»
2 Sun

microsystems

C User’s Guide

Sun™ ONE Studio 8

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, CA 95054 U.S.A.
650-960-1300

Part No. 817-0924-10
May 2003, Revision A

Send comments about this document to: docf eedback@un. com

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In
particular, and without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://ww. sun. cont pat ent s and one or more additional patents or pending patent applications in the U.S. and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and
decompilation. No part of the product or of this document may be reproduced in any form by any means without prior written authorization of
Sun and its licensors, if any.

Third-party software, including font technology;, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Forte, Java, Solaris, iPlanet, NetBeans, and docs.sun.com are trademarks or registered trademarks of Sun
Mlcrosystems Inc. in the U.S. and other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and
other countries.

Sunf 90/f 95 is derived in part from Cray CF90™, a product of Cray Inc.

I'i bdwar f and | i dr edbl ack are Copyright 2000 Silicon Graphics Inc. and are available under the GNU Lesser General Public License from
http://ww. sgi.com

Federal Acquisitions: Commercial Software—Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS I1S” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants a la technologie incorporée dans le produit qui est décrit dans ce
document. En particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains énumérés
ahttp://ww. sun. con pat ent s etun ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats - Unis et
dans les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, parquelque moyen que ce soit, sans
I'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il yen a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractéres, est protégé par un copyright et licencié par des
fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées des systemes Berkeley BSD licenciés par I’'Université de Californie. UNIX est une marque
déposée aux Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, Forte, Java, Solaris, iPlanet, NetBeans, et docs.sun.com sont des marques de fabrique ou des marques
déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou des marques déposées de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont basés sur une architecture développée par Sun
Microsystems, Inc.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-
Unis et dans d’autres pays.

Sunf 90/f 95 est deriveé d’une part de Cray CF90™, un produit de Cray Inc.

I'i bdwar f etl i dr edbl ack sont Copyright 2000 Silicon Graphics Inc., et sont disponible sur GNU General Public License a
http://ww. sgi.com

LA DOCUMENTATION EST FOURNIE “EN L'ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L'APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFACON.

K‘m

Adobe PostScript

Contents

Before You Begin xxxi

Typographic Conventions xxxii

Shell Prompts xxxiii

Accessing Compiler Collection Tools and Man Pages xxxiii
Accessing the Compilers and Tools xxxiii
Accessing the Man Pages xxxiv

Accessing Compiler Collection Documentation Xxxv
Documentation in Accessible Formats xxxvi
Related Compiler Collection Documentation xxxvi

Accessing Related Solaris Documentation xxxvii

Resources for Developers xxxvii

Contacting Sun Technical Support xxxviii

Sun Welcomes Your Comments xxxviii

Introduction to the C Compiler 1-1
1.1 Standards Conformance 1-1
1.2 CReadmeFile 1-1

1.3 Man Pages 1-2

1.4 New Features 1-3

1.4.1 General Enhancements 1-3

iv

1.5
1.6

1.4.2 Faster Compilation 1-4
1.4.3 Improved Performance 1-5
1.4.4 Easier Debugging 1-7
Organization of the Compiler 1-7

C-Related Programming Tools 1-9

2. C-Compiler Information Specific to Sun’s Implementation

2.1

2.2
2.3
2.4
2.5
2.6

2.7
2.8

Constants 2-1

2.1.1 Integral Constants 2-1

2.1.2 Character Constants 2-2

Linker Scoping Specifiers 2-3

Thread Local Storage Specifier 2-4
Floating Point, Nonstandard Mode 2-4
Labels as Values 2-5

| ong | ong Data Type 2-8

2.6.1 Printing | ong | ong Data Types 2-8
2.6.2 Usual Arithmetic Conversions 2-8
Assertions 2-9

Pragmas 2-10

2.8.1 align 2-10

2.8.2 does_not_read _global data 2-11
2.8.3 does_not_return 2-11

2.8.4 does_not write_global_data 2-12
2.8.5 error_messages 2-12

2.8.6 fini 2-12

2.8.7 hdrstop 2-13

2.8.8 ident 2-13

2.8.9 init 2-14

2.8.10 inline 2-14

C User’s Guide * May 2003

2-1

2.9

2.10
2.11
212

2.8.11
2.8.12
2.8.13
2.8.14
2.8.15
2.8.16
2.8.17
2.8.18
2.8.19
2.8.20
2.8.21
2.8.22
2.8.23
2.8.24
2.8.25

int_to_unsigned 2-14

MP serial_loop 2-15

MP serial_loop_nested 2-15
MP taskloop 2-15
nomemorydepend 2-15
no_side effect 2-15

opt 2-16

pack 2-16

pipeloop 2-17
rarely_called 2-18
redefine_extname 2-18
returns_new_memory 2-19
unknown_control_flow 2-20
unroll 2-20

weak 2-21

Predefined Names 2-22

_Restrict Keyword 2-23

__asmKeyword 2-23

Environment Variables 2-23

212.1
2.12.2
2.12.3
2.12.4
2.125
2.12.6
2.12.7
2.12.8
2.12.9

OWP_DYNAM C 2-23
OWP_NESTED 2-24

OVP_NUM THREADS 2-24
OWP_SCHEDULE 2-24

PARALLEL 2-24

SUN_PROFDATA 2-24
SUN_PROFDATA DIR 2-24

SUNPRO SB_| NI T_FI LE_NAME 2-24
SUNW MP_THR | DLE 2-25

Contents

2.12.10 TMPDI R 2-25
2.13 How to Specify Include Files 2-25
2.13.1 Using the - | - Option to Change the Search Algorithm 2-26

3. Parallelizing Sun C Code 3-1
3.1 Overview 3-1
3.1.1 Example of Use 3-1
3.2 Parallelizing for OpenMP 3-2
3.21 Handling OpenMP Runtime Warnings 3-2
3.3 Environment Variables 3-2
3.4 Data Dependence and Interference 3-5
3.4.1 Parallel Execution Model 3-7
3.4.2 Private Scalars and Private Arrays 3-8
3.43 Storeback 3-10
3.44 Reduction Variables 3-11
3.5 Speedups 3-11
3.5.1 Amdahl’s Law 3-12
3.6 Load Balance and Loop Scheduling 3-15
3.6.1 Static or Chunk Scheduling 3-16
3.6.2 Self Scheduling 3-16
3.6.3 Guided Self Scheduling 3-16
3.7 Loop Transformations 3-16
3.7.1 Loop Distribution 3-17
3.7.2 Loop Fusion 3-17
3.7.3 Loop Interchange 3-19
3.8 Aliasing and Parallelization 3-20
3.8.1 Array and Pointer References 3-20
3.8.2 Restricted Pointers 3-21
3.8.3 Explicit Parallelization and Pragmas 3-22

vi CUser's Guide « May 2003

Incremental Link Editor (i 1 d) 4-1

4.1
4.2
4.3
4.4
4.5
4.6

4.7

Introduction 4-1

Overview of Incremental Linking 4-1
HowtoUseild 4-2

How i | d Works 4-4

Whati | d Cannot Do 4-5

Reasons for Full Relinks 4-5

4.6.1 il d Deferred-Link Messages 4-6

4.6.2 il dRelink Messages 4-6

4.6.3 Example 1: Internal Free Space Exhausted 4-7
4.6.4 Example 2: Runningstrip 4-7

4.6.5 Example 3:il d Version 4-8

4.6.6 Example 4: Too Many Files Changed 4-8
4.6.7 Example 5: Full Relink 4-8

4.6.8 Example 6: New Working Directory 4-9
i | d Options 4-9

471 -a 4-9

472 -Bdynamc |static 4-10

473 -d y|n 4-10

474 -e epsym 4-10

475 -g 4-10

476 -1 name 4-10

477 -1 4-11

478 -Lpath 4-11

479 -1x 4-11

4710 -m 4-11

4.7.11 -ooutfile 4-11

4712 -Qy|n 4-12

Contents vii

4.7.13 -Rpath 4-12
4714 -s 4-12
4715 -t 4-12
4.7.16 -usymname 4-12
4717 -V 4-12
4718 -xildoff 4-13
4719 -xildon 4-13
4.7.20 -YP, dirlist 4-13
4721 -z allextract |defaul textract] weakextract 4-13
4722 -z defs 4-13
4723 -zi_dryrun 4-14
4724 -zi full 4-14
4725 -zi_noincr 4-14
4726 -zi_quiet 4-14
4727 -zi_verbose 4-14
4.7.28 -znodefs 4-14
4.8 Options Passed to i | d From the Compilation System 4-14
481 -a 4-15
482 -eepsym 4-15
483 -1 name 4-15
484 -m 4-15
485 -t 4-15
486 -usymname 4-15
48.7 Environment 4-16
4.9 | d Options not Supported by ild 4-18
49.1 -Bsynbolic 4-18
492 -b 4-18
493 -G 4-18

viii C User’'s Guide » May 2003

4.10

411

49.4
4.9.5
4.9.6

Additional Unsupported Commands 4-19

4.10.1
4.10.2
4.10.3
4.10.4

-hnane 4-18
-z mul defs 4-19
-ztext 4-19

- Dtoken,token, ... 4-19

-Fnanme 4-19
- Mmapfile 4-19
-r 4-20

FilesThati | d Uses 4-20

| i nt Source Code Checker 5-1

5.1
5.2
5.3

Basic and Enhanced | i nt Modes 5-1

Usinglint 5-2

Thelint Options 5-4

531
5.3.2
5.3.3
5.34
5.3.5
5.3.6
5.3.7
5.3.8
5.3.9
5.3.10
53.11
5.3.12
5.3.13
5.3.14
5.3.15

-# 54

- ### 54

-a 55

-b 5-5

- Cfilename 5-5
-c 55

-di rout =dir 5-5
-err=warn 5-5
-errchk=I(, 1) 5-6
-errfm=f 5-7
-errhdr=h 5-7
-errof f =tag(, tag) 5-8
-errtags=a 5-9
-errwarn=t 5-9

-F 5-10

Contents

iX

53.16 -fd 5-10

5.3.17 -flagsrc=file 5-10
5318 -h 5-10

53.19 -ldir 5-10

5320 -k 5-10

5321 -Ldir 5-10

5322 -Ix 5-11

5323 -m 5-11

5.3.24 -Ncheck=c 5-11
5325 -Nevel=n 5-12
5326 -n 5-13

5.3.27 -ox 5-13

5328 -p 5-13

5.3.29 - Rfile 5-13

5330 -s 5-13

5331 -u 5-14

5332 -V 5-14

5333 -v 5-14

5.3.34 -Wile 5-14

5335 -x 5-14

5336 -XCC=a 5-14

5337 -Xalias_level[=l] 5-15
5338 -Xarch=v9 5-15
5.3.39 -Xc99[=0] 5-15
5340 -Xexplicitpar=a 5-16
5.3.41 -Xkeeptnp=a 5-16
5.3.42 - Xtenp=dir 5-16
5343 -Xtinme=a 5-16

x CUser's Guide » May 2003

5.4

5.5

5.6

5344 -Xtransition=a 5-16

5345 -Xustr={ascii_utf16_ushort |no} 5-16
5346 -y 5-17

i nt Messages 5-17

5.4.1 Options to Suppress Messages 5-17
54.2 |int Message Formats 5-18

['i nt Directives 5-21

55.1 Predefined Values 5-21

55.2 Directives 5-21

I i nt Reference and Examples 5-25

5.6.1 Diagnostics Performed by | i nt 5-25
5.6.2 lint Libraries 5-30

56.3 lint Filters 5-32

Type-Based Alias Analysis 6-1

6.1
6.2
6.3

6.4

Introduction to Type-Based Analysis 6-1

Using Pragmas for Finer Control 6-2

Checking With I i nt 6-5

6.3.1 Struct Pointer Cast of Scalar Pointer 6-6
6.3.2 Struct Pointer Cast of Void Pointer 6-6
6.3.3 Cast of Struct Field to Structure Pointer 6-7
6.3.4 Explicit Aliasing Required 6-7

Examples of Memory Reference Constraints 6-8

Transitioningto ISOC 7-1

7.1

Basic Modes 7-1
711 -Xa 7-1
712 -Xc 7-1
713 -Xs 7-2

Contents

Xi

714 -Xt 7-2
7.2 A Mixture of Old- and New-Style Functions 7-2
7.2.1 Writing New Code 7-2
7.2.2 Updating Existing Code 7-3
7.2.3 Mixing Considerations 7-3
7.3 Functions With Varying Arguments 7-6
7.4 Promotions: Unsigned Versus Value Preserving 7-9
7.4.1 Background 7-9
7.4.2 Compilation Behavior 7-9
7.4.3 First Example: The Use of a Cast 7-10
7.4.4 Bit-fields 7-11
7.45 Second Example: Same Result 7-11
7.4.6 Integral Constants 7-11
7.4.7 Third Example: Integral Constants 7-12
7.5 Tokenization and Preprocessing 7-13
7.5.1 1SO C Translation Phases 7-13
7.5.2 Old C Translation Phases 7-14
7.5.3 Logical Source Lines 7-15
7.5.4 Macro Replacement 7-15
7.5.5 Using Strings 7-16
7.5.6 Token Pasting 7-17
76 const andvol atile 7-17
7.6.1 Types, Only for| val ue 7-18
7.6.2 Type Qualifiers in Derived Types 7-18
7.6.3 const Meansreadonly 7-19
7.6.4 Examples of const Usage 7-20
7.6.5 vol atil e Means Exact Semantics 7-20

7.6.6 Examplesofvol atil e Usage 7-20

xii ~ C User's Guide » May 2003

7.7

7.8

7.9

7.10

7.11

Multibyte Characters and Wide Characters 7-21
7.7.1 Asian Languages Require Multibyte Characters 7-21
7.7.2 Encoding Variations 7-22

7.7.3 Wide Characters 7-22

7.7.4 Conversion Functions 7-23

7.7.5 C Language Features 7-23

Standard Headers and Reserved Names 7-24
7.8.1 Standard Headers 7-24

7.8.2 Names Reserved for Implementation Use 7-25
7.8.3 Names Reserved for Expansion 7-26
7.8.4 Names Safe to Use 7-26
Internationalization 7-27

79.1 Locales 7-27

7.9.2 Thesetlocal e() Function 7-27

7.9.3 Changed Functions 7-28

7.9.4 New Functions 7-29

Grouping and Evaluation in Expressions 7-30
7.10.1 Definitions 7-30

7.10.2 The K&R C Rearrangement License 7-31
7.10.3 The ISO C Rules 7-32

7.10.4 The Parentheses 7-32

7.10.5 The AsIf Rule 7-32

Incomplete Types 7-33

7.11.1 Types 7-33

7.11.2 Completing Incomplete Types 7-34
7.11.3 Declarations 7-34

7.11.4 Expressions 7-34

7.11.5 Justification 7-35

Contents

Xiii

7.11.6 Examples 7-35
7.12 Compatible and Composite Types 7-36
7.12.1 Multiple Declarations 7-36
7.12.2 Separate Compilation Compatibility 7-36
7.12.3 Single Compilation Compatibility 7-37
7.12.4 Compatible Pointer Types 7-37
7.12.5 Compatible Array Types 7-37
7.12.6 Compatible Function Types 7-37
7.12.7 Special Cases 7-38
7.12.8 Composite Types 7-38

8. Converting Applications for a 64-Bit Environment 8-1
8.1 Overview of the Data Model Differences 8-1
8.2 Implementing Single Source Code 8-2
8.2.1 Derived Types 8-3
8.2.2 Tools 8-6
8.3 Converting to the LP64 Data Type Model 8-7
8.3.1 Integer and Pointer Size Change 8-7
8.3.2 Integer and Long Size Change 8-8
8.3.3 Sign Extension 8-8
8.3.4 Pointer Arithmetic Instead of Integers 8-10
8.3.5 Structures 8-10
8.3.6 Unions 8-11
8.3.7 Type Constants 8-12
8.3.8 Beware of Implicit Declarations 8-12
8.3.9 sizeof() IsanUnsigned| ong 8-13
8.3.10 Use Casts to Show Your Intentions 8-13
8.3.11 Check Format String Conversion Operation 8-14
8.4 Other Considerations 8-15

xiv. C User's Guide « May 2003

8.5

8.4.1 Derived Types That Have Grown in Size 8-15

8.4.2 Check for Side Effects of Changes 8-15

8.4.3 Check Whether Literal Uses of | ong Still Make Sense 8-15
8.4.4 Use #i f def for Explicit 32-bit Versus 64-bit Prototypes 8-16
8.4.5 Calling Convention Changes 8-16

8.4.6 Algorithm Changes 8-16

Checklist for Getting Started 8-17

cscope: Interactively Examining a C Program 9-1

9.1
9.2

9.3

The cscope Process 9-1

Basic Use 9-2

9.2.1 Step 1: Set Up the Environment 9-2
9.2.2 Step 2: Invoke the cscope Program 9-3
9.2.3 Step 3: Locate the Code 94

9.24 Step 4: Edit the Code 9-10

9.25 Command-Line Options 9-11

9.2.6 View Paths 9-14

9.2.7 cscope and Editor Call Stacks 9-15
9.28 Examples 9-15

9.29 Command-Line Syntax for Editors 9-19

Unknown Terminal Type Error 9-20

. C Compiler Options A-1

Al
A2
A3

Option Syntax A-1

Options Summary A-2

The cc Options A-10

A3l -# A-10

A32 -### A-10

A.3.3 - Aname[(tokens)] A-10

Contents

XV

A34 -B[static]dynam c] A-11
A35 -C A-1

A36 -c A-1

A.3.7 - Dname[=tokens] A-11
A38 -d[yIn] A-12

A39 -dalign A-12

A310 -E A-13

A3.11 -errfnt[=[no%error] A-13
A3.12 -erroff[=t] A-13
A.3.13 -errshort[=i] A-14
A.3.14 -errtags[=a] A-14
A.3.15 -errwarn[=t] A-15
A3.16 -fast A-16

A3.17 -fd A-18

A3.18 -flags A-18

A.3.19 -fnonstd A-18
A.3.20 -fns[={no, yes}] A-18
A.3.21 -fprecision=p A-19
A.3.22 -fround=r A-19
A.3.23 -fsinmple[=n] A-20
A324 -fsingle A-21
A325 -fstore A-21

A3.26 -ftrap=t A-21
A327 -G A-22

A328 -g A-22

A329 -H A-22

A.3.30 -hname A-23

A331 -I[-]dir] A-23

xvi C User's Guide « May 2003

A.3.32
A.3.33
A3.34
A.3.35
A.3.36
A.3.37
A.3.38
A.3.39
A.3.40
A3.41
A.3.42
A.3.43
A.3.44
A.3.45
A.3.46
A.3.47
A.3.48
A.3.49
A.3.50
A.3.51
A.3.52
A.3.53
A.3.54
A.3.55
A.3.56
A.3.57
A.3.58
A.3.59

-i A-24

-KPIC A-24
-Kpic A-24
-keeptmp A-24

- Ldir A-24

-1 name A-24

-nc A-25
-msalign A-25
-misalign2 A-25
-nr [, string] A-25
-m A-25
-native A-25
-nofstore A-26
-0 A-26

-0 filename A-26
-P A-26

-p A-26

-QylIn] A-26
-gp A-27

- Rdir[: dir] A-27
-S A-27

-s A-27

- Uname A-27

-V A-28

-v A-28

-\W, arg A-29

-w A-29
-X[clalt Is] A-30

Contents

XVii

A.3.60 -x386 A-30

A.3.61 -x486 A-31

A3.62 -xa A-31

A.3.63 -xalias_level[z]] A-31
A3.64 -xarch=isa A-33

A.3.65 -xautopar A-39

A.3.66 -xbuiltin[=(%all |%one)] A-40
A.3.67 -xCC A-40

A.3.68 -xc99[=0] A-40

A.3.69 -xcache[=c] A-41

A.3.70 —xcg[89]92] A-42

A.3.71 -xchar[=0] A-43

A.3.72 -xchar_byte_order[=0] A-44
A.3.73 -xcheck[=0] A-44

A.3.74 -xchip[=c] A-45

A.3.75 -xcode[=v] A-46

A.3.76 -xcrossfile[=n] A-48

A.3.77 -xcsi A-48

A.3.78 -xdebugf or mat =[st abs| dwarf] A-49
A.3.79 -xdepend=[yes|no] A-49
A.3.80 -xdryrun A-50

A.3.81 -xe A-50

A.3.82 -xexplicitpar A-50

A.3.83 -xF A-51

A.3.84 -xhel p=f A-52

A.3.85 -xhwcprof A-52

A3.86 -xildoff A-53

A.3.87 -xildon A-54

xviii ~ C User's Guide ¢« May 2003

A.3.88 -xinline=list A-54

A.3.89 -xipo[=a] A-55

A.3.90 -xjobs=n A-57

A.3.91 -xldscope={v} A-57
A392 -xlibm eee A-59

A393 -xlibml A-59

A394 -xlic_lib=sunperf A-59
A.3.95 -xlicinfo A-59

A.3.96 -xlinkopt[=level]] A-59
A.3.97 -xloopinfo A-61

A3.98 -xM A-61

A399 -xML A-62

A.3.100 - xMerge A-62

A.3.101 - xmaxopt [=v] A-63
A.3.102 - xnemal i gn=ab A-63
A.3.103-xnati veconnect [=a[,a]...] A-64
A3.104-xnolib A-65
A.3.105-xnol ibm | A-66
A.3.106 - xO[1]2]3]4]5] A-66
A.3.107 - xopennp[=i] A-69

A.3.108 - xP A-70

A.3.109 - xpagesi ze=n A-70
A.3.110 - xpagesi ze_heap=n A-71
A.3.111 - xpagesi ze_stack=n A-T72
A.3.112 - xparal l el A-72

A.3.113 - xpch=v A-73

A.3.114 - xpchst op=file A-76
A.3.115 - xpenti um A-76

Contents

XiX

A.3.116 - xpg A-76

A.3.117 - xpr ef et ch[=val[, val]] A-76
A.3.118 - xprefetch_Il evel =I A-78
A.3.119 - xprofile=p A-T78

A.3.120 - xprofil e_i rcache[=path] A-81
A.3.121 - xprofil e _pathmap A-82
A.3.122 - xreducti on A-82

A.3.123 - xregs=r[,r..] A-83

A.3.124 - xrestrict[=f] A-84
A.3.125-xs A-84

A.3.126 - xsaf e=nem A-84

A.3.127 - xsb A-85

A.3.128 - xsbf ast A-85

A.3.129 - xsf pconst A-85

A.3.130 - xspace A-86
A.3.131-xstrconst A-86

A.3.132 - xtarget =t A-86

A.3.133 - xt enp=dir A-91

A.3.134 - xt hr eadvar [=z0] A-92
A3.135-xtime A-93
A.3.136-xtransition A-93

A.3.137 -xtrigraphs A-93
A3.138-xunrol I =n A-94

A.3.139 - xustr={ascii _utf16_ushort |[no} A-94
A.3.140 - xvect or [={yes | no}] A-95
A.3.141-xvis A-95

A.3.142 - xvpara A-95

A.3.143 - Yc, dir A-96

xx C User's Guide » May 2003

A4

A.3.144 - YA, dir A-96
A3.145-Yl, dir A-96

A.3.146 - YP, dir A-96

A.3.147 - YS, dir A-96
A3.148-7I1 A-96

Options Passed to the Linker A-97

B. ISO C Data Representations B-1

B.1
B.2

B.3

Storage Allocation B-1

Data Representations B-2

B.2.1 Integer Representations B-3

B.2.2 Floating-Point Representations B-4

B.2.3 Exceptional Values B-6

B.2.4 Hexadecimal Representation of Selected Numbers B-7
B.2.5 Pointer Representation B-7

B.2.6 Array Storage B-8

B.2.7 Arithmetic Operations on Exceptional Values B-8

Argument-Passing Mechanism B-10

C. Implementation-Defined ISO/IEC C Behavior C-1

C1

Implementation Compared to the 1ISO Standard C-1
C.1.1 Translation (G.3.1) C-1

C.1.2 Environment (G.3.2) C-2

C.1.3 Identifiers (G.3.3) C-2

C.1.4 Characters (G.3.4) C-3

C.15 Integers (G.3.5) C-4

C.1.6 Floating-Point (G.3.6) C-6

C.1.7 Arrays and Pointers (G.3.7) C-7

C.1.8 Registers (G.3.8) C-8

Contents

XXi

C.1.9 Structures, Unions, Enumerations, and Bit-Fields (G.3.9) C-8
C.1.10 Qualifiers (G.3.10) C-10

C.1.11 Declarators (G.3.11) C-10

C.1.12 Statements (G.3.12) C-10

C.1.13 Preprocessing Directives (G.3.13) C-10

C.1.14 Library Functions (G.3.14) C-12

C.1.15 Locale-Specific Behavior (G.4) C-18

D. Supported Features of C99 D-1
D.1 Idempotent Qualifiers D-2
D.2 _Pragma D-2
D.3 Mixed Declarations and Code D-4
D.4 Static and Other Type Qualifiers Allowed in Array Declarators D-5
D.5 Flexible Array Members D-5
D.6 Declarations Using Impliciti nt D-7
D.7 Disallowed Impliciti nt and Implicit Function Declarations D-7
D.8 Declaration in f or -Loop Statement D-8
D.9 C99 Keywords D-8
D.9.1 Usingtherestrict Keyword D-9
D.10 _ func__ Support D-9
D.11 Macros With a Variable Number of Arguments D-9
D.12 \Variable Length Arrays (VLA): D-10
D.13 i nli ne Specifier for Static Functions D-11
D.14 Commenting Code With // D-12

E. Performance Tuning (SPARC) E-1
E.1 Limits E-1
E.2 libfast.aLibrary E-2

F. The Differences Between K&R Sun C and Sun ISOC F-1

xxii ~ C User's Guide « May 2003

F.1 K&R Sun C Incompatibilities With Sun ISOC F-1
F.2 Keywords F-7

G. Implementation-Specific Information of OpenMP G-1

Index Index-1

Contents xxiii

xxiv. C User's Guide ¢« May 2003

Figures

FIGURE 1-1

FIGURE 3-1

FIGURE 3-2

FIGURE 3-3

FIGURE 3-4

FIGURE 3-5

FIGURE 4-1

Organization of the C Compilation System 1-8
Master and Slave Threads 3-7

Parallel Execution of a Loop 3-8

Fixed Problem Speedups 3-13

Amdahl's Law Speedup Curve 3-13

Speedup Curve With Overheads 3-14

An Example of Incremental Linking 4-3

XXV

xxvi C User's Guide « May 2003

Tables

TABLE 1-1

TABLE 2-1

TABLE 2-2

TABLE 2-3

TABLE 5-1

TABLE 5-2

TABLE 5-3

TABLE 5-4

TABLE 5-5

TABLE 5-6

TABLE 5-7

TABLE 5-8

TABLE 7-1

TABLE 7-2

TABLE 7-3

TABLE 8-1

TABLE 9-1

TABLE 9-2

TABLE 9-3

TABLE A-1

Components of the C Compilation System 1-9
Data Type Suffixes 2-1

Declaration Specifiers 2-3

Predefined Identifier 2-22

The - errchk Values 5-6

The-errfm Values 5-7

The -errhdr Values 5-7

The -errof f Values 5-8

The - errwar n Values 5-9

The - Ncheck Values 5-11

I i nt Options to Suppress Messages 5-18
The l'i nt Directives 5-22

Trigraph Sequences 7-13

Standard Headers 7-24

Names Reserved for Expansion 7-26

Data Type Size for ILP32 and LP64 8-2
cscope Menu Manipulation Commands 9-4
Commands for Use After an Initial Search 9-6
Commands for Selecting Lines to Be Changed 9-16

Compiler Options Grouped by Functionality A-2

XXVii

TABLE A-2

TABLE A-3

TABLE A-4

TABLE A-5

TABLE A-6

TABLE A-7

TABLE A-8

TABLE A-9

TABLE A-10

TABLE A-11

TABLE A-12

TABLE A-13

TABLE A-14

TABLE A-15

TABLE A-16

TABLE A-17

TABLE A-18

TABLE A-19

TABLE A-20

TABLE A-21

TABLE A-22

TABLE A-23

TABLE A-24

TABLE A-25

TABLE A-26

TABLE A-27

TABLE A-28

TABLE A-29

TABLE A-30

TABLE A-31

The -errfm Values A-13

The -errof f Values A-13

The -errshort Values A-14

The - errwar n Values A-15

The - f ast Expansion Values A-16

The - WValues A-29

The Levels of Alias-Disambiguation A-32
The —xar ch ISA Keywords A-34

- xar ch Matrix A-34

The - xar ch Values for SPARC Platforms A-36
The - xar ch Values on x86 A-39

The - xc99 Values A-41

The - xcache Values A-42

The - xchar Values A-43

The - xcheck Values A-44

The - xchi p Values A-45

The - xcode Values A-46

The - xF Values A-52

The - xi nl i ne Values A-54

The - xI dscope Values A-58

The - xI i nkopt Values A-60

- xnmemal i gn Alignment and Behavior Values A-63
Examples of - xnermal i gn A-64

The - xnati veconnect Values A-65

The - xOValues for SPARC Processors A-67
The - xOValues for x86 Processors A-68
The - xopennp Values A-69

The - xpr ef et ch Values A-77

The - xr egs Values A-83

The - xt ar get Values A-86

xxviii C User's Guide « May 2003

TABLE A-32

TABLE A-33

TABLE A-34

TABLE B-1

TABLE B-2

TABLE B-3

TABLE B-4

TABLE B-5

TABLE B-6

TABLE B-7

TABLE B-8

TABLE B-9

TABLE B-10

TABLE B-11

TABLE B-12

TABLE B-13

TABLE B-14

TABLE B-15

TABLE B-16

TABLE B-17

TABLE B-18

TABLE B-19

TABLE B-20

TABLE C-1

TABLE C-2

TABLE C-3

TABLE C-4

TABLE C-5

TABLE C-6

TABLE C-7

- Xt ar get Expansions on SPARC A-87

- Xt ar get Expansions on Intel Architecture A-91

The - xt hr eadvar Values A-92

Storage Allocation for Data Types B-1

Representation of short B-3

Representation of i nt B-3

Representation of | ong on Intel and SPARC v8 versus SPARC v9 B-3
Representation of | ong | ong B-4

f | oat Representation B-5

doubl e Representation B-5

| ong doubl e Representation (SPARC) B-5

| ong doubl e Representation (Intel) B-5

f | oat Representations B-6

doubl e Representations B-6

| ong doubl e Representations B-6

Hexadecimal Representation of Selected Numbers (SPARC) B-7
Hexadecimal Representation of Selected Numbers (Intel) B-7
Array Types and Storage B-8

Abbreviation Usage B-9

Addition and Subtraction Results B-9

Multiplication Results B-9

Division Results B-10

Comparison Results B-10

Representations and Sets of Values of Integers C-4

Values for a float C-6

Values for a double C-6

Values for long double C-6

Padding and Alignment of Structure Members C-8

Character Sets Tested by i sal pha, i sl ower, Etc. C-13

Values Returned on Domain Errors C-13

Tables

XXiX

TABLE C-8 Semantics for si gnal Signals C-14

TABLE C-9 Names of Months C-19

TABLEC-10 Days and Abbreviated Days of the Week C-19
TABLE F-1 K&R Sun C Incompatibilities With Sun ISOC F-1
TABLE F-2 ISO C Standard Keywords F-8

TABLE F-3 Sun C (K&R) Keywords F-8

xxx C User's Guide ¢« May 2003

Before You Begin

This manual describes the C compiler for the Sun™ Open Network Environment
(Sun ONE) Studio 8, Compiler Collection. This manual is intended for application
developers who have a working knowledge of C, and UNIX®.

This manual provides information for many programming and compiler related
topics including the following:

A reference appendix of options to the compiler command

Descriptions of supported ISO/IEC 9899:1999 (referred to as C99 in this manual)
features

Information specific to this implementation of the C standard such as pragmas
and declaration specifiers

Description and reference for the | i nt code-checking program
Instructions for parallelizing code

Instructions for transitioning to ISO compliant code
Description and reference for the incremental linker i | d

There are also several appendices with reference material such as ISO C data
representations, implementation defined behavior, the differences between Sun C (K
& R) and Sun ISO C, performance tuning, and converting applications to compile for
the 64-bit environment.

XXXI

Typographic Conventions

TABLE P-1 Typeface Conventions
Typeface Meaning Examples
AaBbCc123 The names of commands, files, Edit your . | ogi n file.
and directories; on-screen Usels -a to list all files.
computer output % You have mail.
AaBbCc123 What you type, when contrasted % su
with on-screen computer output Passwor d:
AaBbCc123 Book titles, new words or terms, Read Chapter 6 in the User’s Guide.
words to be emphasized These are called class options.
You must be superuser to do this.
AaBbCc123 Command-line placeholder text; To delete a file, type r mfilename.
replace with a real name or value
TABLEP-2 Code Conventions
Code
Symbol Meaning Notation Code Example
[1] Brackets contain arguments an] A, O
that are optional.
{} Braces contain a set of choices d{y| n} dy
for a required option.
| The “pipe” or “bar” symbol B{ dynami c| stati c} Bstatic

separates arguments, only one
of which may be chosen.

The colon, like the comma, is Rilocal/libs:/U a
sometimes used to separate

arguments.

Rdir[: dir]

The ellipsis indicates omission
in a series.

xi nli ne=fl],...fn] xi nl i ne=al pha, dos

xxxii C User's Guide » May 2003

Shell Prompts

Shell Prompt

C shell machine-name%
C shell superuser machine-name#
Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #

Accessing Compiler Collection Tools and
Man Pages

The compiler collection components and man pages are not installed into the
standard / usr/ bi n/ and/ usr/ shar e/ man directories. To access the compilers and
tools, you must have the compiler collection component directory in your PATH
environment variable. To access the man pages, you must have the compiler
collection man page directory in your MANPATH environment variable.

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the nan(1) man
page. For more information about setting your PATH variable and MANPATH variables
to access this release, see the installation guide or your system administrator.

Note — The information in this section assumes that your Sun ONE Studio compiler
collection components are installed in the / opt directory. If your software is not
installed in the / opt directory, ask your system administrator for the equivalent
path on your system.

Accessing the Compilers and Tools

Use the steps below to determine whether you need to change your PATH variable to
access the compilers and tools.

Before You Begin xxxiii

v To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

% echo $PATH

2. Review the output to find a string of paths that contain / opt / SUNWpr o/ bi n/ .

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

v To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home . cshrc file. If you are using the
Bourne shell or Korn shell, edit your home . profi | e file.

2. Add the following to your PATH environment variable.
/ opt / SUNWpr o/ bi n

Accessing the Man Pages

Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

v To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

% man dbx

2. Review the output, if any.

If the dbx (1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

xxxiv C User’'s Guide « May 2003

v To Set Your MANPATH Environment Variable to Enable
Access to the Man Pages

1. If you are using the C shell, edit your home . cshrc file. If you are using the
Bourne shell or Korn shell, edit your home . profi | e file.

2. Add the following to your MANPATH environment variable.
/ opt/ SUNWpr o/ man

Accessing Compiler Collection
Documentation

You can access the documentation at the following locations:

= The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/ SUNWspro/ docs/index. htm .

If your software is not installed in the / opt directory, ask your system
administrator for the equivalent path on your system.

= Most manuals are available from the docs. sun. com™ web site. The following
titles are available through your installed software only:

« Standard C++ Library Class Reference
« Standard C++ Library User’s Guide
« Tools.h++ Class Library Reference
« Tools.h++ User’s Guide
= The release notes are available from the docs. sun. comweb site.

The docs. sun. comweb site (htt p: // docs. sun. con) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note — Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.

Before You Begin xxxv

XXXVi

Documentation in Accessible Formats

The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the / opt directory, ask your system administrator for the equivalent path on your
system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party HTML at http://docs. sun. com
manuals)

Third-party manuals: HTML in the installed software through the documentation
« Standard C++ Library Class index atfi | e:/opt/ SUNVpr o/ docs/ i ndex. ht m

Reference

= Standard C++ Library
User’s Guide

« Tools.h++ Class Library
Reference

« Tools.h++ User’s Guide

Readmes and man pages HTML in the installed software through the documentation
index atfil e:/opt/ SUN\pro/ docs/i ndex. htm

Release notes HTML at htt p: //docs. sun. com

Related Compiler Collection Documentation

The following table describes related documentation that is available at
file:/opt/ SUN\Wpro/docs/index. html and http://docs. sun. com If your
software is not installed in the / opt directory, ask your system administrator for the
equivalent path on your system.

Document Title Description

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.

C User’s Guide » May 2003

Accessing Related Solaris

Documentation

The following table describes related documentation that is available through the

docs. sun. comweb site.

Document Collection

Document Title

Description

Solaris Reference Manual
Collection

Solaris Software Developer
Collection

Solaris Software Developer
Collection

See the titles of man page
sections.

Linker and Libraries Guide

Multithreaded Programming
Guide

Provides information about the
Solaris operating environment.

Describes the operations of the
Solaris link-editor and runtime
linker.

Covers the POSIX and Solaris
threads APIs, programming

with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.

Resources for Developers

Visit htt p: / / ww. sun. coni devel oper s/ st udi o and click the Compiler
Collection link to find these frequently updated resources:

= Articles on programming techniques and best practices
= A knowledge base of short programming tips

= Documentation of compiler collection components, as well as corrections to the
documentation that is installed with your software

= Information on support levels
= User forums

= Downloadable code samples
= New technology previews

You can find additional resources for developers at
http://ww. sun. com devel opers/.

Before You Begin ~ xxxvii

Contacting Sun Technical Support

If you have technical questions about this product that are not answered in this
document, go to:

http://ww. sun. com servi ce/ contacting

Sun Welcomes Your Comments

Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docf eedback@un. com

Please include the part number (817-0924-10) of the document in the subject line of
your email.

xxxviii C User's Guide « May 2003

CHAPTER 1

Introduction to the C Compiler

This chapter provides information about the C compiler, including operating
environments, standards conformance, organization of the compiler, and C-related
programming tools.

1.1 Standards Conformance

The compiler conforms to the following standards:

= The ISO/IEC 9899:1990, Programming Languages - C standard. For information
on implementation-specific behavior, see Appendix C.

= The FIPS 160 standard.

This release also supports some of the features specified in the following standard:
= The ISO/IEC 9899:1999, Programming Language - C standard. For more
information on supported features, see Appendix D.

Because the compiler also supports traditional K&R C (Kernighan and Ritchie, or
pre-ANSI C), it can ease your migration to 1SO C.

The term C99 used in this book refers to the ISO/IEC 9899:1999 C programming
language. There term C90 refers to the ISO/IEC 9899:1990 C programming language.

1.2 C Readme File

The C compiler’s readme file highlights important information about the compiler,
including:
= Information discovered after the manuals were printed

1-1

= New and changed features

= Software corrections

= Problems and workarounds

= Limitations and incompatibilities

To view the text version of the C readme file, type the following at a command
prompt:

exampl e% cc - xhel p=r eadne

To access the HTML version of the readme, in your Netscape Communicator 4.0 or
compatible version browser, open the following file:

/ opt/ SUNWpr o/ docs/ i ndex. ht m

(If your C compiler-software is not installed in the / opt directory, ask your system
administrator for the equivalent path on your system.) Your browser displays an
index of HTML documents. To open the readme, find its entry in the index, then
click the title.

1.3

Man Pages

Online manual (man) pages provide immediate documentation about a command,
function, subroutine, or collection of such things.

You can display a man page by running the command:

exanpl e% man topic

Throughout the C documentation, man page references appear with the topic name
and man section number: cc(1) is accessed with man cc. Other sections, denoted by
i eee_fl ags(3M) for example, are accessed using the - s option on the man
command:

exanpl e% man -s 3Mieee_fl ags

1-2 C User's Guide » May 2003

1.4

1.4.1

New Features

The C compiler introduces the following new features in this release.

General Enhancements

Linker mapfiles are no longer needed for variable scoping: - x| dscope

There are now two different ways you can control the exporting of symbols in
dynamic libraries. This facility is called linker scoping, and has been supported
by linker mapfiles for some time. First, you can now embed new declaration
specifiers in code.

By embedding __gl obal , __synbol i c, and __hi dden directly in code, you no
longer need to use mapfiles. Second, you can override the default setting for
variable scoping by specifying - x| dscope at the command line.

For details, see “Linker Scoping Specifiers” on page 2-3 and “- x| dscope={v}” on
page A-57.

Implementation of additional C99 features

This release adds support for the following ISO/IEC 9899:1999 (referred to as C99
in this document) features. The following list only details the C99 features
implemented in this release, which is a subset of all the implemented C99
features. See Appendix D “Supported Features of C99” on page D-1 for a
complete listing of all C99 features implemented over the past and current release
of the C compiler. The sub-section number of the C99 standard is listed for each
item.

« 6.25 Bool
« 6.2.5 _Complex type

This release supports a partial implementation of _Complex. You must link
with - | cpl xsupp on the Solaris 7 operating environment, the Solaris 8
operating environment, and the Solaris 9 operating environment. Static
initialization of _Complex data does not yet work.

« 6.3.2.1 Conversion of arrays to pointers not limited to Ivalues

« 6.4.4.2 Hexadecimal floating-point literals

« 6.5.2.5 Compound literals

« 6.7.2 Type specifiers

» 6.10.6 STDC pragmas

« 6.10.8 __STDC_IEC_559 and __ STDC_IEC_559_COMPLEX macros

« Support for the VIS™ Developers Kit: - xvi s (SPARC)

Chapter 1 Introduction to the C Compiler 1-3

1.4.2

Use the - xvi s=[yes | no] option when you are using the assembly-language
templates defined in the VIS instruction set Software Developers Kit (VSDK).

The VIS instruction set is an extension to the SPARC V9 instruction set. Even
though the UltraSPARC processors are 64-bit, there are many cases, especially in
multimedia applications, when the data are limited to eight or 16 bits in size. The
VIS instructions can process four 16-bit data with one instruction so they greatly
improve the performance of applications that handle new media such as imaging,
linear algebra, signal processing, audio, video and networking.

For more information on the VSDK, see
http://ww. sun. com processors/vis. See “- xvi s” on page A-95.

Larger default stack size for slave threads

The default stack size for slave threads is now larger. All slave threads have the
same stack size, which is four megabytes for 32-bit applications and eight
megabytes for 64-bit applications by default. The size is set with the STACKSIZE
environment variable.

See “STACKSI ZE” on page 3-4.
Improved - xprofi | e (SPARC)
The - xpr of i | e option offers the following improvements:

« Support for profiling shared libraries
« Thread-safe profile collection using -xprofile=collect -mt
= Improved support for profiling multiple programs in a single profile directory.

With - xpr of i | e=use, the compiler can now find profile data in profile
directories that contain data for multiple object files with nonunique basenames.
For cases where the compiler is unable to find an object file’s profile data, the
compiler provides a new option - xpr of i | e_pat hmap=collect-prefix: use-prefix.

See “- xprofil e=p” on page A-78 and “- xpr of i | e_pat hmap” on page A-82.
Support for UTF-16 string literals: - xustr

Specify - xustr=asci i _utf16_ushort if you need to support an
internationalized application that uses 1SO10646 UTF-16 string literals. This
option enables recognition of the U"ASCII_string" string literals as an array of
type unsigned short.

See “-xustr={ascii_utf16_ushort |no}” on page A-94.

See “- Xustr={ascii _utf16_ushort |no}” on page 5-16 for the equivalent
option to the | i nt utility.

Faster Compilation

Faster profiling: - xprofil e_i rcache (SPARC)

1-4 C User's Guide » May 2003

Use - xprofil e_i r cache[=path] with - xpr of i | e=col | ect Juse to improve
compilation time during the use phase by reusing compilation data saved from
the collect phase.

With large programs, compilation time in the use phase can improve significantly
because the intermediate data is saved. Note that the saved data could increase
disk space requirements considerably.

See “-xprofil e_i rcache[=path]” on page A-81.
= Precompiled headers: - xpch

This release of the compiler introduces the new precompiled-header feature. The
precompiled-header file is designed to reduce compile time for applications
whose source files share a common set of include files containing a large amount
of source code. A precompiled header works by collecting information about a
sequence of header files from one source file, and then using that information
when recompiling that source file, and when compiling other source files that
have the same sequence of headers. You can take advantage of this feature
through the - xpch and - xpchst op options in combination with the #pr agma
hdr st op directive.

See “- xpch=v” on page A-73, “- xpchst op=file” on page A-76, and “hdrstop” on
page 2-13.

= Using multiple processors: - Xxj obs=n (SPARC)

Specify the - xj obs=n option to set how many processes the compiler creates to
complete its work. This option can reduce the build time on a multi-cpu machine.
Currently, - xj obs works only with the - xi po option. When you specify

- Xj obs=n, the interprocedural optimizer uses n as the maximum number of code
generator instances it can invoke to compile different files.

See “- xj obs=n" on page A-57.

1.4.3 Improved Performance

= Improving run-time with linker supported thread-local storage: - xt hr eadvar

Use the new linker supported thread-local storage facility of the compiler to do
the following:

« Utilize a fast implementation for the POSIX interfaces for allocating
thread-specific data.

« Convert multi-process programs to multi-thread programs.

« Port Windows applications using thread-local storage to Solaris operating
environments.
« Utilize a fast implementation for the thread private variables in OpenMP.

Chapter 1 Introduction to the C Compiler 1-5

1-6

Thread-local storage is now available in the compiler through the declaration of
thread-local variables. The declaration consists of a normal variable declaration
with the addition of the variable specifier __t hr ead and the command line
option - xt hr eadvar.

For more information, see “Thread Local Storage Specifier” on page 2-4 and
“-xt hr eadvar [=0]” on page A-92.

Improving run-time by reducing page faults: - xF

Use the new functionality of - xF to enable the optimal reordering of variables
and functions by the linker. This can help solve the following problems which
negatively impact run-time performance:

« Cache and page contention caused by unrelated variables that are near each
other in memory.

= Unnecessarily large work-set size as a result of related variables which are not
near each other in memory.

« Unnecessarily large work-set size as a result of unused copies of weak
variables that decrease the effective data density.

Improving run-time: - x| i nkopt (SPARC)

The C++ compiler can now perform link-time optimization on relocatable object
files when you specify the - xl i nkopt command.

Specify - x| i nkopt and the compiler performs some additional optimizations at
link time without modifying the .o files that are linked. The optimizations appear
only in the executable program. The - x| i nkopt option is most effective when
you use it to compile the whole program, and with profile feedback.

See “- x| i nkopt [=level]” on page A-59.

Improving run-time: - xpagesi ze=n (SPARC)

Set the page size in memory for the stack. n can be 8K, 64K, 512K, 4M 32M 256 M
2G 16G or def aul t. You must specify a valid page size for the Solaris operating
environment on the target platform, as returned by get pagesi ze(3C). If you do

not specify a valid page size, the request is silently ignored at run-time. You can
use pmap(l) or mem nf o(2) to determine page size at the target platform.

Note — This feature is only available on Solaris 9 software. A program compiled
with this option will not link in earlier Solaris operating environments.

This option is a macro for - xpagesi ze_st ack and - xpagesi ze_heap.

See “- xpagesi ze=n" on page A-70, “- xpagesi ze_heap=n” on page A-71, and
“- xpagesi ze_st ack=n" on page A-72.

Hardware counter-based profiling: - xhwcpr of (SPARC)

Use the - xhwepr of =[enabl e| di sabl e] option to enable compiler support for
hardware counter-based profiling.

C User’s Guide * May 2003

1.4.4

When - xhwepr of is enabled, the compiler generates information that helps tools
match hardware counter data reference and miss events with associated
instructions. Corresponding data-types and structure-members may also be
identified in conjunction with symbolic information (produced with -g). This
information can be useful in performance analysis because it is not easily
identified from profiles based on code addresses, source statements, or routines.

See “- xhwepr of ” on page A-52.

Easier Debugging

1.5

Dwarf-format debugger-information: - xdebugf or mat

The C compiler is migrating the format of debugger information from the stabs
format to the dwarf format as specified in DWARF Debugging Information
Format. If you maintain software which reads debugging information, you now
have the option to transition your tools from the stabs format to the dwarf format.
The default setting for this release is - xdebugf or mat =st abs.

Use the - xdebugf or mat =dwar f option as a way of accessing the new format for
the purpose of porting tools. There is no need to use this option unless you
maintain software which reads debugger information, or unless a specific tool
tells you that it requires debugger information in one of these formats.

See “- xdebugf or mat =[st abs| dwar f]” on page A-49.
Support for debugging OpenMP programs: - xopennp=noopt

If you are debugging an OpenMP program with dbx, compile with - g and
- xopenmp=noopt so you can breakpoint within parallel regions and display the
contents of variables.

See “- xopennp[=i]” on page A-69.

Organization of the Compiler

The C compilation system consists of a compiler, an assembler, and a link editor. The
cc command invokes each of these components automatically unless you use
command-line options to specify otherwise.

Appendix A discusses all the options available with cc.

The following figure shows the organization of the C compilation system.

Chapter 1 Introduction to the C Compiler 1-7

1-8

C source and
header files

cc

v

Compiler
preprocessor

Compiler
proper

Optimizer
(optional)

Code generator/
Assembler

7y
I
I
I

Interprocedural
Optimizer
(optional)

Link

editor ¢

Libraries

\

a. out

FIGURE 1-1 Organization of the C Compilation System

C User’s Guide * May 2003

The following table summarizes the components of the compilation system.

TABLE 1-1 Components of the C Compilation System

Component Description Notes on Use

cpp Preprocessor -Xs only

aconp Compiler (preprocessor built in for non-Xs

modes)

sshd Static synchronization bug detection (SPARC)

i ropt Code optimizer (SPARC) - O - x2,
-x3B, - xA, - xCp,
-fast

f be Assembler

cg Code generator, inliner, assembler (SPARC)

i po Interprocedural Optimizer (SPARC)

post opt Postoptimizer (SPARC)

ir2hf Intermediate code translator (INTEL)

ube Code generator (INTEL)

ube_ipa Interprocedure analyzer (INTEL)

I d Linker

ild Incremental linker (SPARC) - g, - xi | don

ncs Manipulate comment section -nr

1.6

C-Related Programming Tools

There are a number of tools available to aid in developing, maintaining, and
improving your C programs. The two most closely tied to C, cscope and | i nt, are
described in this book. In addition, a man page exists for each of these tools.

Other tools for source browsing, debugging and performance analysis are available.
See “Accessing Compiler Collection Documentation” on page xxxv for more
information.

Chapter 1 Introduction to the C Compiler 1-9

1-10 C User's Guide * May 2003

CHAPTER 2

C-Compiler Information Specific to
Sun’s Implementation

This chapter documents those areas specific to the C compiler. The information is
organized into language extensions and the environment.

The C compiler is compatible with some of the features of the C language described
in the new ISO C standard, ISO/IEC 9899-1999. If you wish to compile code that is
compatible with the previous C standard, ISO/IEC 9889-1990 standard (and
amendment 1), use - xc99=%one and the compiler disregards the enhancements of
the 1ISO/IEC 9899-1999 standard.

2.1

2.1.1

Constants

This section contains information related to constants that are specific to the Sun C
compiler.

Integral Constants

Decimal, octal, and hexadecimal integral constants can be suffixed to indicate type,
as shown in the following table.

TABLE2-1 Data Type Suffixes

Suffix Type
uoru unsi gned
I orL | ong

2-1

2.1.2

TABLE 2-1 Data Type Suffixes (Continued)

Suffix Type
Il orlLL I ong | ongl

lu, LY, Lu, I U, ul ,uL, U, or unsignedI|ong
UL

I'lu, LLYU, LLu, [T U, ul I, unsi gned | ong | ong!
ULL, uLL, U'|

1 Thel ong | ong and unsi gned | ong | ong are not available with
- xc99=%one and - Xc mode.

With the - xc99=%al | , the compiler uses the first item of the following list in which
the value can be represented, as required by the size of the constant:

s int

= longint

= longlongint

The compiler issues a warning if the value exceeds the largest value al ong | ong int
can represent.

With the - xc99=%0ne, the compiler uses the first item of the following list in
which the value can be represented, as required by the size of the constant, when
assigning types to unsuffixed constants;

= int

= longint

= unsigned!longint

= longlongint

= unsignedlonglongint

Character Constants

A multiple-character constant that is not an escape sequence has a value derived
from the numeric values of each character. For example, the constant ' 123" has a
value of:

|0 3 2' 1

or 0x333231.

2-2 CUser's Guide » May 2003

With the - Xs option and in other, non-ISO versions of C, the value is:

P

or 0x313233.

2.2

Linker Scoping Specifiers

Use the following declaration specifiers to help hide declarations and definitions of
extern symbols. By using these specifiers, you no longer need to use mapfiles for
linker scoping. You can also control the default setting for variable scoping by
specifying -xldscope on the command line. For more information, see

“- x| dscope={v}” on page A-57.

TABLE 2-2 Declaration Specifiers

Value

Meaning

__gl obal

__synbolic

__hi dden

The symbol has global linker scoping and is the least restrictive
linker scoping. All references to the symbol bind to the definition in
the first dynamic module that defines the symbol. This linker
scoping is the current linker scoping for extern symbols.

The symbol has symbolic linker scoping and is more restrictive than
global linker scoping. All references to the symbol from within the
dynamic module being linked bind to the symbol defined within the
module. Outside of the module, the symbol appears as though it
were global. This linker scoping corresponds to the linker option

- Bsynbol i c. For more information on the linker, see | d(1).

The symbol has hidden linker scoping. Hidden linker scoping is
more restrictive than symbolic and global linker scoping. All
references within a dynamic module bind to a definition within that
module. The symbol will not be visible outside of the module.

An object or function may be redeclared with a more restrictive specifier, but may
not be redeclared with a less restrictive specifier. A symbol may not be declared with
a different specifier once the symbol has been defined.

__gl obal is the least restrictive scoping, __symnbol i c is more restrictive, and
__hi dden is the most restrictive scoping.

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-3

2.3

Thread Local Storage Specifier

Take advantage of thread-local storage by declaring thread-local variables. A
thread-local variable declaration consists of a normal variable declaration with the
addition of the variable specifier __t hr ead. For more information, see

“- xt hr eadvar [=0]” on page A-92.

You must include the __t hr ead specifier in the first declaration of the thread
variable in the source file being compiled.

You can only use the __t hr ead specifier in the declaration of an object with static
storage duration. You can statically initialize a thread variable as you would any
other object of static-storage duration.

Variables that you declare with the __t hr ead specifier have the same linker binding
as they would without the __t hr ead specifier. This includes tenative definitions,
such as declarations without initializers.

The address of a thread variable is not a constant. Therefore, the address-of operator
(&) for a thread variable is evaluated at run time and returns the address of the
thread variable for the current thread. As a consequence, objects of static storage
duration are initialized dynamically to the address of a thread variable.

The address of a thread variable is stable for the lifetime of the corresponding
thread. Any thread in the process can freely use the address of a thread variable
during the variable’s lifetime. You cannot use a thread variable’s address after its
thread terminates. After a thread terminates, all addresses of that thread’s variables
are invalid.

2.4

Floating Point, Nonstandard Mode

IEEE 754 floating-point default arithmetic is “nonstop.” Underflows are “gradual.”
The following is a summary, see the Numerical dinsstanleyComputation Guide for
details.

Nonstop means that execution does not halt on occurrences like division by zero,
floating-point overflow, or invalid operation exceptions. For example, consider the
following, where x is zero and y is positive:

z =y | x;

By default, z is set to the value +I nf , and execution continues. With the - f nonstd
option, however, this code causes an exit, such as a core dump.

2-4 C User's Guide » May 2003

Here is how gradual underflow works. Suppose you have the following code:

x = 10;
for (i =0; i < LARGE_NUMBER, i ++)
x = x [10;

The first time through the loop, x is set to 1; the second time through, to 0. 1; the
third time through, to 0. 01; and so on. Eventually, x reaches the lower limit of the
machine’s capacity to represent its value. What happens the next time the loop runs?

Let’s say that the smallest number characterizable is 1. 234567e- 38

The next time the loop runs, the number is modified by “stealing” from the mantissa
and “giving” to the exponent so the new value is 1. 23456e- 39 and, subsequently,
1. 2345e- 40 and so on. This is known as “gradual underflow,” which is the default
behavior. In nonstandard mode, none of this “stealing” takes place; typically, x is
simply set to zero.

2.5

Labels as Values

The C compiler recognizes the extension to C known as computed got 0. Computed
got o enables runtime determination of branching destinations. The address of a
label can be acquired by using the '&& operator and assigned to a pointer of type
void *:

void *ptr;

ptr = &&l abel 1;

A later got o statement can branch to | abel 1 through ptr:

goto *ptr,

Because pt r is computed at runtime, pt r can take on the address of any label that is
in-scope and the got o statement can branch to it.

One way of using computed got o is for the implementation of a jump table:

static void *ptrarray[] = { && abel 1, && abel 2, &&l abel 3 };

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-5

2-6

Now the array elements can be selected by indexing:

goto *ptrarray[i];

Addresses of labels can only be computed from the current function scope.
Attempting to take addresses of labels out of the current function yields
unpredictable results.

The jump table works similarly to a switch statement though there are some key
differences and the jump table can make it more difficult to follow program flow. A
notable difference is that the switch-statement jump-destinations are all in the
forward direction from the switch reserved word; using computed goto to
implement a jump table enables branching in both forward and reverse directions.

#i ncl ude <stdi o. h>
voi d foo()

{

void *ptr;
ptr = &&l abel 1;
goto *ptr;

printf("Failed!\n");
return;

| abel 1:
printf("Passed!'\n");
return;

}
int main(voi d)
{
void *ptr;
ptr = &&l abel 1;

goto *ptr,;

printf("Failed!'\n");
return O;

| abel 1:
foo();
return O;

C User’s Guide * May 2003

The following example also makes use of a jump table to control program flow:

#i ncl ude <stdi o. h>
int main(void)

{
int i =0;
static void * ptr[3]={&& abel 1, && abel 2, &&l abel 3};

goto *ptr[i];

| abel 1:
printf("label 1\n");
return O;

| abel 2:
printf("label2\n");
return O;

| abel 3:
printf("label 3\n");
return O;

}

%exanpl e: a. out
%exanpl e: | abel 1

Another application of computed goto is as an interpreter for threaded code. The
label addresses within the interpreter function can be stored in the threaded code for
fast dispatching.

Here is an alternate way to write the above example:

static const int ptrarray[] = { &&l abell - && abel 1,
&&l abel 2 - &&l abel 1, && abel 3 - && abel 1 };
goto *(&& abel 1 + ptrarray[i]);

This is more efficient for shared library code, as it reduces the number of dynamic
relocations that are needed, and by consequence, allows the data (ptrarray elements)
to be read-only.

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-7

2.6

2.6.1

2.6.2

| ong | ong Data Type

When you compile with - xc99=%one, the Sun C compiler includes the data-types
I ong | ong, and unsi gned | ong | ong, which are similar to the data-type | ong. The
| ong | ong data-type stores 64 bits of information; | ong stores 32 bits of information
on SPARC V8 and x86. The | ong data-type stores 64 bits on SPARC V9. The | ong

| ong data-type is not available in - Xc mode.

Printing | ong | ong Data Types

To print or scan | ong | ong data types, prefix the conversion specifier with the
letters | | . For example, to print | | var, a variable of | ong | ong data type, in signed
decimal format, use:

printf("%ld\n", Ilvar);

Usual Arithmetic Conversions

Some binary operators convert the types of their operands to yield a common type,
which is also the type of the result. These are called the usual arithmetic
conversions:

= |If either operand is type | ong doubl e, the other operand is converted to | ong
doubl e.

= Otherwise, if either operand has type doubl e, the other operand is converted to
doubl e.

= Otherwise, if either operand has type f | oat , the other operand is converted to
fl oat.

= Otherwise, the integral promotions are performed on both operands. Then, these
rules are applied:

« If either operand has type unsi gned | ong | ong i nt, the other operator is
converted to unsi gned | ong l ong i nt.

« If either operand has type | ong | ong i nt, the other operator is converted to
longlongint.

« If either operand has type unsi gned | ong i nt, the other operand is converted
tounsi gned |l ongint.

2-8 C User's Guide * May 2003

« Otherwise, when you compile on SPARC V9 only and specify cc - xc99=none,
if one operand has type | ong i nt and the other has type unsi gned i nt, both
operands are converted to unsi gned | ong i nt.

« Otherwise, if either operand has type | ong i nt, the other operand is
converted tol ong i nt.

« Otherwise, if either operand has type unsi gned i nt, the other operand is
converted to unsi gned i nt .

« Otherwise, both operands have type i nt.

2.7

Assertions

A line of the form:

#assert predicate (token-sequence)

associates the token-sequence with the predicate in the assertion name space (separate
from the space used for macro definitions). The predicate must be an identifier
token.

#assert predicate

asserts that predicate exists, but does not associate any token sequence with it.

The compiler provides the following predefined predicates by default (not in - Xc
mode):

#assert system (unix)

#assert machi ne (sparc) (SPARC)
#assert machine (i386)(Intel)
#assert cpu (sparc) (SPARC)
#assert cpu (i386)(Intel)

I i nt provides the following predefinition predicate by default (not in - Xc mode):

#assert lint (on)

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-9

Any assertion may be removed by using #unasser t, which uses the same syntax as
assert . Using #unassert with no argument deletes all assertions on the predicate;
specifying an assertion deletes only that assertion.

An assertion may be tested in a #i f statement with the following syntax:

#i f #predicate(non-empty token-list)

For example, the predefined predicate syst emcan be tested with the following line:

#i f #systenm(unix)

which evaluates true.

2.8

2.8.1

Pragmas

Preprocessing lines of the form:

#pragnma pp-tokens

specify implementation-defined actions.

The following #pr agnmas are recognized by the compilation system. The compiler
ignores unrecognized pragmas. Using the - v option will give a warning for
unrecognized pragmas.

align
#pragma al i gn integer (variable[, variable])
The align pragma makes all the mentioned variables memory aligned to integer

bytes, overriding the default. The following limitations apply:

= The integer value must be a power of 2 between 1 and 128; valid values are: 1, 2,
4,8, 16, 32, 64, and 128.

= variable is a global or static variable; it cannot be an automatic variable.
= If the specified alignment is smaller than the default, the default is used.

2-10 C User's Guide « May 2003

2.8.2

2.8.3

= The pragma line must appear before the declaration of the variables which it
mentions; otherwise, it is ignored.

= Any variable that is mentioned but not declared in the text following the pragma
line is ignored. For example:

#pragma align 64 (aninteger, astring, astruct)
i nt ani nteger;

static char astring[256];

struct astruct{int a; char *b;};

does _not_read global data

#pragma does_not _read_gl obal _dat a (funcname [, funcname])

This pragma asserts that the specified list of routines do not read global data directly
or indirectly. This allows for better optimization of code around calls to such
routines. In particular, assignment statements or stores could be moved around such
calls.

The specified functions must be declared with a prototype or empty parameter list
prior to this pragma. If the assertion about global access is not true, then the
behavior of the program is undefined.

does_not_return

#pragma does_not _return (funcname [, funcname])

This pragma is an assertion to the compiler that the calls to the specified routines
will not return. This allows the compiler to perform optimizations consistent with
that assumption. For example, register life-times will terminate at the call sites
which in turn allows more optimizations.

If the specified function does return, then the behavior of the program is undefined.
This pragma is permitted only after the specified functions are declared with a
prototype or empty parameter list as the following example shows:

extern void exit(int);
#pragnma does_not _return(exit)

extern void __assert(int);
#pragma does_not _return(__assert)

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-11

2.8.4

2.8.5

2.8.6

does_not_write_global data

#pragma does_not _write_gl obal _data (funcname [, funcname])

This pragma asserts that the specified list of routines do not write global data
directly or indirectly. This allows for better optimization of code around calls to such
routines. In particular, assignment statements or stores could be moved around such
calls.

The specified functions must be declared with a prototype or empty parameter list
prior to this pragma. If the assertion about global access is not true, then the
behavior of the program is undefined.

error_messages

#pragnme error_nessages (on]of f Jdef aul t, tag... tag)

The error message pragma provides control within the source program over the
messages issued by the C compiler and lint. For the C compiler, the pragma has an
effect on warning messages only. The - woption of the C compiler overrides this
pragma by suppressing all warning messages.

= #pragma error_nessages (on, tag... tag)

The on option ends the scope of any preceding #pr agma error_nessages
option, such as the off option, and overrides the effect of the - err of f option.

= #pragma error_nessages (of f, tag... tag)

The of f option prevents the C compiler or the lint program from issuing the
given messages beginning with the token specified in the pragma. The scope of
the pragma for any specified error message remains in effect until overridden by
another #pragna error_mnessages, or the end of compilation.

= #pragma error_nessages (defaul t, tag... tag)

The def aul t option ends the scope of any preceding #pr agna
error_nessages directive for the specified tags.

fini
#pragma fini (f1[, f2...,fn]

Causes the implementation to call functions f1 to fn (finalization functions) after it
calls mai n() routine. Such functions are expected to be of type voi d and to accept
no arguments, and are called either when a program terminates under program

2-12 C User's Guide « May 2003

2.8.7

2.8.8

control or when the containing shared object is removed from memory. As with
“initialization functions,” finalization functions are executed in the order processed
by the link editors.

hdrstop

#pragma hdr st op

The hdrstop pragma must be placed after the last header file to identify the end of
the viable prefix in each source file that is to share the same precompiled-header file.
For example, consider the following files:

exampl e% cat a.c
#i nclude "a. h"

#i nclude "b. h"

#i nclude "c. h"

#i ncl ude <stdio. h>
#i ncl ude "d. h"

exanmpl e% cat b.h
#i ncl ude "a. h"
#i ncl ude "b. h"
#i nclude "c. h"

The viable source prefix ends at ¢.h so you would insert a #pragma hdrstop after c.h
in each file.

#pragma hdrstop must only appear at the end of the viable prefix of a source file
that is specified with the cc command. Do not specify #pragma hdrstop in any
include file.

ident

#pragma i dent string

Places string in the . conment section of the executable.

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-13

2.8.9

2.8.10

2.8.11

init
#pragma init (f1[, f2...,fn])

Causes the implementation to call functions f1 to fn (initialization functions) before it
calls mai n() . Such functions are expected to be of type voi d and to accept no
arguments, and are called while constructing the memory image of the program at
the start of execution. In the case of initializers in a shared object, they are executed
during the operation that brings the shared object into memory, either program
start-up or some dynamic loading operation, such as dl open() . The only ordering
of calls to initialization functions is the order in which they were processed by the
link editors, both static and dynamic.

inline
#pragma [no_Ji nl i ne (funcname[, funcname])

This pragma controls the inlining of routine names listed in the argument of the
pragma. The scope of this pragma is over the entire file. Only global inlining control
is allowed, call-site specific control is not permitted by this pragma.

If you use #pragma i nli ne, it provides a suggestion to the compiler to inline the
calls in the current file that match the list of routines listed in the pragma. This
suggestion may be ignored under certain cases. For example, the suggestion is
ignored when the body of the function is in a different module and the crossfile
option is not used.

If you use #pragma no_i nl i ne, it provides a suggestion to the compiler to not
inline the calls in the current file that match the list of routines listed in the pragma.

Both #pragnma i nline and #pragma no_i nl i ne are permitted only after the
function is declared with a prototype or empty parameter list as the following
example shows:

static void foo(int);
static int bar(int, char *);
#pragma inline(foo, bar)

See also - x| dscope, -xi nl i ne, - x0O and - xcrossfil e.

int_to_unsigned

#pragma i nt_t o_unsi gned (funcname)

2-14 C User's Guide « May 2003

2.8.12

2.8.13

2.8.14

2.8.15

2.8.16

For a function that returns a type of unsi gned, in - Xt or - Xs mode, changes the
function return to be of type i nt.

MP serial_loop

(SPARC) #pragma MP serial _| oop

Refer to Section 3.8.3.1, “Serial Pragmas” on page 3-22 for details.

MP serial _loop_nested

(SPARC) #pragma M serial _| oop_nested

Refer to Section 3.8.3.1, “Serial Pragmas” on page 3-22 for details.

MP taskloop

(SPARC) #pragma MP taskl oop

Refer to Section 3.8.3.2, “Parallel Pragma” on page 3-22 for details.

nomemorydepend

(SPARC) #pragma norenor ydepend

This pragma specifies that for any iteration of a loop, there are no memory
dependences. That is, within any iteration of a loop there are no references to the
same memory. This pragma will permit the compiler (pipeliner) to schedule
instructions, more effectively, within a single iteration of a loop. If any memory
dependences exist within any iteration of a loop, the results of executing the
program are undefined. The pragma applies to the next f or loop within the current
block. The compiler takes advantage of this information at optimization level of 3 or
above.

no_side_effect

(SPARC) #pragma no_si de_ef f ect (funcname[, funcname...])

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-15

2.8.17

2.8.18

funcname specifies the name of a function within the current translation unit. The
function must be declared with a prototype or empty parameter list prior to the
pragma. The pragma must be specified prior to the function’s definition. For the
named function, funcname, the pragma declares that the function has no side effects
of any kind. This means that funcname returns a result value that depends only on
the passed arguments. In addition, funcname and any called descendants:

= Do not access for reading or writing any part of the program state visible in the
caller at the point of the call.

= Do not perform 1/0.
= Do not change any part of the program state not visible at the point of the call.

The compiler can use this information when doing optimizations using the function.
If the function does have side effects, the results of executing a program which calls
this function are undefined. The compiler takes advantage of this information at
optimization level of 3 or above.

opt
#pragma opt level (funcname[, funcname])

funcname specifies the name of a function defined within the current translation unit.
The value of level specifies the optimization level for the named function. You can
assign optimization levels 0, 1, 2, 3, 4, 5. You can turn off optimization by setting
level to 0. The functions must be declared with a prototype or empty parameter list
prior to the pragma. The pragma must proceed the definitions of the functions to be
optimized.

The level of optimization for any function listed in the pragma is reduced to the
value of - xmaxopt . The pragma is ignored when - xmaxopt =of f .

pack

(SPARC) #pragnma pack(n)

Use #pragma pack(n) to affect member packing of a structure or a union. By
default, members of a structure or union are aligned on their natural boundaries;
one byte for a char, two bytes for a short, four bytes for an integer etc. If n is present,
it must be a power of 2 specifying the strictest natural alignment for any structure or
union member. Zero is not accepted.

2-16 C User's Guide « May 2003

2.8.19

You can use #pr agma pack(n) to specify an alignment boundary for a structure or
union member. For example, #pr agma. pack(2) aligns int, long, long long, float,
double, long double, and pointers on two byte boundaries instead of their natural
alignment boundaries.

If n is the same or greater than the strictest alignment on your platform, (four on
Intel, eight on SPARC v8, and 16 on SPARC Vv9), the directive has the effect of natural
alignment. Also, if n is omitted, member alignment reverts to the natural alignment
boundaries.

The #pragma pack(n) directive applies to all structure or union definitions which
follow it until the next pack directive. If the same structure or union is defined in
different translation units with different packing, your program may fail in
unpredictable ways. In particular, you should not use #pr agnma pack(n) prior to
including a header that defines the interface of a precompiled library. The
recommended usage of #pr agnma pack(n) is to place it in your program code
immediately before any structure or union to be packed. Follow the packed structure
immediately with #pr agma pack().

Note that when you use #pr agma pack, the alignment of the packed structure or
union itself is the same as its more strictly aligned member. Therefore any
declaration of that struct or union will be at the pack alignment. For example, a
struct with only chars has no alignment restrictions, whereas a struct containing a
double would be aligned on an 8-byte boundary.

Note — If you use #pr agma pack to align struct or union members on boundaries

other than their natural boundaries, accessing these fields may lead to a bus error on
SPARC. See Section A.3.102, “- xrremal i gn=ab” on page A-63, for the optimal way

to compile such programs.

pipeloop
(SPARC) #pragma pi pel oop(n)

This pragma accepts a positive constant integer value, or 0, for the argument n. This
pragma specifies that a loop is pipelineable and the minimum dependence distance
of the loop-carried dependence is n. If the distance is 0, then the loop is effectively a
Fortran-style doal | loop and should be pipelined on the target processors. If the
distance is greater than 0, then the compiler (pipeliner) will only try to pipeline n
successive iterations. The pragma applies to the next f or loop within the current
block. The compiler takes advantage of this information at optimization level of 3 or
above.

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-17

2.8.20

2.8.21

rarely called

#pragma rar el y_cal | ed(funcname[, funcname])

This pragma provides a hint to the compiler that the specified functions are called
infrequently. This allows the compiler to perform profile-feedback style
optimizations on the call-sites of such routines without the overhead of a
profile-collections phase. Since this pragma is a suggestion, the compiler may not
perform any optimizations based on this pragma.

The specified functions must be declared with a prototype or empty parameter list
prior to this pragma. The following is an example of #pragma rarel y_cal | ed:

extern void error (char *nessage);
#pragma rarely_cal l ed(error)

redefine_extname

#pragma redefi ne_ext name old_extname new_extname

This pragma causes every externally defined occurrence of the name old_extname in
the object code to be replaced by new_extname. As a result, the linker only sees the
name new_extname at link time. If #pr agma r edef i ne_ext nane is encountered
after the first use of old_extname, as a function definition, an initializer, or an
expression, the effect is undefined. (This pragma is not supported in —Xs mode.)

When #pragma redefi ne_ext nane is available, the compiler provides a
definition of the predefined macro PRAGVA REDEFI NE_EXTNAME, which lets you
write portable code that works both with and without #pr agnma

redef i ne_ext nane.

The purpose of #pr agna r edef i ne_ext nane is to allow an efficient means of
redefining a function interface when the name of the function cannot be changed.
For example, when the original function definition must be maintained in a library,
for compatibility with existing programs, along with a new definition of the same
function for use by new programs. This can be accomplished by adding the new

2-18 C User's Guide « May 2003

2.8.22

function definition to the library by a new name. Consequently, the header file that
declares the function uses #pr agma redefi ne_ext nane so that all of the uses of
the function are linked with the new definition of that function.

#if defined(__STDC_)

#ifdef __ PRAGVA REDEFI NE_EXTNAME

extern int myroutine(const long *, int *);

#pragma redefi ne_extname nyroutine __fixed_nyroutine
#el se /* __ PRAGVA_REDEFI NE_EXTNAME */

static int
nmyroutine(const long * argl, int * arg2)
{

extern int __nyroutine(const long *, int*);
return (__nyroutine(argl, arg2));

}
#endi f /* __ PRAGVA REDEFI NE_EXTNAVE */

#else /* __STDC__ */

#ifdef _ PRAGVA REDEFI NE_EXTNAME

extern int nyroutine();

#pragnma redefine_extnmae nyroutine __ fixed_nyroutine
#el se /* __PRAGMA REDEFI NE_EXTNAME */

static int
nmyroutine(argl, arg2)

| ong *argl;

int *arg2;
{

extern int __fixed_nyroutine();

return (__fixed_nyroutine(argl, arg2));
}

#endi f /* __ PRAGVA REDEFI NE_EXTNAVE */

#endif /* _ STDC__ */

returns_new_memory

#pragma returns_new nenory (funcname[, funcname])

This pragma asserts that the return value of the specified functions does not alias
with any memory at the call site. In effect, this call returns a new memory location.
This informations allows the optimizer to better track pointer values and clarify

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-19

2.8.23

2.8.24

memory location. This results in improved scheduling, pipelining, and
parallelization of loops. However, if the assertion is false, the behavior of the
program is undefined.

This pragma is permitted only after the specified functions are declared with a
prototype or empty parameter list as the following example shows:

voi d *mal | oc(unsi gned);
#pragnma returns_new_nmenory(nall oc)

unknown_control_flow

#pragma unknown_control _f | ow (funcname[, funcname])

In order to describe procedures that alter the flow graphs of their callers, the C
compiler provides the #pr agna unknown_cont r ol _f | owdirective. Typically, this
directive accompanies declarations of functions like set j np() . On Sun systems, the
include file <set j np. h> contains the following:

extern int setjnmp();
#pragma unknown_control _fl ow setj)

Other functions with properties like those of setj mp() must be declared similarly.

In principle, an optimizer that recognizes this attribute could insert the appropriate
edges in the control flow graph, thus handling function calls safely in functions that
call setj np(), while maintaining the ability to optimize code in unaffected parts of
the flow graph.

The specified functions must be declared with a prototype or empty parameter list
prior to this pragma.

unroll

(SPARC) #pragma unrol | (unroll_factor)

This pragma accepts a positive constant integer value for the argument unroll_factor.
The pragma applies to the next f or loop within the current block. For unroll factor
other than 1, this directive serves as a suggestion to the compiler that the specified
loop should be unrolled by the given factor. The compiler will, when possible, use

2-20 C User's Guide « May 2003

2.8.25

that unroll factor. When the unroll factor value is 1, this directive serves as a
command which specifies to the compiler that the loop is not to be unrolled. The
compiler takes advantage of this information at optimization level of 3 or above.

weak

#pragma weak symboll [= symbol2]

Defines a weak global symbol. This pragma is used mainly in source files for
building libraries. The linker does not produce an error message if it is unable to
resolve a weak symbol.

#pragma weak symbol

defines symbol to be a weak symbol. The linker does not produce an error message if
it does not find a definition for symbol.

#pragma weak symboll = symbol2

defines symboll to be a weak symbol, which is an alias for the symbol symbol2. This
form of the pragma can only be used in the same translation unit where symbol2 is
defined, either in the sourcefiles or one of its included headerfiles. Otherwise, a
compilation error will result.

If your program calls but does not define symboll, and symboll is a weak symbol in a
library being linked, the linker uses the definition from that library. However, if your
program defines its own version of symboll, then the program’s definition is used
and the weak global definition of symboll in the library is not used. If the program
directly calls symbol2, the definition from the library is used; a duplicate definition of
symbol2 causes an error.

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-21

2.9 Predefined Names

The following identifier is predefined as an object-like macro:

TABLE 2-3 Predefined ldentifier

Identifier Description

__STDC__ __ STDC__1-Xc
__STDC__ 0-Xa, - Xt
Not defined - Xs

The compiler issues a warning if __STDC__is undefined (#undef __ STDC).
__STDC__is not defined in - Xs mode.

Predefinitions (not valid in - Xc mode):

= Sun

= unix

= sparc (SPARC)
= i 386 (Intel)

The following predefinitions are valid in all modes:

= _ sSun

= __unix

= __ SUNPRO _C=0x550

__‘uname -s‘_‘unanme -r‘ (example: __SunCS 5 7)
__sparc (SPARC)

1386 (Intel)

__BUILTIN_VA ARG | NCR

__SVR4

= __sparcv9 (- Xarch=v9, v9a)

The compiler also predefines the object-like macro __ PRAGVA _REDEFI NE_EXTNAME
to indicate that the pragma will be recognized. The following is predefined in - Xa
and - Xt modes only:

__RESTRICT

2-22 CUser's Guide * May 2003

2.10

2.11

_Restrict Keyword

The C compiler supports the _Restri ct keyword as an equivalent to therestri ct
keyword in the C99 standard. The _Restri ct keyword is available with

- xc99=%one and - xc99=%al | , whereas the restrict keyword is only available
with - xc99=%al | .

For more information on supported C99 features, see Appendix D.

__asmKeyword
The _ _asmkeyword (note the initial double-underscore) is a synonym for the asm
keyword. If you use asm rather than _ _asm and compile in —Xc mode, the

compiler issues a warning. The compiler does not issue a warning if you use _ _asm
in —Xc mode. The _ _asmstatement has the form:

__asm("string") ;

where string is a valid assembly language statement. The _ _asmstatements must
appear within function bodies.

2.12

2.12.1

Environment Variables

This section lists the environment variables that let you control the compilation and
runtime environment.

OVP_DYNAM C

Enable or disable dynamic adjustment of the number of threads.

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-23

2.12.2

2.12.3

2.12.4

2.12.5

2.12.6

2.12.7

2.12.8

OVP_NESTED

Enable or disable nested parallelism.

OVP_NUM THREADS

Set the number of threads to use during execution.

OVP_SCHEDULE

Set the run-time schedule type and chunk size.

PARALLEL

(SPARC) Specifies the number of processors available to the program for
multiprocessor execution. If the target machine has multiple processors, the threads
can map to independent processors. Running the program leads to the creation of
two threads that execute the parallelized portions of the program.

SUN_PROFDATA

Controls the name of the file in which the - xpr of i | e=col | ect command stores
execution-frequency data.

SUN_PROFDATA DI R

Controls in which directory the - xprof i | e=col | ect command places the
execution-frequency data-file.

SUNPRO SB | NI T_FI LE_NAME

The absolute path name of the directory containing the . sbi ni t (5) file. This
variable is used only if the - xsb or - xsbf ast flag is used.

2-24 C User's Guide « May 2003

2.12.9

2.12.10

SUNW MP_THR | DLE

Controls end-of-task status of each helper thread and can be set to spi n ns, or
sl eep ns. The default is spi n. See the OpenMP API User’s Guide for details.

TMPDI R

cc normally creates temporary files in the directory / t np. You can specify another
directory by setting the environment variable TMPDI R to the directory of your
choice. However, if TMPDI R is not a valid directory, cc uses / t np. The - xt enp
option has precedence over the TMPDI R environment variable.

If you use a Bourne shell, type:

$ TWMPDI R=dir; export TMPDI R

If you use a C shell, type:

% set env TMPDI R dir

2.13

How to Specify Include Files

To include any of the standard header files supplied with the C compilation system,
use this format:

#i ncl ude <stdio. h>

The angle brackets (<>) cause the preprocessor to search for the header file in the
standard place for header files on your system, usually the / usr/i ncl ude
directory.

The format is different for header files that you have stored in your own directories:

#i ncl ude "header. h"

For statements of the form #i ncl ude "foo. h" (where quotation marks are used),
the compiler searches for include files in the following order:

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-25

2.13.1

1. The current directory (that is, the directory containing the “including” file)
2. The directories named with -1 options, if any
3. The /usr/incl ude directory

If your header file is not in the same directory as the source files that include it,
specify the path of the directory in which it is stored with the —I option to cc.
Suppose, for instance, that you have included both st di 0. h and header. h in the
source file nycode. c:

#i ncl ude <stdi o. h>
#i ncl ude "header. h"

Suppose further that header . h is stored in the directory. . / def s. The command:

%cc —l../defs nycode.c

directs the preprocessor to search for header . h first in the directory containing
nycode. c, then in the directory . . / def s, and finally in the standard place. It also
directs the preprocessor to search for st di 0. h firstin . . / def s, then in the
standard place. The difference is that the current directory is searched only for
header files whose names you have enclosed in quotation marks.

You can specify the —I option more than once on the cc command-line. The
preprocessor searches the specified directories in the order they appear. You can
specify multiple options to cc on the same command-line:

% cc —o prog —-l../defs nycode.c

Using the - | - Option to Change the Search
Algorithm

The new - | - option gives more control over the default search rules. When - | -
appears in the command line;

= The compiler never searches the current directory, unless the directory is listed
explicitly in a -1 directive. This effect applies even for include statements of the
form #i ncl ude "foo.h".

= For include statements of the form #i ncl ude " f 0o. h", the compiler searches for
include files in the following order:

2-26 C User's Guide May 2003

a. The directories named with -1 options (both before and after - I -)

b. The / usr/i ncl ude directory

= For include statements of the form #i ncl ude <f 0o. h>, the compiler searches
for include files in the following order:

a. The directories named with - | that appear after - | - (that is, the compiler does
not search the -1 directories that appear before -1 -)

b. The / usr/i ncl ude directory

The following example shows the results of using - 1 - when compiling pr og. c.

prog.c #i nclude "a.h"
#i ncl ude <b. h>
#i nclude "c.h"

c.h #ifndef CHI1
#define _CH1
int cl;

#endi f

int/a.h #i fndef _A H

#define _A H
#include "c. h"
int a;

#endi f

int/b.h #ifndef B H
#define _B H
#i ncl ude <c. h>
int b;

#endi f

int/c.h #ifndef _CH2
#define CH 2
int c2;

#endi f

The following command shows the default behavior of searching the current
directory (the directory of the including file) for include statements of the form

#i ncl ude "f 0o. h". When processing the #i ncl ude "c. h" statementini nc/ a. h,
the preprocessor includes the c. h header file from the i nc subdirectory. When

Chapter 2 C-Compiler Information Specific to Sun’s Implementation 2-27

2-28

processing the #i ncl ude "c. h" statement in pr og. c, the preprocessor includes the
c. h file from the directory containing pr og. c. Note that the - Hoption instructs the
compiler to print the paths of the included files.

example% cc -c -linc -H prog.c
inc/a.h
inc/c.h
inc/b.h
inc/c.h
c.h
The next command shows the effect of the - | - option. The preprocessor does not

look in the including directory first when it processes statements of the form

#i ncl ude "foo. h". Instead, it searches the directories named by the -1 options in
the order that they appear in the command line. When processing the

#i ncl ude "c. h" statement in i nc/ a. h, the preprocessor includes the ./ c. h
header file instead of the i nc/ c. h header file.

example%cc -c -1. -1- -linc -H prog.c
inc/a.h
./c.h
inc/b.h
inc/c.h
./lc.h
For more information, see Section A.3.31, “- 1 [- | dir]” on page A-23.

C User’s Guide May 2003

CHAPTER 3

Parallelizing Sun C Code

The Sun C compiler can optimize code to run on SPARC shared-memory
multiprocessor machines. The process is called parallelizing. The compiled code can
execute in parallel using the multiple processors on the system. This chapter
explains how you can take advantage of the compiler’s parallelizing features.

3.1

3.1.1

Overview

The C compiler generates parallel code for those loops that it determines are safe to
parallelize. Typically, these loops have iterations that are independent of each other.
For such loops, it does not matter in what order the iterations are executed or if they
are executed in parallel. Many, though not all, vector loops fall into this category.

Because of the way aliasing works in C, it is difficult to determine the safety of
parallelization. To help the compiler, Sun C offers pragmas and additional pointer
gualifications to provide aliasing information known to the programmer that the
compiler cannot determine. See “Type-Based Alias Analysis” on page 6-1 for more
information.

Example of Use

The following example illustrates how to enable and control parallelized C:

%cc -fast -xO4 -xautopar exanple.c -o exanple

This generates an executable called exanpl e, which can be executed normally. If
you wish to take advantage of multiprocessor execution, see Section A.3.65,
“- xaut opar ” on page A-39.

3-1

3.2 Parallelizing for OpenMP

You can compile your code so that it complies with the OpenMP specification. For
more information on the OpenMP specification for C, visit the web site at
http: // ww. opennp. or g/ specs/ .

To take advantage of the compiler’s OpenMP support, you need to issue the
compiler’s - xopennp option. See Section A.3.107, “- xopennp[=i]” on page A-69.

3.2.1 Handling OpenMP Runtime Warnings

The OpenMP runtime system can issue warnings for non-fatal errors. Use the
following function to register a call back function to handle these warnings:

int sunw_np_register_warn(void (*func) (void *))

You can access the prototype for this function by issuing a #i ncl ude preprocessor
directive for <sunw_np_mi sc. h>.

If you do not want to register a function, set the environment variable
SUNW MP_WARN to TRUE and the warning messages are sent to st der r. For more
information on SUNW MP_WARN, see “SUNW MP_WARN” on page 3-4.

For information specific to this implementation of OpenMP, see Appendix G.

3.3 Environment Variables

There are four environment variables that relate to parallelized C:
=« PARALLEL

= SUNW MP_THR I DLE

= SUNW MP_WARN

= STACKSI ZE

3-2 CUser's Guide « May 2003

PARALLEL

Set the PARALLEL environment variable if you can take advantage of multiprocessor
execution. The PARALLEL environment variable specifies the number of processors
available to the program. The following example shows that PARALLEL is set to two:

% set env PARALLEL 2

If the target machine has multiple processors, the threads can map to independent
processors. Running the program leads to the creation of two threads that execute
the parallelized portions of the program.

SUNW MP_THR_| DLE

Currently, the starting thread of a program creates bound threads. Once created,
these bound threads participate in executing the parallel part of a program (parallel
loop, parallel region, etc.) and keep spin-waiting while the sequential part of the
program runs. These bound threads never sleep or stop until the program
terminates. Having these threads spin-wait generally gives the best performance
when a parallelized program runs on a dedicated system. However, threads that are
spin-waiting use system resources.

Use the SUNW MP_THR_| DLE environment variable to control the status of each
thread after it finishes its share of a parallel job.

% set env. SUNW MP_THR | DLE value

You can substitute either spi n or sl eep[n s|n ns] for value. The default is spi n,
which means the thread should spin (or busy-wait) after completing a parallel task,
until a new parallel task arrives.

The other choice, sl eep[n s |n ns] puts the thread to sleep after spin-waiting n
units. The wait unit can be seconds (s, the default unit) or milliseconds (rs), where
1s means one second, and 10ms means ten milliseconds. sl eep with no arguments
puts the thread to sleep immediately after completing a parallel task. sl eep,

sl eep0, sl eep0Os, and sl eepOns are all equivalent.

If a new job arrives before n units is reached, the thread stops spin-waiting and
starts doing the new job. If SUNW MP_THR | DLE contains an illegal value or isn’t set,
spi n is used as the default.

Chapter 3 Parallelizing Sun C Code 3-3

SUNW MP_WARN

Set this environment variable to TRUE to print warning messages from OpenMP and
other parallelization runtime-systems.

% set env. SUNW MP_WARN TRUE

If you registered a function by using sunw_np_r egi st er _war n() to handle
warning messages, then SUNW MP_WARN prints no warning messages, even if you set
it to TRUE. If you did not register a function and set SUNW MP_WARN to TRUE,
SUNW MP_WARN prints the warning messages to st der r. If you do not register a
function and you do not set SUNW MP_WARN, no warning messages are issued. For
more information on sunw_np_r egi st er _war n() see Section 3.2.1, “Handling
OpenMP Runtime Warnings” on page 3-2.

STACKSI ZE

The executing program maintains a main memory stack for the master thread and
distinct stacks for each slave thread. Stacks are temporary memory address spaces
used to hold arguments and automatic variables over subprogram invocations.

The default size of the main stack is about eight megabytes. Use the | i mi t
command to display the current main stack size as well as set it.

%limt

cputinme unlimted

filesize unlimted

dat asi ze 2097148 kbytes

st acksi ze 8192 kbytes <- current main stack size
coredunpsi ze 0 kbytes

descriptors 256

menorysi ze unlimted

%limt stacksize 65536 <-setmain stack to 64Mb

Each slave thread of a multithreaded program has its own thread stack. This stack
mimics the main stack of the master thread but is unique to the thread. The thread’s
private arrays and variables (local to the thread) are allocated on the thread stack.

All slave threads have the same stack size, which is four megabytes for 32-bit
applications and eight megabytes for 64-bit applications by default. The size is set
with the STACKSI ZE environment variable:

% set env STACKSI ZE 16483 <- Set thread stack size to 16 M

3-4 C User's Guide « May 2003

3.3.0.1

Setting the thread stack size to a value larger than the default may be necessary for
some parallelized code.

Sometimes the compiler may generate a warning message that indicates a bigger
stack size is needed. However, it may not be possible to know just how large to set
it, except by trial and error, especially if private/local arrays are involved. If the
stack size is too small for a thread to run, the program will abort with a
segmentation fault.

Keyword

The keyword restri ct can be used with parallelized C. The proper use of the
keyword restrict helps the optimizer in understanding the aliasing of data required
to determine if a code sequence can be parallelized. Refer to “C99 Keywords” on
page D-8 for details.

3.4

Data Dependence and Interference

The C compiler performs analysis on loops in programs to determine if it is safe to
execute different iterations of the loops in parallel. The purpose of this analysis is to
determine if any two iterations of the loop could interfere with each other. Typically
this happens if one iteration of a variable could read a variable while another
iteration is writing the very same variable. Consider the following program
fragment:

CODE EXAMPLE 3-1 A Loop With Dependence

for (i=1; 1T < 1000; i++) {
sum = sum+ af[i]; /* S1 */

}

In CODE EXAMPLE 3-1 any two successive iterations, i and i +1, will write and read
the same variable sum Therefore, in order for these two iterations to execute in
parallel some form of locking on the variable would be required. Otherwise it is not
safe to allow the two iterations to execute in parallel.

Chapter 3 Parallelizing Sun C Code 3-5

3-6

However, the use of locks imposes overhead that might slowdown the program. The
C compiler will not ordinarily parallelize the loop in CODE EXAMPLE 3-1. In

CODE EXAMPLE 3-1 there is a data dependence between two iterations of the loop.
Consider another example:

CODE EXAMPLE 3-2 A Loop Without Dependence

for (i=1; 7 < 1000; i++) {
a[i] =2 * a[i]; /* S1 */

}

In this case each iteration of the loop references a different array element. Therefore
different iterations of the loop can be executed in any order. They may be executed
in parallel without any locks because no two data elements of different iterations can
possibly interfere.

The analysis performed by the compiler to determine if two different iterations of a
loop could reference the same variable is called data dependence analysis. Data
dependences prevent loop parallelization if one of the references writes to the
variable. The dependence analysis performed by the compiler can have three
outcomes:

= There is a dependence. In this case, it is not safe to execute the loop in parallel.
CODE EXAMPLE 3-1 illustrates this case.

= There is no dependence. The loop may safely execute in parallel using an
arbitrary number of processors. CODE EXAMPLE 3-2 illustrates this case.

= The dependence cannot be determined. The compiler assumes, for safety, that
there might be a dependence that prevents parallel execution of the loop and will
not parallelize the loop.

In CODE EXAMPLE 3-3, whether or not two iterations of the loop write to the same
element of array a depends on whether or not array b contains duplicate elements.
Unless the compiler can determine this fact, it assumes there is a dependence and
does not parallelize the loop.

CODE EXAMPLE 3-3 A Loop That May or May Not Contain Dependencies

for (1=1; 1 < 1000; i++) {
a[b[i]] =2~ a[i];

}

C User’s Guide * May 2003

34.1

Parallel Execution Model

The parallel execution of loops is performed by Solaris threads. The thread starting
the initial execution of the program is called the master thread. At program start-up
the master thread creates multiple slave threads as shown in the following figure. At
the end of the program all the slave threads are terminated. Slave thread creation is
performed exactly once to minimize the overhead.

Master Thread

Master Thread

\

Slave Threads

FIGURE 3-1 Master and Slave Threads

After start-up, the master thread starts the execution of the program while slave
threads wait idly. When the master thread encounters a parallel loop, different
iterations of the loop are distributed among the slave and master threads which start
the execution of the loop. After each thread finishes execution of its chunk it
synchronizes with the remaining threads. This synchronization point is called a
barrier. The master thread cannot continue executing the remainder of the program
until all the threads have finished their work and reached the barrier. The slave
threads go into a wait state after the barrier waiting for more parallel work, and the
master thread continues to execute the program.

During this process, various overheads can occur:

= The overhead of synchronization and work distribution
= The overhead of barrier synchronization

In general, there may be some parallel loops for which the amount of useful work
performed is not enough to justify the overhead. For such loops, there may be
appreciable slowdown. In the following figure, a loop is parallelized. However the
barriers, represented by horizontal bars, introduce significant overhead. The work
between the barriers is performed serially or in parallel as indicated. The amount of
time required to execute the loop in parallel is considerably less than the amount of
time required to synchronize the master and slave threads at the barriers.

Chapter 3 Parallelizing Sun C Code 3-7

Master Thread

Time Slave Threads
| | | Serial 1

|
| | [[| Parallel 1
| I | | | Serial 2

| | | | Parallel 2
| |

+ * * * Serial 3

FIGURE 3-2 Parallel Execution of a Loop

3.4.2 Private Scalars and Private Arrays

There are some data dependences for which the compiler may still be able to
parallelize a loop. Consider the following example.

CODE EXAMPLE 3-4 A Parallelizable Loop With Dependence

for (i=1; 7 < 1000; i++ {
t =2* alil; /* S1 */
b[i] =t; [* S2 */

}

In this example, assuming that arrays a and b are non-overlapping arrays, there
appears to be a data dependence in any two iterations due to the variable t . The
following statements execute during iterations one and two.

CODE EXAMPLE 3-5 Iterations One and Two

T = 2Fa[1]; 7% 1 */
b[1] = t; [* 2 %]
t = 2¥a[2]; /* 3 */
b[2] =t; [* 4 %]

Because statements one and three modify the variable t , the compiler cannot execute
them in parallel. However, the value of t is always computed and used in the same
iteration so the compiler can use a separate copy of t for each iteration. This

3-8 C User's Guide « May 2003

eliminates the interference between different iterations due to such variables. In
effect, we have made variable t as a private variable for each thread executing that
iteration. This can be illustrated as follows:

CODE EXAMPLE 3-6 Variable t as a Private Variable for Each Thread

for (i=1; i < 1000; i++) {
pt[i] =2 * al[i]; /* S1 */
b[i] = pt[i]; /* S2 */

}

CODE EXAMPLE 3-6 is essentially the same example as CODE EXAMPLE 3-3, but each
scalar variable reference t is now replaced by an array reference pt . Each iteration
now uses a different element of pt, and this results in eliminating any data
dependencies between any two iterations. Of course one problem with this
illustration is that it may lead to an extra large array. In practice, the compiler only
allocates one copy of the variable for each thread that participates in the execution of
the loop. Each such variable is, in effect, private to the thread.

The compiler can also privatize array variables to create opportunities for parallel
execution of loops. Consider the following example:

CODE EXAMPLE 3-7 A Parallelizable Loop With an Array Variable

for (i=1; i < 1000; i++) {
for (j=1; j < 1000; j++) {
x[j] =2 * a[i]; /* S1 */
blil[i] = x[jl; [* S2 %/

}

In CODE EXAMPLE 3-7, different iterations of the outer loop modify the same elements
of array x, and thus the outer loop cannot be parallelized. However, if each thread
executing the outer loop iterations has a private copy of the entire array x, then there
would be no interference between any two iterations of the outer loop. This is
illustrated as follows:

CODE EXAMPLE 3-8 A Parallelizable Loop Using a Privatized Array

for (i=1; 1T < 1000; i++) {
for (j=1; j < 1000; j++) {
px[i][j] =2 * a[i]; /* S1 */
blil[j] = px[i]1[j]; [* S2 */

Chapter 3 Parallelizing Sun C Code 3-9

3.4.3

As in the case of private scalars, it is not necessary to expand the array for all the
iterations, but only up to the number of threads executing in the systems. This is
done automatically by the compiler by allocating one copy of the original array in
the private space of each thread.

Storeback

Privatization of variables can be very useful for improving the parallelism in the
program. However, if the private variable is referenced outside the loop then the
compiler needs to assure that it has the right value. Consider the following example:

CODE EXAMPLE 3-9 A Parallelized Loop Using Storeback

for (i=1; i < 1000; i++) {
t =2* a[i]; /[* S1 */
b[i] =t; /* S2 */
}
X = t; /* S3 */

In CODE EXAMPLE 3-9 the value of t referenced in statement S3 is the final value of t
computed by the loop. After the variable t has been privatized and the loop has
finished executing, the right value of t needs to be stored back into the original
variable. This is called storeback. This is done by copying the value of t on the final
iteration back to the original location of variable t . In many cases the compiler can
do this automatically. But there are situations where the last value cannot be
computed so easily:

CODE EXAMPLE 3-10 A Loop That Cannot Use Storeback

for (i=1; 1T < 1000; i++) {
if (c[i]l > x[i]) { /* C1 */
t =2 * ali]; /[* S1 */
b[i] =t; [* S2 */
}
}
X = t*t; /* S3 */

For correct execution, the value of t in statement S3 is not, in general, the value of t
on the final iteration of the loop. It is in fact the last iteration for which the condition
C1 is true. Computing the final value of t is quite hard in the general cases. In cases
like this the compiler will not parallelize the loop.

3-10 C User’'s Guide » May 2003

3.4.4

Reduction Variables

There are cases when there is a real dependence between iterations of a loop and the
variables causing the dependence cannot simply be privatized. This can arise, for
example, when values are being accumulated from one iteration to the next.

CODE EXAMPLE 3-11 A Loop That May or May Not Be Parallelized

for (1=1; i < 1000; i++) {
sum += a[i]*b[i]; /* S1 */

}

In CODE EXAMPLE 3-11, the loop computes the vector product of two arrays into a
common variable called sum This loop cannot be parallelized in a simple manner.
The compiler can take advantage of the associative nature of the computation in
statement S1 and allocate a private variable called psunf i] for each thread. Each
copy of the variable psuni i] is initialized to 0. Each thread computes its own
partial sum in its own copy of the variable psuni i] . Before crossing the barrier, all
the partial sums are added onto the original variable sum In this example, the
variable sumis called a reduction variable because it computes a sum-reduction.
However, one danger of promoting scalar variables to reduction variables is that the
manner in which rounded values are accumulated can change the final value of sum
The compiler performs this transformation only if you specifically give permission
for it to do so.

3.5

Speedups

If the compiler does not parallelized a portion of a program where a significant
amount of time is spent, then no speedup occurs. This is basically a consequence of
Amdahls Law. For example, if a loop that accounts for five percent of the execution
time of a program is parallelized, then the overall speedup is limited to five percent.
However, there may not be any improvement depending on the size of the workload
and parallel execution overheads.

As a general rule, the larger the fraction of program execution that is parallelized,
the greater the likelihood of a speedup.

Each parallel loop incurs a small overhead during start-up and shutdown. The start
overhead includes the cost of work distribution, and the shutdown overhead
includes the cost of the barrier synchronization. If the total amount of work
performed by the loop is not big enough then no speedup will occur. In fact the loop

Chapter 3 Parallelizing Sun C Code 3-11

3.5.1

might even slow down. So if a large amount of program execution is accounted by a
large number of short parallel loops, then the whole program may slow down
instead of speeding up.

The compiler performs several loop transformations that try to increase the
granularity of the loops. Some of these transformations are loop interchange and
loop fusion. So in general, if the amount of parallelism in a program is small or is
fragmented among small parallel regions, then the speedup is less.

Often scaling up a problem size improves the fraction of parallelism in a program.

For example, consider a problem that consists of two parts: a quadratic part that is

sequential, and a cubic part that is parallelizable. For this problem the parallel part
of the workload grows faster than the sequential part. So at some point the problem
will speedup nicely, unless it runs into resource limitations.

It is beneficial to try some tuning, experimentation with directives, problem sizes
and program restructuring in order to achieve benefits from parallel C.

Amdahl’s Law

Fixed problem-size speedup is generally governed by Amdahl’s law. Amdahl’s Law
simply says that the amount of parallel speedup in a given problem is limited by the
sequential portion of the problem.The following equation describes the speedup of a
problem where F is the fraction of time spent in sequential region, and the remaining
fraction of the time is spent uniformly among P processors. If the second term of the
equation drops to zero, the total speedup is bounded by the first term, which
remains fixed.

The following figure illustrates this concept diagrammatically. The darkly shaded
portion represents the sequential part of the program, and remains constant for one,
two, four, and eight processors, while the lightly shaded portion represents the
parallel portion of the program that can be divided uniformly among an arbitrary
number of processors.

3-12 C User’'s Guide * May 2003

3511

NN
N\\\N\

v,
4 8

FIGURE 3-3 Fixed Problem Speedups

P 1 2

In reality, however, you may incur overheads due to communication and
distribution of work to multiple processors. These overheads may or may not be
fixed for arbitrary number of processors used.

FIGURE 3-4 illustrates the ideal speedups for a program containing 0%, 2%, 5%, and
10% sequential portions. Here, no overhead is assumed.

8.00 0%
] A 2
6.00— 5%
= é// 10%

4.00

=i

2.00
]

0.00

[EnY

2 3 4 5 6 7 8

FIGURE 3-4 Amdahl’s Law Speedup Curve

Overheads

Once the overheads are incorporated in the model the speedup curves change
dramatically. Just for the purposes of illustration we assume that overheads consist
of two parts: a fixed part which is independent of the number of processors, and a
non-fixed part that grows quadratically with the number of the processors used:

Chapter 3 Parallelizing Sun C Code 3-13

3-14

_ 1
F+%l—5%+ K, +K,P?

0nik

In this equation, K, and K, are some fixed factors. Under these assumptions the
speedup curve is shown in the following figure. It is interesting to note that in this
case the speedups peak out. After a certain point adding more processors is
detrimental to performance as shown in the following figure.

2.50
— Iy
—
2.00 L ! 5%
: — T—110%
— / ——————15%
20%
1.50 /
1.00 —
0.50
0.00
1 2 3 4 5 6 7 8

FIGURE 3-5 Speedup Curve With Overheads

C User’s Guide May 2003

3512

Gustafson’s Law

Amdahls Law can be misleading for predicting parallel speedups in real problems.
The fraction of time spent in sequential sections of the program sometimes depends
on the problem size. That is, by scaling the problem size, you may improve the
chances of speedup. The following example demonstrates this.

CODE EXAMPLE 3-12 Scaling the Problem Size May Improve Chances of Speedup

/*
* initialize the arrays
*/
for (i=0; i < n; i++) {
for (j=0; j < n; j++) {
a[i][j] = 0.0;
b[i][j] =
c[illj] =
}
}
/*
*matrix nmultiply
*/
for (i=0; i <n; i++) {
for(j=0; j < n; j++) {
for (k=0; k < n; k++) {
ali][j] = bli][kl*c[KI[]];
}
}

Assume an ideal overhead of zero and assume that only the second loop nest is
executed in parallel. It is easy to see that for small problem sizes (i.e. small values of
n), the sequential and parallel parts of the program are not so far from each other.
However, as n grows larger, the time spent in the parallel part of the program grows
faster than the time spent in the sequential part. For this problem, it is beneficial to
increase the number of processors as the problem size increases.

3.6

Load Balance and Loop Scheduling

Loop scheduling is the process of distributing iterations of a parallel loop to multiple
threads. In order to maximize the speedup, it is important that the work be
distributed evenly among the threads while not imposing too much overhead. The
compiler offers several types of scheduling for different situations.

Chapter 3 Parallelizing Sun C Code 3-15

3.6.1

3.6.2

3.6.3

Static or Chunk Scheduling

It is beneficial to divide the work evenly among the different threads on the system
when the work performed by different iterations of a loop is the same. This
approach is known as static scheduling.

CODE EXAMPLE 3-13 A Good Loop for Static Scheduling

for (1=1; i < 1000; i++) {
sum += a[i]*b[i]; [* S1 */

}

Under static or chunk scheduling, each thread will get the same number of
iterations. If there were 4 threads, then in the above example, each thread will get
250 iterations. Provided there are no interruptions and each thread progresses at the
same rate, all the threads will complete at the same time.

Self Scheduling

Static scheduling will not achieve good load balance, in general, when the work
performed by each iteration varies. In static scheduling, each thread grabs the same
chunk of iterations. Each thread, except the master thread, upon completion of its
chunk waits to participate in the next parallel loop execution. The master thread
continues execution of the program. In self scheduling, each thread grabs a different
small chunk of iteration and after completion of its assigned chunk, tries to acquire
more chunks from the same loop.

Guided Self Scheduling

In guided self scheduling (GSS), each thread gets successively smaller number of
chunks. In cases where the size of each iteration varies, GSS can help balance the
load.

3.7

Loop Transformations

The compiler performs several loop restructuring transformations to help improve
the parallelization of a loop in programs. Some of these transformations can also
improve the single processor execution of loops as well. The transformations
performed by the compiler are described below.

3-16 C User’'s Guide * May 2003

3.7.1

3.7.2

Loop Distribution

Often loops contain a few statements that cannot be executed in parallel and many
statements that can be executed in parallel. Loop Distribution attempts to remove
the sequential statements into a separate loop and gather the parallelizable
statements into a different loop. This is illustrated in the following example:

CODE EXAMPLE 3-14 A Candidate for Loop Distribution

for (1=0; i <n; i++) {
x[i] = y[i] + z[i]l*Wi]; [* S1 */
a[i+1] = (a[i-1] + a[i] + a[i+1]/3.0; [* S2 */
y[i] = z[i] - x[i]; [* S3 */
}

Assuming that arrays X, y, W a, and z do not overlap, statements S1 and S3 can be
parallelized but statement S2 cannot be. Here is how the loop looks after it is split or
distributed into two different loops:

CODE EXAMPLE 3-15 The Distributed Loop

[* L1: parallel Toop */

for (i=0; i <n; i++) {
x[i] = y[i] + z[i]l*Wi]; [* S1 */
yl[il = z[i] - x[i]; /* S3 */
}
/* L2: sequential |oop */
for (i=0; i <n; i++) {

a[i+1] = (a[i-1] + a[i] + a[i+1]/3.0; /* S2 */
}

After this transformation, loop L1 does not contain any statements that prevent the
parallelization of the loop and may be executed in parallel. Loop L2, however, still
has a non-parallelizable statement from the original loop.

Loop distribution is not always profitable or safe to perform. The compiler performs
analysis to determine the safety and profitability of distribution.

Loop Fusion

If the granularity of a loop, or the work performed by a loop, is small, the
performance gain from distribution may be insignificant. This is because the
overhead of parallel loop start-up is too high compared to the loop workload. In
such situations, the compiler uses loop fusion to combine several loops into a single

Chapter 3 Parallelizing Sun C Code 3-17

3-18

parallel loop, and thus increase the granularity of the loop. Loop fusion is easy and
safe when loops with identical trip counts are adjacent to each other. Consider the
following example:

CODE EXAMPLE 3-16 Loops With Small Work Loads

[* L1: short parallel lToop */
for (i=0; i < 100; i++) {
a[i] = a[i] + b[i]; [* S1 */
}
/* L2: another short parallel |oop */
for (i=0; i < 100; i++) {
b[i]l] = al[i] * d[i]; [* S2 */

}

The two short parallel loops are next to each other, and can be safely combined as
follows:

CODE EXAMPLE 3-17 The Two Loops Fused

[* L3: a larger parallel Toop */

for (i=0; i < 100; i++) {
a[i] = a[i] + b[i]; [* S1 */
bli] afi]l * d[i]; [* S2 */

}

The new loop generates half the parallel loop execution overhead. Loop fusion can
also help in other ways. For example if the same data is referenced in two loops,
then combining them can improve the locality of reference.

However, loop fusion is not always safe to perform. If loop fusion creates a data
dependence that did not exist before then the fusion may result in incorrect
execution. Consider the following example:

CODE EXAMPLE 3-18 Unsafe Fusion Candidates

[* L1: short parallel Toop */
for (i=0; i < 100; i++) {
a[i] = a[i] + b[i]; /* S1 */
}
/* L2: a short loop with data dependence */
for (i=0; i < 100; i++) {
a[i+1] = a[i] * d[i]; [* S2 */
}

C User’s Guide May 2003

3.7.3

If the loops in CODE EXAMPLE 3-18 are fused, a data dependence is created from
statement S2 to S1. In effect, the value of a[i] in the right hand side of statement S1
is computed in statement S2. If the loops are not fused, this would not happen. The
compiler performs safety and profitability analysis to determine if loop fusion
should be done. Often, the compiler can fuse an arbitrary number of loops.
Increasing the granularity in this manner can sometimes push a loop far enough up
for it to be profitable for parallelization.

Loop Interchange

It is generally more profitable to parallelize the outermost loop in a nest of loops,
since the overheads incurred are small. However, it is not always safe to parallelize
the outermost loops due to dependences that might be carried by such loops. This is
illustrated in the following:

CODE EXAMPLE 3-19 Nested Loop That Cannot Be Parallelized

for (1=0; 1 <n; i++) {
for (j=0; j <n; j++) {
a[j][i+1] = 2.0%a[j][i-1]

}

In this example, the loop with the index variable i cannot be parallelized, because of
a dependency between two successive iterations of the loop. The two loops can be
interchanged and the parallel loop (the j -loop) becomes the outer loop:

CODE EXAMPLE 3-20 The Loops Interchanged

for (j=0; j<n; J++) {
for (i=0; i<n; i++) {
} a[j][i+1] = 2.0%a[j][i-1]

}

The resulting loop incurs an overhead of parallel work distribution only once, while
previously, the overhead was incurred n times. The compiler performs safety and
profitability analysis to determine whether to perform loop interchange.

Chapter 3 Parallelizing Sun C Code 3-19

3.8

3.8.1

Aliasing and Parallelization

ISO C aliasing can often prevent loops from getting parallelized. Aliasing occurs
when there are two possible references to the same memory location. Consider the
following example:

CODE EXAMPLE 3-21 A Loop With Two References to the Same Memory Location

void copy(flToat a[], float B[], int n) {
int i;
for (i=0; i <

ali]

n; i++) {
b[i]; /* SL */
}

}

Since variables a and b are parameters, it is possible that a and b may be pointing to
overlapping regions of memory; e.g, if copy were called as follows:

copy (x[10], x[11], 20);

In the called routine, two successive iterations of the copy loop may be reading and
writing the same element of the array x. However, if the routine copy were called as
follows then there is no possibility of overlap in any of the 20 iterations of the loop:

copy (x[10], x[40], 20);

In general, it is not possible for the compiler to analyze this situation correctly
without knowing how the routine is called. The compiler provides a keyword
extension to ISO C that lets you convey this kind of aliasing information. See
Section 3.8.2, “Restricted Pointers” on page 3-21 for more information.

Array and Pointer References

Part of the aliasing problem is that the C language can define array referencing and
definition through pointer arithmetic. In order for the compiler to effectively
parallelize loops, either automatically or explicitly with pragmas, all data that is laid
out as an array must be referenced using C array reference syntax and not pointers.
If pointer syntax is used, the compiler cannot determine the relationship of the data
between different iterations of a loop. Thus it will be conservative and not
parallelize the loop.

3-20 C User’'s Guide » May 2003

3.8.2

Restricted Pointers

In order for a compiler to effectively perform parallel execution of a loop, it needs to
determine if certain lvalues designate distinct regions of storage. Aliases are Ivalues
whose regions of storage are not distinct. Determining if two pointers to objects are
aliases is a difficult and time consuming process because it could require analysis of
the entire program. Consider function vsq() below:

CODE EXAMPLE 3-22 A Loop With Two Pointers

voi d vsq(int n, double * a, double * b) {
int i;
for (i=0; i<n; i++) {
bli] =afi] * a[i];
}

}

The compiler can parallelize the execution of the different iterations of the loops if it
knows that pointers a and b access different objects. If there is an overlap in objects
accessed through pointers a and b then it would be unsafe for the compiler to
execute the loops in parallel. At compile time, the compiler does not know if the
objects accessed by a and b overlap by simply analyzing the function vsq() ; the
compiler may need to analyze the whole program to get this information.

Restricted pointers are used to specify pointers which designate distinct objects so
that the compiler can perform pointer alias analysis. The following is an example of
function vsq() in which function parameters are declared as restricted pointers:

void vsq(int n, double * restrict a, double * restrict b)

Pointers a and b are declared as restricted pointers, so the compiler knows that a
and b point to distinct regions of storage. With this alias information, the compiler is
able to parallelize the loop.

The keyword restri ct is a type-qualifier, like vol ati | e, and it shall only qualify
pointer types. restri ct is recognized as a keyword when you use - xc99=%al |
(except with - Xs). There are situations in which you may not want to change the
source code. You can specify that pointer-valued function-parameters be treated as
restricted pointers by using the following command line option:

-xrestrict=[funcl, .., funcn]

Chapter 3 Parallelizing Sun C Code 3-21

3.8.3

3.8.3.1

3.8.3.2

If a function list is specified, then pointer parameters in the specified functions are
treated as restricted; otherwise, all pointer parameters in the entire C file are treated
as restricted. For example, - xr est ri ct =vsq, qualifies the pointers a and b given in
the first example of the function vsq() with the keyword restri ct.

It is critical that you use restri ct correctly. If pointers qualified as restricted
pointers point to objects which are not distinct, the compiler can incorrectly
parallelize loops resulting in undefined behavior. For example, assume that pointers
a and b of function vsq() point to objects which overlap, such that b[i] and

a[i +1] are the same object. If a and b are not declared as restricted pointers the
loops will be executed serially. If a and b are incorrectly qualified as restricted
pointers the compiler may parallelize the execution of the loops, which is not safe,
because b[i +1] should only be computed after b[i] is computed.

Explicit Parallelization and Pragmas

Often, there is not enough information available for the compiler to make a decision
on the legality or profitability of parallelization. Sun ISO C supports pragmas that
allow the programmer to effectively parallelize loops that otherwise would be too
difficult or impossible for the compiler to handle.

Serial Pragmas

There are two serial pragmas, and both apply to f or loops:
= #pragma MP serial _| oop
= #pragma MP serial _| oop_nested

The #pragna MP seri al _| oop pragma indicates to the compiler that the next f or
loop is not to be automatically parallelized.

The #pragnma MP seri al _| oop_nest ed pragma indicates to the compiler that the
next f or loop and any f or loops nested within the scope of this f or loop are not to
be automatically parallelized. The scope of the seri al _| oop_nest ed pragma does
not extend beyond the scope of the loop to which it applies.

Parallel Pragma
There is one parallel pragma: #pragma M t askl oop [options] .

The MP t askl oop pragma can, optionally, take one or more of the following
arguments.

= maxcpus (number_of processors)
= private (list_of_private_variables)

3-22 C User’'s Guide » May 2003

= shar ed (list_of_shared_variables)

= readonly (list_of readonly variables)

= storeback (list_of_storeback_variables)
= savel ast

= reduction (list_of_reduction_variables)
= schedt ype (scheduling_type)

Only one option can be specified per MP t askl oop pragma; however, the pragmas
are cumulative and apply to the next f or loop encountered within the current block
in the source code:

#pragma MP t askl oop maxcpus(4)
#pragma MP t askl oop shared(a, b)
#pragma MP t askl oop storeback(x)

These options may appear multiple times prior to the f or loop to which they apply.
In case of conflicting options, the compiler will issue a warning message.

Nesting of f or Loops

An MP t askl oop pragma applies to the next f or loop within the current block.
There is no nesting of parallelized f or loops by parallelized C.

Eligibility for Parallelizing

An MP t askl oop pragma suggests to the compiler that, unless otherwise
disallowed, the specified f or loop should be parallelized.

Any f or loop with irregular control flow and unknown loop iteration increment is
ineligible for parallelization. For example, f or loops containing set j np, | ongj np,
exi t,abort,return, goto, | abel s, and br eak should not be considered as
candidates for parallelization.

Of particular importance is to note that f or loops with inter-iteration dependencies
can be eligible for explicit parallelization. This means that if an MP t askl oop
pragma is specified for such a loop the compiler will simply honor it, unless the f or
loop is disqualified. It is the user’s responsibility to make sure that such explicit
parallelization will not lead to incorrect results.

If both the seri al _| oop or seri al _| oop_nest ed and t askl oop pragmas are
specified for a f or loop, the last one specified will prevail.

Chapter 3 Parallelizing Sun C Code 3-23

3-24

Consider the following example:

#pragma MP seri al _| oop_nested
for (i=0; i<100; i++) {
pragma MP taskl oop
for (j=0; j<1000; j++) {

The i loop will not be parallelized but the j loop might be.

Number of Processors

#pragma MP taskl oop maxcpus (number_of processors) specifies the number of
processors to be used for this loop, if possible.

The value of maxcpus must be a positive integer. If maxcpus equals 1, then the
specified loop will be executed in serial. (Note that setting maxcpus to be 1 is
equivalent to specifying the seri al _| oop pragma.) The smaller of the values of
maxcpus or the interpreted value of the PARALLEL environment variable will be
used. When the environment variable PARALLEL is not specified, it is interpreted as
having the value 1.

If more than one maxcpus pragma is specified for a f or loop, the last one specified
will prevail.

Classifying Variables

A variable used in a loop is classified as being either a pri vat e, shar ed,

reducti on, or readonl y variable. The variable belongs to only one of these
classifications. A variable can only be classified as a r educti on or readonl y
variable through an explicit pragma. See #pragma MP t askl oop reducti on and
#pragma MP taskl oop readonly. A variable can be classified as being either a
pri vat e or shar ed variable through an explicit pragma or through the following
default scoping rules.

Default Scoping Rules for pri vat e and shar ed Variables

A privat e variable is one whose value is private to each processor processing some
iterations of a f or loop. In other words, the value assigned to a pri vat e variable in
one iteration of a f or loop is not propagated to other processors processing other
iterations of that f or loop. A shar ed variable, on the other hand, is a variable

C User’s Guide May 2003

whose current value is accessible by all processors processing iterations of a f or
loop. The value assigned to a shar ed variable by one processor working on
iterations of a loop may be seen by other processors working on other iterations of
the loop. Loops being explicitly parallelized through use of #pr agma MP t askl oop
directives, that contain references to shared variables, must ensure that such sharing
of values does not cause any correctness problems (such as race conditions). No
synchronization is provided by the compiler on updates and accesses to shared
variables in an explicitly parallelized loop.

In analyzing explicitly parallelized loops, the compiler uses the following “default
scoping rules” to determine whether a variable is pri vat e or shar ed:

= If a variable is not explicitly classified via a pragma, the variable will default to
being classified as a shar ed variable if it is declared as a pointer or array, and is
only referenced using array syntax within the loop. Otherwise, it will be classified
as a privat e variable.

= The loop index variable is always treated as a pri vat e variable and is always a
storeback variable.

It is highly recommended that all variables used in an explicitly parallelized f or loop
be explicitly classified as one of shar ed, pri vat e, reducti on, or readonl y, to
avoid the “default scoping rules.”

Since the compiler does not perform any synchronization on accesses to shared
variables, extreme care must be exercised before using an MP t askl oop pragma for
a loop that contains, for example, array references. If inter-iteration data
dependencies exist in such an explicitly parallelized loop, then its parallel execution
may give erroneous results. The compiler may or may not be able to detect such a
potential problem situation and issue a warning message. In any case, the compiler
will not disable the explicit parallelization of loops with potential shared variable
problems.

pri vat e Variables
#pragma MP taskl oop private (list_of_private_variables)

Use this pragma to specify all the variables that should be treated as private
variables for this loop. All other variables used in the loop that are not explicitly
specified as shar ed, readonl y, or reduct i on variables, are either shar ed or
pri vat e as defined by the default scoping rules.

A pri vat e variable is one whose value is private to each processor processing some
iterations of a loop. In other words, the value assigned to a pri vat e variable by one
of the processors working on iterations of a loop is not propagated to other
processors processing other iterations of that loop. A pri vat e variable has no initial
value at the start of each iteration of a loop and must be set to a value within the

Chapter 3 Parallelizing Sun C Code 3-25

3-26

iteration of a loop prior to its first use within that iteration. Execution of a program
with a loop containing an explicitly declared pri vat e variable whose value is used
prior to being set will result in undefined behavior.

shar ed Variables
#pragma MP t askl oop shared (list_of_shared_variables)

Use this pragma to specify all the variables that should be treated as shar ed
variables for this loop. All other variables used in the loop that are not explicitly
specified as pri vat e, readonl y, st or eback or r educt i on variables, are either
shar ed or pri vat e as defined by the default scoping rules.

A shar ed variable is a variable whose current value is accessible by all processors
processing iterations of a f or loop. The value assigned to a shar ed variable by one
processor working on iterations of a loop may be seen by other processors working
on other iterations of the loop.

readonl y Variables
#pragma MPt askl oop readonl y (list_of readonly_variables)

r eadonl y variables are a special class of shared variables that are not modified in
any iteration of a loop. Use this pragma to indicate to the compiler that it may use a
separate copy of that variable’s value for each processor processing iterations of the
loop.

st or eback Variables
#pragma MP t askl oop st or eback (list_of_storeback_variables)
Use this pragma to specify all the variables to be treated as st or eback variables.

A st or eback variable is one whose value is computed in a loop, and this computed
value is then used after the termination of the loop. The last loop iteration values of
st or eback variables are available for use after the termination of the loop. Such a
variable is a good candidate to be declared explicitly via this directive as a

st or eback variable when the variable is a private variable, whether by explicitly
declaring the variable private or by the default scoping rules.

Note that the storeback operation for a st or eback variable occurs at the last
iteration of the explicitly parallelized loop, regardless of whether or not that
iteration updates the value of the st or eback variable. In other words, the processor

C User’s Guide May 2003

that processes the last iteration of a loop may not be the same processor that
currently contains the last updated value for a st or eback variable. Consider the
following example:

#pragma MP taskl oop private(x)
#pragma MP t askl oop storeback(x)
for (i=1; i <=n; i++) {
if (...)

X=. ..
}

printf (“%”, x);

In the previous example the value of the st or eback variable x printed out via the
printf() call may not be the same as that printed out by a serial version of the i
loop, because in the explicitly parallelized case, the processor that processes the last
iteration of the loop (when i ==n), which performs the storeback operation for x may
not be the same processor that currently contains the last updated value for x. The
compiler will attempt to issue a warning message to alert the user of such potential
problems.

In an explicitly parallelized loop, variables referenced as arrays are not treated as
st or eback variables. Hence it is important to include them in the
list_of_storeback_variables if such storeback operation is desired (for example, if the
variables referenced as arrays have been declared as private variables).

savel ast
#pragma MP t askl oop savel ast

Use this pragma to specify all the private variables of a loop that you want to be
treated as storeback variables. The syntax of this pragma is as follows:

#pragma MP t askl oop savel ast

It is often convenient to use this form, rather than list out each private variable of a
loop when declaring each variable as storeback variables.

r educt i on Variables

#pragma MP taskl oop reduction (list_of reduction_variables) specifies that all
the variables appearing in the reduction list will be treated as r educt i on variables
for the loop. A reduct i on variable is one whose partial values can be individually
computed by each of the processors processing iterations of the loop, and whose
final value can be computed from all its partial values. The presence of a list of

Chapter 3 Parallelizing Sun C Code 3-27

3-28

reducti on variables can facilitate the compiler in identifying that the loop is a
reduction loop, allowing generation of parallel reduction code for it. Consider the
following example:

#pragma MP taskl oop reducti on(x)
for (i=0; i<n; i++) {
X =x+al[i];

the variable x is a (sun) reduction variable and the i loop is a(sum reduction
loop.

Scheduling Control

The Sun ISO C compiler supports several pragmas that can be used in conjunction
with the t askl oop pragma to control the loop scheduling strategy for a given loop.
The syntax for this pragma is:

#pragma MP taskl oop schedtype (scheduling_type)

This pragma can be used to specify the specific scheduling_type to be used to
schedule the parallelized loop. Scheduling_type can be one of the following:

= Static

In st at i ¢ scheduling all the iterations of the loop are uniformly distributed
among all the participating processors. Consider the following example:

#pragnma MP t askl oop maxcpus(4)
#pragma MP taskl oop schedtype(static)
for (i=0; i<1000; i++) {

In the above example, each of the four processors will process 250 iterations of the
loop.

= sel f [(chunk_size)]

In sel f scheduling, each participating processor processes a fixed number of
iterations (called the “chunk size”) until all the iterations of the loop have been
processed. The optional chunk_size parameter specifies the “chunk size” to be
used. Chunk_size must be a positive integer constant, or variable of integral type.
If specified as a variable, chunk_size must evaluate to a positive integer value at

C User’s Guide May 2003

the beginning of the loop. If this optional parameter is not specified or its value is
not positive, the compiler will select the chunk size to be used. Consider the
following example:

#pragma MP t askl oop maxcpus(4)
#pragma MP t askl oop schedtype(sel f(120))
for (i=0; i<1000; i++) {

In the above example, the number of iterations of the loop assigned to each
participating processor, in order of work request, are:

120, 120, 120, 120, 120, 120, 120, 120, 40.
gss [(min_chunk_size)]

In gui ded sel f scheduling, each participating processor processes a variable
number of iterations (called the “min chunk size”) until all the iterations of the
loop have been processed. The optional min_chunk_size parameter specifies that
each variable chunk size used must be at least min_chunk_size in size.
Min_chunk_size must be a positive integer constant, or variable of integral type. If
specified as a variable, min_chunk_size must evaluate to a positive integer value at
the beginning of the loop. If this optional parameter is not specified or its value is
not positive, the compiler will select the chunk size to be used. Consider the
following example:

#pragma MP t askl oop maxcpus(4)
#pragma MP t askl oop schedtype(gss(10))
for (i=0; i<1000; i++) {

In the above example, the number of iterations of the loop assigned to each
participating processor, in order of work request, are:

250, 188, 141, 106, 79, 59, 45, 33, 25, 19, 14, 11, 10, 10, 10.
factori ng [(min_chunk_size)]

In f act ori ng scheduling, each participating processor processes a variable
number of iterations (called the “min chunk size”) until all the iterations of the
loop have been processed. The optional min_chunk_size parameter specifies that
each variable chunk size used must be at least min_chunk_size in size.
Min_chunk_size must be a positive integer constant, or variable of integral type. If
specified as a variable min_chunk_size must evaluate to a positive integer value at

Chapter 3 Parallelizing Sun C Code 3-29

the beginning of the loop. If this optional parameter is not specified or its value is
not positive, the compiler will select the chunk size to be used. Consider the
following example:

#pragma MP t askl oop maxcpus(4)
#pragma MP t askl oop schedtype(factoring(10))
for (i=0; i<1000; i++) {

In the above example, the number of iterations of the loop assigned to each
participating processor, in order of work request, are:

125, 125, 125, 125, 62, 62, 62, 62, 32, 32, 32, 32, 16, 16, 16, 16, 10, 10, 10, 10, 10, 10

3-30 C User’'s Guide * May 2003

CHAPTER 4

Incremental Link Editor (i | d)

This chapter describes i | d, i | d-specific features, example messages, and i | d
options.

4.1 Introduction

i 1 dis an incremental version of the Link Editor | d, and replaces | d for linking
programs. Use i | d to complete the edit, compile, link, and debug loop efficiently
and more quickly. You can avoid relinking entirely by using the fix and continue
feature of dbx which allows you to work without relinking. However, if you need to
relink, the process can be faster if you use i | d. For more information on fix and
continue, see Chapter 11 in Debugging a Program With dbx.

i 1 d links incrementally so you can insert modified object code into an executable
file that you created earlier, without relinking unmodified object files. The time
required to relink depends upon the amount of code modified. Linking your
application on every build does not require the same amount of time; small changes
in code can be relinked very quickly.

On the initial link, i | d requires about the same amount of time that | d requires, but
subsequent i | d links can be much faster than an | d link. The cost of the reduced
link time is an increase in the size of the executable.

4.2 Overview of Incremental Linking

When you use i | d in place of | d, the initial link causes the various text, data, bss,
exception table sections, etc., to be padded with additional space for future
expansion (see FIGURE 4-1). Additionally, all relocation records and the global symbol

4-1

table are saved into a new persistent state region in the executable file. On
subsequent incremental links, i | d uses timestamps to determine which object files
have changed and patches the changed object code into a previously built
executable. That is, previous versions of the object files are invalidated and the new
object files are loaded into the space vacated, or into the pad sections of the
executable when needed. All references to symbols in invalidated object files are
patched to point to the correct new object files.

i I d does not support all | d command options. Ifi | d is passed a command option
that it does not support, i | d directly invokes / usr/ ccs/ bi n/ | d to perform the
link. See Section 4.9, “I d Options not Supported by i | d” on page 4-18 for more
information on commands that are not supported by the Incremental Linker.

4.3

How to Usei | d

i 1 disinvoked automatically by the compilation system in place of | d under certain
conditions. When you invoke a compilation system, you are invoking a compiler
driver. When you pass certain options to the driver, the driver usesi | d. The
compiler driver reads the options from the command line and executes various
programs in the correct order and adds files from the list of arguments that are
passed.

For example, cc first runs aconp (the front-end of the compiler), then aconp runs
the optimizing code generator, then cc does the same thing for the other source files
listed on the command line. The driver can then generate a call to eitheri | d or | d,
depending on the options, passing it all of the files just compiled, plus other files
and libraries needed to make the program complete.

The following figure shows an example of incremental linking.

4-2 C User's Guide « May 2003

Executable Executable Executable

produced produced produced
byl d byild byild
(padding added) (incremental)
Text padding
Text
Text 1 pa’éding (old Text 1)
Text 2 Text 2
Text 3 Text 3
Text 1
Text (new) New Text 1
padding
Text
padding
Data 1 Data 1
Data 2 Data 2
Data 3 Data 3
Data Data
padding padding

FIGURE 4-1 An Example of Incremental Linking

The following compilation system options control whether a link step is performed
byildorld:

= -xildon Alwaysuseild
= -Xildoff Alwaysuseld

Note — If - xi | don and - xi | dof f are both present, the last command listed is used
by the driver to select the linker.

= -g When neither - xi | dof f or - Gare given, use i | d for link-only invocations
(no source files on the command line). For a complete explanation of - g, see
Section A.3.28, “- g” on page A-22.

Chapter 4 Incremental Link Editor (i 1 d) 4-3

= -G Prevents the - g option from having any effect on linker selection. For a
complete explanation of - G, see Section A.3.27, “- G” on page A-22.

When you use the - g option to invoke debugging, and you have the default
Makefile structure (which includes compile-time options such as - g on the link
command line), you use i | d automatically when doing development.

4.4

How i | d Works

On an initial link, i | d saves information about:

= All of the object files looked at.
= The symbol table for the executable produced.
= All symbolic references not resolved at compile time.

Initial i | d links take about as much time as an | d link.

On incremental links, i | d:
= Determines which files have changed.
= Relinks the modified obiject files.

= Uses stored information to modify changed symbolic references in the rest of the
program.

Incremental i | d links are much faster than | d links.
In general, you do one initial link and all subsequent links are incremental.

For example, i | d saves a list of all places where symbol f oo is referenced in your
code. If you do an incremental link that changes the value of f 0o, i | d must change
the value of all references to f o0o.

i | d spreads out the components of the program and each section of the executable
has padding added to it. Padding makes the executable modules larger than when

they were linked by | d. As object files increase in size during successive incremental
links, the padding can become exhausted. If this occurs, i | d displays a message and
does a complete full relink of the executable.

For example, as FIGURE 4-1 shows, each of the three columns shows the sequence of
text and data in a linked executable program. The left column shows text and data in
an executable linked by | d. The center column shows the addition of text and data
padding in an executable linked by i | d. Assume that a change is made to the source
file for Text 1 that causes the Text section to grow without affecting the size of the
other sections. The right column shows that the original location of Text 1 has been
replaced by Text padding (Text 1 has been invalidated). Text 1 has been moved to
occupy a portion of the Text padding space.

4-4 C User's Guide « May 2003

To produce a smaller nonincremental executable, run the compiler driver (for
example, cc or CC) with the - xi | dof f option, and | d is invoked to produce a more
compact executable.

The resulting executable from i | d can be debugged by dbx because dbx/Debugger
understands the padding that i | d inserts between programs.

For any command-line option that i | d does not understand, i | d invokes | d.ildis
compatible with | d (in / usr/ ccs/ bi n/ |1 d). See Section 4.7, “i | d Options” on
page 4-9, for details.

There are no special or extra files used by i | d.

4.5 Whati | d Cannot Do

When i | d is invoked to create shared objects, i | d invokes | d to create the link.

Performance of i | d may suffer greatly if you change a high percentage of object
files. i | d automatically does a full relink when it detects that a high percentage of
files have been changed.

Do not use i | d to produce the final production code for shipment. i | d makes the
file larger because parts of the program have been spread out due to padding.
Because of the padding and additional time required to link, it is recommended that
you do not use the - xi | don option for production code. (Use - xi | dof f on the link
line if - g is present.)

i I d may not link small programs much faster, and the increase in size of the
executable is greater than that for larger programs.

Third-party tools that work on executables may have unexpected results on
i | d-produced binaries.

Any program that modifies an executable, for example stri p or nts, might affect
the ability of i | d to perform an incremental link. When this happens, i | d issues a
message and performs a full relink. For more information on a full relink, see
Section 4.6, “Reasons for Full Relinks” on page 4-5.

4.6 Reasons for Full Relinks

The following section explains under which circumstances i | d calls | d to complete
a link.

Chapter 4 Incremental Link Editor (i 1 d) 4-5

4.6.1

4.6.2

I | d Deferred-Link Messages

The message ‘ild: calling Id to finish link’...meansthatild cannot
complete the link, and is deferring the link request to | d for completion. By default,
these messages are displayed as needed. You can suppress these messages by using
the -z i _qui et option.

The following message is suppressed if i | d is implicitly requested (- g), but is
displayed if - xi | don is on the command line. This message is displayed in all cases
if you use the - z i _ver bose option, and never displayed if you use the

-z i _qui et option.

ild: calling Id to finish link--cannot handl e shared libraries
in archive library name

Here are further examples of - z i _ver bose messages:

ild: callingldtofinishlink--cannot handl e keyword Keyword
ild: callingldtofinishlink--cannot handl e keyword -d

ild: callingldtofinishlink--cannot handl e -z keyword

ild: callingldtofinishlink-- cannot handl e argurment keyword

I | d Relink Messages

The message ‘i 1 d: (Performing full relink)’... means that for some reason
i I d cannot do an incremental link and must do a full relink. This is not an error. It
is to inform you that this link will take longer than an incremental link (see

Section 4.4, “How i | d Works” on page 4-4, for more details). i | d messages can be
controlled by i | d options -z i _qui et and -z i _ver bose. Some messages have a
verbose mode with more descriptive text.

You can suppress all of these messages by using the i | d option -z i _qui et. If the
default message has a verbose mode, the message ends with an ellipsis ([.. .])
indicating more information is available. You can view the additional information by
using the - z i _ver bose option. Example messages are shown with the

-z i _verbose option selected.

4-6 C User's Guide « May 2003

4.6.3

The most common of the full relink messages is the i nt er nal

exhaust ed message:

This creates testl.o

This creates a.out with

m ni mal debuggi ng i nformation
A one-line conpile and link
puts all debuggi ng i nformation
into a.out.

Example 1. Internal Free Space Exhausted

free space

$ cat testl.c

int min() { return 0; }

$ rm a. out

$ cc -xildon -c -g testl.c

$ cc -xildon-zi_verbose-g testl.o

$ cc-xildon-zi_verbose-g testl.c

ild: (Performing full relink) internal free
space in output file exhausted (sections)

$

These commands show that going from a one-line compile to a two-line compile
causes debugging information to grow in the executable. This growth causesi | d to
run out of space and do an full relink.

4.6.4

Example 2: Running strip

Another problem arises when you run stri p. Continuing from Example 1:

Strip a.out

Try to do an i ncrement al
l'ink

$ strip a.out
$ cc-xildon-zi_verbose-g testl.c

ild: (Performing full relink) a.out has been
altered since the last incremental link --
maybe you ran strip or nts on it?

$

Chapter 4 Incremental Link Editor (i | d) 4-7

4.6.5

Example 3:i | d Version

When a new version of i | d is run on an executable created by an older version of
i 1 d, you see the following error message:

Assune ol d_execut abl e was $ cc-xildon-zi_verbosefoo.0-0o0ld_executable

created by an earlier
version of ild

4.6.6

4.6.7

ild: (Performing full relink) an updated ild
has been install ed since a.out was | ast |inked
(2/16)

Note — The numbers (2/16) are used only for internal reporting.

Example 4. Too Many Files Changed

Sometimes i | d determines that it will be faster to do a full relink than an
incremental link. For example:

$ rm a. out
$ cc -xildon -z i_verbose \

X0.0 x1.0 x2.0 x3.0 x4.0 x5.0 x6.0 x7.0 x8.0 test2.0
$ touch x0.0 x1.0 x2.0 x3.0 x4.0 x5.0 x6.0 x7.0 x8.0
$ cc -xildon -z i_verbose \

x0.0 x1.0 x2.0 x3.0 x4.0 x5.0 x6.0 x7.0 x8.0 test2.0
ild: (Performing full relink) too nany files changed

Here, use of the t ouch command causes i | d to determine that files x0. o through
x8. 0 have changed and that a full relink will be faster than incrementally relinking
all nine object files.

Example 5: Full Relink

There are certain conditions that can cause a full relink on the next link, as compared
to the previous examples that cause a full relink on this link.

4-8 C User's Guide « May 2003

The next time you try to link that program, you see the message:

ild detects previous
error and does a full
relink

$ cc -xildon-zi_verbose broken.o

ild: (Performing full relink) cannot do increnental
relink due to problenms in the previous |ink

A full relink occurs.

4.6.8 Example 6: New Working Directory

initial link with cwd
equal to /tnp

incremental |ink, cwd
is now /tmp/junk

%cd /tmp
%cat y.c
int min(){ return 0;}
%cc -c y.c
%rm-f a.out
%cc-xildon-zi_verbosey.o-o0a.out

% nkdir junk

%nv y.oy.c a out junk

% cd j unk
%cc-xildon-zi_verbosey.o-o0 a.out

ild: (Performing full relink) current directory has
changed from‘/tnp’ to ‘/tnp/junk’
%

4.7 | | d Options

This section describes the linker control options directly accepted by the compilation
system and linker options that may be passed through the compilation system to

ild.

4.7.1 -a

In static mode only, produce an executable object file; give errors for undefined
references. This is the default behavior for static mode.

Chapter 4 Incremental Link Editor (i 1 d) 4-9

4.7.2

4.7.3

4.7.4

4.7.5

4.7.6

-Bdynamc | static

Options governing library inclusion. Option - Bdynani c is valid in dynamic mode
only. These options can be specified any number of times on the command line as
toggles: if the - Bst at i ¢c option is given, no shared objects are accepted until
-Bdynami c is seen. See option Section 4.7.9, “- | x” on page 4-11.

-d y|n

When - dy (the default) is specified, i | d uses dynamic linking; when - dn is
specified, i | d uses static linking. See option Section 4.7.2, “-Bdynam c | static
on page 4-10.

-e epsym

Set the entry point address for the output file to be that of the symbol epsym

The compilation systems invoke i | d in place of | d when the - g option (output
debugging information) is given, unless any of the following are true:

The - Goption (produce a shared library) is given
The - xi | dof f option is present
Any source files are named on the command line

| name

When building an executable, use name as the path name of the interpreter to be
written into the program header. The default in static mode is no interpreter; in
dynamic mode, the default is the name of the runtime linker, /usr/ i b/1d. so. 1.
Either case may be overridden by - | name. exec only loads this interpreter when it
loads a. out and will pass control to the interpreter rather than to a. out directly.

4-10 C User’'s Guide * May 2003

4.7.7

4.7.8

4.7.9

4.7.10

4.7.11

Ignores LD_LI BRARY_PATH setting. This option is useful when an

LD_LI BRARY_PATH setting is in effect to influence the runtime library search, which
would interfere with the link editing being performed. (This also applies to the
setting of LD_LI BRARY_PATH_64).

- Lpath

Adds path to the library search directories. i | d searches for libraries first in any
directories specified by the - L options, and then in the standard directories. This
option is useful only if it precedes the -1 options to which it applies on the
command line. You can use the environment variable LD_LI BRARY_PATH and
LD LI BRARY_PATH 64 to supplement the library search path (see
“LD_LIBRARY_PATH” on page 4-16).

- | x

Searches a library | i bx. so or | i bx. a, the conventional names for shared objects
and archive libraries, respectively. In dynamic mode, unless the - Bst at i ¢ option is
in effect, i | d searches each directory specified in the library search path for a file
i bx. so or | i bx. a. The directory search stops at the first directory containing
either. i | d chooses the file ending in . so if - | expands to two files whose names are
of the form | i bx. soand |l i bx. a.Ifnoli bx. soisfound, thenil d accepts| i bx. a.
In static mode, or when the - Bst at i ¢ option is in effect, i | d selects only the file
ending in . a. A library is searched when its name is encountered, so the placement
of -1 is significant.

-m

Produce a memory map or listing of the input/output sections on the standard
output.

- 0 outfile

Produces an output object file named outfile. The name of the default object file is
a.out.

Chapter 4 Incremental Link Editor (i I d) 4-11

4.7.12

4.7.13

4.7.14

4.7.15

4.7.16

4.7.17

-Qy|n

Under - Qy, an i dent string is added to the . commrent section of the output file to
identify the version of the link editor used to create the file. This results in multiple
| d i dent s when there have been multiple linking steps, such as when using 1 d -r.
This is identical with the default action of the cc command. Option - Qn suppresses
version identification.

- Rpath

This option gives a colon-separated list of directories that specifies library search
directories to the runtime linker. If present and not null, path is recorded in the
output object file and passed to the runtime linker. Multiple instances of this option
are concatenated and separated by a colon.

-S
Strips symbolic information from the output file. Any debugging information and
associated relocation entries are removed. Except for relocatable files or shared

objects, the symbol table and string table sections are also removed from the output
object file.

-1

Turn off the warning about multiply defined symbols that are not the same size.

- U Symname

Enter symname as an undefined symbol in the symbol table. This is useful for loading
entirely from an archive library, since initially the symbol table is empty and an
unresolved reference is needed to force the loading of the first routine. The
placement of this option on the command line is significant; it must be placed before
the library that defines the symbol.

-V

Output a message about the version of i | d being used.

4-12 C User’'s Guide » May 2003

4.7.18

4.7.19

4.7.20

4.7.21

4.7.22

-xi | dof f

Incremental linker off. Force the use of bundled | d. This is the default if - g is not
being used, or - Gis being used. You can override this default with - xi | don.

-Xi | don

Incremental linker. Force the use of i | d in incremental mode. This is the default if
- g is being used. You can override this default with - xi | dof f .

- YP, dirlist

(cc only) Changes the default directories used for finding libraries. Option dirlist is a
colon-separated path list.

Note — i | d uses the “- z name” form for special options. The i_ prefix to the - z
options identifies those options peculiar to i | d.

-z allextract |defaul textract |
weakext ract

Alter the extraction criteria of objects from any archives that follow. By default
archive members are extracted to satisfy undefined references and to promote
tentative definitions with data definitions. Weak symbol references do not trigger
extraction. Under - z al | extract, all archive members are extracted from the
archive. Under - z weakext r act , weak references trigger archive extraction.

-z defaul textract provides a means of returning to the default following use of
the former extract options.

-z defs

Forces a fatal error if any undefined symbols remain at the end of the link. This is
the default when building an executable. It is also useful when building a shared
object to assure that the object is self-contained, that is, that all its symbolic
references are resolved internally.

Chapter 4 Incremental Link Editor (i I d) 4-13

4.7.23

4.7.24

4.7.25

4.7.26

4.7.27

4.7.28

-z i _dryrun

(i I d only.) Prints the list of files that would be linked by i | d and exits.

-z i _full

(i I d only.) Does a complete relink in incremental mode.

-z 1 _noi ncr

(i 1'donly) Runsi | d in nonincremental mode (not recommended for customer use
— used for testing only).

-z 1 _qui et

(i 1 d only) Turns off all i | d relink messages.

-z i _verbose

(i I d only) Expands on default information on some i | d relink messages.

-z nodef s

Allows undefined symbols. This is the default when building a shared object. When
used with executables, the behavior of references to such “undefined symbols” is
unspecified.

4.8

Options Passed toi | d From the
Compilation System

The following options are accepted by ild, but you must use the form:

- W, arg, arg (for cc), to pass them to i | d through the compilation system.

4-14 C User’'s Guide » May 2003

4.8.1

4.8.2

4.8.3

4.8.4

4.8.5

4.8.6

-da

In static mode only, produces an executable object file; gives errors for undefined
references. This is the default behavior for static mode. Option - a cannot be used
with the - r option.

- e epsym

Sets the entry point address for the output file to be that of the symbol epsym.

-1 nane

When building an executable, uses name as the path name of the interpreter to be
written into the program header. The default in static mode is no interpreter; in
dynamic mode, the default is the name of the runtime linker, /usr/ i b/1d. so. 1.
Either case can be overridden by - I name. The exec system call loads this
interpreter when it loads the a. out and passes control to the interpreter rather than
to the a. out directly.

-m

Produces a memory map or listing of the input/output sections on the standard
output.

-1

Turn off the warning about symbols that are defined more than once and that are not
the same size.

- U symname

Enters symname as an undefined symbol in the symbol table. This is useful for
loading entirely from an archive library because, initially, the symbol table is empty
and an unresolved reference is needed to force the loading of the first routine. The
placement of this option on the command line is significant; it must be placed before
the library that defines the symbol.

Chapter 4 Incremental Link Editor (i I d) 4-15

4.8.7

4-16

Environment

LD_LI BRARY_PATH

A list of directories which is searched for the libraries that are specified with the
-1 option. Multiple directories are separated by a colon. In the most general case,
it contains two directory lists separated by a semicolon:

dirlistl; dirlist2

Ifi | dis called with any number of occurrences of - L, as in:

ild ...-Lpathl ... -Lpathn ...

then the search path ordering is:

dirlistl pathl ... pathn dirlist2 LI BPATH

When the list of directories does not contain a semicolon, it is interpreted as
follows:

dirlist2

LD LI BRARY_PATH is also used to specify library search directories to the
runtime linker. That is, if LD_LI BRARY_PATH exists in the environment, the
runtime linker searches the directories named in it, before its default directory, for
shared objects to be linked with the program at execution.

Note — When running a set - user-1 Dor set - gr oup- | D program, the runtime
linker searches only for libraries in / usr/ 1 i b. It also searches for any full pathname
specified within the executable. A full pathname is the result of a runpath being
specified when the executable was constructed. Any library dependencies specified
as relative pathnames are silently ignored.

C User’s Guide May 2003

LD_LI BRARY_PATH_64

On Solaris 7 and Solaris 8 software, this envirlfsonment variable is similar to
LD_LI BRARY_PATH but overrides it when searching for 64-bit dependencies.

When you run Solaris 7 or Solaris 8 software on a SPARC processor and link in
32-bit mode, LD_LI BRARY_PATH 64 is ignored. If only LD_LI BRARY_PATH is
defined, it is used for both 32-bit and 64-bit linking. If both LD_LI BRARY_PATH
and LD_LI BRARY_PATH_64 are defined, the 32-bit linking will be done using
LD_LI BRARY_PATH and the 64-bit linking will be done using

LD LI BRARY_PATH 64.

LD _COPTI ONS

A default set of options to i | d. LD_OPTI ONS is interpreted by i | d as though its
value had been placed on the command line immediately following the name
used to invoke i | d, as in:

ild$LD _OPTIONS ... other-arguments ...

LD PRELOCAD

A list of shared objects that are to be interpreted by the runtime linker. The
specified shared objects are linked in after the program being executed and before
any other shared objects that the program references.

Note — When running a set - user - |1 Dor set - gr oup- | D program, this option is
silently ignored.

LD_RUN_PATH

An alternative mechanism for specifying a runpath to the link editor (see the - R
option). If both LD_RUN_PATH and the - R option are specified, the - Ris used.

LD_DEBUG

(not supported by i | d) Provide a list of tokens that cause the runtime linker to
print debugging information to the standard error. The special token help
indicates the full list of tokens available.

Note — Environment variable names beginning with the characters ‘LD_ ‘are
reserved for possible future enhancements to | d. Environment variable-names
beginning with the characters ‘I LD_ ‘ are reserved for possible future enhancements
toild.

Chapter 4 Incremental Link Editor (i I d) 4-17

4.9

49.1

4.9.2

4.9.3

49.4

| d Options not Supported byi | d

If i | d determines that a command line option is not implemented, i | d directly
invokes / usr/ css/ bi n/ | d to perform the link.

The following options, which may be given to the compilation system, are not
supported by i | d.

-Bsynbolic

In dynamic mode only, when building a shared object, bind references to global
symbols to their definitions within the object, if definitions are available. Normally,
references to global symbols within shared objects are not bound until runtime, even
if definitions are available, so that definitions of the same symbol in an executable or
other shared objects can override the object’s own definition. | d issues warnings for
undefined symbols unless - z defs overrides.

-b

In dynamic mode only, when creating an executable, does not do special processing
for relocations that reference symbols in shared objects. Without the - b option, the
link editor creates special position-independent relocations for references to
functions defined in shared objects and arranges for data objects defined in shared
objects to be copied into the memory image of the executable by the runtime linker.
With the - b option, the output code can be more efficient, but it is less sharable.

-G

In dynamic mode only, produces a shared object. Undefined symbols are allowed.

- h nane

In dynamic mode only, when building a shared object, records name in the object’s
dynamic section. Option name is recorded in executables that are linked with this
object rather than the object’s UNIX System file name. Accordingly, name is used by
the runtime linker as the name of the shared object to search for at runtime.

4-18 C User’'s Guide « May 2003

495 -z nul def s

Allows multiple symbol definitions. By default, multiple symbol definitions
occurring between relocatable objects result in a fatal error condition. This option
suppresses the error condition, and allows the first symbol definition to be taken.

49.6 -7 t ext

In dynamic mode only, forces a fatal error if any relocations against non-writable,
allocatable sections remain.

4.10 Additional Unsupported Commands

In addition, the following options that may be passed directly to | d, are not
supported by i | d:

4.10.1 - D token,token, ...

Prints debugging information as specified by each token, to the standard error. The
special token help indicates the full list of tokens available.

4.10.2 - F nane

Useful only when building a shared object. Specifies that the symbol table of the
shared object is used as a “filter” on the symbol table of the shared object specified
by name.

4.10.3 - Mmapfile

Reads mapfile as a text file of directives to | d. See SunOS 5.3 Linker and Libraries
Manual for a description of mapfiles.

Chapter 4 Incremental Link Editor (i I d) 4-19

4.104 - T

Combines relocatable object files to produce one relocatable object file. | d does not
complain about unresolved references. This option cannot be used in dynamic mode

or with - a.

4.11 Files Thati | d Uses

= |ibx. a libraries
= a.out output file

4-20 C User’'s Guide * May 2003

CHAPTER 5

| i nt Source Code Checker

This chapter explains how you can use the | i nt program to check your C code for
errors that may cause a compilation failure or unexpected results at runtime. In
many cases, | i nt warns you about incorrect, error-prone, or nonstandard code that
the compiler does not necessarily flag.

The | i nt program issues every error and warning message produced by the C
compiler. It also issues warnings about potential bugs and portability problems.
Many messages issued by | i nt can assist you in improving your program’s
effectiveness, including reducing its size and required memory.

The | i nt program uses the same locale as the compiler and the output from | i nt is
directed to st der r. See Chapter 6 for more information on and examples of how to
use | i nt to check code before you perform type-based alias-disambiguation.

5.1

Basic and Enhanced | i nt Modes

The | i nt program operates in two modes:
= Basic, which is the default

= Enhanced, which includes everything done by basic | i nt, as well as additional,
detailed analysis of code

In both basic and enhanced modes, | i nt compensates for separate and independent
compilation in C by flagging inconsistencies in definition and use across files,
including any libraries you have used. In a large project environment especially,
where the same function may be used by different programmers in hundreds of
separate modules of code, | i nt can help discover bugs that otherwise might be
difficult to find. A function called with one less argument than expected, for
example, looks at the stack for a value the call has never pushed, with results correct
in one condition, incorrect in another, depending on whatever happens to be in

5-1

memory at that stack location. By identifying dependencies like this one and
dependencies on machine architecture as well, | i nt can improve the reliability of
code run on your machine or someone else’s.

In enhanced mode, | i nt provides more detailed reporting than in basic mode. In
basic mode, | i nt ’s capabilities include:

= Structure and flow analysis of the source program

= Constant propagations and constant expression evaluations
= Analysis of control flow and data flow

= Analysis of data types usage

In enhanced mode, | i nt can detect these problems:

= Unused #i ncl ude directives, variables, and procedures

= Memory usage after its deallocation

= Unused assignments

= Usage of a variable value before its initialization

= Deallocation of nonallocated memory

= Usage of pointers when writing in constant data segments
= Nonequivalent macro redefinitions

= Unreached code

= Conformity of the usage of value types in unions

= Implicit casts of actual arguments.

5.2 Using | i nt

5-2

Invoke the | i nt program and its options from the command line. To invoke lint in
the basic mode, use the following command:

% lint filel. c file2. c

Enhanced | i nt is invoked with the - Nl evel or - Ncheck option. For example, you
can invoke enhanced | i nt as follows:

% lint -N evel =3 filel. ¢ file2. c

C User’s Guide * May 2003

I i nt examines code in two passes. In the first pass, | i nt checks for error conditions
within C source files; in the second pass, it checks for inconsistencies across C source
files. This process is invisible to the user unless | i nt is invoked with - c:

%lint -c filel. c file2. c

That command directs | i nt to execute the first pass only and collect information
relevant to the second—about inconsistencies in definition and use across filel. ¢ and
file2. c—in intermediate files named filel. | n and file2. | n:

%ls
filel. c
filel. I n
file2. c
file2. I n

This way, the - ¢ option to | i nt is analogous to the - ¢ option to cc, which
suppresses the link editing phase of compilation. Generally speaking, | i nt’s
command-line syntax closely follows cc’s.

When the . | n files are | i nt ed:

% lint filel.l n file2. I n

the second pass is executed. | i nt processes any number of . ¢ or . | n files in their
command-line order. Thus,

% lint filel. I n file2. I n file3. c

directs | i nt to check file3. ¢ for errors internal to it and all three files for
consistency.

| i nt searches directories for included header files in the same order as cc. You can
use the - | optionto | i nt as you would the - I option to cc. See Section 2.13, “How
to Specify Include Files” on page 2-25.

You can specify multiple options to | i nt on the same command line. Options can be
concatenated unless one of the options takes an argument or if the option has more
than one letter:

%lint -cp -1dirl -1dir2 filel. c file2. c

Chapter 5 1int Source Code Checker 5-3

That command directs | i nt to:

= Execute the first pass only
= Perform additional portability checks
= Search the specified directories for included header files

I i nt has many options you can use to direct | i nt to perform certain tasks and
report on certain conditions.

5.3

5.3.1

5.3.2

Thel i nt Options

The | i nt program is a static analyzer. It cannot evaluate the runtime consequences
of the dependencies it detects. Certain programs, for instance, may contain hundreds
of unreachable br eak statements that are of little importance, but which | i nt flags
nevertheless. This is one example where the | i nt command-line options and
directives—special comments embedded in the source text—come in;

= You can invoke | i nt with the - b option to suppress all the error messages about
unreachable br eak statements.

= You can precede any unreachable statement with the comment / * NOTREACHED* /
to suppress the diagnostic for that statement.

The | i nt options are listed below alphabetically. Several | i nt options relate to
suppressing | i nt diagnostic messages. These options are also listed in TABLE 5-7,
following the alphabetized options, along with the specific messages they suppress.
The options for invoking enhanced | i nt begin with - N.

I i nt recognizes many cc command-line options, including -A, -D,-E -g,-H,- O
-P-U -Xa, - Xc, - Xs, - Xt, and -, although - g and - Oare ignored. Unrecognized
options are warned about and ignored.

- #

Turns on verbose mode, showing each component as it is invoked.

- HH

Shows each component as it is invoked, but does not actually execute it.

5-4 C User’'s Guide » May 2003

5.3.3

5.3.4

5.3.5

5.3.6

5.3.7

5.3.8

-da

Suppresses certain messages. Refer to TABLE 5-7.

-b

Suppresses certain messages. Refer to TABLE 5-7.

- C filename

Creates a . | n file with the file name specified. These . | n files are the product of
I i nt’s first pass only. filename can be a complete path name.

-C

Creates a . | n file consisting of information relevant to | i nt ’s second pass for every
. ¢ file named on the command line. The second pass is not executed.

- di r out =dir

Specifies the directory dir where the | i nt output files (. | n files) will be placed. This
option affects the - ¢ option.

-err=warn

-err=warn is a macro for - err war n=%al | . See Section 5.3.14, “- er r war n=t” on
page 5-9.

Chapter 5 1int Source Code Checker 5-5

5.3.9 -errchk=I()

Perform additional checking as specified by |. The default is - er r chk=%none.
Specifying - er r chk is equivalent to specifying - errchk=%al | . l is a
comma-separated list of checks that consists of one or more of the following. For
example, - errchk=l ongpt r 64, struct arg.

TABLE5-1 The - errchk Values

Value Meaning
%al | Perform all of - er r chk’s checks.
%mone Perform none of - err chk’s checks. This is the default.

[no% | ocf nt chk

[no% | ongpt r 64

[no% structarg

[no% par ent heses

[no% si gnext

[no% si zemat ch

Check for printf-like format strings during the first pass of | i nt .
Regardless of whether or not you use - er r chk=Il ocf nt chk, | i nt
always checks for printf-like format strings in its second pass.

Check portability to environment for which the size of long integers
and pointers is 64 bits and the size of plain integers is 32 bits. Check
assignments of pointer expressions and long integer expressions to
plain integers, even when explicit cast is used.

Check structural arguments passed by value and report the cases
when formal parameter type is not known.

Check the clarity of precedence within your code. Use this option to
enhance the maintainability of code. If - err chk=par ent heses
returns a warning, consider using additional parentheses to clearly
signify the precedence of operations within the code.

Check for situations in which the normal 1SO C value-preserving
rules allow the extension of the sign of a signed-integral value in an
expression of unsigned-integral type. This option only produces
error messages when you specify - er r chk=l ongpt r 64 as well.

Check for the assignment of a larger integer to a smaller integer and
issue a warning. These warnings are also issued for assignment
between same size integers that have different signs (unsigned int
gets a signed int).

5-6 C User’'s Guide * May 2003

5.3.10

5.3.11

-errfnt=f

Specifies the format of | i nt output. f can be one of the following: macr o, si npl e,
src, ortab.

TABLE5-2 The -errfnt Values

Value Meaning

macr o Displays the source code, the line number, and the place of the error,
with macro unfolding

sinple Displays the line number and the place number, in brackets, of the
error, for one-line (simple) diagnostic messages. Similar to the - s
option, but includes error-position information

src Displays the source code, the line number, and the place of the error (no
macro unfolding)

tab Displays in tabular format. This is the default.

The default is - er r f nt =t ab. Specifying - err f nt is equivalent to specifying
-errfnt=tab.

If more than one format is specified, the last format specified is used, and | i nt
warns about the unused formats.

-errhdr=h

Enables the reporting of certain messages for header files when used with - Ncheck.
h is a comma-separated list that consists of one or more of the following: dir, no%lir,
%l | , %mone, Yuser.

TABLE5-3 The - errhdr Values

Value Meaning

dir Checks header files used in the directory dir

no%alir Does not check header files used in the directory dir

%al | Checks all used header files

%one Does not check header files. This is the default.

Quser Checks all used user header files, that is, all header files except those in
/usr/incl ude and its subdirectories, as well as those supplied by the
compiler

Chapter 5 |int Source Code Checker 5-7

The default is - er r hdr =% one. Specifying - er r hdr is equivalent to specifying
-errhdr=%user.

Examples:

%lint -errhdr=incl -errhdr=../inc2

checks used header files in directoriesi ncl and .. /i nc2.

%lint -errhdr=%all,no%./inc

checks all used header files except those in the directory . . /i nc.

5.3.12 - er r of f =tag(, tag)

Suppresses or enables | i nt error messages.

t is a comma-separated list that consists of one or more of the following: tag, no%ag,
%l | , ¥%one.

TABLE5-4 The - errof f Values

Value Meaning

tag Suppresses the message specified by this tag. You can display the tag
for a message by using the - er rt ags=yes option.

no%ag Enables the message specified by this tag

%al | Suppresses all messages

%one Enables all messages. This is the default.

The default is - er r of f =%mone. Specifying - err of f is equivalent to specifying
-errof f =%l | .

Examples:

%lint -erroff=%ll, no%_ENUM NEVER _DEF, no%&_STATI C_UNUSED

5-8 C User’'s Guide * May 2003

5.3.13

5.3.14

prints only the messages “enum never defined” and “static unused”, and suppresses
other messages.

% lint -erroff=E_ENUM NEVER DEF, E_STATI C_UNUSED

suppresses only the messages “enum never defined” and “static unused”.

-errtags=a

Displays the message tag for each error message. a can be either yes or no. The
default is - er rt ags=no. Specifying - errt ags is equivalent to specifying
-errtags=yes.

Works with all - err f nmt options.

- errwar n=t

If the indicated warning message is issued, | i nt exits with a failure status. t is a
comma-separated list that consists of one or more of the following: tag, no%ag,
%l | , %one. Order is important; for example %al | , no%ag causes | i nt to exit
with a fatal status if any warning except tag is issued. The following table list the
- errwar n values:

TABLE5-5 The - errwar n Values

tag Cause | i nt to exit with a fatal status if the message specified by this tag is
issued as a warning message. Has no effect if tag is not issued.

no%ag Prevent | i nt from exiting with a fatal status if the message specified by tag is
issued only as a warning message. Has no effect if tag is not issued. Use this
option to revert a warning message that was previously specified by this option
with tag or %l | from causing lint to exit with a fatal status when issued as a
warning message.

%al | Cause | i nt to exit with a fatal status if any warning messages are issued. %al |
can be followed by no%ag to exempt specific warning messages from this
behavior.

% one Prevents any warning message from causing | i nt to exit with a fatal status

should any warning message be issued.

The default is - er r war n=%one. If you specify - er r war n alone, it is equivalent to
-errwarn=%al | .

Chapter 5 1int Source Code Checker 5-9

5.3.15

5.3.16

5.3.17

5.3.18

5.3.19

5.3.20

5.3.21

-F

Prints the path names as supplied on the command line rather than only their base
names when referring to the . ¢ files named on the command line.

-fd

Reports about old-style function definitions or declarations.

-f 1 agsr c=file

Executes | i nt with options contained in the file file. Multiple options can be
specified in file, one per line.

-h

Suppresses certain messages. Refer to TABLE 5-7.

- | dir

Searches the directory dir for included header files.

Alter the behavior of / * LI NTED [message] */ directives or NOTE(LI NTED(message))
annotations. Normally, | i nt suppresses warning messages for the code following

these directives. Instead of suppressing the messages, | i nt prints an additional
message containing the comment inside the directive or annotation.

- Ldir

Searches for a | i nt library in the directory dir when used with -1 .

5-10 C User's Guide * May 2003

5.3.22 -1 X

Accesses the | i nt library | I'i b-1x.1n.

5.3.23 - m

Suppresses certain messages. Refer to TABLE 5-7.

5.3.24 - Ncheck=c

Checks header files for corresponding declarations; checks macros. c is a
comma-separated list of checks that consists of one or more of the following: macr o,
extern, %l | , %m0one, no%racr o, no%ext ern.

TABLE5-6 The - Ncheck Values

Value Meaning
macr o Checks for consistency of macro definitions across files
extern Checks for one-to-one correspondence of declarations between source

files and their associated header files (for example, for fil el. ¢ and
filel. h). Ensure that there are neither extraneous nor missing
ext er n declarations in a header file.

%al | Performs all of - Ncheck’s checks

%one Performs none of - Ncheck’s checks. This is the default.
no%racr o Performs none of - Ncheck’s macr o checks

no%ext ern Performs none of - Ncheck’s ext er n checks

The default is - Ncheck=%one. Specifying - Ncheck is equivalent to specifying
- Ncheck=%al | .

Values may be combined with a comma, for example, - Ncheck=ext er n, macr o.

Example:

% 1int -Ncheck=%all, no%macro

performs all checks except macro checks.

Chapter 5 |int Source Code Checker 5-11

5.3.25

5.3.25.1

5.3.25.2

5.3.25.3

5.3.25.4

-Nl evel =n

Specifies the level of analysis for reporting problems. This option allows you to
control the amount of detected errors. The higher the level, the longer the
verification time. n is a number: 1, 2, 3, or 4. The default is - Nevel =2. Specifying
- Nl evel is equivalent to specifying - Nl evel =4,

-N evel =1

Analyzes single procedures. Reports unconditional errors that occur on some
program execution paths. Does not do global data and control flow analysis.

-Nl evel =2

The default. Analyzes the whole program, including global data and control flow.
Reports unconditional errors that occur on some program execution paths.

-Nl evel =3

Analyzes the whole program, including constant propagation, cases when constants
are used as actual arguments, as well as the analysis performed under - Nl evel =2.

Verification of a C program at this analysis level takes two to four times longer then
at the preceding level. The extra time is required because lint assumes partial
interpretation of the program by creating sets of possible values for program
variables. These sets of variables are created on the basis of constants and
conditional statements that contain constant operands available in the program. The
sets form the basis for creating other sets (a form of constant propagation). Sets
received as the result of the analysis are evaluated for correctness according to the
following algorithm:

If a correct value exists among all possible values of an object, then that correct value
is used as the basis for further propagation; otherwise an error is diagnosed.

-Nl evel =4

Analyzes the whole program, and reports conditional errors that could occur when
certain program execution paths are used, as well as the analysis performed under
- N evel =3.

At this analysis level, there are additional diagnostic messages. The analysis
algorithm generally corresponds to the analysis algorithm of - Nl evel =3 with the
exception that any invalid values now generate an error message. The amount of

5-12 C User's Guide * May 2003

5.3.26

5.3.27

5.3.28

5.3.29

5.3.30

time required for analysis at this level can increase as much as two orders (about 20
to 100 time more slowly). In this case the extra time required is directly proportional
to the program complexity as characterized by recursion, conditional statements etc.
As a result of this, it may be difficult to use this level of analysis for a program that
exceeds 100,000 lines.

-N

Suppresses checks for compatibility with the default | i nt standard C library.

- OX

Causes | i nt to create al i nt library with the name | I'i b-1x. | n. This library is
created from all the . | n files that | i nt used in its second pass. The - ¢ option
nullifies any use of the - o option. To produce a | | i b-1 x. | n without extraneous
messages, you can use the - x option. The - v option is useful if the source file(s) for
the | i nt library are just external interfaces. The | i nt library produced can be used
later if | i nt is invoked with -1 x.

By default, you create libraries in | i nt ’s basic format. If you use | i nt ’s enhanced
mode, the library created will be in enhanced format, and can only be used in
enhanced mode.

=P

Enables certain messages relating to portability issues.

- Rfile

Write a . | n file to file, for use by cxr ef (1). This option disables the enhanced mode,
if it is switched on.

-S

Converts compound messages into simple ones.

Chapter 5 |i nt Source Code Checker 5-13

5.3.31

5.3.32

5.3.33

5.3.34

5.3.35

5.3.36

-u

Suppresses certain messages. Refer to TABLE 5-7. This option is suitable for running
I i nt on a subset of files of a larger program.

-V

Writes the product name and releases to standard error.

-V

Suppresses certain messages. Refer to TABLE 5-7.

- Wile

Write a . | n file to file, for use by cf | ow(1). This option disables the enhanced mode,
if it is switched on.

- X

Suppresses certain messages. Refer to TABLE 5-7.

- XCC=a

Accepts C++-style comments. In particular, / / can be used to indicate the start of a
comment. a can be either yes or no. The default is - XCC=no. Specifying - XCC is
equivalent to specifying - XCC=yes.

Note — You only need to use this option if you use - xc99=%one. Under
-xc99=%al | (the default), | i nt accepts comments which are indicated by /7.

5-14 C User's Guide « May 2003

5.3.37

5.3.38

5.3.39

-Xalias_| evel [=]

where | is one of any, basi ¢, weak, | ayout, strict, std, orstrong. See TABLE A-8
for a detailed explanation of the different levels of disambiguation.

If you do not specify - Xal i as_| evel , the default of the flag is

- Xal i as_| evel =any. This means that there is no type-based alias-analysis. If you
specify - Xal i as_| evel but do not supply a level, the default is

- Xal i as_| evel =l ayout .

Be sure to run lint at a level of disambiguation that is no more strict than the level at
which you ran the compiler. If you run lint at a level of disambiguation that is more
strict than the level at which you compiled, the results will be difficult to interpret
and possibly misleading.

See Chapter 6 for a detailed explanation of disambiguation as well as a list of
pragmas designed to help with disambiguation.

- Xar ch=v9

Predefines the __spar cv9 macro and searches for v9 versions of lint libraries.

- Xc99[=0]

The - Xc99 flag controls compiler recognition of the implemented features from the
C99 standard (ISO/IEC 9899:1999, Programming Language - C).

o0 can be one of the following: %al | , %one.

- Xc99=%one turns off recognition of C99 features. - Xc99=%al | turns on
recognition of supported C99 features.

Specifying - Xc99 without any arguments is the same as - Xc99=%al | .

Note — Though the compiler support-level defaults to the features of C99 listed in
Appendix D, the standard headers provided by Solaris software in / usr /i ncl ude
do not yet conform with the 1999 ISO/IEC C standard. If you encounter error
messages, try using - Xc99=%one to obtain the 1990 ISO/IEC C standard behavior
for these headers.

Chapter 5 |int Source Code Checker 5-15

5.3.40

5.3.41

5.3.42

5.3.43

5.3.44

5.3.45

- Xexplicitpar=a
(SPARC) Directs | i nt to recognize #pr agma VP directives. a can be either yes or no.

The default is - Xexpl i ci t par =no. Specifying - Xexpl i ci t par is equivalent to
specifying - Xexpl i ci t par =yes.

- Xkeept np=a
Keeps temporary files created during | i nt ing instead of deleting them

automatically. a can be either yes or no. The default is - Xkeept np=no. Specifying
- Xkeept np is equivalent to specifying - Xkeept np=yes.

- Xt enp=dir

Sets the directory for temporary files to dir. Without this option, temporary files go
into / t np.

- Xt me=a

Reports the execution time for each | i nt pass. a can be either yes or no. The default
is - Xt i me=no. Specifying - Xt i me is equivalent to specifying - Xt i ne=yes.

-Xtransiti on=a

Issues warnings for the differences between K&R C and Sun ISO C. a can be either
yes or no. The default is - Xt r ansi t i on=no. Specifying - Xtransi ti on is
equivalent to specifying - Xt ransi ti on=yes.

-Xustr={ascii _utfl6 ushort |no}

This option enables recognition of string literals of the form U"ASCII_string" as an
array of unsigned short int. The default is - Xust r =no which disables compiler
recognition of U"ASCII_string string literals. "- Xustr=asci i _utf 16_ushort
enables compiler recognition of U"ASCII_string" string literals.

5-16 C User's Guide « May 2003

5.3.46

Treats every . ¢ file named on the command line as if it begins with the directive / *
LI NTLI BRARY */ or the annotation NOTE(LI NTLI BRARY). A li nt library is

normally created using the /* LI NTLI BRARY */ directive or the
NOTE(LI NTLI BRARY) annotation.

5.4

5.4.1

| I nt Messages

Most of | i nt ’s messages are simple, one-line statements printed for each occurrence
of the problem they diagnose. Errors detected in included files are reported multiple
times by the compiler, but only once by | i nt, no matter how many times the file is
included in other source files. Compound messages are issued for inconsistencies
across files and, in a few cases, for problems within them as well. A single message
describes every occurrence of the problem in the file or files being checked. When
use of al i nt filter (see Section 5.6.2, “l i nt Libraries” on page 5-30) requires that a
message be printed for each occurrence, compound diagnostics can be converted to
the simple type by invoking | i nt with the - s option.

I i nt ’s messages are written to st derr.

Options to Suppress Messages

You can use several | i nt options to suppress | i nt diagnostic messages. Messages
can be suppressed with the - er r of f option, followed by one or more tags. These
mnemonic tags can be displayed with the - er rt ags=yes option.

Chapter 5 |int Source Code Checker 5-17

The following table lists the options that suppress | i nt messages.

TABLES-7 | i nt Options to Suppress Messages
Option Messages Suppressed
-a assi gnnment causes inplicit narrow ng conversion

conversion to larger integral type may sign-extend
incorrectly

-b statenment not reached (unreachable break and enpty
st at ement s)

-h assignnent operator "=" found where equality operator

" "

==" was expected

constant operand to op: "!"

fallthrough on case statenents

pointer cast may result in inproper alignnment
precedence confusion possible; parenthesize
statenent has no consequent: if

statenent has no consequent: else

-m decl ared global, could be static
-errof f =tag One or more | i nt messages specified by tag
-u name defined but never used

nane used but not defined

-V arguments unused in function
- X name decl ared but never used or defined
5.4.2 | i nt Message Formats

The | i nt program can, with certain options, show precise source file lines with
pointers to the line position where the error occurred. The option enabling this
feature is - er r f nt =f. Under this option, | i nt provides the following information:

= Source line(s) and position(s)
= Macro unfolding
= Error-prone stack(s)

5-18 C User's Guide * May 2003

For example, the following program, Test 1. c, contains an error.

1 #include <string. h>

2 static void cpv(char *s, char* v, unsigned n)
3{int i;

4 for (i=0; i<=n; i++){

5 *V++ = *s++;}

6}

7 void main(int argc, char* argv[])

8 {

9 if (argc !'= 0){

10 cpv(argv[0], argc, strlen(argv[0]));}
11}

Using | i nt on Test 1. ¢ with the option:

%lint -errfnt=src -N evel =2 Testl.c

produces the following output:

| static void cpv(char *s, char* v, unsigned n)
[N o line 2, Testl.c
I
[cpv(argv[0], argc, strlen(argv[O0]));
[A line 10, Testl.c
war ni ng: inproper pointer/integer conbination: arg #2
I
| static void cpv(char *s, char* v, unsigned n)
[A line 2, Testl.c

I
| cpv(argv[0], argc, strlen(argv[O0]));

[A line 10, Testl.c
I

I

*V++ = *s++
[N line 5, Testl.c
war ni ng: use of a pointer produced in a questionable way
v defined at Testl.c(2)::Testl.c(5)

call stack:
mai n() , Test1.c(10)
cpv() , Test 1. c(5)

The first warning indicates two source lines that are contradictory. The second

warning shows the call stack, with the control flow leading to the error.

Chapter 5 i nt Source Code Checker

5-19

5-20

Another program, Test 2. ¢, contains a different error:

1 #define AA(b) AR[b+l]

2 #define B(c,d) c+AA(d)

3

4 int x=0;

5

6 int AR[10]={1, 2, 3,4,5,6,77, 88,99, 0};
7

8 main()

9 {

10 int y=-5, z=5;
11 return B(y, z);
12 }

Using | i nt on Test 2. ¢ with the option:

%lint -errfnt=macro Test2.c

produces the following output, showing the steps of macro substitution:

return B(y, z);
A line 11, Test2.c

I

I

I

| #define B(c,d) c+AA(d)

[N line 2, Test2.c
I

I

I

#define AA(b) AR b+l]
N line 1, Test2.c
error: undefined symbol: |

| return B(y, z);

[A line 11, Test2.c
I

| #define B(c,d) c+AA(d)
[A line 2, Test2.c
I

| #define AA(b) AR[b+l]
[A line 1, Test2.c

vari able may be used before set: |

lint: errors in Test2.c; no output created
lint: pass2 not run - errors in Test2.c

C User’s Guide May 2003

2.5

5.5.1

5.5.2

| i nt Directives

Predefined Values

The following predefinitions are valid in all modes:

= __Sun
= __unix

= __lint

= _ SUNPRO_C=0x550

= __‘unane -s‘_‘unane -r‘ (example: __SunCS 5 7)

= __ RESTRICT (- Xa and - Xt modes only)
= __sparc (SPARC)

= _ 386 (Intel)

« __ BULTIN VA ARG | NCR

« _SVR4

= __sparcv9 (- Xar ch=v9)

These predefinitions are not valid in - Xc mode:

= Sun
= unix

= sparc (SPARC)
= i 386 (Intel)

= lint

Directives

I i nt directives in the form of / *. . . */ are supported for existing annotations, but
will not be supported for future annotations. Directives in the form of source code
annotations, NOTE(. . .), are recommended for all annotations.

Specify | i nt directives in the form of source code annotations by including the file
not e. h, for example:

#i ncl ude <note. h>

Lint shares the Source Code Annotations scheme with several other tools. When you
install the Sun C compiler, you also automatically install the file
/usr/1ib/note/ SUNW SPRC- | i nt, which contains the names of all the

Chapter 5 |int Source Code Checker 5-21

annotations that LockLint understands. However, the Sun C source code checker,
I i nt, also checks all the filesin/usr/|i b/ note and
/ opt/ SUNWspr o/ prod/ | i b/ not e for all valid annotations.

You may specify a location other than / usr/1i b/ not e by setting the environment
variable NOTEPATH, as in:

set env NOTEPATH $NOTEPATH: ot her _| ocati on

The following table lists the | i nt directives along with their actions.

TABLE 5-8

The | i nt Directives

Directive

Action

NOTE(ALI GNVENT(fname,n))

where n=1, 2, 4, 8,
32, 64, 128

NOTE(ARGSUSED(n))
/ * ARGSUSEDn* /

NOTE(ARGUNUSED
('par_name[,par_name...]))

NOTE(CONSTCOND)
/ * CONSTCOND* /

16,

Makes | i nt set the following function result
alignment in n bytes. For example, mal | oc() is
defined as returning a char * or voi d* when in fact it
really returns pointers that are word, or even
doubleword, aligned.

Suppresses the following message:

= i nproper alignnent
This directive acts like the - v option for the next
function.

Suppresses the following message for every argument
but the first n in the function definition it precedes.
Default is 0. For the NOTE format, n must be specified.

e argunment unused in function

Makes | i nt not check the mentioned arguments for
usage (this option acts only for the next function).
Suppresses the following message for every argument
listed in NOTE or directive.

e argunment unused in function

Suppresses complaints about constant operands for
the conditional expression. Suppresses the following
messages for the constructs it precedes. Also

NOTE(CONSTANTCONDI Tl ON) or

/* CONSTANTCONDI TI ON */.

constant in conditional context

constant operands to op: "!"

| ogi cal expression always false: op "&&'
| ogi cal expression always true: op "||"

C User’s Guide May 2003

TABLES-8 The | i nt Directives (Continued)

Directive Action

NOTE(EMPTY) [/ *EMPTY*/ Suppresses complaints about a nul | statement
consequent on an i f statement. This directive should
be placed after the test expression, and before the
semicolon. This directive is supplied to support empty
i f statements when a valid el se statement follows. It
suppresses messages on an empty el se consequent.
Suppresses the following messages when inserted
between the controlling expression of the i f and
semicolon.

= statement has no consequent: el se
when inserted between the el se and semicolon;
e statement has no consequent: if

NOTE(FALLTHRU) Suppresses complaints about a fall through to a case

/ * EALLTHRU* / or def aul t labelled statement. This directive should
be placed immediately preceding the label.
Suppresses the following message for the case
statement it precedes. Also NOTE(FALLTHROUGH) or
/* FALLTHROUGH */.

- fallthrough on case statenent

NOTE(LI NTED (nsg)) Suppresses any intra-file warning except those dealing
/ *LINTED [nsg]*/ with unused variables or functions. This directive
should be placed on the line immediately preceding
where the | i nt warning occurred. The - k option
alters the way in which | i nt handles this directive.
Instead of suppressing messages, | i nt prints an
additional message, if any, contained in the comments.
This directive is useful in conjunction with the - s
option for post-lint filtering.
When - k is not invoked, suppresses every warning
pertaining to an intra-file problem, except:
e argunent unused in function
e decl arations unused in block
= set but not used in function
- static unused
= variable not used in function

for the line of code it precedes. msg is ignored.

NOTE(LI NTLI BRARY) When - o is invoked, writes to a library . | n file only

/ * L1 NTLI BRARY* / definitions in the . c file it heads. This directive
suppresses complaints about unused functions and
function arguments in this file.

Chapter 5 |int Source Code Checker 5-23

5-24

TABLES-8 The | i nt Directives (Continued)

Directive

Action

NOTE(NOTREACHED)
/ * NOTREACHED* /

NOTE(PRI NTFLI KE(n))
NOTE(PRI NTFLI KE(fun_name,n))
/ * PRI NTFLI KEn*/

At appropriate points, stops comments about
unreachable code. This comment is typically placed
just after calls to functions such as exi t (2).

Suppresses the following messages for the closing
curly brace it precedes at the end of the function.

= statenment not reached

for the unreached statements it precedes;

- fallthrough on case statenent

for the case it precedes that cannot be reached from

the preceding case;

e function falls off bottom w thout
returning val ue

Treats the nth argument of the function definition it
precedesasa[fs] printf() format string and issues
the following messages for mismatches between the
remaining arguments and the conversion
specifications. | i nt issues these warnings by default
for errors in the callsto [f s] pri ntf () functions
provided by the standard C library.

For the NOTE format, n must be specified.

e mal formed format strings

for invalid conversion specifications in that argument,
and function argument type inconsistent with format;

e too few argunments for format
 too many argunments for fornat

C User’s Guide May 2003

TABLES-8 The | i nt Directives (Continued)

Directive

Action

NOTE(PROTOLI B(n))
/ * PROTOLI Bn*/

NOTE(SCANFLI KE(n))
NOTE(SCANLI KE(fun_name,n))
/ * SCANFLI KEn*/

NOTE(VARARGS(n))
NOTE(VARARGS(fun_name,n))
/ * VARARGSn*/

When nis 1 and NOTE(LI NTLI BRARY) or /*

LI NTLI BRARY */ is used, writes to a library . | n file
only function prototype declarations in the . c file it
heads. The default is 0, which cancels the process.

For the NOTE format, n must be specified.

Same as NOTE(PRI NTFLI KE(n)) or/*

PRI NTFLI KEn */, except that the nth argument of the
function definition is treated as a [f s] scanf ()
format string. By default, | i nt issues warnings for
errors in the calls to [f s] scanf () functions provided
by the standard C library.

For the NOTE format, n must be specified.

Suppresses the usual checking for variable numbers of
arguments in the following function declaration. The
data types of the first n arguments are checked; a
missing n is taken to be 0. The use of the ellipsis (...)
terminator in the definition is suggested in new or
updated code.
For the function whose definition it precedes,
suppresses the following message for calls to the
function with n or more arguments. For the NOTE
format, n must be specified.
e functions called with variable nunber
of arguments

5.6

5.6.1

| i nt Reference and Examples

This section provides reference information on | i nt, including checks performed by
['int,lint libraries, and I'i nt filters.

Diagnostics Performed by | i nt

I i nt -specific diagnostics are issued for three broad categories of conditions:
inconsistent use, nonportable code, and questionable constructs. In this section, we
review examples of | i nt’s behavior in each of these areas, and suggest possible
responses to the issues they raise.

Chapter 5 | i nt Source Code Checker 5-25

56.11

5.6.1.2

Consistency Checks

Inconsistent use of variables, arguments, and functions is checked within files as
well as across them. Generally speaking, the same checks are performed for
prototype uses, declarations, and parameters as | i nt checks for old-style functions.
If your program does not use function prototypes, | i nt checks the number and
types of parameters in each call to a function more strictly than the compiler. | i nt
also identifies mismatches of conversion specifications and arguments in
[fs]printf() and[fs]scanf() control strings.

Examples:

Within files, | i nt flags non-voi d functions that “fall off the bottom™ without
returning a value to the invoking function. In the past, programmers often
indicated that a function was not meant to return a value by omitting the return
type: fun() {}. That convention means nothing to the compiler, which regards
fun() as having the return type i nt . Declare the function with the return type
voi d to eliminate the problem.

Across files, | i nt detects cases where a non-voi d function does not return a
value, yet is used for its value in an expression—and the opposite problem, a
function returning a value that is sometimes or always ignored in subsequent
calls. When the value is always ignored, it may indicate an inefficiency in the
function definition. When it is sometimes ignored, it’s probably bad style (typically,
not testing for error conditions). If you need not check the return values of string
functions like strcat (), strcpy(), and spri ntf (), or output functions like
printf() and putchar (), cast the offending calls to voi d.

I i nt identifies variables or functions that are declared but not used or defined;
used, but not defined; or defined, but not used. When | i nt is applied to some,
but not all files of a collection to be loaded together, it produces error messages
about functions and variables that are:

« Declared in those files, but defined or used elsewhere
« Used in those files, but defined elsewhere
« Defined in those files, but used elsewhere

Invoke the - x option to suppress the first complaint, - u to suppress the latter
two.

Portability Checks

Some nonportable code is flagged by | i nt in its default behavior, and a few more
cases are diagnosed when | i nt is invoked with - p or - Xc. The latter causes | i nt to
check for constructs that do not conform to the 1ISO C standard. For the messages
issued under - p and - Xc, see Section 5.6.2, “l i nt Libraries” on page 5-30.

Examples:

5-26 C User's Guide « May 2003

= In some C language implementations, character variables that are not explicitly
declared si gned or unsi gned are treated as signed quantities with a range
typically from -128 to 127. In other implementations, they are treated as
nonnegative quantities with a range typically from 0 to 255. So the test:

char c;
c = getchar();
if (c == EOF)

where EOF has the value -1, always fails on machines where character variables
take on nonnegative values. | i nt invoked with - p checks all comparisons that
imply a plain char may have a negative value. However, declaring c as a si gned
char in the above example eliminates the diagnostic, not the problem. That’s
because get char () must return all possible characters and a distinct EOF value,
so a char cannot store its value. We cite this example, perhaps the most common
one arising from implementation-defined sign-extension, to show how a
thoughtful application of | i nt’s portability option can help you discover bugs
not related to portability. In any case, declare c as an i nt.

= A similar issue arises with bit-fields. When constant values are assigned to
bit-fields, the field may be too small to hold the value. On a machine that treats
bit-fields of type i nt as unsigned quantities, the values allowed for i nt x: 3
range from 0 to 7, whereas on machines that treat them as signed quantities, they
range from -4 to 3. However, a three-bit field declared type i nt cannot hold the
value 4 on the latter machines. | i nt invoked with - p flags all bit-field types
other than unsi gned i nt or si gned i nt. These are the only portable bit-field
types. The compiler supports i nt, char, short, and | ong bit-field types that
may be unsi gned, si gned, or plain. It also supports the enumbit-field type.

= Bugs can arise when a larger-sized type is assigned to a smaller-sized type. If
significant bits are truncated, accuracy is lost:

short s;
long |;
s = 1;

I'i nt flags all such assignments by default; the diagnostic can be suppressed by
invoking the - a option. Bear in mind that you may be suppressing other
diagnostics when you invoke | i nt with this or any other option. Check the list in
Section 5.6.2, “l i nt Libraries” on page 5-30 for the options that suppress more
than one diagnostic.

Chapter 5 |int Source Code Checker 5-27

5.6.1.3

= A cast of a pointer to one object type to a pointer to an object type with stricter
alignment requirements may not be portable. | i nt flags:

int *fun(y)
char *y;

{
}

return(int *)y;

because, on most machines, an i nt cannot start on an arbitrary byte boundary;,
whereas a char can. You can suppress the diagnostic by invoking | i nt with - h,
although, again, you may be disabling other messages. Better still, eliminate the
problem by using the generic pointer voi d *.

= ISO C leaves the order of evaluation of complicated expressions undefined. That
is, when function calls, nested assignment statements, or the increment and
decrement operators cause side effects when a variable is changed as a
by-product of the evaluation of an expression, the order in which the side effects
take place is highly machine-dependent. By default, | i nt flags any variable
changed by a side effect and used elsewhere in the same expression:

int a[10];
mai n()
{
int i = 1;
a[i++] =1i;
}

In this example, the value of a[1] may be 1 if one compiler is used, 2 if another.
The bitwise logical operator & can give rise to this diagnostic when it is
mistakenly used in place of the logical operator &&:

if ((c =getchar()) !=EOF &c !="'0")

Questionable Constructs

I i nt flags a miscellany of legal constructs that may not represent what the
programmer intended. Examples:

5-28 C User's Guide * May 2003

= An unsi gned variable always has a nonnegative value. So the test:

unsi gned x;
if (x <0

always fails. The test:

unsi gned x;
if (x >0)

is equivalent to:

if (x !=0)

This may not be the intended action. | i nt flags questionable comparisons of
unsi gned variables with negative constants or 0. To compare an unsi gned
variable to the bit pattern of a negative number, cast it to unsi gned:

if (u == (unsigned) -1)

Or use the U suffix:

if (u==-1U

= |int flags expressions without side effects that are used in a context where side
effects are expected—that is, where the expression may not represent what the
programmer intends. It issues an additional warning whenever the equality
operator is found where the assignment operator is expected—that is, where a
side effect is expected:

int fun()
{

int a, b, x, vy;

(a =x) && (b ==y);
}

Chapter 5 |i nt Source Code Checker 5-29

5.6.2

= |int cautions you to parenthesize expressions that mix both the logical and
bitwise operators (specifically, &, | , *, <<, >>), where misunderstanding of
operator precedence may lead to incorrect results. Because the precedence of
bitwise &, for example, falls below logical ==, the expression:

if (x &a == 0)

is evaluated as:

if (x & (a == 0))

which is most likely not what you intended. Invoking | i nt with - h disables the
diagnostic.

| 1 nt Libraries

You can use | i nt libraries to check your program for compatibility with the library
functions you have called in it—the declaration of the function return type, the
number and types of arguments the function expects, and so on. The standard | i nt
libraries correspond to libraries supplied by the C compilation system, and generally
are stored in a standard place on your system. By convention, | i nt libraries have
names of the form | i b-1 x. | n.

The | i nt standard C library, | I i b-1c. | n, is appended to the | i nt command line
by default; checks for compatibility with it can be suppressed by invoking the - n
option. Other | i nt libraries are accessed as arguments to - | . That is:

%lint -Ix filel. c file2. c

directs | i nt to check the usage of functions and variablesinfilel.candfile2.c
for compatibility with the | i nt library | I'i b-1 x. | n. The library file, which consists
only of definitions, is processed exactly as are ordinary source files and ordinary . | n
files, except that functions and variables used inconsistently in the library file, or
defined in the library file but not used in the source files, elicit no complaints.

To create your own | i nt library, insert the directive NOTE(LI NTLI BRARY) at the
head of a C source file, then invoke | i nt for that file with the - o option and the
library name given to - | :

% lint -ox filel. c file2. c

5-30 C User's Guide * May 2003

causes only definitions in the source files headed by NOTE(LI NTLI BRARY) to be
written to the file | | i b-1 x. | n. (Note the analogy of | int -otocc -o0.) A library
can be created from a file of function prototype declarations in the same way, except
that both NOTE(LI NTLI BRARY) and NOTE(PROTCOLI B(n)) must be inserted at the
head of the declarations file. If n is 1, prototype declarations are written to a library
. I n file just as are old-style definitions. If n is 0, the default, the process is cancelled.
Invoking | i nt with -y is another way of creating a | i nt library. The command
line:

%lint -y -ox filel. c file2. c

causes each source file named on that line to be treated as if it begins with
NOTE(LI NTLI BRARY) , and only its definitions to be writtento | | i b-1x. | n.

By default, | i nt searches for | i nt libraries in the standard place. To direct | i nt to
search for a |l i nt library in a directory other than the standard place, specify the
path of the directory with the - L option:

% lint -Ldir -1x filel. c file2. c

In enhanced mode, | i nt produces . | n files which store additional information than
. I nfiles produced in basic mode. In enhanced mode, | i nt can read and understand
all . | n files generated by either basic or enhanced | i nt modes. In basic mode, | i nt
can read and understand . | n files generated only using basic | i nt mode.

By default, | i nt uses libraries from the / usr/ | i b directory. These libraries are in
the basic | i nt format. You can run a makef i | e once, and create enhanced | i nt
libraries in a new format, which will enable enhanced | i nt to work more effectively.
To run the makefi | e and create the new libraries, enter the command:

% cd /opt/ SUNWspro/ prod/src/lintlib; make

where / opt / SUNWpr o/ prod is the installation directory. After the makefil e is
run, | i nt uses the new libraries in enhanced mode, instead of the libraries in the
/usr/1ib directory.

The specified directory is searched before the standard place.

Chapter 5 i nt Source Code Checker 5-31

5.6.3 [i nt Filters

A lint filter is a project-specific post-processor that typically uses an awk script or
similar program to read the output of | i nt and discard messages that your project
has deemed as not identifying real problems—string functions, for instance,
returning values that are sometimes or always ignored. | i nt filters generate
customized diagnostic reports when | i nt options and directives do not provide
sufficient control over output.

Two options to | i nt are particularly useful in developing a filter:

= Invoking | i nt with - s causes compound diagnostics to be converted into simple,
one-line messages issued for each occurrence of the problem diagnosed. The
easily parsed message format is suitable for analysis by an awk script.

= Invoking | i nt with - k causes certain comments you have written in the source
file to be printed in output, and can be useful both in documenting project
decisions and specifying the post-processor’s behavior. In the latter instance, if
the comment identifies an expected | i nt message, and the reported message is
the same, the message can be filtered out. To use - k, insert on the line preceding
the code you wish to comment the NOTE(LI NTED(msg)) directive, where msg
refers to the comment to be printed when | i nt is invoked with - k.

Refer to the list of directives in TABLE 5-8 for an explanation of what | i nt does
when - k is not invoked for a file containing NOTE(LI NTED(msg)) .

5-32 C User's Guide « May 2003

CHAPTER 6

Type-Based Alias Analysis

6.1

This document explains how to use the - xal i as_| evel option and several new
pragmas to enable the compiler to perform type-based alias analysis and
optimizations. You use these extensions to express type-based information about the
way pointers are used in your C program. The C compiler uses this information, in
turn, to do a significantly better job of alias disambiguation for pointer-based
memory references in your program.

See Section A.3.63, “- xal i as_| evel [=I]” on page A-31 for a detailed explanation of
this command’s syntax. Also, see Section 5.3.37, “- Xal i as_| evel [=I] ” on

page 5-15 for an explanation of the | i nt program’s type-based alias-analysis
capabilities.

Introduction to Type-Based Analysis

You can use the - xal i as_| evel option to specify one of seven alias levels. Each
level specifies a certain set of properties about the way you use pointers in your C
program.

As you compile with higher levels of the - xal i as_| evel option, the compiler
makes increasingly extensive assumptions about the pointers in your code. You have
greater programming freedom when the compiler makes fewer assumptions.
However, the optimizations that result from these narrow assumptions may not
result in significant runtime performance improvement. If you code in accordance
with the compiler assumptions of the more advanced levels of the - xal i as_| evel
option, there is a greater chance that the resulting optimizations will enhance
runtime performance.

The - xal i as_| evel option specifies which alias level applies to each translation
unit. For cases where more detail is beneficial, you can use new pragmas to override
whatever alias levels are in effect so that you can explicitly specify the aliasing
relationships between individual types or pointer variables in the translation unit.

6-1

These pragmas are most useful when the pointer usage in a translation unit is
covered by one of the available alias levels, but a few specific pointer variables are
used in an irregular way that is not allowed by one of the available levels.

6.2 Using Pragmas for Finer Control

For cases in which type-based analysis can benefit from more detail, you can use the
following pragmas to override the alias level in effect and specify the aliasing
relationships between individual types or pointer variables in the translation unit.
These pragmas provide the most benefit when the use of pointers in a translation
unit is consistent with one of the available alias levels, but a few specific pointer
variables are used in an irregular way not allowed by one of the available levels.

Note — You must declare the named type or variable prior to the pragma or a
warning message is issued and the pragma is ignored. The results of the program
are undefined if the pragma appears after the first memory reference to which its
meaning applies.

The following terms are used in the pragma definitions.

Term Meaning

level Any of the alias levels listed under Section A.3.63, “- xal i as_| evel [=I]”
on page A-31.

type Any of the following:

e char, short,int,long,longlong,float, doubl e, | ong doubl e
= voi d, which denotes all pointer types

= t ypedef name, which is the name of a defined type from a t ypedef
declaration

st ruct name, which is the keyword st r uct followed by a struct tag
name

= uni on, which is the keyword uni on followed by a union tag name

pointer_name The name of any variable of pointer type in the translation unit.

6-2 C User's Guide » May 2003

6.2.0.1

6.2.0.2

6.2.0.3

#pragma alias_| evel level (list)

Replace level with one of the seven alias levels: any, basi ¢, weak, | ayout ,
strict,std, or strong. You can replace list with either a single type or a
comma-delimited list of types, or you can replace list with either a single pointer or
a comma-delimited list of pointers. For example, you can issue #pr agna

al i as_| evel as follows:

=« #pragrme alias_|evel level (type [, type])
=« #pragrme alias_|evel level (pointer [, pointer])

This pragma specifies that the indicated alias level applies either to all of the
memory references of the translation unit for the listed types, or to all of the
dereferences of the translation unit where any of the named pointer variables are
being dereferenced.

If you specify more than one alias level to be applied to a particular dereference, the
level that is applied by the pointer name, if any, has precedence over all other levels.
The level applied by the type name, if any, has precedence over the level applied by
the option. In the following example, the st d level applies to p if the program is
compiled with #pragma al i as_| evel set higher than any.

typedef int * int_ptr;

int_ptr p;

#pragnma alias_|level strong (int_ptr)
#pragma alias_level std (p)

#pragma al i as (type, type [, type]..)

This pragma specifies that all the listed types alias each other. In the following
example, the compiler assumes that the indirect access * pt aliases the indirect access

*pf .

#pragme alias (int, float)
int *pt;
float *pf;

#pragma al i as (poi nter, pointer [, pointer]..)

This pragma specifies that at the point of any dereference of any of the named
pointer variables, the pointer value being dereferenced can point to the same object
as any of the other named pointer variables. However, the pointer is not limited to
only the objects contained in the named variables and can point to objects that are

Chapter 6 Type-Based Alias Analysis 6-3

6.2.04

6.2.0.5

6.2.0.6

not included in the list. This pragma overrides the aliasing assumptions of any
applied alias levels. In the following example, any indirect accesses of p and g after
the pragma are considered to alias regardless of their type.

#pragma alias(p, Q)

#pragma may_poi nt _to (pointer, vari abl e
[, vari abl e].))

This pragma specifies that at the point of any dereference of the named pointer
variable, the pointer value being dereferenced can point to the objects that are
contained in any of the named variables. However, the pointer is not limited to only
the objects contained in the named variables and can point to objects that are not
included in the list. This pragma overrides the aliasing assumptions of any applied
alias levels. In the following example, the compiler assumes that any indirect access
of *p, aliases any direct accesses a, b, and c.

#pragma alias may_point _to(p, a, b, ¢)

#pragma noal i as (type, type [, type].)

This pragma specifies that the listed types do not alias each other. In the following
example, the compiler assumes that any indirect access of * p does not alias the
indirect access * ps.

struct S {
float f;

oo} orps;

#pragma noalias(int, struct S)
int *p;

#pragma noal i as (poi nter, pointer [,pointer]..)

This pragma specifies that at the point of any dereference of any of the named
pointer variables, the pointer value being dereferenced does not point to the same
object as any of the other named pointer variables. This pragma overrides all other

6-4 C User's Guide » May 2003

6.2.0.7

applied alias levels. In the following example, the compiler assumes that any
indirect access of * p does not alias the indirect access * q regardless of the types of
the two pointers.

#pragma noalias(p, Q)

#pragma may_not _point _to (pointer, variabl e
[, vari abl e].))

This pragma specifies that at the point of any dereference of the named pointer
variable, the pointer value being dereferenced does not point to the objects that are
contained in any of the named variables. This pragma overrides all other applied
alias levels. In the following example, the compiler assumes that any indirect access
of * p does not alias the direct accesses a, b, or c.

#pragma may_not _point_to(p, a, b, c)

6.3

Checking With | i nt

The lint program recognizes the same levels of type-based alias-disambiguation as
the compiler’s - xal i as_| evel command. The lint program also recognizes the
pragmas related to type-based alias-disambiguation documented in this chapter. For
a detailed explanation of the lint - Xal i as_| evel command, see Section 5.3.37,
“-Xal i as_| evel [=I] ” on page 5-15.

There are four situations that lint detects and for which it generates warnings:

= Casting a scalar pointer to a struct pointer

= Casting a void pointer to a struct pointer

= Casting a structure field to a scalar pointer

= Casting a struct pointer to a struct pointer at the level of
- Xal i as_| evel =stri ct without explicit aliasing.

Chapter 6 Type-Based Alias Analysis 6-5

6.3.1 Struct Pointer Cast of Scalar Pointer

In the following example, the pointer p of type integer is cast as a pointer of type
struct foo. With lint - Xal i as_| evel =weak (or higher), this generates an error.

struct foo {
int a;
int b;
s

struct foo *f;
int *p;

voi d main()

{

f = (struct foo *)p; /* struct pointer cast of scalar pointer
error */
}

6.3.2 Struct Pointer Cast of Void Pointer

In the following example, the void pointer vp, is cast as a struct pointer. With lint
- Xal i as_| evel =weak (or higher), this generates a warning.

struct foo {
int a;
int b;
b

struct foo *f;
voi d *vp;

voi d nain()

{

f = (struct foo *)vp; /* struct pointer cast of void pointer
error */
}

6-6 C User's Guide » May 2003

6.3.3 Cast of Struct Field to Structure Pointer

In the following example, the address of structure member foo.b is being cast as a
struct pointer and then assigned to p. With lint - Xal i as_| evel =weak (or higher),
this generates a warning.

struct foo p{
int a;
int b;
b

struct foo *f1;
struct foo *f2;

voi d main()

f2 = (struct foo *)& 1->b; /* cast of a scalar pointer to
struct pointer error*/

}

6.3.4 Explicit Aliasing Required

In the following example, the pointer f1 of type struct f ooa is being cast as a pointer
of type struct f oob. With lint - Xal i as_| evel =stri ct (or higher) such a cast
requires explicit aliasing, unless the struct types are identical (the same number of
fields of the same type). In addition, at alias levels st andar d and st r ong, the

Chapter 6 Type-Based Alias Analysis 6-7

assumptions is that the tags must match for aliasing to occur. Use #pr agna al i as
(struct fooa, struct foob) before the assignment to f1 and lint stops generating
the warning.

struct fooa {
int a;

b

struct foob {
int b;

b

struct fooa *f1;
struct foob *f2;

voi d main()

{ fl = (struct fooa *)f2; /* explicit aliasing required warning
*/
}
6.4 Examples of Memory Reference
Constraints

This section provides examples of code that are likely to appear in your source files.
Each example is followed by a discussion of the compiler’s assumptions about the
code as dictated by the applied level of type-based analysis.

6-8 C User's Guide » May 2003

Consider the following code. It can be compiled with different levels of aliasing to
demonstrate the aliasing relationship of the shown types.

CODE EXAMPLE 6-1

struct foo {

int f1;
short f2;
short f3;
int f4;

}orfp;

struct bar {
int bil;
int b2;
int b3;

} *bp;

int *ip;

short *sp;

If CODE EXAMPLE 6-1 is compiled with the - xal i as_| evel =any option, the
compiler considers the following indirect accesses as aliases to each other:

*ip,*sp, *fp, *bp, fp->f1, fp->f2 fp->f3, fp->f4, bp->bl, bp->b2, bp->b3

If CODE EXAMPLE 6-1 is compiled with the - xal i as_| evel =basi c option, the
compiler considers the following indirect accesses as aliases to each other:

*ip, *bp, fp->f1,fp->f4, bp->bl, bp->b2, bp->b3
p p,Tp p p p p

Additionally, *sp, f p- >f 2, and f p- >f 3 can alias each other, and *sp and *f p can
alias each other.

However, under - xal i as_| evel =basi c, the compiler assumes the following:

= *ip does not alias *sp.
= *ip does not alias f p->f 2 and f p- >f 3.
= *sp does not alias f p->f 1, f p- >f 4, bp- >b1, bp- >b2, and bp- >b3.

The compiler makes these assumptions because the access types of the two indirect
accesses are different basic types.

If CODE EXAMPLE 6-1 is compiled with the - xal i as_I| evel =weak option, the
compiler assumes the following alias information:

= *ipcanalias *fp, fp->f 1, fp->f4, *bp, bp->bl, bp->b2, and bp->b3.
= *spcanalias *f p, f p->f 2 and f p- >f 3.

=« fp->f1canalias bp->b1l.

= fp->f4 can alias bp- >b3.

Chapter 6 Type-Based Alias Analysis 6-9

6-10

The compiler assumes that f p- >f p1 does not alias bp- >b2 because f 1 is a field
with offset 0 in a structure, whereas b2 is a field with a 4-byte offset in a structure.
Similarly, the compiler assumes that f p- >f 1 does not alias bp- >b3, and f p->f 4
does not alias either bp- >b1 or bp- >b2.

If CODE EXAMPLE 6-1 is compiled with the - xal i as_| evel =l ayout option, the
compiler assumes the following information:

*i p can alias *f p, *bp, f p->f 1, f p- >f 4, bp- >b1, bp->b2, and bp- >b3.
*sp can alias *f p, f p->f 2, and f p- >f 3.

f p- >f 1 can alias bp- >b1 and * bp.

*f p and *bp can alias each other.

f p- >f 4 does not alias bp- >b3 because f 4 and b3 are not corresponding fields in
the common initial sequence of f oo and bar.

If CODE EXAMPLE 6-1 is compiled with the - xal i as_| evel =stri ct option, the
compiler assumes the following alias information:

= *ipcanalias *fp, fp->f1,fp->f4, *bp, bp->bl, bp->b2, and bp- >b3.

= *spcan alias *f p, f p->f 2, and f p- >f 3.

With - xal i as_| evel =stri ct, the compiler assumes that *f p, *bp, f p- >f 1,
fp->f 2, fp->f3, fp->f4, bp->bl, bp->b2, and bp- >b3 do not alias each other
because f 00 and bar are not the same when field names are ignored. However, f p
aliases f p- >f 1 and bp aliases bp- >b1.

If CODE EXAMPLE 6-1 is compiled with the - xal i as_| evel =st d option, the
compiler assumes the following alias information:

= *ipcanalias *fp, fp->f 1, fp->f4, *bp, bp->bl, bp->b2, and bp->b3.
= *spcanalias *f p, f p- >f 2, and f p- >f 3.

However, f p- >f 1 does not alias bp- >b1, bp- >b2, or bp- >b3 because f oo and bar
are not the same when field names are considered.

If CODE EXAMPLE 6-1 is compiled with the - xal i as_| evel =st r ong option, the
compiler assumes the following alias information:

= *ip does not alias f p- >f 1, f p- >f 4, bp- >b1, bp- >b2, and bp- >b3 because a
pointer, such as *i p, should not point to the interior of a structure.

= Similarly, *sp does not alias f p- >f 1 or f p- >f 3.
= *i p does not alias *f p, *bp, and * sp due to differing types.
= *sp does not alias *f p, *bp, and *i p due to differing types.

C User’s Guide May 2003

Consider the following example source code. It demonstrates the aliasing
relationship of the shown types when compiled with different levels of aliasing.

CODE EXAMPLE 6-2

struct foo {
int f1;
int f2;
int f3;

}orfps

struct bar {
int bl;
int b2;
int b3;
} *bp;

If CODE EXAMPLE 6-2 is compiled with the - xal i as_| evel =any option, the
compiler assumes the following alias information:

*fp, *bp, fp->f1, fp->f2, fp->f3, bp->bl, bp->b2 and bp- >b3 all can alias
each other because any two memory accesses alias each other at the level of
- xal i as_I evel =any.

If CODE EXAMPLE 6-2 is compiled with the - xal i as_| evel =basi ¢ option, the
compiler assumes the following alias information:

*fp, *bp, fp->f1, fp->f2 fp->f3, bp->bl, bp->b2 and bp->b3 all can alias
each other. Any two field accesses using pointers *f p and *bp can alias each other
in this example because all the structure fields are the same basic type.

If CODE EXAMPLE 6-2 is compiled with the - xal i as_I| evel =weak option, the

compiler assumes the following alias information:
*fp and *f p can alias each other.

f p- >f 1 can alias bp- >b1, *bp and *f p.

f p- >f 2 can alias bp- >b2, *bp and *f p.

f p- >f 3 can alias bp- >b3, *bp and *f p.

However, - xal i as_I| evel =weak imposes the following restrictions:

= fp->f1does not alias bp- >b2 or bp- >b3 because f 1 has an offset of zero, which
is different from that of b2 (four bytes) and b3 (eight bytes).

« fp->f2 does not alias bp- >b1 or bp- >b3 because f 2 has an offset of four bytes,
which is different from b1 (zero bytes) and b3 (eight bytes).

= fp->f 3 does not alias bp- >b1 or bp- >b2 because f 3 has an offset of eight bytes,
which is different from b1 (zero bytes) and b2 (four bytes).

Chapter 6 Type-Based Alias Analysis 6-11

6-12

If CODE EXAMPLE 6-2 is compiled with the - xal i as_I evel =l ayout options, the
compiler assumes the following alias information:

=« *fpand *bp can alias each other.

=« fp->f1canalias bp->bl, *bp, and *f p.
« fp->f2can alias bp->b2, *bp, and *f p.
=« fp->f3can alias bp- >b3, *bp, and *f p.

However, - xal i as_| evel =l ayout imposes the following restrictions:

=« fp->f1 does not alias bp- >b2 or bp- >b3 because field f 1 corresponds to field
b1 in the common initial sequence of f oo and bar.

= fp->f2 does not alias bp- >b1 or bp- >b3 because f 2 corresponds to field b2 in
the common initial sequence of f oo and bar.

=« fp->f 3 does not alias bp- >b1 or bp- >b2 because f 3 corresponds to field b3 in
the common initial sequence of f oo and bar.

If CODE EXAMPLE 6-2 is compiled with the - xal i as_| evel =stri ct option, the

compiler assumes the following alias information:

= *fp and *bp can alias each other.

= fp->f1canalias bp->bl, *bp, and *f p.

= fp->f2canalias bp->b2, *bp, and *f p.

= fp->f3can alias bp->b3, *bp, and *f p.

However, - xal i as_| evel =stri ct imposes the following restrictions:

=« fp->f1 does not alias bp- >b2 or bp- >b3 because field f 1 corresponds to field
b1 in the common initial sequence of f oo and bar.

= fp->f2 does not alias bp- >b1 or bp- >b3 because f 2 corresponds to field b2 in
the common initial sequence of f oo and bar.

=« fp->f 3 does not alias bp- >b1 or bp- >b2 because f 3 corresponds to field b3 in
the common initial sequence of f oo and bar.

If CODE EXAMPLE 6-2 is compiled with the - xal i as_| evel =st d option, the
compiler assumes the following alias information:

fp->f1,fp->f2, fp->f3, bp->bl, bp->b2, and bp->b3 do not alias each other.

If CODE EXAMPLE 6-2 is compiled with the - xal i as_| evel =st r ong option, the
compiler assumes the following alias information:

fp->f1,fp->f2, fp->f3, bp->bl, bp->b2, and bp- >b3 do not alias each other.

C User’s Guide May 2003

Consider the following example source code that demonstrates that certain levels of
aliasing cannot handle interior pointers. For a definition of interior pointers see
TABLE A-8.

CODE EXAMPLE 6-3

struct foo {
int f1;
struct bar *f2;
struct bar *f3;
int f4;
int f5;
struct bar fb[10];
} *fp;

struct bar
struct bar *b2;
struct bar *b3;
int b4;

} *bp;

bp=(struct bar*) (&f p->f2);

The dereference in CODE EXAMPLE 6-3 is not supported by weak, | ayout , strict, or
st d. After the pointer assignment bp=(struct bar*) (&f p->f 2), the following
pair of memory accesses touches the same memory locations:

=« fp->f2and bp->b2 access the same memory location
=« fp->f3and bp->b3 access the same memory location
= fp->f4 and bp->b4 access the same memory location

However, under options weak, | ayout, stri ct, and st d, the compiler assumes
that f p- >f 2 and bp- >b2 do not alias. The compiler makes this assumption because
b2 has an offset of zero, which is different from the offset of f 2 (four bytes), and f oo
and bar do not have a common initial sequence. Similarly, the compiler also
assumes that bp- >b3 does not alias f p- >f 3, and bp- >b4 does not alias f p- >f 4.

Thus, the pointer assignment bp=(st ruct bar*) (& p- >f 2) creates a situation in
which the compiler’s assumptions about alias information are incorrect. This may
lead to incorrect optimization.

Chapter 6 Type-Based Alias Analysis 6-13

6-14

Try compiling after you make the modifications shown in the following example.

struct foo {

int f1;

struct bar fb; /* Modified line */
#define f2 fb. b2 /* Modified line */
#define f3 fb. b3 /* Modified line */
#define f4 fb. b4 /* Modified line */

int f5;

struct bar fb[10];
} *fp;
struct bar

struct bar *b2;

struct bar *b3;

int b4;
} *bp;

bp=(struct bar*) (&f p->f2);

After the pointer assignment bp=(struct bar*) (& p->f 2), the following pair of
memory accesses touches the same memory locations:

=« fp->f2andbp->b2
« fp->f3and bp->b3
=« fp->f4and bp->b4

By examining the changes shown in the preceding code example, you can see that
the expression f p- >f 2 is another form of the expression f p- >f b. b2. Because

f p- >f b is of type bar, f p- >f 2 accesses the b2 field of bar. Furthermore, bp- >b2
also accesses the b2 field of bar. Therefore, the compiler assumes that f p- >f 2
aliases bp- >b2. Similarly, the compiler assumes that f p- >f 3 aliases bp- >b3, and
f p- >f 4 aliases bp- >b4. As a result, the aliasing assumed by the compiler matches
the actual aliases caused by the pointer assignment.

C User’s Guide May 2003

Consider the following example source code.

CODE EXAMPLE 6-4

struct foo {
int f1;
int f2;
}orfps

struct bar {
int bl;
int b2;
} *bp;

struct cat {
int cl;
struct foo cf;
int c2;
int c3;

} *ep;

struct dog {
int di;
int d2;
struct bar db;
int d3;

} *dp;

If CODE EXAMPLE 6-4 is compiled with the - xal i as_I| evel =weak option, the
compiler assumes the following alias information:

= fp->f1can alias bp- >b1, cp- >c1, dp- >d1, cp- >cf.f1, and df - >db. b1.

» fp->f2canalias bp- >b2, cp->cf.f1, dp->d2, cp->cf.f2, df - >db. b2,
Ccp->c2.

= bp->bl can alias f p- >f 1, cp- >c1, dp- >d1, cp- >cf.f 1, and df - >db. b1.
= bp->b2 can alias f p- >f 2, cp- >cf . f 1, dp- >d2, cp->cf. f 1, and df - >db. b2.

f p- >f 2 can alias cp- >c2 because *dp can alias *cp and *f p can alias dp- >db.

= Cp->cl can alias f p- >f 1, bp- >b1, dp- >d1, and dp- >db. b1l.
= cp->cf.flcanaliasfp->f1,fp->f2 bp->bl, bp->b2, dp->d2, and dp- >d1.

cp->cf. f 1 does not alias dp- >db. b1.

= cp->cf.f2canalias f p- >f 2, bp- >b2, dp- >db. b1, and dp- >d2.
= Cp->c2 can alias dp->db. b2.

cp- >c2 does not alias dp- >db. b1 and cp- >c2 does not alias dp- >d3.

Chapter 6 Type-Based Alias Analysis 6-15

6-16

With respect to offsets, cp- >c2 can alias db->db. b1 only if *dp aliases cp- >cf.
However, if *dp aliases cp- >cf, then dp- >db. b1 must alias beyond the end of f oo
cf, which is prohibited by object restrictions. Therefore, the compiler assumes that
cp- >c2 cannot alias db- >db. b1.

cp->c3 can alias dp->d3.

Notice that cp- >c3 does not alias dp- >db. b2. These memory references do not
alias because the offsets of the fields of the types involved in the dereferences differ
and do not overlap. Based on this, the compiler assumes they cannot alias.

dp->d1 can alias f p- >f 1, bp- >b1, and cp- >c1.

dp- >d2 can alias f p- >f 2, bp- >b2, and cp- >cf. f 1.

dp- >db. bl can alias f p- >f 1, bp->b1, and cp- >c1.

dp- >db. b2 can alias f p- >f 2, bp- >b2, cp->c2, and cp- >cf . f 1.
dp- >d3 can alias cp- >c3.

Notice that dp- >d3 does not alias cp- >cf . f 2. These memory references do not
alias because the offsets of the fields of the types involved in the dereferences differ
and do not overlap. Based on this, the compiler assumes they cannot alias.

If CODE EXAMPLE 6-4 is compiled with the - xal i as_| evel =l ayout option, the
compiler assumes only the following alias information:

f p->f 1, bp- >b1, cp- >c1l and dp- >d1 all can alias each other.
f p- >f 2, bp- >b2 and dp- >d2 all can alias each other.

f p->f 1 can alias cp- >cf. f 1 and dp- >db. b1.

bp->b1l can alias cp- >cf. f 1 and dp- >db. b1.

f p- >f 2 can alias cp- >cf . f 2 and dp- >db. b2.

bp- >b2 can alias cp- >cf . f 2 and dp- >db. b2.

If CODE EXAMPLE 6-4 is compiled with the - xal i as_| evel =stri ct option, the
compiler assumes only the following alias information:

f p- >f 1 and bp- >b1l can alias each other.
f p- >f 2 and bp- >b2 can alias each other.
f p- >f 1 can alias cp- >cf. f 1 and dp- >db. b1.
bp- >bl can alias cp- >cf. f 1 and dp- >db. b1.
f p- >f 2 can alias cp- >cf . f 2 and dp- >db. b2.
bp- >b2 can alias cp- >cf . f 2 and dp- >db. b2.

If CODE EXAMPLE 6-4 is compiled with the - xal i as_| evel =st d option, the
compiler assumes only the following alias information:

f p->f 1 can alias cp- >cf . f 1.
bp- >b1 can alias dp- >db. b1.
f p- >f 2 can alias cp- >cf . f 2.
bp- >b2 can alias dp- >db. b2.

C User’s Guide May 2003

Consider the following example source code.

CODE EXAMPLE 6-5

struct foo {
short f1;
short f2;
i nt f3;

} *fp;

struct bar {
int bl;
int b2;
} *bp;

uni on noo {
struct foo u_f;
struct bar u_b;

}ou

Here are the compiler’s assumptions based on the following alias levels:
= |If CODE EXAMPLE 6-5 is compiled with the - xal i as_| evel =weak option, f p- >f 3

and bp- >b2 can alias each other.

= |If CODE EXAMPLE 6-5 is compiled with the - xal i as_| evel =l ayout option, no

fields can alias each other.

= |If CODE EXAMPLE 6-5 is compiled with the - xal i as_| evel

f p- >f 3 and bp- >b2 can alias each other.

= |If CODE EXAMPLE 6-5 is compiled with the - xal i as_| evel

can alias each other.

Consider the following example source code.

CODE EXAMPLE 6-6

=strict option,

=st d option, no fields

struct bar;
struct foo {
struct foo *ffp;
struct bar *fbp;
}orp;
struct bar {
struct bar *bbp;
| ong b2;
} *bp;

Chapter 6

Type-Based Alias Analysis 6-17

6-18

Here are the compiler’s assumptions based on the following alias levels:

If CODE EXAMPLE 6-6 is compiled with the - xal i as_I| evel =weak option, only
f p- >f f p and bp- >bbp can alias each other.

If CODE EXAMPLE 6-6 is compiled with the - xal i as_| evel =l ayout option, only
f p- >f f p and bp- >bbp can alias each other.

If CODE EXAMPLE 6-6 is compiled with the - xal i as_| evel =stri ct option, no
fields can alias because the two struct types are still different even after their tags
are removed.

If CODE EXAMPLE 6-6 is compiled with the - xal i as_| evel =st d option, no fields
can alias because the two types and the tags are not the same.

Consider the following example source code:

struct foo;
struct bar;
#pragme alias (struct foo, struct bar)

struct foo {
int f1;
int f2;
}orfps

struct bar {
short bl;
short b2;
i nt b3;

} *bp;

The pragma in this example tells the compiler that f oo and bar are allowed to alias
each other. The compiler makes the following assumptions about alias information:

=« fp->f1can alias with bp->b1, bp->b2, and bp->b3
= fp->f2 can alias with bp- >b1, bp- >b2, and bp- >b3

C User’s Guide May 2003

CHAPTER 7

Transitioning to ISO C

This chapter provides information which you can use to help you port applications
for K&R style C to conform with 9899:1990 ISO/IEC C standard. The information is
presented under the assumption that you are using - xc99=%o0ne because you do
not want to conform with the newer, 9899:1999 ISO/IEC C standard. The C compiler
defaults to - xc99=%al | which supports the 9899:1999 ISO/IEC C standard.

7.1

7.1.1

7.1.2

Basic Modes

The I1SO C compiler allows both old-style and new-style C code. The compiler
provides varying degrees of compliance to the ISO C standard when you use the
following - X (note case) options with - xc99=%one. - Xa is the default mode. Note
that the compiler’s default mode is - xc99=%al | , so its behavior under each of the -
X options depends on the setting of - xc99.

- Xa

ISO C plus K&R C compatibility extensions, with semantic changes required by ISO
C. Where K&R C and ISO C specify different semantics for the same construct, the
compiler issues warnings about the conflict and uses the ISO C interpretation. This is
the default mode.

- XC

(c = conformance) Maximally conformant ISO C, without K&R C compatibility
extensions. The compiler issues errors and warnings for programs that use ISO C
constructs.

7-1

7.1.3 - XS

(s = K&R C) The compiled language includes all features compatible with 1SO K&R
C. The computer warns about all language constructs that have differing behavior
between ISO C and K&R C.

7.1.4 - Xt

(t = transition) ISO C plus K&R C compatibility extensions, without semantic
changes required by I1ISO C. Where K&R C and I1SO C specify different semantics for
the same construct, the compiler issues warnings about the conflict and uses the
K&R C interpretation.

7.2 A Mixture of Old- and New-Style
Functions

The 1990 ISO C standard’s most sweeping change to the language is the function
prototype borrowed from the C++ language. By specifying for each function the
number and types of its parameters, not only does every regular compile get the
benefits of argument and parameter checks (similar to those of | i nt) for each
function call, but arguments are automatically converted (just as with an
assignment) to the type expected by the function. The 1990 ISO C standard includes
rules that govern the mixing of old- and new-style function declarations since there
are many, many lines of existing C code that could and should be converted to use
prototypes.

7.2.1 Writing New Code

When you write an entirely new program, use new-style function declarations
(function prototypes) in headers and new-style function declarations and definitions
in other C source files. However, if there is a possibility that someone will port the
code to a machine with a pre-ISO C compiler, we suggest you use the macro
__STDC__ (which is defined only for ISO C compilation systems) in both header and
source files. Refer to Section 7.2.3, “Mixing Considerations” on page 7-3 for an
example.

7-2 C User's Guide » May 2003

1.2.2

7.2.3

An ISO C-conforming compiler must issue a diagnostic whenever two incompatible
declarations for the same object or function are in the same scope. If all functions are
declared and defined with prototypes, and the appropriate headers are included by
the correct source files, all calls should agree with the definition of the functions.
This protocol eliminates one of the most common C programming mistakes.

Updating Existing Code

If you have an existing application and want the benefits of function prototypes,
there are a number of possibilities for updating, depending on how much of the
code you would like to change:

1. Recompile without making any changes.

Even with no coding changes, the compiler warns you about mismatches in
parameter type and number when invoked with the —v option.

2. Add function prototypes just to the headers.

All calls to global functions are covered.

3. Add function prototypes to the headers and start each source file with function
prototypes for its local (static) functions.

All calls to functions are covered, but doing this requires typing the interface for
each local function twice in the source file.

4. Change all function declarations and definitions to use function prototypes.

For most programmers, choices 2 and 3 are probably the best cost/benefit
compromise. Unfortunately, these options are precisely the ones that require detailed
knowledge of the rules for mixing old and new styles.

Mixing Considerations

For function prototype declarations to work with old-style function definitions, both
must specify functionally identical interfaces or have compatible types using ISO C’s
terminology.

For functions with varying arguments, there can be no mixing of ISO C’s ellipsis
notation and the old-style var ar gs() function definition. For functions with a fixed
number of parameters, the situation is fairly straightforward: just specify the types
of the parameters as they were passed in previous implementations.

In K&R C, each argument was converted just before it was passed to the called
function according to the default argument promotions. These promotions specified
that all integral types narrower than i nt were promoted to i nt size, and any f | oat

Chapter 7 Transitioningto ISOC 7-3

7-4

argument was promoted to doubl e, hence simplifying both the compiler and
libraries. Function prototypes are more expressive—the specified parameter type is
what is passed to the function.

Thus, if a function prototype is written for an existing (old-style) function definition,
there should be no parameters in the function prototype with any of the following

types:

char signed char unsi gned char fl oat

short signed short unsi gned short

There still remain two complications with writing prototypes: t ypedef names and
the promotion rules for narrow unsigned types.

If parameters in old-style functions were declared using t ypedef names, such as
of f _t andino_t, itis important to know whether or not the t ypedef name
designates a type that is affected by the default argument promotions. For these two,
of f _t isal ong, so it is appropriate to use in a function prototype; i no_t used to
be an unsi gned short, so if it were used in a prototype, the compiler issues a
diagnostic because the old-style definition and the prototype specify different and
incompatible interfaces.

Just what should be used instead of an unsi gned short leads us into the final
complication. The one biggest incompatibility between K&R C and the 1990 I1SO C
compiler is the promotion rule for the widening of unsi gned char and unsi gned
short to ani nt value. (See Section 7.4, “Promotions: Unsigned Versus Value
Preserving” on page 7-9.) The parameter type that matches such an old-style
parameter depends on the compilation mode used when you compile:

= - Xs and —Xt should use unsi gned i nt
= —Xa and —Xc should use i nt

The best approach is to change the old-style definition to specify either i nt or

unsi gned i nt and use the matching type in the function prototype. You can always
assign its value to a local variable with the narrower type, if necessary, after you
enter the function.

Watch out for the use of id’s in prototypes that may be affected by preprocessing.
Consider the following example:

#define status 23
void ny_exit(int status); /* Normally, scope begins */
/* and ends with prototype */

C User’s Guide * May 2003

Do not mix function prototypes with old-style function declarations that contain
narrow types.

voi d foo(unsigned char, unsigned short);
void foo(i, j) unsigned char i; unsigned short j; {...}

Appropriate use of __STDC__ produces a header file that can be used for both the
old and new compilers:

header . h:
struct s { /* . . . * };
#i fdef __STDC _
void errnsg(int, ...);
struct s *f(const char *);
int g(void);
#el se

voi d errnsg();

struct s *f();

int g();
#endi f

The following function uses prototypes and can still be compiled on an older system:

struct s *
#ifdef _ STDC
f(const char *p)
#el se
f(p) char *p;
#endi f
{

}

Y

Chapter 7 Transitioningto ISOC 7-5

Here is an updated source file (as with choice 3 above). The local function still uses
an old-style definition, but a prototype is included for newer compilers:

source. C:
#i ncl ude “header.h”
typedef /* . . . *| MWType;
#i fdef __STDC _
static void del (MyType *);
*/

/= . . .
static void
del (p)

M/ Type *p;

{

(. . . *
}

/* */

7.3

Functions With Varying Arguments

In previous implementations, you could not specify the parameter types that a
function expected, but ISO C encourages you to use prototypes to do just that. To
support functions such as pri nt f (), the syntax for prototypes includes a special
ellipsis (..) terminator. Because an implementation might need to do unusual things
to handle a varying number of arguments, 1SO C requires that all declarations and
the definition of such a function include the ellipsis terminator.

Since there are no names for the “..” part of the parameters, a special set of macros
contained in st dar g. h gives the function access to these arguments. Earlier
versions of such functions had to use similar macros contained in var ar gs. h.

Let us assume that the function we wish to write is an error handler called
errnsg() that returns voi d, and whose only fixed parameter is an i nt that
specifies details about the error message. This parameter can be followed by a file
name, a line number, or both, and these are followed by format and arguments,
similar to those of print f (), that specify the text of the error message.

7-6 C User's Guide » May 2003

To allow our example to compile with earlier compilers, we make extensive use of
the macro __STDC__ which is defined only for ISO C compilation systems. Thus, the
function’s declaration in the appropriate header file is:

#i fdef _ STDC _

void errnsg(int code, ...);
#el se

void errmsg();
#endi f

The file that contains the definition of er r msg() is where the old and new styles can
get complex. First, the header to include depends on the compilation system:

#i fdef _ STDC _

#i ncl ude <stdarg. h>
#el se

#i ncl ude <varargs. h>
#endi f

#i ncl ude <stdio. h>

st di 0. h is included because we call fprintf () and vfprintf() later.

Next comes the definition for the function. The identifiers va_al i st and va_dcl
are part of the old-style var ar gs. h interface.

voi d

#i fdef __STDC _

errmsg(int code, ...)

#el se

errmsg(va_alist) va_dcl /* Note: no sem colon! */
#endi f

{
}

/* nore detail bel ow */

Since the old-style variable argument mechanism did not allow us to specify any
fixed parameters, we must arrange for them to be accessed before the varying
portion. Also, due to the lack of a name for the “..” part of the parameters, the new
va_start () macro has a second argument—the name of the parameter that comes

just before the “..” terminator.

As an extension, Sun ISO C allows functions to be declared and defined with no
fixed parameters, as in:

int f(...);

Chapter 7 Transitioningto ISOC 7-7

7-8

For such functions, va_start () should be invoked with an empty second
argument, as in:

va_start(ap,)

The following is the body of the function:

va_list ap;
char *fnt;
#ifdef __STDC__
va_start(ap, code);
#el se
int code;
va_start (ap);
/* extract the fixed argunent */
code = va_arg(ap, int);
#endi f
if (code & FI LENAME)
(void)fprintf(stderr, "\"%\": ", va_arg(ap, char *));
i f (code & LI NENUMBER)
(void)fprintf(stderr, "%: ", va_arg(ap, int));
if (code & WARNI NG
(void)fputs("warning: ", stderr);
fnt = va_arg(ap, char *);
(void)vfprintf(stderr, fnt, ap);
va_end(ap);

Both the va_ar g() and va_end() macros work the same for the old-style and 1SO
C versions. Because va_ar g() changes the value of ap, the call to vfprintf ()
cannot be:

(void)vfprintf(stderr, va_arg(ap, char *), ap);

The definitions for the macros FI LENAME, LI NENUMBER, and WARNI NG are
presumably contained in the same header as the declaration of err nmsg() .

A sample call to errmsg() could be:

errmsg(FI LENAVE, "<command |ine>", "cannot open: %\n",
argv[optind]);

C User’s Guide * May 2003

7.4

7.4.1

7.4.2

Promotions: Unsigned Versus Value
Preserving

The following information appears in the Rationale section that accompanies the
1990 I1SO C Standard: “QUIET CHANGE”. A program that depends on unsigned
preserving arithmetic conversions will behave differently, probably without
complaint. This is considered to be the most serious change made by the Committee
to a widespread current practice.

This section explores how this change affects our code.

Background

According to K&R, The C Programming Language (First Edition), unsi gned specified
exactly one type; there were no unsi gned chars, unsi gned shorts, or unsi gned
| ongs, but most C compilers added these very soon thereafter. Some compilers did
not implement unsi gned | ong but included the other two. Naturally,
implementations chose different rules for type promotions when these new types
mixed with others in expressions.

In most C compilers, the simpler rule, “unsigned preserving,” is used: when an
unsigned type needs to be widened, it is widened to an unsigned type; when an
unsigned type mixes with a signed type, the result is an unsigned type.

The other rule, specified by ISO C, is known as “value preserving,” in which the
result type depends on the relative sizes of the operand types. When an unsi gned
char or unsi gned short is widened, the result type isi nt if ani nt is large
enough to represent all the values of the smaller type. Otherwise, the result type is
unsi gned i nt. The value preserving rule produces the least surprise arithmetic
result for most expressions.

Compilation Behavior

Only in the transition or ISO modes (- Xt or - Xs) does the ISO C compiler use the
unsigned preserving promotions; in the other two modes, conforming (—Xc) and ISO
(—Xa), the value preserving promotion rules are used.

Chapter 7 Transitioningto ISOC 7-9

7.4.3

First Example: The Use of a Cast

In the following code, assume that an unsi gned char is smaller than an i nt.

int f(void)
{
int i =-2;
unsi gned char uc = 1;

return (i + uc) < 17;

The code above causes the compiler to issue the following warning when you use
the - xt ransi ti on option:

line 6: warning: semantics of "<" change in 1SO C, use explicit
cast

The result of the addition has type i nt (value preserving) or unsi gned i nt
(unsigned preserving), but the bit pattern does not change between these two. On a
two’s-complement machine, we have:

i 111...110 (-2)
+ uc: 000...001 (1)

111...111 (-1 or Ul NT_MAX)

This bit representation corresponds to - 1 for i nt and Ul NT_MAX for unsi gned i nt .
Thus, if the result has type i nt, a signed comparison is used and the less-than test is
true; if the result has type unsi gned i nt, an unsigned comparison is used and the
less-than test is false.

The addition of a cast serves to specify which of the two behaviors is desired:

val ue preserving:
(i + (int)uc) < 17
unsi gned preserving:
(i + (unsigned int)uc) < 17

Since differing compilers chose different meanings for the same code, this expression
can be ambiguous. The addition of a cast is as much to help the reader as it is to
eliminate the warning message.

7-10 C User's Guide « May 2003

7.4.4

7.4.5

7.4.6

Bit-fields

The same situation applies to the promotion of bit-field values. In ISO C, if the
number of bits in an i nt or unsi gned i nt bit-field is less than the number of bits
in an i nt, the promoted type is i nt ; otherwise, the promoted type is unsi gned

i nt. In most older C compilers, the promoted type is unsi gned i nt for explicitly
unsigned bit-fields, and i nt otherwise.

Similar use of casts can eliminate situations that are ambiguous.

Second Example: Same Result

In the following code, assume that both unsi gned short and unsi gned char are
narrower than i nt .

int f(void)

{
unsi gned short us;
unsi gned char uc;
return uc < us;

In this example, both automatics are either promoted to i nt or to unsi gnedi nt, so
the comparison is sometimes unsigned and sometimes signed. However, the C
compiler does not warn you because the result is the same for the two choices.

Integral Constants

As with expressions, the rules for the types of certain integral constants have
changed. In K&R C, an unsuffixed decimal constant had type i nt only if its value fit
in ani nt; an unsuffixed octal or hexadecimal constant had type i nt only if its value
fit in an unsi gned i nt. Otherwise, an integral constant had type | ong. At times,
the value did not fit in the resulting type. In the 1990 ISO/IEC C standard, the
constant type is the first type encountered in the following list that corresponds to
the value:

= unsuffixed decimal: i nt, | ong, unsi gned | ong

= unsuffixed octal or hexadecimal: i nt, unsi gned i nt, | ong, unsi gned | ong
= Usuffixed: unsi gned i nt, unsi gned | ong

= L suffixed: | ong, unsi gned | ong

= UL suffixed: unsi gned | ong

Chapter 7 Transitioningto ISOC 7-11

1.4.7

The ISO C compiler warns you, when you use the - xt r ansi t i on option, about any
expression whose behavior might change according to the typing rules of the
constants involved. The old integral constant typing rules are used only in the
transition mode; the ISO and conforming modes use the new rules.

Note — The rules for typing unsuffixed decimal constants has changed in accordance
with the 1999 ISO C standard. See Section 2.1.1, “Integral Constants” on page 2-1.

Third Example: Integral Constants

In the following code, assume i nt s are 16 bits.

int f(void)

{
int i = 0;

return i > Oxffff;

Because the hexadecimal constant’s type is either i nt (with a value of =1 on a
two’s-complement machine) or an unsi gned i nt (with a value of 65535), the
comparison is true in —Xs and - Xt modes, and false in —Xa and —Xc modes.

Again, an appropriate cast clarifies the code and suppresses a warning:

-Xt, -Xs nodes:
i > (int)Oxffff

-Xa, -Xc nodes:
i > (unsigned int)Oxffff
or
i > Oxffffu

The U suffix character is a new feature of ISO C and probably produces an error
message with older compilers.

7-12 C User's Guide « May 2003

7.5

7.5.1

Tokenization and Preprocessing

Probably the least specified part of previous versions of C concerned the operations
that transformed each source file from a bunch of characters into a sequence of
tokens, ready to parse. These operations included recognition of white space
(including comments), bundling consecutive characters into tokens, handling
preprocessing directive lines, and macro replacement. However, their respective
ordering was never guaranteed.

ISO C Translation Phases

The order of these translation phases is specified by ISO C.

Every trigraph sequence in the source file is replaced. ISO C has exactly nine
trigraph sequences that were invented solely as a concession to deficient character
sets, and are three-character sequences that name a character not in the ISO 646-1983
character set:

TABLE 7-1 Trigraph Sequences

Trigraph Sequence Converts to
?7= #
?7?- ~
?2?2([
??)]
?7?1 |
?27< {
??7> }
??/ \
?? n

Chapter 7 Transitioningto ISOC 7-13

7.5.2

These sequences must be understood by ISO C compilers, but we do not recommend
their use. The ISO C compiler warns you, when you use the - xt r ansi t i on option,
whenever it replaces a trigraph while in transition (=Xt) mode, even in comments.
For example, consider the following:

/* comrent *?7?/
/* still coment? */

The ??/ becomes a backslash. This character and the following newline are
removed. The resulting characters are:

/* comment */* still comment? */

The first / from the second line is the end of the comment. The next token is the *.
1. Every backslash/new-line character pair is deleted.

2. The source file is converted into preprocessing tokens and sequences of white
space. Each comment is effectively replaced by a space character.

3. Every preprocessing directive is handled and all macro invocations are replaced.
Each #i ncl uded source file is run through the earlier phases before its contents
replace the directive line.

4. Every escape sequence (in character constants and string literals) is interpreted.
5. Adjacent string literals are concatenated.

6. Every preprocessing token is converted into a regular token; the compiler
properly parses these and generates code.

7. All external object and function references are resolved, resulting in the final
program.

Old C Translation Phases

Previous C compilers did not follow such a simple sequence of phases, nor were
there any guarantees for when these steps were applied. A separate preprocessor
recognized tokens and white space at essentially the same time as it replaced macros
and handled directive lines. The output was then completely retokenized by the
compiler proper, which then parsed the language and generated code.

7-14 C User's Guide « May 2003

7.5.3

7.5.4

Because the tokenization process within the preprocessor was a moment-by-moment
operation and macro replacement was done as a character-based, not token-based,
operation, the tokens and white space could have a great deal of variation during
preprocessing.

There are a number of differences that arise from these two approaches. The rest of
this section discusses how code behavior may change due to line splicing, macro
replacement, stringizing, and token pasting, which occur during macro replacement.

Logical Source Lines

In K&R C, backslash/new-line pairs were allowed only as a means to continue a
directive, a string literal, or a character constant to the next line. ISO C extended the
notion so that a backslash/new-line pair can continue anything to the next line. The
result is a logical source line. Therefore, any code that relied on the separate
recognition of tokens on either side of a backslash/new-line pair does not behave as
expected.

Macro Replacement

The macro replacement process has never been described in detail prior to ISO C.
This vagueness spawned a great many divergent implementations. Any code that
relied on anything fancier than manifest constant replacement and simple function—
like macros was probably not truly portable. This manual cannot uncover all the
differences between the old C macro replacement implementation and the ISO C
version. Nearly all uses of macro replacement with the exception of token pasting
and stringizing produce exactly the same series of tokens as before. Furthermore, the
ISO C macro replacement algorithm can do things not possible in the old C version.
For example,

#def i ne nane (*nane)

causes any use of name to be replaced with an indirect reference through nane. The
old C preprocessor would produce a huge number of parentheses and stars and
eventually produce an error about macro recursion.

The major change in the macro replacement approach taken by ISO C is to require
macro arguments, other than those that are operands of the macro substitution
operators # and ##, to be expanded recursively prior to their substitution in the
replacement token list. However, this change seldom produces an actual difference
in the resulting tokens.

Chapter 7 Transitioningto ISOC 7-15

7.5.5

Using Strings

Note — In ISO C, the examples below marked with a t produce a warning about use
of old features, when you use the - xt r ansi ti on option. Only in the transition
mode (—Xt and - Xs) is the result the same as in previous versions of C.

In K&R C, the following code produced the string literal "x y!":

#define str(a) "al" ¥
str(x vy)

Thus, the preprocessor searched inside string literals and character constants for
characters that looked like macro parameters. ISO C recognized the importance of
this feature, but could not condone operations on parts of tokens. In ISO C, all
invocations of the above macro produce the string literal "a! " . To achieve the old
effect in ISO C, we make use of the # macro substitution operator and the
concatenation of string literals.

#define str(a) #a "!"
str(x vy)

The above code produces the two string literals “x y" and "!" which, after
concatenation, produces the identical "x y!".

There is no direct replacement for the analogous operation for character constants.
The major use of this feature was similar to the following:

#define CNTL(ch) (037 & 'ch’) 1
CNTL(L)

which produced

(037 & 'L")

which evaluates to the ASCII control-L character. The best solution we know of is to
change all uses of this macro to:

#define CNTL(ch) (037 & (ch))
ONTL(’ L")

7-16 C User's Guide « May 2003

7.5.6

This code is more readable and more useful, as it can also be applied to expressions.

Token Pasting

In K&R C, there were at least two ways to combine two tokens. Both invocations in
the following produced a single identifier x1 out of the two tokens x and 1.

#define self(a) a

#define glue(a,b) a/**/b %
self(x)1

gl ue(x, 1)

Again, ISO C could not sanction either approach. In ISO C, both the above
invocations would produce the two separate tokens x and 1. The second of the
above two methods can be rewritten for ISO C by using the ## macro substitution
operator:

#define glue(a,b) a ## b
gl ue(x, 1)

and ## should be used as macro substitution operators only when __STDC___is
defined. Since ## is an actual operator, the invocation can be much freer with respect
to white space in both the definition and invocation.

There is no direct approach to effect the first of the two old-style pasting schemes,
but since it put the burden of the pasting at the invocation, it was used less
frequently than the other form.

7.6

const andvol atil e

The keyword const was one of the C++ features that found its way into ISO C.
When an analogous keyword, vol ati | e, was invented by the ISO C Committee, the
“type qualifier” category was created.

Chapter 7 Transitioningto ISOC 7-17

7.6.1

7.6.2

Types, Only for | val ue

const and vol ati | e are part of an identifier’s type, not its storage class. However,
they are often removed from the topmost part of the type when an object’s value is
fetched in the evaluation of an expression—exactly at the point when an | val ue
becomes an r val ue. These terms arise from the prototypical assignment “L=R"; in
which the left side must still refer directly to an object (an | val ue) and the right
side need only be a value (an r val ue). Thus, only expressions that are | val ues can
be qualified by const or vol ati | e or both.

Type Qualifiers in Derived Types

The type qualifiers may modify type names and derived types. Derived types are
those parts of C’s declarations that can be applied over and over to build more and
more complex types: pointers, arrays, functions, structures, and unions. Except for
functions, one or both type qualifiers can be used to change the behavior of a
derived type.

For example,

const int five = 5;

declares and initializes an object with type const i nt whose value is not changed
by a correct program. The order of the keywords is not significant to C. For example,
the declarations:

int const five = 5;

and

const five = 5;

are identical to the above declaration in its effect.

The declaration

const int *pci = &five;

7-18 C User's Guide « May 2003

7.6.3

declares an object with type pointer to const i nt, which initially points to the
previously declared object. The pointer itself does not have a qualified type—it
points to a qualified type, and can be changed to point to essentially any i nt during
program execution. pci cannot be used to modify the object to which it points
unless a cast is used, as in the following:

*(int *)pci = 17,

If pci actually points to a const object, the behavior of this code is undefined.

The declaration

extern int *const cpi;

says that somewhere in the program there exists a definition of a global object with
type const pointer to i nt . In this case, cpi ’s value will not be changed by a correct
program, but it can be used to modify the object to which it points. Notice that
const comes after the * in the above declaration. The following pair of declarations
produces the same effect:

typedef int *INT_PTR
extern const | NT_PTR cpi;

These declarations can be combined as in the following declaration in which an
object is declared to have type const pointer to const int:

const int *const cpci;

const Means r eadonly

In hindsight, r eadonl y would have been a better choice for a keyword than const .
If one reads const in this manner, declarations such as:

char *strcpy(char *, const char *);

are easily understood to mean that the second parameter is only used to read
character values, while the first parameter overwrites the characters to which it
points. Furthermore, despite the fact that in the above example, the type of cpi is a

Chapter 7 Transitioningto ISOC 7-19

7.6.4

7.6.5

7.6.6

pointer to a const i nt, you can still change the value of the object to which it
points through some other means, unless it actually points to an object declared with
const int type.

Examples of const Usage

The two main uses for const are to declare large compile-time initialized tables of
information as unchanging, and to specify that pointer parameters do not modify
the objects to which they point.

The first use potentially allows portions of the data for a program to be shared by
other concurrent invocations of the same program. It may cause attempts to modify
this invariant data to be detected immediately by means of some sort of memory
protection fault, since the data resides in a read-only portion of memory.

The second use helps locate potential errors before generating a memory fault
during that demo. For example, functions that temporarily place a null character
into the middle of a string are detected at compile time, if passed a pointer to a
string that cannot be so modified.

vol ati | e Means Exact Semantics

So far, the examples have all used const because it’s conceptually simpler. But what
does vol ati | e really mean? To a compiler writer, it has one meaning: take no code
generation shortcuts when accessing such an object. In ISO C, it is a programmer’s
responsibility to declare every object that has the appropriate special properties with
avol ati | e qualified type.

Examples of vol ati | e Usage

The usual four examples of vol ati | e objects are:

= An object that is a memory-mapped 1/0 port

= An object that is shared between multiple concurrent processes
= An object that is modified by an asynchronous signal handler

= An automatic storage duration object declared in a function that calls set j np,
and whose value is changed between the call to set j np and a corresponding call

to | ongj np

7-20 C User's Guide * May 2003

The first three examples are all instances of an object with a particular behavior: its
value can be modified at any point during the execution of the program. Thus, the
seemingly infinite loop:

flag = 1;
while (flag);

is valid as long as f | ag has a vol ati | e qualified type. Presumably, some
asynchronous event sets f | ag to zero in the future. Otherwise, because the value of
f I ag is unchanged within the body of the loop, the compilation system is free to
change the above loop into a truly infinite loop that completely ignores the value of
flag.

The fourth example, involving variables local to functions that call set j np, is more
involved. The fine print about the behavior of set j np and | ongj np notes that there
are no guarantees about the values for objects matching the fourth case. For the most
desirable behavior, it is necessary for | ongj np to examine every stack frame
between the function calling set j mp and the function calling | ongj np for saved
register values. The possibility of asynchronously created stack frames makes this
job even harder.

When an automatic object is declared with a vol at i | e qualified type, the
compilation system knows that it has to produce code that exactly matches what the
programmer wrote. Therefore, the most recent value for such an automatic object is
always in memory and not just in a register, and is guaranteed to be up-to-date
when | ongj np is called.

1.7

7.7.1

Multibyte Characters and Wide
Characters

At first, the internationalization of ISO C affected only library functions. However,
the final stage of internationalization—multibyte characters and wide
characters—also affected the language proper.

Asian Languages Require Multibyte Characters

The basic difficulty in an Asian-language computer environment is the huge number
of ideograms needed for 1/0. To work within the constraints of usual computer
architectures, these ideograms are encoded as sequences of bytes. The associated
operating systems, application programs, and terminals understand these byte

Chapter 7 Transitioningto ISOC 7-21

7.7.2

7.7.3

sequences as individual ideograms. Moreover, all of these encodings allow
intermixing of regular single-byte characters with the ideogram byte sequences. Just
how difficult it is to recognize distinct ideograms depends on the encoding scheme
used.

The term “multibyte character” is defined by I1SO C to denote a byte sequence that
encodes an ideogram, no matter what encoding scheme is employed. All multibyte
characters are members of the “extended character set.” A regular single-byte
character is just a special case of a multibyte character. The only requirement placed
on the encoding is that no multibyte character can use a null character as part of its
encoding.

ISO C specifies that program comments, string literals, character constants, and
header names are all sequences of multibyte characters.

Encoding Variations

The encoding schemes fall into two camps. The first is one in which each multibyte
character is self-identifying, that is, any multibyte character can simply be inserted
between any pair of multibyte characters.

The second scheme is one in which the presence of special shift bytes changes the
interpretation of subsequent bytes. An example is the method used by some
character terminals to get in and out of line-drawing mode. For programs written in
multibyte characters with a shift-state-dependent encoding, 1ISO C requires that each
comment, string literal, character constant, and header name must both begin and
end in the unshifted state.

Wide Characters

Some of the inconvenience of handling multibyte characters would be eliminated if
all characters were of a uniform number of bytes or bits. Since there can be
thousands or tens of thousands of ideograms in such a character set, a 16-bit or
32-bit sized integral value should be used to hold all members. (The full Chinese
alphabet includes more than 65,000 ideograms!) ISO C includes the t ypedef name
wchar _t as the implementation-defined integral type large enough to hold all
members of the extended character set.

For each wide character, there is a corresponding multibyte character, and vice versa,;
the wide character that corresponds to a regular single-byte character is required to
have the same value as its single-byte value, including the null character. However,
there is no guarantee that the value of the macro ECF can be stored in a wchar _t
just as EOF might not be representable as a char.

7-22 C User's Guide » May 2003

7.7.4

7.71.5

Conversion Functions

The 1990 ISO/IEC C standard provides five library functions that manage multibyte
characters and wide characters, the 1999 ISO/IEC C standard provides many more
such functions.

C Language Features

To give even more flexibility to the programmer in an Asian-language environment,
ISO C provides wide character constants and wide string literals. These have the
same form as their non-wide versions, except that they are immediately prefixed by
the letter L:

= X' regular character constant

= '¥'regular character constant

= L'x" wide character constant

= L'¥' wide character constant

= "abc¥xyz" regular string literal
= L"abcxyz" wide string literal

Multibyte characters are valid in both the regular and wide versions. The sequence
of bytes necessary to produce the ideogram ¥ is encoding-specific, but if it consists
of more than one byte, the value of the character constant '¥' is
implementation-defined, just as the value of 'ab' is implementation-defined. Except
for escape sequences, a regular string literal contains exactly the bytes specified
between the quotes, including the bytes of each specified multibyte character.

When the compilation system encounters a wide character constant or wide string
literal, each multibyte character is converted into a wide character, as if by calling
the nbt owc() function. Thus, the type of L'¥' is wchar _t ; the type of abc¥xyz is
array of wchar _t with length eight. Just as with regular string literals, each wide
string literal has an extra zero-valued element appended, but in these cases, it is a
wchar _t with value zero.

Just as regular string literals can be used as a shorthand method for character array
initialization, wide string literals can be used to initialize wchar _t arrays:

wchar _t *wp = L"a¥z";
wchar _t x[] = L"a¥z";
wchar _t y[] = {L"'a, L'¥, Lz, 0};

wechar _t z[] {*a', L'¥, "z', '"\0};

In the above example, the three arrays x, y, and z, and the array pointed to by wp,
have the same length. All are initialized with identical values.

Chapter 7 Transitioningto ISOC 7-23

Finally, adjacent wide string literals are concatenated, just as with regular string
literals. However, with the 1990 ISO/IEC C standard, adjacent regular and wide
string literals produce undefined behavior. Also, the 1990 ISO/IEC C standard
specifies that a compiler is not required to produce an error if it does not accept such
concatenations.

7.8

7.8.1

Standard Headers and Reserved Names

Early in the standardization process, the ISO Standards Committee chose to include
library functions, macros, and header files as part of 1SO C.

This section presents the various categories of reserved names and some rationale
for their reservations. At the end is a set of rules to follow that can steer your
programs clear of any reserved names.

Standard Headers

The standard headers are:

TABLE 7-2 Standard Headers

assert.h | ocal e. h stddef.h
ctype. h mat h. h stdio.h
errno. h setjmp. h stdlib.h
float.h signal . h string.h
limts.h stdarg. h tine.h

Most implementations provide more headers, but a strictly conforming 1990
ISO/IEC C program can only use these.

Other standards disagree slightly regarding the contents of some of these headers.
For example, POSIX (IEEE 1003.1) specifies that f dopen is declared in st di 0. h. To
allow these two standards to coexist, POSIX requires the macro _POSI X_SOURCE to
be #def i ned prior to the inclusion of any header to guarantee that these additional
names exist. In its Portability Guide, X/Open has also used this macro scheme for its
extensions. X/Open’s macro is _XOPEN_SOURCE.

7-24 C User's Guide « May 2003

7.8.2

ISO C requires the standard headers to be both self-sufficient and idempotent. No
standard header needs any other header to be #i ncl uded before or after it, and
each standard header can be #i ncl uded more than once without causing problems.
The Standard also requires that its headers be #i ncl uded only in safe contexts, so
that the names used in the headers are guaranteed to remain unchanged.

Names Reserved for Implementation Use

The Standard places further restrictions on implementations regarding their

libraries. In the past, most programmers learned not to use names like r ead and
wr i t e for their own functions on UNIX Systems. ISO C requires that only names
reserved by the Standard be introduced by references within the implementation.

Thus, the Standard reserves a subset of all possible names for implementations to
use. This class of names consists of identifiers that begin with an underscore and
continue with either another underscore or a capital letter. The class of names
contains all names matching the following regular expression:

_[_A-Z][0-9_a-zA-Z] *

Strictly speaking, if your program uses such an identifier, its behavior is undefined.
Thus, programs using _POSI X _SOURCE (or _XOPEN_SOURCE) have undefined
behavior.

However, undefined behavior comes in different degrees. If, in a POSIX-conforming
implementation you use _POSI X_SOURCE, you know that your program’s undefined
behavior consists of certain additional names in certain headers, and your program
still conforms to an accepted standard. This deliberate loophole in the ISO C
standard allows implementations to conform to seemingly incompatible
specifications. On the other hand, an implementation that does not conform to the
POSIX standard is free to behave in any manner when encountering a name such as
_POCsI X_SOURCE.

The Standard also reserves all other names that begin with an underscore for use in
header files as regular file scope identifiers and as tags for structures and unions, but
not in local scopes. The common practice of having functions named _fi | buf and
_dopr nt to implement hidden parts of the library is allowed.

Chapter 7 Transitioningto ISOC 7-25

7.8.3

7.8.4

Names Reserved for Expansion

In addition to all the names explicitly reserved, the 1990 ISO/IEC C standard also
reserves (for implementations and future standards) names matching certain
patterns:

TABLE 7-3 Names Reserved for Expansion

File Reserved Name Pattern
errno. h E[0-9A-Z] . *

ctype. h (tolis)[a-z].*
locale.h LC[A-2Z].*

mat h. h current function names[f 1]
signal . h (SIgSIG)[A-Z].*
stdlib.h strla-z].*

string.h (str|memws)[a-z].*

In the above lists, names that begin with a capital letter are macros and are reserved
only when the associated header is included. The rest of the names designate
functions and cannot be used to name any global objects or functions.

Names Safe to Use

There are four simple rules you can follow to keep from colliding with any ISO C
reserved names:

= #i ncl ude all system headers at the top of your source files (except possibly after
a #def i ne of _PQOSI X_SOURCE or _ XOPEN_SOURCE, or both).

= Do not define or declare any names that begin with an underscore.

= Use an underscore or a capital letter somewhere within the first few characters of
all file scope tags and regular names. Beware of the va_ prefix found in
stdarg. h orvarargs. h.

= Use a digit or a non-capital letter somewhere within the first few characters of all
macro names. Almost all names beginning with an E are reserved if errno. h is
#i ncl uded.

These rules are just a general guideline to follow, as most implementations will
continue to add names to the standard headers by default.

7-26 C User's Guide * May 2003

7.9

7.9.1

7.9.2

Internationalization

The section Section 7.7, “Multibyte Characters and Wide Characters” on page 7-21
introduced the internationalization of the standard libraries. This section discusses
the affected library functions and gives some hints on how programs should be
written to take advantage of these features. The section only discusses
internationalization with respect to the 1990 ISO/IEC C standard. The 1999 ISO/IEC
C standard has no significant extension to support internationalization over those
discussed here.

Locales

At any time, a C program has a current locale—a collection of information that
describes the conventions appropriate to some nationality, culture, and language.
Locales have names that are strings. The only two standardized locale names are
"C' and "". Each program begins in the " C' locale, which causes all library
functions to behave just like they have historically. The " " locale is the
implementation’s best guess at the correct set of conventions appropriate to the
program’s invocation. " C' and "" can cause identical behavior. Other locales may be
provided by implementations.

For the purposes of practicality and expediency, locales are partitioned into a set of
categories. A program can change the complete locale, or just one or more
categories. Generally, each category affects a set of functions disjoint from the
functions affected by other categories, so temporarily changing one category for a
little while can make sense.

The set | ocal e() Function

The set | ocal e() function is the interface to the program’s locale. In general, any
program that uses the invocation country’s conventions should place a call such as:

#i ncl ude <l ocal e. h>
[*. .. %]
setl ocal e(LC_ALL, "");

Chapter 7 Transitioningto ISOC 7-27

7.9.3

early in the program’s execution path. This call causes the program’s current locale
to change to the appropriate local version, since LC_ALL is the macro that specifies
the entire locale instead of one category. The following are the standard categories:

LC _COLLATE sorting information

LC _CTYPE character classification information
LC_MONETARY currency printing information

LC _NUVERI C numeric printing information
LC TI ME date and time printing information

Any of these macros can be passed as the first argument to set | ocal e() to specify
that category.

The set | ocal e() function returns the name of the current locale for a given
category (or LC_ALL) and serves in an inquiry-only capacity when its second
argument is a null pointer. Thus, code similar to the following can be used to change
the locale or a portion thereof for a limited duration:

#i ncl ude <l ocal e. h>

[*.000%)

char *ol oc;

[*000x

ol oc = setl ocal e(LC_category, NULL);

i f (setlocal e(LC category, "new") != 0)
{

/* use tenporarily changed | ocale */
(void)setl ocal e(LC category, ol oc);

Most programs do not need this capability.

Changed Functions

Wherever possible and appropriate, existing library functions were extended to
include locale-dependent behavior. These functions came in two groups:

= Those declared by the ct ype. h header (character classification and conversion),
and

= Those that convert to and from printable and internal forms of numeric values,
suchasprintf() andstrtod().

7-28 C User's Guide * May 2003

7.9.4

All ct ype. h predicate functions, excepti sdi gi t () and i sxdi git(), can return
nonzero (true) for additional characters when the LC_CTYPE category of the current
locale is other than " C'. In a Spanish locale, i sal pha(’ fi’) should be true.
Similarly, the character conversion functions, t ol ower () and t oupper (), should
appropriately handle any extra alphabetic characters identified by the i sal pha()
function. The ct ype. h functions are almost always macros that are implemented
using table lookups indexed by the character argument. Their behavior is changed
by resetting the table(s) to the new locale’s values, and therefore there is no
performance impact.

Those functions that write or interpret printable floating values can change to use a
decimal-point character other than period (.) when the LC_NUMERI C category of the
current locale is other than " C'. There is no provision for converting any numeric
values to printable form with thousands separator-type characters. When converting
from a printable form to an internal form, implementations are allowed to accept
such additional forms, again in other than the " C' locale. Those functions that make
use of the decimal-point character are the pri ntf () and scanf () families,

atof (), and strtod(). Those functions that are allowed implementation-defined
extensions are at of (), atoi (),atol (),strtod(),strtol (),strtoul (), and
the scanf () family.

New Functions

Certain locale-dependent capabilities were added as new standard functions.
Besides set | ocal e(), which allows control over the locale itself, the Standard
includes the following new functions:

| ocal econv() numeric/monetary conventions
strcol | () collation order of two strings
strxfrm() translate string for collation
strxfrm)) translate string for collation

In addition, there are the multibyte functions nbl en(), nbt owc(), nbst owcs(),
wet onb(), and west onbs() .

The | ocal econv() function returns a pointer to a structure containing information
useful for formatting numeric and monetary information appropriate to the current
locale’s LC_NUMERI Cand LC_MONETARY categories. This is the only function whose
behavior depends on more than one category. For numeric values, the structure
describes the decimal-point character, the thousands separator, and where the
separator(s) should be located. There are fifteen other structure members that
describe how to format a monetary value.

Chapter 7 Transitioning to ISOC 7-29

The strcol | () function is analogous to the st r cnp() function, except that the
two strings are compared according to the LC_COLLATE category of the current
locale. The st rxfrn{) function can also be used to transform a string into another,
such that any two such after-translation strings can be passed to st rcnp(), and get
an ordering analogous to what strcol | () would have returned if passed the two
pre-translation strings.

Thestrftine() function provides formatting similar to that used with spri nt f ()
of the values in a struct tm along with some date and time representations that
depend on the LC_TI ME category of the current locale. This function is based on the
ascftinme() function released as part of UNIX System V Release 3.2.

7.10

7.10.1

Grouping and Evaluation in Expressions

One of the choices made by Dennis Ritchie in the design of C was to give compilers
a license to rearrange expressions involving adjacent operators that are
mathematically commutative and associative, even in the presence of parentheses.
This is explicitly noted in the appendix in the The C Programming Language by
Kernighan and Ritchie. However, ISO C does not grant compilers this same freedom.

This section discusses the differences between these two definitions of C and
clarifies the distinctions between an expression’s side effects, grouping, and

evaluation by considering the expression statement from the following code
fragment.

int i, *p, f(void), g(void);
[*.00 0%
o= r4+p + £() + 9();

Definitions

The side effects of an expression are its modifications to memory and its accesses to
vol ati | e qualified objects. The side effects in the above expression are the
updating of i and p and any side effects contained within the functions f () and

a().

An expression’s grouping is the way values are combined with other values and
operators. The above expression’s grouping is primarily the order in which the
additions are performed.

7-30 C User's Guide « May 2003

7.10.2

An expression’s evaluation includes everything necessary to produce its resulting
value. To evaluate an expression, all specified side effects must occur anywhere
between the previous and next sequence point, and the specified operations are
performed with a particular grouping. For the above expression, the updating of i
and p must occur after the previous statement and by the ; of this expression
statement; the calls to the functions can occur in either order, any time after the
previous statement, but before their return values are used. In particular, the
operators that cause memory to be updated have no requirement to assign the new
value before the value of the operation is used.

The K&R C Rearrangement License

The K&R C rearrangement license applies to the above expression because addition
is mathematically commutative and associative. To distinguish between regular
parentheses and the actual grouping of an expression, the left and right curly braces
designate grouping. The three possible groupings for the expression are:

{ {*++p + 1O} +9() }
{ *++p + {f() +9()} };
{ {*++p + 9O} + () }

All of these are valid given K&R C rules. Moreover, all of these groupings are valid
even if the expression were written instead, for example, in either of these ways:

*++p + (f() +90));
(g() + *++p) + f();

If this expression is evaluated on an architecture for which either overflows cause an
exception, or addition and subtraction are not inverses across an overflow, these
three groupings behave differently if one of the additions overflows.

For such expressions on these architectures, the only recourse available in K&R C
was to split the expression to force a particular grouping. The following are possible
rewrites that respectively enforce the above three groupings:

*+4p 0o += () 0 +=9()
fO); 1 +=9(); 1 += *++p;
Hp; 0o +=g(); 1 +=f();

Chapter 7 Transitioningto ISOC 7-31

7.10.3

7.10.4

7.10.5

The I1SO C Rules

ISO C does not allow operations to be rearranged that are mathematically
commutative and associative, but that are not actually so on the target architecture.
Thus, the precedence and associativity of the ISO C grammar completely describes
the grouping for all expressions; all expressions must be grouped as they are parsed.
The expression under consideration is grouped in this manner:

b={ {*+p + 10} + 90 }

This code still does not mean that f () must be called before g(), or that p must be
incremented before g() is called.

In ISO C, expressions need not be split to guard against unintended overflows.

The Parentheses

ISO C is often erroneously described as honoring parentheses or evaluating
according to parentheses due to an incomplete understanding or an inaccurate
presentation.

Since 1SO C expressions simply have the grouping specified by their parsing,
parentheses still only serve as a way of controlling how an expression is parsed; the
natural precedence and associativity of expressions carry exactly the same weight as
parentheses.

The above expression could have been written as:

b= ((((+p)) + F£0)) +90));

with no different effect on its grouping or evaluation.

The As If Rule

There were several reasons for the K&R C rearrangement rules:

= The rearrangements provide many more opportunities for optimizations, such as
compile-time constant folding.

= The rearrangements do not change the result of integral-typed expressions on
most machines.

7-32 C User's Guide « May 2003

7.11

7.11.1

= Some of the operations are both mathematically and computationally
commutative and associative on all machines.

The 1ISO C Committee eventually became convinced that the rearrangement rules
were intended to be an instance of the as if rule when applied to the described target
architectures. 1ISO C’s as if rule is a general license that permits an implementation to
deviate arbitrarily from the abstract machine description as long as the deviations do
not change the behavior of a valid C program.

Thus, all the binary bitwise operators (other than shifting) are allowed to be
rearranged on any machine because there is no way to notice such regroupings. On
typical two’s-complement machines in which overflow wraps around, integer
expressions involving multiplication or addition can be rearranged for the same
reason.

Therefore, this change in C does not have a significant impact on most C
programmers.

Incomplete Types

The I1SO C standard introduced the term “incomplete type” to formalize a
fundamental, yet misunderstood, portion of C, implicit from its beginnings. This
section describes incomplete types, where they are permitted, and why they are
useful.

Types

ISO separates C’s types into three distinct sets: function, object, and incomplete.
Function types are obvious; object types cover everything else, except when the size
of the object is not known. The Standard uses the term “object type” to specify that
the designated object must have a known size, but it is important to know that
incomplete types other than voi d also refer to an object.

There are only three variations of incomplete types: voi d, arrays of unspecified
length, and structures and unions with unspecified content. The type voi d differs
from the other two in that it is an incomplete type that cannot be completed, and it
serves as a special function return and parameter type.

Chapter 7 Transitioningto ISOC 7-33

7.11.2

7.11.3

7.11.4

Completing Incomplete Types

An array type is completed by specifying the array size in a following declaration in
the same scope that denotes the same object. When an array without a size is
declared and initialized in the same declaration, the array has an incomplete type
only between the end of its declarator and the end of its initializer.

An incomplete structure or union type is completed by specifying the content in a
following declaration in the same scope for the same tag.

Declarations

Certain declarations can use incomplete types, but others require complete object

types. Those declarations that require object types are array elements, members of
structures or unions, and objects local to a function. All other declarations permit

incomplete types. In particular, the following constructs are permitted:

= Pointers to incomplete types

= Functions returning incomplete types
= Incomplete function parameter types
= typedef names for incomplete types

The function return and parameter types are special. Except for voi d, an incomplete
type used in such a manner must be completed by the time the function is defined or
called. A return type of voi d specifies a function that returns no value, and a single
parameter type of voi d specifies a function that accepts no arguments.

Since array and function parameter types are rewritten to be pointer types, a
seemingly incomplete array parameter type is not actually incomplete. The typical
declaration of mai n’s ar gv, namely, char *ar gv[], as an unspecified length array
of character pointers, is rewritten to be a pointer to character pointers.

Expressions

Most expression operators require complete object types. The only three exceptions
are the unary & operator, the first operand of the comma operator, and the second
and third operands of the ?: operator. Most operators that accept pointer operands
also permit pointers to incomplete types, unless pointer arithmetic is required. The
list includes the unary * operator. For example, given:

void *p

&* p is a valid subexpression that makes use of this.

7-34 C User's Guide « May 2003

7.11.5

7.11.6

Justification

Why are incomplete types necessary? Ignoring voi d, there is only one feature
provided by incomplete types that C has no other way to handle, and that has to do
with forward references to structures and unions. If one has two structures that need
pointers to each other, the only way to do so is with incomplete types:

struct a { struct b *bp; };
struct b { struct a *ap; };

All strongly typed programming languages that have some form of pointer and
heterogeneous data types provide some method of handling this case.

Examples

Defining t ypedef names for incomplete structure and union types is frequently
useful. If you have a complicated bunch of data structures that contain many
pointers to each other, having a list of t ypedef s to the structures up front, possibly
in a central header, can simplify the declarations.

typedef struct itemtag Item
typedef union note_tag Note;
typedef struct |ist_tag List;

struct itemtag { . . . };
struct list_tag {

struct list_tag {
b

Moreover, for those structures and unions whose contents should not be available to
the rest of the program, a header can declare the tag without the content. Other parts
of the program can use pointers to the incomplete structure or union without any
problems, unless they attempt to use any of its members.

A frequently used incomplete type is an external array of unspecified length.
Generally, it is not necessary to know the extent of an array to make use of its
contents.

Chapter 7 Transitioningto ISOC 7-35

7.12

7.12.1

7.12.2

Compatible and Composite Types

With K&R C, and even more so with ISO C, it is possible for two declarations that
refer to the same entity to be other than identical. The term “compatible type” is
used in ISO C to denote those types that are “close enough”. This section describes
compatible types as well as “composite types”—the result of combining two
compatible types.

Multiple Declarations

If a C program were only allowed to declare each object or function once, there
would be no need for compatible types. Linkage, which allows two or more
declarations to refer to the same entity, function prototypes, and separate
compilation all need such a capability. Separate translation units (source files) have
different rules for type compatibility from within a single translation unit.

Separate Compilation Compatibility

Since each compilation probably looks at different source files, most of the rules for
compatible types across separate compiles are structural in nature;

= Matching scalar (integral, floating, and pointer) types must be compatible, as if
they were in the same source file.

= Matching structures, unions, and enums must have the same number of members.
Each matching member must have a compatible type (in the separate compilation
sense), including bit-field widths.

= Matching structures must have the members in the same order. The order of
union and enum members does not matter.

= Matching enum members must have the same value.

An additional requirement is that the names of members, including the lack of
names for unnamed members, match for structures, unions, and enums, but not
necessarily their respective tags.

7-36 C User's Guide « May 2003

7.12.3

7.12.4

7.12.5

7.12.6

Single Compilation Compatibility

When two declarations in the same scope describe the same object or function, the
two declarations must specify compatible types. These two types are then combined
into a single composite type that is compatible with the first two. More about
composite types later.

The compatible types are defined recursively. At the bottom are type specifier
keywords. These are the rules that say that unsi gned short is the same as

unsi gned short i nt, and that a type without type specifiers is the same as one
with i nt. All other types are compatible only if the types from which they are
derived are compatible. For example, two qualified types are compatible if the
gualifiers, const and vol ati | e, are identical, and the unqualified base types are
compatible.

Compatible Pointer Types

For two pointer types to be compatible, the types they point to must be compatible
and the two pointers must be identically qualified. Recall that the qualifiers for a
pointer are specified after the *, so that these two declarations

int *const cpi;
int *volatile vpi;

declare two differently qualified pointers to the same type, i nt .

Compatible Array Types

For two array types to be compatible, their element types must be compatible. If
both array types have a specified size, they must match, that is, an incomplete array
type (see Section 7.11, “Incomplete Types” on page 7-33) is compatible both with
another incomplete array type and an array type with a specified size.

Compatible Function Types

To make functions compatible, follow these rules:

= For two function types to be compatible, their return types must be compatible. If
either or both function types have prototypes, the rules are more complicated.

Chapter 7 Transitioningto ISOC 7-37

7.12.7

7.12.8

= For two function types with prototypes to be compatible, they also must have the
same number of parameters, including use of the ellipsis (..) notation, and the
corresponding parameters must be parameter-compatible.

= For an old-style function definition to be compatible with a function type with a
prototype, the prototype parameters must not end with an ellipsis (..). Each of the
prototype parameters must be parameter-compatible with the corresponding
old-style parameter, after application of the default argument promotions.

= For an old-style function declaration (not a definition) to be compatible with a
function type with a prototype, the prototype parameters must not end with an
ellipsis (..). All of the prototype parameters must have types that would be
unaffected by the default argument promotions.

= For two types to be parameter-compatible, the types must be compatible after the
top-level qualifiers, if any, have been removed, and after a function or array type
has been converted to the appropriate pointer type.

Special Cases

si gned i nt behaves the same as i nt, except possibly for bit-fields, in which a plain
i nt may denote an unsigned-behaving quantity.

Another interesting note is that each enumeration type must be compatible with
some integral type. For portable programs, this means that enumeration types are
separate types. In general, the ISO C standard views them in that manner.

Composite Types

The construction of a composite type from two compatible types is also recursively
defined. The ways compatible types can differ from each other are due either to
incomplete arrays or to old-style function types. As such, the simplest description of
the composite type is that it is the type compatible with both of the original types,
including every available array size and every available parameter list from the
original types.

7-38 C User's Guide « May 2003

CHAPTER 8

Converting Applications for a 64-Bit
Environment

This chapter provides the information you need for writing code for the 32 bit or the
64-bit compilation environment.

Once you try to write or modify code for both the 32-bit and 64-bit compilation
environments, you face two basic issues:

= Data type consistency between the different data-type models
= Interaction between the applications using different data-type models

Maintaining a single code-source with as few #i f def s as possible is usually better
than maintaining multiple source trees. Therefore, this chapter provides guidelines
for writing code that works correctly in both 32-bit and 64-bit compilation
environments. In some cases, the conversion of current code requires only a
recompilation and relinking with the 64-bit libraries. However, for those cases where
code changes are required, this chapter discusses the tools and strategies that make
conversion easier.

8.1

Overview of the Data Model Differences

The biggest difference between the 32-bit and the 64-bit compilation environments is
the change in data-type models.

The C data-type model for 32-bit applications is the ILP32 model, so named because
integers, longs, and pointers are 32-bit data types. The LP64 data model, so named
because longs and pointers grow to 64-bits, is the creation of a consortium of
companies across the industry. The remaining C types, i nt, | ong | ong, short, and
char are the same in both data-type models.

Regardless of the data-type model, the standard relationship between C integral
types holds true:

si zeof (char) <=sizeof (short) <=sizeof (int) <=sizeof (|ong)

8-1

The following table lists the basic C data types and their corresponding sizes in bits
for both the ILP32 and LP64 data models.

TABLE8-1 Data Type Size for ILP32 and LP64

C Data Type LP32 LP64
char 8 8
short 16 16
int 32 32
| ong 32 64
I ong | ong 64 64
poi nter 32 64
enum 32 32
f1 oat 32 32
doubl e 64 64
| ong doubl e 128 128

It is not unusual for current 32-bit applications to assume that integers, pointers, and
longs are the same size. Because the size of longs and pointers change in the LP64
data model, you need to be aware that this change alone can cause many ILP32 to
LP64 conversion problems.

In addition, it becomes very important to examine declarations and casts; how
expressions are evaluated can be affected when the types change. The effects of
standard C conversion rules are influenced by the change in data-type sizes. To
adequately show what you intend, you need to explicitly declare the types of
constants. You can also use casts in expressions to make certain that the expression is
evaluated the way you intend. This is particularly true in the case of sign extension,
where explicit casting is essential for demonstrating intent.

8.2 Implementing Single Source Code

The following sections describe some of the available resources that you can use to
write single-source code that supports 32-bit and 64-bit compilation.

8-2 C User's Guide « May 2003

8.2.1

8.2.11

8.2.1.2

Derived Types

Use the system derived types to make code safe for both the 32-bit and the 64-bit
compilation environment. In general, it is good programming practice to use derived
types to allow for change. When you use derived data-types, only the system
derived types need to change due to data model changes, or due to a port.

The system include files <sys/ t ypes. h> and <i nt t ypes. h> contain constants,
macros, and derived types that are helpful in making applications 32-bit and 64-bit
safe.

<sys/types. h>

Include <sys/ t ypes. h> in an application source file to gain access to the definition
of _LP64 and _I LP32. This header also contains a number of basic derived types
that should be used whenever appropriate. In particular, the following are of special
interest:

= cl ock_t represents the system times in clock ticks.

= dev_t is used for device numbers.

= of f _t is used for file sizes and offsets.

« ptrdiff_t isthe signed integral type for the result of subtracting two pointers.
= Si ze_t reflects the size, in bytes, of objects in memory.

= Ssize_t is used by functions that return a count of bytes or an error indication.
= time_t counts time in seconds.

All of these types remain 32-bit quantities in the ILP32 compilation environment and
grow to 64-bit quantities in the LP64 compilation environment.

<inttypes. h>

The include file <i nt t ypes. h> provides constants, macros, and derived types that
help you make your code compatible with explicitly sized data items, independent
of the compilation environment. It contains mechanisms for manipulating 8-bit,
16-bit, 32-bit, and 64-bit objects. The file is part of the new 1999 ISO/IEC C standard
and the contents of the file track the proposals leading to its inclusion in the 1999
ISO/IEC C standard. The file will soon be updated to fully conform with the 1999
ISO/IEC C standard. The following is a discussion of the basic features provided by
<inttypes. h>:

= Fixed-width integer types.

= Helpful types such as ui nt ptr _t
= Constant macros

» Limits

= Format string macros

Chapter 8 Converting Applications for a 64-Bit Environment ~ 8-3

8-4

The following sections provide more information about the basic features of
<inttypes. h>.

Fixed-Width Integer Types

The fixed-width integer types that <i ntt ypes. h> provides, include signed integer
types, suchasint8_t,intl16_t,int32_t,int64_t,and unsigned integer types,
suchasuint8 t,uintl6_t,uint32_t,and uint64_t.

Derived types defined as the smallest integer types that can hold the specified
number of bits include i nt _| east8_t,...,int_|east64_t,uint_least8_t,...,
uint_|east64_t.

It is safe to use an integer for such operations as loop counters and file descriptors;
it is also safe to use a | ong for an array index. However, do not use these
fixed-width types indiscriminately. Use fixed-width types for explicit binary
representations of the following:

= On-disk data

= Over the data wire

= Hardware registers

= Binary interface specifications
= Binary data structures

Helpful Types Such as uni nt ptr _t

The <i ntt ypes. h> file includes signed and unsigned integer types large enough to
hold a pointer. These are given asi nt ptr_t and ui nt ptr_t. In addition,

<i nttypes. h> provides i nt max_t and ui nt max_t, which are the longest (in bits)
signed and unsigned integer types available.

Use the ui nt ptr _t type as the integral type for pointers instead of a fundamental
type such as unsigned | ong. Even though an unsigned | ong is the same size as a
pointer in both the ILP32 and LP64 data models, using ui nt pt r _t means that only
the definition of ui nt pt r _t is effected if the data model changes. This makes your
code portable to many other systems. It is also a more clear way to express your
intentions in C.

Theintptr_t and ui nt ptr_t types are extremely useful for casting pointers when
you want to perform address arithmetic. Use i nt ptr _t and ui nt ptr_t types
instead of | ong or unsigned | ong for this purpose.

C User’s Guide * May 2003

Constant Macros

Use the macros | NT8_C(c), ..., INT64_C(c), U NT8_C(c),..., U NT64_C(c) to
specify the size and sign of a given constant. Basically, these macros place an | , ul ,
I'1,orull atthe end of the constant, if necessary. For example, | NT64_C(1)
appends | | to the constant 1 for ILP32 and an | for LP64.

Use the | NTMAX_C(c) and U NTMAX_C(c¢) macros to make a constant the biggest
type. These macros can be very useful for specifying the type of constants described
in Section 8.3, “Converting to the LP64 Data Type Model” on page 8-7.

Limits
The limits defined by <i nt t ypes. h> are constants that specify the minimum and
maximum values of various integer types. This includes minimum and maximum

values for each of the fixed-width types such as | NT8_M N,..., | NT64_M N,
I NT8_MAX,..., | NT64_MAX, and their unsigned counterparts.

The <i ntt ypes. h> file also provides the minimum and maximum for each of the
least-sized types. These include | NT_LEAST8_M N,..., | NT_LEAST64_M N,
| NT_LEAST8_MAX,..., | NT_LEAST64_MAX, as well as their unsigned counterparts.

Finally, <i nt t ypes. h> defines the minimum and maximum value of the largest
supported integer types. These include | NTMAX_M Nand | NTMAX_MAX and their
corresponding unsigned versions.

Format String Macros

The <i ntt ypes. h> file also includes the macros that specify the pri ntf (3S) and
scanf (3S) format specifiers. Essentially, these macros prepend the format specifier
with an | or || to identify the argument as a | ong or | ong | ong, given that the
number of bits in the argument is built into the name of the macro.

There are macros for pri nt f (3S) that print both the smallest and largest integer
types in decimal, octal, unsigned, and hexadecimal formats as the following example
shows:

int64_t i;
printf("i =% PRI x64 "\n", i);

Chapter 8 Converting Applications for a 64-Bit Environment 8-5

8.2.2

8.2.2.1

Similarly, there are macros for scanf (3S)that read both the smallest and largest
integer types in decimal, octal, unsigned, and hexadecimal formats.

uint64 t u;
scanf ("% SCNu64 "\n", &u);

Do not use these macros indiscriminately. They are best used in conjunction with the
fixed-width types discussed in “Fixed-Width Integer Types” on page 8-4.

Tools

The | i nt program’s - er r chk option detects potential 64-bit porting problems. In
addition, the - v option to the C compiler performs additional and more strict
semantic checks. The - v option also enables certain lint-like checks on the named
files.

When you enhance code to be 64-bit safe, use the header files present in the Solaris
operating environment because these files have the correct definition of the derived
types and data structures for the 64-bit compilation environment.

[i nt

Use | i nt to check code that is written for both the 32-bit and the 64-bit compilation
environment. Specify the - er r chk=l ongpt r 64 option to generate LP64 warnings.
Also use the - er r chk=l ongpt r 64 flag which checks portability to an environment
for which the size of long integers and pointers is 64 bits and the size of plain
integers is 32 bits. The - err chk=l ongpt r 64 flag checks assignments of pointer
expressions and long integer expressions to plain integers, even when explicit casts
are used.

Use the - errchk=l ongpt r 64, si gnext option to find code where the normal ISO
C value-preserving rules allow the extension of the sign of a signed-integral value in
an expression of unsigned-integral type.

Use the - Xar ch=v9 option of | i nt when you want to check code that you intend to
run in the 64-bit compilation environment only.

When lint generates warnings, it prints the line number of the offending code, a
message that describes the problem, and whether or not a pointer is involved. The
warning message also indicates the sizes of the involved data types. When you
know a pointer is involved and you know the size of the data types, you can find
specific 64-bit problems and avoid the pre-existing problems between 32-bit and
smaller types.

8-6 C User's Guide « May 2003

Be aware, however, that even though | i nt gives warnings about potential 64-bit
problems, it cannot detect all problems. Also, in many cases, code that is intentional
and correct for the application generates a warning.

You can suppress the warning for a given line of code by placing a comment of the
form “ NOTE(LI NTED(“ <opti onal message”>))” on the previous line. This is
useful when you want | i nt to ignore certain lines of code such as casts and
assignments. Exercise extreme care when you use the “ NOTE(LI NTED(“ <opt i onal
nessage” >))” comment because it can mask real problems. When you use NOTE,
include #i ncl ude<not e. h>. Refer to the | i nt man page for more information.

8.3

8.3.1

Converting to the LP64 Data Type Model

The examples that follow illustrate some of the more common problems you are
likely to encounter when you convert code. Where appropriate, the corresponding
I i nt warnings are shown.

Integer and Pointer Size Change

Since integers and pointers are the same size in the ILP32 compilation environment,
some code relies on this assumption. Pointers are often cast to i nt or unsi gned i nt
for address arithmetic. Instead, cast your pointers to | ong because | ong and
pointers are the same size in both ILP32 and LP64 data-type models. Rather than
explicitly using unsi gned | ong, use ui nt ptr _t instead because it expresses your
intent more closely and makes the code more portable, insulating it against future
changes. Consider the following example:

char *p;

p = (char *) ((int)p & PAGEOFFSET);

%

war ni ng: conversion of pointer |oses bits

Here is the modified version:

char *p;
p = (char *) ((uintptr_t)p & PAGEOFFSET);

Chapter 8 Converting Applications for a 64-Bit Environment ~ 8-7

8.3.2

8.3.3

Integer and Long Size Change

Because integers and longs are never really distinguished in the ILP32 data-type
model, your existing code probably uses them indiscriminately. Modify any code
that uses integers and longs interchangeably so it conforms to the requirements of
both the ILP32 and LP64 data-type models. While an integer and a long are both
32-bits in the ILP32 data-type model, a long is 64 bits in the LP64 data-type model.
Consider the following example:

int waiting;

| ong wW_i 0;

| ong w_swap;

waiting = w_io + w_swap;

%
war ni ng: assignment of 64-bit integer to 32-bit integer

Sign Extension

Sign extension is a common problem when you convert to the 64-bit compilation
environment because the type conversion and promotion rules are somewhat
obscure. To prevent sign extension problems, use explicit casting to achieve the
intended results.

To understand why sign extension occurs, it helps to understand the conversion
rules for ISO C. The conversion rules that seem to cause the most sign extension
problems between the 32-bit and the 64-bit compilation environment come into
effect during the following operations:

= Integral promotion

You can use a char, short, enuner at ed t ype, or bit-field, whether signed or
unsigned, in any expression that calls for an integer.

If an integer can hold all possible values of the original type, the value is
converted to an integer; otherwise, the value is converted to an unsigned integer.

= Conversion between signed and unsigned integers

When an integer with a negative sign is promoted to an unsigned integer of the
same or larger type, it is first promoted to the signed equivalent of the larger type,
then converted to the unsigned value.

8-8 C User's Guide « May 2003

When the following example is compiled as a 64-bit program, the addr variable
becomes sign-extended, even though both addr and a. base are unsigned types.

%at test.c
struct foo {
unsi gned int base: 19, rehash: 13;

}

1

mai n(int argc, char *argv[])

{

}

struct foo a;
unsi gned | ong addr;

a. base = 0x40000;
addr = a.base << 13; /* Sign extension here! */
printf("addr Ox% x\n", addr);

addr = (unsigned int)(a.base << 13); /* No sign extension here! */
printf("addr Ox% x\ n", addr);

This sign extension occurs because the conversion rules are applied as follows:

a. base is converted from an unsigned i nt to an i nt because of the integral
promotion rule. Thus, the expression a. base << 13 is of type i nt, but no sign
extension has yet occurred.

The expression a. base << 13 is of type i nt, but it is converted to a | ong and

then to an unsigned | ong before being assigned to addr, because of signed and
unsigned integer promotion rules. The sign extension occurs when it is converted

fromanint toal ong.

% cc -0 test64 -xarch=v9 test.c
% ./testb64

addr Oxffffffff80000000

addr 0x80000000

%

Chapter 8 Converting Applications for a 64-Bit Environment

8-9

8.3.4

8.3.5

When this same example is compiled as a 32-bit program it does not display any
sign extension:

cc -0 test test.c
% est

addr 0x80000000
addr 0x80000000

For a more detailed discussion of the conversion rules, refer to the ISO C standard.
Also included in this standard are useful rules for ordinary arithmetic conversions
and integer constants.

Pointer Arithmetic Instead of Integers

In general, using pointer arithmetic works better than integers because pointer
arithmetic is independent of the data model, whereas integers might not be. Also,
you can usually simplify your code by using pointer arithmetic. Consider the
following example:

int *end;

int *p;

p = malloc(4 * NUM ELEMENTS);

end = (int *)((unsigned int)p + 4 * NUM ELEMENTS);

%
war ni ng: conversion of pointer |loses bits

Here is the modified version:

int *end;

int *p;

p = mall oc(sizeof (*p) * NUM ELEMENTS);
end = p + NUM ELEMENTS;

Structures

Check the internal data structures in an applications for holes. Use extra padding
between fields in the structure to meet alignment requirements. This extra padding
is allocated when long or pointer fields grow to 64 bits for the LP64 data-type model.

8-10 C User’'s Guide * May 2003

8.3.6

In the 64-bit compilation environment on SPARC platforms, all types of structures
are aligned to the size of the largest member within them. When you repack a
structure, follow the simple rule of moving the long and pointer fields to the
beginning of the structure. Consider the following structure definition:

struct bar {
int i;
long j;
int k;
char *p;
}; /* sizeof (struct bar) = 32 */

Here is the same structure with the long and pointer data types defined at the
beginning of the structure:

struct bar {
char *p;
long j;
int i;
int k;
}; /* sizeof (struct bar) = 24 */

Unions

Be sure to check unions because their fields can change size between the ILP32 and
the LP64 data-type models.

typedef wunion {

doubl e _d;
long _I[2];
}ollx_t;

Here is the modified version

typedef wunion {

doubl e _d;
int 1[2];
}ollx_t;

Chapter 8 Converting Applications for a 64-Bit Environment 8-11

8.3.7

8.3.8

Type Constants

A lack of precision can cause the loss of data in some constant expressions. Be
explicit when you specify the data types in your constant expression. Specify the
type of each integer constant by adding some combination of {u,U,l,L}. You can also
use casts to specify the type of a constant expression. Consider the following
example:

int i = 32;
longj =1 <<i; /*]j will get O because RHS is integer */
/* expression */

Here is the modified version:

int i = 32;
long j = 1L << i;

Beware of Implicit Declarations

If you use - xc99=%one, the C compiler assumes that any function or variable that
is used in a module and not defined or declared externally is an integer. Any longs
and pointers used in this way are truncated by the compiler’s implicit integer
declaration. Place the appropriate extern declaration for the function or variable in a
header and not in the C module. Include this header in any C module that uses the
function or variable. If this is a function or variable defined by the system headers,
you still need to include the proper header in the code. Consider the following
example:

i nt

mai n(i nt argc, char *argv[])

{
char *name = getl ogin()
printf("login = %\n", nane);
return (0);

}

%

war ni ng: inproper pointer/integer conbination: op "="
war ni ng: cast to pointer from32-bit integer
implicitly declared to return int

getlogin printf

8-12 C User’'s Guide * May 2003

8.3.9

8.3.10

The proper headers are now in the modified version

#i ncl ude <uni std. h>
#i ncl ude <stdi o. h>

i nt

mai n(int argc, char *argv[])

{
char *nanme = getlogin();
(void) printf("login = %\n", nane);
return (0);

}

si zeof () Isan Unsigned | ong

In the LP64 data-type model, si zeof () has the effective type of an unsigned long.
Occasionally, si zeof () is passed to a function expecting an argument of type i nt,
or assigned or cast to an integer. In some cases, this truncation causes loss of data.

| ong a[50];
unsi gned char size = sizeof (a);

%
war ni ng: 64-bit constant truncated to 8 bits by assignnent
warning: initializer does not fit or is out of range: 0x190

Use Casts to Show Your Intentions

Relational expressions can be tricky because of conversion rules. You should be very

explicit about how you want the expression to be evaluated by adding casts
wherever necessary.

Chapter 8 Converting Applications for a 64-Bit Environment

8-13

8.3.11

Check Format String Conversion Operation

Make sure the format strings for pri nt f (3S), spri nt f (3S), scanf (3S), and
sscanf (3S) can accommodate long or pointer arguments. For pointer arguments,
the conversion operation given in the format string should be %p to work in both the
32-bit and 64-bit compilation environments.

char *buf;
struct dev_info *devi;

(void) sprintf(buf, "di %", (void *)devi);
%

war ni ng: function argument (nunber) type inconsistent with fornmat
sprintf (arg 3) void *: (format) int

Here is the modified version

char *buf;
struct dev_info *devi;

(void) sprintf(buf, ‘“di %", (void *)devi);

For long arguments, the long size specification, I, should be prepended to the
conversion operation character in the format string. Furthermore, check to be sure
that the storage pointed to by buf is large enough to contain 16 digits.

size_t nbytes;

u_long align, addr, raddr, alloc;

printf("kalloca: %%®8d from heap got %. % returnsd%\n",
nbytes, align, (int)raddr, (int)(raddr + alloc), (int)addr);

%

war ni ng: cast of 64-bit integer to 32-bit integer
war ni ng: cast of 64-bit integer to 32-bit integer
war ni ng: cast of 64-bit integer to 32-bit integer

8-14 C User’'s Guide * May 2003

Here is the modified version

size_t nbytes;

u_long align, addr, raddr, alloc;

printf("kalloca: % u%@6u fromheap got % x. % x returns% x\n",
nbytes, align, raddr, raddr + alloc, addr);

8.4

8.4.1

8.4.2

8.4.3

Other Considerations

The remaining guidelines highlight common problems encountered when
converting an application to a full 64-bit program.

Derived Types That Have Grown in Size

A number of derived types have changed to now represent 64-bit quantities in the
64-bit application compilation environment. This change does not affect 32-bit
applications; however, any 64-bit applications that consume or export data described
by these types need to be reevaluated. An example of this is in applications that
directly manipulate the ut np(4) or ut npx(4) files. For correct operation in the 64-bit
application environment, do not attempt to directly access these files. Instead, use
the get ut xent (3C) and related family of functions.

Check for Side Effects of Changes

Be aware that a type change in one area can result in an unexpected 64-bit
conversion in another area. For example, check all the callers of a function that
previously returned an i nt and now returns an ssi ze_t.

Check Whether Literal Uses of | ong Still Make
Sense

A variable that is defined as a | ong is 32 bits in the ILP32 data-type model and 64
bits in the LP64 data-type model. Where it is possible, avoid problems by redefining
the variable and use a more portable derived type.

Chapter 8 Converting Applications for a 64-Bit Environment 8-15

8.4.4

8.4.5

8.4.6

Related to this, a number of derived types have changed under the LP64 data-type
model. For example, pi d_t remains a | ong in the 32-bit environment, but under the
64-bit environment, api d_t isanint.

Use #i f def for Explicit 32-bit Versus 64-bit
Prototypes

In some cases, specific 32-bit and 64-bit versions of an interface are unavoidable. You
can distinguish these by specifying the _LP64 or _| LP32 feature test macros in the
headers. Similarly, code that runs in 32-bit and 64-bit environments needs to utilize
the appropriate #i f def s, depending on the compilation mode.

Calling Convention Changes

When you pass structures by value and compile the code for SPARC V9, the
structure is passed in registers rather than as a pointer to a copy if it is small enough.
This can cause problems if you try to pass structures between C code and
handwritten assembly code.

Floating point parameters work in a similar fashion; some floating point values
passed by value are passed in floating point registers.

Algorithm Changes

After your code is safe for the 64-bit environment, review your code again to verify
that the algorithms and data structures still make sense. The data types are larger, so
data structures might use more space. The performance of your code might change
as well. Given these concerns, you might need to modify your code appropriately.

8-16 C User’'s Guide * May 2003

8.5

Checklist for Getting Started

Use the following checklist to help you convert your code to 64-bit.

Review all data structures and interfaces to verify that these are still valid in the
64-bit environment.

Include <i ntt ypes. h> in your code to pull in the _| LP32 or _LP64 definitions
as well as many basic derived types. Systems programs may wish to include
<sys/types. h>(or at a minimum, <sys/i sa_def s. h>) to obtain the
definitions of _| LP32 or _LP64.

Move function prototypes and external declarations with non-local scope to
headers and include these headers in your code.

Run lint using the - err chk=I ongpt r 64, si gnext and - D__spar cv9 flags and
review each warning individually. Keep in mind that not all warnings require a

change to the code. Depending on the changes, run lint again in both 32-bit and

64-bit modes.

Compile code as both 32-bit and 64-bit, unless the application is being provided
only as 64-bit.

Test the application by executing the 32-bit version on the 32-bit operating
system, and the 64-bit version on the 64-bit operating system. You can also test
the 32-bit version on the 64-bit operating system.

Chapter 8 Converting Applications for a 64-Bit Environment ~ 8-17

8-18 C User’'s Guide » May 2003

CHAPTER 9

cscope: Interactively Examining a
C Program

cscope is an interactive program that locates specified elements of code in C, | ex,
or yacc source files. With cscope, you can search and edit your source files more
efficiently than you could with a typical editor. That’s because cscope supports
function calls—when a function is being called, when it is doing the calling—as well
as C language identifiers and keywords.

This chapter is a tutorial on the cscope browser provided with this release.

Note — The cscope program has not yet been updated to understand codes written
for the 1999 ISO/IEC C standard. For example, it does not yet recognize the new
keywords introduced in the 1999 ISO/IEC C standard.

9.1

The cscope Process

When cscope is called for a set of C, | ex, or yacc source files, it builds a symbol
cross-reference table for the functions, function calls, macros, variables, and
preprocessor symbols in those files. You can then query that table about the locations
of symbols you specify. First, it presents a menu and asks you to choose the type of
search you would like to have performed. You may, for instance, want cscope to
find all the functions that call a specified function.

When cscope has completed this search, it prints a list. Each list entry contains the
name of the file, the number of the line, and the text of the line in which cscope has
found the specified code. In our case, the list also includes the names of the
functions that call the specified function. You now have the option of requesting
another search or examining one of the listed lines with the editor. If you choose the
latter, cscope invokes the editor for the file in which the line appears, with the

9-1

cursor on that line. You can now view the code in context and, if you wish, edit the
file as any other file. You can then return to the menu from the editor to request a
new search.

Because the procedure you follow depends on the task at hand, there is no single set
of instructions for using cscope. For an extended example of its use, review the
cscope session described in the next section. It shows how you can locate a bug in
a program without learning all the code.

9.2

9.2.1

Basic Use

Suppose you are given responsibility for maintaining the program pr og. You are
told that an error message, out of storage, sometimes appears just as the program
starts up. Now you want to use cscope to locate the parts of the code that are
generating the message. Here is how you do it.

Step 1: Set Up the Environment

cscope is a screen-oriented tool that can only be used on terminals listed in the
Terminal Information Utilities (t er m nf 0) database. Be sure you have set the TERM
environment variable to your terminal type so that cscope can verify that it is listed
in the t er m nf o database. If you have not done so, assign a value to TERMand
export it to the shell as follows:

In a Bourne shell, type:

$ TERM:=term_name; export TERM

In a C shell, type:

% set env TERM term_name

You may now want to assign a value to the EDI TOR environment variable. By
default, cscope invokes the vi editor. (The examples in this chapter illustrate vi
usage.) If you prefer not to use vi , set the EDI TOR environment variable to the
editor of your choice and export EDI TOR, as follows:

9-2 C User's Guide » May 2003

9.2.2

In a Bourne shell, type:

$ EDl TOR=enmcs; export EDI TOR

In a C shell, type:

% setenv EDI TOR emacs

You may have to write an interface between cscope and your editor. For details, see
Section 9.2.9, “Command-Line Syntax for Editors” on page 9-19.

If you want to use cscope only for browsing (without editing), you can set the
VI EVER environment variable to pg and export VI EWER. cscope will then invoke
pg instead of vi .

An environment variable called VPATH can be set to specify directories to be
searched for source files. See Section 9.2.6, “View Paths” on page 9-14.

Step 2: Invoke the cscope Program

By default, cscope builds a symbol cross-reference table for all the C, | ex, and
yacc source files in the current directory, and for any included header files in the
current directory or the standard place. So, if all the source files for the program to
be browsed are in the current directory, and if its header files are there or in the
standard place, invoke cscope without arguments:

% cscope

To browse through selected source files, invoke cscope with the names of those files
as arguments:

% cscope filel. ¢ file2. ¢ file3. h

For other ways to invoke cscope, see Section 9.2.5, “Command-Line Options” on
page 9-11.

cscope builds the symbol cross-reference table the first time it is used on the source
files for the program to be browsed. By default, the table is stored in the file

cscope. out in the current directory. On a subsequent invocation, cscope rebuilds
the cross-reference only if a source file has been modified or the list of source files is

Chapter 9 cscope: Interactively Examining a C Program 9-3

9.2.3

different. When the cross-reference is rebuilt, the data for the unchanged files is
copied from the old cross-reference, which makes rebuilding faster than the initial
build, and reduces startup time for subsequent invocations.

Step 3: Locate the Code

Now let’s return to the task we undertook at the beginning of this section: to identify
the problem that is causing the error message out of storage to be printed. You have
invoked cscope, the cross-reference table has been built. The cscope menu of tasks
appears on the screen.

The cscope Menu of Tasks:

% cscope

cscope Press the ? key for help

Find this C synbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Press the Return key to move the cursor down the screen (with wraparound at the

bottom of the display), and *p (Control-p) to move the cursor up; or use the up (ua)
and down (da) arrow keys. You can manipulate the menu and perform other tasks

with the following single-key commands:

TABLE9-1 cscope Menu Manipulation Commands

Tab Move to the next input field.

Return Move to the next input field.

n Move to the next input field.

p Move to the previous input field.

Ny Search with the last text typed.

b Move to the previous input field and search pattern.

9-4 C User's Guide » May 2003

TABLE9-1 cscope Menu Manipulation Commands (Continued)

nf Move to the next input field and search pattern.

Ac Toggle ignore/use letter case when searching. For example, a search for
FI LE matches fi | e and Fi | e when ignoring the letter case.

Ar Rebuild cross-reference.

! Start an interactive shell. Type ~d to return to cscope.

A Redraw the screen.
? Display the list of commands.
~d Exit cscope.

If the first character of the text for which you are searching matches one of these
commands, you can escape the command by entering a\ (backslash) before the
character.

Now move the cursor to the fifth menu item, Find this text string, enter the
text out of storage, and press the Return key.

cscope Function: Requesting a Search for a Text String:

$ cscope

cscope Press the ? key for help

Find this C synbol

Find this global definition

Find functions called by this function
Find functions calling this function
Find this text string: out of storage
Change this text string

Find this egrep pattern

Find this file

Find files #including this file

Note — Follow the same procedure to perform any other task listed in the menu
except the sixth, Change this text string.Because this task is slightly more
complex than the others, there is a different procedure for performing it. For a
description of how to change a text string, see Section 9.2.8, “Examples” on

page 9-15.

cscope searches for the specified text, finds one line that contains it, and reports its
finding.

Chapter 9 cscope: Interactively Examining a C Program 9-5

9-6

cscope Function: Listing Lines Containing the Text String:

Text string: out of storage

File Line
1 alloc.c 63 (void) fprintf(stderr, "\n%: out of storage\n",
argv0);

Find this C synbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

After cscope shows you the results of a successful search, you have several options.
You may want to change one of the lines or examine the code surrounding it in the
editor. Or, if cscope has found so many lines that a list of them does not fit on the
screen at once, you may want to look at the next part of the list. The following table
shows the commands available after cscope has found the specified text:

TABLE9-2 Commands for Use After an Initial Search

1-9 Edit the file referenced by this line. The number you type corresponds to an
item in the list of lines printed by cscope.

Space Display the next set of matching lines.

+ Display the next set of matching lines.

Y Display the next set of matching lines.

— Display the previous set of matching lines.
e Edit the displayed files in order.
> Append the list of lines being displayed to a file.

| Pipe all lines to a shell command.

Again, if the first character of the text for which you are searching matches one of
these commands, you can escape the command by entering a backslash before the
character.

C User’s Guide * May 2003

Now examine the code around the newly found line. Enter 1 (the number of the line
in the list). The editor is invoked with the file al | oc. ¢ with the cursor at the
beginning of line 63 of al | oc. c.

cscope Function: Examining a Line of Code:

{
}

/* check for nmenory allocation failure */

return(all octest(reall oc(p, (unsigned) size)));

static char *
al octest(p)
char *p;
{
if (p == NULL) {
(void) fprintf(stderr, "\n%: out of storage\n", argv0);
exit(1);
}

return(p);

"alloc.c" 67 lines, 1283 characters

You can see that the error message is generated when the variable p is NULL. To
determine how an argument passed to al | oct est () could have been NULL, you
must first identify the functions that call al | octest ().

Exit the editor by using normal quit conventions. You are returned to the menu of
tasks. Now type al | oct est after the fourth item, Fi nd functions calling
this function.

Chapter 9 cscope: Interactively Examining a C Program 9-7

cscope Function: Requesting a List of Functions That Call al | oct est ():

Text string: out of storage

File Line
1 alloc.c 63(void)fprintf(stderr,"\n%: out of storage\n", argv0);

Find this C synbol:

Find this gl obal definition:

Find functions called by this function:

Find functions calling this function: alloctest
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

cscope finds and lists three such functions.

cscope Function: Li sti ng Functions That Call al | oct est ():

Functions calling this function: alloctest

Fil e Function Line

1 alloc.c nynalloc 33 return(alloctest(malloc((unsigned) size)));
2 alloc.c nycalloc 43 return(all octest(calloc((unsigned) nelem
(unsi gned) size)));

3 alloc.c myrealloc 53 return(alloctest(realloc(p, (unsigned)
size)));

Find this C synbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Now you want to know which functions call mymal | oc() . cscope finds ten such
functions. It lists nine of them on the screen and instructs you to press the space bar
to see the rest of the list.

9-8 C User's Guide * May 2003

cscope Function: Li sti ng Functions That Call mymal | oc():

Functions calling this function: nynall oc

F
1

2

3

*

F
F
F
F
F

|l e
alloc.c

crossref.c
dir.c
dir.c
dir.c
dir.c
di splay.c
history.c

mai n. ¢

9 nore lines -

Functi on
strall oc

crossref
makevpsrcdirs
addi ncdi r
addi ncdi r
addsrcfile

di spinit
addcnd

mai n

nd this C synbol:

nd this gl oba

definition:

Li ne

24 return(strcpy(nymal |l oc

(strlen(s) + 1), s));

47 synbol = (struct symbol *)nymalloc
(msymbol s * sizeof (struct synbol))
63 srcdirs = (char **) nymall oc
(nsrcdirs * sizeof (char*));

167 incdirs = (char **)nynal | oc
(sizeof (char *));

168 i ncnames = (char **)

nmymal | oc(si zeof (char *));

439 p = (struct listitem*) nmymall oc
(sizeof (struct listitem);

87 displine = (int *) mymall oc

(mdi sprefs * sizeof(int));

19 h = (struct cnd *) nynall oc
(sizeof (struct cmd))

212 s = nynal | oc((unsi gned)
(strlen(reffile) +strlen(honme) + 2));

press the space bar to display nore *

nd functions called by this function
nd functions calling this function
nd this text string:
Change this text string:
Find this egrep pattern:
Find this file:

Find files #including this file:

Because you know that the error message out of storage is generated at the
beginning of the program, you can guess that the problem may have occurred in the
function di spi nit () (display initialization).

To view di spi ni t (), the seventh function on the list, type 7.

Chapter 9 cscope: Interactively Examining a C Program 9-9

9.24

cscope Function: Viewing di spi ni t () in the Editor:

voi d
di spinit()

/* cal cul ate the maxi mum di spl ayed reference |ines */
| astdi spline = FLDLINE - 4;
ndi sprefs = lastdispline - REFLINE + 1;
if (ndisprefs > 9) {
mdi sprefs = 9;
}
/* allocate the displayed line array */
displine = (int *) nymall oc(ndisprefs * sizeof(int));
}

AL/ * display a page of the references */

voi d
di splay()
{

char file[PATHLEN + 1]; /* file name */
char function[PATLEN + 1];/* function nane */
char linenun{ NUMLEN + 1]; /* line nunber */
int screenline;, /* screen |line nunber */
int wwdth; /* source line display width */
register int i, j;

"display.c" 622 lines, 14326 characters

nymal | oc() failed because it was called either with a very large number or a
negative number. By examining the possible values of FLDLI NE and REFLI NE, you
can see that there are situations in which the value of ndi spr ef s is negative, that is,
in which you are trying to call mymal | oc() with a negative number.

Step 4: Edit the Code

On a windowing terminal, you may have multiple windows of arbitrary size. The
error message out of storage might have appeared as a result of running prog in a
window with too few lines. In other words, that may have been one of the situations
in which mymal | oc() was called with a negative number. Now you want to be sure
that when the program aborts in this situation in the future, it does so after printing
the more meaningful error message screen too small. Edit the function di spi ni t ()
as follows.

9-10 C User's Guide * May 2003

9.2.5

cscope Function: Correcting the Problem:

voi d
di spinit()
{

/* cal cul ate the maxi mum di spl ayed reference |ines */
| astdi spline = FLDLINE - 4;
ndi sprefs = lastdispline - REFLINE + 1;
if (ndisprefs > 9) {
mdi sprefs = 9;
}

/* allocate the displayed line array */

}

AL/ * display a page of the references */

voi d
di splay()
{

char file[PATHLEN + 1]; /* file name */
char function[PATLEN + 1];/* function nane */
char linenun{ NUMLEN + 1]; /* line nunber */
int screenline;, /* screen |line nunber */
int wwdth; /* source line display width */
register int i, j;

"display.c" 622 lines, 14326 characters

displine = (int *) nymalloc(ndisprefs * sizeof(int));

You have fixed the problem we began investigating at the beginning of this section.
Now if prog is run in a window with too few lines, it does not simply fail with the

unedifying error message out of storage. Instead, it checks the window size and

generates a more meaningful error message before exiting.

Command-Line Options

As noted, cscope builds a symbol cross-reference table for the C, | ex, and source

files in the current directory by default. That is,

% cscope

is equivalent to:

% cscope *.[chly]

Chapter 9 cscope: Interactively Examining a C Program

9-11

9-12

We have also seen that you can browse through selected source files by invoking
cscope with the names of those files as arguments:

% cscope filel. ¢ file2. ¢ file3. h

cscope provides command-line options with greater flexibility in specifying source
files to be included in the cross-reference. When you invoke cscope with the —s
option and any number of directory names (separated by commas):

% cscope —s dirl,dir2,dir3

cscope builds a cross-reference for all the source files in the specified directories as
well as the current directory. To browse through all of the source files whose names
are listed in file (file names separated by spaces, tabs, or new-lines), invoke cscope
with the —i option and the name of the file containing the list:

% cscope —i file

If your source files are in a directory tree, use the following commands to browse
through all of them:

%find . -name '*.[chly]' —print | sort > file
% cscope —i file

If this option is selected, however, cscope ignores any other files appearing on the
command-line.

The -1 option can be used for cscope in the same way as the —I option to cc. See
Section 2.13, “How to Specify Include Files” on page 2-25.

You can specify a cross-reference file other than the default cscope. out by
invoking the —f option. This is useful for keeping separate symbol cross-reference
files in the same directory. You may want to do this if two programs are in the same
directory, but do not share all the same files:

% cscope —f admin.ref adnmin.c common.c aux.c libs.c
% cscope —f delta.ref delta.c conmon.c aux.c libs.c

C User’s Guide May 2003

In this example, the source files for two programs, adm n and del t a, are in the
same directory, but the programs consist of different groups of files. By specifying
different symbol cross-reference files when you invoke cscope for each set of source
files, the cross-reference information for the two programs is kept separate.

You can use the —pn option to specify that cscope display the path name, or part of
the path name, of a file when it lists the results of a search. The number you give to
—p stands for the last n elements of the path name you want to be displayed. The
default is 1, the name of the file itself. So if your current directory is honme/ conmon,
the command:

% cscope —p2

causes cscope to display comon/ fil el. c, common/ fi |l e2. ¢, and so forth when
it lists the results of a search.

If the program you want to browse contains a large number of source files, you can
use the —b option, so that cscope stops after it has built a cross-reference; cscope
does not display a menu of tasks. When you use cscope -b in a pipeline with the
bat ch(1) command, cscope builds the cross-reference in the background:

% echo 'cscope -b' | batch

Once the cross-reference is built, and as long as you have not changed a source file
or the list of source files in the meantime, you need only specify:

% cscope

for the cross-reference to be copied and the menu of tasks to be displayed in the
normal way. You can use this sequence of commands when you want to continue
working without having to wait for cscope to finish its initial processing.

The —d option instructs cscope not to update the symbol cross-reference. You can
use it to save time if you are sure that no such changes have been made; cscope
does not check the source files for changes.

Note — Use the —d option with care. If you specify —d under the erroneous
impression that your source files have not been changed, cscope refers to an
outdated symbol cross-reference in responding to your queries.

Check the cscope(1) man page for other command-line options.

Chapter 9 cscope: Interactively Examining a C Program 9-13

9.2.6

View Paths

As we have seen, cscope searches for source files in the current directory by
default. When the environment variable VPATH is set, cscope searches for source
files in directories that comprise your view path. A view path is an ordered list of
directories, each of which has the same directory structure below it.

For example, suppose you are part of a software project. There is an official set of
source files in directories below / f s1/ of c. Each user has a home directory

(/ usr/ you). If you make changes to the software system, you may have copies of
just those files you are changing in / usr/ you/ src/ crd/ pr ogl. The official
versions of the entire program can be found in the directory

/fsl/of c/src/cmd/ progl.

Suppose you use cscope to browse through the three files that comprise progl,
namely, f1. c, f 2. ¢, and f 3. ¢. You would set VPATHto / usr/you and / f s1/ of c
and export it, as in:

In a Bourne shell, type:

$ VPATH=/ usr/you:/fsl/ofc; export VPATH

In a C shell, type:

% set env VPATH /usr/you:/fsl/ofc

You then make your current directory / usr/ you/ src/ cnd/ progl, and invoke
cscope:

% cscope

The program locates all the files in the view path. In case duplicates are found,
cscope uses the file whose parent directory appears earlier in VPATH. Thus, iff 2. ¢
is in your directory, and all three files are in the official directory, cscope examines
f 2. ¢ from your directory, and f 1. ¢ and f 3. ¢ from the official directory.

The first directory in VPATH must be a prefix of the directory you will be working in,
usually $HOVE. Each colon-separated directory in VPATH must be absolute: it should
begin at /.

9-14 C User's Guide * May 2003

9.2.7

9.2.8

9.2.8.1

cscope and Editor Call Stacks

cscope and editor calls can be stacked. That is, when cscope puts you in the editor
to view a reference to a symbol and there is another reference of interest, you can
invoke cscope again from within the editor to view the second reference without
exiting the current invocation of either cscope or the editor. You can then back up
by exiting the most recent invocation with the appropriate cscope and editor
commands.

Examples

This section presents examples of how cscope can be used to perform three tasks:
changing a constant to a preprocessor symbol, adding an argument to a function,
and changing the value of a variable. The first example demonstrates the procedure
for changing a text string, which differs slightly from the other tasks on the cscope
menu. That is, once you have entered the text string to be changed, cscope prompts
you for the new text, displays the lines containing the old text, and waits for you to
specify which of these lines you want it to change.

Changing a Constant to a Preprocessor Symbol

Suppose you want to change a constant, 100, to a preprocessor symbol, MAXSI ZE.
Select the sixth menu item, Change this text string, and enter\100. The 1
must be escaped with a backslash because it has a special meaning (item 1 on the
menu) to cscope. Now press Return. cscope prompts you for the new text string.
Type MAXSI ZE.

cscope Function: Changing a Text String:

cscope Press the ? key for help

Find this C synbol:

Find this gl obal definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string: \100

Find this egrep pattern:

Find this file:

Find files #including this file:

To: MAXSI ZE

Chapter 9 cscope: Interactively Examining a C Program 9-15

cscope displays the lines containing the specified text string, and waits for you to
select those in which you want the text to be changed.

cscope Function: Prompting for Lines to be Changed:

cscope Press the ? key for help

Find this C synbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string: \100

Find this egrep pattern:

Find this file:

Find files #including this file:

To: MAXSI ZE

You know that the constant 100 in lines 1, 2, and 3 of the list (lines 4, 26, and 8 of the
listed source files) should be changed to MAXSI ZE. You also know that 0100 in
read. c and 100. 0 inerr. c (lines 4 and 5 of the list) should not be changed. You
select the lines you want changed with the following single-key commands:

TABLE9-3 Commands for Selecting Lines to Be Changed

1-9 Mark or unmark the line to be changed.

* Mark or unmark all displayed lines to be changed.
Space Display the next set of lines.

+ Display the next set of lines.

- Display the previous set of lines.

a Mark all lines to be changed.
d Change the marked lines and exit.
Esc Exit without changing the marked lines.

In this case, enter 1, 2, and 3. The numbers you type are not printed on the screen.
Instead, cscope marks each list item you want to be changed by printing a >
(greater than) symbol after its line number in the list.

9-16 C User's Guide * May 2003

cscope Function: Marking Lines to be Changed:

Change "100" to " MAXSI ZE"

File Line
1>init.c 4 char s[100];
2>init.c 26 for (i =0; i < 100; i++)
3>find.c 8 if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = total/100.0; /* get percentage */

Find this C synbol:

Find this global definition:

Find functions called by this function:

Find functions calling this function:

Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

Select lines to change (press the ? key for help):

Now type ~d to change the selected lines. cscope displays the lines that have been
changed and prompts you to continue.

cscope Function: Displaying Changed Lines of Text:

Changed | i nes:
char s[MAXSI ZE] ;
for (i =0; i < MAXSIZE; i++)
if (c < MAXSI ZE) {

Press the RETURN key to conti nue:

When you press Return in response to this prompt, cscope redraws the screen,
restoring it to its state before you selected the lines to be changed.

The next step is to add the #def i ne for the new symbol MAXSI ZE. Because the
header file in which the #def i ne is to appear is not among the files whose lines are
displayed, you must escape to the shell by typing ! . The shell prompt appears at the
bottom of the screen. Then enter the editor and add the #def i ne.

Chapter 9 cscope: Interactively Examining a C Program 9-17

9.2.8.2

9.2.8.3

cscope Function: Exiting to the Shell:

Text string: 100

File Line
1init.c 4 char s[100];
2init.c 26 for (i =0; i < 100; i++)
3 find.c 8if (c < 100) {
4 read.c 12 f = (bb & 0100);
5 err.c 19 p = total/100.0; /* get percentage */

Find this C synbol:

Find this global definition:

Find functions called by this function:
Find functions calling this function:
Find this text string:

Change this text string:

Find this egrep pattern:

Find this file:

Find files #including this file:

$ vi defs.h

To resume the cscope session, quit the editor and type ~d to exit the shell.

Adding an Argument to a Function

Adding an argument to a function involves two steps: editing the function itself and
adding the new argument to every place in the code where the function is called.

First, edit the function by using the second menu item, Fi nd thi s gl obal

defi ni ti on. Next, find out where the function is called. Use the fourth menu item,
Find functions calling this function, to obtain a list of all the functions
that call it. With this list, you can either invoke the editor for each line found by
entering the list number of the line individually, or invoke the editor for all the lines
automatically by typing ~e. Using cscope to make this kind of change ensures that
none of the functions you need to edit are overlooked.

Changing the Value of a Variable

At times, you may want to see how a proposed change affects your code.

9-18 C User's Guide * May 2003

9.2.9

Suppose you want to change the value of a variable or preprocessor symbol. Before
doing so, use the first menu item, Find this C synbol, to obtain a list of
references that are affected. Then use the editor to examine each one. This step helps
you predict the overall effects of your proposed change. Later, you can use cscope
in the same way to verify that your changes have been made.

Command-Line Syntax for Editors

cscope invokes the vi editor by default. You can override the default setting by
assigning your preferred editor to the EDI TOR environment variable and exporting
EDI TOR, as described in Section 9.2.1, “Step 1: Set Up the Environment” on page 9-2.
However, cscope expects the editor it uses to have a command-line syntax of the
form:

% edi t or +linenum filename

as does vi . If the editor you want to use does not have this command-line syntax,
you must write an interface between cscope and the editor.

Suppose you want to use ed. Because ed does not allow specification of a line
number on the command-line, you cannot use it to view or edit files with cscope
unless you write a shell script that contains the following line:

/fusr/bin/ed $2

Let’s name the shell script myedi t . Now set the value of EDI TORto your shell script
and export EDI TOR:

In a Bourne shell, type:

$ EDI TOR=nyedit; export EDI TOR

In a C shell, type:

% setenv EDI TOR nyedit

Chapter 9 cscope: Interactively Examining a C Program 9-19

When cscope invokes the editor for the list item you have specified, say, line 17 in
mai n. c, it invokes your shell script with the command-line:

% nyedit +17 main.c

nyedi t then discards the line number ($1) and calls ed correctly with the file name
($2). Of course, you are not moved automatically to line 17 of the file and must
execute the appropriate ed commands to display and edit the line.

9.3

9-20

Unknown Terminal Type Error

If you see the error message:

Sorry, | don't know how to deal with your "term terninal

your terminal may not be listed in the Terminal Information Utilities (t er mi nf 0)
database that is currently loaded. Make sure you have assigned the correct value to
TERM If the message reappears, try reloading the Terminal Information Utilities.

If this message is displayed:

Sorry, | need to know a nore specific ternmnal type than "unknown"

set and export the TERMvariable as described in Section 9.2.1, “Step 1: Set Up the
Environment” on page 9-2.

C User’s Guide May 2003

APPENDIX A

C Compiler Options

This chapter describes the C compiler options. Take note that the C compiler
recognizes by default some of the constructs of the 1999 ISO/IEC C standard.
Specifically, the supported features are detailed in “Supported Features of C99” on
page D-1. Use the - xc99=%o0ne command if you want to limit the compiler to the
1990 ISO/IEC C standard.

If you are porting a K&R C program to ISO C, make special note of the section on
compatibility flags, Section A.3.59, “- X[c]a]t |s]” on page A-30. Using them makes
the transition to 1ISO C easier. Also refer to the discussion on the transition in
Chapter 7.

Al

Option Syntax

The syntax of the cc command is:

% cc [options] filenames [libraries] . . .

where:

= options represents one or more of the options described in Section A.3, “The cc
Options” on page A-10

= filenames represents one or more files used in building the executable program
The C compiler accepts a list of C source files and object files contained in the list
of files specified by filenames. The resulting executable code is placed in a. out ,

unless the - o option is used. In this case, the code is placed in the file named by
the - o option.

A-1

Use the C compiler to compile and link any combination of the following:

« C source files, with a . ¢ suffix

« Inline template files, with a . i | suffix (only when specified with .c files)
« C preprocessed source files, with a . i suffix

« Object-code files, with . o suffixes

« Assembler source files, with . s suffixes

After linking, the C compiler places the linked files, now in executable code,
into a file named a. out, or into the file specified by the - o option.

= libraries represents any of a number of standard or user-provided libraries
containing functions, macros, and definitions of constants.

See option - YP, dir to change the default directories used for finding libraries. dir is
a colon-separated path list. The default library search order for cc is:

/opt/ SUNWpro/prod/lib
lfusr/ccs/lib
lusr/lib

cc uses get opt to parse command-line options. Options are treated as a single letter
or a single letter followed by an argument. See get opt (3c).

A.2

Options Summary

In this section, the compiler options are grouped by function to provide an easy
reference. The details are in the sections of the following pages. The following table
summarizes the cc compiler options by functionality. Some flags serve more than
one purpose and appear more than once.

TABLE A-1 Compiler Options Grouped by Functionality

Licensing Option Flag
Returns information about the licensing system. -xlicinfo

Optimization and Performance Option Flag
Selects the optimum combination of compilation options for - fast
speed of executable code.
Prepares the object code to collect data for profiling -p
Optimizes for the 80386 processor. -x386
Optimizes for the 80486 processor. - x486

A-2 C User's Guide « May 2003

TABLEA-1 Compiler Options Grouped by Functionality (Continued)

Enables the compiler to perform type-based alias analysis and -xalias_| evel
optimizations.

Improve the optimization of code that calls standard library -xbuiltin
functions.

Enables optimization and inlining across source files. -xcrossfile
Analyzes loops for inter-iteration data dependencies and does - xdepend

loop restructuring.
Enables reordering of data and functions by the linker. -xF

Enables compiler support for hardware counter-based profiling. - xhwcpr of

Tries to inline only those functions specified. -xinline

Performs whole-program optimizations by invoking an - Xi po
interprocedural analysis component.

Sets how many processes the compiler creates. - Xj obs

Inlines some library routines for faster execution. -xlibm

Links in the Sun-supplied performance libraries. -xlic_lib=sunperf
Performs link-time optimizations on relocatable object files. - xli nkopt

This command limits the level of pr agma opt to the level - Xmaxopt

specified.

Does not inline math library routines. -xnol i bm |
Optimizes the object code. -x0

Sets the preferred page size for the stack and the heap. - Xpagesi ze

Sets the preferred page size for the stack. - Xxpagesi ze_st ack
Sets the preferred page size for the heap. - xpagesi ze_heap

Reduces compile time for applications whose source files share - xpch
a common set of include files.

Can be used in conjunction with - xpch to specify the last -xpchst op

include file of the viable prefix.

Optimizes for the Pentium™ processor. -xpentium

Enable prefetch instructions. -xprefetch

Control the aggressiveness of automatic insertion of prefetch -xprefetch_I evel
instructions as set by - xpr ef et ch=aut o

Collects data for a profile or uses a profile to optimize. -xprofile

Improves compilation time of - xpr of i | e=use phase by -xprofile_ircache
reusing compilation data saved from the - xpr of i | e=col | ect

phase

Appendix A C Compiler Options A-3

A-4

TABLE A-1

Compiler Options Grouped by Functionality (Continued)

Support for multiple programs or shared libraries in a single
profile directory.

-xprofile_pathmap

Treats pointer-valued function parameters as restricted pointers. - xrestri ct

Allows the compiler to assume no memory-based traps occur. -xsafe

Does no optimizations or parallelization of loops that increase - Xspace

code size.

Suggests to the optimizer to unroll loops n times. -xunrol |
Data Alignment Option Flag

Produce an integer constant by placing the characters of a
multi-character character-constant in the specified byte order.

-xchar _byte_order

Initializes the rounding-precision mode bits in the
Floating-point Control Word

Sets the IEEE 754 rounding mode that is established at runtime
during the program initialization.

Allows the optimizer to make simplifying assumptions
concerning floating-point arithmetic.

Causes the compiler to evaluate f | oat expressions as single
precision rather than double precision.

Causes the compiler to convert the value of a floating-point
expression or function to the type on the left-hand side of an
assignment

Sets the IEEE 754 trapping mode in effect at startup.

Does not convert the value of a floating-point expression or
function to the type on the left-hand side of an assignment

Analyzes loops for inter-iteration data dependencies and does
loop restructuring.

Analyzes loops for inter-iteration data dependencies and does - xdepend
loop restructuring.
Specify maximum assumed memory alignment and behavior of - xnemal i gn
misaligned data accesses.
Supports the OpenMP interface for explicit parallelization - xopennp
including a set of source code directives, run-time library
routines, and environment variables

Numerics and Floating-Point Option Flag
Causes nonstandard initialization of floating-point arithmetic -fnonstd
hardware.
Turns on the SPARC nonstandard floating-point mode. -fns

-fprecision

-fround

-fsinple

-fsingle

-fstore

-ftrap

-nof store

- xdepend

C User’s Guide * May 2003

TABLEA-1 Compiler Options Grouped by Functionality (Continued)

Forces IEEE 754 style return values for math routines in -xlibm eee
exceptional cases.

Supports the OpenMP interface for explicit parallelization - xopennp
including a set of source code directives, run-time library
routines, and environment variables

Represents unsuffixed floating-point constants as single - xsf pconst
precision
Enable automatic generation of calls to the vector library - xvector
functions.

Parallelization Option Flag
Macro option that expands to - D_REENTRANT - | t hr ead. -
Turns on automatic parallelization for multiple processors. - xaut opar
Adds a runtime check for stack overflow. - xcheck
Analyzes loops for inter-iteration data dependencies and does - xdepend

loop restructuring.

Generates parallelized code based on specification of #pragnma - xexpl i ci t par
MP directives.

Shows which loops are parallelized and which are not. - x| oopi nfo

Supports the OpenMP interface for explicit parallelization - xopennp
including a set of source code directives, run-time library
routines, and environment variables

Parallelizes loops both automatically by the compiler and -xparal l el
explicitly specified by the programmer.

Turns on reduction recognition during automatic - xreduction
parallelization.

Treats pointer-valued function parameters as restricted pointers. - xrestri ct

Warns about loops that have #pr agnma MP directives specified - xvpara
but may not be properly specified for parallelization.

- xt hr eadvar

Creates the program database for | ock_| i nt, but does not -2
generate executable code.

Source Code Option Flag

Associates name as a predicate with the specified tokens as if by - A
a #assert preprocessing directive.

Prevents the preprocessor from removing comments, except -C
those on the preprocessing directive lines.

Appendix A C Compiler Options

A-6

TABLE A-1

Compiler Options Grouped by Functionality (Continued)

Associates name with the specified tokens as if by a #def i ne
preprocessing directive.

Runs the source file through the preprocessor only and sends
the output to st dout .

Reports K&R-style function definitions and declarations.

Prints to standard error, one per line, the path name of each file
included during the current compilation.

Adds directories to the list that is searched for #i ncl ude files
with relative file names.

Runs the source file through the C preprocessor only.

Removes any initial definition of the preprocessor symbol name.

The - X options specify varying degrees of compliance to the
ISO C standard.

Accepts the C++-style comments.
Controls compiler recognition of supported C99 features.

Helps with migration from systems where char is defined as
unsigned.

Allows the C compiler to accept source code written in locales
that do not conform to the ISO C source character code
requirements

Runs only the preprocessor on the named C programs,
requesting that it generate makefile dependencies and send the
result to the standard output

Collects dependencies like - xM but excludes / usr/i ncl ude
files.

Prints prototypes for all K&R C functions defined in this
module

Prepares the object code to collect data for profiling with
gprof(1).

Generates extra symbol table information for the Source
Browser.

Creates the database for the Source Browser.

-D

-E

-fd
-H

-p
-U
- X

-xCC
-Xc99

-xchar

- XCSi

-xM

- XML

-xP

- Xpg

-xsb

- xsbf ast

C User’s Guide * May 2003

TABLEA-1 Compiler Options Grouped by Functionality (Continued)

Determines recognition of trigraph sequences. -xtrigraphs
Enables recognition of string literals composed of sixteen-bit -xustr
characters.

Compiled Code Option Flag
Directs the compiler to suppress linking with 1d(1) and to -C

produce a . o file for each source file
Names the output file -0

Directs the compiler to produce an assembly source file but not -S
to assemble the program.

Compilation Mode Option Flag

Turns on verbose mode, which shows how command options -#
expand and shows each component as it is invoked.

Shows each component as it would be invoked, but does not - #i#t#
actually execute it. Also shows how command options expand.

Retains temporary files created during compilation instead of - keept np
deleting them automatically.

Directs cc to print the name and version ID of each component -V
as the compiler executes.

Passes arguments to C compilation-system components. -W

Preserves the sign of a char -xchar
Displays on-line help information. -xhel p
Sets how many processes the compiler creates. - Xj obs

Reduces compile time for applications whose source files share - xpch
a common set of include files.

Can be used in conjunction with - xpch to specify the last - xpchst op
include file of the viable prefix.

Sets the directory for temporary files used by cc to dir. - xtenp
Reports the time and resources used by each compilation -xtime
component.

Specifies a new directory for the location of a C -Y
compilation-system component.

Changes the default directory searched for components. -YA
Changes the default directory searched for include files. - Yl
Changes the default directory for finding library files. -YP
Changes the default directory for startup object files. -YS

Appendix A C Compiler Options

A-8

but does not produce any object or executable code.

‘Issues warnings for the differences between K&R C and Sun
ISO C.

TABLEA-1 Compiler Options Grouped by Functionality (Continued)
Diagnostics Option Flag
Prefix error messages with string “error:” for ready distinction -errfm

from warning messages.

Suppresses compiler warning messages. -erroff
Control how much detail is in the error message produced by -errshort
the compiler when it discovers a type mismatch.

Displays the message tag for each warning message. -errtags
If the indicated warning message is issued, cc exits with a -errwarn
failure status.

Directs the compiler to perform stricter semantic checks andto - v

enable other | i nt -like checks.

Suppresses compiler warning messages. -w
Performs only syntax and semantic checking on the source file, -xe

-xtransition

object file.

Generates debugging information in dwarf format instead of
stabs format

Sets the preferred page size for the stack and the heap.
Sets the preferred page size for the stack.

Sets the preferred page size for the heap.

Warns about loops that have #pr agma MP directives specified - Xvpara
but may not be properly specified for parallelization.

Debugging Option Flag
Adds a runtime check for stack overflow. - xcheck
Produces additional symbol table information for the debugger. -g
Removes all symbolic debugging information from the output -s

- xdebugf or mat

- Xxpagesi ze
- xpagesi ze_st ack

- Xpagesi ze_heap

Disables Auto-Read of object files for dbx. - XS
Enables compiler recognition of the assembly-language - XVis
templates defined in the VIS[tm] instruction set

Linking and Libraries Option Flag
Specifies whether bindings of libraries for linking are stati c -B
or dynami c.
Specifies dynamic or static linking in the link editor. -d

C User’s Guide * May 2003

TABLEA-1 Compiler Options Grouped by Functionality (Continued)

Passes the option to the link editor to produce a shared object -G
rather than a dynamically linked executable.

Assigns a name to a shared dynamic library as a way to have -h
different versions of a library.

Passes the option to the linker to ignore any LD_LI BRARY_PATH -i
setting.

Adds directories to the list that the linker searches for libraries. -L
Links with object library | i bname. so, or | i bname. a. -1

Removes duplicate strings from the . conment section of the -t
object file.

Removes all strings from the . conment section. Can also insert - nr
a string in that section of the object file.

Emits or does not emit identification information to the output - Q
file.

Passes a colon-separated list of directories used to specify -R

library search directories to the runtime linker.

Merges data segments into text segments. - xMer ge
Specify code address space. -xcode
Inserts string literals into the read-only data section of the text - xstr const
segment instead of the default data segment.

Turns off the incremental linker and forces the use of | d. -xi | dof f
Turns on the incremental linker and forces the use of i | d in -xi | don

incremental mode.

Controls the default scope of variable and function definitions - xl dscope
to create faster and safer shared libraries.

Includes interface information inside object files and subsequent - xnati veconnect
shared libraries so that the shared library can interface with
code written in the Java[tm] programming language.

Does not link any libraries by default -xnolib
Does not inline math library routines. -xnol i bm |
Target Platform Option Flag
Specify instruction set architecture. -xarch
Defines the cache properties for use by the optimizer. - xcache
Specifies values for - xar ch, - xchi p, and - xcache. -Xxcg

Appendix A C Compiler Options

TABLEA-1 Compiler Options Grouped by Functionality (Continued)

Specifies the target processor for use by the optimizer. -xchip
Specifies the usage of registers for the generated code. - Xr egs
Specifies the target system for instruction set and optimization. - xt ar get

A.3

A3.1

A.3.2

A.3.3

The cc Options

This section describes the cc options, arranged alphabetically. These descriptions are
also available in the man page, cc(1). Use the cc - f | ags option for a one-line
summary of these descriptions.

Options noted as being unique to one or more platforms are accepted without error
and ignored on all other platforms. For an explanation of the typographic notations
used with the options and arguments, refer to “Typographic Conventions” on

page -xxxii.

- #

Turns on verbose mode, showing how command options expand. Shows each
component as it is invoked.

- HH#H

Shows each component as it would be invoked, but does not actually execute it. Also
shows how command options would expand.

- Aname|[(tokens)]

Associates name as a predicate with the specified tokens as if by a #assert
preprocessing directive. Preassertions:

= system(uni x)

= nmachi ne(sparc) (SPARC)
= machi ne(i 386) (Intel)

= cpu(sparc) (SPARC)

= cpu(i 386) (Intel)

A-10 C User’'s Guide » May 2003

A34

A.35

A.3.6

A3.7

These preassertions are not valid in - Xc mode.

- B[stati c]dynam c]

Specifies whether bindings of libraries for linking are st ati ¢ or dynami c,
indicating whether libraries are non-shared or shared, respectively.

—Bdynam ¢ causes the link editor to look for files named | i bx. so and then for files
named | i bx. a when given the - | x option.

—Bst at i ¢ causes the link editor to look only for files named | i bx. a. This option
may be specified multiple times on the command line as a toggle. This option and its
argument are passed to | d(1).

Note — Many system libraries, such as | i bc, are only available as dynamic libraries
in the Solaris 64-bit compilation environment. Therefore, do not use - Bst ati c as
the last toggle on the command line.

-C

Prevents the C preprocessor from removing comments, except those on the
preprocessing directive lines.

-C

Directs cc to suppress linking with | d(1) and to produce a . o file for each source
file. You can explicitly name a single object file using the - o option. When the
compiler produces object code for each . i or . c input file, it always creates an object
(. o) file in the current working directory. If you suppress the linking step, you also
suppress the removal of the object files.

- Dname[=tokens]

Associates name with the specified tokens as if by a #def i ne preprocessing directive.
If no =tokens is specified, the token 1 is supplied.

Predefinitions (not valid in - Xc mode):
= Sun

Appendix A C Compiler Options A-11

A.3.8

A.3.9

= unix
= sparc (SPARC)
= 1386 (Intel)

The following predefinitions are valid in all modes.

= __sparcv9 (-xarch=v9,v9a, v9b)

= __Sun

= __unix

= __ SUNPRO_C=0x550

= __‘unane -s‘_‘unane -r‘ (example: __SunCS_5_7)

= __sparc (SPARC)

= _ 1386 (Intel)

= _ BULTIN VA ARG | NCR

= __SVR4

The following is predefined in - Xa and - Xt modes only:

« __RESTRICT

The compiler also predefines the object-like macro

__PRAGVA_REDEFI NE_EXTNAME, to indicate the pragma will be recognized.

-dlyIn]

- dy specifies dynamic linking, which is the default, in the link editor.
- dn specifies static linking in the link editor.

This option and its arguments are passed to | d(1).

Note — Many system libraries are only available as dynamic libraries in the Solaris
64-bit compilation environment. As a result, this option causes fatal errors if you use
it in combination with - xar ch=v9.

-dal i gn

- dal i gn is equivalent to - xmemal i gn=8s. See Section A.3.102, “- xmenal i gn=ab”
on page A-63.

A-12 C User’'s Guide » May 2003

A.3.10

A.3.11

A.3.12

-E

Runs the source file through the preprocessor only and sends the output to st dout .
The preprocessor is built directly into the compiler, except in - Xs mode, where
/usr/ccs/ i b/ cpp is invoked. Includes the preprocessor line numbering
information. See also the —P option.

-errfm [=[no%error]

Use this option if you want to prefix the string “error;” to the beginning of error
messages so they are more easily distinguishable from warning messages. The prefix
is also attached to warnings that are converted to errors by - er rwar n.

TABLEA-2 The-errfnt Values

Value Meaning
error Add the prefix “error:” to all error messages.
no%error Do not add the prefix “error:” to any error messages.

If you do not use this option, the compiler sets it to - err f nt =no%er r or. If you use
specify -errfmt, but do not supply a value, the compiler sets itto -errfnt =error.

-errof f [=t]

This command suppresses C compiler warning messages and has no effect on error
messages.

t is a comma-separated list that consists of one or more of the following: tag, no%ag,
%l | , %one. Order is important; for example, %al | , no%ag suppresses all warning
messages except tag. The following table lists the - er r of f values:

TABLEA-3 The - errof f Values

Value Meaning

tag Suppresses the warning message specified by this tag. You can display
the tag for a message by using the - errt ags=yes option.

no%ag Enables the warning message specified by this tag

%al | Suppresses all warning messages

%one Enables all warning messages (default)

Appendix A C Compiler Options A-13

A.3.13

A.3.14

The default is - er r of f =%none. Specifying - err of f is equivalent to specifying
-errof f =%l | .

Only warning messages from the C compiler front-end that display a tag when the
- errtags option is used can be suppressed with the - err of f option. You can
achieve finer control over error message suppression. See Section 2.8.5,
“error_messages” on page 2-12.

-errshort [=i]

Use this option to control how much detail is in the error message produced by the
compiler when it discovers a type mismatch. This option is particularly useful when
the compiler discovers a type mismatch that involves a large aggregate.

i can be one of the following:

TABLEA-4 The -errshort Values

Value Meaning

short Error messages are printed in short form with no expansion of
types. Aggregate members are not expanded, neither are function
argument and return types.

full Error messages are printed in full verbose form showing the full
expansion of the mismatched types.

tags Error messages are printed with tag names for types which have tag
names. If there is no tag name, the type is shown in expanded form.

If you do not use - err short, the compiler sets the option to -errshort=ful I . If
you specify - er r shor t, but do not provide a value, the compiler sets the option to
-errshort =t ags.

This option does not accumulate, it accepts the last value specified on the command
line.

-errtags[=4]

Displays the message tag for each warning message of the C compiler front-end that
can be suppressed with the - er r of f option or made a fatal error with the

- er rwar n option. Messages from the C compiler driver and other components of
the C compilation system do not have error tags, and cannot be suppressed with

- err of f and made fatal with - er r war n.

A-14 C User’'s Guide » May 2003

A.3.15

a can be either yes or no. The default is - er r t ags=no. Specifying - errt ags is
equivalent to specifying - er rt ags=yes.

- errwar n[=t]

Use - er rwar n to cause the C compiler to exit with a failure status for the given
warning messages.

t is a comma-separated list that consists of one or more of the following: tag, no%ag,
%l | , %one. Order is important; for example %al | , no%ag causes cc to exit with a
fatal status if any warning except tag is issued.

The warning messages generated by the C compiler change from release to release as
the compiler error checking improves and features are added. Code that compiles
using - errwar n=%al | without error may not compile without error in the next
release of the compiler.

Only warning messages from the C compiler front-end that display a tag when the
- errtags option is used can be specified with the - er r war n option to cause the C
compiler to exit with a failure status.

The following table details the - er r war n values:

TABLE A-5 The - errwar n Values

Value Meaning

tag Cause cc to exit with a fatal status if the message specified by this tag is issued
as a warning message. Has no effect if tag is not issued.

no%ag Prevent cc from exiting with a fatal status if the message specified by tag is
issued only as a warning message. Has no effect if the message specified by tag
is not issued. Use this option to revert a warning message that was previously
specified by this option with tag or %al | from causing cc to exit with a fatal
status when issued as a warning message.

%al | Cause cc to exit with a fatal status if any warning messages are issued. %al |
can be followed by no%ag to exempt specific warning messages from this
behavior.

%mone Prevents any warning message from causing cc to exit with a fatal status

should any warning message be issued.

The default is - er r war n=%one. If you specify - er r war n alone, it is equivalent to
-errwarn=%al | .

Appendix A C Compiler Options A-15

A.3.16 - f ast

Selects a set of baseline options for optimizing benchmark applications. These
optimizations may alter the behavior of programs from that defined by the ISO C
and IEEE standards. Modules compiled with - f ast must also be linked with - f ast .

- f ast is a macro option that can be effectively used as a starting point for tuning an
executable for maximum runtime performance. - f ast is a macro that can change
from one release of the compiler to the next and expands to options that are target
platform specific. We suggest that you use the - # option to examine the expansion of
- fast, and incorporate the appropriate options of - f ast into the ongoing process
of tunning the executable.

The —f ast option is unsuitable for programs intended to run on a different target
than the compilation machine. In such cases, follow - f ast with the appropriate
- xt ar get option. For example:

cc -fast -xtarget=ultra ...

For C modules that depend on exception handling specified by SUID, follow - f ast
by - xnol i bmi | :

% cc -fast -xnolibml

With - xI i bm |, exceptions cannot be noted by setting er r no or calling
mat her r (3m).

The —f ast option is unsuitable for programs that require strict conformance to the
IEEE 754 Standard.

The following table lists the set of options selected by - f ast across platforms.

TABLEA-6 The - f ast Expansion Values

Option SPARC x86
-fns X X
-fsinmple=2 X X
-fsingle X X
-ftrap=%one X X
-nof store - X
-xal i as_| evel =basi c X -

A-16 C User's Guide » May 2003

TABLEA-6 The - f ast Expansion Values (Continued)

Option SPARC x86

-xarch
-xbui I tin=%al |

- xdepend

X X X X

-xmemal i gn=8s

X
X
X
-xli bmil X
X
-x0b X

X

-xpref et ch=aut o, explicit

Note — Some optimizations make certain assumptions about program behavior. If
the program does not conform to these assumptions, the application may crash or
produce incorrect results. Please refer to the description of the individual options to
determine if your program is suitable for compilation with - f ast .

The optimizations performed by these options may alter the behavior of programs
from that defined by the ISO C and IEEE standards. See the description of the
specific option for details.

—f ast acts like a macro expansion on the command line. Therefore, you can
override the optimization level and code generation option aspects by following
- f ast with the desired optimization level or code generation option. Compiling
with the - f ast - x4 pair is like compiling with the - xQ2 - xO4 pair. The latter
specification takes precedence.

In previous releases, the - f ast macro option included - f nonst d; now it includes
- f ns instead.

- f ast also defines the macro __ MATHERR_ERRNO_DONTCARE. This macro causes
mat h. h to assert performance-related pragmas such as the following for some math
routines prototyped in <nat h. h>:

= #pragma does_not_read_gl obal _data
=« #pragma does_not_wite_gl obal _data
=« #pragma no_si de_effect

If your code relies on the return value of er r no in exceptional cases as documented
in the mat her r (3M) man page, you must turn off the macro by issuing the
- U__MATHERR_ERRNO_DONTCARE macro after the - f ast option.

You can usually improve performance for most programs with this option.

Appendix A C Compiler Options A-17

A.3.17

A.3.18

A.3.19

A.3.20

Do not use this option for programs that depend on IEEE standard exception
handling; you can get different numerical results, premature program termination,
or unexpected SIGFPE signals.

See “-#” on page A-10 and “- ###” on page A-10 for details of how you can see the
expansion of macro options.

-fd

Reports K&R-style function definitions and declarations.

-fl ags

Prints a brief summary of each available compiler option.

-f nonstd

Causes nonstandard initialization of floating-point arithmetic hardware. In addition,
the —f nonst d option causes hardware traps to be enabled for floating-point
overflow, division by zero, and invalid operations exceptions. These are converted
into SI GFPE signals; if the program has no SI GFPE handler, it terminates with a
memory dump.

By default, IEEE 754 floating-point arithmetic is nonstop, and underflows are
gradual. (See Section 2.4, “Floating Point, Nonstandard Mode” on page 2-4 for a
further explanation.)

(SPARC) Synonym for -fns -ftrap=comon.

- f ns[={no, yes}]
(SPARC) Turns on the SPARC nonstandard floating-point mode.

The default is - f ns=no, the SPARC standard floating-point mode. - f ns is the same
as - f ns=yes.

Optional use of =yes or =no provides a way of toggling the - f ns flag following
some other macro flag that includes - f ns, such as - f ast . This flag enables the
nonstandard floating point mode when a program begins execution. By default, the
non-standard floating point mode will not be enabled automatically.

A-18 C User's Guide » May 2003

A.3.21

A.3.22

On some SPARC systems, the nonstandard floating point mode disables “gradual
underflow,” causing tiny results to be flushed to zero rather than producing
subnormal numbers. It also causes subnormal operands to be replaced silently by
zero. On those SPARC systems that do not support gradual underflow and
subnormal numbers in hardware, use of this option can significantly improve the
performance of some programs.

When nonstandard mode is enabled, floating point arithmetic may produce results
that do not conform to the requirements of the IEEE 754 standard. See the Numerical
Computation Guide for more information.

This option is effective only on SPARC systems and only if used when compiling the
main program. On x86 systems, the option is ignored.

-f preci si on=p
(x86) - f preci si on={si ngl e, doubl e, ext ended}

Initializes the rounding-precision mode bits in the Floating-point Control Word to
single (24 bits), double (53 bits), or extended (64 bits), respectively. The default
floating-point rounding-precision mode is extended.

Note that on Intel, only the precision, not exponent, range is affected by the setting
of floating-point rounding precision mode.

-fround=r

Sets the IEEE 754 rounding mode that is established at runtime during the program
initialization.

r must be one of: near est, t ozer o, negati ve, posi ti ve.
The default is - f r ound=near est .
The meanings are the same as those for the i eee_f | ags subroutine.

When ristozer o, negati ve, or posi ti ve, this flag sets the rounding direction
mode to round-to-zero, round-to-negative-infinity, or round-to-positive-infinity
respectively when a program begins execution. When r is near est or the - f round
flag is not used, the rounding direction mode is not altered from its initial value
(round-to-nearest by default).

This option is effective only if used when compiling the main program.

Appendix A C Compiler Options A-19

A.3.23

-f si npl e[=n]

Allows the optimizer to make simplifying assumptions concerning floating-point
arithmetic.

If n is present, it must be 0, 1, or 2. The defaults are:

= With no - f si npl e[=n], the compiler uses - f si npl e=0

= With only - f si npl e, no =n, the compiler uses - f si npl e=1

-fsinpl e=0

Permits no simplifying assumptions. Preserve strict IEEE 754 conformance.
-fsinple=1

Allows conservative simplifications. The resulting code does not strictly conform to
IEEE 754, but numeric results of most programs are unchanged.

With - f si npl e=1, the optimizer can assume the following:

= |EEE 754 default rounding/trapping modes do not change after process
initialization.

= Computations producing no visible result other than potential floating point
exceptions may be deleted.

= Computations with Infinity or NaNs as operands need not propagate NaNs to
their results; for example, x* 0 may be replaced by 0.

= Computations do not depend on sign of zero.

With - f si npl e=1, the optimizer is not allowed to optimize completely without
regard to roundoff or exceptions. In particular, a floating-point computation cannot
be replaced by one that produces different results with rounding modes held
constant at runtime. The - f ast macroflag includes - f si npl e=1.

-fsinmple=2

Permits aggressive floating point optimizations that may cause many programs to
produce different numeric results due to changes in rounding. For example,

- f si npl e=2 permits the optimizer to replace all computations of x/y in a given
loop with x* z, where x/ y is guaranteed to be evaluated at least once in the loop,
z=1/y, and the values of y and z are known to have constant values during
execution of the loop.

Even with - f si npl e=2, the optimizer is not permitted to introduce a floating point
exception in a program that otherwise produces none.

A-20 C User’'s Guide » May 2003

A.3.24

A.3.25

A.3.26

-fsingle

(- Xt and - Xs modes only) Causes the compiler to evaluate f | oat expressions as
single precision rather than double precision. This option has no effect if the
compiler is used in either - Xa or - Xc modes, as f | oat expressions are already
evaluated as single precision.

-fstore

(Intel) Causes the compiler to convert the value of a floating-point expression or
function to the type on the left-hand side of an assignment, when that expression or
function is assigned to a variable, or when the expression is cast to a shorter
floating-point type, rather than leaving the value in a register. Due to rounding and
truncation, the results may be different from those that are generated from the
register value. This is the default mode.

To turn off this option, use the - nof st or e option.

-ftrap=t
Sets the IEEE 754 trapping mode in effect at startup.

t is a comma-separated list that consists of one or more of the following: %al | ,
% one, conmon, [no%i nval i d, [no%over fl ow [no%under f | ow [no%di vi si on,
[no%i nexact.

The default is - f t r ap=%one.

This option sets the IEEE 754 trapping modes that are established at program
initialization. Processing is left-to-right. The conmon exceptions, by definition, are
invalid, division by zero, and overflow.

Example: - ftrap=%al | , no% nexact means set all traps, except i nexact .

The meanings are the same as for the i eee_f | ags subroutine, except that:

= %al | turns on all the trapping modes.
= Ymone, the default, turns off all trapping modes.
= A no%prefix turns off that specific trapping mode.

If you compile one routine with - f t r ap=t, compile all routines of the program with
the same - f t r ap=t option; otherwise, you can get unexpected results.

Appendix A C Compiler Options A-21

A.3.27

A.3.28

A.3.29

-G

Passes the option to the link editor to produce a shared object rather than a
dynamically linked executable. This option is passed to | d(1), and cannot be used
with the - dn option.

Produces additional symbol table information for debugging with dbx(1) and the
Performance Analyzer anal yzer (1).

In link-only invocations of the compiler, the - g option makes the incremental linker
(i I d) the default instead of the linker (I d). With - g, the compiler’s default behavior
is to automatically invoke i | d in place of | d unless you specify - Gor any source file
on the command line. Use - xi | dof f to disable the use of i | d. For more
information, see the i | d(1) man page. See Section A.3.86, “- xi | dof f ” on page A-53
and Section A.3.87, “- xi | don” on page A-54.

If you specify - g, and the optimization level is - xO3 or lower, the compiler provides
best-effort symbolic information with almost full optimization. Tail-call optimization
and back-end inlining are disabled.

If you specify - g and the optimization level is - xO4, the compiler provides
best-effort symbolic information with full optimization.

Compile with the - g option to use the full capabilities of the Performance Analyzer.
While some performance analysis features do not require - g, you must compile with
- g to view annotated source, some function level information, and compiler
commentary messages. See the anal yzer (1) man page and “Compiling Your
Program for Data Collection and Analysis” in Program Performance Analysis Tools for
more information.

The commentary messages that are generated with - g describe the optimizations
and transformations that the compiler made while compiling your program. Use the
er _src(1) command to display the messages, which are interleaved with the source
code.

For more information on debugging, see the Debugging a Program With dbx manual.

- H

Prints to standard error, one per line, the path name of each file included during the
current compilation. The display is indented so as to show which files are included
by other files.

A-22 C User's Guide » May 2003

A.3.30

A.3.31

Here, the program sanpl e. ¢ includes the files, st di 0. h and mat h. h; mat h. h
includes the file, f | oat i ngpoi nt . h, which itself includes functions that use
sys/ieeefp. h:

%cc -H sanple.c
/usr/include/stdio.h
lusr/include/ math. h
/usr/include/floatingpoint.h
lusr/includel/sys/ieeefp.h

- h name

Assigns a name to a shared dynamic library as a way to have different versions of a
library. In general, the name after - h should be the same as the file name given after
the - o option. The space between - h and name is optional.

The linker assigns the specified name to the library and records the name in the
library file as the intrinsic name of the library. If there is no - hname option, then no
intrinsic name is recorded in the library file.

When the runtime linker loads the library into an executable file, it copies the
intrinsic name from the library file into the executable, into a list of needed shared
library files. Every executable has such a list. If there is no intrinsic name of a shared
library, then the linker copies the path of the shared library file instead.

1 [-] dir]

- | dir adds dir to the list of directories that are searched for #i ncl ude files with
relative file names, that is, those not beginning with a/ (slash). -1 values
accumulate. See Section 2.13, “How to Specify Include Files” on page 2-25 for a
discussion of the search order used to find the include files.

-1 - gives you more control over the algorithm that the compiler uses when
searching for include files. - | - values do not accumulate. This section first describes
the default search algorithms, then it describes the effect of - | - on these algorithms.

For more information on the search pattern of the compiler, see Section 2.13, “How
to Specify Include Files” on page 2-25.

Appendix A C Compiler Options A-23

A.3.32

A.3.33

A.3.34

A.3.35

A.3.36

A.3.37

Passes the option to the linker to ignore any LD_LI BRARY_PATH or
LD LI BRARY_PATH_ 64 setting.

-KPI C

(SPARC) The - KPI Ccommand is equivalent to - xcode=pi c32. See also
Section A.3.75, “- xcode[=v]” on page A-46.

(Intel) - KPI Ciis identical to - Kpi c.

- Kpi ¢

(SPARC) The - Kpi ¢ command is equivalent to - xcode=pi c13. See Section A.3.75,
“-xcode[=v]” on page A-46.

(Intel) Generate position-independent code for use in shared libraries (small model).
Permits references to, at most, 2**11 unique external symbols.

- keept np

Retains temporary files created during compilation instead of deleting them
automatically.

- Ldir

Adds dir to the list of directories searched for libraries by | d(1). This option and its
arguments are passed to | d(1).

- | name

Links with object library | i bname. so, or | i bname. a. The order of libraries in the
command-line is important, as symbols are resolved from left to right.

This option must follow the sourcefile arguments.

A-24 C User’'s Guide » May 2003

A.3.38

A.3.39

A.3.40

A.3.41

A.3.42

A.3.43

-NTC

Removes duplicate strings from the . conment section of the object file. When you
use the - nt flag, nts - ¢ is invoked.

-m sal i gn

(SPARC) - mi sal i gn is equivalent to - xnmenal i gn=1i . See Section A.3.102,
“-xmenal i gn=ab” on page A-63.

-m sal i gn2

(SPARC) - mi sal i gn2 is equivalent to -xmemalign=2i. See Section A.3.102,
“-xmenal i gn=ab” on page A-63.

- nr [, string]

-mr removes all strings from the . corment section. When you use this flag, nts -d
- a is invoked.

- nr, string removes all strings from the . comment section and inserts string in that
section of the object file. If string contains embedded blanks, it must be enclosed in
quotation marks. A null string results in an empty . conment section. This option is
passed as - d - astring to nts.

Macro option that expands to - D_REENTRANT - | t hr ead. If you are doing your own
multithread coding, you must use this option in the compile and link steps. To
obtain faster execution, this option requires a multiprocessor system. On a

single-processor system, the resulting executable usually runs more slowly with this
option.

-native

This option is a synonym for - xt ar get =nat i ve.

Appendix A C Compiler Options A-25

A.3.44

A.3.45

A.3.46

A.3.47

A.3.48

A.3.49

-nof store

(Intel) Does not convert the value of a floating-point expression or function to the
type on the left-hand side of an assignment, when that expression or function is
assigned to a variable or is cast to a shorter floating-point type; rather, it leaves the
value in a register. See also Section A.3.25, “- f st or e” on page A-21.

-0

Same as - x(O2.

-0 filename

Names the output file filename (as opposed to the default, a. out). filename cannot be
the same as sourcefile, since cc does not overwrite the source file. This option and its
arguments are passed to | d(1).

-P

Runs the source file through the C preprocessor only. It then puts the output in a file
with a . i suffix. Unlike - E, this option does not include preprocessor-type line
number information in the output. See also the - E option.

Prepares the object code to collect data for profiling with pr of (1). This option

invokes a runtime recording mechanism that produces a non. out file at normal
termination.

-QyIn]

Emits or does not emit identification information to the output file. - Qy is the
default.

If - Qy is used, identification information about each invoked compilation tool is
added to the . conment section of output files, which is accessible with nts. This
option can be useful for software administration.

A-26 C User’'s Guide » May 2003

A.3.50

A.3.51

A.3.52

A.3.53

A.3.54

- Qn suppresses this information.

-ap

Same as - p.

- Rdir[: dir]

Passes a colon-separated list of directories used to specify library search directories
to the runtime linker. If present and not null, it is recorded in the output object file
and passed to the runtime linker.

If both LD_RUN_PATH and the - R option are specified, the - R option takes
precedence.

-S

Directs cc to produce an assembly source file but not to assemble the program.

-S

Removes all symbolic debugging information from the output object file. This option
cannot be specified with - g.

Passed to | d(1).

- Uname

Undefines the preprocessor symbol name. This option removes any initial definition
of the preprocessor symbol name created by - D on the same command line including
those placed there by the command-line driver.

- U has no effect on any preprocessor directives in source files. You can give multiple
- U options on the command line.

Appendix A C Compiler Options A-27

A.3.55

A.3.56

If the same name is specified for both - Dand - U on the command line, name is
undefined, regardless of the order the options appear. In the following example, - U
undefines __sun:

cc -U_sun text.c

Preprocessor statements of the following form in t est . ¢ will not take effect because

__sun is undefined.

#i fdef (__sun)

See Section A.3.7, “- Dname[=tokens]” on page A-11 for a list of predefined symbols.

-V

Directs cc to print the name and version ID of each component as the compiler
executes.

-V

Directs the compiler to perform stricter semantic checks and to enable other
I i nt -like checks. For example, the code:

#i ncl ude <stdio. h>
mai n(voi d)

{
}

printf("Hello Wrld.\n");

compiles and executes without problem. With - v, it still compiles; however, the
compiler displays this warning:

"hello.c", line 5: warning: function has no return statenent:
mai n

- v does not give all the warnings that | i nt (1) does. Try running the above example
through |i nt.

A-28 C User's Guide » May 2003

A.3.57

A.3.58

- W, arg

Passes the argument arg to a specified component c. See TABLE 1-1 for a list of
components.

Each argument must be separated from the preceding only by a comma. All - W
arguments are passed after the regular command-line arguments. A comma can be
part of an argument by using the escape character \ (backslash) immediately before
the comma. All - Warguments are passed after the regular command-line arguments.

For example, - W4, - 0,0bj fi | e passes - 0 and obj fi | e to the assembler, in that
order. Also, - W ,- | ,name causes the linking phase to override the default name of
the dynamic linker, /usr/1i b/l d. so. 1.

The order in which the argument(s) are passed to a tool with respect to the other
specified command line options may change.

¢ can be one of the following:

TABLE A-7 The - WValues

a Assembler: (f be); (gas)

c C code generator: (cg) (SPARC);

d cc driver?

h Intermediate code translator (i r 2hf)(Intel)

i Interprocedural optimizer (ube_i pa)(Intel)

Link editor (I d)

m mcs
(0] Interprocedural optimizer (SPARC)
p Preprocessor (cpp)

u C code generator (ube) (Intel)

0 Compiler (aconp) (ssbd, SPARC)
2 Optimizer: (i ropt) (SPARC)

1 You cannot use - Wi to pass the cc options listed in this chapter to the C compiler.

-W
Suppresses compiler warning messages.

This option overrides the err or _nmessages pragma.

Appendix A C Compiler Options A-29

A.3.59

A.3.60

- X[c|a]t |s]

The - X (note uppercase X) options specify varying degrees of compliance to the ISO
C standard. The value of - xc99 affects which version of the ISO C standard the - X
option applies. The - xc99 option defaults to - xc99=%al | which supports a subset
of the 1999 ISO/IEC C standard. - xc99=%one supports the 1990 ISO/IEC C
standard. See Appendix D for a discussion of supported 1999 ISO/IEC features. See
Appendix F for a discussion of differences between ISO/IEC C and K&R C.

The default mode is - Xa.
- Xc

(c = conformance) Issues errors and warnings for programs that use non-I1SO C
constructs. This option is strictly conformant I1ISO C, without K&R C compatibility
extensions. The predefined macro _ _STDC_ _ has a value of 1 with the - Xc

opti on.

- Xa

This is the default compiler mode. 1ISO C plus K&R C compatibility extensions, with
semantic changes required by ISO C. Where K&R C and ISO C specify different
semantics for the same construct, the compiler uses the ISO C interpretation. If the
- Xa option is used in conjunction with the -xt r ansi t i on option, the compiler
issues warnings about the different semantics. The predefined macro _ _STDC_ _
has a value of 0 with the - Xa option.

- Xt

(t = transition) This option uses ISO C plus K&R C compatibility extensions without
semantic changes required by 1SO C. Where K&R C and ISO C specify different
semantics for the same construct, the compiler uses the K&R C interpretation. If you
use the - Xt option in conjunction with the - xt r ansi ti on option, the compiler
issues warnings about the different semantics. The predefined macro _ _STDC_ _
has a value of 0 with the - Xt option.

- Xs

(s = K&R C) Attempts to warn about all language constructs that have differing
behavior between I1ISO C and K&R C. The compiler language includes all features
compatible with K&R C. This option invokes cpp for preprocessing. _ _STDC_ _ is
not defined in this mode.

- X386

(Intel) Optimizes for the 80386 processor.

A-30 C User's Guide » May 2003

A.3.61

A.3.62

A.3.63

- X486

(Intel) Optimizes for the 80486 processor.

- Xa

This option is now considered obsolete. Use - xpr of i | e=t cov instead.

-xal i as_I evel [=]

(SPARC) The compiler uses the - xal i as_I| evel option to determine what
assumptions it can make in order to perform optimizations using type-based
alias-analysis. This option places the indicated alias level into effect for the
translation units being compiled.

If you do not specify the - xal i as_| evel command, the compiler assumes
-xal i as_| evel =any. If you specify - xal i as_| evel without a value, the default
is-xal i as_| evel =l ayout.

The - xal i as_| evel option requires optimization level - xO3 or above. If
optimization is set lower, a warning is issued and the - xal i as_| evel option is
ignored.

Remember that if you issue the - xal i as_| evel option but you fail to adhere to all
of the assumptions and restrictions about aliasing described for any of the alias
levels, the behavior of your program is undefined.

Appendix A C Compiler Options A-31

A-32

Replace | with one of the terms in the following table.

TABLE A-8

The Levels of Alias-Disambiguation

Term

Meaning

any

basi c

weak

| ayout

The compiler assumes that all memory references can alias at this level. There is
no type-based alias analysis at the level of - xal i as_| evel =any.

If you use the - xal i as_| evel =basi ¢ option, the compiler assumes that
memory references that involve different C basic types do not alias each other.
The compiler also assumes that references to all other types can alias each other
as well as any C basic type. The compiler assumes that references using char *
can alias any other type.

For example, at the - xal i as_| evel =basi c level, the compiler assumes that a
pointer variable of type i nt * is not going to access a float object. Therefore it
is safe for the compiler to perform optimizations that assume a pointer of type
f I oat * will not alias the same memory that is referenced with a pointer of
typeint *.

If you use the - xal i as_| evel =weak option, the compiler assumes that any
structure pointer can point to any structure type.

Any structure or union type that contains a reference to any type that is either
referenced in an expression in the source being compiled or is referenced from
outside the source being compiled, must be declared prior to the expression in
the source being compiled.

You can satisfy this restriction by including all the header files of a program
that contain types that reference any of the types of the objects referenced in
any expression of the source being compiled.

At the level of - xal i as_| evel =weak, the compiler assumes that memory
references that involve different C basic types do not alias each other. The
compiler assumes that references using char * alias memory references that
involve any other type.

If you use the - xal i as_| evel =l ayout option, the compiler assumes that
memory references that involve types with the same sequence of types in
memory can alias each other.

The compiler assumes that two references with types that do not look the same
in memory do not alias each other. The compiler assumes that any two memory
accesses through different struct types alias if the initial members of the
structures look the same in memory. However, at this level, you should not use
a pointer to a struct to access some field of a dissimilar struct object that is
beyond any of the common initial sequence of members that look the same in
memory between the two structs. This is because the compiler assumes that
such references do not alias each other.

At the level of - xal i as_| evel =l ayout the compiler assumes that memory
references that involve different C basic types do not alias each other. The
compiler assumes that references using char * can alias memory references
involving any other type.

C User’'s Guide * May 2003

A.3.64

TABLE A-8

The Levels of Alias-Disambiguation (Continued)

Term

Meaning

strict

std

strong

If you use the - xal i as_I| evel =stri ct option, the compiler assumes that

memory references, that involve types such as structs or unions, that are the
same when tags are removed, can alias each other. Conversely, the compiler
assumes that memory references involving types that are not the same even
after tags are removed do not alias each other.

However, any structure or union type that contains a reference to any type that
is part of any object referenced in an expression in the source being compiled,
or is referenced from outside the source being compiled, must be declared prior
to the expression in the source being compiled.

You can satisfy this restriction by including all the header files of a program
that contain types that reference any of the types of the objects referenced in
any expression of the source being compiled. At the level of

-xalias_| evel =strict the compiler assumes that memory references that
involve different C basic types do not alias each other. The compiler assumes
that references using char * can alias any other type.

If you use the - xal i as_| evel =st d option, the compiler assumes that types
and tags need to be the same to alias, however, references using char * can
alias any other type. This rule is the same as the restrictions on the
dereferencing of pointers that are found in the 1999 ISO C standard. Programs
that properly use this rule will be very portable and should see good
performance gains under optimization.

If you use the - xal i as_| evel =st r ong option, the same restrictions apply as
at the st d level, but additionally, the compiler assumes that pointers of type
char * are used only to access an object of type char. Also, the compiler
assumes that there are no interior pointers. An interior pointer is defined as a
pointer that points to a member of a struct.

- Xxar ch=isa

Specify instruction set architecture (ISA).

This option limits the code generated by the compiler to the instructions of the
specified instruction set architecture. This option does not guarantee use of any
target-specific instructions. However, use of this option may affect the portability of
a binary program.

If you compile and link in separate steps, make sure you specify the same value for
- xar ch in both steps.

Appendix A C Compiler Options A-33

Architectures that are accepted by - xar ch keyword isa are shown in TABLE A-9:

TABLEA-9 The —xar ch ISA Keywords

Platform Valid -xarch Keywords
SPARC generic, native, v7,v8a, v8, v8pl us, v8pl usa, v8pl usb, v9, v9a, vib
x86 generic, nati ve, 386, penti um pro

Note that although - xar ch can be used alone, it is part of the expansion of the
- xt ar get option and may be used to override the - xar ch value that is set by a
specific - xt ar get option. For example:

% cc -xtarget=ultra2 -xarch=v8plusb ...

overrides the - xar ch=v8 set by - xt ar get =ul tr a2

If you use this option with optimization, the appropriate choice can provide good
performance of the executable on the specified architecture. An inappropriate choice
results in a binary program that is not executable on the intended target platform.

A.3.64.1 SPARC Only

The following table details the performance of an executable that is compiled with a
given - xar ch option and then executed by various SPARC processors. The purpose
of this table is to help you identify the best - xar ch option for your executable given
a particular target machine. Start by identifying the range of machines that are of
interest to you and then consider the cost of maintaining multiple binaries versus the
benefit of extracting the last iota of performance from newer machines.

TABLE A-10 - xar ch Matrix

Instruction Set of SPARC Machine:

V7 V8a V8 V9 (Non-Sun V9 V9b
Processor) (Sun processor)
v7 N S S S S S
v8a PD N S S S S

** Note: An executable compiled with this instruction set may perform nominally on a V9 non-Sun processor chip or it may not execute
at all. Check with your hardware vendor to make sure your executable can run on its target machine.

A-34 C User's Guide » May 2003

TABLE A-10 - xar ch Matrix (Continued)

-xarch v8 PD
Z(F))rtrilcr’);lation v8plus NE
v8plusa |NE
v8plusb |NE
v9 NE
v9a NE
v9b NE

PD
NE
NE
NE
NE
NE
NE

Instruction Set of SPARC Machine:

N

NE
NE
NE
NE
NE
NE

S
N

*%
*%
N
*%

*%

S
S
N
NE

w v oz v O

N
NE N

** Note: An executable compiled with this instruction set may perform nominally on a V9 non-Sun processor chip or it may not execute

at all. Check with your hardware vendor to make sure your executable can run on its target machine.

N reflects Nominal performance. The program executes and takes full advantage

of the processor’s instruction set.

S reflects Satisfactory performance. The program executes but may not exploit all

available processor instructions.

PD reflects Performance Degradation. The program executes, but depending on
the instructions used, may experience slight to significant performance
degradation. The degradation occurs when instructions that are not implemented

by the processor are emulated by the kernel.

NE means Not Executable. The program will not execute because the kernel does
not emulate the instructions that are not implemented by the processor.

If you are compiling your executable with the v8pl us or v8pl usa instruction set,
consider compiling with v9 or v9a instead. The v8pl us and v8pl usa options are
provided so that programs can take advantage of some SPARC V9 and UltraSPARC

features prior to the availability of Solaris 7 software with its support for 64-bit

programs. Programs compiled with the v8pl us or v8pl usa option are not portable
to SPARC V8 or older machines. You can recompile such programs with v9 or v9a,
respectively, to take full advantage of all the features of SPARC V9 and UltraSPARC.
The V8+ Technical Specification white paper, part number 802-7447-10, is available

through your Sun representative and explains the limitations of v8pl us and
v8pl usa.

SPARC instruction set architectures V7, V8, and V8a are all binary compatible.

Object binary files (.0) compiled with v8pl us and v8pl usa can be linked and
can execute together, but only on a SPARC V8plusa compatible platform.

Obiject binary files (.0) compiled with v8pl us, v8pl usa, and v8pl usb can be
linked and can execute together, but only on a SPARC V8plusb compatible

platform.

- xar ch values v9, v9a, and v9b are only available on UltraSPARC 64-bit Solaris

operating environments.

Appendix A C Compiler Options

A-35

A-36

= Object binary files (.0) compiled with v9 and v9a can be linked and can execute
together, but will run only on a SPARC V9a compatible platform.

= Object binary files (.0) compiled with v9, v9a, and v9b can be linked and can
execute together, but will run only on a SPARC V9b compatible platform.

For any particular choice, the generated executable may run much more slowly on
earlier architectures. Also, although quad-precision (REAL* 16 and | ong doubl €)
floating-point instructions are available in many of these instruction set
architectures, the compiler does not use these instructions in the code it generates.

The following table gives details for each of the - xar ch keywords on SPARC
platforms.

TABLE A-11 The - xar ch Values for SPARC Platforms

-xarch= Meaning

generic Compile for good performance on most systems.
This is the default. This option uses the best instruction set for good
performance on most processors without major performance degradation on
any of them. With each new release, the definition of “best” instruction set may
be adjusted, if appropriate.

native Compile for good performance on this system.

This is the default for the - f ast option. The compiler chooses the appropriate
setting for the current system processor it is running on.

v7 Compile for the SPARC-V7 ISA.
Enables the compiler to generate code for good performance on the V7 ISA.

This is equivalent to using the best instruction set for good performance on the
V8 ISA, but without integer mul and di v instructions, and the f srul d
instruction.

Examples: SPARCstation 1, SPARCstation 2

v8a Compile for the V8a version of the SPARC-V8 ISA.
By definition, V8a means the V8 ISA, but without the f snul d instruction.

This option enables the compiler to generate code for good performance on the
V8a ISA.

Example: Any system based on the microSPARC | chip architecture

v8 Compile for the SPARC-V8 ISA.

Enables the compiler to generate code for good performance on the V8
architecture.

Example; SPARCstation 10

C User’'s Guide * May 2003

TABLE A-11 The - xar ch Values for SPARC Platforms (Continued)

-xarch= Meaning

v8pl us Compile for the V8plus version of the SPARC-V9 ISA.

By definition, V8pl us means the V9 ISA, but limited to the 32-bit subset

defined by the V8plus ISA specification, without the Visual Instruction Set

(VIS), and without other implementation-specific ISA extensions.

= This option enables the compiler to generate code for good performance on
the V8plus ISA.

= The resulting object code is in SPARC-V8+ ELF32 format and only executes in
a Solaris UltraSPARC environment—it does not run on a V7 or V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8pl usa Compile for the V8plusa version of the SPARC-V9 ISA.

By definition, V8pl usa means the V8plus architecture, plus the Visual

Instruction Set (VIS) version 1.0, and with UltraSPARC extensions.

= This option enables the compiler to generate code for good performance on
the UltraSPARC architecture, but limited to the 32-bit subset defined by the
V8plus specification.

= The resulting object code is in SPARC-V8+ ELF32 format and only executes in
a Solaris UltraSPARC environment—it does not run on a V7 or V8 processor.

Example: Any system based on the UltraSPARC chip architecture

v8pl usb Compile for the V8plusb version of the SPARC-V8plus ISA with
UltraSPARC |11 extensions.

Enables the compiler to generate object code for the UltraSPARC architecture,

plus the Visual Instruction Set (VIS) version 2.0, and with UltraSPARC IlI

extensions.

= The resulting object code is in SPARC-V8+ ELF32 format and executes only in
a Solaris UltraSPARC |1l environment.

= Compiling with this option uses the best instruction set for good
performance on the UltraSPARC Il architecture.

Appendix A C Compiler Options A-37

A-38

TABLE A-11 The - xar ch Values for SPARC Platforms (Continued)

-xarch=

Meaning

v9

v9a

v9b

Compile for the SPARC-V9 ISA.

Enables the compiler to generate code for good performance on the V9 SPARC

architecture.

< The resulting .0 object files are in ELF64 format and can only be linked with
other SPARC-V9 object files in the same format.

= The resulting executable can only be run on an UltraSPARC processor
running a 64-bit enabled Solaris operating environment with the 64-bit
kernel.

= —xar ch=v9 is only available when compiling in a 64-bit enabled Solaris
environment.

Compile for the SPARC-V9 ISA with UltraSPARC extensions.

Adds to the SPARC-V9 ISA the Visual Instruction Set (VIS) and extensions

specific to UltraSPARC processors, and enables the compiler to generate code

for good performance on the V9 SPARC architecture.

= The resulting .0 object files are in ELF64 format and can only be linked with
other SPARC-V9 object files in the same format.

= The resulting executable can only be run on an UltraSPARC processor
running a 64-bit enabled Solaris operating environment with the 64-bit
kernel.

« —xar ch=v9a is only available when compiling in a 64-bit enabled Solaris
operating environment.

Compile for the SPARC-V9 ISA with UltraSPARC I1l extensions.
Adds UltraSPARC I11 extensions and VIS version 2.0 to the V9a version of the
SPARC-V9 ISA. Compiling with this option uses the best instruction set for
good performance in a Solaris UltraSPARC I1l environment.

« The resulting object code is in SPARC-V9 ELF64 format and can only be
linked with other SPARC-V9 object files in the same format.

« The resulting executable can only be run on an UltraSPARC |1l processor
running a 64-bit enabled Solaris operating environment with the 64-bit
kernel.

= —xar ch=v9b is only available when compiling in a 64-bit enabled Solaris
operating environment.

C User’'s Guide * May 2003

A.3.64.2

A.3.65

x86 Only

TABLE A-12 The -

xar ch Values on x86

Value Meaning

generic Limits instruction set to the Intel x86 architecture and is the equivalent
of the 386 option.

native Compile for good performance on this system. This is the default for the
- fast option. The compiler chooses the appropriate setting for the
current system processor on which it is compiling.

386 Limits the instruction set to the Intel 386/486 architecture.

penti um pro

Limits the instruction set to the pentium_pro architecture.

- Xaut opar

(SPARC) Turns on automatic parallelization for multiple processors. Does
dependence analysis (analyze loops for inter-iteration data dependence) and loop

restructuring. If optimization is not at - xO3 or higher, optimization is raised to - xC3
and a warning is emitted.

Avoid - xaut opar if you do your own thread management.

To achieve faster execution, this option requires a multiple processor system. On a
single-processor system, the resulting binary usually runs slower.

To determine how many processors you have, use the psri nf o command:

% psrinfo

0 on-1ine
1 on-line
3 on-1line
4 on-1line

since 01/12/95 10:41:54
since 01/12/95 10:41:54
since 01/12/95 10:41:54
since 01/12/95 10:41:54

To request a number of processors, set the PARALLEL environment variable. The

default is 1.

= Do not request more processors than are available.

= If Nis the number of processors on the machine, then for a one-user,

multiprocessor system, try PARALLEL=N- 1.

Appendix A C Compiler Options

A-39

A.3.66

A.3.67

A.3.68

If you use - xaut opar and compile and link in one step, then linking automatically
includes the microtasking library and the threads-safe C runtime library. If you use
- xaut opar and compile and link in separate steps, then you must also link with

- Xaut opar.

-xbui I tin[=(%al | |%0one)]

Use the - xbui | ti n[=(%al | |%0ne)] command when you want to improve the
optimization of code that calls standard library functions. Many standard library
functions, such as the ones defined in mat h. h and st di o. h, are commonly used by
various programs. This command lets the compiler substitute intrinsic functions or
inline system functions where profitable for performance.

If you do not specify - xbui | ti n, the default is - xbui | ti n=%one, which means
no functions from the standard libraries are substituted or inlined. If you specify
-xbui I ti n, but do not provide any argument, the default is - xbui | ti n%al | ,
which means the compiler substitutes intrinsics or inlines standard library functions
as it determines the optimization benefit.

If you compile with - f ast, then - xbui I ti n is set to %al | .

Note — - xbui | ti n only inlines global functions defined in system header files,
never static functions defined by the user.

- XCC

When you specify - xc99=%one and - xCC, the compiler accepts the C++-style
comments. In particular, / / can be used to indicate the start of a comment.

- XCc99[=0]

The - xc99 flag controls compiler recognition of the implemented features from the
C99 standard (ISO/IEC 9899:1999, Programming Language - C).

A-40 C User’'s Guide » May 2003

A.3.69

0 can be a comma separated list comprised of the following:

TABLE A-13 The - xc99 Values

Value Meaning

[no%lib [Do not] Enable the 1999 C standard library semantics of routines
that appeared in both the 1990 and 1999 C standard.

%al | Turns on recognition of supported C99 features.

%one Turns off recognition of C99 features.

If you do not specify - xc99, the compiler defaults to - xc99=%al | , no% i b. If you
specify - xc99 without any values, the option is set to - xc99=%al | .

The compiler accepts %al | , %mone, and no% i b as synonyms for al | , none, and
no_I i b respectively.

Note — Though the compiler support-level defaults to the features of C99 listed in
Appendix D, the standard headers provided by Solaris software in / usr /i ncl ude
do not yet conform with the 1999 ISO/IEC C standard. If you encounter error
messages, try using - xc99=%one to obtain the 1990 ISO/IEC C standard behavior
for these headers.

- Xxcache[=c]

Defines the cache properties for use by the optimizer. ¢ must be one of the following:
= generic

» s1/11/al

» S1/11/ al: s2/ 12/ a2
= S1/11/ al: s2/ 12/ a2: s3/ 13/ a3

The si/li/ai are defined as follows:

Si The size of the data cache at level i, in kilobytes
li The line size of the data cache at level i, in bytes

ai The associativity of the data cache at level i

Although this option can be used alone, it is part of the expansion of the - xt ar get
option; its primary use is to override a value supplied by the - xt ar get option.

Appendix A C Compiler Options A-41

A.3.70

This option specifies the cache properties that the optimizer can use. It does not
guarantee that any particular cache property is used. The following table lists the
- xcache values.

TABLE A-14 The - xcache Values

Value Meaning

generic This is the default value which directs the compiler to use
cache properties for good performance on most x86 and
SPARC processors, without major performance
degradation on any of them.
With each new release, these best timing properties will
be adjusted, if appropriate.

native Set the parameters for the best performance on the host
environment.

s1/ 11/ a1 Define level 1 cache properties.

s1/ 11/ al: s2/ 12/ a2 Define levels 1 and 2 cache properties.

s1/ 11/ al: s2/ 12/ a2: s3/ 13/ a3 Define levels 1, 2, and 3 cache properties.

Example: - xcache=16/ 32/ 4: 1024/ 32/ 1 specifies the following:

Level 1 cache has: Level 2 cache has:
16K bytes 1024K bytes
32 bytes line size 32 bytes line size
4-way associativity Direct mapping associativity

—xcg[89]92]

(SPARC)

- xcg89 is a macro for: - xarch=v7 -xchi p=old -xcache=64/32/1.
-xcg92 is a macro for: - xar ch=v8 - xchi p=super

-xcache=16/ 32/ 4: 1024/ 32/ 1.

A-42 C User’'s Guide » May 2003

A.3.71

- Xchar [=0]

The option is provided solely for the purpose of easing the migration of code from
systems where the char type is defined as unsigned. Unless you are migrating from
such a system, do not use this option. Only code that relies on the sign of a char type
needs to be rewritten to explicitly specify signed or unsigned.

You can substitute one of the following for o:

TABLE A-15 The - xchar Values

Value Meaning

si gned Treat character constants and variables declared as char as signed.
This impacts the behavior of compiled code, it does not affect the
behavior of library routines.

S Equivalent to si gned

unsi gned Treat character constants and variables declared as char as unsigned.
This impacts the behavior of compiled code, it does not affect the
behavior of library routines.

u Equivalent to unsi gned

If you do not specify - xchar, the compiler assumes - xchar =s.
If you specify - xchar, but do not specify a value, the compiler assumes - xchar =s.

The - xchar option changes the range of values for the type char only for code
compiled with - xchar. This option does not change the range of values for type
char in any system routine or header file. In particular, the value of CHAR_MAX and
CHAR_M N, as defined by | i m t s. h, do not change when this option is specified.
Therefore, CHAR_MAX and CHAR_M N no longer represent the range of values
encodable in a plain char.

If you use - xchar, be particularly careful when you compare a char against a
predefined system macro because the value in the macro may be signed. This is most
common for any routine that returns an error code which is accessed through a
macro. Error codes are typically negative values so when you compare a char against
the value from such a macro, the result is always false. A negative number can never
be equal to any value of an unsigned type.

It is strongly recommended that you never use - xchar to compile routines for any
interface exported through a library. The Solaris ABI specifies type char as signed,
and system libraries behave accordingly. The effect of making char unsigned has not
been extensively tested with system libraries. Instead of using this option, modify
your code so that it does not depend on whether type char is signed or unsigned.
The sign of type char varies among compilers and operating systems.

Appendix A C Compiler Options A-43

A.3.72

A.3.73

-Xxchar byt e _order [=0]

Produce an integer constant by placing the characters of a multi-character
character-constant in the specified byte order. You can substitute one of the
following values for o:

= | ow: place the characters of a multi-character character-constant in low-to-high
byte order.

= hi gh: place the characters of a multi-character character-constant in high-to-low
byte order.

=« def aul t: place the characters of a multi-character character-constant in an order
determined by the compilation mode - X[c]a|t | s]. For more information, see
Section 2.1.2, “Character Constants” on page 2-2.

- xcheck[=0]
(SPARC)

Compiling with - xcheck=st kovf adds a runtime check for stack overflow of the
main thread in a singly-threaded program as well as slave-thread stacks in a
multithreaded program. If a stack overflow is detected, a SI GSEGV is generated. If
your application needs to handle a SI GSEGV caused by a stack overflow differently
than it handles other address-space violations, see si gal t st ack(2) .

You can substitute one of the following values for o:

TABLE A-16 The - xcheck Values

Value Meaning

%one Perform none of the - xcheck checks.
%al | Perform all of the - xcheck checks.
st kovf Turns on stack-overflow checking.
no%t kovf Turns off stack-overflow checking.

If you do not specify - xcheck, the compiler defaults to - xcheck=%one. If you
specify - xcheck without any arguments, the compiler defaults to - xcheck=%al |
which turns on the runtime check for stack overflow.

The - xcheck option does not accumulate on the command line. The compiler sets
the flag in accordance with the last occurrence of the command.

A-44 C User’'s Guide » May 2003

A.3.74

-xchi p[=

c]

Specifies the target processor for use by the optimizer.

¢ must be one of the following: generi c, ol d, super, super 2, m cro, ni cro2,

hyper, hyper 2,
ul t ra3cu, 386,

powerup, ultra,ultra2,ultra2e,ultra2i,ultra3,
486, penti um penti um pro.

Although this option can be used alone, it is part of the expansion of the - xt ar get

option; its primary use is to override a value supplied by the - xt ar get option.

This option spec

Some effects are:

ifies timing properties by specifying the target processor.

= The ordering of instructions, that is, scheduling

= The way the compiler uses branches

= The instructions to use in cases where semantically equivalent alternatives are

available

TABLE A-17 The - xchi p Values

Value Meaning

generic Use timing properties for good performance on most x86 and SPARC
architectures.
This is the default value that directs the compiler to use the best timing
properties for good performance on most processors, without major
performance degradation on any of them.

old Uses timing properties of pre-SuperSPARC processors.

super Uses timing properties of the SuperSPARC processors.

super 2 Uses timing properties of the SuperSPARC Il processors.

mcro Uses timing properties of the microSPARC processors.

m cro2 Uses timing properties of the microSPARC Il processors.

hyper Uses timing properties of the hyperSPARC processors.

hyper 2 Uses timing properties of the hyperSPARC Il processors.

power up Uses timing properties of the Weitek PowerUp processors.

ultra Uses timing properties of the UltraSPARC processors.

ultra2 Uses timing properties of the UltraSPARC Il processors.

ul tra2e Uses timing properties of the UltraSPARC lle processors.

ul tra2i Uses timing properties of the UltraSPARC Ili processors.

ultra3 Uses timing properties of the UltraSPARC |1l processors.

Appendix A C Compiler Options

A-45

TABLE A-17 The - xchi p Values (Continued)

Value Meaning

ul tra3cu Uses timing properties of the UltraSPARC Il Cu processors.
386 Uses timing properties of the Intel 386 architecture.

486 Uses timing properties of the Intel 486 architecture
pentium Uses timing properties of the Intel pentium architecture

pentium pro Uses timing properties of the Intel pentium_pro architecture

A.3.75 -xcode[=V]

(SPARC) Specify code address space.

Note — It is highly recommended that you build shared objects by specifying

- xcode=pi c13 or - xcode=pi c32. It is possible to build workable shared objects
with - xar ch=v9 -xcode=abs64 and with - xar ch=v8 -xcode=abs32, but these
will be inefficient. Shared objects built with - xar ch=v9 -xcode=abs32 or
-xarch=v9 -xcode=abs44 will not work.

v must be one of:

TABLE A-18 The - xcode Values

Value Meaning

abs32 Generate 32-bit absolute addresses. Code + data + bss size is limited to 2**32
bytes. This is the default on 32-bit architectures:
-xarch=(generic|v7]v8|v8a]v8pl us]v8pl usa]v8pl ush)

abs44 Generate 44-bit absolute addresses. Code + data + bss size is limited to 2**44
bytes. Available only on 64-bit architectures: - xar ch=(v9]v9a]v9b)

A-46 C User’'s Guide » May 2003

TABLE A-18 The - xcode Values

abs64 Generate 64-bit absolute addresses. Available only on 64-bit architectures:
-xar ch=(v9]v9a]v9ob)

picl3 Generate position-independent code for use in shared libraries (small model).
Equivalent to -Kpic. Permits references to at most 2**11 unique external
symbols on 32-bit architectures, 2**10 on 64-bit architectures.
The - xcode=pi c13 command is similar to —xcode=pi ¢32, except that the
size of the global offset table is limited to 8Kbytes.

pi c32 Generate position-independent code for use in shared libraries (large model).
Equivalent to -KPIC. Permits references to at most 2**30 unique external
symbols on 32-bit architectures, 2**29 on 64-bit architectures.
Each reference to a global datum is generated as a dereference of a pointer in
the global offset table. Each function call is generated in pc-relative
addressing mode through a procedure linkage table. With this option, the
global offset table spans the range of 32-bit addresses in those rare cases
where there are too many global data objects for —xcode=pi c32.

The default is - xcode=abs32 for SPARC V7 and V8, and - xcode=abs64 for
SPARC and UltraSPARC V9 (with - xar ch=v9| v9a).

When building shared dynamic libraries with - xar ch=v9 or v9a or v9b on 64-bit
Solaris operating environments, you can specify - xcode=pi ¢13 or - xcode=pi c32
but are not required to do so.

There are two nominal performance costs with —xcode=pi c13 and —xcode=pi c32
on SPARC:

= A routine compiled with either —xcode=pi c13 or —xcode=pi c32 executes a few
extra instructions upon entry to set a register to point at a table
(_GLOBAL_COFFSET_TABLE) used for accessing a shared library’s global or static
variables.

= Each access to a global or static variable involves an extra indirect memory
reference through _GLOBAL_OFFSET_TABLE . If the compile is done with
- xcode=pi c32, there are two additional instructions per global and static
memory reference.

When considering the above costs, remember that the use of - xcode=pi c13 and

- xcode=pi ¢32 can significantly reduce system memory requirements, due to the
effect of library code sharing. Every page of code in a shared library compiled

- xcode=pi ¢13 or —xcode=pi ¢32 can be shared by every process that uses the
library. If a page of code in a shared library contains even a single non-pi c¢ (that is,
absolute) memory reference, the page becomes nonsharable, and a copy of the page
must be created each time a program using the library is executed.

Appendix A C Compiler Options A-47

A.3.76

A.3.77

The easiest way to tell whether or not a .o file has been compiled with
- xcode=pi c13 or —xcode=pi ¢32 is with the nmcommand:

% nmfile. o | grep _GLOBAL_OFFSET_TABLE U _GLOBAL_OFFSET_TABLE_

A .o file containing position-independent code contains an unresolved external
reference to _GLOBAL_OFFSET_TABLE _, as indicated by the letter U.

To determine whether to use —xcode=pi ¢c13 or —xcode=pi ¢32, use nmto identify
the number of distinct global and static variables used or defined in the library. If the
size of _GLOBAL_CFFSET_TABLE is under 8,192 bytes, you can use - Kpi c.
Otherwise, you must use —xcode=pi c32.

- xcrossfil e[=n]

(SPARC) Enables optimization and inlining across source files. If specified, n can be
0or1l.

Normally the scope of the compiler’s analysis is limited to each separate file on the
command line. For example, - xO4’s automatic inlining is limited to subprograms
defined and referenced within the same source file.

With - xcr ossfi | e, the compiler analyzes all the files named on the command line
as if they had been concatenated into a single source file. - xcr ossfi | e is only
effective when used with - xO4 or - x(5.

The files produced from this compilation are interdependent due to possible
inlining, and must be used as a unit when they are linked into a program. If any one
routine is changed and the files recompiled, they must all be recompiled. As a result,
using this option affects the construction of make files.

The default is - xcr ossfi | e=0, and no crossfile optimizations are performed.
-xcrossfil e isequivalent to - xcrossfil e=1.

See also - x| dscope.

- XCSI

Allows the C compiler to accept source code written in locales that do not conform
to the 1SO C source character code requirements. These locales include: j a_JP. PCK.

The compiler translation phases required to handle such locales may result in
significantly longer compilation times. You should only use this option when you
compile source files that contain source characters from one of these locales.

A-48 C User’'s Guide » May 2003

A.3.78

A.3.79

The compiler does not recognize source code written in locales that do not conform
to the 1SO C source character code requirements unless you specify - Xcsi .

- xdebugf or mat =[st abs| dwar f]

The C compiler is migrating the format of debugger information from the stabs
format to the dwarf format as specified in 'DWARF Debugging Information Format’.
If you maintain software which reads debugging information, you now have the
option to transition your tools from the stabs format to the dwarf format. The default
setting for this release is - xdebugf or mat =st abs.

Use this option as a way of accessing the new format for the purpose of porting
tools. There is no need to use this option unless you maintain software which reads
debugger information, or unless a specific tool tells you that it requires debugger
information in one of these formats.

- xdebugf or mat =st abs generates debugging information using the stabs standard
format.

- xdebugf or mat =dwar f generates debugging information using the dwarf
standard format.

If you do not specify - xdebugf or mat , the compiler assumes
- xdebugf or mat =st abs. It is illegal to specify the option without an argument.

This option affects the format of the data that is recorded with the - g option. Some
small amount of debugging information is recorded even without - g, and the format
of that information is also controlled with this option. So - xdebugf or mat has an
effect even when - g is not used.

The dbx and Performance Analyzer software understand both stabs and dwarf
format so using this option does not have any effect on the functionality of either
tool.

Note — This is a transitional interface so expect it to change in incompatible ways
from release to release, even in a minor release. The details of any specific fields or
values in either stabs or dwarf are also evolving.

- xdepend=[yes | no]

(SPARC) Analyzes loops for inter-iteration data dependencies and does loop
restructuring.

Appendix A C Compiler Options A-49

A.3.80

A.3.81

A.3.82

Loop restructuring includes loop interchange, loop fusion, scalar replacement, and
elimination of “dead” array assignments. If optimization is not at - xG3 or higher,
the compiler raises optimization to - xO3 and issues a warning.

If you do not specify - xdepend, the default is - xdepend=no which means the
compiler does not analyze loops for data dependencies. If you specify - xdepend,
but do not specify an argument, the compiler sets the option to - xdepend=yes
which means the compiler analyzes loops for data dependencies.

Dependency analysis is also included with - xaut opar or - xparal | el . The
dependency analysis is done at compile time.

Dependency analysis may help on single-processor systems. However, if you try

- xdepend on single-processor systems, you should not use either - xaut opar or

- xexpl i ci t par. If either of them is on, then the - xdepend optimization is done for
multiple-processor systems.

- xdryrun

This option is a macro for - ###.

- Xeé

Performs only syntax and semantic checking on the source file, but does not produce
any object or executable code.

- xexplicitpar

(SPARC) Generates parallelized code based on specification of #pr agma MP
directives. You do the dependency analysis: analyze and specify loops for
inter-iteration data dependencies. The software parallelizes the specified loops. If
optimization is not at - xG3 or higher, optimization is raised to - xO3 and a warning
is issued. Avoid - xexpl i ci t par if you do your own thread management.

To get faster code, this option requires a multiprocessor system. On a
single-processor system, the generated code usually runs slower.

If you identify a loop for parallelization, and the loop has dependencies, you can get
incorrect results, possibly different ones with each run, and with no warnings. Do
not apply an explicit parallel pragma to a reduction loop. The explicit parallelization
is done, but the reduction aspect of the loop is not done, and the results can be
incorrect.

A-50 C User’'s Guide » May 2003

A.3.83

In summary, to parallelize explicitly:
= Analyze the loops to find those that are safe to parallelize.

= Insert #pr agma MP to parallelize a loop. See the Section 3.8.3, “Explicit
Parallelization and Pragmas” on page 3-22” for more information.

= Use the - xexpl i ci t par option.

The following is an example of inserting a parallel pragma immediately before the
loop:

#pragma MP t askl oop
for (j=0; j<1000; j++){

If you use - xexpl i ci t par and compile and link in one step, then linking
automatically includes the microtasking library and the threads-safe C runtime
library. If you use - xexpl i ci t par and compile and link in separate steps, then you
must also link with - xexpl i ci t par.

Do not specify - xexpl i ci t par and - xopennp together.

- xXF

Enables optimal reordering of functions and variables by the linker.

This option instructs the compiler to place functions and/or data variables into
separate section fragments, which enables the linker, using directions in a mapfile
specified by the linker’s - Moption, to reorder these sections to optimize program
performance. Generally, this optimization is only effective when page fault time
constitutes a significant fraction of program run time.

Reording of variables can help solve the following problems which negatively

impact run-time performance:

= Cache and page contention caused by unrelated variables that are near each other
in memory.

= Unnecessarily large work-set size as a result of related variables which are not
near each other in memory.

= Unnecessarily large work-set size as a result of unused copies of weak variables
that decrease the effective data density.

Reordering variables and functions for optimal performance requires the following
operations;

1. Compiling and linking with - xF.

Appendix A C Compiler Options A-51

A.3.84

A.3.85

2. Following the instructions in the "Program Performance Analysis" Tools manual

regarding how to generate a mapfile for functions or following the instructions in
the "Linker and Libraries Guide" regarding how to generate a mapfile for data.

. Relinking with the new mapfile by using the linker’s - Moption.

. Re-executing under the Analyzer to verify improvement.

v can be one or more of the following:

TABLE A-19 The - xF Values

Value Meaning

[no%]func [Do not] fragment functions into separate sections.

[no%]gbldata [Do not] fragment global data (variables with external linkage) into
separate sections.

%all Fragment functions and global data.

%none Fragment nothing.

If you do not specify - xF, the default is - xF=%none. If you specify - xF without any
arguments, the default is - xF=%one, f unc.

See also anal yzer (1), debugger (1), | d(1) man pages

- Xhel p=f

Displays on-line help information.

f must be either f | ags, or r eadne.

- xhel p=f | ags displays a summary of the compiler options.

- xhel p=r eadn®e displays the README file.

- Xhwe pr of

(SPARC) Enables compiler support for hardware counter-based profiling.

When - xhwepr of =[enabl e] di sabl e] is enabled, the compiler generates
information that helps tools match hardware-counter data reference and miss events
with associated instructions. Corresponding data-types and structure-members may

A-52 C User's Guide » May 2003

A.3.86

also be identified in conjunction with symbolic information (produced with - g). This
information can be useful in performance analysis and it is not easily identified from
profiles based on code addresses, source statements, or routines.

You can compile a specified set of object files with - xhwcpr of . However,

- xhwepr of is most useful when applied to all object files in the application. This
will provide coverage to identify and correlate all memory references distributed in
the application’s object files.

If you are compiling and linking in separate steps, use - xhwecpr of at link time as
well. Future extensions to - xhwcpr of may require its use at link time.

An instance of - xhwcpr of =enabl e or - xhwepr of =di sabl e overrides all previous
instances of - xhwepr of in the same command line.

- xhwepr of is disabled by default. Specifying - xhwcpr of without any arguments is
the equivalent to - xhwepr of =enabl e.

- xhwepr of requires that optimization be turned on and that the debug data format
be set to DWARF (- xdebugf or mat =dwar f).

The combination of - xhwcpr of and - g increases compiler temporary file storage
requirements by more than the sum of the increases due to - xhwcpr of and - g
specified alone.

The following command compiles exanpl e. ¢ and specifies support for hardware
counter profiling and symbolic analysis of data types and structure members using
DWARF symbols:

exampl e% cc -c -O -xhweprof -g -xdebugformat=dwarf exanple.c

For more information on hardware counter-based profiling, see the Program
Performance Analysis Tools manual.

- Xi | dof f

Turns off the incremental linker and forces the use of | d. This option is the default if
you do not use the - g option, or you do use the - G option, or any source files are
present on the command line. Override this default by using the - xi | don option.

Appendix A C Compiler Options A-53

A.3.87

A.3.88

-Xi | don

Turns on the incremental linker and forces the use of i | d in incremental mode. This
option is the default if you use the - g option, and you do not use the - Goption, and
there are no source files present on the command line. Override this default by using
the - xi | dof f option.

- Xi nl 1 ne=list

The format of the list for - xi nl i ne is as follows:
[{ ¥aut o,func_name, no%unc_name} [, { Yaut o,func_name, no%unc_name}]. . .]

- xi nl i ne tries to inline only those functions specified in the optional list. The list
is either empty, or comprised of a comma-separated list of f unc_nane,

no% unc_nane, or ¥%aut o, where func_name is a function name. - xi nl i ne only has
an effect at -xO3 or higher.

TABLE A-20 The - xi nl i ne Values

Value Meaning

%aut o Specifies that the compiler is to attempt to automatically inline all
functions in the source file. %aut o only takes effect at - xO4 or
higher optimization levels. %aut o is silently ignored at - xO3 or
lower optimization levels.

func_nane Specifies that the compiler is to attempt to inline the named
function.

no% unc_nane Specifies that the compiler is not to inline the named function.

no value Specifies that the compiler is not to attempt to inline any functions

in the source files.

The list of values accumulates from left to right. So for a specification of

- Xi nl i ne=%aut o, no% oo the compiler attempts to inline all functions except f oo.
For a specification of - xi nl i ne=%bar , %ryf unc, no%ar the compiler only tries to
inline myf unc.

When you compile with optimization set at - xO4 or above, the compiler normally
tries to inline all references to functions defined in the source file. You can restrict
the set of functions the compiler attempts to inline by specifying the - xi nl i ne
option. If you specify only - xi nl i ne=, that is you do not name any functions or
%aut o, this indicates that none of the routines in the source files are to be inlined. If
you specify a list of f unc_nane and no% unc_nane without specifying %aut o, the
compiler only attempts to inline those functions specified in the list. If %aut o is

A-54 C User’'s Guide » May 2003

A.3.89

specified in the list of values with the - xi nl i ne option at optimization level set at
- xO4 or above, the compiler attempts to inline all functions that are not explicitly
excluded by no% unc_nane.

A function is not inlined if any of the following conditions apply. No warning is
issued.

= Optimization is less than - xC3.
= The routine cannot be found.
= Inlining the routine does not look practicable to the optimizer.

= The source for the routine is not in the file being compiled (however, see
-xcrossfile).

If you specify multiple - xi nl i ne options on the command line, they do not
accumulate. The last - xi nl i ne on the command line specifies what functions the
compiler attempts to inline.

See also - x| dscope.

- X1 po[=a]

(SPARC) Replace a with 0, 1, or 2. - xi po without any arguments is equivalent
- xi po=1. - xi po=0 is the default setting and turns off - xi po.

This compiler performs whole-program optimizations by invoking an
interprocedural analysis component. Unlike - xcr ossfi | e, - xi po performs
optimizations across all object files in the link step, and is not limited to just the
source files of the compile command. With - xi po=1, the compiler performs inlining
across all source files. With - xi po=2, the compiler performs interprocedural aliasing
analysis as well as optimizations of memory allocation and layout to improve cache
performance.

The - xi po option generates significantly larger object files due to the additional
information needed to perform optimizations across files. However, this additional
information does not become part of the final executable binary file. Any increase in
the size of the executable program is due to the additional optimizations
performed.The object files created in the compilation steps have additional analysis
information compiled within them to permit crossfile optimizations to take place at
the link step.

- Xi po is particularly useful when compiling and linking large multi-file
applications. Object files compiled with this flag have analysis information compiled
within them that enables interprocedural analysis across source and pre-compiled
program files.

However, analysis and optimization is limited to the object files compiled with
- Xi po, and does not extend to object files in the libraries.

Appendix A C Compiler Options A-55

A-56

- Xi po is multiphased, so you need to specify - xi po for each step if you compile
and link in separate steps.

In this example, compilation and linking occur in a single step:

cCc -Xipo -xO4 -0 prog partl.c part2.c part3.c

The optimizer performs crossfile inlining across all three source files. This is done in
the final link step, so the compilation of the source files need not all take place in a
single compilation and could take place over a number of separate compilations,
each specifying - xi po.

In this example, compilation and linking occur in separate steps:

CC -Xipo -xO4 -c partl.c part2.c
cc -Xipo -xH4 -c part3.c
cc -xipo -xO4 -0 prog partl.o part2.0 part3.o0

A restriction is that libraries, even if compiled with - xi po, do not participate in
crossfile interprocedural analysis, as this example shows:

cc -Xipo -xO4 one.c two.c three.c
ar -r nylib.a one.o two.o three.o

cC -Xipo -xO4 -0 nmyprog main.c four.c nylib.a

Here interprocedural optimizations are performed between one. c, t wo. ¢ and

t hr ee. ¢, and between mai n. ¢ and f our . ¢, but not between rmai n. c or four. c
and the routines on nyl i b. a. (The first compilation may generate warnings about
undefined symbols, but the interprocedural optimizations are performed because it
is a compile and link step.)

Other important information about - xi po:

= It requires an optimization level of at least - xO4.

= It conflicts with - xcrossfi | e. If you use these together, the result is a
compilation error.

= Objects that are compiled without - xi po can be linked freely with objects that are
compiled with - xi po.

See also: - xj obs

C User’'s Guide * May 2003

A.3.90

A.3.91

- Xj obs=n

Specify the - xj obs option to set how many processes the compiler creates to
complete its work. This option can reduce the build time on a multi-cpu machine.
Currently, - xj obs works only with the - xi po option. When you specify - xj obs=n,
the interprocedural optimizer uses n as the maximum number of code generator
instances it can invoke to compile different files.

Generally, a safe value for n is 1.5 multiplied by the number of available processors.
Using a value that is many times the number of available processors can degrade
performance because of context switching overheads among spawned jobs. Also,
using a very high number can exhaust the limits of system resources such as swap
space.

You must always specify - xj obs with a value. Otherwise an error diagnostic is
issued and compilation aborts.

Multiple instances of - xj obs on the command line override each other until the
right-most instance is reached.

The following example compiles more quickly on a system with two processors than
the same command without the - xj obs option.

exanpl e% cc -xipo -xO4 -xjobs=3 tl.c t2.c t3.c

- Xl dscope={v}
Specify the - x| dscope option to change the default linker scoping for the definition

of extern symbols. Changing the default can result in faster and safer shared
libraries because the implementation is better hidden.

Appendix A C Compiler Options A-57

v must be one of the following:

TABLE A-21 The - x| dscope Values

Value Meaning

gl obal Global linker scoping is the least restrictive linker scoping. All
references to the symbol bind to the definition in the first dynamic
module that defines the symbol. This linker scoping is the current
linker scoping for extern symbols.

synbolic Symbolic linker scoping and is more restrictive than global linker
scoping. All references to the symbol from within the dynamic
module being linked bind to the symbol defined within the module.
Outside of the module, the symbol appears as though it were global.
This linker scoping corresponds to the linker option - Bsynbol i c.
See | d(1) for more information on the linker.

hi dden Hidden linker scoping is more restrictive than symbolic and global
linker scoping. All references within a dynamic module bind to a
definition within that module. The symbol will not be visible
outside of the module.

If you do not specify - x| dscope, the compiler assumes - x| dscope=gl obal . The

compiler issues an error if you specify - x| dscope without an argument. Multiple

instances of this option on the command line override each other until the rightmost
instance is reached.

If you intend to allow a client to override a function in a library, you must be sure
that the function is not generated inline during the library build. The compiler
inlines a function if you specify the function name with - xi nl i ne, if you compile at
- X4 or higher in which case inlining can happen automatically, if you use the inline
specifier, if you use the inline pragma, or if you are using cross-file optimization.

For example, suppose library ABC has a default allocator function that can be used
by library clients, and is also used internally in the library:

voi d* ABC al |l ocator(size_t size) { return malloc(size); }

If you build the library at - xO4 or higher, the compiler inlines calls to

ABC al | ocat or that occur in library components. If a library client wants to
replace ABC _al | ocat or with a customized version, the replacement will not occur
in library components that called ABC_al | ocat or. The final program will include
different versions of the function.

Library functions declared with the __hi dden or __synbol i ¢ specifiers can be
generated inline when building the library. They are not supposed to be overridden
by clients. See “Linker Scoping Specifiers” on page 2-3.

A-58 C User’'s Guide » May 2003

A.3.92

A.3.93

A.3.94

A.3.95

A.3.96

Library functions declared with the __ gl obal specifier, should not be declared
inline, and should be protected from inlining by use of the - xi nl i ne compiler
option.

See also - xi nli ne, -xO -xcrossfile, #pragmainline

-Xl 1 bm eee

Forces IEEE 754 style return values for math routines in exceptional cases. In such
cases, no exception message is printed, and you should not rely on err no.

-xIibm |

Inlines some library routines for faster execution. This option selects the appropriate
assembly language inline templates for the floating-point option and platform for
your system.

-xI'i bm | inlines a function regardless of any specification of the function as part of
the - xi nl i ne flag.

-xlic_lib=sunperf

(SPARC) Links in the Sun-supplied performance libraries.

-xlicinfo

Returns information about the license file used, the license tokens accepted, the
serial number, the RTUSs, trial license and the number of days to expiration. This
option does not request compilation or check out a license.

- Xl i nkopt [=level]

Instructs the compiler to perform link-time optimizations on relocatable object files.
These optimizations are performed at link time by analyzing the object binary code.
The object files are not rewritten but the resulting executable code may differ from
the original object codes.

Appendix A C Compiler Options A-59

A-60

You must use - x| i nkopt on at least some of the compilation commands for
- x| i nkopt to be useful at link time. The optimizer can still perform some limited
optimizations on object binaries that are not compiled with - x| i nkopt .

- xI'i nkopt optimizes code coming from static libraries that appear on the compiler
command line, but it skips and does not optimize code coming from shared
(dynamic) libraries that appear on the command line. You can also use - x| i nkopt
when you build shared libraries (compiling with -G).

level sets the level of optimizations performed, and must be 0, 1, or 2. The
optimization levels are:

TABLE A-22 The - xI i nkopt Values

Post Optimizer Setting Behavior

0 The post-optimizer is disabled. (This is the default.)

1 Perform optimizations based on control flow analysis, including
instruction cache coloring and branch optimizations, at link time.

2 Perform additional data flow analysis, including dead-code
elimination and address computation simplification, at link time.

If you compile in separate steps, - x| i nkopt must appear on both compile and link
steps:

exampl e% cc -c -xlinkopt a.c b.c
exanmpl e% cc -o nmyprog -xlinkopt=2 a.o

Note that the level parameter is only used when the compiler is linking. In the
example above, the post- optimization level used is 2 even though the object binaries
were compiled with an implied level of 1.

Specifying - x| i nkopt without a level parameter implies - xI i nkopt =1.

This option is most effective when you use it to compile the whole program, and
with profile feedback. Profiling reveals the most and least used parts of the code and
building directs the optimizer to focus its effort accordingly. This is particularly
important with large applications where optimal placement of code performed at
link time can reduce instruction cache misses. Typically, this compiles as follows:

exampl e% cc -o progt -xO6 -xprofile=collect:prog file.c
exanpl e% pr ogt
exanpl e% cc -0 prog -x0b -xprofil e=use:prog -xlinkopt file.c

For details on using profile feedback, see “- xpr of i | e=p” on page A-78.

C User’'s Guide * May 2003

A.3.97

A.3.98

You cannot use the link-time post-optimizer with the incremental linker, i | d.
- x| i nkopt sets the default linker to be | d. If you enable the incremental linker
explicitly with - xi | don and also specify - xI i nkopt, - x| i nkopt is disabled.

Do not use the - zconpr el oc linker option when you compile with - xI i nkopt .

Note that compiling with this option increases link time slightly. Object file sizes also
increase, but the size of the executable remains the same. Compiling with

- xI'i nkopt and - g increases the size of the executable by including debugging
information.

- x| oopi nfo

(SPARC) Shows which loops are parallelized and which are not. Gives a short reason
for not parallelizing a loop. The - x| oopi nf o option is valid only if - xaut opar, or
-xparal |l el , or -xexplicitpar is specified; otherwise, the compiler issues a
warning.

To achieve faster execution, this option requires a multiprocessor system. On a
single-processor system, the generated code usually runs slower.

- XM

Runs only the preprocessor on the named C programs, requesting that it generate
makefile dependencies and send the result to the standard output (see make(1) for
details about make files and dependencies).

For example:

#i ncl ude <unistd. h>
voi d mai n(voi d)

{}

Appendix A C Compiler Options A-61

generates this output:

e.c
/usr/include/unistd.h
/usr/includel/ sys/types.h
/usr/include/sys/ machtypes. h
/usr/include/sys/sel ect.h
/usr/include/sys/time.h
/usr/include/sys/types.h
/usr/include/sys/tinme.h
/usr/include/sys/unistd. h

©o®0D00DD0
©O0O000O0O0O0O0

A399 -xM

Collects dependencies like - xM but excludes / usr /i ncl ude files. For example:

nore hello.c
#i ncl ude<st di 0. h>
mai n()

(void)printf(“hello\n");
}
cc —xMhello.c
hello.o0: hello.c
hello.0: /usr/include/stdio.h

Compiling with - xML does not report header file dependencies:

cc —xML hello.c
hello.o: hello.c

- XML is not available under - Xs mode.

A.3.100 -xMerge

Merges data segments into text segments. Data initialized in the object file produced
by this compilation is read-only and (unless linked with | d - N) is shared between
processes.

A-62 C User's Guide » May 2003

A.3.101

A.3.102

- Xmaxopt [=v]

where v is one of of f, 1, 2, 3, 4, 5. This command limits the level of pr agnma opt to
the level specified. The default value is - xmaxopt =of f which causes pr agna opt to
be ignored. If you specify - xmaxopt without supplying an argument, that is the
equivalent of specifying - xmaxopt =5.

-xmemal i gn=ab

Specify maximum assumed memory alignment and behavior of misaligned data
accesses. There must be a value for both a (alignment) and b (behavior). a specifies
the maximum assumed memory alignment and b specifies the behavior for
misaligned memory accesses. The following table lists the alignment and behavior
values for - xmemal i gn

TABLE A-23 - Xxmemal i gn Alignment and Behavior Values

a b

1 Assume at most 1 byte alignment. i Interpret access and continue execution.
2 Assume at most 2 byte alignment. s Raise signal SIGBUS.

4 Assume at most 4 byte alignment. f Raise signal SIGBUS for alignments less
8 Assume at most 8 byte alignment. or equal to 4,otherwise interpret access

and continue execution.

16 Assume at most 16 byte alignment

For memory accesses where the alignment is determinable at compile time, the
compiler generates the appropriate load/store instruction sequence for that
alignment of data.

For memory accesses where the alignment cannot be determined at compile time,
the compiler must assume an alignment to generate the needed load/store sequence.

The - xnemal i gn flag allows the user to specify the maximum memory alignment of
data to be assumed by the compiler in these indeterminable situations. It also
specifies the error behavior to be followed at run time when a misaligned memory
access does take place.

Here are the default values for - xmenal i gn. The following default values only
apply when no - xnmenal i gn flag is present:

= -xmemal gi n=4s when - xar ch has the value generic, v7, v8, v8a, v8pl us,
v8pl usa.

= -xmemal i gn=8s when - xar ch has the value v9, v9a.

Appendix A C Compiler Options A-63

A.3.103

Here is the default when - xrrenal i gn flag is present but no value is given:
= -xmemal i gn=1i for all - xar ch values.

The following table shows how you can use - xnemnal i gn to handle different
alignment situations.

TABLE A-24 Examples of - xnemal i gn

Command Situation

-xmemal i gn=1s There are many misaligned accesses so trap handling is too
slow.

- xmemal i gn=8i There are occasional, intentional, misaligned accesses in code
that is otherwise correct.

-xmemal i gn=8s There should be no misaligned accesses in the program.

-xmemal i gn=2s You want to check for possible odd-byte accesses.

- xmemal i gn=2i You want to check for possible odd-byte access and you want

the program to work.

- Xxnati veconnect [=a], a]. . .]

Use the - xnat i veconnect option when you want to include interface information
inside object files and subsequent shared libraries so that the shared library can
interface with code written in the Java[tm] programming language (Java code). You
must also include - xnat i veconnect when you build the shared library with the
cc - Gcommand.

When you compile with - xnat i veconnect, you are providing the maximum,
external, visibility of the native code interfaces. The Native Connector Tool (NCT)
enables the automatic generation of Java code and the Java[tm] Native Interface
(JNI) code. Using - xnat i veconnect with NCT can make functions in C shared
libraries callable from Java code. For more information on how to use the NCT, see
the online help.

A-64 C User's Guide » May 2003

a can be one of the following:

TABLE A-25 The - xnati veconnect Values

Value Meaning

%all Generates all of the different data described under the individual
options of - xnat i veconnet .

%none Generates none of the different data described under the individual
options of - xnat i veconnet .

[no%]inlines Forces the generation of out-of-line instances of referenced inline
functions. This provides the native connector with an externally
visible way to call the inline functions. The normal inlining of these
functions at call sites is unaffected

[no%]interfaces Forces the generation of Binary Interface Descriptors (BIDS)

If you do not specify - xnat i veconnect, the compiler sets the option to
- xnat i veconnect =%none. If you specify only - xnat i veconnect , the compiler
sets the option to - xnat i veconnect =i nt er f aces.

-xnat i veconnect =i nt er f aces forces the generation of Binary Interface
Descriptors (BIDS).

A.3.104 -xnolib

Does not link any libraries by default; that is, no - | options are passed to | d(1).
Normally, the cc driver passes -1 ¢ to | d.

When you use - xnol i b, you have to pass all the - | options yourself. For example:

%cc test.c -xnolib -Bstatic -l m-Bdynamc -lc

links | i bmstatically and the other libraries dynamically.

Appendix A C Compiler Options A-65

A.3.105

A.3.106

-xnol i bm |

Does not inline math library routines. Use it after the —f ast option. For example:

% cc —fast —xnolibml....

-xQ1]2]13]413]

Optimizes the object code; note the uppercase letter O followed by the digit 1, 2, 3,
4, or 5. Generally, the higher the level of optimization, the better the runtime
performance. However, higher optimization levels can result in increased
compilation time and larger executable files.

In a few cases, —xO2 might perform better than the others, and —xO3 might
outperform —x 4. Try compiling with each level to see if you have one of these rare
cases.

If the optimizer runs out of memory, it tries to recover by retrying the current
procedure at a lower level of optimization and resumes subsequent procedures at
the original level specified in the command-line option.

There are five levels that you can use with —xO. The following sections describe how
they operate on the SPARC platform and the x86 platform.

A-66 C User's Guide » May 2003

(SPARC)

TABLE A-26 The - xO Values for SPARC Processors

Value Meaning
-x0L Does basic local optimization (peephole).
-xQ2 Does basic local and global optimization. This is induction variable

elimination, local and global common subexpression elimination,
algebraic simplification, copy propagation, constant propagation,
loop-invariant optimization, register allocation, basic block
merging, tail recursion elimination, dead code elimination, tail call
elimination, and complex expression expansion.

The - xQ2 level does not assign global, external, or indirect
references or definitions to registers. It treats these references and
definitions as if they were declared vol ati | e. In general, the - xO2
level results in minimum code size.

-xB8 Performs like - xQ2, but also optimizes references or definitions for
external variables. Loop unrolling and software pipelining are also
performed. This level does not trace the effects of pointer
assignments. When compiling either device drivers, or programs
that modify external variables from within signal handlers, you
may need to use the vol ati | e type qualifier to protect the object
from optimization. In general, the - xO3 level results in increased
code size.

-xHA Performs like - x(38, but also automatically inlines functions
contained in the same file; this usually improves execution speed. If
you want to control which functions are inlined, see
“-xi nl i ne=list” on page A-54.

This level traces the effects of pointer assignments, and usually
results in increased code size.

-x0b Attempts to generate the highest level of optimization. Uses
optimization algorithms that take more compilation time or that do
not have as high a certainty of improving execution time.
Optimization at this level is more likely to improve performance if
it is done with profile feedback. See “- xpr of i | e=p” on page A-78.

Appendix A C Compiler Options A-67

x86

TABLE A-27 The - xO Values for x86 Processors

Value Meaning

-x0L Preloads arguments from memory, cross-jumping (tail-merging), as
well as the single pass of the default optimization.

-xQ2 Schedules both high- and low-level instructions and performs
improved spill analysis, loop memory-reference elimination, register
lifetime analysis, enhanced register allocation, and elimination of
global common subexpressions.

-xB Performs loop strength reduction, induction variable elimination, as
well as the optimization done by level 2.

- x4 Performs loop unrolling, avoids creating stack frames when
possible, and automatically inlines functions contained in the same
file, as well as the optimization done by levels 2 and 3. Note that
this optimization level can cause stack traces from adb and dbx to
be incorrect.

-x0b Generates the highest level of optimization. Uses optimization
algorithms that take more compilation time or that do not have as
high a certainty of improving execution time. Some of these include
generating local calling convention entry points for exported
functions, further optimizing spill code and adding analysis to
improve instruction scheduling.

The default is no optimization. However, this is only possible if you do not specify
an optimization level. If you specify an optimization level, there is no option for
turning optimization off.

If you are trying to avoid setting an optimization level, be sure not to specify any
option that implies an optimization level. For example, - f ast is a macro option that
sets optimization at - xGb. All other options that imply an optimization level give a
warning message that optimization has been set. The only way to compile without
any optimization is to delete all options from the command line or make file that
specify an optimization level.

When you use - xOwith the - g option, a limited amount of debugging is available.
For more information, see “Debugging Optimized Code” in Chapter 1 of Debugging
a Program With dbx.

If you optimize at - X3 or - xO4 with very large procedures (thousands of lines of
code in the same procedure), the optimizer may require a large amount of virtual
memory. In such cases, machine performance may degrade.

A-68 C User's Guide » May 2003

For more information on debugging, see the Debugging a Program With dbx manual.
For more information on optimization, see the Program Performance Analysis Tools
manual.

See also - x| dscope.

A.3.107 - xopennp[=i]

(SPARC) Use the - xopennp option to enable explicit parallelization with OpenMP
directives.The following table lists the values for i:

TABLE A-28 The - xopennp Values

Values of i Meaning

parallel Enables recognition of OpenMP pragmas. The optimization level
under - xopennp=par al | el is - x03. The compiler changes the
optimization level to- x03 if necessary and issues a warning.

noopt Enables recognition of OpenMP pragmas. The compiler does not
raise the optimization level if it is lower than -O3.
If you explicitly set the optimization lower than -O3, as in cc - Q2
- xopennp=noopt , the compiler issues an error. If you do not
specify an optimization level with - xopennp=noopt , the OpenMP
pragmas are recognized, the program is parallelized accordingly, but
no optimization is done.

stubs Disables recognition of OpenMP pragmas, links to stub library
routines and does not change the optimization level. Use this option
if your application makes explicit calls to the OpenMP runtime
library routines and you want to compile it to execute serially. The
- xopennp=st ubs command also defines the _OPENMP preprocessor
token.

none Does not enable recognition of OpenMP pragmas, makes no change
to the optimization level of your program, and does not predefine
any preprocessor tokens.

If you specify - xopennp, but do not include a value, the compiler assumes
- xopennp=par al | el . If you do not specify - xopennp, the compiler assumes
- Xxopennmp=none.

If you are debugging an OpenMP program with dbx, compile with - g and
- xopennp=noopt so you can breakpoint within parallel regions and display the
contents of variables.

Do not specify - xopennp, with either - xexpl i ci t par, or - xparal | el .

Appendix A C Compiler Options A-69

A.3.108

A.3.109

The default for - xopennp might change in future releases. You can avoid warning
messages by explicitly specifying an appropriate optimization.

If you compile and link in separate steps, also specify - xopennp on the link step.
This is especially important when you compile libraries that contain OpenMP
directives.

For more information on how to compile a program that is OpenMP compliant, see
Section 3.2, “Parallelizing for OpenMP” on page 3-2.

For information that is specific to the C implementation of OpenMP, see
Appendix G.

For a complete summary of the OpenMP Fortran 95, C, and C++ application
program interface (API) for building multiprocessing applications, see the OpenMP
API User’s Guide.

- xP

Prints prototypes for all K&R C functions defined in this module.

f(0)
{
}

mai n(ar gc, ar gv)
int argc;

char *argv[];

{

}

produces this output:

int f(void);
int main(int, char **);

- Xpagesi ze=n
(SPARC) Sets the preferred page size for the stack and the heap.

The n value must be one of the following: 8K, 64K, 512K, 4M 32M 256M 2G 16G, or
defaul t.

A-70 C User's Guide » May 2003

A.3.110

You must specify a valid page size for the Solaris operating environment on the
target platform, as returned by get pagesi ze(3C). If you do not specify a valid
pagesize, the request is silently ignored at run-time. The Solaris operating
environment offers no guarantee that the page size request will be honored.

You can use pmap(1) or meni nf 0(2) to determine page size of the target platform.

The - xpagesi ze option has no effect unless you use it at compile time and at link
time.

Note — This feature is not available on the Solaris 7 and Solaris 8 operating
environments. A program compiled with this option will not link on the Solaris 7
and Solaris 8 operating environments.

If you specify - xpagesi ze=def aul t, the Solaris operating environment sets the
page size. - xpagesi ze without an argument is the equivalent to
- xpagesi ze=def aul t .

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to npss. so. 1 with the equivalent options, or running the
Solaris 9 command ppgsz (1) with the equivalent options before running the
program. See the Solaris 9 man pages for details.

This option is a macro for - xpagesi ze_heap and - xpagesi ze_st ack. These two
options accept the same arguments as - xpagesi ze: 8K, 64K, 512K, 4M 32M 256 M
2G 16G or def aul t. You can set them both with the same value by specifying

- Xxpagesi ze or you can specify them individually with different values.

- Xpagesi ze_heap=n

(SPARC) Set the page size in memory for the heap. n can be 8K, 64K, 512K, 4M 32M
256M 2G, 16G, or def aul t. You must specify a valid page size for the Solaris
operating environment on the target platform, as returned by get pagesi ze(3C). If
you do not specify a valid page size, the request is silently ignored at run-time.

You can use pmap(1) or mem nf o(2) to determine page size at the target platform.

If you specify - xpagesi ze_heap=def aul t, the Solaris operating environment sets
the page size. - xpagesi ze_heap without an argument is the equivalent to
- xpagesi ze_heap=defaul t.

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to npss. so. 1 with the equivalent options, or running the
Solaris 9 command ppgsz(1) with the equivalent options before running the
program. See the Solaris 9 man pages for details.

Appendix A C Compiler Options A-71

A.3.111

A.3.112

Note — This feature is not available on the Solaris 7 and Solaris 8 operating
environments. A program compiled with this option will not link on the Solaris 7
and Solaris 8 operating environments.

- Xpagesi ze_st ack=n

(SPARC) Set the page size in memory for the stack. n can be 8K, 64K, 512K, 4M 32M
256M 2G, 16G, or def aul t . You must specify a valid page size for the Solaris
operating environment on the target platform, as returned by get pagesi ze(3C). If
you do not specify a valid page size, the request is silently ignored at run-time. You
can use pmap(1) or mem nf 0(2) to determine page size at the target platform.

If you specify - xpagesi ze_st ack=def aul t, the Solaris operating environment
sets the page size. - xpagesi ze_st ack without an argument is the equivalent to
- Xxpagesi ze_st ack=def aul t .

Compiling with this option has the same effect as setting the LD_PRELOAD
environment variable to npss. so. 1 with the equivalent options, or running the
Solaris 9 command ppgsz(1) with the equivalent options before running the
program. See the Solaris 9 man pages for details.

Note — This feature is not available on the Solaris 7 and Solaris 8 operating
environments. A program compiled with this option will not link on the Solaris 7
and Solaris 8 operating environments.

- xpar al | el

(SPARC) Parallelizes loops both automatically by the compiler and explicitly
specified by the programmer. The - xpar al | el option is a macro, and is equivalent
to specifying all three of - xaut opar, - xdepend, and - xexpl i ci t par. With explicit
parallelization of loops, there is a risk of producing incorrect results. If optimization
is not at - xG83 or higher, optimization is raised to - xG3 and a warning is issued.

Avoid - xpar al | el if you do your own thread management. Do not use
-xparal | el if you are issuing - xopennp. - xpar al | el sets - xexplicitpar
which should not be used if you specify - xopennp.

To get faster code, this option requires a multiprocessor system. On a
single-processor system, the generated code usually runs slower.

A-72 C User's Guide » May 2003

A.3.113

A.3.113.1

If you compile and link in one step, - xpar al | el links with the microtasking library
and the threads-safe C runtime library. If you compile and link in separate steps, and
you compile with - xpar al | el , then link with - xpar al | el

- Xpch=v

This compiler option activates the precompiled-header feature. The
precompiled-header feature reduces compile time for applications whose source files
share a common set of include files containing a large amount of source code. The
compiler collects information about a sequence of header files from one source file,
and then uses that information when recompiling that source file, and when
compiling other source files that have the same sequence of headers. The
information that the compiler collects is stored in a precompiled-header file. You can
take advantage of this feature through the - xpch and - xpchst op options in
combination with the #pr agma hdr st op directive.

See Also:

= “-xpchst op=file” on page A-76.
“hdrstop” on page 2-13.

Creating a Precompiled-Header File

When you specify - xpch=y, v can be col | ect : pch_filename or use: pch_filename.
The first time you use - xpch, you must specify the col | ect mode. The compilation
command that specifies - xpch=col | ect must only specify one source file. In the
following example, the - xpch option creates a precompiled-header file called
nyheader . cpch based on the source file a. c:

cc -xpch=col | ect: nyheader a.c

A valid precompiled-header filename always has the suffix .cpch. When you specify
pch_filename, you can add the suffix or let the compiler add it for you. For example,
if you specify cc -xpch=col | ect:foo a.c, the precompiled-header file is called
f 0o. cpch.

When you create a precompiled-header file, pick a source file that contains the
common sequence of include files across all the source files with which the
precompiled-header file is to be used. The common sequence of include files must be
identical across these source files. Remember, only one source filename value is legal
incol | ect mode. For example, cc - xpch=col | ect: foo bar. c isvalid, whereas
cc -xpch=col |l ect: foo bar.c foobar. c is invalid because it specifies two
source files.

Appendix A C Compiler Options A-73

A.3.113.2

Using A Precompiled-Header File

Specify - xpch=use: pch_filename to use a precompiled-header file. You can specify

any number of source files with the same sequence of include files as the source file
that was used to create the precompiled-header file. For example, your command in
use mode could look like this: cc - xpch=use: f 00. cpch foo. c bar.c

f oobar. c.

You should only use an existing precompiled-header file if the following are true. If
any of the following is not true, you should recreate the precompiled-header file:

= The compiler that you are using to access the precompiled-header file is the same
as the compiler that created the precompiled-header file. A precompiled-header
file created by one version of the compiler may not be usable by another version
of the compiler.

= Except for the - xpch option, the compiler options you specify with - xpch=use
must match the options that were specified when the precompiled-header file was
created.

= The set of included headers you specify with - xpch=use is identical to the set of
headers that were specified when the precompile header was created.

= The contents of the included headers that you specify with - xpch=use is
identical to the contents of the included headers that were specified when the
precompiled header was created.

= The current directory (that is, the directory in which the compilation is occurring
and attempting to use a given precompiled-header file) is the same as the
directory in which the precompiled-header file was created.

= The initial sequence of pre-processing directives, including #i ncl ude directives,

in the file you specified with - xpch=col | ect are the same as the sequence of
pre-processing directives in the files you specify with - xpch=use.

In order to share a precompiled-header file across multiple source files, those source
files must share a common set of include files as their initial sequence of tokens. This
initial sequence of tokens is known as the viable prefix. The viable prefix must be
interpreted consistently across all the source files that use the same
precompiled-header file.

The viable prefix begins with the first token of each source file and ends with the
either a #pr agma hdr st op or the last token of the #i ncl ude directive for the
header file named in the - xpchst op option.

The viable prefix of a source file can only be comprised of comments and any of the
following pre-processor directives:

#i ncl ude

#iflifdef/ifndef/elselelif/endif

#def i ne/ undef

#ident (if identical, passed through as is)

A-74 C User’'s Guide » May 2003

A.3.113.3

#pragma (if identical)

Any of these may reference macros. The #el se, #el i f, and #endi f directives must
match within the viable prefix.

Within the viable prefix of each file that shares a precompiled-header file, each
corresponding #def i ne and #undef directive must reference the same symbol (in
the case of #def i ne, each one must reference the same value). Their order of
appearance within each viable prefix must be the same as well. Each corresponding
pragma must also be the same and appear in the same order across all the files
sharing a precompiled header.

A header file that is incorporated into a precompiled-header file must not violate the
following. The results of compiling a program that violates any of these constraints
is undefined.

= The header file must not contain function definitions.

= The header file must not use __ DATE __and __ Tl ME__. Use of these
pre-processor macros can generate unpredictable results.

= The header file must not contain #pr agna hdr st op.

= The header file must notuse __ LINE__ and __FILE__ in the viable prefix. It is
allowed touse _ LINE__and __FILE _ inincluded headers.

How to Modify nmake Files

Make the following additions to your make files in order to incorporate - xpch into
your builds. Here’s an easy way to use the KEEP_STATE facility of both make and
drmake.

CFLAGS=- xpch=use: shar ed
shared. cpch : bar.c
cc -xpch=col | ect:shared bar.c -xe
bar.o : bar.c shared. cpch
cc $(CFLAGS) bar.c -c
pong. o : pong.c shared. cpch
cc $(CFLAGS) pong.c -cC

Appendix A C Compiler Options A-75

A.3.114

A.3.115

A.3.116

A.3.117

- Xpchst op=file

Use the - xpchst op=file option to specify the last include file of the viable prefix for
the precompiled-header file created by the - xpch option. Using - xpchst op on the
command line is equivalent to placing a hdr st op pragma after the first
include-directive that references file in each of the source files that you specify with
the cc command.

In the following example, the - xpchst op option specifies that the viable prefix for
the precompiled-header file ends with the include of pr oj ect header . h. Therefore,
pri vat eheader. h is not a part of the viable prefix.

exanmpl e% cat a.c
#i ncl ude <stdio. h>
#incl ude <strings. h>
#i ncl ude "proj ect header. h"
#i ncl ude "privat eheader. h"

exampl e% cc - xpch=col | ect: foo.cpch a.c -xpchstop=projectheader.h
-C

See also - xpch.

- Xpenti um

(Intel) Optimizes for the Pentium processor.

- Xpg

Prepares the object code to collect data for profiling with gpr of (1). It invokes a
runtime recording mechanism that produces a gnon. out file at normal termination.

- xpr ef et ch[=val[, val]]

(SPARC) Enable prefetch instructions on those architectures that support prefetch,
such as UltraSPARC II. (- xar ch=v8pl us, v9pl usa, v9, or v9a)

A-76 C User’'s Guide » May 2003

A.3.117.1

Explicit prefetching should only be used under special circumstances that are
supported by measurements.

val must be one of the following:

TABLE A-29 The - xpr ef et ch Values

Value Meaning

| at x: factor Adjust the compiler’s assumed prefetch-to-load and
prefetch-to-store latencies by the specified factor. See
Section A.3.117.1, “Prefetch Latency Ratio” on page A-77

[no% aut o [Disable] Enable automatic generation of prefetch instructions
[no% explicit [Disable] Enable explicit prefetch macros

yes Same as - xpr ef et ch=aut o, explicit

no Same as - xpr ef et ch=no%aut o, no%explicit

If you do not specify - xpr ef et ch, the default is
- xpr ef et ch=no%aut o, expl i cit. If you specify - xpr ef et ch without a value,
that is equivalent to - xpr ef et ch=aut o, explicit.

The sun_pr ef et ch. h header file provides the macros that you can use to specify
explicit prefetch instructions. The prefetches are approximately at the place in the
executable that corresponds to where the macros appear.

Prefetch Latency Ratio

The prefetch latency is the hardware delay between the execution of a prefetch
instruction and the time the data being prefetched is available in the cache.

The factor must be a positive number of the form n.n.

The compiler assumes a prefetch latency value when determining how far apart to
place a prefetch instruction and the load or store instruction that uses the prefetched
data. The assumed latency between a prefetch and a load may not be the same as the
assumed latency between a prefetch and a store.

The compiler tunes the prefetch mechanism for optimal performance across a wide
range of machines and applications. This tuning may not always be optimal. For
memory-intensive applications, especially applications intended to run on large
multiprocessors, you may be able to obtain better performance by increasing the
prefetch latency values. To increase the values, use a factor that is greater than 1
(one). A value between .5 and 2.0 will most likely pro vide the maximum
performance.

Appendix A C Compiler Options A-77

A.3.118

A.3.119

For applications with datasets that reside entirely within the external cache, you may
be able to obtain better performance by decreasing the prefetch latency values. To
decrease the values, use a factor that is less than one.

To use the | at x: f act or suboption, start with a factor value near 1.0 and run
performance tests against the application. Then increase or decrease the factor, as
appropriate, and run the performance tests again. Continue adjusting the factor and
running the performance tests until you achieve optimum performance. When you
increase or decrease the factor in small steps, you will see no performance difference
for a few steps, then a sudden difference, then it will level off again.

-xprefetch_I| evel =l

Use the - xpref et ch_| evel option to control the aggressiveness of automatic
insertion of prefetch instructions as determined with - xpr ef et ch=aut o. | must be
1, 2, or 3. The compiler becomes more aggressive, or in other words, introduces
more prefetches with each, higher, level of - xpref et ch_| evel .

The appropriate value for the - xpr ef et ch_| evel depends on the number of cache
misses the application may have. Higher - xpr ef et ch_I| evel values have the
potential to improve the performance of applications.

This option is effective only when it is compiled with - xpr ef et ch=aut o, with
optimization level 3 or greater, and generate code for a platform that supports
prefetch (v8pl us, v8pl usa, v9, v9a, v9b, generi c64, nati veb4).

- xprefetch_I evel =1 enables automatic generation of prefetch instructions.
- xprefetch_I| evel =2 enables additional generation beyond level 1 and
- xpref et ch_I| evel =3 enables additional generation beyond level 2.

The default is - xpr ef et ch_| evel =1 when you specify - xpr ef et ch=aut o.

-xprofile=p

Use this option to collect and save execution-frequency data so you can then use the
data in subsequent runs to improve performance. This option is only valid when you
specify optimization at level - xQ2 or above.

Compiling with high optimization levels (for example - x(6) is enhanced by
providing the compiler with runtime-performance feedback. In order to produce
runtime-performance feedback, you must compile with - xpr of i | e=col | ect, run
the executable against a typical data set, and then recompile at the highest
optimization level and with - xpr of i | e=use.

A-78 C User's Guide » May 2003

Profile collection is safe for multithreaded applications. That is, profiling a program
that does its own multitasking (- nt) produces accurate results.

p must be col | ect [:name], use[:name], or t cov.

col | ect [: name]

Collects and saves execution-frequency data for later use by the optimizer with
- xprofi | e=use. The compiler generates code to measure statement
execution-frequency.

The name is the name of the program that is being analyzed. This name is
optional. If name is not specified, a. out is assumed to be the name of the
executable.

You can set the environment variables SUN_PROFDATA and SUN_PROFDATA DI R
to control where a program compiled with - xpr of i | e=col | ect stores the
profile data. If set, the - xpr of i | e=col | ect data is written to
SUN_PROFDATA DI R/ SUN_PROFDATA.

These environment variables similarly control the path and names of the profile
data files written by tcov, as described in the t cov(1) man page.

If these environment variables are not set, the profile data is written to

name.pr of i | e/ f eedback in the current directory, where name is the name of the
executable or the name specified in the - xpr of i | e=col | ect : name flag.
-xprofil e does not append . pr of i | e to name if name already ends in

. profile. If you run the program several times, the executions-frequency data
accumulates in the f eedback file; that is, output from prior executions is not lost.

If you are compiling and linking in separate steps, make sure that any object files
compiled with - xpr of i | e=col | ect are also linked with - xprofi | e=col | ect.

usel[: name]

The program is optimized by using the execution-frequency data generated and
saved in the f eedback files from a previous execution of the program that was
compiled with —xpr ofi | e=col | ect.

The name is the name of the program that is being analyzed. This name is
optional. If name is not specified, a. out is assumed to be the name of the
executable.

Except for the - xpr of i | e option which changes from - xprofi | e=col | ect to
- xprofil e=use, the source files and other compiler options must be exactly the
same as those used for the compilation that created the compiled program which
in turn generated the f eedback file. The same version of the compiler must be
used for both the collect build and the use build as well. If compiled with
-xprofil e=col | ect: name, the same program name name must appear in the
optimizing compilation: - xpr of i | e=use: name.

The association between an object file and its profile data is based on the UNIX
pathname of the object file when it is compiled with - xpr of i | e=col | ect . In
some circumstances, the compiler will not associate an object file with its profile

Appendix A C Compiler Options A-79

A-80

data: the object file has no profile data because it was not previously compiled
with - xprofi | e=col | ect, the object file is not linked in a program with
-xprofil e=coll ect, the program has never been executed.

The compiler can also become confused if an object file was previously compiled
in a different directory with - xpr of i | e=col | ect and this object file shares a
common basename with other object files compiled with - xprofi | e=col | ect
but they cannot be uniquely identified by the names of their containing
directories. In this case, even if the object file has profile data, the compiler will
not be able to find it in the feedback directory when the object file is recompiled
with - xprofil e=use.

All of these situations cause the compiler to lose the association between an object
file and its profile data. Therefore, if an object file has profile data but the
compiler is unable to associate it with the object file’s pathname when you specify
-xprofil e=use, use the - xprofi | e_pat hmap option to identify correct
directory. See “- xpr of i | e_pat hnmap” on page A-82.

t cov
Basic block coverage analysis using “new” style t cov.

The - xpr of i | e=t cov option is the new style of basic block profiling for t cov. It
has similar functionality to the - xa option, but correctly collects data for
programs that have source code in header files. See Section A.3.62, “- xa” on
page A-31 for information on the old style of profiling, the t cov(1) man page, and
Program Performance Analysis Tools for more details.

Code instrumentation is performed similarly to that of the - xa option, but . d
files are no longer generated. Instead, a single file is generated, the name of which
is based on the final executable. For example, if the program is run out of

/ f oo/ bar/ nyprog. profil e, the data file is stored in

/ f oo/ bar/ nyprog. profil e/ nyprog.tcovd.

The - xprofi | e=t cov and the - xa options are compatible in a single executable.
That is, you can link a program that contains some files that have been compiled
with - xpr of i | e=t cov, and others with - xa. You cannot compile a single file
with both options.

When running t cov, you must pass it the - x option to make it use the new style
of data. If not, t cov uses the old . d files, if any, by default for data, and produces
unexpected output.

Unlike the - xa option, the TCOVDI R environment variable has no effect at
compile-time. However, its value is used at program runtime. See t cov(1) and
Program Performance Analysis Tools for more details.

Note — t cov’s code coverage report can be unreliable if there is inlining of routines
due to - xO4 or - xi nl i ne.

C User’'s Guide * May 2003

A.3.120

When you use - xpr of i | e=col | ect to compile a program for profile collection and
-xprofil e=use to compile a program for profile feedback, the source files and
compiler options other than - xprof i | e=col | ect and - xpr of i | e=use must be
identical in both compilations.

The profile feedback directory names specified by the - xpr of i | e=use:name option
are accumulated from all instances of the option in a single invocation of the
compiler. For example, assume that profile directories a. profil e, b. profil e and
c. profil e are created as a result of executing profiled binaries named a, b, and ¢
respectively.

cc -O-c foo.c -xprofile=use:a -xprofile=use:b -xprofil e=use:c

All three profile directories are used. Any valid profile feedback data pertaining to a
particular object file is accumulated from the specified feedback directories when the
object file is compiled.

If both - xprof i | e=col | ect and - xpr of i | e=use are specified in the same
command line, the rightmost - xpr of i | e option in the command line is applied as
follows:

= If the rightmost - xpr of i | e option is - xpr of i | e=use, all profile feedback
directory names specified by the - xpr of i | e=use options are used for
feedback-directed optimization, and the previous - xpr of i | e=col | ect options
are ignored.

= If the right-most - xpr of i | e option is - xpr of i | e=col | ect, all profile feedback
directory names specified by - xpr of i | e=use options are ignored, and
instrumentation for profile generation is enabled.

See Also

- xhweprof , - xprofile_ircache, -xprofile_pat hmap

-xprofile_ircache[=path]

Use - xprofi | e_i rcache[=path] with - xprofi | e=col | ect Juse to improve
compilation time during the use phase by reusing compilation data saved from the
col | ect phase.

With large programs, compilation time in the use phase can improve significantly
because the intermediate data is saved. Note that the saved data could increase disk
space requirements considerably.

Appendix A C Compiler Options A-81

A.3.121

A.3.122

When you use - xprofi | e_i r cache[=path], path overrides the location where the

cached files are saved. By default, these files are saved in the same directory as the
object file. Specifying a path is useful when the col | ect and use phases happen in
two different directories. Here’s a typical sequence of commands:

exanpl e% cc -x0b -xprofile=collect -xprofile_ircache tl.c t2.c
exanpl e% a. out /'l run collects feedback data
exanpl e% cc -x0b -xprofil e=use -xprofile_ircache tl.c t2.c

-xprofil e _pat hmap

Use the - xprofi | e_pat hmap=collect_prefix:use_prefix option when you are also
specifying the - xpr of i | e=use command. Use - xpr of i | e_pat hnmap when both of
the following are true and the compiler is unable to find profile data for an object file
that is compiled with - xpr of i | e=use.

= You are compiling the object file with - xpr of i | e=use in a directory that is
different from the directory in which the object file was previously compiled with
-xprofil e=collect.

= Your object files share a common basename in the profile but are distinguished
from each other by their location in different directories.

The collect-prefix is the prefix of the UNIX pathname of a directory tree in which
object files were compiled using - xprofi | e=col | ect .

The use-prefix is the prefix of the UNIX pathname of a directory tree in which object
files are to be compiled using - xpr of i | e=use.

If you specify multiple instances of - xpr of i | e_pat hrmap, the compiler processes
them in the order of their occurrence. Each use-prefix specified by an instance of
-xprofil e_pat hmap is compared with the object file pathname until either a
matching use-prefix is identified or the last specified use-prefix is found not to match
the object file pathname.

- Xreducti on

(SPARC) Turns on reduction recognition during automatic parallelization.
- xreduct i on must be specified with - xaut opar, or - xparal | el .

When reduction recognition is enabled, the compiler parallelizes reductions such as
dot products, maximum and minimum finding. These reductions yield different
roundoffs than obtained by unparallelized code.

A-82 C User's Guide » May 2003

A.3.123

- Xregs=r[,r..]
(SPARC) Specifies the usage of registers for the generated code.

r is a comma-separated list that consists of one or more of the following: [no%appl ,
[no%f | oat .

Example: - xr egs=appl , no% | oat

TABLE A-30 The - xr egs Values

Value Meaning

[no% appl [Does not] Allow the compiler to generate code using the application
registers as scratch registers. The application registers are:
02, g3, g4 (v8a, v8, v8plus, v8plusa, v8plusb)
02, g3 (v9, v9a, vob)
It is strongly recommended that all system software and libraries be
compiled using - xr eg=no%appl . System software (including shared
libraries) must preserve these registers’ values for the application. Their
use is intended to be controlled by the compilation system and must be
consistent throughout the application.
For more information on SPARC instruction sets, see “- xar ch=isa” on
page A-33.
In the SPARC ABI, these registers are described as application registers.
Using these registers can increase performance because fewer load and
store instructions are needed. However, such use can conflict with some
old library programs written in assembly code.

[no% f | oat [Does not] Allow the compiler to generate code by using the floating-point
registers as scratch registers for integer values. Use of floating-point
values may use these registers regardless of this option. If
- Xregs=no% | oat, a source program cannot contain any floating-point
code.

The default is - xr egs=appl , f | oat .

It is strongly recommended that you compile code intended for shared libraries that
will link with applications, with - xr egs=no%appl , f| oat . At the very least, the
shared library should explicitly document how it uses the application registers so
that applications linking with those libraries know how to cope with the issue.

For example, an application using the registers in some global sense (such as using a
register to point to some critical data structure) would need to know exactly how a
library with code compiled without - xr egs=no%appl is using the application
registers in order to safely link with that library.

Appendix A C Compiler Options A-83

A.3.124

A.3.125

A.3.126

-Xrestrict [=f]

(SPARC) Treats pointer-valued function parameters as restricted pointers . f is %al | ,
% one, or a comma-separated list of one or more function names:
{%al | |Y%one|fn[,fn...]}.

If a function list is specified with this option, pointer parameters in the specified
functions are treated as restricted; if - xrest ri ct =%al | is specified, all pointer
parameters in the entire C file are treated as restricted. Refer to Section 3.8.2,
“Restricted Pointers” on page 3-21, for more information.

This command-line option can be used on its own, but it is best used with
optimization. For example, the command:

%c -xB -xrestrict=%ll| prog.c

treats all pointer parameters in the file pr og. c as restricted pointers. The command:

%c -xOB -xrestrict=agc prog.c

treats all pointer parameters in the function agc in the file pr og. c as restricted
pointers.

The default is %one; specifying - xrestri ct is equivalent to specifying
-xrestrict=%ll .

- XS
Allows debugging by dbx without object files.

This option causes all the debug information to be copied into the executable. This
has little impact on dbx performance or the run-time performance of the program,
but it does take more disk space.

- Xxsaf e=nmem

(SPARC) Allows the compiler to assume no memory-based traps occur.

This option grants permission to use the speculative load instruction on V9
machines. It is only effective when you specify - x06 optimization and
- xar ch=v8pl us| v8pl usa| v9| v9a.

A-84 C User's Guide » May 2003

A.3.127

A.3.128

A.3.129

Note — Because non-faulting loads do not cause a trap when a fault such as address
misalignment or segmentation violation occurs, you should use this option only for
programs in which such faults cannot occur. Because few programs incur
memory-based traps, you can safely use this option for most programs. Do not use
this option for programs that explicitly depend on memory-based traps to handle
exceptional conditions.

- Xsb

Use this option to generates extra symbol table information for the Source Browser.
This option is not valid with the —Xs mode of the compiler.

If you are compiling and linking in separate steps, be sure to specify - xsb in both
the compile step and the link step otherwise you will see error messages from the
linker.

If you do not use - xsb to link objects that were compiled with - xsb, you limit the
source browser data to those references used by the executable that was created with
the link step. Also, if you do not specify - xsb in separate compile and link steps,
some symbol references in the source browser database may be lost.

By including - xsb in both the compile step and the separate link step, you ensure
that all symbol references in both objects are visible to the source browser when the
objects are compiled in different ways in the same directory and linked with
different executables.

- Xxsbf ast

Creates the database for the Source Browser. Does not compile source into an object
file. This option is not valid with the —Xs mode of the compiler.

- Xxsf pconst

Represents unsuffixed floating-point constants as single precision, instead of the
default mode of double precision. Not valid with - Xc.

Appendix A C Compiler Options A-85

A.3.130 -xspace

Does no optimizations or parallelization of loops that increase code size.

Example: The compiler will not unroll loops or parallelize loops if it increases code
size.

A.3.131 -xstrconst

Inserts string literals into the read-only data section of the text segment instead of
the default data segment. Duplicate strings will be eliminated and the remaining
copy shared amongst references in the code.

A.3.132 -xtarget=t

Specifies the target system for instruction set and optimization.

The value of t must be one of the following: nati ve, generi c, system-name (SPARC,
x86).

The - xt ar get option is a macro that permits a quick and easy specification of the
- xar ch, - xchi p, and - xcache combinations that occur on real systems. The only
meaning of - xt ar get is in its expansion.

TABLE A-31 The - xt ar get Values

Value Meaning

native Gets the best performance on the host system.

The compiler generates code for the best performance on the host system.
It determines the available architecture, chip, and cache properties of the
machine on which the compiler is running.

generic Gets the best performance for generic architecture, chip, and cache.
The compiler expands - xt ar get =generi c to:
- xarch=generic -xchi p=generic -xcache=generic
This is the default value.

system-name Gets the best performance for the specified system.

You select a system name from TABLE A-32 that lists the mnemonic
encodings of the actual system name and numbers.

A-86 C User's Guide » May 2003

The performance of some programs may benefit by providing the compiler with an
accurate description of the target computer hardware. When program performance
is critical, the proper specification of the target hardware could be very important.
This is especially true when running on the newer SPARC processors. However, for
most programs and older SPARC processors, the performance gain is negligible and
a generic specification is sufficient.

Each specific value for - xt ar get expands into a specific set of values for the

- xar ch, - xchi p, and - xcache options. Use the f pver si on(1) command to
determine the expansion of - xt ar get =nat i ve on a running system. See TABLE A-32
for the values.

For example, - xt ar get =sun4/ 15 is equivalent to: - xar ch=v8a - xchi p=m cro
-xcache=2/ 16/ 1.

Note — The expansion of - xt ar get for a specific host platform might not result in
the same - xar ch, - xchi p, or - xcache settings as - xt ar get =nat i ve when
compiling on that platform.

TABLE A-32 - Xt ar get Expansions on SPARC

-xtarget= -xarch -xchip -xcache

generic generic generic generic

cs6400 v8 super 16/ 32/ 4: 2048/ 64/ 1
entr 150 v8 ul'tra 16/ 32/1:512/ 64/ 1
entr2 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
entr2/1170 v8pl usa ul'tra 16/ 32/1:512/ 64/ 1
entr2/1200 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
entr2/2170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
entr2/ 2200 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ent r 3000 v8pl usa ultra 16/ 32/ 1:512/ 64/ 1
ent r 4000 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ent r 5000 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ent r 6000 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
sc2000 v8 super 16/ 32/ 4: 2048/ 64/ 1
sol b5 v7 old 128/ 32/ 1

sol b6 v8 super 16/ 32/ 4: 1024/ 32/ 1
ssl v7 old 64/ 16/ 1

Appendix A C Compiler Options A-87

TABLE A-32 - xt ar get Expansions on SPARC (Continued)

-Xtarget= -xarch -xchip -xcache

ss10 v8 super 16/ 32/ 4

ss10/ 20 v8 super 16/ 32/ 4

s$s10/ 30 v8 super 16/ 32/ 4

ss10/ 40 v8 super 16/ 32/ 4

ss10/ 402 v8 super 16/ 32/ 4

ss10/ 41 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 412 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 50 v8 super 16/ 32/ 4

ss10/51 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 512 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 514 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 61 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/ 612 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss10/71 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss10/ 712 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss10/ hs11l v8 hyper 256/ 64/ 1

ss10/ hs12 v8 hyper 256/ 64/ 1

ss10/ hs14 v8 hyper 256/ 64/ 1

ss10/ hs21 v8 hyper 256/ 64/ 1

ss10/ hs22 v8 hyper 256/ 64/ 1

ss1000 v8 super 16/ 32/ 4: 1024/ 32/ 1
sslpl us v7 old 64/ 16/ 1

ss2 v7 old 64/32/1

ss20 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 151 v8 hyper 512/ 64/ 1

$520/ 152 v8 hyper 512/ 64/ 1

ss20/ 50 v8 super 16/ 32/ 4

ss20/ 502 v8 super 16/ 32/ 4

ss20/ 51 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 512 v8 super 16/ 32/ 4: 1024/ 32/ 1

A-88 C User's Guide » May 2003

TABLE A-32 - xt ar get Expansions on SPARC (Continued)

-Xtarget= -xarch -xchip -xcache

ss20/ 514 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 61 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 612 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss20/ 71 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss20/ 712 v8 super 2 16/ 32/ 4: 1024/ 32/ 1
ss20/ hs11 v8 hyper 256/ 64/ 1

s$s20/ hs12 v8 hyper 256/ 64/ 1

ss20/ hs14 v8 hyper 256/ 64/ 1

ss20/ hs21 v8 hyper 256/ 64/ 1

$520/ hs22 v8 hyper 256/ 64/ 1

ss2p v7 power up 64/ 32/ 1

ss4 v8a m cro2 8/16/1

ss4/ 110 v8a m cro2 8/16/1

ss4/ 85 v8a m cro2 8/16/1

ss5 v8a m cro2 8/16/1

ss5/110 v8a m cro2 8/16/1

ss5/ 85 v8a m cro2 8/16/1

$s600/ 120 v7 ol d 64/ 32/ 1

$s600/ 140 v7 ol d 64/ 32/ 1

ss600/ 41 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 412 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 51 v8 super 16/ 32/ 4: 1024/ 32/ 1
s$s600/ 512 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 514 v8 super 16/ 32/ 4: 1024/ 32/ 1
ss600/ 61 v8 super 16/ 32/ 4: 1024/ 32/ 1
s$s600/ 612 v8 super 16/ 32/ 4: 1024/ 32/ 1
sselc v7 old 64/32/1

ssi pc v7 old 64/ 16/ 1

SSi px v7 old 64/ 32/ 1

sslc v8a mcro 2/16/1

Appendix A C Compiler Options

A-89

A-90

TABLE A-32 - xt ar get Expansions on SPARC (Continued)

-Xtarget= -xarch -xchip -xcache

sslt v7 old 64/32/ 1

ssl x v8a mcro 2/16/1

ssl x2 v8a m cro2 8/16/1

ssslc v7 old 64/ 16/ 1

ssvyger v8a m cro2 8/16/1

sun4/ 110 v7 ol d 2/ 16/ 1

sun4/ 15 v8a mcro 2/16/1

sun4/ 150 v7 old 2/16/1

sun4/ 20 v7 old 64/ 16/ 1

sun4/ 25 v7 ol d 64/ 32/ 1

sun4/ 260 v7 ol d 128/16/1

sun4/ 280 v7 old 128/ 16/ 1

sun4/ 30 v8a mcro 2/16/1

sun4/ 330 v7 ol d 128/16/1

sun4/ 370 v7 ol d 128/16/1

sun4/ 390 v7 old 128/ 16/ 1

sun4/ 40 v7 old 64/ 16/ 1

sun4/ 470 v7 ol d 128/ 32/ 1

sun4/ 490 v7 ol d 128/32/1

sun4/ 50 v7 old 64/ 32/ 1

sun4/ 60 v7 old 64/ 16/ 1

sun4/ 630 v7 ol d 64/ 32/ 1

sun4/ 65 v7 ol d 64/16/1

sun4/ 670 v7 old 64/ 32/ 1

sun4/ 690 v7 old 64/32/ 1

sun4/ 75 v7 ol d 64/ 32/ 1

ultra v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ul tral/ 140 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ultral/ 170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1
ul tral/ 200 v8pl usa ultra 16/ 32/1:512/ 64/ 1

C User’'s Guide * May 2003

A.3.133

TABLE A-32 - xt ar get Expansions on SPARC (Continued)

-Xtarget= -xarch -xchip -xcache

ultra2 v8pl usa ultra2 16/ 32/ 1: 512/ 64/ 1
ultra2/ 1170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1

ul tra2/ 1200 v8pl usa ultra 16/ 32/ 1: 1024/ 64/ 1
ul tra2/ 1300 v8pl usa ultra2 16/ 32/ 1: 2048/ 64/ 1
ul tra2/ 2170 v8pl usa ultra 16/ 32/ 1: 512/ 64/ 1

ul tra2/ 2200 v8pl usa ultra 16/ 32/ 1: 1024/ 64/ 1
ul tra2/ 2300 v8pl usa ultra2 16/ 32/ 1: 2048/ 64/ 1
ul tra2e v8pl usa ul tra2e 16/ 32/ 1: 256/ 64/ 4

ul tra2i v8pl usa ul tra2i 16/ 32/ 1: 512/ 64/ 1
ultra3 v8pl usa ultra3 64/ 32/ 4: 8192/ 512/ 1
ul tra3cu v8pl usa ul tra3cu 64/ 32/ 4: 8192/ 512/ 2

The following table lists the —xt ar get values for the Intel Architecture:

TABLE A-33 - Xt ar get Expansions on Intel Architecture

-xtarget= -xarch -xchip -xcache

generic generic generic generic
386 386 386 generic
486 386 486 generic
pentium 386 pentium generic
pentium pro pentium pro pentiumpro generic

- Xt enp=dir

Sets the directory for temporary files used by cc to dir. No space is allowed within
this option string. Without this option, temporary files go into / t np. - xt enp has
precedence over the TMPDI R environment variable.

Appendix A C Compiler Options

A-91

A.3.134

- Xt hr eadvar [=0]

(SPARC) Specify - xt hr eadvar to control the implementation of thread local
variables. Use this option in conjunction with the __t hr ead declaration specifier to
take advantage of the compiler’s thread-local storage facility. After you declare the
thread variables with the __thread specifier, specify - xt hr eadvar to enable the use
of thread-local storage with position dependent code (non-PIC code) in dynamic
(shared) libraries. For more information on how to use __t hr ead, see “Thread Local
Storage Specifier” on page 2-4.

0 must be one the following:

TABLE A-34 The - xt hr eadvar Values

Value of r Meaning

[no% dynami c [[Do not] Compile variables for dynamic loading. Access to thread
variables is significantly faster when - xt hr eadvar =no%ynami c
but you cannot use the object file within a dynamic library. That is,
you cannot use the object file in an executable file.

If you do not specify - xt hr eadvar, the default used by the compiler depends upon
whether or not position-independent code is enabled. If position-independent code
is enabled, the option is set to - xt hr eadvar =dynani c. If position-independent
code is disabled, the option is set to - xt hr eadvar =no%gynani c.

If you specify - xt hr eadvar, but do not specify any values, the option is set to
- Xt hr eadvar =dynami c.

If there is non-position-independent code within a dynamic library, you must specify
- Xt hr eadvar.

The linker cannot support the thread-variable equivalent of non-PIC code in
dynamic libraries. Non-PIC thread variables are significantly faster, and hence
should be the default for executables.

Using thread variables on different versions of Solaris software requires different
options on the command line.

= On Solaris 8 software, objects that use __thread must be compiled with -mt and
must be linked with -nt -L/usr/lib/lwp-R usr/lib/lwp.

= On Solaris 9 software, objects that use __t hr ead must be compiled and linked
with - nt .

See Also: - xcode, - KPI C, - Kpi ¢

A-92 C User's Guide » May 2003

A.3.135 -xtine

Reports the time and resources used by each compilation component.

A.3.136 -xtransition

Issues warnings for the differences between K&R C and Sun ISO C.

The - xt ransi ti on option issues warnings in conjunction with the - Xa and - Xt
options. You can eliminate all warning messages about differing behavior through
appropriate coding. The following warnings no longer appear unless you issue the
-xtransi tion option:

= \a is ISO C “alert” character

= \x is ISO C hex escape

= bad octal digit

= base type is really type tag: name

= comment is replaced by “##”

= comment does not concatenate tokens

= declaration introduces new type in ISO C typetag
= macro replacement within a character constant

= macro replacement within a string literal

= no macro replacenent within a character constant
= no macro replacenent within a string literal

= operand treated as unsigned

=« trigraph sequence replaced

= |SO C treats constant as unsigned: operator

= semantics of operator change in SO C, use explicit cast

A.3.137

xtrigraphs

The - xtri gr aphs option determines whether the compiler recognizes trigraph
sequences as defined by the ISO C standard.

By default, the compiler assumes - xt ri gr aphs=yes and recognizes all trigraph
sequences throughout the compilation unit.

If your source code has a literal string containing question marks (?) that the
compiler is interpreting as a trigraph sequence, you can use the - xtri gr aph=no
suboption to turn off the recognition of trigraph sequences. The - xt ri gr aphs=no
option turns off recognition of all trigraphs throughout the entire compilation unit.

Appendix A C Compiler Options A-93

A.3.138

A.3.139

Consider the following example source file named t ri gr aphs_deno. c.

#i ncl ude <stdi o. h>

int main ()

{
(void) printf("(\?\?) in a string appears as (??)\n");

return O;

}

Here is the output if you compile this code with - xt ri gr aphs=yes.

exanpl e% cc -xtrigraphs=yes trigraphs_denp.c
exanpl e% a. out
(??) in a string appears as (]

Here is the output if you compile this code with - xt ri gr aphs=no.

exanmpl e% cc -xtrigraphs=no trigraphs_deno.c
exanpl e% a. out
(??) in a string appears as (??)

-xunrol | =n

Suggests to the optimizer to unroll loops n times. n is a positive integer. When n is 1,
it is a command, and the compiler unrolls no loops. When n is greater than 1, the
- xunr ol | =n merely suggests to the compiler that it unroll loops n times.

-xustr={ascii _utfl6 _ushort |no}

Use this option if your code contains a string literal that you want the compiler to
convert to UTF-16 strings in the object file. This option enables recognition of the
U"ASCII_string" string literals as an array of type unsigned short.

The default is - xust r =no. - xust r=asci i _ut f 16_ushort enables compiler
recognition of U"ASCII_string" string literals.

A-94 C User's Guide » May 2003

A.3.140

A.3.141

A.3.142

- xvect or [={yes | no}]

Enable automatic generation of calls to the vector library functions.

- xvect or =yes permits the compiler to transform math library calls within loops
into single calls to the equivalent vector math routines when such transformations
are possible. Such transformations could result in a performance improvement for
loops with large loop counts.

If you do not specify - xvect or, the default is - xvect or =no. - xvect or =no undoes
a previously specified - xvect or =yes. If you specify - xvect or but do not supply a
value, the default is - xvect or =yes.

If you use - xvect or on the command line without previously specifying

- xdepend, - xvect or triggers - xdepend. The - xvect or option also raises the
optimization level to - x03 if optimization is not specified or optimization is set
lower than - x03.

The compiler includes the | i brrvec libraries in the load step. If you compile and
link with separate commands, be sure to use - xvect or in the linking cc command.

- XVI S

(SPARC) Use the - xvi s=[yes | no] command when you are using the
assembly-language templates defined in the VIS[tm] instruction-set Software
Developers Kit (VSDK). The default is - xvi s=no. Specifying - xvi s is equivalent to
specifying - xvi s=yes.

The VIS instruction set is an extension to the SPARC V9 instruction set. Even though
the UltraSPARC processors are 64-bit, there are many cases, especially in multimedia
applications, when the data are limited to eight or 16 bits in size. The VIS
instructions can process four 16-bit data with one instruction so they greatly
improve the performance of applications that handle new media such as imaging,
linear algebra, signal processing, audio, video and networking.

For more information on the VSDK, see http://www.sun.com/processors/vis/.

- xvpar a

(SPARC) Warns about loops that have #pr agma MP directives specified when the
loop may not be properly specified for parallelization. For example, when the
optimizer detects data dependencies between loop iterations, it issues a warning.

Appendix A C Compiler Options A-95

A.3.143

A.3.144

A.3.145

A.3.146

A.3.147

A.3.148

Use - xvpar a with the - xexpl i ci t par option or the - xpar al | el option and the
#pragma MR See Section 3.8.3, “Explicit Parallelization and Pragmas” on page 3-22
for more information.

- Yc, dir

Specifies a new directory dir for the location of component c. ¢ can consist of any of
the characters representing components that are listed under the - Woption.

If the location of a component is specified, then the new path name for the tool is
dir/tool. If more than one - Y option is applied to any one item, then the last
occurrence holds.

- YA, dir

Changes the default directory searched for components.

-Yl, dir

Changes the default directory searched for i ncl ude files.

- YP, dir

Changes the default directory for finding library files.

-YS, dir

Changes the default directory for startup object files.

-Z1

(SPARC) Creates the program database for | ock_I i nt, but does not generate
executable code. Refer to the | ock_I i nt (1) man page for more details.

A-96 C User's Guide » May 2003

A.4 Options Passed to the Linker

ccC recognizes-a, -e,-r,-t,-u, and - z and passes these options and their
arguments to | d. cc passes any unrecognized options to | d with a warning.

Appendix A C Compiler Options A-97

A-98 C User's Guide » May 2003

APPENDIX B

ISO C Data Representations

This appendix describes how ISO C represents data in storage and the mechanisms
for passing arguments to functions. It is intended as a guide to programmers who
want to write or use modules in languages other than C and have those modules
interface with C code.

B.1

Storage Allocation

The following table shows the data types and how they are represented.

Note — Storage allocated on the stack (identifiers with internal, or automatic,
linkage) should be limited to two gigabytes or less.

TABLEB-1 Storage Allocation for Data Types

Data Type

Internal Representation

char elements
short integers
int

| ong

poi nter

A single 8-bit byte aligned on a byte boundary.
Halfword (two bytes or 16 bits), aligned on a two-byte boundary
32 bits (four bytes or one word), aligned on a four-byte boundary

32 bits on v8 and Intel (four bytes or one word), aligned on a
four-byte boundary

64 bits on v9 (eight bytes or two words) aligned on an eight-byte
boundary)

32 bits on v8 and Intel (four bytes or one word), aligned on a
four-byte boundary

64 bits on v9 (eight bytes or two words) aligned on an eight-byte
boundary)

B-1

TABLEB-1 Storage Allocation for Data Types (Continued)

Data Type Internal Representation

I ong | ong! (SPARC) 64 bits (eight bytes or two words), aligned on an eight-byte
boundary
(Intel) 64 bits (eight bytes or two words), aligned on a four-byte
boundary

fl oat 32 bits (four bytes or one word), aligned on a four-byte boundary. A

fl oat has a si gn bit, 8-bit exponent, and 23-bit fraction.

doubl e 64 bits (eight bytes or two words), aligned on an eight-byte boundary
(SPARC) or aligned on a four-byte boundary (Intel). A doubl e
element has a si gn bit, an 11-bit exponent and a 52-bit fraction.

| ong doubl e v8 (SPARC) 128 bits (16 bytes or four words), aligned on an eight-byte
boundary. A | ong doubl e element has a si gn bit, a 15-bit exponent
and a 112-bit fraction.
Vv9 (SPARC) 128 bits (16 bytes or four words), aligned on a 16 byte
boundary. A | ong doubl e element has a si gn bit, a 15-bit exponent
and a 112-bit fraction.
(Intel) 96 bits (12 bytes or three words) aligned on a four-byte
boundary. A | ong doubl e element has a si gn bit, a 16-bit exponent,
and a 64-Dbit fraction. 16 bits are unused.

1 1 ong | ong is not available in - Xc mode with - xc99=%none.

B.2 Data Representations

B-2

Bit numbering of any given data element depend on the architecture in use:
SPARCstation™ machines use bit 0 as the least significant bit, with byte 0 being the
most significant byte. The tables in this section describe the various representations.

C User’s Guide * May 2003

B.2.1

Integer Representations

Integer types used in ISO C are short,int, | ong, and | ong | ong:

TABLEB-2 Representation of short

Bits Content

8-15 Byte 0 (SPARC)
Byte 1 (Intel)

0-7 Byte 1 (SPARC)
Byte 0 (Intel)

TABLEB-3 Representation of i nt

Bits Content

24 -31 Byte 0 (SPARC)
Byte 3 (Intel)

16 - 23 Byte 1 (SPARC)
Byte 2 (Intel)

8-15 Byte 2 (SPARC)
Byte 1 (Intel)

0-7 Byte 3 (SPARC)
Byte 0 (Intel)

TABLE B-4 Representation of | ong on Intel and SPARC v8 versus SPARC v9

Bits Content

24 -31 Byte 0 (SPARC) v8
Byte 4 (SPARC) v9
Byte 3 (Intel)

16 - 23 Byte 1 (SPARC) v8
Byte 5 (SPARC) v9
Byte 2 (Intel)

8-15 Byte 2 (SPARC) v8
Byte 6 (SPARC) v9
Byte 1 (Intel)

0-7 Byte 3 (SPARC) v8

Byte 7 (SPARC) v9
Byte 0 (Intel)

Appendix B

ISO C Data Representations

B-3

B.2.2

B-4

TABLEB-5 Representation of | ong | ong!

Bits Content
56 - 63 Byte 0 (SPARC)
Byte 7 (Intel)
48 - 55 Byte 1 (SPARC)
Byte 6 (Intel)
40 - 47 Byte 2 (SPARC)
Byte 5 (Intel)
32-39 Byte 3 (SPARC)
Byte 4 (Intel)
24 - 31 Byte 4 (SPARC)
Byte 3 (Intel)
16 - 23 Byte 5 (SPARC)
Byte 2 (Intel)
8-15 Byte 6(SPARC)
Byte 1 (Intel)
0-7 Byte 7 (SPARC)

Byte 0 (Intel)

1 long long is not available in - Xc mode.

fl oat, doubl e, and | ong doubl e data elements are represented according to the
ISO IEEE 754-1985 standard. The representation is:

Floating-Point Representations

(-1)ste - bias)x2 j.f

where:
= S=sign

= ¢ = biased exponent

= | is the leading bit, determined by the value of e. In the case of | ong
doubl e (Intel), the leading bit is explicit; in all other cases, it is implicit.

» f = fraction

= U means that the bit can be either 0 or 1.

C User’s Guide * May 2003

The following tables show the position of the bits.

TABLEB-6 f| oat Representation
Bits Name

31 Sign

23 -30 Exponent
0-22 Fraction
TABLEB-7 doubl e Representation
Bits Name

63 Sign

52 - 62 Exponent
0-51 Fraction
TABLEB-8 | ong doubl e Representation (SPARC)
Bits Name

127 Sign

112 - 126 Exponent
0-111 Fraction
TABLEB-9 | ong doubl e Representation (Intel)
Bits Name

80 - 95 Unused

79 Sign

64 - 78 Exponent
63 Leading bit
0-62 Fraction

For further information, refer to the Numerical Computation Guide.

Appendix B

ISO C Data Representations

B-5

B.2.3 Exceptional Values

f |l oat and doubl e numbers are said to contain a “hidden,” or implied, bit,
providing for one more bit of precision than would otherwise be the case. In the case
of | ong doubl e, the leading bit is implicit (SPARC) or explicit (Intel); this bit is 1 for
normal numbers, and 0 for subnormal numbers.

TABLEB-10 f| oat Representations

normal number (0<e<255): (- 1)Sign2 (exponent - 127)1 §

subnormal number (- 1)Sign2 (-126)0 f

(e=0, f1=0):

zero (e=0, f=0): (- 1)Si9n0.0

signaling NaN s=u, e=255(max); f=.0uuu-uu; at least one bit must be nonzero
quiet NaN s=u, e=255(max); f=.1uuu-uu

Infinity s=u, e=255(max); f=.0000-00 (all zeroes)

TABLE B-11 doubl e Representations

normal number (0<e<2047): (- 1)Sign2 (exponent - 1023)] f

subnormal number (e=0, fl=0): (- 1)Sign2 (-1022)0 f

zero (e=0, f=0): (- 1)Sign0.0

signaling NaN s=u, e=2047(max); f=.0uuu-uu; at least one bit must be
nonzero

quiet NaN s=u, e=2047(max); f=.1uuu-uu

Infinity s=u, e=2047(max); f=.0000-00 (all zeroes)

TABLE B-12 | ong doubl e Representations

normal number (0<e<32767): (- 1)Sign2 (exponent - 16383)1 f

subnormal number (e=0, f1=0): (- 1)Sign2 (-16382)0 f

zero (e=0, f=0): (- 1)Sign0.0

signaling NaN s=u, e=32767(max); f=.0uuu-uu; at least one bit must be
nonzero

quiet NaN s=u, e=32767(max); f=.1uuu-uu

Infinity s=u, e=32767(max); f=.0000-00 (all zeroes)

B-6 C User's Guide « May 2003

B.2.4

B.2.5

Hexadecimal Representation of Selected Numbers

The following tables show the hexadecimal representations.

TABLE B-13 Hexadecimal Representation of Selected Numbers (SPARC)

Value
+0
-0
+1.0
-1.0

+2.0
+3.0

+Infinity
-Infinity

NaN

fl oat

00000000
80000000

3F800000
BF800000

40000000
40400000

7F800000
FF800000

7FBFFFFF

doubl e I ong doubl e

0000000000000000 00000000000000000000000000000000
8000000000000000 80000000000000000000000000000000
3FF0000000000000 3FFF00000000000000000000000000000
BFF0000000000000 BFFF00000000000000000000000000000
4000000000000000 40000000000000000000000000000000
4008000000000000 40080000000000000000000000000000
7FF0000000000000 7FFF00000000000000000000000000000
FFF0000000000000 FFFF00000000000000000000000000000
TFF7FFFFFFFFFFFF 7FFF7FFFFFFFFFFFFFFFFFFFFFFFFFFF

TABLE B-14 Hexadecimal Representation of Selected Numbers (Intel)

Value
+0
-0
+1.0
-1.0

+2.0
+3.0

+Infinity
-Infinity

NaN

f1 oat doubl e | ong doubl e

00000000 0000000000000000 00000000000000000000
80000000 0000000080000000 80000000000000000000
3F800000 000000003FF00000 3FFF8000000000000000
BF800000 00000000BFF00000 BFFF8000000000000000
40000000 0000000040000000 40008000000000000000
40400000 0000000040080000 4000C000000000000000
7F800000 000000007FF00000 7FFF8000000000000000
FF800000 00000000FFF00000 FFFF8000000000000000
TFBFFFFF FFFFFFFF7FF7FFFF 7FFFBFFFFFFFFFFFFFFF

For further information, refer to the Numerical Computation Guide.

Pointer Representation

A pointer in C occupies four bytes. A pointer in C occupies eight bytes on SPARC v9
architectures. The NULL value pointer is equal to zero.

Appendix B ISO C Data Representations B-7

B.2.6 Array Storage

Arrays are stored with their elements in a specific storage order. The elements are
actually stored in a linear sequence of storage elements.

C arrays are stored in row-major order; the last subscript in a multidimensional
array varies the fastest.

String data types are simply arrays of char elements. The maximum number of
characters allowed in a string literal or wide string literal (after concatenation) is
4,294,967,295.

See Section B.1, “Storage Allocation” on page B-1 for information on the size limit of
storage allocated on the stack.

TABLE B-15 Array Types and Storage

Maximum Number of Elements Maximum Number of Elements

Type for SPARC and Intel for SPARC V9

char 4,294,967,295 2,305,843,009,213,693,951
short 2,147,483,647 1,152,921,504,606,846,975
int 1,073,741,823 576,460,752,303,423,487

| ong 1,073,741,823 288,230,376,151,711,743

f | oat 1,073,741,823 576,460,752,303,423,487
doubl e 536,870,911 288,230,376,151,711,743

I ong doubl e 268,435,451 144,115,188,075,855,871

I ong | ong! 536,870,911 288,230,376,151,711,743

1 Not valid in -Xc mode with - xc99=%one.

Static and global arrays can accommodate many more elements.

B.2.7 Arithmetic Operations on Exceptional Values

This section describes the results derived from applying the basic arithmetic
operations to combinations of exceptional and ordinary floating-point values. The
information that follows assumes that no traps or any other exception actions are
taken.

B-8 C User's Guide *« May 2003

The following table explains the abbreviations:

TABLE B-16 Abbreviation Usage

Abbreviation Meaning

Num Subnormal or normal number
Inf Infinity (positive or negative)
NaN Not a number

uno Unordered

The following tables describe the types of values that result from arithmetic
operations performed with combinations of different types of operands.

TABLE B-17 Addition and Subtraction Results

Right Operand: Right Operand: Right Operand: Right Operand:
0 Num Inf NaN

Left Operand: 0 Num Inf NaN

0

Left Operand: Num Seel Inf NaN

Num

Left Operand: Inf Inf Seel NaN

Inf

Left Operand: NaN NaN NaN NaN

NaN

1 Num + Num could be Inf, rather than Num, when the result is too large (overflow). Inf + Inf = NaN when the
infinities are of opposite si gn.

TABLE B-18 Multiplication Results

Right Operand: Right Operand: Right Operand: Right Operand:
0 Num Inf NaN

Left Operand: 0 0 NaN NaN

0

Left Operand: 0 Num Inf NaN

Num

Left Operand: NaN Inf Inf NaN

Inf

Left Operand: NaN NaN NaN NaN

NaN

Appendix B ISO C Data Representations

B-9

TABLE B-19 Division Results

Right Operand:

Right Operand:

Right Operand:

Right Operand:

0 Num Inf NaN
Left Operand: NaN 0 0 NaN
0
Left Operand: Inf Num 0 NaN
Num
Left Operand: Inf Inf NaN NaN
Inf
Left Operand: NaN NaN NaN NaN

NaN

TABLE B-20 Comparison Results

Right Operand:

Right Operand:

Right Operand:

Right Operand:

0 +Num +Inf +NaN
Left Operand: = < < Uno
0
Left Operand: > Theresultofthe < Uno
+Num comparison
Left Operand: > > = uUno
+Inf
Left Operand: Uno Uno Uno Uno

+NaN

Note — NaN compared with NaN is unordered, and results in inequality. +0
compares equal to -0.

B.3

B-10

Argument-Passing Mechanism

This section describes how arguments are passed in 1SO C.

= All arguments to C functions are passed by value.

= Actual arguments are passed in the reverse order from which they are declared in
a function declaration.

= Actual arguments which are expressions are evaluated before the function
reference. The result of the expression is then placed in a register or pushed onto

the stack.

C User’'s Guide * May 2003

32-Bit SPARC

Functions return i nt eger results in register %00, f | oat results in register % 0, and
doubl e results in registers % 0 and % 1.

| ong | ong! integers are passed in registers with the higher word order in %N, and
the lower order word in %0(N+1) . In-register results are returned in %00 and %01,
with similar ordering.

All arguments, except doubl es and long doubles, are passed as four-byte values. A
doubl e is passed as an eight-byte value. The first six four-byte values (doubl e
counts as 8) are passed in registers %00 through %©5. The rest are passed onto the
stack. Structures are passed by making a copy of the structure and passing a pointer
to the copy. A | ong doubl e is passed in the same manner as a structure.

Registers described are as seen by the caller.

64-Bit SPARC

All integral arguments are passed as eight-byte values.

Floating-point arguments are passed in floating-point registers when possible.

(Intel)
Functions return i nt eger results in register %eax.

I ong | ong results are returned in registers %edx and %eax. Functions return f | oat ,
doubl e, and | ong doubl e results in register %st (0) .

All arguments except st ruct s, uni ons, | ong | ongs, doubl es and | ong doubl es
are passed as four-byte values; al ong | ong is passed as an eight-byte value, a
doubl e is passed as an eight-byte value, and a | ong doubl e is passed as a 12-byte
value.

struct s and uni ons are copied onto the stack. The size is rounded up to a
multiple of four bytes. Functions returning st ruct s and uni ons are passed a
hidden first argument, pointing to the location into which the returned st ruct or
uni on is stored.

Upon return from a function, it is the responsibility of the caller to pop arguments
from the stack, except for the extra argument for st ruct and uni on returns that is
popped by the called function.

1. Notavailable in - Xc mode with - xc99=%one.

Appendix B ISO C Data Representations B-11

B-12 C User's Guide * May 2003

APPENDIX C

Implementation-Defined ISO/IECC
Behavior

The ISO/IEC 9899:1990, Programming Languages - C standard specifies the form
and establishes the interpretation of programs written in C. However, this standard
leaves a number of issues as implementation-defined, that is, as varying from
compiler to compiler. This chapter details these areas. They can be readily compared
to the ISO/IEC 9899:1990 standard itself;:

= Each issue uses the same section text as found in the ISO standard.
= Each issue is preceded by its corresponding section number in the ISO standard.

C.l

C.1l1

Implementation Compared to the ISO
Standard

Translation (G.3.1)

The numbers in parentheses correspond to section numbers in the ISO/IEC
9899:1990 standard.

(5.1.1.3) Identification of diagnostics:
Error messages have the following format:
filename, |i ne line number: message
Warning messages have the following format:

filkname, |i ne line number: warning message

C-1

C.l2

C.13

Where:

= filename is the name of the file containing the error or warning
= line number is the number of the line on which the error or warning is found
= message is the diagnostic message

Environment (G.3.2)

(5.1.2.2.1) Semantics of arguments to nai n:

int min (int argc, char *argv[])

{

ar gc is the number of command-line arguments with which the program is invoked
with. After any shell expansion, ar gc is always equal to at least 1, the name of the
program.

ar gv is an array of pointers to the command-line arguments.

(5.1.2.3) What constitutes an interactive device:

An interactive device is one for which the system library call i satty() returns a
nonzero value.

Identifiers (G.3.3)

(6.1.2) The number of significant initial characters (beyond 31) in an
identifier without external linkage:

The first 1,023 characters are significant. Identifiers are case-sensitive.

(6.1.2) The number of significant initial characters (beyond 6) in an
identifier with external linkage:

The first 1,023 characters are significant. Identifiers are case-sensitive.

C-2 CUser's Guide » May 2003

C.l4

Characters (G.3.4)

(5.2.1) The members of the source and execution character sets, except as
explicitly specified in the Standard:

Both sets are identical to the ASCII character sets, plus locale-specific extensions.

(5.2.1.2) The shift states used for the encoding of multibyte characters:

There are no shift states.

(5.2.4.2.1) The number of bits in a character in the execution character
set:

There are 8 bits in a character for the ASCII portion; locale-specific multiple of 8 bits
for locale-specific extended portion.

(6.1.3.4) The mapping of members of the source character set (in
character and string literals) to members of the execution character set:

Mapping is identical between source and execution characters.

(6.1.3.4) The value of an integer character constant that contains a
character or escape sequence not represented in the basic execution
character set or the extended character set for a wide character constant:

It is the numerical value of the rightmost character. For example, '\ q' equals ' ' . A
warning is emitted if such an escape sequence occurs.

(3.1.3.4) The value of an integer character constant that contains more
than one character or a wide character constant that contains more than
one multibyte character:

A multiple-character constant that is not an escape sequence has a value derived
from the numeric values of each character.

Appendix C Implementation-Defined ISO/IEC C Behavior C-3

(6.1.3.4) The current locale used to convert multibyte characters into
corresponding wide characters (codes) for a wide character constant:

The valid locale specified by LC_ALL, LC_CTYPE, or LANG environment variable.

(6.2.1.1) Whether a plain char has the same range of values as si gned
char or unsi gned char:

A char is treated as a si gned char (SPARC) (Intel).

C.15 Integers (G.3.5)

(6.1.2.5) The representations and sets of values of the various types of
integers:

TABLEC-1 Representations and Sets of Values of Integers

Integer Bits Minimum Maximum

char (SPARC) (Intel) 8 -128 127

si gned char 8 -128 127

unsi gned char 8 0 255

short 16 -32768 32767

signed short 16 -32768 32767

unsi gned short 16 0 65535

int 32 -2147483648 2147483647

signed int 32 -2147483648 2147483647

unsi gned int 32 0 4294967295

I ong (SPARC) v8 32 -2147483648 2147483647

I ong (SPARC) v9 64 -9223372036854775808 9223372036854775807
signed |ong 32 -2147483648 2147483647
(SPARC)vS

si gned | ong (SPARC) 64 -9223372036854775808 9223372036854775807
v9

C-4 CUser's Guide » May 2003

TABLE C-1 Representations and Sets of Values of Integers (Continued)

Integer Bits Minimum Maximum

unsi gned | ong 32 0 4294967295

(SPARC) v8

unsi gned | ong 64 0 18446744073709551615
(SPARC) v9

I ong | ong! 64 -9223372036854775808 9223372036854775807
signed long |ong?! 64 -9223372036854775808 9223372036854775807
unsigned long longl 64 0 18446744073709551615

1 Not valid in - Xc mode

(6.2.1.2) The result of converting an integer to a shorter signed integer,
or the result of converting an unsigned integer to a signed integer of
equal length, if the value cannot be represented:

When an integer is converted to a shorter si gned integer, the low order bits are
copied from the longer integer to the shorter si gned integer. The result may be
negative.

When an unsigned integer is converted to a si gned integer of equal size, the low
order bits are copied from the unsi gned integer to the si gned integer. The result
may be negative.

(6.3) The results of bitwise operations on signed integers:

The result of a bitwise operation applied to a si gned type is the bitwise operation of
the operands, including the si gn bit. Thus, each bit in the result is set if—and only
if—each of the corresponding bits in both of the operands is set.

(6.3.5) The sign of the remainder on integer division:

The result is the same sign as the dividend; thus, the remainder of -23/4 is -3.
(6.3.7) The result of a right shift of a negative-valued signed integral

type:
The result of a right shift is a si gned right shift.

Appendix C Implementation-Defined ISO/IEC C Behavior C-5

C.1.6 Floating-Point (G.3.6)

(6.1.2.5) The representations and sets of values of the various types of
floating-point numbers:

TABLE C-2 Values for a float

float

Bits 32

Min 1.17549435E-38
Max 3.40282347E+38
Epsilon 1.19209290E-07

TABLE c-3 Values for a double

double

Bits 64

Min 2.2250738585072014E-308
Max 1.7976931348623157E+308
Epsilon 2.2204460492503131E-16

TABLE c-4 Values for long double

long double

Bits 128 (SPARC)
80 (Intel)

Min 3.362103143112093506262677817321752603E-4932 (SPARC)
3.3621031431120935062627E-4932 (Intel)

Max 1.189731495357231765085759326628007016E+4932 (SPARC)
1.1897314953572317650213E4932 (Intel)

Epsilon 1.925929944387235853055977942584927319E-34 (SPARC)

1.0842021724855044340075E-19 (Intel)

C-6 C User's Guide * May 2003

C.1.7

(6.2.1.3) The direction of truncation when an integral number is
converted to a floating-point number that cannot exactly represent the
original value:

Numbers are rounded to the nearest value that can be represented.

(6.2.1.4) The direction of truncation or rounding when a floating- point
number is converted to a narrower floating-point number:

Numbers are rounded to the nearest value that can be represented.

Arrays and Pointers (G.3.7)

(6.3.3.4, 7.1.1) The type of integer required to hold the maximum size of
an array; that is, the type of the si zeof operator, si ze_t:

unsi gned i nt as defined in st ddef . h.

unsi gned | ong for - Xar ch=v9

(6.3.4) The result of casting a pointer to an integer, or vice versa:

The bit pattern does not change for pointers and values of type i nt, | ong,
unsi gned i nt and unsi gned | ong.

(6.3.6, 7.1.1) The type of integer required to hold the difference between
two pointers to members of the same array, ptrdi ff _t:

i nt as defined in st ddef. h.

| ong for - Xar ch=v9

Appendix C Implementation-Defined ISO/IEC C Behavior C-7

C.18

C.19

Registers (G.3.8)

(6.5.1) The extent to which objects can actually be placed in registers by
use of the r egi st er storage-class specifier:

The number of effective register declarations depends on patterns of use and
definition within each function and is bounded by the number of registers available
for allocation. Neither the compiler nor the optimizer is required to honor register
declarations.

Structures, Unions, Enumerations, and Bit-Fields
(G.3.9)

(6.3.2.3) A member of a union object is accessed using a member of a
different type:

The bit pattern stored in the union member is accessed, and the value interpreted,
according to the type of the member by which it is accessed.

(6.5.2.1) The padding and alignment of members of structures.

TABLE C-5 Padding and Alignment of Structure Members

Type Alignment Boundary Byte Alignment

char Byte 1

short Halfword 2

int Word 4

| ong (SPARC) v8 Word 4

| ong (SPARC) v9 Doubleword 8

fl oat (SPARC) Word 4

doubl e (SPARC) Doubleword (SPARC) 8 (SPARC)
Word (Intel) 4 (Intel)

| ong doubl e (SPARC) v8 Doubleword (SPARC) 8 (SPARC)
Word (Intel) 4 (Intel)

C-8 C User's Guide * May 2003

TABLE C-5 Padding and Alignment of Structure Members (Continued)

Type Alignment Boundary Byte Alignment

| ong doubl e (SPARC) v9 Quadword 16

poi nter (SPARC) v8 Word 4

poi nter (SPARC) v9 Quadword 8

I ong | ong! Doubleword (SPARC) 8 (SPARC)
Word (Intel) 4 (Intel)

1 Not available in - Xc mode.

Structure members are padded internally, so that every element is aligned on the

appropriate boundary.

Alignment of structures is the same as its more strictly aligned member. For
example, a st ruct with only char s has no alignment restrictions, whereas a
struct containing a doubl e would be aligned on an 8-byte boundary.

(6.5.2.1) Whether a plain i nt bit-field is treated as a si gned i nt
bit-field or as an unsi gned i nt bit-field:

It is treated as an unsi gned i nt .

(6.5.2.1) The order of allocation of bit-fields within an i nt :

Bit-fields are allocated within a storage unit from high-order to low-order.

(6.5.2.1) Whether a bit-field can straddle a storage-unit boundary:

Bit-fields do not straddle storage-unit boundaries.

(6.5.2.2) The integer type chosen to represent the values of an
enumeration type:

Thisisanint.

Appendix C Implementation-Defined ISO/IEC C Behavior

C-9

C.1.10

C.l1

C.1.12

C.1.13

Qualifiers (G.3.10)

(6.5.5.3) What constitutes an access to an object that has
volatile-qualified type:

Each reference to the name of an object constitutes one access to the object.

Declarators (G.3.11)

(6.5.4) The maximum number of declarators that may modify an
arithmetic, structure, or union type:

No limit is imposed by the compiler.

Statements (G.3.12)

(6.6.4.2) The maximum number of case values in a swi t ch statement:

No limit is imposed by the compiler.

Preprocessing Directives (G.3.13)

(6.8.1) Whether the value of a single-character character constant in a
constant expression that controls conditional inclusion matches the value
of the same character constant in the execution character set:

A character constant within a preprocessing directive has the same numeric value as
it has within any other expression.

(6.8.1) Whether such a character constant may have a negative value:

Character constants in this context may have negative values (SPARC) (Intel).

C-10 C User's Guide « May 2003

(6.8.2) The method for locating includable source files:

A file whose name is delimited by < > is searched for first in the directories named
by the - I option, and then in the standard directory. The standard directory is
/usr/incl ude, unless the - YI option is used to specify a different default location.

A file whose name is delimited by quotes is searched for first in the directory of the
source file that contains the #i ncl ude, then in directories named by the - | option,
and last in the standard directory.

If a file name enclosed in < > or double quotes begins with a/ character, the file
name is interpreted as a path name beginning in the root directory. The search for
this file begins in the root directory only.

(6.8.2) The support of quoted names for includable source files:

Quoted file names in i ncl ude directives are supported.

(6.8.2) The mapping of source file character sequences:

Source file characters are mapped to their corresponding ASCII values.

(6.8.6) The behavior on each recognized #pr agna directive:

The following pragmas are supported. See Section 2.8, “Pragmas” on page 2-10 for
more information.

al i gn integer (variable[, variable])

does_not _read_gl obal _dat a (funcname [, funcname])
does_not _r et ur n (funcname[, funcname])

does_not _write_gl obal _data (funcname[, funcname])
error_messages (on]off]default, tagl[tag2... tagn])
fini (f1[, f2..., fn])

i dent string

init (f1[, f2..., fn])

i nl i ne (funcname[, funcname])

i nt _to_unsi gned (funcname)

MP seri al _| oop

MP seri al _| oop_nest ed

MP t askl oop

no_i nl i ne (funcname[, funcname])

nonenor ydepend

no_si de_ef f ect (funcname[, funcname])

opt _I evel (funcname[, funcname])

pack(n)

Appendix C Implementation-Defined ISO/IEC C Behavior C-11

C.1.14

pi pel oop(n)

rarely_cal | ed (funcname[, funcname])
redef i ne_ext nane old_extname new_extname
returns_new _nenory (funcname[, funcname])
unknown_control _fl ow (name[, name])
unrol | (unroll_factor)

weak (symboll [= symbol2])

(6.8.8) The definitions for __ DATE__and __ TI ME__ when,
respectively, the date and time of translation are not available:

These macros are always available from the environment.

Library Functions (G.3.14)

(7.1.6) The null pointer constant to which the macro NULL expands:

NULL equals 0.

(7.2) The diagnostic printed by and the termination behavior of the
assert function:

The diagnostic is:
Assertion failed: statement. file filename, | i ne number

Where:

= statement is the statement which failed the assertion
= filename is the name of the file containing the failure
= line number is the number of the line on which the failure occurs

C-12 C User's Guide « May 2003

(7.3.1) The sets of characters tested for by the i sal num i sal pha,

iscntrl,islower,isprint,andisupper functions:

TABLE C-6 Character Sets Tested by i sal pha, i sl ower, Etc.

i sal num ASCII characters A-Z, a-z and 0-9

i sal pha ASCII characters A-Z and a-z, plus locale-specific single-byte
letters

iscntrl ASCII characters with value 0-31 and 127

i sl ower ASCII characters a-z

i sprint Locale-specific single-byte printable characters

i supper ASCII characters A-Z

(7.5.1) The values returned by the mathematics functions on domain

errors:
TABLE C-7 Values Returned on Domain Errors

Compiler Modes
Error Math Functions -Xs, - Xt - Xa, - Xc
DOMAIN acos(|x|>1) 0.0 0.0
DOMAIN asin(]x]>1) 0.0 0.0
DOMAIN atan2(+-0,+-0) 0.0 0.0
DOMAIN y0(0) -HUGE -HUGE_VAL
DOMAIN y0(x<0) -HUGE -HUGE_VAL
DOMAIN y1(0) -HUGE -HUGE_VAL
DOMAIN y1(x<0) -HUGE -HUGE_VAL
DOMAIN yn(n,0) -HUGE -HUGE_VAL
DOMAIN yn(n,x<0) -HUGE -HUGE_VAL
DOMAIN log(x<0) -HUGE -HUGE_VAL
DOMAIN l0g10(x<0) -HUGE -HUGE_VAL
DOMAIN pow(0,0) 0.0 1.0
DOMAIN pow(0,neg) 0.0 -HUGE_VAL
DOMAIN pow(neg,non-integal) 0.0 NaN

Appendix C Implementation-Defined ISO/IEC C Behavior

C-13

TABLE C-7 Values Returned on Domain Errors (Continued)

Compiler Modes

Error Math Functions -Xs, - Xt - Xa, - Xc
DOMAIN sqrt(x<0) 0.0 NaN
DOMAIN fmod(x,0) X NaN
DOMAIN remainder(x,0) NaN NaN
DOMAIN acosh(x<1) NaN NaN
DOMAIN atanh(]x]>1) NaN NaN

(7.5.1) Whether the mathematics functions set the integer expression
er r no to the value of the macro ERANGE on underflow range errors:

Mathematics functions, except scal bn, set er r no to ERANGE when underflow is

detected.

(7.5.6.4) Whether a domain error occurs or zero is returned when the
f mod function has a second argument of zero:

In this case, it returns the first argument with domain error.

(7.7.1.1) The set of signals for the si gnal function:

The following table shows the semantics for each signal as recognized by the
si gnal function:

TABLE Cc-8 Semantics for si gnal Signals

Signal No. Default Event

SIGHUP 1 Exit hangup

SIGINT 2 Exit interrupt

SIGQUIT 3 Core qui t

SIGILL 4 Core illegal instruction (not reset when caught)
SIGTRAP 5 Core trace trap (not reset when caught)
SIGIOT 6 Core 10T instruction

SIGABRT 6 Core Used by abort

SIGEMT 7 Core EMI instruction

C-14 C User's Guide « May 2003

TABLE C-8 Semantics for si gnal Signals (Continued)

Signal No. Default Event

SIGFPE 8 Core floating point exception

SIGKILL 9 Exit kill (cannot be caught or ignored)
SIGBUS 10 Core bus error

SIGSEGV 11 Core segnment ati on violation

SIGSYS 12 Core bad argunment to system call

SIGPIPE 13 Exit wite on a pipe with no one to read it
SIGALRM 14 Exit al arm cl ock

SIGTERM 15 Exit software term nation signal from kill
SIGUSR1 16 Exit user defined signal 1

SIGUSR2 17 Exit user defined signal 2

SIGCLD 18 Ignore child status change

SIGCHLD 18 Ignore child status change alias

SIGPWR 19 Ignore power-fail restart

SIGWINCH 20 Ignore wi ndow si ze change

SIGURG 21 Ignore urgent socket condition

SIGPOLL 22 Exit pol I abl e event occurred

SIGIO 22 Exit socket 1/0O possible

SIGSTOP 23 Stop stop (cannot be caught or ignored)
SIGTSTP 24 Stop user stop requested fromtty
SIGCONT 25 Ignore stopped process has been continued
SIGTTIN 26 Stop background tty read attenpted
SIGTTOU 27 Stop background tty wite attenpted
SIGVTALRM 28 Exit virtual timer expired

SIGPROF 29 Exit profiling timer expired

SIGXCPU 30 Core exceeded cpu limt

SIGXFSZ 31 Core exceeded file size limt
SIGWAITINGT 32 Ignore process's |Iwps are bl ocked

Appendix C Implementation-Defined ISO/IEC C Behavior

C-15

C-16

(7.7.1.1) The default handling and the handling at program startup for
each si gnal recognized by the signal function:

See above.

(7.7.1.1) If the equivalent of si gnal (si g, SI G _DFL); is not
executed prior to the call of a signal handler, the blocking of the signal
that is performed:

The equivalent of si gnal (si g, SI G_DFL) is always executed.

(7.7.1.1) Whether the default handling is reset if the SI G LL signal is
received by a handler specified to the signal function:

Default handling is not reset in SI G LL.

(7.9.2) Whether the last line of a text stream requires a terminating
new-line character:

The last line does not need to end in a newline.

(7.9.2) Whether space characters that are written out to a text stream
immediately before a new-line character appear when read in:

All characters appear when the stream is read.

(7.9.2) The number of null characters that may be appended to data
written to a binary stream:

No null characters are appended to a binary stream.

(7.9.3) Whether the file position indicator of an append mode stream is
initially positioned at the beginning or end of the file:

The file position indicator is initially positioned at the end of the file.

C User’'s Guide * May 2003

(7.9.3) Whether a write on a text stream causes the associated file to be
truncated beyond that point:

A write on a text stream does not cause a file to be truncated beyond that point
unless a hardware device forces it to happen.

(7.9.3) The characteristics of file buffering:

Output streams, with the exception of the standard error stream (st der r), are by
default-buffered if the output refers to a file, and line-buffered if the output refers to
a terminal. The standard error output stream (st derr) is by default unbuffered.

A buffered output stream saves many characters, and then writes the characters as a
block. An unbuffered output stream queues information for immediate writing on
the destination file or terminal immediately. Line-buffered output queues each line
of output until the line is complete (a newline character is requested).

(7.9.3) Whether a zero-length file actually exists:

A zero-length file does exist since it has a directory entry.

(7.9.3) The rules for composing valid file names:

A valid file name can be from 1 to 1,023 characters in length and can use all
character except the characters nul I and 7/ (slash).

(7.9.3) Whether the same file can be open multiple times:

The same file can be opened multiple times.

(7.9.4.1) The effect of the r enove function on an open file:

The file is deleted on the last call which closes the file. A program cannot open a file
which has already been removed.

(7.9.4.2) The effect if a file with the new name exists prior to a call to the
r enane function:

If the file exists, it is removed and the new file is written over the previously existing
file.

Appendix C Implementation-Defined ISO/IEC C Behavior C-17

C.1.15

(7.9.6.1) The output for % conversion in the f pri nt f function:

The output for %p is equivalent to %x.

(7.9.6.2) The input for %p conversion in the f scanf function:

The input for %p is equivalent to %x.

(7.9.6.2) The interpretation of a - character that is neither the first nor
the last character in the scan list for %4 conversion in the f scanf
function:

The - character indicates an inclusive range; thus, [0- 9] is equivalent to
[0123456789] .

Locale-Specific Behavior (G.4)

(7.12.1) The local time zone and Daylight Savings Time:

The local time zone is set by the environment variable TZ.

(7.12.2.1) The era for the cl ock function

The era for the clock is represented as clock ticks with the origin at the beginning of
the execution of the program.

The following characteristics of a hosted environment are locale-specific:

(5.2.1) The content of the execution character set, in addition to the
required members:

Locale-specific (no extension in C locale).

(5.2.2) The direction of printing:

Printing is always left to right.

C-18 C User's Guide « May 2003

(7.1.1) The decimal-point character:

Locale-specific (“.” in C locale).

(7.3) The implementation-defined aspects of character testing and case

mapping functions:

Same as 4.3.1.

(7.11.4.4) The collation sequence of the execution character set:

Locale-specific (ASCII collation in C locale).

(7.12.3.5) The formats for time and date:
Locale-specific. Formats for the C locale are shown in the tables below.

The names of the months are:

TABLE C-9 Names of Months

January May September
February June October

March July November
April August December

The names of the days of the week are:

TABLE C-10 Days and Abbreviated Days of the Week

Days Abbreviated Days

Sunday Thursday Sun Thu
Monday Friday Mon Fri
Tuesday Saturday Tue Sat
Wednesday Wed

The format for time is:

%H: oM US

Appendix C Implementation-Defined ISO/IEC C Behavior

C-19

The format for date is:
% vd/ %y

The formats for AM and PM designation are: AM PM

C-20 C User's Guide « May 2003

APPENDIX D

Supported Features of C99

This appendix lists the supported features of the ISO/IEC 9899:1999, Programming
Language - C standard. This appendix also provides discussions and examples for
some of these supported features. For more information on the supported features
not discussed in this appendix, see http://forte.sun.com/slscc/index.html .

The - xc99 flag controls compiler recognition of the implemented features. For more
information on the syntax of - xc99, see “- xc99[=0]" on page A-40.

Note — Though the compiler defaults to supporting the features of C99 listed below,
standard headers provided by Solaris software in / usr/i ncl ude do not yet
conform with the 1999 ISO/IEC C standard. If error messages are encountered, try
using - xc99=%one to obtain the 1990 ISO/IEC C standard behavior for these
headers.

= Sub-clause 6.2.5 _Bool
= Sub-clause 6.2.5 _Complex type

This release supports a partial implementation of _Complex. You must link with
-1 cpl xsupp on the Solaris 7 operating environment, the Solaris 8 operating
environment, and the Solaris 9 operating environment.

= Sub-clause 6.3.2.1 Conversion of arrays to pointers not limited to lvalues
= Sub-clause 6.4.1 Keywords

= Sub-clause 6.4.2.2 Predefined identifiers

= Sub-clause 6.4.4.2 Hexadecimal floating-point literals
Sub-clause 6.4.9 Comments

Sub-clause 6.5.2.5 Compound literals

Sub-clause 6.7.2 Type specifiers

Sub-clause 6.7.2.1 Structure and union specifiers
Sub-clause 6.7.3 Type Qualifier

Sub-clause 6.7.4 Function specifiers

Sub-clause 6.7.5.2 Array declarator

= Sub-clause 6.8.2 Compound statement

= Sub-clause 6.8.5 Iteration statements

D-1

= Sub-clause 6.10.3 Macro replacement

= Sub-clause 6.10.6 STDC pragmas

= Sub-clause 6.10.8 _ STDC_IEC_559 and _ STDC_IEC_559 COMPLEX macros
= Sub-clause 6.10.9 Pragma operator

D.1 Idempotent Qualifiers

6.7.3 Type qualifiers:

If the same qualifier appears more than once in the same specifier-qualifier-list,
either directly or through one or more typedefs, the behavior is the same as when
the type qualifier appears only once.

In C90, the following code would cause an error:

%exanpl e cat test.c

const const int a;

int main(void) {
return(0);

}

%exanpl e cc -xc99=%one test.c
"test.c", line 1: invalid type conbination

However, with C99, the C compiler accepts multiple qualifiers.

%exanpl e cc -xc99 test.c
Y%exanpl e

D.2 _Pragma

A unary operator expression of the form: _Pragma (string-literal) is processed as
follows:

= The L prefix of the string literal is deleted, if it is present.
= The leading and trailing double-quotes are deleted.
= Each escape sequence ' is replaced by a double-quote.

D-2 C User's Guide « May 2003

= Each escape sequence \\ is replaced by a single backslash.

The resulting sequence of preprocessing tokens are processed as if they were the
preprocessor tokens in a pragma directive.

The original four preprocessing tokens in the unary operator expression are
removed.

__Pragma offers an advantage over #pr agma in that _Pr agnma can be used in a macro
definition.

_Pragma("string") behaves exactly the same as #pragma string. Consider the
following example. First, the example’s source code is listed and then the example’s
source is listed after the preprocessor has made it’s pass.

exanpl e% cat test.c

#i ncl ude <onp. h>
#i ncl ude <stdio. h>

#define Pragma(x) _Pragma(#x)
#define OWP(directive) Pragnma(onp directive)

voi d main()

{
onp_set _dynamni c(0);
onp_set_numthreads(2);
OWP(parallel)
{
printf("Hellol\n");
}

}

exanmpl e% cc test.c -P -xopennp -x03
exanpl e% cat test.i

Appendix D Supported Features of C99 D-3

Here’s the source after the preprocessor has finished.

voi d main()

{
onp_set _dynami c(0);
onp_set _num_t hreads(2);
pragma onp parallel
{

printf("Hellow\n");

}

}

exanmpl e% cc test.c -xopennmp -->
exanpl e% . / a. out

Hel | o!
Hel | o!
exanpl e%

D.3 Mixed Declarations and Code

6.8.2 Compound statement

The C compiler now accepts mixing type declarations with executable code as
shown by the following example:

#i ncl ude <stdio. h>

int main(voi d){
int nunmlL = 3;
printf("%\n", nunil);

int nun = 10;
printf("%\n", nung);
return(0);

D-4 C User's Guide « May 2003

D.4

St at i ¢ and Other Type Qualifiers
Allowed in Array Declarators

6.7.5.2 Array declarator:

The keyword st at i ¢ can now appear in the Array declarator of a parameter in a
function declarator to indicate that the compiler can assume at least that many
elements will be passed to the function being declared. Allows the optimizer to
make assumptions about which it otherwise could not determine.

The C compiler adjusts array parameters into pointers therefore voi d f oo(i nt
a[]) isthe same as voi d foo(int *a).

If you specify type qualifiers such as voi d foo(int * restrict a);,theC
compiler expresses it with array syntax voi d foo(i nt a[restrict]); whichis
essentially the same as declaring a restricted pointer.

The C compiler also uses a st at i ¢ qualifier to preserve information about the array
size. For example, if you specify voi d f oo(i nt a[10]) the compiler still expresses
itasvoi d foo(int *a). Use astatic qualifier as follows, voi d f oo(i nt
a[static 10]), to let the compiler know that pointer a is not NULL and that it
provides access to an integer array of at least ten elements.

D.5

Flexible Array Members

6.7.2.1 Structure and union specifiers

Also known as the “struct hack”. Allows the last member of a struct to be an array
of zero length, such asi nt foo[]; Such a struct is commonly used as the header to
access malloced memory.

For example, in this structure, struct s { int n; double d[]; } S;,the
array, d, is an incomplete array type. The C compiler does not count any memory
offset for this member of S. In other words, si zeof (struct s) is the same as the
offset of S. n.

d can be used like any, ordinary, array-member. S. d[10] = 0;.

Appendix D Supported Features of C99 D-5

D-6

Without the C compiler’s support for an incomplete array type, you would define
and declare a structure as the following example, called Dynarmni cDoubl e, shows:

typedef struct { int n; double d[1];) Dynam cDoubl e;

Note that the array d is not an incomplete array type and is declared with one
member.

Next, you declare a pointer dd and allocate memory thus:

Dynani cDoubl e *dd = nmal | oc(si zeof (Dynani cDoubl e) +(act ual _si ze-
1) *si zeof (doubl e)) ;

You then store the size of the offset in S. n thus:

dd->n = actual _si ze;

Because the compiler supports incomplete array types, you can achieve the same
result without declaring the array with one member:

typedef struct { int n; double d[]; } Dynani cDoubl e;

You now declare a pointer dd and allocate memory as before, except that it is no
longer necessary to subtract one from actual_size:

Dynam cDoubl e *dd = mal |l oc (sizeof (Dynani cDoubl e) +
(actual _size)*si zeof (doubl e));

The offset is stored, as before, in S.n thus:

dd->n = actual _size;

C User’s Guide * May 2003

D.6 Declarations Using Implicit i nt

6.7.2 Type specifiers:

At least one type specifier shall be given in the declaration specifiers in each
declaration.

The C compiler now issues warnings on any implicit i nt declaration as in the
following example:

exanpl e% nore test.c
volatile i;
const foo()
{ .
return i;
}
exanpl e% cc test.c
"test.c", line 1: warning: no explicit type given
"test.c", line 3: warning: no explicit type given
exampl e%

D.7 Disallowed Impliciti nt and Implicit
Function Declarations

Implicit declarations are no longer allowed in the 1999 C standard as they were in
the 1990 C standard. Previous versions of the C compiler issued warning messages
about implicit definitions only with - v (verbose). These messages and new
additional warnings about implicit definitions, are now issued whenever identifiers
are implicitly defined as i nt or functions.

This change is very likely to be noticed by nearly all users of this compiler because it
can lead to a large number of warning messages. Common causes include a failure
to include the appropriate system header files that declare functions being used, like
printf which needs <st di 0. h> included. The 1990 C standard behavior of
accepting implicit declarations silently can be restored using - xc99=%one.

Appendix D Supported Features of C99 D-7

The C compiler now generates a warning for an implicit function declaration:

exampl e% cat test.c
void main()
{
printf("Hello, world/\n");
}
exampl e% cc test.c
"test.c", line 3: warning: inplicit function declaration: printf
exampl e%

D.8 Declaration in f or -Loop Statement

6.8.5 Iteration statements

The C compiler now accepts a type declaration as the first expression in a f or
loop-statement:

for (int i=0; i<10; i++){ //|oop body };

The scope of any variable declared in the initialization statement of the f or loop is
the entire loop (including controlling and iteration expressions).

D.9 C99 Keywords

6.4.1 Keywords

The C99 standard introduces the following new keywords. The compiler issues a
warning if you use these keywords as identifiers while compiling with

- xc99=%one. Without - xc99=%one the compiler issues a warning or error
messages for use of these keywords as identifiers depending on the context.

= inline

= _|lmaginary
= _Conpl ex

= _Bool

= restrict

D-8 C User's Guide « May 2003

D.9.1

Using the restri ct Keyword

An object that is accessed through a restri ct qualified pointer requires that all
accesses to that object use, directly or indirectly, the value of that particular
restrict qualified pointer. Any access to the object through any other means may
result in undefined behavior. The intended use of the r est ri ct qualifier is to allow
the compiler to make assumptions that promote optimizations.

See Section 3.8.2, “Restricted Pointers” on page 3-21 for examples and an
explanation on how to use the restri ct qualifier effectively.

D.10

__func__ Support

6.4.2.2 Predefined identifiers

The compiler provides support for the predefined identifier _ func__.__ func__ is
defined as an array of chars which contains the name of the current function in
which __func__ appears.

D.11

Macros With a Variable Number of
Arguments

6.10.3 Macro replacement

The C compiler accepts #def i ne preprocessor directives of the following form:

#define identifier (...) replacement_Iist
#define identifier (identifier_list, ...) replacenment_list

If the identifier_list in the macro definition ends with an ellipses, it means that there
will be more arguments in the invocation than there are parameters in the macro
definition, excluding the ellipsis. Otherwise, the number of parameters in the macro
definition, including those arguments which consist of no preprocessing tokens,
matches the number of arguments. Use the identifier __ VA ARGS__ in the

Appendix D Supported Features of C99 D-9

replacement list of a #def i ne preprocessing directive which uses the ellipsis
notation in its arguments. The following example demonstrates the variable
argument list macro facilities.

#define debug(...) fprintf(stderr, _ VA ARGS)

#define showist(...) puts(#__VA ARGS)

#define report(test, ...) ((test)?puts(#test):\
printf(__VA ARGS_))

debug(“Fl ag”);

debug(“X = %\ n”, Xx);

show i st (The first, second, and third itens.);

report(x>y, “x is % but yis %", x, y);

which results in the following:

fprintf(stderr, “Flag”);

fprintf(stderr, “X = %\ n", x);

puts(“The first, second, and third items.”);
((x>y)?puts(“x>y"):printf(“x is %l but y is %", x, y));

D.12 Variable Length Arrays (VLA):

6.7.5.2 Array declarators

VLAs are allocated on the stack as if by calling the al | oca function. Their lifetime,
regardless of their scope, is the same as any data allocated on the stack by calling
al | oca; until the function returns. The space allocated is freed when the stack is
released upon returning from the function in which the VLA is allocated.

D-10 C User's Guide » May 2003

D.13

Not all constraints are yet enforced for variable length arrays. Constraint violations
lead to undefined results.

#i ncl ude <stdi o. h>
voi d foo(int);

int main(void) {
foo(4);
return(0);

}

void foo (int n) {

int i;

int a[n];

for (i =0
afi] =n-i;
for (i =n-1; i >=0; i--)

;1o<on; i+

printf("a[%] = %\n", i, a[i]);

}

exampl e% cc test.c
exanmpl e% a. out

a[3] =1
a[2] =2
a[l1l] =3
a[0] =4

| nl 1 ne Specifier for Static Functions

6.7.4 Function specifiers

The C99 function-specifier i nl i ne has been added. i nl i ne is fully functional for
functions with internal linkage. For functions defined with external linkage use of
the i nl i ne function-specifier creates an inline definition only, no external definition
of the function is created. Thus pointers to inline functions with external linkage are
unique to each translation unit and will not compare equal.

Appendix D Supported Features of C99 D-11

D.14 Commenting Code With //

6.4.9 Comments

The characters // introduce a comment that includes all multibyte characters up to,
but not including, the next new-line character except when the // characters appear
within a character constant, a string literal, or a comment.

D-12 C User's Guide » May 2003

APPENDIX E

Performance Tuning (SPARC)

This appendix describes performance tuning on SPARC platforms.

E.1l Limits

Some parts of the C library cannot be optimized for speed, even though doing so
would benefit most applications. Some examples:

Integer arithmetic routines—Current SPARC V8 processors support integer
multiplication and division instructions. However, if standard C library routines
were to use these instructions, programs running on V7 SPARC processors would
either run slowly due to kernel emulation overhead, or might break altogether.
Hence, integer multiplication and division instructions cannot be used in the
standard C library routines.

Doubleword memory access—Block copy and move routines, such as menmove()
and bcopy(), could run considerably faster if they used SPARC doubleword load
and store instructions (I dd and st d). Some memory-mapped devices, such as
frame buffers, do not support 64-bit access; nevertheless, these devices are
expected to work correctly with menmove() and bcopy() . Hence, | dd and std
cannot be used in the standard C library routines.

Memory allocation algorithms—The C library routines mal | oc() and free()
are typically implemented as a compromise between speed, space, and
insensitivity to coding errors in old UNIX programs. Memory allocators based on
“buddy system” algorithms typically run faster than the standard library version,
but tend to use more space.

E-1

E.2 |

The library | i bf ast . a provides speed-tuned versions of standard C library
functions. Because it is an optional library, it can use algorithms and data
representations that may not be appropriate for the standard C library, even though
they improve the performance of most applications.

E-2

| bf ast. a Library

Use profiling to determine whether the routines in the following checklist are
important to the performance of your application, then use this checklist to decide
whether | i bf ast . a benefits the performance:

Do use | i bf ast . a if performance of integer multiplication or division is
important, even if a single binary version of the application must run on both V7
and V8 SPARC platforms. The important routines are: . nul , . di v, . rem . unul ,
.udiv,and . urem

Do use | i bf ast . a if performance of memory allocation is important, and the
size of the most commonly allocated blocks is close to a power of two. The
important routines are: mal | oc(),free(),real l oc().

Do use | i bf ast . a if performance of block move or fill routines is important. The
important routines are: bcopy(), bzero(), mencpy(), nrermove(), and
nenset ().

Do not use | i bf ast . a if the application requires user mode, memory-mapped
access to an 170 device that does not support 64-bit memory operations.

Do not use | i bf ast . a if the application is multithreaded.

When linking the application, add the option - | f ast to the cc command used at
link time. The cc command links the routines in | i bf ast . a ahead of their
counterparts in the standard C library.

C User’s Guide May 2003

APPENDIX F

The Differences Between K&R
Sun Cand Sun ISO C

This appendix describes the differences between the previous K&R Sun C and Sun

I1ISO C.

For more information see Section 1.1, “Standards Conformance” on page 1-1.

F.1 K&R Sun C Incompatibilities With Sun

ISO C

TABLEF-1 K&R Sun C Incompatibilities With Sun I1ISO C

Topic

Sun C (K&R)

Sun ISO C

envp argument
to mai n()

Keywords

extern and
static
functions
declarations
inside a block

Identifiers

Allows envp as third argument to
mai n() .

Treats the identifiers const ,
vol ati | e,and si gned as ordinary
identifiers.

Promotes these function
declarations to file scope.

Allows dollar signs ($) in
identifiers.

Allows this third argument;
however, this usage is not
strictly conforming to the ISO C
standard.

const, vol atil e, and si gned
are keywords.

The 1SO standard does not
guarantee that block scope
function declarations are
promoted to file scope.

$ not allowed.

F-1

TABLE F-1

K&R Sun C Incompatibilities With Sun ISO C (Continued)

Topic

Sun C (K&R)

Sun ISO C

I ong fl oat
types

Multi-character
character-
constants

Integer constants

Assignment
operators

Unsigned
preserving
semantics for
expressions

Single/double
precision
calculations

Name spaces of
struct/union
members

A cast as an
| val ue

Implied i nt
declarations

Accepts | ong fl oat declarations
and treats these as doubl e(s).

int nc = 'abcd;
yields:

abcd

Accepts 8 or 9 in octal escape
sequences.

Treats the following operator pairs
as two tokens, and as a
consequence, permits white space
between them:

*= /= %, +=, -5,
>>= &=, "= | =

<<=,

Supports unsigned preserving, that
is, unsi gned char/shorts are
converted into unsi gned i nt (s).

Promotes the operands of floating
point expressions to doubl e.
Functions which are declared to
return f | oat s always promote
their return values to doubl es.

Allows st ruct, uni on, and
arithmetic types using member
selection operators (. ', '->') to
work on members of other
struct (s) or uni ons.

Supports casts as | val ue(s). For
example:

(char *)ip = &char;

Supports declarations without an
explicit type specifier. A declaration
such as num is treated as implied
i nt. For example:

num /*num inplied as an
int*/
int nun; /* nung

explicitly*/
/* declared an
int */

Does not accept these
declarations.
int nc =
yields:
dcha

"abcd';

Does not accept 8 or 9 in octal
escape sequences.

Treats them as single tokens, and
therefore disallows white space
in between.

Supports value-preserving, that
is, unsi gned char /short (s)
are converted into i nt (s).

Allows operations on f | oat s to
be performed in single precision
calculations.

Allows f | oat return types for
these functions.

Requires that every unique
st ruct Zuni on have its own
unigue name space.

Does not support this feature.

The num declaration (without
the explicit type specifier i nt) is
not supported, and generates a
syntax error.

F-2 CUser's Guide « May 2003

TABLEF-1 K&R Sun C Incompatibilities With Sun ISO C (Continued)
Topic Sun C (K&R) Sun ISO C
Empty Allows empty declarations, such as: Except for tags, disallows empty

declarations

Type specifiers
on type
definitions

Types allowed on
bit fields

Treatment of tags
in incomplete
declarations

Mismatch on

st ruct/ uni on/
enum
declarations

Labels in
expressions

switch
condition type

Syntax of
conditional
inclusion
directives

int;

Allows type specifiers such as
unsi gned, short, | ong on

t ypedef s declarations. For
example:

typedef short snall;
unsi gned small x;

Allows bit fields of all integral

types, including unnamed bit fields.

The ABI requires support of
unnamed bit fields and the other
integral types.

Ignores the incomplete type
declaration. In the following
example, f 1 refers to the outer
struct:

struct x { } s1;
{struct x; struct y {struct
x f1; } s2; struct x

¢ . . hi

Allows a mismatch on the
struct/ enum uni on type of a tag
in nested st ruct/ uni on
declarations. In the following
example, the second declaration is
treated as a struct:

struct x {. . }s1;
{union x s2;. . }

Treats labels as (voi d *)
| val ues.

Allows f | oat (s) and doubl e(s) by
converting them to i nt (s).

The preprocessor ignores trailing
tokens after an #el se or #endi f
directive.

declarations.

Does not allow type specifiers to
modify t ypedef declarations.

Supports bit-fields only of the
type i nt, unsi gned int and
signed i nt. Other types are
undefined.

In an ISO-conforming
implementation, an incomplete
struct or uni on type specifier
hides an enclosing declaration
with the same tag.

Treats the inner declaration as a
new declaration, hiding the
outer tag.

Does not allow labels in
expressions.

Evaluates only integral types
(int, char, and enumerated)
for the switch condition type.

Disallows such constructs.

Appendix F The Differences Between K&R Sun C and Sun ISO C

F-3

TABLE F-1

K&R Sun C Incompatibilities With Sun ISO C (Continued)

Topic

Sun C (K&R)

Sun ISO C

Token-pasting
and the ##
preprocessor
operator

Preprocessor
rescanning

t ypedef names
in formal
parameter lists

Implementation-
specific
initializations of
aggregates

Comments
spanning
i ncl ude files

Does not recognize the ## operator.
Token-pasting is accomplished by
placing a comment between the two
tokens being pasted:

#defi ne PASTE(A B) A/ *any
conmment */ B

The preprocessor recursively
substitutes:

#define F(X) X(arg)
F(F)

yields

arg(arg)

You can use t ypedef names as
formal parameter names in a
function declaration. “Hides” the
t ypedef declaration.

Uses a bottom-up algorithm when
parsing and processing partially
elided initializers within braces:
struct{ int a[3]; int b; }\
wl={{1},2};

yields

si zeof (w) =16

w 0].a=1,0,0

w 0] . b=2

Allows comments which start in an
#i ncl ude file to be terminated by
the file that includes the first file.

Defines ## as the preprocessor
operator that performs
token-pasting, as shown in this
example:

#define PASTE(A, B) A##B
Furthermore, the Sun ISO C
preprocessor doesn’t recognize
the Sun C method. Instead, it
treats the comment between the
two tokens as white space.

A macro is not replaced if it is
found in the replacement list
during the rescan:

#define F(X)X(arg)

F(F)

yields:

F(arg)

Disallows the use of an identifier
declared as a t ypedef name as
a formal parameter.

Uses a top-down parsing
algorithm. For example:

struct{int a[3];int
w1={{1},2};

yields

si zeof (w) =32

w 0].a=1,0,0

w 0] . b=0

w 1] .a=2,0,0

w 1] . b=0

b; }\

Comments are replaced by a
white-space character in the
translation phase of the
compilation, which occurs before
the #i ncl ude directive is
processed.

F-4 C User's Guide « May 2003

TABLEF-1 K&R Sun C Incompatibilities With Sun ISO C (Continued)
Topic Sun C (K&R) Sun ISO C
Formal Substitutes characters within a The character is not replaced:
parameter character constant when it matches #define charize(c) 'c'
substitution the replacement list macro: chari ze(2)
V\r/:thi” a #define charize(c)'c' yields:
character chari ze(2) -
constant .
yields:
F o
Formal The preprocessor substitutes a The # preprocessor operator
parameter formal parameter when enclosed should be used:

substitution
within a string
constant

Preprocessor
built into the
compiler
“front-end”

Line
concatenation
with backslash

Trigraphs in
string literals

asmkeyword

Linkage of
identifiers

within a string constant:
#define stringize(str)
‘str'

stringi ze(fo0)

yields:

"fo0”

Compiler invokes cpp(1) followed
by all the other components of the
compilation system depending on
the options specified.

Does not recognize the backslash
character in this context.

Does not support this ISO C
feature.

asmis a keyword.

Does not treat uninitialized st ati ¢
declarations as tentative
declarations. As a consequence, the
second declaration will generate a
'redeclaration’ error, as in:

static int i = 1;

static int i;

#define stringize(str)
"str!

stringi ze(foo)

yields:

"str”

The ISO C translation phases 1-4,
which cover the processing of
preprocessor directives, is built
directly into acomp, so cpp is not
directly invoked during
compilation, except in - Xs
mode.

Requires that a newline
character immediately preceded
by a backslash character be
spliced together.

asmis treated as an ordinary
identifier.

Treats uninitialized st ati c
declarations as tentative
declarations.

Appendix F The Differences Between K&R Sun C and SunISOC F-5

TABLE F-1

K&R Sun C Incompatibilities With Sun ISO C (Continued)

Topic

Sun C (K&R)

Sun ISO C

Name spaces

| ong doubl e
type

Floating point
constants

Unsuffixed
integer constants
can have
different types

Wide character
constants

"\a' and'\x'

Concatenation of
string literals

Wide character
string literal
syntax

Pointers:
voi d * versus
char *

Unary plus
operator

Function
prototypes—
ellipses

Type definitions

Distinguishes only three:

struct/ uni on/ enumtags,
members of st ruct/ uni on/ enum
and everything else.

Not supported.

The floating point suffixes, f, |, F,
and L, are not supported.

The integer constant suffixes u and
U are not supported.

Does not accept the ISO C syntax
for wide character constants, as in:

wchar _t w = L'x’;

Treats them as the characters 'a' and

X

Does not support the ISO C
concatenation of adjacent string
literals.

Does not support the ISO C wide
character, string literal syntax
shown in this example:

wchar _t *ws = L"hello";

Supports the ISO C voi d * feature.

Does not support this ISO C
feature.

Not supported.

Disallows t ypedef s to be
redeclared in an inner block by
another declaration with the same
type name.

Recognizes four distinct name
spaces: label names, tags (the
names that follow the keywords
struct, union orenum,
members of

struct/ uni on/ enum and
ordinary identifiers.

Allows | ong doubl e type
declaration.

Supports this syntax.

Treats ' \a' and '\ x' as special
escape sequences.

Supports this syntax.

ISO C defines the use of ellipses
"..." to denote a variable
argument parameter list.

Allows t ypedef s to be
redeclared in an inner block by
another declaration with the
same type name.

F-6 C User's Guide « May 2003

TABLEF-1 K&R Sun C Incompatibilities With Sun ISO C (Continued)

Topic Sun C (K&R) Sun ISO C
Initialization of Does not support the initialization Treats the initialization of
ext er nvariables of variables explicitly declared as variables explicitly declared as
extern. ext er n, as definitions.
Initialization of Does not support the ISO C
aggregates initialization of unions or automatic
structures.
Prototypes Does not support this ISO C
feature.
Syntax of Recognizes only those directives ISO C allows leading
preprocessing with a # in the first column. white-space characters before a #
directive directive.
The # Does not support the ISO C #
preprocessor preprocessor operator.
operator
#error Does not support this ISO C
directive feature.
Preprocessor Supports two pragmas, Does not specify its behavior for
directives unknown_control _fl owand unrecognized pragmas.

makes_regs_i nconsi st ent
along with the #i dent directive.
The preprocessor issues warnings
when it finds unrecognized
pragmas.

Predefined macro These ISO C-defined macro names
names are not defined:
__STDC__
__DATE__
_TINE__
__LINE__

F.2 Keywords

The following tables list the keywords for the ISO C Standard, the Sun ISO C
compiler, and the Sun C compiler.

Appendix F The Differences Between K&R Sun C and SunI1ISOC F-7

The first table lists the keywords defined by the ISO C standard.

TABLEF-2 ISO C Standard Keywords

_Bool ! _Conpl ex? _I magi nary! aut o

br eak case char const
conti nue def aul t do doubl e

el se enum extern f | oat

for goto if inlinel
int | ong register restrict?
return short si gned si zeof
static struct switch t ypedef
uni on unsi gned voi d vol atile
whi | e

1 Defined with - xc99=%al | only.

The C compiler also defines one additional keyword, asm. However, asm is not
supported in - Xc mode.

Keywords in Sun C are listed below.

TABLEF-3 Sun C (K&R) Keywords

asm auto br eak case
char conti nue def aul t do

doubl e el se enum extern
fl oat for fortran goto

if int | ong register
return short si zeof static
struct switch t ypedef uni on
unsi gned voi d whil e

F-8 C User's Guide « May 2003

APPENDIX G

Implementation-Specific
Information of OpenMP

This appendix details the implementation specific details of OpenMP C and C++
Application Program Interface Version 1.0 - October 1998 (available from:
http: // ww. opennp. or g)

In the absence of an explicitly defined OMP_SCHEDULE environment variable, this
implementation uses static scheduling for loops with schedul e(runti ne).

In the absence of an explicitly defined schedule clause, the default is static
scheduling.

If you do not explicitly specify the number of threads in a team through either the
opm set _num_t hr eads function or the OMP_NUM_THREADS environment
variable, the default is 1.

If you do not explicitly specify whether dynamic adjustment of threads is enabled
through either the omp_set _dynani ¢ function or the OVP_DYNAM C
environment variable, the default is enabled dynamic adjustment.

Nested parallelism is not supported and is disabled by default.

For a complete summary of the OpenMP Fortran 95, C, and C++ application
program interface (API) for building multiprocessing applications, see the OpenMP
API User’s Guide.

G-1

G-2 CUser's Guide » May 2003

Index

SYMBOLS
, A-30
#assert, 2-9, A-10
#defi ne, A-11
#i ncl ude
adding header files with, 2-25
#pragma, 2-10 to 2-21, 6-2 to 6-5
.profile filename extension, A-79
// comment indicators
in C99, D-12
with - xCC, A-40
_ _asmkeyword, 2-23
__unane -s’ _'uname -r’, 2-22,5-21, A-12
__BULT_IN_ VA ARG | NCR, 2-22,5-21, A-12

__DATE__, C-12
_ func__, D-9
__global, 2-3
__hidden, 2-3

1386, 2-22,5-21, A-12

__li nt predefined token, 5-21
___MATHERR_ERRNO _DONTCARE, A-17
__PRAGVA_REDEFI NE_EXTNAME, 2-22
__RESTRI CT, 2-22,5-21, A-12
__sparc, 2-22,5-21, A-12
__sparcv9, 5-15,5-21, A-12

__sun, 2-22,5-21, A-12
__SUNPRO_C, 2-22,5-21, A-12
__SVR4, 2-22,5-21, A-12

__synbolic, 2-3
__thread, 2-4
__TIME__, C-12

__unix, 2-22,5-21, A-12
_OPENMP preprocessor token, A-69

_Pragma, D-2
_REENTRANT- | t hr ead, A-25
_Restrict, 2-23

A
accessible documentation, Vvi—xxxvi
aconp (C compiler), 1-9
alias disambiguation, 6-1to 6-18
alignment of structures, C-8
any level alias disambiguation, A-32
arithmetic conversions, 2-8 to 2-9
array
declarators per C99, D-5
incomplete array types per C99, D-5
_ _asmkeyword, 2-23
assembler, 1-9
assembly in source, 2-23
assembly language templates, A-95
#assert, 2-9, A-10

B
basi c level alias disambiguation, A-32
basic mode of | i nt, 5-1
behavior, implementation-defined, C-1to C-20
Binary Interface Descriptors (BIDS), A-65
binding
static vs. dynamic, A-11
bit-field
as impacted by transition to ISO C, 7-38
portability of constants assigned to, 5-27

Index-1

promotion of, 7-11 -errshort, A-8, A-14

treating as signed or unsigned, C-9 -errtags, A-8, A-14
bits, in execution character set, C-3 -errwarn, A-8, A-15
bitwise -fast, A-2, A-16
operations on signed integers, C-5 -fd, A-6, A-18
buffering, C-17 -flags, A-18
-fnonstd, A-4, A-18
-fns
as part of - f ast expansion, A-16
C grouped by functionality, A-4
C compiler syntax, A-18
changing default dirs searched for libraries, A-2 -fprecision, A-4, A-19
compilation modes and dependencies, 2-22 -fround, A-4, A-19
compiling a program, A-1to A-2 -fsinple
components, 1-9 as part of - f ast expansion, A-16
driver call to incremental linker, 4-2 grouped by functionality, A-4
options passed to linker, A-97 syntax, A-20
options summary table, A-2 -fsingle
C programming tools, 1-9 as part of - f ast expansion, A-16
_ _STDC_ _ value under - X, A-30 grouped by functionality, A-4
C99 syntax, A-21
// comment indicators, D-12 -fstore, A-4, A-21
__func__ support, D-9 -ftrap
_Pragma, D-2 as part of - f ast expansion, A-16
array declarator, D-5 grouped by functionality, A-4
flexible array members, D-5 syntax, A-21
idempotent qualifiers, D-2 -G A9, A-22
implicit function declaration in, D-7 -g, A-8, A-22
i nl i ne function specifier, D-11 -H A-6, A-22
list of keywords, D-8 -h, A-9, A-23
mixed declarations and code, D4 -1, A-6, A-23
type declaration in f or loop, D-8 -i, A-9, A-24
type specifier requirement, D-7 -keept mp, A-7, A-24
variable length arrays, D-10 -KPI C, A-24
case statements, C-10 - Kpi c, A-24
cc compiler options, A-1to A-96 -L, A-9, A-24
-#, A-7, A-10 -1, A9, A-24
- ###, A-7, A-10 -nt, A-9, A-25
-A A-5 A-10 -m salign, A-25
-B, A-8, A-11 -m salign2, A-25
-C A5 A-11 -nr, A-9, A-25
-c, A-7,A-11 -, A-5 A-25
-D, A-6, A-11 -native, A-25
-d, A-8, A-12 -nof store
-dalign as part of - f ast expansion, A-16
syntax, A-12 grouped by functionality, A-4
-E, A-6, A-13 syntax, A-26
-errfm, A-8, A-13 -0 A-26
-erroff, A-8, A-13 -0, A-7, A-26

Index-2 C User's Guide « May 2003

-P, A-6, A-26 syntax, A-49
-p, A-2, A-26 -xdryrun, A-50
-Q A-9, A-26 -xe, A-8, A-50
-qp, A-27 -xexplicitpar, A-5 A-50
-R A9, A-27 - xF, A-3, A-51
-S, A-7, A-27 - xhel p, A-7, A-52
-s, A-8, A-27 - xhwepr of , A-3, A-52
-U, A-6, A-27 -xi | dof f, A-9, A-53
-V, A-7, A-28 -xi | don, A-9, A-54
-v, A-8, A-28 -xinline, A-3, A-54
-W A-7, A-29 - Xi po, A-3, A-55
-w, A-8, A-29 - Xj obs, A-3, A-7, A-57
- X, A-6, A-30 - x| dscope, 2-3, A-9, A-57
-x386, A-2, A-30 -xli bm eee, A-5, A-59
- X486, A-2, A-31 -xlibml
-xa, A-31 as part of - f ast expansion, A-17
-xalias_| evel grouped by functionality, A-3
as part of - f ast expansion, A-16 syntax, A-59
examples, 6-8 to 6-18 -xlic_lib, A-3, A-59
explanation, 6-1 -xlicinfo, A-2, A-59
grouped by functionality, A-3 -xli nkopt, A-3, A-59
syntax, A-31 - xl oopi nf o, A-5, A-61
-xarch -XxM A-6, A-61
as part of - f ast expansion, A-17 - XML, A-6, A-62
grouped by functionality, A-9 - xmaxopt, A-3, A-63
syntax, A-33 -xmemal i gn
- Xxaut opar, A-5, A-39 as part of - f ast expansion, A-17
-xbuiltin grouped by functionality, A-4
as part of - f ast expansion, A-17 syntax, A-63
grouped by functionality, A-3 - xMer ge, A-9, A-62
syntax, A-40 -Xxnati veconnect, A-9, A-64
-xc99 -xnol i b, A-9, A-65
grouped by functionality, A-6 -xnol i bm I, A-3, A-9, A-66
in math conversions, 2-9 -x0
syntax, A-40 grouped by functionality, A-3
-xcache, A-9, A-41 syntax, A-66
-XCC, A-6, A-40 - xopennp, A-4, A-5, A-69
-xcg, A-9, A-42 - xP, A-6, A-70
-xchar, A-6, A-7, A-43 - xpagesi ze, A-3, A-8, A-70
-xchar _byte_order, A-4, A-44 - xpagesi ze_heap, A-3, A-8, A-71
-xcheck, A-5, A-8, A-44 - xpagesi ze_st ack, A-3, A-8, A-72
-xchi p, A-10, A-45 -xparal l el , A-5, A-72
- xcode, A-9, A-46 -xpch, A-3, A-7, A-73
-xcrossfile, A-3, A-48 -xpchst op, A-3, A-7, A-76
-xcsi, A-6, A-48 -xpentium A-3, A-76
- xdebugf or mat , A-8, A-49 - Xpg, A-6, A-76
- xdepend -xprefetch
as part of - f ast expansion, A-17 grouped by functionality, A-3
grouped by functionality, A-3, A-4 syntax, A-76

Index-3

-xprefetch_l evel , A-3, A-78 by using - f ast, A-16

-xprofile, A-3, A-78 optimizer, 1-9
-xprofile_ircache, A-3, A-81 with - xO, A-66
-xprofil e_pat hmap, A-4, A-82 comments
- xreduction, A-5, A-82 preventing removal by preprocessor, A-11
- xregs, A-10, A-83 using // by issuing - xCC, A-40
-xrestrict, A-4, A-84 using // in C99, D-12
-xs, A-8, A-84 compatibility options, A-1, A-30
-xsafe, A-4, A-84 compilers, accessing, Vi-xxxiii
- xsb, A-6, A-85 computed got o, 2-5
- xsbf ast, A-6, A-85 consistency checks by | i nt, 5-26
- xsf pconst, A-5, A-85 const, 7-17 to 7-20, 7-37
- Xspace, A-4, A-86 constants
-xstrconst, A-9, A-86 promotion of integral, 7-11
- xt ar get specific to Sun ISO C, 2-1to 2-3
grouped by functionality, A-10 conversion
syntax, A-86 integers, C-5
-xtemp, A-7, A-91 conversions, 2-8 to 2-9
-xtinme, A-7, A-93 cpp (C preprocessor), 1-9
-xtransition, A-8, A-93 cscope, 9-1t09-20
-xtrigraphs, A-7, A-93 command-line use, 9-3 to 9-4, 9-11 to 9-13
-xunrol |, A-4, A-94 editing source files, 9-2 to 9-3, 9-10 to 9-11,
-Xxustr, A-7, A-94 9-19 to 9-20
-xvect or, A-5, A-95 environment setup, 9-2 to 9-3, 9-20
-Xvi s, A-8, A-95 environment variables, 9-14
- xvpar a, A-5, A-8, A-95 searching source files, 9-1 to 9-2, 9-3, 9-4 to
-Y, A-7, A-96 9-10
- YA, A-7, A-96 See also Source Browser
-Yl, A-7, A-96 usage examples, 9-2 to 9-11, 9-15 to 9-19
-YP, A-7, A-96
-YS, A-7, A-96
-Zl'l, A-5, A-96
cg (code generator), 1-9 D
char data reordering, A-51
signedness of, A-43 data types
storage allocation for, B-1 long | ong, 2-8
character unsi gned | ong | ong, 2-8
bits in set, C-3 __DATE _, C-12
decimal point, C-19 date and time formats, C-19
mapping set, C-3 dbx tool
mu|tibyte’ shift status, C-3 disable Auto-Read for, A-84
set, collation sequence, C-19 Symbol table information for, A-22
single-character character-constant, C—10 debugger data format, A-49
source and execution of set, C-3 debugging information, removing, A-27
space, C-16 decimal-point character, C-19
testing of sets, C-13 declaration specifiers
cl ock function, C-18 __global, 2-3
code generator, 1-9 __hidden, 2-3
code optimization __synbolic, 2-3

Index-4 C User's Guide « May 2003

__thread, 2-4 SUNW MP_WARN, 3-4

declarators, C-10 TCOVDI R, A-80
default TERMas used by cscope, 9-2
compiler behavior, A-30 TZ, C-18
handling and SI G LL, C-16 VPATH as used by cscope, 9-3
locale, C-4 ERANGE, C-14
default dirs searched for libraries, A-2 errno, C-14
deferred-link messages, 4-6 error messages, C-1
#defi ne, A-11 adding prefix "error:" to, A-13
diagnostics, format, C-1 controlling length for a type mismatch, A-14
documentation index, Vi—xxxv suppressing inl i nt, 5-8
documentation, accessing, Vi—XxXV to Vi—xxxvi example messages
domain errors, math functions, C-13 full relink, 4-8
doubl e i | dversion, 4-8
storage allocation for, B-2 new working directory, 4-9
dwarf debugger-data format, A-49 out of room, 4-7
dynamic linking, A-12 running strip, 4-7

too many files changed, 4-8
executable, modifying, 4-5
expressions, grouping and evaluation in, 7-30 to
E 7-33
edit, source files, See cscope
EDI TOR, 9-2,9-19
ellipsis notation, 7-3, 7-6, 7-38

enhanced mode of | i nt, 5-1 F
environment variable f be (assembler), 1-9
EDI TORas used by cscope, 9-2,9-19 file
LANG C-4 padding by incremental linker, 4-1
LC ALL, C4 filename, .profile extension for, A-79
LC CTYPE, C-4 filesused by il d, 4-20
LD _DEBUG, 4-17 files, temporary, 2-25
LD_LI BRARY_PATH, 4-11 filtersfor | i nt, 5-32
LD LI BRARY_PATHas used by incremental final production code and incremental linker, 4-5
linker, 4-16 FIPS 160 standard, 1-1
LD LI BRARY_PATH 64, 4-17 Fix and Continue
LD_OPTI ONS, 4-17 andil d, 4-1
LD _PRELOAD, 4-17 linking, 4-1
LD_RUN_PATH, 4-17 fl oat
list of Sun specific variables, 2-25 storage allocation for, B-2
OVP_DYNAM C, 2-23, G-1 float expressions as single precision, A-21
OVP_NESTED, 2-24 floating point, C-6
OVP_NUM THREADS, 2-24, G-1 gradual underflows, 2-4
OWP_SCHEDULE, 2-24, G-1 nonstandard, A-18
PARALLEL, 2-24, 3-3, A-39 nonstop, 2-4
STACKSI ZE, 3-4 representations, C—-6
SUN_PROFDATA, 2-24, A-79 truncation, C-7
SUN_PROFDATA DI R, 2-24, A-79 values, C-6
SUNPRO_SB_| NI T_FI LE_NANE, 2-24 f or loop that contains a type declaration, D-8
SUNW MP_THR_I DLE, 3-3 fprintf function, C-18

Index-5

f scanf function, C-18

full relink, reasons for, 4-5

function
cl ock, C-18
declaration specifier, 2-3
f nod, C-14
fprintf, C-18
fscanf, C-18
implicit declaration of, D-7
onp_get _num t hr eads, G-1
onp_set _dynam c, G-1
prototypes, 5-26, 7-2 to 7-6
prototypes, | i nt checks for, 5-31
renove, C-17
renane, C-17
reordering, A-51
sunw_np_regi ster, 3-2
using varying argument lists, 7-6 to 7-8

G
-9
example 1, 4-7
example 2, 4-7
global symbols and the incremental linker, 4-2
gradual underflows, 2-4

H

hardware architecture, A-33

header files
format for #i ncl ude directives, 2-25
how to include, 2-25 to 2-26
mat h. h, A-17
standard place, 2-25 to 2-26
withlint, 5-3to5-4

heap, setting page size for, A-70

how to use the incremental linker, 4-2

|

i 386 predefined token, 2-22, 5-21, A-12
idempotent qualifier in C99, D-2
implementation-defined behavior, C-1to C-20
incomplete types, 7-33 to 7-35

incremental linker (ILD)

Index-6 C User's Guide « May 2003

as compared to linker, 4-4
as part of C compilation system, 1-9
as used by compiler driver, 4-2
bypassing with - G A-22
commands

-a, 4-9

- B, 4-10

-d, 4-10

-e, 4-10

-g, 4-10

-1, 4-10

-i, 4-11

-L, 4-11

-1, 4-11

-m 4-11

-0, 4-11

-Q 4-12

-R 4-12

-s, 4-12

-t, 4-12

-u, 4-12

-V, 4-12

-Xi | dof f, 4-13

-Xi | don, 4-13

-YP, 4-13

-z, 4-13

-z defs, 4-13

-z i_dryrun, 4-14

-z i_full, 4-14

-z i _noincr, 4-14

-z i_quiet, 4-14

-z i _verbose, 4-14

-z nodefs, 4-14
commands accepted from compiler

-a, 4-15

-e, 4-15

-1, 4-15

-m 4-15

-t, 4-15

-u, 4-15
environment variables

LD DEBUG 4-17

LD LI BRARY_PATH, 4-16

LD LI BRARY_PATH 64, 4-17

LD _OPTI ONS, 4-17

LD _PRELOAD, 4-17

LD RUN_PATH, 4-17
examples, 4-7 to 4-9
figure explaining, 4-2

global symbols, 4-2

how it works, 4-4

how to use, 4-2

impact of changing object files, 4-5

impact on final production code, 4-5

introduction, 4-1
invalidating object files, 4-2
invoking with - g, A-22
limitations, 4-5
linker commands passed to, 4-2
overview, 4-1
relink messages, 4-6
relocation records, 4-1
saved files, 4-1,4-2
See linker
symbol references, 4-4
timestamps, 4-2
turning off with - xi | dof f, A-53
turning on with - xi | don, A-54
unsupported commands

-D, 4-19

-F, 4-19

-M 4-19

-r, 4-20

unsupported commands from linker

- B, 4-18

-b, 4-18

-G 4-18

-h, 4-18

-z nmul defs, 4-19
-z text, 4-19

inline expansion templates, A-59, A-66
i nl i ne function specifier for C99, D-11

inlining, A-59
int

storage allocation for, B-1
integers, C-4 to C-5
integral constants, promotion of, 7-11
interactive device, C-2

internationalization, 7-21 to 7-24, 7-27 to 7-30

interprocedural analysis pass, A-55
invoking the incremental linker, 4-2
i po (C compiler), 1-9

i r 2hf (C compiler), 1-9

i ropt (code optimizer), 1-9
isalnum, C-13

isalpha, C-13

iscntrl, C-13

islower, C-13

ISO Cvs. K&R C, A-1, A-30

ISO/IEC 9899:1999 Programming Language C, 1-1,

D-1
ISO/IEC 9899-1990 standard, 2-1
isprint, C-13
isupper, C-13

J
Java Native Interface, A-64
JNI, A-64

K
K&R Cvs. ISO C, A-1, A-30
keywords, 2-23

list for C99, D-8

L
LANG C-4
| ayout level alias disambiguation, A-32
LC ALL, C-4
LC CTYPE, C-4
| d (C compiler), 1-9
LD DEBUG 4-17
LD LI BRARY_PATH, 4-11
LD LI BRARY_PATH 64, 4-17
LD _OPTI ONS, 4-17
LD _PRELOAD, 4-17
LD_RUN_PATH, 4-17
|'i bf ast. a, E-2
libraries
default dirs searched by cc, A-2
intrinsic name, A-23
i bf ast.a, E-2
lint, 5-30to5-31
I'lib-1x.1n, 5-30
renaming shared, A-23
shared or non shared, A-11
specifying dynamic or static links, A-11
sun_prefetch. h, A-77
library bindings, A-11
limit of memory allocation on stack, B-1
link, static vs. dynamic, A-12
linker

Index-7

invoking with - G A-22 -Xalias_|evel, 5-15

options not supported by incremental - Xar ch=v9, 5-15
linker, 4-18 - Xc99, 5-15
options received from compiler, A-97 - XCC, 5-14
See incremental linker (ILD) - Xexplicitpar, 5-16
specifying dynamic or static linking in, A-12 - Xkeept mp, 5-16
suppressing linking with, A-11 - Xt enp, 5-16
using in place of incremental linker, A-53 - Xtinme, 5-16
link-time optimization, A-59 -Xtransition, 5-16
lint - Xustr, 5-16
basic mode -y, 5-17
introduced, 5-1 consistency checks, 5-26
invoking, 5-2 diagnostics, 5-25 to 5-30
commands directives, 5-21 to 5-25
-#, 54 enhanced mode
- ###, 5-4 introduced, 5-1
-a, 5-5 invoking, 5-2
-b, 5-5 filters, 5-32
-C, 5-5 header files, finding, 5-3
-c, 5-5 how | i nt examines code, 5-3
-dirout, 5-5 introduction to, 5-1
-err=warn, 5-5 libraries, 5-30 to 5-31
-errchk, 5-6 messages
-errfnmt, 5-7 formats of, 5-18 to 5-20
-errhdr, 5-7 message ID (tag), identifying, 5-9, 5-17
-erroff, 5-8 suppressing, 5-17
-errtags, 59 portability checks, 5-26 to 5-28
-errwarn, 5-9 predefined tokens, 5-21
-F, 5-10 predefinition, 2-9
-fd, 5-10 questionable constructs, 5-28 to 5-30
-flagsrc, 5-10 recognized cc commands, 5-4
-h, 5-10 I'1ib-1x.1nlibrary, 5-30
-1, 5-10 local time zone, C-18
-k, 5-10 locale, 7-27, 7-29
-L, 5-10 behavior, C-18
-1, 5-11 default, C-4
-m 5-11 use of non-conforming, A-48
-n, 5-13 | ong
- Ncheck, 5-11 storage allocation for, B-1
-Nl evel , 5-12 | ong doubl e, B-11
-0, 5-13 storage allocation for, B-2
-p, 5-13 | ong int, 2-8
-R 5-13 | ong | ong, 2-8t02-9
-s, 5-13 arithmetic promotions, 2-8
-u, 5-14 passing, B-11
-V, 5-14 representation of, B—4
-v, 5-14 returning, B-11
-W 5-14 storage allocation for, B-2
- X, 5-14 suffix, 2-2

Index-8 C User's Guide « May 2003

value preserving, 2-2 (@)
loops, A-49 object file
impact of changes on incremental linker, 4-5
invalidated by incremental linker, 4-2
linking with | d, A-11

M . producing object file for each source file, A-11
macro expansion, 7-15 suppressing removal of, A-11
macros OWP_DYNAM C, 2-23
—DATE_, C-12 OVP_DYNAM Cenvironment variable, G-1
~_ MATHERR ERRNO DONTCARE, A-17 onp_get _num t hr eads, G-1
__RESTRICT, 2-22 OVP_NESTED, 2-24
—TIME__, C-12 OMP_NUM THREADS, 2-24
main . OVP_NUM_THREADS environment variable, G-1
semantics of args, C-2 OVP_SCHEDULE, 2-24
man pages OVP_SCHEDULE environment variable, G-1

accessing, 1—2_ _ onp_set _dynami ¢, G-1
man pages, accessing, Vi-xxxiii OpenMP

MANPATH environment variable, setting, vi—-xxxv

. . how to compile for, 3-2
math functions, domain errors, C-13

implementation specific information, G-1

mes (C compiler), 1-9 OVP_DYNAM Cenvironment variable, G-1
mes and strip, 4-7 onp_get _num t hr eads, G-1
memory allocation on the stack, B-1 OVP_NUM THREADS environment variable, G-1
message ID (tag), A-13, A-14 OVP_SCHEDULE environment variable, G-1
messages onp_set _dynam ¢, G-1

deferred link, 4-6 sunw_np_regi ster, 3-2

error, C-1 supported version information, G-1

ild relln_k, 4-6 - xopennp command, A-69
mode, compiler, A-30 optimization
MP C 3-1t03-30 _ at link time, A-59
multibyte characters and wide characters, 7-21 to by using - xi po, A-55

7-24 for SPARC, E-1

multimedia types, handling of, A-95 optimizer, 1-9

multiprocessing, 3-1 1o 3-30 specify hardware architecture, A-33
-Xj obs, A-57 with - f ast, A-16
with - xO, A-66
options
N compiler, A-1to A-97
Incremental Link Editor i | d, 4-9

Native Connector Tool (NCT), A-64 lint, 5.4 to 517
NCT, A-64 - . .
newline, terminating, C—16 overview of incremental linker, 4-1
nonstop
floating-point arithmetic, 2-4, A-18
null characters not appended to data, C-16 P

NULL, value of, C-12 padding added to files by incremental linker, 4-1

padding of structures, C-8

page size, setting for stack or heap, A-70
PARALLEL, 2-24,3-3, A-39
parallelization, 3-1 to 3-30

Index-9

checking for properly parallelized loops with
- xvpara, A-95
creating a program database with - ZI | , A-96
environment variables for, 3-2 to 3-5
finding parallelized loops with
- x| oopi nf o, A-61
list of compiler commands for, A-5
See also OpenMP
specifying multithread coding with - nt , A-25
specifying OpenMP pragmas with
- xopennp, A-69
turning on reduction recognition with
-Xxreduction, A-82
turning on with - xaut opar for multiple
processors, A-39
with - xexpl i ci t par, A-50
- xpar al | el macro, A-72
pass, name and version of each, A-28
PATHenvironment variable, setting, vi—-xxxiv
Pentium, A-91
performance
comparison of incremental linker and linker, 4-4
impact of incremental linker on final production
code, 4-5
optimizing for SPARC, E-1
optimizing with - f ast, A-16
optimizing with- xO, A-66
portability checks performed by | i nt, 5-26 to 5-28
portability, of code, 5-26 to 5-28
post opt (C compiler), 1-9
#pragma al i as, 6-3
#pragma alias_| evel, 6-3
#pragma al i gn, 2-10
#pragma does_not _read_gl obal _data, 2-11
#pragma does_not _return, 2-11
#pragma
does_not_write_gl obal _data, 2-12
#pragma error_nessages, 2-12
#pragma fini, 2-12
#pragma hdr st op, 2-13
#pragma i dent, 2-13
#pragma init, 2-14
#pragma inline, 2-14
#pragma i nt _to_unsigned, 2-14
#pragma nay_not _poi nt_to, 6-5
#pragma may_piont _to, 6-4
#pragma MP serial _| oop, 2-15, 3-22
#pragma MP seri al _| oop- nest ed, 2-15, 3-22
#pragma MP t askl oop, 2-15, 3-22

Index-10 C User's Guide « May 2003

#pragma no_i nline, 2-14
#pragma no_si de_effect, 2-16
#pragma noal i as, 6-4
#pragma nomenor ydepend, 2-15
#pragma opt, 2-16
#pragma pack, 2-16
#pragma pi pel oop, 2-17
#pragma rarely_call ed, 2-18
#pragma redefine_ext name, 2-18
#pragma returns_new_nmenory, 2-19
#pragma unknown_control _fl ow, 2-20
#pragma unrol |, 2-20
#pragma weak, 2-21
preassertions for - Anane, A-10
precompiled-header file, A-73
predefined tokens
__'unane -s’_'unane -r’', 2-22,5-21, A-12
__BULTIN_VA ARG | NCR, 2-22,5-21, A-12
__ 1386, 2-22,5-21, A-12
__lint, 5-21
__RESTRI CT, 2-22,5-21, A-12
__sparc, 2-22,5-21, A-12
__sparcv9, 5-15,5-21, A-12
__sun, 2-22,5-21, A-12
__SUNPRO _C, 2-22,5-21, A-12
__SVR4, 2-22,5-21, A-12
__uni x, 2-22,5-21, A-12
i 386, 2-22,5-21, A-12
lint, 5-21
sparc, 2-22,5-21, A-12
sun, 2-22,5-21, A-11
uni x, 2-22,5-21, A-12
prefetch, A-76
preprocessing, 7-13to 7-17
directives, 2-22, 2-25 to 2-26, A-11, C-10
how to preserve comments, A-11
predefined names, 2-22
stringizing, 7-16
token pasting, 7-17
preserving signedness of chars, A-43
printing, 2-8, C-18
profiling with t cov, A-31
programming tools for C, 1-9
promotion, 7-9 to 7-12
bit-fields, 7-11
default arguments, 7-3
integral constants, 7-11
value preserving, 7-9

Q editing, See cscope
qualifiers, C-10 locating, C-11
searching, See cscope
space characters, C-16
spar ¢ predefined token, 2-22, 5-21, A-12

R sshd (C compiler), 1-9
r eadne file, 1-1 stabs debugger-data format, A-49
reasons for full relinks, 4-5 stack
relink messages, 4-6 memory allocation maximum, B-1
r enove function, C-17 setting page size for, A-70
removing symbolic debugging information, A-27 standards conformance, 1-1,2-1
r enane function, C-17 static linking, A-12
renaming shared libraries, A-23 static scheduling, G-1
reordering functions and data, A-51 st d level alias disambiguation, A-33
representation storage allocation for types, B-1
floating point, C-6 streams, C-16
integers, C-4 stri ct level alias disambiguation, A-33
reserved names, 7-24 to 7-26 string literals in text segment, A-86
for expansion, 7-26 stripand nts, 4-7
for implementation use, 7-25 st rong level alias disambiguation, A-33
guidelines for choosing, 7-26 structure
__RESTRI CT macro, 2-22 alignment, C-8
restrict keyword padding, C-8
as part of supported C99 features, D-8 sun predefined token, 2-22,5-21, A-11
as recognized by - Xs, 3-21 sun_prefetch. h, A-77
as type qualifier in parallelized code, 3-21 SUN_PROFDATA, 2-24, A-79
as used in parallelized code, 3-5 SUN_PROFDATA_DI R, 2-24, A-79
right shift, C-5 SUNPRO _SB I NI T_FI LE_NAME, 2-24
rounding behavior, 2-4 SUNW MP_THR_I DLE, 3-3

symbol declaration specifier, 2-3
symbol references of incremental linker, 4-4
symbolic debugging information, removing, A-27

S

saved files and the incremental linker, 4-2
search, source files, See cscope

set | ocal e(3C), 7-27, 7-29 T
shared libraries, 4-5 tcov
shared libraries, naming, A-23 new style with - xpr of i | e, A-80
shared objects as created by incremental linker, 4-5 t cov tool, A-31
shell prompts, vi—-xxxiii TCOVDI R, A-80
short Temporary files, 2-25
storage allocation for, B-1 TERM 9-2
signal, C-14to C-16 text
si gned, C-4 segment and string literals, A-86
signedness of chars, A-43 stream, C-16
slave thread default setting for STACKSIZE, 3-4 thread local storage of variables, 2-4
source files threads, See parallelization
checking with | i nt, 5-1to 5-32 __TIME__, C-12
compatibility of K&R C and ISO C, A-1 time and date formats, C-19

Index-11

time to link, 4-1
timestamps as used by incremental linker, 4-2
/tnp, 2-25
TMPDI Renvironment variable, 2-25
tokens, 7-13 to 7-17
tools for programming with C, 1-9
trigraph sequences, 7-13
type-based alias-disambiguation, 6-1 to 6-18
types
compatible and composite, 7-36 to 7-38
const andvol ati | e qualifier, 7-17 to 7-21
declaration in f or loop, D-8
declarations and code, D-4
incomplete, 7-33 to 7-35
specifier requirement in declaration, D-7
storage allocation for, B-1
typographic conventions, vi—xxxii
TZ, C-18

]

ube (C compiler), 1-9

ube_i pa (C compiler), 1-9

underflow, gradual, A-18

uni x predefined token, 2-22, 5-21, A-12
unsi gned, C-4

unsi gned | ong | ong, 2-8

using assembly in source, 2-23

\%
value

floating point, C-6

integers, C-4
var ar gs(5), 7-3
variable declaration specifier, 2-3
variable length arrays in C99, D-10
variable, thread-local storage specifier, 2-4
viable prefix, A-74
VIS Software Developers Kit, A-95
volatile, 7-17 to 7-19, 7-20 to 7-21, 7-37
vol atil e, C-10
VPATH, 9-3

Index-12 C User’s Guide « May 2003

w

warning messages, C-1

weak level alias disambiguation, A-32
whole-program optimizations, A-55
wide character constants, 7-23 to 7-24
wide characters, 7-22 to 7-24

wide string literals, 7-23 to 7-24

write on text stream, C-17

X
- xhr eadvar, compiler option, A-92

Z
-z i _verbose option, 4-6
zero-length file, C-17

	C User’s Guide
	Contents
	Figures
	Tables
	Before You Begin
	Typographic Conventions
	Shell Prompts
	Accessing Compiler Collection Tools and Man Pages
	Accessing the Compilers and Tools
	Accessing the Man Pages

	Accessing Compiler Collection Documentation
	Documentation in Accessible Formats
	Related Compiler Collection Documentation

	Accessing Related Solaris Documentation
	Resources for Developers
	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	Introduction to the C Compiler
	1.1 Standards Conformance
	1.2 C Readme File
	1.3 Man Pages
	1.4 New Features
	1.4.1 General Enhancements
	1.4.2 Faster Compilation
	1.4.3 Improved Performance
	1.4.4 Easier Debugging

	1.5 Organization of the Compiler
	1.6 C�Related Programming Tools

	C-Compiler Information Specific to Sun’s Implementation
	2.1 Constants
	2.1.1 Integral Constants
	2.1.2 Character Constants

	2.2 Linker Scoping Specifiers
	2.3 Thread Local Storage Specifier
	2.4 Floating Point, Nonstandard Mode
	2.5 Labels as Values
	2.6 long long Data Type
	2.6.1 Printing long long Data Types
	2.6.2 Usual Arithmetic Conversions

	2.7 Assertions
	2.8 Pragmas
	2.8.1 align
	2.8.2 does_not_read_global_data
	2.8.3 does_not_return
	2.8.4 does_not_write_global_data
	2.8.5 error_messages
	2.8.6 fini
	2.8.7 hdrstop
	2.8.8 ident
	2.8.9 init
	2.8.10 inline
	2.8.11 int_to_unsigned
	2.8.12 MP serial_loop
	2.8.13 MP serial_loop_nested
	2.8.14 MP taskloop
	2.8.15 nomemorydepend
	2.8.16 no_side_effect
	2.8.17 opt
	2.8.18 pack
	2.8.19 pipeloop
	2.8.20 rarely_called
	2.8.21 redefine_extname
	2.8.22 returns_new_memory
	2.8.23 unknown_control_flow
	2.8.24 unroll
	2.8.25 weak

	2.9 Predefined Names
	2.10 _Restrict Keyword
	2.11 _ _asm Keyword
	2.12 Environment Variables
	2.12.1 OMP_DYNAMIC
	2.12.2 OMP_NESTED
	2.12.3 OMP_NUM_THREADS
	2.12.4 OMP_SCHEDULE
	2.12.5 PARALLEL
	2.12.6 SUN_PROFDATA
	2.12.7 SUN_PROFDATA_DIR
	2.12.8 SUNPRO_SB_INIT_FILE_NAME
	2.12.9 SUNW_MP_THR_IDLE
	2.12.10 TMPDIR

	2.13 How to Specify Include Files
	2.13.1 Using the -I- Option to Change the Search Algorithm

	Parallelizing Sun C Code
	3.1 Overview
	3.1.1 Example of Use

	3.2 Parallelizing for OpenMP
	3.2.1 Handling OpenMP Runtime Warnings

	3.3 Environment Variables
	3.4 Data Dependence and Interference
	3.4.1 Parallel Execution Model
	3.4.2 Private Scalars and Private Arrays
	3.4.3 Storeback
	3.4.4 Reduction Variables

	3.5 Speedups
	3.5.1 Amdahl’s Law

	3.6 Load Balance and Loop Scheduling
	3.6.1 Static or Chunk Scheduling
	3.6.2 Self Scheduling
	3.6.3 Guided Self Scheduling

	3.7 Loop Transformations
	3.7.1 Loop Distribution
	3.7.2 Loop Fusion
	3.7.3 Loop Interchange

	3.8 Aliasing and Parallelization
	3.8.1 Array and Pointer References
	3.8.2 Restricted Pointers
	3.8.3 Explicit Parallelization and Pragmas

	Incremental Link Editor (ild)
	4.1 Introduction
	4.2 Overview of Incremental Linking
	4.3 How to Use ild
	4.4 How ild Works
	4.5 What ild Cannot Do
	4.6 Reasons for Full Relinks
	4.6.1 ild Deferred�Link Messages
	4.6.2 ild Relink Messages
	4.6.3 Example 1: Internal Free Space Exhausted
	4.6.4 Example 2: Running strip
	4.6.5 Example 3: ild Version
	4.6.6 Example 4: Too Many Files Changed
	4.6.7 Example 5: Full Relink
	4.6.8 Example 6: New Working Directory

	4.7 ild Options
	4.7.1 �a
	4.7.2 �B dynamic | static
	4.7.3 �d y|n
	4.7.4 �e epsym
	4.7.5 �g
	4.7.6 �I name
	4.7.7 �i
	4.7.8 �Lpath
	4.7.9 �lx
	4.7.10 �m
	4.7.11 �o outfile
	4.7.12 �Q y|n
	4.7.13 �Rpath
	4.7.14 �s
	4.7.15 �t
	4.7.16 �u symname
	4.7.17 �V
	4.7.18 �xildoff
	4.7.19 �xildon
	4.7.20 �YP,dirlist
	4.7.21 �z allextract|defaultextract| weakextract
	4.7.22 �z defs
	4.7.23 �z i_dryrun
	4.7.24 �z i_full
	4.7.25 �z i_noincr
	4.7.26 �z i_quiet
	4.7.27 �z i_verbose
	4.7.28 �z nodefs

	4.8 Options Passed to ild From the Compilation System
	4.8.1 �a
	4.8.2 �e epsym
	4.8.3 �I name
	4.8.4 �m
	4.8.5 �t
	4.8.6 �u symname
	4.8.7 Environment

	4.9 ld Options not Supported by ild
	4.9.1 �B symbolic
	4.9.2 �b
	4.9.3 �G
	4.9.4 �h name
	4.9.5 �z muldefs
	4.9.6 �z text

	4.10 Additional Unsupported Commands
	4.10.1 �D token,token, …
	4.10.2 �F name
	4.10.3 �M mapfile
	4.10.4 �r

	4.11 Files That ild Uses

	lint Source Code Checker
	5.1 Basic and Enhanced lint Modes
	5.2 Using lint
	5.3 The lint Options
	5.3.1 -#
	5.3.2 -###
	5.3.3 -a
	5.3.4 -b
	5.3.5 -C filename
	5.3.6 -c
	5.3.7 -dirout=dir
	5.3.8 -err=warn
	5.3.9 -errchk=l(, l)
	5.3.10 -errfmt=f
	5.3.11 -errhdr=h
	5.3.12 -erroff=tag(, tag)
	5.3.13 -errtags=a
	5.3.14 -errwarn=t
	5.3.15 -F
	5.3.16 -fd
	5.3.17 -flagsrc=file
	5.3.18 -h
	5.3.19 -Idir
	5.3.20 -k
	5.3.21 -Ldir
	5.3.22 -lx
	5.3.23 -m
	5.3.24 -Ncheck=c
	5.3.25 -Nlevel=n
	5.3.26 -n
	5.3.27 -ox
	5.3.28 -p
	5.3.29 -Rfile
	5.3.30 -s
	5.3.31 -u
	5.3.32 -V
	5.3.33 -v
	5.3.34 -Wfile
	5.3.35 -x
	5.3.36 -XCC=a
	5.3.37 �Xalias_level[=l]
	5.3.38 -Xarch=v9
	5.3.39 -Xc99[=o]
	5.3.40 -Xexplicitpar=a
	5.3.41 -Xkeeptmp=a
	5.3.42 -Xtemp=dir
	5.3.43 -Xtime=a
	5.3.44 -Xtransition=a
	5.3.45 -Xustr={ascii_utf16_ushort|no}
	5.3.46 -y

	5.4 lint Messages
	5.4.1 Options to Suppress Messages
	5.4.2 lint Message Formats

	5.5 lint Directives
	5.5.1 Predefined Values
	5.5.2 Directives

	5.6 lint Reference and Examples
	5.6.1 Diagnostics Performed by lint
	5.6.2 lint Libraries
	5.6.3 lint Filters

	Type-Based Alias Analysis
	6.1 Introduction to Type-Based Analysis
	6.2 Using Pragmas for Finer Control
	6.3 Checking With lint
	6.3.1 Struct Pointer Cast of Scalar Pointer
	6.3.2 Struct Pointer Cast of Void Pointer
	6.3.3 Cast of Struct Field to Structure Pointer
	6.3.4 Explicit Aliasing Required

	6.4 Examples of Memory Reference Constraints

	Transitioning to ISO C
	7.1 Basic Modes
	7.1.1 �Xa
	7.1.2 �Xc
	7.1.3 �Xs
	7.1.4 �Xt

	7.2 A Mixture of Old� and New�Style Functions
	7.2.1 Writing New Code
	7.2.2 Updating Existing Code
	7.2.3 Mixing Considerations

	7.3 Functions With Varying Arguments
	7.4 Promotions: Unsigned Versus Value Preserving
	7.4.1 Background
	7.4.2 Compilation Behavior
	7.4.3 First Example: The Use of a Cast
	7.4.4 Bit�fields
	7.4.5 Second Example: Same Result
	7.4.6 Integral Constants
	7.4.7 Third Example: Integral Constants

	7.5 Tokenization and Preprocessing
	7.5.1 ISO C Translation Phases
	7.5.2 Old C Translation Phases
	7.5.3 Logical Source Lines
	7.5.4 Macro Replacement
	7.5.5 Using Strings
	7.5.6 Token Pasting

	7.6 const and volatile
	7.6.1 Types, Only for lvalue
	7.6.2 Type Qualifiers in Derived Types
	7.6.3 const Means readonly
	7.6.4 Examples of const Usage
	7.6.5 volatile Means Exact Semantics
	7.6.6 Examples of volatile Usage

	7.7 Multibyte Characters and Wide Characters
	7.7.1 Asian Languages Require Multibyte Characters
	7.7.2 Encoding Variations
	7.7.3 Wide Characters
	7.7.4 Conversion Functions
	7.7.5 C Language Features

	7.8 Standard Headers and Reserved Names
	7.8.1 Standard Headers
	7.8.2 Names Reserved for Implementation Use
	7.8.3 Names Reserved for Expansion
	7.8.4 Names Safe to Use

	7.9 Internationalization
	7.9.1 Locales
	7.9.2 The setlocale() Function
	7.9.3 Changed Functions
	7.9.4 New Functions

	7.10 Grouping and Evaluation in Expressions
	7.10.1 Definitions
	7.10.2 The K&R C Rearrangement License
	7.10.3 The ISO C Rules
	7.10.4 The Parentheses
	7.10.5 The As If Rule

	7.11 Incomplete Types
	7.11.1 Types
	7.11.2 Completing Incomplete Types
	7.11.3 Declarations
	7.11.4 Expressions
	7.11.5 Justification
	7.11.6 Examples

	7.12 Compatible and Composite Types
	7.12.1 Multiple Declarations
	7.12.2 Separate Compilation Compatibility
	7.12.3 Single Compilation Compatibility
	7.12.4 Compatible Pointer Types
	7.12.5 Compatible Array Types
	7.12.6 Compatible Function Types
	7.12.7 Special Cases
	7.12.8 Composite Types

	Converting Applications for a 64-Bit Environment
	8.1 Overview of the Data Model Differences
	8.2 Implementing Single Source Code
	8.2.1 Derived Types
	8.2.2 Tools

	8.3 Converting to the LP64 Data Type Model
	8.3.1 Integer and Pointer Size Change
	8.3.2 Integer and Long Size Change
	8.3.3 Sign Extension
	8.3.4 Pointer Arithmetic Instead of Integers
	8.3.5 Structures
	8.3.6 Unions
	8.3.7 Type Constants
	8.3.8 Beware of Implicit Declarations
	8.3.9 sizeof() Is an Unsigned long
	8.3.10 Use Casts to Show Your Intentions
	8.3.11 Check Format String Conversion Operation

	8.4 Other Considerations
	8.4.1 Derived Types That Have Grown in Size
	8.4.2 Check for Side Effects of Changes
	8.4.3 Check Whether Literal Uses of long Still Make Sense
	8.4.4 Use #ifdef for Explicit 32�bit Versus 64�bit Prototypes
	8.4.5 Calling Convention Changes
	8.4.6 Algorithm Changes

	8.5 Checklist for Getting Started

	cscope: Interactively Examining a C Program
	9.1 The cscope Process
	9.2 Basic Use
	9.2.1 Step 1: Set Up the Environment
	9.2.2 Step 2: Invoke the cscope Program
	9.2.3 Step 3: Locate the Code
	9.2.4 Step 4: Edit the Code
	9.2.5 Command�Line Options
	9.2.6 View Paths
	9.2.7 cscope and Editor Call Stacks
	9.2.8 Examples
	9.2.9 Command�Line Syntax for Editors

	9.3 Unknown Terminal Type Error

	C Compiler Options
	A.1 Option Syntax
	A.2 Options Summary
	A.3 The cc Options
	A.3.1 �#
	A.3.2 �###
	A.3.3 �Aname[(tokens)]
	A.3.4 �B[static|dynamic]
	A.3.5 �C
	A.3.6 �c
	A.3.7 �Dname[=tokens]
	A.3.8 �d[y|n]
	A.3.9 �dalign
	A.3.10 �E
	A.3.11 -errfmt[=[no%]error]
	A.3.12 �erroff[=t]
	A.3.13 -errshort[=i]
	A.3.14 �errtags[=a]
	A.3.15 �errwarn[=t]
	A.3.16 �fast
	A.3.17 �fd
	A.3.18 �flags
	A.3.19 �fnonstd
	A.3.20 �fns[={no,yes}]
	A.3.21 �fprecision=p
	A.3.22 �fround=r
	A.3.23 �fsimple[=n]
	A.3.24 �fsingle
	A.3.25 �fstore
	A.3.26 �ftrap=t
	A.3.27 �G
	A.3.28 �g
	A.3.29 �H
	A.3.30 �h name
	A.3.31 -I[-|dir]
	A.3.32 �i
	A.3.33 �KPIC
	A.3.34 �Kpic
	A.3.35 �keeptmp
	A.3.36 �Ldir
	A.3.37 �lname
	A.3.38 �mc
	A.3.39 �misalign
	A.3.40 �misalign2
	A.3.41 �mr[,string]
	A.3.42 �mt
	A.3.43 �native
	A.3.44 �nofstore
	A.3.45 �O
	A.3.46 �o filename
	A.3.47 �P
	A.3.48 �p
	A.3.49 �Q[y|n]
	A.3.50 �qp
	A.3.51 �Rdir[:dir]
	A.3.52 �S
	A.3.53 �s
	A.3.54 �Uname
	A.3.55 �V
	A.3.56 �v
	A.3.57 �Wc,arg
	A.3.58 �w
	A.3.59 �X[c|a|t|s]
	A.3.60 �x386
	A.3.61 �x486
	A.3.62 �xa
	A.3.63 -xalias_level[=l]
	A.3.64 �xarch=isa
	A.3.65 �xautopar
	A.3.66 -xbuiltin[=(%all|%none)]
	A.3.67 �xCC
	A.3.68 -xc99[=o]
	A.3.69 �xcache[=c]
	A.3.70 –xcg[89|92]
	A.3.71 �xchar[=o]
	A.3.72 �xchar_byte_order[=o]
	A.3.73 -xcheck[=o]
	A.3.74 �xchip[=c]
	A.3.75 �xcode[=v]
	A.3.76 �xcrossfile[=n]
	A.3.77 -xcsi
	A.3.78 -xdebugformat=[stabs|dwarf]
	A.3.79 �xdepend=[yes|no]
	A.3.80 �xdryrun
	A.3.81 �xe
	A.3.82 �xexplicitpar
	A.3.83 �xF
	A.3.84 �xhelp=f
	A.3.85 �xhwcprof
	A.3.86 �xildoff
	A.3.87 �xildon
	A.3.88 �xinline=list
	A.3.89 -xipo[=a]
	A.3.90 -xjobs=n
	A.3.91 -xldscope={v}
	A.3.92 �xlibmieee
	A.3.93 �xlibmil
	A.3.94 �xlic_lib=sunperf
	A.3.95 �xlicinfo
	A.3.96 �xlinkopt[=level]
	A.3.97 �xloopinfo
	A.3.98 �xM
	A.3.99 �xM1
	A.3.100 �xMerge
	A.3.101 �xmaxopt[=v]
	A.3.102 �xmemalign=ab
	A.3.103 -xnativeconnect[=a[,a]...]
	A.3.104 �xnolib
	A.3.105 �xnolibmil
	A.3.106 �xO[1|2|3|4|5]
	A.3.107 �xopenmp[=i]
	A.3.108 �xP
	A.3.109 -xpagesize=n
	A.3.110 -xpagesize_heap=n
	A.3.111 -xpagesize_stack=n
	A.3.112 �xparallel
	A.3.113 �xpch=v
	A.3.114 �xpchstop=file
	A.3.115 �xpentium
	A.3.116 �xpg
	A.3.117 �xprefetch[=val[,val]]
	A.3.118 -xprefetch_level=l
	A.3.119 �xprofile=p
	A.3.120 �xprofile_ircache[=path]
	A.3.121 �xprofile_pathmap
	A.3.122 �xreduction
	A.3.123 �xregs=r[,r…]
	A.3.124 �xrestrict[=f]
	A.3.125 �xs
	A.3.126 �xsafe=mem
	A.3.127 �xsb
	A.3.128 �xsbfast
	A.3.129 �xsfpconst
	A.3.130 �xspace
	A.3.131 �xstrconst
	A.3.132 �xtarget=t
	A.3.133 �xtemp=dir
	A.3.134 -xthreadvar[=o]
	A.3.135 �xtime
	A.3.136 �xtransition
	A.3.137 -xtrigraphs
	A.3.138 �xunroll=n
	A.3.139 -xustr={ascii_utf16_ushort|no}
	A.3.140 �xvector[={yes|no}]
	A.3.141 �xvis
	A.3.142 �xvpara
	A.3.143 �Yc, dir
	A.3.144 �YA, dir
	A.3.145 �YI, dir
	A.3.146 �YP, dir
	A.3.147 �YS, dir
	A.3.148 �Zll

	A.4 Options Passed to the Linker

	ISO C Data Representations
	B.1 Storage Allocation
	B.2 Data Representations
	B.2.1 Integer Representations
	B.2.2 Floating�Point Representations
	B.2.3 Exceptional Values
	B.2.4 Hexadecimal Representation of Selected Numbers
	B.2.5 Pointer Representation
	B.2.6 Array Storage
	B.2.7 Arithmetic Operations on Exceptional Values

	B.3 Argument�Passing Mechanism

	Implementation�Defined ISO/IEC C Behavior
	C.1 Implementation Compared to the ISO Standard
	C.1.1 Translation (G.3.1)
	C.1.2 Environment (G.3.2)
	C.1.3 Identifiers (G.3.3)
	C.1.4 Characters (G.3.4)
	C.1.5 Integers (G.3.5)
	C.1.6 Floating�Point (G.3.6)
	C.1.7 Arrays and Pointers (G.3.7)
	C.1.8 Registers (G.3.8)
	C.1.9 Structures, Unions, Enumerations, and Bit�Fields (G.3.9)
	C.1.10 Qualifiers (G.3.10)
	C.1.11 Declarators (G.3.11)
	C.1.12 Statements (G.3.12)
	C.1.13 Preprocessing Directives (G.3.13)
	C.1.14 Library Functions (G.3.14)
	C.1.15 Locale�Specific Behavior (G.4)

	Supported Features of C99
	D.1 Idempotent Qualifiers
	D.2 _Pragma
	D.3 Mixed Declarations and Code
	D.4 Static and Other Type Qualifiers Allowed in Array Declarators
	D.5 Flexible Array Members
	D.6 Declarations Using Implicit int
	D.7 Disallowed Implicit int and Implicit Function Declarations
	D.8 Declaration in for-Loop Statement
	D.9 C99 Keywords
	D.9.1 Using the restrict Keyword

	D.10 __func__ Support
	D.11 Macros With a Variable Number of Arguments
	D.12 Variable Length Arrays (VLA):
	D.13 inline Specifier for Static Functions
	D.14 Commenting Code With //

	Performance Tuning (SPARC)
	E.1 Limits
	E.2 libfast.a Library

	The Differences Between K&R Sun�C and Sun ISO C
	F.1 K&R Sun C Incompatibilities With Sun ISO C
	F.2 Keywords

	Implementation-Specific Information of OpenMP
	Index

