for example, Ksh, bash, sh, csh,
PERL, or Python) might support the same syntax in the new environment, the
location of the programs or files used by the script might be different in the new
environment. Additionally, the options of the programs called by the scripts might
also require modification.

Ensure that a version of the script tool is available in the new environment.

Analyze Scripts

The Perl utility is becoming popular as a scripting tool because of its power and
flexibility. However, the venerable shell is still the script tool of choice for most
developers, primarily because of its availability across a variety of platforms and
environments.

When assessing shell scripts, check each command for the following conditions:

■ Command is unavailable on the Solaris OS.
■ Command is in a different location and the location is not in the user’s path.
■ Command uses a flag that does not exist on the Solaris OS.
■ Command uses a flag that has different functionality on the Solaris OS.
■ Output of a command is different and is redirected.

This check can be done manually or through the use of the scriptran tool.

The following sample presents the analysis of the issues associated with the shell
scripting used with the Tru64 example.
 Architecting the Migration 11

alias | 27
ar | 365
cc | 86
colrm | 1
df | 14
du | 1
e | 2
ed | 1
egrep | 68
expr | 11
fold | 1
get | 1
iostat | 1
ipcs | 45
ld | 13
lex | 4
ln | 177
lpr | 2
make | 1
mcopy | 1
more | 12
mt | 3
netstat | 5
printenv | 5
sleep | 94
stty | 1
style | 219
tail | 61
tset | 1
vmstat | 26
w | 5
wait | 14
whoami | 2
xconsole | 3
xhost | 4
xlsclients | 1
xset | 14
xsetroot | 4
xterm | 1
yacc | 4
Total: 40 | 1301
12 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

Analyze Build Tools

When working with a custom application, you also need to migrate the tools used to
build the application executable. These usually include a compiler, a source code
management system, and the build environment used to create the executable.
Additionally, any third-party products that were used to build the application must
be migrated.

Obtaining a build log created when the application was last built is the best way to
ensure that the build process and the tools involved in that process are identified.
Be certain that you understand the semantics of the options that were specified when
the application was built. Although tools in the new environment will most likely
support the required functionality, different options might need to be specified to
invoke the desired behavior. For example, static linking, position-independent code,
extended symbol table information, and the like might require the use of new and
different options.

In this example, the assessment reveals that a number of development tools are
currently available on another Sun platform within the enterprise. Although this
development environment has not been used to create the Tru64 version of the
application that you want to port, you can leverage some of the existing tools that
are available (for example, compilers and debuggers). Assume that you have
determined that this platform can be used for the migration exercise.

Determine Third-Party Products Usage

While all applications depend on support from the operating environment and
associated utilities, many applications are also designed to work with the
functionality provided by third-party products that are integrated into the execution
architecture. When the application is ported, this supporting software must be
ported as well, as part of the application infrastructure. In the example, the most
significant piece of third-party software is the Sybase database that is implemented
in the Tru64 environment. However, additional third-party software is used to
generate reports and administrate the database.

When assessing third-party products, you must ensure that these or similar products
are available for both the new OS and the new database.

This migration case study involves the conversion of a Sybase database implemented
on the Tru64 platform to an Oracle database running on the Solaris platform.
FIGURE 1 on page 8 provides an overview of the Sybase implementation.
 Architecting the Migration 13

When attempting to assess the database component of the application, be sure to
assess the deployment of database technology, not just the database itself. Databases
have evolved to become much more than simple repositories for data. Complex logic
can be programmed into the database. Database vendors encourage developers and
database administrators (DBAs) to store database-related (or data-intensive) logic
inside the database. The program units that are locally stored in databases are often
called stored procedures and triggers.

The practice of storing program logic in the database aids in the assessment because
the majority of the database-related logic is centralized in a single location, although
some interaction with the database will be specified in the programs themselves. For
DBAs who are concerned about database performance, storing program logic in the
database is encouraged as well, because logic that is locally stored in the database
has many positive performance implications. These stored program units are written
in a language that is commonly known as the Structured Query Language (SQL).

Regrettably, although there is an SQL standard, the degree of compliance with this
standard varies greatly from one database vendor to another. Different database
vendors might develop their own extensions to the SQL language to make it more
powerful and easier to use and, in some cases, to address specific database
performance issues through optimization.

The assessment of the database technology must address the stored procedures as
well as database object behavior. Among the different databases, database objects
(box 16 in FIGURE 1 on page 8) that have the same name behave differently. For
example, database objects such as stored procedures, triggers, and temporary tables
are supported in both Sybase and Oracle. However, there are no standards for the
behavior of these objects. Consequently, procedures, triggers, and temporary tables
stored in Sybase behave differently from those stored in Oracle. These differences
must be well understood before you can accurately assess the amount of change and
effort that will be required in a migration.

Take extra care when migrating application logic from one version of SQL to
another. In this example, translating a full-blown Sybase T-SQL application to
Oracle’s PL/SQL could result in an extensive modification or a total rewrite. You
must carefully identify the use of language features that might require the
reimplementation of logic on the new deployment, because the SQL extensions and
their underlying functionality might not be available. For this reason, the conversion
of the Sybase implementation will be considered a reengineering or rearchitecture
effort.
14 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

When assessing the database technology integration with the application, be aware
that each database vendor has its own version of SQL and that these versions can
vary considerably. Understanding the differences in SQL implementations will help
you understand the nature and amount of work that is needed for a project of this
nature.

In addition to the Sybase database technology, our example makes use of third-party
reporting tools (box 11), and DBA tools (box 13). If the tool vendor supports both
source and target databases and platforms, these can most likely be replaced. If a
tool cannot be replaced for any reason, then all of the components that use it will
most likely need to be rewritten. To keep the example simple, assume that you can
replace all the third-party tools and libraries.

In the example, all the components that use SQL will be affected in the same manner.
These components are:

■ Stored procedures and triggers (box 15). These are pure native SQL and are
discussed above.

■ C programs that use embedded SQL (box 2). Embedded SQL allows developers
to directly use SQL statements inside a programming language with which they
are familiar. In our example, the SQL statements are embedded inside C
programs. These embedded SQL programs are then passed to a precompiler
(box 3). The precompiler converts the embedded SQL to statements that directly
call the native database API (box 4). The output is a generated C program that is
then passed to the C compiler and linker.

■ Report programs that use third-party reporting tools (box 11). Note that, for this
scenario, it is not enough to replace the reporting tool. Report programs that use
third-party tools usually issue SQL or SQL-like syntax (possibly allowing
database vendor SQL language extensions), so they will need to be modified or
rewritten.

■ DBA maintenance scripts (box 13). The database engine (box 17) stores data in
objects called tables (box 16). The type of data that is going to be stored is defined
at the table level by data types that are native to the database engine being used.
When changing database engines, one of the first tasks is to determine whether all
of the data types used by the source database can be successfully mapped to data
types in the target database.

Problems arise when the data types that are used in the source database cannot be
mapped to the target database. If a data type cannot be mapped, you must find a
way to mimic its functionality in the target database. This simple data type issue
could potentially trigger a chain reaction of changes that need to be made to all
components that reference the table. The extent of modifications will depend on the
nature of the data type in question and how extensively it is used by all the
components that are using the database.

In our example, all data types map from the Sybase implementation to the Oracle
implementation without difficulty.
 Architecting the Migration 15

Assess the Application

As detailed previously, you must acquire the code for the application. That code will
help you estimate how much effort will be required for the migration. There are two
issues to consider when assessing an application:

■ Understanding the composition of the code used by the application. Many
legacy applications have significant size (for example, millions of lines of code).
Simply trying to understand the layout of the source tree and the types of files
can be a complex task.

■ Understanding which files within the source distribution are actually used to
build the application. As an application evolves, business functionality might no
longer be required and new functionality can be added. Although this can be
reflected when the application is built, developers seldom remove the old, unused
code from the source code directory. Avoid transforming code that isn’t being
used.
16 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

The following appsurvey output represents the composition of the files under the
source code repository of the inventory application.

Remember, it is possible that not all of these files will be used to create the
application. An analysis of the build log will reveal which files are used when the
application is created.

Module | FileType | # Lines | # of Files | # API issues

invtry | .4 | 127 | 1 | 0
invtry | .C | 429661 | 605 | 44
invtry | .H | 24570 | 216 | 9
invtry | .Make_files| 20174 | 126 | 0
invtry | .Msg | 6572 | 24 | 0
invtry | .acf | 1916 | 86 | 0
invtry | .bak | 430 | 8 | 0
invtry | .bld | 1914 | 6 | 0
invtry | .c | 656575 | 415 | 14
invtry | .cat | 25 | 1 | 0
invtry | .cfg | 131 | 11 | 0
invtry | .cl | 5070 | 34 | 0
invtry | .cpp | 6017 | 2 | 0
invtry | .ctl | 27908 | 54 | 0
invtry | .dat | 20684 | 11 | 0
invtry | .def | 81 | 1 | 0
invtry | .h | 116618 | 356 | 1
invtry | .sh | 2790 | 6 | 0
invtry | .sql | 301904 | 699 | 0
invtry | .test | 133 | 1 | 0
invtry | .tidl | 4780 | 51 | 0
invtry | .tmp | 453 | 1 | 0
invtry | .tpl | 8169 | 36 | 0
invtry | .wpm | 162 | 1 | 0
invtry | .zip | 146 | 2 | 0
TOTAL | | 2672376 | 4066 |68
 Architecting the Migration 17

In this example, you are considering a custom application written in the C
programming language. When implementing this sort of migration, focus on the
differences between the APIs provided by the Tru64 environment and those
provided by the Solaris OS. The following sample breaks down the APIs differences.

Total Files: 3717 LinesOfCode: 1185289 Statements: 388262
Issues:
accept 4 Weight: 5
acosd 2 Weight: 5
asind 4 Weight: 5
atand 5 Weight: 5
bind 33 Weight: 5
bind_to_cpu 1 Weight: 25
connect 5 Weight: 5
cosd 15 Weight: 5
endhostent 2 Weight: 5
exp 1 Weight: 5
fork 28 Weight: 3
freopen 6 Weight: 5
fseek 28 Weight: 5
gethostbyaddr 4 Weight: 5
gethostent 1 Weight: 25
getsockname 2 Weight: 5
getsockopt 15 Weight: 25
getsysinfo 6 Weight: 200
gettimeofday 90 Weight: 5
getuid 1 Weight: 3
htonl 44 Weight: 5
htons 63 Weight: 5
inet_addr 18 Weight: 3
inet_lnaof 1 Weight: 5
inet_netof 1 Weight: 5
inet_network 1 Weight: 3
inet_ntoa 14 Weight: 3
ioctl 104 Weight: 25
kill 26 Weight: 5
listen 4 Weight: 5
log 2 Weight: 5
min 9 Weight: 25
mq_setattr 1 Weight: 5
msgctl 2 Weight: 5
msgrcv 31 Weight: 5
munmap 3 Weight: 5
nint 9 Weight: 5
nintf 4 Weight: 5
ntohl 14 Weight: 25

(continued on next page)
18 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

(continued from preceding page)

ntohs 15 Weight: 25
open 6 Weight: 25
opendir 13 Weight: 5
pfopen 1 Weight: 200
pow 22 Weight: 5
pthread_cleanup_pop 3 Weight: 5
pthread_cleanup_push 3 Weight: 5
pthread_delay_np 21 Weight: 25
pthread_get_expiration_np 13 Weight: 25
pthread_lock_global_np 125 Weight: 25
pthread_unlock_global_np 128 Weight: 25
recv 14 Weight: 5
recvfrom 12 Weight: 5
remainder 1 Weight: 5
sched_getscheduler 1 Weight: 5
semctl 4 Weight: 5
semget 1 Weight: 3
semop 8 Weight: 3
send 11 Weight: 5
sendto 8 Weight: 5
sethostent 1 Weight: 5
setsid 3 Weight: 3
setsockopt 20 Weight: 25
setsysinfo 1 Weight: 200
settimeofday 4 Weight: 5
shmat 7 Weight: 3
shmctl 10 Weight: 3
shmdt 5 Weight: 3
shmget 7 Weight: 3
sigaction 5 Weight: 25
sigwait 5 Weight: 25
sind 13 Weight: 5
socket 55 Weight: 5
sqrt 118 Weight: 5
statvfs 2 Weight: 3
strftime 49 Weight: 5
system 2 Weight: 5
table 3 Weight: 200
tand 3 Weight: 5
template 1 Weight: 3
times 2 Weight: 3
ulimit 8 Weight: 25
uswitch 2 Weight: 200
wait 40 Weight: 3
waitpid 2 Weight: 3
write 2 Weight: 5
 Architecting the Migration 19

Assess the Compute and Storage Platform

In the example, the capacity of the existing hardware platform is determined. Based
on this information, a replacement platform is chosen from the Sun product line that
will provide the required performance, reliability, scalability, and manageability.
The details of hardware sizing are outside the scope of this document.

Assess the Network Infrastructure

Next, examine the networking facilities inside the enterprise’s data center to
determine whether they can support the required future capacity and load generated
by the migrated environment. Where appropriate, additional capacity might need to
be acquired (10BASE-T to 100BASE-T). All aspects of the network must be
considered, from the transport technology (FDDI, Token Ring, Ethernet, and the like)
to the number of ports that are available on the switch or hub that will be used to
cable the Network Interface Card (NIC).

Once you determine the networking technology, you can order the correct NIC for
the hardware described above.

In the example, the 100-megabyte network has sufficient capacity, and a port is
available on the switch serving the data center. A 100BASE-T NIC is required for the
platform, as well as a 10-meter cable to make the connection.

Assess Facilities

During the next part of the assessment, you assess the facilities and any changes that
will be required to support the migrated solution. During this assessment, consider
power, space, network connections, door frame size, and similar requirements.

In the example, the new platform is roughly the same in size as the older platform.
As a result, it can fit through all the doorways. However, it will need to be installed
in a previously unused corner of the data center because the old machine will not be
retired for some time.

The newer Sun hardware in this example requires more power but produces less
heat than the older platform. However, a new electrical receptacle will be required
for compatibility with the new hardware. In this case, the client decides to re-route a
cable run for cabling efficiencies with existing machines and to bring power to the
new location.
20 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

Assess Management Tools

Next, you assess the existing management tools and determine how they can be
moved to the target platform. In this case, the client uses BMC Patrol to monitor the
old Tru64 environment. This product is also available for the Solaris environment
and has already been deployed on other Sun platforms within the data center.
Additional ad hoc system monitoring is performed using the cron utility, to
schedule scripts that use conventional UNIX utilities such as iostat, vmstat, df,
and the like.

Assess People and Process

The skills of the organization must be assessed to determine whether any gaps exist.
A curriculum is then developed to address any shortfalls. In our example, the IT
staff already supports a number of Sun/Solaris/Oracle environments, which means
that no additional training should be required.

Understanding Threading Models
Applications use threads to implement fine-grained parallelism. Thread libraries
have been created for most modern operating environments. The most common
threading implementations are POSIX threads and Solaris threads, which have
similar semantics. The Solaris OS supports both threading models.

DEC’s implementation of threads differs slightly from these implementations. In the
example, you would use a compatibility library to replace threading APIs that are
found in the Tru64 environment, but not found in the Solaris environment.
 Architecting the Migration 21

Implementing the Migration to the
Solaris Environment
During the previous phase of the project, you produced a work breakdown structure
that was used to develop a plan for this phase of the project. Implementation
activities can be broken into tasks that relate to hardware and tasks that relate to
software. Where appropriate, independent tasks can be overlapped in the schedule,
depending on the required completion date, budget, and skill sets available. In the
following sections, we examine the tasks involved with implementing the solution in
a Solaris environment.

Modifying the Facilities
Typically, the facilities must be modified before hardware is installed. Depending on
the modifications required, considerable lead time might be required. In the
example, you need to reroute a power cable, install the appropriate receptacle, and
clear space for the new hardware. These activities are coordinated to reduce their
impact on the existing environment.

Creating the Networking Infrastructure
This task involves preparing the network for the addition of the new platform. Here,
you make decisions about IP addresses, routing, network masks, and so on. If
warranted, new load balancers, switches, hubs, cable drops, and the like will be
deployed and tested. Care must be taken to minimize the impact of these activities
on the existing environment.

In the example, the networking infrastructure requires minimal change because a
cable must be routed from the switch to the machine location. However, if routers or
load balancers were required, significantly more time and effort would go into this
task.
22 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

Deploying the Compute and Storage Platforms
Because this activity requires specialized skills, it is typically performed by the
service organization of hardware vendors (compute and storage). Before installing
platforms, the supporting infrastructure (for example, facilities and networking)
should be in place. If the compute platform and storage platforms are provided by
different vendors, their activities must be coordinated.

In the example, the compute hardware and storage platforms are provided by the
same vendor. Once the power and networking are in place, you can arrange for the
equipment to be delivered and installed.

Implementing the Application Infrastructure
When the development environment is in place, you can begin transforming the
application source code and any of the third-party scripts that support the
application.

With the production hardware platform in place, you can begin creating the
application infrastructure. The activities in this task include:

■ Installing third-party products used at runtime. These can include the database
and any tools or scripts used to administer the database or to produce reports.

■ Installing the modified scripts that manage the application.

■ Configuring the platform to support the application.

Implement the Build Environment

The analysis of the build log identified the tools and utilities that were used to create
the application executable. Where possible, you should acquire and install the same
tools. In certain cases (most likely, the compiler), you might need to acquire a
different product with similar functionality.

When installing these build tools, examine the old build log to determine where the
tools were located in the old environment. Putting your tools in the same location
will minimize the changes that need to be made to the make files.

Modify the make files to use the new tools, utilities, and libraries. Translate the tool
options, when required, such that they provide the same functionality. Our usual
and preferred methodology is to port and redesign the entire build environment
before the application source is modified. If the build environment is well designed,
only a few key make files and setup scripts need to be changed. The general
approach is as follows:
 Implementing the Migration to the Solaris Environment 23

1. Understand the key files that affect the whole build system, and port those first.

2. Do a global search for hard-coded values in make files, and change them so they
benefit from the new design if applicable.

3. Port the disconnected hard-coded instances, if any are left.

4. Release the build environment for code porting work.

These steps might need to be performed on a per-module basis because of the project
schedule, code availability, and resources.

Distributing this work across a development team can create efficiencies in the
project schedule, but if a large number of code-porting specialists make changes to
the make files in the module they are porting, then the make files can become
inconsistent with hard-coded values that might conflict with each other.

Translate Scripts

During the assessment process, a number of issues were identified that made the
shell scripts that were originally developed for a Tru64 environment incompatible
with the Solaris environment. These differences were usually related to the location
or options that are used by the shell script. The following example presents the types
of changes that will need to be made.
24 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

#! /bin/ksh
echo "Generated on `date`" >> $longreport
echo "Hostname : ", `hostname` >> $longreport

__sun: change tr 'a-z' 'A-Z' to tr '[a-z]' '[A-Z]'
NEW_TARGET=`echo ${TARGET_NAME} | tr 'a-z' 'A-Z'`
NEW_TARGET=`echo ${TARGET_NAME} | tr '[a-z]' '[A-Z]'`

echo "New target: ${NEW_TARGET}" >> $longreport

echo "Current environment" >> $longreport
__sun: add path
#printenv >> $longreport
/usr/ucb/printenv >> $longreport

echo "Print who's logged in" >> $longreport

#__sun: 'f' is 'finger' on Solaris
#f \@`hostname` >> $longreport
finger \@`hostname` >> $longreport

echo "Check if $filename is a link?" >> $longreport

#__sun: change -h to -L
#if [-h $filename]; then
if [-L $filename]; then
echo "$filename is a link" >> $longreport
fi

echo "Extract all names from $filename " >> $longreport

#__sun: add path because of option -F
grep -F "^NAME^" $filename >> $longreport
/usr/xpg4/bin/grep -F "^NAME^" $filename >> $longreport
echo "Extract all tasks from $filename " >> $longreport
grep "TASK:" $filename >> $longreport

echo "Extract all TOTALs from $filename " >> $longreport
grep "^TOTAL:" $filename >> $longreport

#__sun: change -w to -m. Send mail on completion.
#lp -w -d ${laser_printer} $longreport
lp -m -d ${laser_printer} $longreport
mv $longreport $LOG/${longreport}.old
exit
 Implementing the Migration to the Solaris Environment 25

Go through each shell script and make the appropriate changes. As you can see from
the preceding example, comments should be inserted to provide history and context.

Integrate Databases

As with shell scripts, the application might also depend on third-party products for
support. In the example, the only third-party products involved with the migration
were related to the database technology, so you will be replacing a Sybase
implementation with Oracle technology, as shown in the following figure.

FIGURE 2 Replacing Sybase With Oracle

Oracle RDBMS communication layer for Solaris OE

Oracle RDBMS
for Solaris OE

Solaris OE

C compiler and linker for Solaris OE

13

14

Executable

12
Report programs
using SQL-like

syntax

3rd party reporting
tool for Solaris OE

7

8

9

DBA maintenance
scripts for Oracle

3rd party Oracle
DBA tools for

Solaris OE

11

10

5

C embedded SQL
programs for Oracle

Oracle embedded SQL
precompiler for Solaris OE

Generated C programs
calling Oracle database API

1

2

3

Custom C programs
implementing business logic

Oracle database access
libraries for Solaris OE

18
True64 compatibility

libraries for Solaris OE

Solaris system libraries

Oracle database
communication

libraries for Solaris OE

Inventory application

4

6

16

17
Oracle Tables
Oracle PL-SQL stored procedures and triggers
Other Oracle database objects

15
26 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

This assessment indicated that you should address issues associated with the
following components:

■ Stored procedures and triggers (box 15).
■ C programs that use embedded SQL (box 2).
■ Report programs that use third-party reporting tools (box 11).
■ DBA maintenance scripts (box 12).

As illustrated in the preceding figure, the replacement environment is almost a one-
to-one mapping of component technology. When implementing the Oracle
environment on the Sun platform, you must acquire and install the appropriate
products with their respective licenses as follows:

■ The database communication layer (box 14). This is supplied by the database
vendor and usually consists of database client and server libraries.

■ The embedded SQL precompiler (box 3). This is supplied by the database vendor,
in this case, Oracle.

■ The C compiler and linker (box 5). This is usually supplied by the hardware
vendor, in this case, Sun.

■ The database engine (box 17). This is supplied by the database vendor, Oracle.

Other third-party products you should acquire and install include database
reporting tools (box 11) and database management tools (box 13). Versions of these
tools exist for the Solaris platform, reducing the amount of change that must be
introduced. However, changes will most likely need to be made to the products if
they issue SQL statements. These products might need to be rewritten altogether.
Additional configuration of these products might also need to be introduced,
reflecting different environment variables and path names.

Any API changes introduced in the database technology will need to be reflected in
the source code of the applications. At this stage, you are only addressing issues
with the database components of the application. The outcome of this stage of the
process is new embedded SQL programs that will be compiled with the application
source after it has been modified to conform to the new operating environment.
These changes are described later in this article.

Data Extraction, Transformation, and Loading (ETL)

After you install the supporting database environment, you can create the database
objects to accept the data. You can then extract the data from the old Sybase system
by using vendor-provided utilities. Finally, you can load the data into the Oracle
database, using utilities that are provided by the vendor.
 Implementing the Migration to the Solaris Environment 27

There are times when database vendor-provided tools can be used. This is usually
the case when the database structure is simple and data types can be mapped one-to-
one. In such cases, the bulk copy (bcp) utility from Sybase can be used to extract
data from Sybase. The output of this command can be an ASCII delimited file. You
can then feed this file to an Oracle utility called SQL*Loader.

For more complicated scenarios, the use of third-party extraction, transformation,
and loading (ETL) tools—such as Hummingbird’s ETL or Embarcadero’s DT/
Studio—might be appropriate. Of course, you can also write scripts to perform these
tasks.

Although our example requires no data translation, data types that existed in the
Sybase implementation that cannot be reproduced in the new Oracle implementation
might require that the data be transformed or translated to conform the new data
type. Depending on the data type in question and the extent to which it is used
throughout the application, this simple change could create significant complexity
when attempting to modify the application source code. All references to that data
type might require change. In certain cases, depending on the change to the data
type, the application logic might also need to change.

Transforming Source Code
In the assessment process, you identified a number of APIs that were incompatible
with the target Solaris environment. Rather than modifying the source code in-line to
effect these changes, you should create a compatibility library to implement any
changes that need to be implemented to rectify incompatibility issues. You can limit
source code modifications to conditional compilation directives that are used to
ensure backward compatibility.

The following example shows how to use conditional compilation to ensure
backward compatibility.

The function SunVersion() that will emulate Tru64 functionality will exist in a
compatibility library.

#ifdef _sun
SunVersion();

#else
OriginalVersion();

#endif
}

28 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

In the example, you create a compatibility library (box 18) that is linked in when the
application executable (box 6) is created. You then modify the source code for the
application (box 1) to conform to the application infrastructure and to use the
functions provided by the compatibility library, using conditional compilation as
discussed above.

Managing the New Solaris Environment
The management tools and utilities used to monitor the environment should
integrate with the existing management policies and procedures. Management
processes, such as trouble ticket reporting, should most likely remain independent of
the new vendor platform. However, certain processes, such as change management,
could be affected by the introduction of operational platforms that support dynamic
reconfiguration or hot swapping.

Once the production environment is in place, you can install any tools or agents
required to integrate the new environment with the existing management
architecture.

In our example, BMC Patrol is installed and configured on the new platform.

System administrators must be able to manage the new environment. You identified
areas in which training was required when you assessed the people and process of
the IT organization. Enrolment in—and delivery of—training may be scheduled at
any time during the migration effort, but should be structured to minimize the
impact on existing IT operations. For example, all the operators cannot take training
at the same time, because a certain number of them must provide operational
support to the production environment.

In our example, no training was required because the operators were already
supporting similar technologies. However, training may be required in areas such as
these:

■ Storage configuration
■ Volume management
■ Cluster operation
■ Dynamic reconfiguration
■ Resource management
■ Database configuration and administration
 Managing the New Solaris Environment 29

Related Resources
This article is an excerpt from the Sun BluePrints book Migrating to the Solaris
Operating System. Refer to the book for more information about the topics presented
in this article.

About the Authors

Ken Pepple

At the time of creation of this article, Ken Pepple was an IT Architect in the Sun
Professional Services (SunPS) Asia Pacific practice. In this role, he assisted clients
with enterprise computing architectures, concentrating on advanced data center
projects. Ken is now currently the Chief Technology Officer (CTO) of Sun's Desktop
and Mobility Client Solutions Practice. In addition to these activities, Ken recently
co-authored, with David Hornby, the Sun BluePrints™ book, Consolidation in the
Data Center: Simplifying IT Environments to Reduce Total Cost of Ownership.

Before moving to his current position, Ken managed the SunPS high-end platform
services program, and focused on complex performance issues for the IT Consulting
and Operations practice. While there, he co-authored and taught the Sun Education
seminar “Solaris Performance and Tuning Secrets.”

Brian Down

Brian Down is the Chief Technology Officer (CTO) of the Enterprise Migration and
Applications team within Sun's Data Center Client Solutions Practice. Prior to this
role, Brian was a Senior Staff Engineer, most recently in SunPS, where he held the
position of Chief Architect for Enterprise Migration for the Americas. For several
years, Brian has focused on developing Sun’s migration methodology and solution
strategy, helping to develop and identify the methodologies associated with such
implementations. Prior to joining SunPS, Brian focused on performance and custom
engineering initiatives related to strategic server installations for the GSO.

With over 25 years of industry experience, Brian has held various engineering
positions, ranging from senior engineer with a computer security company to
Research Associate for the Department of Computer Science at the University of
Toronto, where he worked for over 10 years.
30 Migrating From Tru64 UNIX to the Solaris™ Operating System • March 2005

http://www.sun.com/books/catalog/pepple_migrating.xml
http://www.sun.com/books/catalog/pepple_migrating.xml
http://www.sun.com/books/catalog/hornby_pepple.xml
http://www.sun.com/books/catalog/hornby_pepple.xml

David Levy

David Levy is a Principal Engineer in the Sun Data Center Practice United Kingdom
(UK) organization. He is currently leading the program for the UK’s Consolidation
and Migration team, concentrating on data center architectures and economics. Prior
to this role, Dave led the UK’s financial services consulting team based in London.
Dave has successfully completed numerous consolidation and migration projects for
banking and media customers.

Before working for Sun, Dave worked for a number of financial services, IT
manufacturing, and government organizations, primarily as a database architect and
engineer. Dave has authored presentations for the Oracle and Sybase user groups,
and is a member of the British Computer Society and Chartered Institute of
Management. Dave is an Honors graduate of the University of Exeter, where he
majored in Economics.

Ordering Sun Documents
The SunDocsSM program provides more than 250 manuals from Sun Microsystems,
Inc. If you live in the United States, Canada, Europe, or Japan, you can purchase
documentation sets or individual manuals through this program.

Accessing Sun Documentation Online
The docs.sun.com web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title
or subject. The URL is http://docs.sun.com/

To reference Sun BluePrints OnLine articles, visit the Sun BluePrints OnLine Web site
at: http://www.sun.com/blueprints/online.html
 Ordering Sun Documents 31

http://docs.sun.com/
http://www.sun.com/blueprints/online.html

	Overview of Tru64
	64-Bit Computing
	Understanding Differences Between 32-Bit and 64-Bit Data Models
	Using Large Files to Overcome 32-Bit Limitations

	Clustering
	Overview
	Cluster Agents-TruCluster and Sun Cluster 3.0 Software

	Justifying the Migration
	Identifying Migration Motivators
	Identifying Migration Strategies

	Architecting the Migration
	Assessing the Current Environment
	Assessing the Application Infrastructure
	Analyze Scripts
	Analyze Build Tools
	Determine Third-Party Products Usage
	Assess the Application
	Assess the Compute and Storage Platform
	Assess the Network Infrastructure
	Assess Facilities
	Assess Management Tools
	Assess People and Process

	Understanding Threading Models

	Implementing the Migration to the Solaris Environment
	Modifying the Facilities
	Creating the Networking Infrastructure
	Deploying the Compute and Storage Platforms
	Implementing the Application Infrastructure
	Implement the Build Environment
	Translate Scripts
	Integrate Databases

	Transforming Source Code

	Managing the New Solaris Environment
	Related Resources
	About the Authors
	Ordering Sun Documents
	Accessing Sun Documentation Online

