
Sun Microsystems, Inc.
www.sun.com

Submit comments about this document at: http://www.sun.com/hwdocs/feedback

What’s New

Sun™ Studio 10

Part No. 819-0488-10
January 2005, Revision A

http://www.sun.com/hwdocs/feedback

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements. Use is subject to license terms.

This distribution may include materials developed by third parties.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, and JavaHelp are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and
other countries.All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the
U.S. and other countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

This product is covered and controlled by U.S. Export Control laws and may be subject to the export or import laws in other countries. Nuclear,
missile, chemical biological weapons or nuclear maritime end uses or end users, whether direct or indirect, are strictly prohibited. Export or
reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion lists, including, but not limited to, the denied
persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

L’utilisation est soumise aux termes de la Licence.

Cette distribution peut comprendre des composants développés par des tierces parties.

Des parties de ce produit pourront être dérivées des systèmes Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Java, et JavaHelp sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux
Etats-Unis et dans d’autres pays.Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées
de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une architecture
développée par Sun Microsystems, Inc.

Ce produit est soumis à la législation américaine en matière de contrôle des exportations et peut être soumis à la règlementation en vigueur
dans d’autres pays dans le domaine des exportations et importations. Les utilisations, ou utilisateurs finaux, pour des armes nucléaires,des
missiles, des armes biologiques et chimiques ou du nucléaire maritime, directement ou indirectement, sont strictement interdites. Les
exportations ou réexportations vers les pays sous embargo américain, ou vers des entités figurant sur les listes d’exclusion d’exportation
américaines, y compris, mais de manière non exhaustive, la liste de personnes qui font objet d’un ordre de ne pas participer, d’une façon directe
ou indirecte, aux exportations des produits ou des services qui sont régis par la législation américaine en matière de contrôle des exportations et
la liste de ressortissants spécifiquement désignés, sont rigoureusement interdites.

LA DOCUMENTATION EST FOURNIE "EN L’ÉTAT" ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin 5

Typographic Conventions 5

Shell Prompts 6

Supported Platforms 6

Accessing Sun Studio Software and Man Pages 7

Accessing Sun Studio Documentation 10

Accessing Related Solaris Documentation 13

Resources for Developers 13

Contacting Sun Technical Support 14

Sending Your Comments 14

1. Sun Studio 10 New Features and Enhancements 15

C Compiler 16

C++ Compiler 17

Examples of Template-Template Parameters 18

Nested Class Access Rules 19

Fortran Compiler 20

Binary File Sharing Between Big-endian and Little-endian Platforms 20

Command-line Debugger dbx 22

OpenMP API 23
 3

Interval Arithmetic 24

Sun Performance Library 25

dmake 26

Performance Analysis Tools 27

Integrated Development Environment (IDE) 29

Documentation 29

2. Sun Studio 9 New Features and Enhancements 31

C Compiler 32

C++ Compiler 38

Fortran Compiler 43

Command-Line Debugger dbx 48

Interval Arithmetic 48

Sun Performance Library 48

dmake 49

Performance Analysis Tools 50

Integrated Development Environment (IDE) 53

Documentation 53
4 What’s New • January 2005

Before You Begin

The What’s New describes the new features of the Sun Studio 10 software release and
the Sun™ Studio 9 software release, which include new features in the C, C++, and
Fortran compilers, libraries, and tools.

Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.
 5

Shell Prompts

Supported Platforms
This Sun Studio release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon
EM64T. The supported systems for the version of the Solaris Operating System you

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…fn] xinline=alpha,dos

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #
6 What’s New • January 2005

are running are available in the hardware compatibility lists at
http://www.sun.com/bigadmin/hcl. These documents cite any implementation
differences between the platform types.

In this document, the term “x86” refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product
families. For supported systems, see the hardware compatibility lists.

Accessing Sun Studio Software and Man
Pages
The Sun Studio software and its man pages are not installed into the standard
/usr/bin/ and /usr/share/man directories. To access the software, you must
have your PATH environment variable set correctly (see “Accessing the Software” on
page 7). To access the man pages, you must have the your MANPATH environment
variable set correctly (see “Accessing the Man Pages” on page 8.).

For more information about the PATH variable, see the csh(1), sh(1), ksh(1), and
bash(1) man pages. For more information about the MANPATH variable, see the
man(1) man page. For more information about setting your PATH variable and
MANPATH variables to access this release, see the installation guide or your system
administrator.

Note – The information in this section assumes that your Sun Studio software is
installed in the /opt directory on Solaris platforms and in the /opt/sun directory
on Linux platforms. If your software is not installed in the default directory, ask
your system administrator for the equivalent path on your system.

Accessing the Software
Use the steps below to determine whether you need to change your PATH variable to
access the software.
Before You Begin 7

http://www.sun.com/bigadmin/hcl

To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

2. On Solaris platforms, review the output to find a string of paths that contain
/opt/SUNWspro/bin. On Linux platforms, review the output to find a string of
paths that contain /opt/sun/sunstudio10/bin.

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

● On Solaris platforms, add the following to your PATH environment variable. If
you have Forte Developer software, Sun ONE Studio software, or another release
of Sun Studio software installed, add the following path before the paths to those
installations.

/opt/SUNWspro/bin

● On Linux platforms, add the following to your PATH environment variable.

/opt/sun/sunstudio10/bin

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

% echo $PATH

% man dbx
8 What’s New • January 2005

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

To Set Your MANPATH Environment Variable to Enable Access
to the Man Pages

● On Solaris platforms, add the following to your MANPATH environment variable.

/opt/SUNWspro/

● On Linux platforms, add the following to your MANPATH environment variable.

/opt/sun/sunstudio10

Accessing the Integrated Development
Environment
The Sun Studio 9 integrated development environment (IDE) provides modules for
creating, editing, building, debugging, and analyzing the performance of a C, C++,
or Fortran application.

The command to start the IDE is sunstudio. For details on this command, see the
sunstudio(1) man page.

The correct operation of the IDE depends on the IDE being able to find the core
platform. The sunstudio command looks for the core platform in two locations:

■ The command looks first in the default installation directory,
/opt/netbeans/3.5V on Solaris platforms and /opt/sun/netbeans/3.5V on
Linux platforms.

■ If the command does not find the core platform in the default directory, it
assumes that the directory that contains the IDE and the directory that contains
the core platform are both installed in or mounted to the same location. For
example, on Solaris platforms, if the path to the directory that contains the IDE is
/foo/SUNWspro, the command looks for the core platform in
/foo/netbeans/3.5V. On Linux platforms, if the path to the directory that
contains the IDE is /foo/sunstudio10, the command looks for the core
platform in /foo/netbeans/3.5V.
Before You Begin 9

If the core platform is not installed or mounted to either of the locations where the
sunstudio command looks for it, then each user on a client system must set the
environment variable SPRO_NETBEANS_HOME to the location where the core
platform is installed or mounted (/installation_directory/netbeans/3.5V).

On Solaris platforms, each user of the IDE also must add
/installation_directory/SUNWspro/bin to their $PATH in front of the path to any
other release of Forte Developer software, Sun ONE Studio software, or Sun Studio
software. On Linux platforms, each user of the IDE also must add
/installation_directory/sunstudio10/bin to their $PATH in front of the path to any
other release of Sun Studio software.

The path /installation_directory/netbeans/3.5V/bin should not be added to the
user’s $PATH.

Accessing Sun Studio Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/SUNWspro/docs/index.html on Solaris platforms and at
file:/opt/sun/sunstudio10/docs/index.html on Linux platforms.

If your software is not installed in the /opt directory on a Solaris platform or the
/opt/sun directory on a Linux platform, ask your system administrator for the
equivalent path on your system.

■ Most manuals are available from the docs.sun.comsm web site. The following
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

■ Online help for all components of the IDE is available through the Help menu, as
well as through Help buttons on many windows and dialogs, in the IDE.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.
10 What’s New • January 2005

http://docs.sun.com

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document. Sun does not endorse and is not responsible or liable for any
content, advertising, products, or other materials that are available on or through
such sites or resources. Sun will not be responsible or liable for any actual or alleged
damage or loss caused by or in connection with use of or reliance on any such
content, goods, or services available on or through any such sites or resources.

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class

Reference
• Standard C++ Library

User’s Guide
• Tools.h++ Class Library

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html on
Solaris platforms, and at
file:/opt/sun/sunstudio10/docs/index.html on
Linux platforms,

Online help HTML available through the Help menu in the IDE

Release notes HTML at http://docs.sun.com
Before You Begin 11

http://docs.sun.com
http://docs.sun.com

Related Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your
software is not installed in the /opt directory, ask your system administrator for the
equivalent path on your system.

Document Title Description

Dubugging a Program With dbx Describes how to use the dbx command-line
debugger to debug programs written in the C, C++,
Fortran, and Java™ programming languages.

Fortran Programming Guide Describes how to write effective Fortran code on
Solaris™ environments; input/output, libraries,
performance, debugging, and parallel processing.

Fortran Library Reference Details the Fortran library and intrinsic routines

Fortran User’s Guide Describes the compile-time environment and
command-line options for the f95 compiler. Also
includes guidelines for migrating legacy f77
programs to f95.

C User’s Guide Describes the compile-time environment and
command-line options for the cc compiler.

C++ User’s Guide Describes the compile-time environment and
command-line options for the CC compiler.

Performance Analyzer Describes how to use the Collector and Performance
Analyzer to perform statistical profiling of a wide
range of performance data and tracing of various
system calls, and relate the data to program structure
at the function, source line and instruction level.
12 What’s New • January 2005

http://docs.sun.com

Accessing Related Solaris
Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

Resources for Developers
Visit http://developers.sun.com/prodtech/cc to find these frequently
updated resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

■ Documentation of compilers and tools components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at
http://developers.sun.com.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the
Solaris™ operating
environment.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the
Solaris™ link-editor and
runtime linker.

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX® and
Solaris™ threads APIs,
programming with
synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.
Before You Begin 13

http://developers.sun.com
http://developers.sun.com/prodtech/cc

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sending Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Submit your comments to Sun at this URL

http://www.sun.com/hwdocs/feedback

Please include the part number (819-0488-10) of your document.
14 What’s New • January 2005

http://www.sun.com/service/contacting
http://www.sun.com/hwdocs/feedback

CHAPTER 1

Sun Studio 10 New Features and
Enhancements

Sun™ Studio 10 replaces the Sun™ Studio 9. New features in the Sun Studio 10
release include updates to the following compilers, libraries, and tools:

■ C Compiler
■ C++ Compiler
■ Fortran Compiler
■ Sun Performance Library
■ Distributed make utility, dmake
■ dbx Command-Line Debugger
■ Performance Analysis Tools
■ Integrated Development Environment (IDE)
■ Documentation

In most sections, there is a table that lists the new features of that component. The
table has two columns, where the left-hand column provides a short description of
the feature, and the right-hand column has a longer description.

Note – To find the Sun Studio 10 documentation described in this chapter, see the
documentation index installed with the product software at
/opt/SUNWspro/docs/index.html. If your software is not installed in the /opt
directory, contact your system administrator for the equivalent path on your system
or network.
15

C Compiler

Note – You must specify -xarch=amd64 to the right of -fast and -xtarget on
the command line to generate 64-bit code. For example, specify cc -fast -xarch=
amd64 or cc -xtarget=opteron -xarch=amd64. The new -xtarget=opteron
option does not automatically generate 64-bit code. It expands to -xarch=sse2, -
xchip=opteron, and -xcache=64/64/2:1024/64/16, which results in 32-bit
code. The -fast option also results in 32-bit code because it is a macro which also
defines -xtarget=native.

TABLE 1-1 C Compiler New Features

Feature Description

OpenMP parallel
programming API

The API is now enabled on 32-bit and 64-bit x86 based
systems running the Solaris OS.

New -xarch option -xarch=amd64 specifies compilation for the 64-bit AMD
instruction set. The C compiler now predefines __amd64 and
__x86_64 when you specify -xarch=amd64.

New -xtarget option -xtarget=opteron specifies the -xarch, -xchip, and
-xcache settings for 32-bit AMD compilation.

New -xregs flag on x86
based systems

A new x86-only flag for the -xregs option,
-xregs=[no%]frameptr, lets you use the frame-pointer
register as an unallocated callee-saves register to increase the
run-time performance of applications.

New -Xarch=amd64
option for lint

The C utility lint now accepts a new option -Xarch=amd64.
See the lint(1) man page for more information.

-xarch=generic64 on
x86 based systems

The existing -xarch=generic64 option now supports the
x86 platform in addition to the traditional SPARC platform.

-xipo on x86 based
systems

The -xipo option is now available on x86 based systems.
16 What’s New • January 2005

C++ Compiler

Note – You must specify -xarch=amd64 to the right of -fast and -xtarget on
the command line to generate 64-bit code. For example, specify CC -fast -xarch=
amd64 or CC-xtarget=opteron -xarch=amd64. The new -xtarget=opteron
option does not automatically generate 64-bit code. It expands to -xarch=sse2, -
xchip=opteron, and -xcache=64/64/2:1024/64/16, which results in 32-bit
code. The -fast option also results in 32-bit code because it is a macro which also
defines -xtarget=native.

TABLE 1-2 C++ Compiler New Features

Feature Description

OpenMP parallel
programming API

The API is now enabled on 32-bit and 64-bit x86 based systems
running the Solaris OS.

New -xarch option -xarch=amd64 specifies compilation for the 64-bit AMD
instruction set. The C++ compiler now predefines __amd64 and
__x86_64 when you specify -xarch=amd64.

New -xtarget
option

-xtarget=opteron specifies the -xarch, -xchip, and -xcache
settings for 32-bit AMD compilation.

New -xregs flag on
x86 based systems

A new x86-only flag for the -xregs option,
-xregs=[no%]frameptr, lets you use the frame-pointer register
as an unallocated callee-saves register to increase the run-time
performance of applications.

-xarch=generic64
on x86 based systems

The existing -xarch=generic64 option now supports the x86
platform in addition to the traditional SPARC platform.

-xipo on x86 based
systems

The -xipo option is now available on x86 based systems.

Template-template
parameters

You can specify a template definition with parameters that are
themselves templates, rather than types or values. Recall that a
template instantiated on a type is itself a type. For examples, see
“Examples of Template-Template Parameters” on page 18.

Access rules for
nested classes

In default mode, the C++ compiler in this release allows nested
classes the same access to member classes that member functions
have. For more information, see “Nested Class Access Rules” on
page 19.
Chapter 1 Sun Studio 10 New Features and Enhancements 17

Examples of Template-Template Parameters
The section provides two code examples, one that does not use template-template
parameters and one that does.

This example does not use template-template parameters because MyClass<int> is
a type.

In this example, class template C has a parameter that is a class template, and object
x is an instance of C using class template A as its argument. Member y of c has type
A<int>.

template<typename T> class MyClass { ... };
std::list< MyClass<int> > x;

// ordinary class template
template<typename T> class A {
 T x;
};
// class template having a template parameter
template < template<typename U> class V > class C {
 V<int> y;
// instantiate C on template
C<A> x;
18 What’s New • January 2005

Nested Class Access Rules
The C++ compiler, in default standard mode, now allows nested classes to access
private members of the enclosing class.

The C++ standard says that nested classes have no special access to members of the
enclosing class. However, most people feel this restriction is not justified because
member functions have access to private members, so member classes should too. In
the following example, function foo tries to access a private member of class outer.
According to the C++ standard, the function has no access unless it is declared a
friend function:

The C++ Committee is in the process of adopting a change to the access rules giving
the same access to member classes that member functions have. Many compilers
have implemented this rule in anticipation of the changed language rule.

To restore the old compiler behavior, disallowing the access, use the compiler option
-features=no%nestedaccess. The default is -features=nestedaccess.

class outer {
 int i; // private in outer
 class inner {
 int foo(outer* p) {
 return p->i; // invalid
 }
 };
};
Chapter 1 Sun Studio 10 New Features and Enhancements 19

Fortran Compiler

Note – You must specify -xarch=amd64 to the right of -fast and -xtarget on
the command line to generate 64-bit code. For example, specify f95 -fast -xarch=
amd64 or f95 -xtarget=opteron -xarch=amd64. The new -xtarget=opteron
option does not automatically generate 64-bit code. It expands to -xarch=sse2, -
xchip=opteron, and -xcache=64/64/2:1024/64/16, which results in 32-bit
code. The -fast option also results in 32-bit code because it is a macro which also
defines -xtarget=native.

Binary File Sharing Between Big-endian and
Little-endian Platforms
A new compiler flag -xfilebyteorder provides support of binary I/O files when
moving between SPARC based systems and x86 based systems. The flag identifies
the byte-order and byte-alignment of unformatted I/O files.

TABLE 1-3 Fortran Compiler New Features

Feature Description

OpenMP parallel
programming API

The API is now enabled on 32-bit and 64-bit x86 based systems
running the Solaris OS.

New -xarch option -xarch=amd64 specifies compilation for the 64-bit AMD
instruction set. The Fortran compiler now predefines __amd64 and
__x86_64 when you specify -xarch=amd64.

New -xtarget
option

-xtarget=opteron specifies the -xarch, -xchip, and -xcache
settings for 32-bit AMD compilation.

-xarch=generic64
on x86 based systems

The existing -xarch=generic64 option now supports the x86
platform in addition to the traditional SPARC platform.

-xipo on x86 based
systems

The -xipo option is now available on x86 based systems.

Binary (unformatted)
file sharing between
big-endian and
little-endian
platforms

A new compiler flag -xfilebyteorder provides support of
binary I/O files when moving between SPARC based systems and
x86 based systems. The flag identifies the byte-order and byte-
alignment of unformatted I/O files. For more information, see
“Binary File Sharing Between Big-endian and Little-endian
Platforms” on page 20
20 What’s New • January 2005

The syntax of the flag is:

-xfilebyteorder=
{[littlemax_align:%all,unitno,filename}],[bigmax_align:{%all,unitno,filename}]
,[native:{%all,unitno,filename}]}:

This option does not apply to files opened with STATUS=scratch. I/O operations
done on these files are always with the byte-order and byte-alignment of the native
processor.

The first default, when -xfilebyteorder is not specified on the compiler
command line, is -xfilebyteorder=native:%all. The option must be specified
with at least one argument. That is, at least one of the little:, big:, or native:
parameters must be present.

max_align Maximum byte alignment for the target
platform. Values are 1, 2, 4, 8, and 16. The
alignment applies to Fortran VAX
structures and Fortran 95 derived types
which use platform-dependent alignments
for compatibility with C structures.

littlemax_align:{%all,unitno,filename} List of files or unit numbers that are
“little-endian” files used on a system where
the maximum byte alignment is max_align.
For example, little4 describes a 32-bit
x86 file while little16 describes a 64-bit
x86 file.

bigmax_align:{%all,unitno,filename} List of files or unit numbers that are
“big-endian” files used on a system where
the maximum byte alignment is max_align.

native:{%all,unitno,filename} List of files or unit numbers that are native
files of the same byte order and alignment
used by the compiling processor system

%all Specifies all files and logical units except
those opened as “SCRATCH” or named
explicitly in this option. Can be used to
describe default files not explicitly listed by
this flag. %all can only appear once.

unitno Fortran logical unit number opened by the
program.

filename Fortran file name opened by the program.
Chapter 1 Sun Studio 10 New Features and Enhancements 21

Files not explicitly declared by this flag are assumed to be native files. For example,
compiling with -xfilebyteorder=little4:zfile.out declares zfile.out to
be a little-endian 32-bit x86 file with a 4-byte maximum data alignment rule, and all
other files are native files.

When the byte-order specified for a file is the same as the native processor but a
different alignment is specified, the appropriate padding will be used even though
no byte swapping is done. For example, this would be the case when compiling with
-xarch=amd64 for 64-bit x86 and -xfilebyteorder=little4:filename is
specified.

The declared types in data records shared between big-endian and little-endian
platforms must have the same sizes. For example, a file produced by a SPARC
executable compiled with -xyptemap=integer:64,real:64,double:128
cannot be read by an x86 executable compiled with -xtypemap=
integer:64,real:64,double:64 since the default double precision data types
will have different sizes.

Shared I/O files must not contain VAX UNION/MAP data structures since it is not
possible for the compiler to know how the UNION data should be interpreted.
Declaring a file containing UNION data with the -xfilebyteorder flag will result
in a runtime error.

Command-line Debugger dbx

As in Sun Studio software for SPARC based systems, Sun Studio software for x86
based systems includes two dbx binaries, a 32-bit dbx that can debug 32-bit
programs only, and a 64-bit dbx that can debug both 32-bit and 64-bit programs.

When you start dbx, it determines which of its binaries to execute. On the 64-bit
Solaris OS, the 64-bit dbx is the default.

TABLE 1-4 dbx New Features

Feature Description

AMD64 architecture
support

64-bit dbx now supports the AMD64 architecture.
22 What’s New • January 2005

OpenMP API
TABLE 1-5 OpenMP API New Features

Feature Description

Availability on x86 based
systems running the Solaris 10
OS.

The same OpenMP API features already available for
the Solaris OS on SPARC based systems are now
available with the Sun Studio compilers on 32-bit or
64-bit x86 based systems running the Solaris 10 OS.

libmtsk the multitasking library, libmtsk, is now a shared
library and is part of the Solaris 10 OS.

Nested parallelism Nested parallelism is supported in this release. It is
disabled by default, and requires that you set the
OMP_NESTED environment variable make a runtime call
to the omp_set_nested() function to enable it. With
nested parallelism enabled, calls to most omp_ functions
made from within a parallel region will not be ignored.
Calls to adjust the parallel environment (for example,
omp_set_num_threads() or omp_set_dynamic())
affect only the subsequent parallel regions at the same
or inner nesting level encountered by the thread.

Default behavior for threads The default behavior for threads is now SLEEP. The
previous default was SPIN. To restore the previous
behavior, use SUNW_MP_THR_IDLE=SPIN.
Chapter 1 Sun Studio 10 New Features and Enhancements 23

Interval Arithmetic
There are no new interval arithmetic features in this release.

SUNW_MP_NUM_POOL_THREADS
environment variable

SUNW_MP_NUM_POOL_THREADS specifies the size
(maximum number of threads) of the thread pool. The
thread pool contains only non-user threads—threads
that the libmtsk library creates. It does not include
user threads such as the main thread. Setting
SUNW_MP_NUM_POOL_THREADS to 0 forces the thread
pool to be empty and all parallel regions will be
executed by one thread. The value specified should be a
non-negative integer. The default value is 1023. This
environment variable can prevent a single process from
creating too many threads, which is something that
might happen, for example, with recursively nested
parallel regions.

SUNW_MP_MAX_NESTED_LEVELS
environment variable

SUNW_MP_MAX_NESTED_LEVELS specifies the
maximum depth of active parallel regions. Any parallel
region that has an active nested depth greater than
SUNW_MP_MAX_NESTED_LEVELS will be executed by a
single thread. The value should be a positive integer.
The default is 4. The outermost parallel region has a
depth level of 1.

SUNW_MP_GUIDED_WEIGHT
environment variable

SUNW_MP_GUIDED_WEIGHT sets the weighting value
used by libmtsk for loops with the GUIDED schedule.
libmtsk uses the following formula to compute the
chunk sizes for GUIDED loops:
chunk_size=num_unassigned_iterations/(weight*num_threa
ds)
where num_unassigned_iterations is the number of
iterations in the loop that have not yet been assigned to
any thread, weight is a floating-point constant (default
2.0 in this release, 1.0 previously), and num_threads is
the number of threads used to execute the loop. The
value specified for SUNW_MP_GUIDED_WEIGHT must be
a positive, non-zero floating-point constant. libmtsk
will use that value as weight in the GUIDED chunk size
calculation.

TABLE 1-5 OpenMP API New Features (Continued)

Feature Description
24 What’s New • January 2005

Sun Performance Library

The 64-bit x86 version of Sun Performance Library is functionally identical to the
SPARC v9 version, with the following exceptions:

■ Quad-precision routines (dqdoti, dqdota) are not available.

■ Interval BLAS routines are not available.

■ Routines with 64-bit integer parameters are not available. For example, DAXPY()
is available, but DAXPY_64() is not.

To link with the high performance amd64 optimized library, use the -xarch=amd64
flag. For example:

f95 -xarch=amd64 example.f -xlic_lib=sunperf

TABLE 1-6 Sun Performance Library New Features

Feature Description

64-bit Solaris OS
support

This release of Sun Performance Library includes support for the
64-bit Solaris OS on x86 based systems.
Chapter 1 Sun Studio 10 New Features and Enhancements 25

dmake

TABLE 1-7 dmake New Features

Feature Description

New
DMAKE_OUTPUT_MODE
environment variable

A new environment variable or makefile macro,
DMAKE_OUTPUT_MODE, allows the format of the log file to be
changed. By default, or when DMAKE_OUTPUT_MODE is set to
TXT1, dmake prints additional lines of system information to the
log file, and commands with output are repeated. When
DMAKE_OUTPUT_MODE is set to TXT2, the system information is
omitted and commands are never repeated. For details, refer to
the ENVIRONMENT/MACROS section of the dmake(1) man page.
(Note that the environment variable is incorrectly described in the
man page; the correct values for DMAKE_OUTPUT_MODE are TXT1
and TXT2.)

Unix2003 compliance You can force Unix2003 compliance by setting
DMAKE_COMPAT_MODE=POSIX.

Grid engine support Specify grid engine support by setting DMAKE_MODE=grid.

Control of system
overloading

Control system overloading with DMAKE_ADJUST_MAX_JOBS.

Improvements to
memory usage

Improvements to memory usage are included in this release.
26 What’s New • January 2005

Performance Analysis Tools
TABLE 1-8 Performance Analysis Tools New Features

Feature Description

Changes to
experiment format

Changes have been made to the experiment format. The log now has
an entry that gives the size of the targets in bits. Also, the version
has changed from 9.1 to 9.2, so new experiments are not readable by
older tools, but older experiments are readable using Sun Studio 10
tools.

er_kernel utility A new er_kernel utility is now available on the Solaris 10 OS only.
DTrace permissions are required to use this er_kernel utility.

Increased precision
for performance
metrics

The precision for percentage metrics in the Performance Analyzer
and the er_print utility has increased from one to two decimal
places.

Direct editing of the
experiment Notes
file

Direct editing of the experiment Notes file has been added to the
Performance Analyzer.

New options to
display function
names

New options to display function names are now available in the
Performance Analyzer and er_print command.

Enhanced metrics
selection

Metrics selection has been enhanced in the Performance Analyzer.
You can select or clear the display of all metrics at once.

Collector GUI
changes

The menu used for following descendants has been moved to the
Collect Experiment tab. In addition to the on and off options, the
menu now supports the all option and extended hardware counter
overflow profiling features.

Enhancements to
hardware counter
overflow profiling

Hardware counter overflow profiling has been enhanced to work
with larger numbers of processors, including x86-based processors.
The enhancement is available using the collect -h command, the
collector hwprofile command in dbx, and the Performance
Analyzer GUI.

New appendfile
option

The appendfile option has been added to the er_print utility.
This option allows output from the er_print utility to be appended
to the end of an existing file.

Change in default
behavior of er_src
utility

The default behavior of the er_src utility has changed to be the
same behavior as the following command: er_src -source all
-1 object.

J2SE technology
location

The Performance Analyzer and collect utility now use the default
location of the J2SE technology where the product installer has
installed it.
Chapter 1 Sun Studio 10 New Features and Enhancements 27

New collect -J
java_args option

The collect -J java_args option provides a means of passing
flag arguments to the Java installation being used for profiling.

Sampling behavior
changes during
pause and resume

Sample data is generated prior to a pause and following a resume,
but not when the collector is paused.

Pseudo function for
JVM functions

The name of the pseudo function for Java Virtual Machine (JVM)*
functions in Java Mode has been changed from <JVM-Overhead> to
<JVM-System>.

<Unknown>
subtypes

The names of the <Unknown> subtypes of Java functions has been
changed to be more comprehensible.

.er.rc file paths The paths of processed .er.rc files are now displayed in the
Error/Warning Logs window for the Performance Analyzer and the
stderr for the er_print and er_src utilities.

JDK_1_4_2_HOME
environment
variable

The environment variable JDK_1_4_2_HOME, which used to define
the Java path to be used for data collection, is now obsolete.

Heap profiling The heap profiling for Java programs is now obsolete since it will
not be supported in JVM 1.5.

Extended options
for collect -j

The collect utility will accept the values on or off and also a path
to the Java installation to use for profiling.

* The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform.

TABLE 1-8 Performance Analysis Tools New Features (Continued)

Feature Description
28 What’s New • January 2005

Integrated Development Environment
(IDE)

Documentation
See the Latest News page on the developer portal at
http://developers.sun.com/prodtech/cc/support_index.html for
information that updates the Sun Studio 10 documentation.

TABLE 1-9 IDE New Features

Feature Description

Script execution
capability

You can now execute scripts directly from the IDE.

ss_attach on Linux
operating system

The ss_attach feature is now available in Sun Studio software
running on the Linux operating system
Chapter 1 Sun Studio 10 New Features and Enhancements 29

http://developers.sun.com/prodtech/cc/support_index.html

30 What’s New • January 2005

CHAPTER 2

Sun Studio 9 New Features and
Enhancements

Sun™ Studio 9 replaces the Sun™ Studio 8. New features in the Sun Studio 9 release
include updates to the following compilers, libraries, and tools:

■ C Compiler
■ C++ Compiler
■ Fortran Compiler
■ Sun Performance Library
■ Distributed make utility, dmake
■ dbx Command-Line Debugger
■ Performance Analysis Tools
■ Integrated Development Environment (IDE)
■ Documentation

In most sections, there is a table that lists the new features of that component. The
table has two columns, where the left-hand column provides a short description of
the feature, and the right-hand column has a longer description.

Note – To find the Sun Studio 9 documentation described in this chapter, see the
documentation index installed with the product software at
/opt/SUNWspro/docs/index.html. If your software is not installed in the /opt
directory, contact your system administrator for the equivalent path on your system
or network.
31

C Compiler
This section lists the new features of the C compiler for this release. The new
features are organized into the following tables:

■ TABLE 2-1 General Enhancements
■ TABLE 2-2 Enhanced Hardware Platform Support
■ TABLE 2-3 Improved Performance and Optimization Options
■ TABLE 2-4 New Security Checks through the Lint utility

For more information about the specific compiler options referenced in this section,
see the C User’s Guide or the cc(1) man page.

TABLE 2-1 lists the general enhancements of the C compiler.

TABLE 2-1 General Enhancements of the C Compiler

Feature Description

Implementation of
additional C99 features

This release adds support for the following ISO/IEC 9899:1999
(referred to as C99 in this document) features. The following list
only details the C99 features implemented in this release, which
is a subset of all the implemented C99 features. See the C User’s
Guide for a complete listing of all C99 features implemented over
the past and current releases of the C compiler. The sub-section
number of the C99 standard is listed for each new item supported
in this Sun Studio 9 release.
• 5.2.4.2.2: Support for the FLT_EVAL_METHOD macro. This

macro, and a new -flteval compile option, determines
whether the compiler evaluates floating point expressions as
long doubles or whether they are evaluated based on the
combination of types and constants in the expression.

• 6.4.3: Support for four-digit and eight-digit Universal Character
Names (UCN), which can be used in identifiers, character
constants, and string literals to designate characters that are not
in the C basic character set. The UCN \Unnnnnnnn designates
the character whose eight-digit short identifier (as specified by
ISO/IEC 10646 is nnnnnnnn. Similarly, the universal character
name \unnnn designates the character whose four-digit short
identifier is nnnn (and whose eight-digit short identifier is
0000nnnn.

• 6.7.4: Support for inline functions and extern inline functions
• 6.7.8: Support for designated initializers, which provide a

method for initializing sparse arrays and structures, common
in numerical and systems programming.
32 What’s New • January 2005

Improved
compatibility with old
binaries through the
new -features compile
option

You can now link old C and C++ binaries (pre C/C++ 5.6) with
new C and C++ binaries with no change of behavior for the old
binaries. Use the -features=no%extinl compile option when you
want compatibility between new binaries and old C and C++
binaries that contain extern inline functions.

To get standard-conforming behavior, old code must be
recompiled using the current compiler.

Larger default stack
size for slave threads

The default stack size for slave threads is now larger. All slave
threads have the same stack size, which is four megabytes for 32-
bit applications and eight megabytes for 64-bit applications by
default. The size is set with the STACKSIZE environment
variable.

Improved -xprofile
(SPARC®)

The -xprofile option offers the following improvements:
• Support for profiling shared libraries
• Thread-safe profile collection using -xprofile=collect -mt
• Improved support for profiling multiple programs or shared

libraries in a single profile directory
With -xprofile=use, the compiler can now find profile data in
profile directories that contain data for multiple object files with
non unique basenames. For cases where the compiler is unable to
find an object file’s profile data, the compiler provides a new
option -xprofile_pathmap=collect-prefix: use-prefix.

Support for UTF-16
string literals: -xustr

Specify -xustr=ascii_utf16_ushort if you need to support
an internationalized application that uses ISO10646 UTF-16 string
literals. In other words, use this option if your code contains a
string literal composed of 16-bit characters. Without this option,
the compiler neither produces nor recognizes 16-bit character
string literals. This option enables recognition of the
U”ASCII_string” string literals as an array of type unsigned short.
Since such strings are not yet part of any standard, this option
enables recognition of non-standard C.

Automatically
generated precompiled
headers

This release of the C compiler expands the precompiled header
facility to include an automatic capability on the part of the
compiler to generate the precompiled header file. You still have
the option to manually generate the precompiled header file, but
if you are interested in the new capability of the compiler, see the
explanation for the -xpch option in the cc(1) manpage for more
information. See also the CCadmin(1) manpage.

TABLE 2-1 General Enhancements of the C Compiler (Continued)

Feature Description
Chapter 2 Sun Studio 9 New Features and Enhancements 33

TABLE 2-2 lists the new features of the C compiler that support faster compilation.

TABLE 2-2 Enhanced Hardware Platform Support

Feature Description

More flags to
support SPARC®
platforms

The -xchip and -xtarget options now support ultra3i and ultra4
as values so you can build applications that are optimized for the
UltraSPARC IIIi and UltraSPARC IV processors.

More flags to
support x86
platforms

The C compiler supports new flags for -xarch, -xtarget, and
-xchip compile options for code that will run on x86 platforms.
These new flags are designed to take advantage of Pentium 3 and
Pentium 4 chips in combination with Solaris™ software support for
sse and sse2 instructions on the x86 platform. The new flags are as
follows:
• -xchip=pentium3 optimizes for Pentium 3 style processor
• -xchip=pentium4 optimizes for Pentium 4 style processor
• -xarch=sse adds the sse instruction set to the pentium_pro

instruction set architecture
• -xarch=sse2 adds the sse2 instruction set to those permitted by

sse
• -xtarget=pentium3 sets -xarch=sse, -xchip=pentium3, and -

xcache=16/32/4:256/32/4
• -xtarget=pentium4 sets -xarch=sse2, -xchip=pentium4, and -

xcache=8/64/4:256/128/8
You can determine which combination of options is appropriate for
your compilation by following these guidelines:
• If you are building an application to run on a Pentium 3 or

Pentium 4 machine with Solaris 9 update 6 or later, compile with
-xtarget=pentium3 or -xtarget=pentium4, as appropriate.

• If you are building an application to run on a Pentium 3 or
Pentium 4 machine with Solaris 9 update 5 or earlier, set -xarch=
pentium_pro (not pentium3 or pentium4 as you might expect)
because the Solaris 9 update 5 or earlier operating systems do not
support sse and sse2 instructions. Set -xchip and -xcache to the
same values that are used when
-xtarget=pentium3 or -xtarget=pentium4, depending on
the target machine.

• If you are building on the target machine, specifying -fast,
-xarch=native, or -xtarget=native will automatically
expand to the appropriate -xchip, -xarch, and -xtarget flag
settings described above.
34 What’s New • January 2005

TABLE 2-3 lists the new features of the C compiler that support improved
performance.

TABLE 2-3 Improved Performance and Optimization Options

Feature Description

New defaults
and expansions
for compiler
options

The defaults for the following compile options have changed:
• -xarch on SPARC® platforms: v8plus. The new default yields

higher run-time performance for nearly all machines in current
use. However, applications that are intended for deployment on
pre-UltraSPARC computers no longer execute using the default
option; compile with -xarch=v8 to ensure that the applications
execute on pre-UltraSPARC computers.

• -xcode on SPARC® platforms: abs44 for v9 and abs32 for v8.
• -xmemalign on SPARC® platforms: 8i for v8 and 8s for v9
• -xprefetch on SPARC® platforms: auto,explicit. This

change adversely affects applications that have essentially non-
linear memory-access patterns. To disable the change, specify
-xprefetch=no%auto,no%explicit.

The expansions for the following option and macro have changed:
• The -fast option now includes the new option -xlibmopt in its

expansion (see below).
• The -O macro now expands to -xO3 instead of -xO2. The change

in default yields higher run-time performance. However, -x03
may be inappropriate for programs that rely on all variables being
automatically considered volatile. Typical programs that might
rely on this assumption are device drivers and older multi-
threaded applications that implement their own synchronization
primitives. The work-around is to compile with -xO2 instead of
-O.

New
optimization
compile options

The new compile options are as follows:
• -xlibmopt and -xnolibmopt: The -xlibmopt option enables

the compiler to use a library of optimized math routines. You
must use default rounding mode by specifying
-fround=nearest when using the -xlibmopt option. The math
routine library is optimized for performance and usually
generates faster code. The results may be slightly different from
those produced by the normal math library. If so, they usually
differ in the last bit.

You can explicitly turn off this library by specifying the new
-xnolibmopt option on the command line.

• -xipo_archive: Use the new -xipo_archive option to enable
the compiler to optimize object files passed to the linker with
object files that were compiled with -xipo and that reside in the
archive library (.a) before producing an executable. Any object
files contained in the library that are optimized during the
compilation are replaced with their optimized version.
Chapter 2 Sun Studio 9 New Features and Enhancements 35

New
optimization
compile options
(continued)

• -xprefetch_auto_type: Use the new
-xprefetch_auto_type option to generate indirect prefetches
for the loops indicated by the option -xprefetch_level=[1|2|3] in
the same fashion that the prefetches for direct memory accesses
are generated.

Options such as -xdepend, -xrestrict, and -xalias_level
can improve the optimization benefits of
-xprefetch_auto_type. They affect the aggressiveness of
computing the indirect prefetch candidates and therefore the
aggressiveness of the automatic indirect prefetch insertion,
because they help produce better disambiguation of memory-alias
information.

TABLE 2-3 Improved Performance and Optimization Options (Continued)

Feature Description
36 What’s New • January 2005

TABLE 2-4 describes the new security-checking feature included in the lint utility.

TABLE 2-4 New Security Checks Through the Lint Utility

Feature Description

New
-errsecurity
option for lint

The Sun Studio 9 release of the lint utility features a new security-
checking facility. You can use the new -errsecurity option before
compilation to check your code for security liabilities.

 -errsecurity[={core | standard | extended | %none}]

lint -errsecurity=core

Checks for source code constructs that are almost always either
unsafe or difficult to verify. Checks at this level include:
• Use of variable format strings with the printf() and scanf()

family of functions
• Use of unbounded string (%s) formats in scanf() functions
• Use of functions with no safe usage: gets(), cftime(),
ascftime(), creat()

• Incorrect use of open() with O_CREAT
Consider source code that produces warnings at this level to be a
bug. The source code in question should be changed. In all cases,
straightforward safer alternatives are available.

lint -errsecurity=standard

Includes all checks from the core level plus constructs that may be
safe, but have better alternatives available. This level is
recommended when checking newly-written code. Additional
checks at this level include:
• Use of string copy functions other than strlcpy()
• Use of weak random number functions
• Use of unsafe functions to generate temporary files
• Use of fopen() to create files
• Use of functions that invoke the shell
Replace source code that produces warnings at this level with new
or significantly modified code. Balance addressing these warnings in
legacy code against the risks of destabilizing the application.
Chapter 2 Sun Studio 9 New Features and Enhancements 37

C++ Compiler
This section lists the new features of the C++ compiler for this release. The new
features are organized into the following tables:

■ TABLE 2-5 General Enhancements
■ TABLE 2-6 Enhanced Hardware Platform Support
■ TABLE 2-7 New and Enhanced Optimization Options

For more information about the specific compiler options referenced in this section,
see the C++ User’s Guide or the CC(1) man page.

New
-errsecurity
option for lint
(continued)

lint -errsecurity=extended

Contains the most complete set of checks, including everything from
the Core and Standard levels. In addition, a number of warnings are
generated about constructs that may be unsafe in some situations.
The checks at this level are useful as an aid in reviewing code, but
need not be used as a standard with which acceptable source code
must comply. Additional checks at this level include:
• Calls to getc() or fgetc() inside a loop
• Use of functions prone to pathname race conditions
• Use of the exec() family of functions
• Race conditions between stat() and other functions
Review source code that produces warnings at this level to
determine if the potential security issue is present.
If you do not specify a setting for -errsecurity, the compiler sets
it to -errsecury=%none. If you do specify -errsecurity, but not
an argument, the compiler sets it to -errsecurity=standard.

TABLE 2-4 New Security Checks Through the Lint Utility (Continued)

Feature Description
38 What’s New • January 2005

TABLE 2-5 lists the general enhancements of the C++ compiler (version 5.6).

TABLE 2-5 General Enhancements of the C++ Compiler

Feature Description

Externally linked inline
functions

The C++ standard states that inline functions have external
linkage, like non-inline functions, unless declared static. C++ 5.6,
for the first time, gives inline functions external linkage by
default. If an inline function must be generated out of line (for
example, if its address is needed), only one copy is linked into the
final program. Previously, each object file that needed a copy had
its own copy with local linkage.

This implementation of extern inline functions is compatible
with binary files created by earlier compiler versions, in the sense
that program behavior is no less standard-conforming than
before. The old binaries might have multiple local copies of inline
functions, but new code will have at most one copy of an extern
inline function.

This implementation of extern inline functions is compatible
with the C99 version of inline functions using the C 5.6 compiler
that is included in this release. That is, following the C and C++
rules for extern inline functions, the same inline function can be
defined in both C and C++ files, and only one copy of the
external function will appear in the final program.

Enhanced UTF-16
support

Version 5.5 of the C++ compiler introduced support for UTF-16
string literals. This release expands support for UTF-16 character
literals that use the syntax U’x’, which is analogous to the U"x"
syntax for strings. The same -xustr option is required to enable
recognition of UTF-16 character literals.

This release also supports numeric escapes in UTF-16 character
and string literals, which are analogous to numeric escapes in
ordinary character literals and strings. For example:

 U"ab\123ef" // octal representation of character
 U’\x456’ // hexadecimal representation of character

Refer to the description of -xustr in the C++ manpage CC(1) for
details.
Chapter 2 Sun Studio 9 New Features and Enhancements 39

TABLE 2-6 lists the new features of the C++ compiler that support faster compilation.

Automatically
generated precompiled
header files

This release of the C++ compiler expands the precompiled header
facility to include an automatic capability on the part of the
compiler to generate the precompiled header file. You still have
the option to manually generate the precompiled header file, but
if you are interested in the new capability of the compiler, see the
explanation for the -xpch option in the CC(1) manpage for more
information. See also the CCadmin(1) manpage.

TABLE 2-6 Enhanced Hardware Platform Support

Features Description

More flags to
support SPARC®
platforms

The -xchip and -xtarget options now support ultra3i and
ultra4 as values so you can build applications that are optimized
for the UltraSPARC IIIi and UltraSPARC IV processors.

More flags to support
x86 platforms

The C compiler supports new flags for -xarch, -xtarget, and
-xchip compile options for code that will run on x86 platforms.
These new flags are designed to take advantage of Pentium 3 and
Pentium 4 chips in combination with Solaris™ software support
for sse and sse2 instructions on the x86 platform. The new flags
are as follows:
• -xchip=pentium3 optimizes for Pentium 3 style processor
• -xchip=pentium4 optimizes for Pentium 4 style processor
• -xarch=sse adds the sse instruction set to the pentium_pro

instruction set architecture
• -xarch=sse2 adds the sse2 instruction set to those permitted

by sse
• -xtarget=pentium3 sets -xarch=sse, -xchip=pentium3, and -

xcache=16/32/4:256/32/4
• -xtarget=pentium4 sets -xarch=sse2, -xchip=pentium4, and

-xcache=8/64/4:256/128/8

TABLE 2-5 General Enhancements of the C++ Compiler (Continued)

Feature Description
40 What’s New • January 2005

TABLE 2-7 lists the new features of the C++ compiler that support easier porting:

More flags to support
x86 platforms
(continued)

You can determine which combination of options is appropriate
for your compilation by following these guidelines:
• If you are building an application to run on a Pentium 3 or

Pentium 4 machine with Solaris 9 update 6, compile with -
xtarget=pentium3 or -xtarget=pentium4, as appropriate.

• If you are building an application to run on a Pentium 3 or
Pentium 4 machine with Solaris 9 update 5 or earlier, set -
xarch=pentium_pro (not pentium3 or pentium4 as you
might expect) because the Solaris 9 update 5 or earlier
operating systems do not support sse and sse2 instructions. Set
-xchip and -xcache to the same values that are used when
-xtarget=pentium3 or -xtarget=pentium4, depending on
the target machine.

• If you are building on the target machine, specifying -fast,
-xarch=native, or -xtarget=native will automatically
expand to the appropriate -xchip, -xarch, and -xtarget
flag settings described above.

TABLE 2-7 New and Enhanced Optimization Options

Feature Description

New defaults
and expansions
for compiler
options

The defaults for the following compile options have changed:
• -xarch on SPARC® platforms: v8plus. The new default yields

higher run-time performance for nearly all machines in current
use. However, applications that are intended for deployment on
pre-UltraSPARC computers no longer execute using the default
option; compile with -xarch=v8 to ensure that the applications
execute on pre-UltraSPARC computers.

• -xcode on SPARC® platforms: abs44 for v9 and abs32 for v8.
• -xmemalign on SPARC® platforms: 8i for v8 and 8s for v9
• -xprefetch on SPARC® platforms: auto,explicit. This

change adversely affects applications that have essentially non-
linear memory-access patterns. To disable the change, specify
-xprefetch=no%auto,no%explicit.

The expansions for the following macro has changed:
• The -O macro now expands to -xO3 instead of -xO2. The change

in default yields higher run-time performance. However, -x03
may be inappropriate for programs that rely on all variables being
automatically considered volatile. Typical programs that might
rely on this assumption are device drivers and older multi-
threaded applications that implement their own synchronization
primitives. The work-around is to compile with -xO2 instead of
-O.

TABLE 2-6 Enhanced Hardware Platform Support (Continued)

Features Description
Chapter 2 Sun Studio 9 New Features and Enhancements 41

New loop
optimization
compile options

The C++ compiler now supports the following options for
optimization of loops whose computations can be parallelized.
These options have an effect only if you specify an optimization
level of -xO3 or higher.
• -xautopar
• -xvector
• -xdepend
Refer to the description of -xautopar, -xvector, and -xdepend,
in the C++ manpage CC(1) for details.

New function-
specific
optimization-level
control

You can combine the #pragma opt directive with the command-
line option -xmaxopt to specify the level of optimization the
compiler applies to individual functions. The combination is useful
when you need to reduce the optimization level for specific
functions, for example to avoid a code enhancement like elimination
of stack frames, or to increase optimization level for specific
functions.

Prefetch
optimization for
loops

-xprefetch_auto_type: Use the new -xprefetch_auto_type
option to generate indirect prefetches for the loops indicated by the
option -xprefetch_level=[1|2|3] in the same fashion that the
prefetches for direct memory accesses are generated.

Options such as -xdepend, -xrestrict, and -xalias_level can
improve the optimization benefits of -xprefetch_auto_type.
They affect the aggressiveness of computing the indirect prefetch
candidates and therefore the aggressiveness of the automatic
indirect prefetch insertion, because they help produce better
disambiguation of memory-alias information

Restricted pointers
optimization

C++ does not support the restrict keyword introduced in C99.
But the C++ compiler now accepts the C compiler option
-xrestrict.

This option makes claims about functions in the compilation to the
effect that function parameters of pointer type do not refer to the
same or overlapping objects. This option is somewhat more
dangerous for C++ than for C, because the claim is not true for some
functions in the C++ standard library.

TABLE 2-7 New and Enhanced Optimization Options (Continued)

Feature Description
42 What’s New • January 2005

Fortran Compiler
TABLE 2-8 lists the new and enhanced features of the Fortran compiler for this release,
which include the following:

■ New Compile Capability for f95 on Solaris™ OS x86 Platforms
■ Improved Runtime Performance
■ New Fortran 2003 command-line intrinsics
■ Changed f95 compiler command-line option defaults
■ Change in Default SPARC® Architecture
■ Enhancements to OpenMP Library
■ New f95 compiler command-line options
Chapter 2 Sun Studio 9 New Features and Enhancements 43

For more information about the specific compiler options referenced in this section,
see the Fortran User’s Guide or the f95(1) man page.

TABLE 2-8 Fortran Compiler New and Enhanced Features

Feature Description

New Compile
Capability for f95 on
Solaris OS x86
Platforms

Compile with -xtarget values generic, native, 386, 486,
pentium, pentium_pro, pentium3, or pentium4, to generate
executables on Solaris x86 platforms. The default on x86 platforms
is -xtarget=generic
The following f95 features are not yet implemented on x86
platforms and are only available on SPARC® platforms:
• Interval Arithmetic (compiler options -xia and -xinterval)
• Quad (128-bit) Arithmetic
• IEEE Intrinsic modules IEEE_EXCEPTIONS,

IEEE_ARITHMETIC, and IEEE_FEATURES
• The sun_io_handler module
• Parallelization options such as -autopar, -parallel,
-explitipar, and openmp.

The following f95 command-line options are only available on x86
platforms and not on SPARC® platforms:
• -fprecision, -fstore, -nofstore
The following f95 command-line options are only available on
SPARC® platforms and not on x86 platforms:
• -xcode, -xmemalign, -xprefetch, -xcheck, -xia,
-xinterval, -xipo, -xjobs, -xlang, -xlinkopt, -
xloopinfo, -xpagesize, -xprofile_ircache,
-xreduction, -xvector, -depend, -openmp, -parallel, e-
-autopar, -explicitpar, -vpara, -XlistMP

Also, on x86 platforms the -fast option expands to include the
added option, -nofstore.
44 What’s New • January 2005

New Compile
Capability for f95 on
Solaris OS x86
Platforms (continued)

The Fortran compiler supports new flags for -xarch, -xtarget,
and -xchip compile options for code that will run on x86
platforms. These new flags are designed to take advantage of
Pentium 3 and Pentium 4 chips in combination with Solaris™
software support for sse and sse2 instructions on the x86
platform. The new flags are as follows:
• -xchip=pentium3 optimizes for Pentium 3 style processor
• -xchip=pentium4 optimizes for Pentium 4 style processor
• -xarch=sse adds the sse instruction set to the pentium_pro

instruction set architecture
• -xarch=sse2 adds the sse2 instruction set to those permitted

by sse
• -xtarget=pentium3 sets -xarch=sse, -xchip=pentium3, and -

xcache=16/32/4:256/32/4
• -xtarget=pentium4 sets -xarch=sse2, -xchip=pentium4, and -

xcache=8/64/4:256/128/8
• -fns is enabled only on pentium3 or pentium4 processors.

When -xarch is not sse or sse2, -fns=yes is ignored.
Otherwise, for SSE and SSE2 floating-point instructions,
-fns=yes implies that underflows will be flushed to zero (FTZ)
and that denormalized operands are treated as zero (DAZ).
-fns=yes does not affect traditional x86 floating-point
instructions. For example, floating-point operations on long
double operands or results utilize traditional x86 floating-point
instructions and these would not be affected by -fns=yes.

SPECIAL x86 NOTE:
Programs compiled with -xarch=sse or -xarch=sse2 to run on
Solaris™ x86 SSE/SSE2 platforms must be run only on platforms
that are SSE/SSE2 enabled. Running such programs on platforms
that are not SSE/SSE2-enabled could result in segmentation faults
or incorrect results occurring without any explicit warning
messages. Patches to the OS and compilers to prevent execution of
SSE/SSE2-compiled binaries on platforms not SSE/SSE2-enabled
could be made available at a later date. SSE/SSE2-enabled x86
platforms include Solaris 9 update 6 running on a Pentium 4
compatible processor.
This warning extends also to programs that employ .il inline
assembly language functions or __asm() assembler code that
utilize SSE/SSE2 instructions.
Contact your system administrator to determine if the target
runtime platform is SSE/SSE2-enabled before attempting to run
binaries compiled for these platforms.

TABLE 2-8 Fortran Compiler New and Enhanced Features (Continued)

Feature Description
Chapter 2 Sun Studio 9 New Features and Enhancements 45

Improved runtime
performance

Runtime performance for most applications should improve
significantly with this release. For best results, compile with high
optimization levels -xO4 or -xO5. At these levels the compiler
may now inline contained procedures, and those with assumed-
shape, allocatable, or pointer arguments.

New Fortran 2003
command-line
intrinsics

The Fortran 2003 draft standard introduces three new intrinsics for
processing command-line arguments and environment variables.
These have been implemented in this release of the f95 compiler.
The new intrinsics are:
• GET_COMMAND(command, length, status)

Returns in command the entire command line that invoked the
program.

• GET_COMMAND_ARGUMENT(number, value, length, status)
Returns a command-line argument in value.

• GET_ENVIRONMENT_VARIABLE(name, value, length, status,
trim_name)
Returns the value of an environment variable.

Changed command-
line option defaults

The following command-line option defaults have changed with
this release of f95.
• The default for -xprefetch is
-xprefetch=no%auto,explicit.

• The default for -xmemalign is -xmemalign=8i, except with
-xarch=v9 and v9a where the default is -xmemalign=8f.

Change in Default
SPARC® Architecture

The default SPARC® architecture is no longer V7. Support for
-xarch=v7 is limited in this Sun Studio 9 release. The new
default is V8PLUS (UltraSPARC). Compiling with -xarch=v7 is
treated as -xarch=v8 because the Solaris 8 OS only supports
-xarch=v8 or better.

Enhancements to
OpenMP Library

The OpenMP library has been enhanced as follows:
• The maximum number of threads for OMP_NUM_THREADS and

the multitasking library has increased from 128 to 256.
• This release of the Fortran 95 compiler’s implementation of the

OpenMP API for shared-memory parallel programming features
automatic scoping of variables in parallel regions. See the
OpenMP API User’s Guide for details. (OpenMP is only
implemented on SPARC® platforms for this release.)

TABLE 2-8 Fortran Compiler New and Enhanced Features (Continued)

Feature Description
46 What’s New • January 2005

New f95 compiler
command-line
options

 The following f95 command-line options are new in this release.
See the f95(1) man page for details.
• -xipo_archive={ none | readonly | writeback }

Allow crossfile optimization to include archive (.a) libraries.
(SPARC® only)

• -xipo_archive=none
No processing of archive files.

• -xipo_archive=readonly
The compiler optimizes object files passed to the linker with
object files compiled with -xipo that reside in the archive library
(.a) before producing an executable.

• -xipo_archive=writeback
The compiler optimizes object files passed to the linker with
object files compiled with -xipo that reside in the archive library
(.a) before producing an executable. Any object filed contained
in the library that were optimized during the compilation are
replaced with their optimized version.
If you do not specify a setting for -xipo, the compiler sets it to
-xipo_archive=none.

• -xprefetch_auto_type=[no%]indirect_array_access
Generate indirect prefetches for a data arrays accessed indirectly.
(SPARC® only)

• [no%]indirect_array_access
Does [Does not] generate indirect prefetches for the loops
indicated by the option -xprefetch_level=[1|2|3] in the
same fashion the prefetches for direct memory accesses are
generated.
If you do not specify a setting for -xprefetch_auto_type, the
compiler sets it to
-xprefetch_auto_type=[no%]indirect_array_access.
The -xprefetch options are only available on SPARC®
platforms
Options such as -xdepend, -xrestrict, and -xalias_level
can affect the aggressiveness of computing the indirect prefetch
candidates and therefore the aggressiveness of the automatic
indirect prefetch insertion due to better disambiguation of
memory-alias information.

• -xprofile_pathmap=collect_prefix:use_prefix
Set path mapping for profile data files. Use the
-xprofile_pathmap option with the -xprofile=use option
when profiling into a directory that is not the directory used
when previously compiling with -xprofile=collect.

TABLE 2-8 Fortran Compiler New and Enhanced Features (Continued)

Feature Description
Chapter 2 Sun Studio 9 New Features and Enhancements 47

Command-Line Debugger dbx
The following new features have been added to the Sun Studio 9 release of dbx:

■ Support for gcc and g++ compilers on Linux platforms
■ Support for Fortran on Solaris™ OS, x86 platform edition

Interval Arithmetic
There are no new interval arithmetic features in this release.

Sun Performance Library
Sun Performance Library™ is a set of optimized, high-speed mathematical
subroutines for solving linear algebra problems and other numerically intensive
problems. Sun Performance Library is based on a collection of public domain
applications available from Netlib (at http://www.netlib.org). These routines
have been enhanced and bundled as the Sun Performance Library.
48 What’s New • January 2005

http://www.netlib.org

TABLE 2-9 lists the new features in this release of the Sun Performance Library. See
the Sun Performance Library User’s Guide and the section 3p man pages for more
information.

dmake
dmake is a command-line tool, compatible with make(1). dmake can build targets in
distributed, parallel, or serial mode. If you use the standard make(1) utility, the
transition to dmake requires little if any alteration to your makefiles. dmake is a
superset of the make utility. With nested makes, if a top-level makefile calls make,
you need to use $(MAKE). dmake parses the makefiles and determines which targets

TABLE 2-9 Sun Performance Library New Features

Feature Description

Sun Performance Library
released for x86

This release of Sun Performance Library includes libraries
for the Solaris/x86 platform. Two versions are available:
• A high-performance version utilizing SSE2 instructions

for systems that support that instruction set.
• A compatibility version suitable for systems that do not

support SSE2.
The x86 version of Sun Performance Library is functionally
identical to the SPARC® version, with the following
exceptions:
• Quad-precision routines (dqdoti, dqdota) are not

available
• Interval BLAS routines are not available
• The x86 libraries are single-threaded
• Only 32-bit addressing is available
• The Portable Library Performance feature is not available

on Solaris/x86
The following versions of Solaris/x86 are required for SSE2
support:
• Solaris 10 build 48 (or later)
• Solaris 9 build 6 update 5 (or later)
To link with the high performance SSE2 optimized library,
use the -xarch=sse2 flag. For example:
f95 -xarch=sse2 example.f -xlic_lib=sunperf

 or
cc -xarch=sse2 example.c -xlic_lib=sunperf
Chapter 2 Sun Studio 9 New Features and Enhancements 49

can be built concurrently and distributes the build of those targets over a number of
hosts set by you. See the dmake(1) man page for additional details. TABLE 2-10 lists
the new features of dmake in the Sun Studio 9 release.

Performance Analysis Tools
TABLE 2-11 lists the new data collection and presentation features in the Sun Studio 9
release of the performance analysis tools. For more information, see the following
man pages:

■ analyzer(1)
■ collect(1)
■ collector(1)
■ er_print(1)
■ er_src(1)
■ libcollector(3)

TABLE 2-11 lists the new and enhanced features in the Sun Studio 9 Performance
Analyzer.

TABLE 2-10 dmake New Features

Feature Description

Performance, reliability, and
usability improvements in
dmake for Solaris

The makefile parser is 10 times faster than the previous
version, and 3 times faster than GNU make. Builds run
faster and are more stable. The log file is also more readable.

Linux dmake
implementation

Full dmake functionality is implemented for Linux builds in
serial, parallel, and distributed modes. Consequently,
Solaris™ applications can be built on Linux without big
changes in makefiles. One build can be distributed to both
Linux and Solaris™ systems.
50 What’s New • January 2005

TABLE 2-11 Performance Analysis Tools New Features

Feature Description

New Linux distribution The Performance Analyzer is now available in Sun Studio 9
for Linux, in addition to Sun Studio 9 for Solaris™. The
following Linux operating systems are supported:
• Java™ Desktop System 1.0
• SuSE Linux Enterprise Server 8
• RedHat Enterprise Linux 3
The utilities available are the same on both operating
systems, except that er_kernel is not included in the Linux
distribution. The collect command is more restricted on
Linux. Only clock-based profiling and heap tracing are
available; for details, refer to the collect man page. Profiling
of multithreaded applications is possible under Linux, but
presently high data discrepancies are observed when
profiling under the RedHat version of the Linux operating
system.

Dataspace profiling Dataspace profiling is now possible for C programs targeted
to a SPARC® platform. A dataspace profile is a data
collection in which memory-related events, such as cache
misses, are reported against the data-object references that
cause the events rather than just the instructions where the
memory-related events occur.
The analysis of dataspace profiling information, can be
displayed on the command line or in the Analyzer GUI as
follows:
• The er_print command has three new options related to

dataspace profiling: data_objects, data_osingle,
and data_olayout

• The Analyzer now includes two new tabs related to
dataspace profiling, labelled "Data Objects" and "Data
Layout". These tabs will show automatically if a
dataspace profile is present in the experiment.
Chapter 2 Sun Studio 9 New Features and Enhancements 51

Descendant processes The recording of descendant processes has been enhanced
to include the ability to record all descendant processes, not
just processes created using the fork and exec commands
and their variants. To support the enhanced functionality,
the collect -F command now has a new option:
collect -F all.
Descendants processed by -F all but not by -F on, like
system calls, are named with the code letter "c".
The data for descendant processes can be explicitly selected
for display using the command-line utility er_print or in
the Analyzer GUI.
For more information, refer to the collect(1) man page.

Data collection output
redirection

The collect command has a new option, collect -O file,
which redirects all output from collect to the named file.
The command does not redirect the output from the
spawned target.

Enhanced Analyzer
command-line arguments

The analyzer command (launch script) now accepts double-
dash for long argument—in particular, --jdkhome and
--fontsize.

New packages for Analyzer
API shared libraries

The shared libraries for the Analyzer API have been put
into separate packages so that they can be distributed
independently and freely.

Notes file support for
collect command

The collect command has a new command-line option:
collect -C comment. The comment is added to the notes
file for the experiment. Up to 10 -C arguments may be
applied.

Notes in experiment
preview and experiment
header

Experiment preview and experiment header will show the
contents of any notes file in the experiment

Enhanced source and
disassembly displays

Annotated source and disassembly has improved handling
of code from alternate source contexts. Index lines, shown in
red italics, indicate where code is inserted from another file.
With the Source tab, clicking the mouse on an index line
will open the Source window in the alternate source file.

Enhanced er_src command The command-line utility er_src can now show a function
list, process Java .class files, and show source and
disassembly from alternate source contexts.

Java™ method signatures The Java™ long name format shows full method signatures
rather than just the function name alone.

Inclusion of mmap calls when
heap tracing

Calls to mmap are treated as memory allocations when heap
tracing.

TABLE 2-11 Performance Analysis Tools New Features (Continued)

Feature Description
52 What’s New • January 2005

Integrated Development Environment
(IDE)
The following new features have been added to the Sun Studio 9 release of the IDE:

■ A new ss_attach feature that lets you capture a program as it starts executing
and attach the dbx Debugger to begin debugging it immediately, rather than
attaching the Debugger after the process is running.

■ The Quick Browse combo box in the Source Editor that lets you navigate to a class
method, function, #define, or other element of a source file.

Documentation
This section describes Sun Studio 9 documentation new features.

■ The OpenMP API User’s Guide has been extended to include two new chapters.
Chapter 5 describes automatic data scoping with the Fortran 95 __AUTO clause.
Chapter 6 considers performance of OpenMP programs, and gives some general
recommendations on techniques for improving performance.

■ The C User’s Guide contains two new appendices: Appendix A, “Compiler Options
Grouped by Function”, and Appendix D, “C99 Implementation-Defined Information”.
The contents of Appendix A was at the beginning of the options reference chapter
but is now separated into an appendix to enhance its visibility.

■ The Performance Analyzer manual has a new chapter entitled “Understanding
Annotated Source and Disassembly Data”. The chapter describes the different
kinds of annotations, such as index lines, compiler commentary, special lines
(such as outline functions), and how to identify display differences between
annotations and original source.

■ A tutorial for the Performance Analyzer is available on the Sun developer’s
portal, http://developers.sun.com/prodtech/cc

■ The Sun WorkShop to Sun Studio Migration helpset has a new topic on file
comparison and file merging.

■ A new Compilers and Tools helpset covering the compilers and tools included in
the Sun Studio release. Each topic briefly describes a component and lists the
documentation for that component.
Chapter 2 Sun Studio 9 New Features and Enhancements 53

http://developers.sun.com/prodtech/cc

54 What’s New • January 2005

	What’s New
	Contents
	Before You Begin
	Sun Studio 10 New Features and Enhancements
	C Compiler
	C++ Compiler
	Examples of Template-Template Parameters
	Nested Class Access Rules

	Fortran Compiler
	Binary File Sharing Between Big-endian and Little-endian Platforms

	Command-line Debugger dbx
	OpenMP API
	Interval Arithmetic
	Sun Performance Library
	dmake
	Performance Analysis Tools
	Integrated Development Environment (IDE)
	Documentation

	Sun Studio 9 New Features and Enhancements
	C Compiler
	C++ Compiler
	Fortran Compiler
	Command-Line Debugger dbx
	Interval Arithmetic
	Sun Performance Library
	dmake
	Performance Analysis Tools
	Integrated Development Environment (IDE)
	Documentation

