
Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054 U.S.A.
650-960-1300

Send comments about this document to: docfeedback@sun.com

OpenMP API User’s Guide

Sun™ ONE Studio 8

Part No. 817-0933-10
May 2003, Revision A

Please
Recycle

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,California 95054, U.S.A. All rights reserved.

U.S. Government Rights - Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

This distribution may include materials developed by third parties.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Portions of this product are derived in part
from Cray90, a product of Cray Research, Inc.

libdwarf and libredblack are Copyright 2000 Silicon Graphics, Inc. and are available under the GNU Lesser General Public License from
http://www.sgi.com.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in
the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, Java, Sun ONE Studio, the Solaris logo and the Sun ONE logo are trademarks or registered trademarks of
Sun Microsystems, Inc. in the U.S. and other countries.

Netscape and Netscape Navigator are trademarks or registered trademarks of Netscape Communications Corporation in the United States and
other countries.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other
countries. Products bearing SPARC trademarks are based upon architecture developed by Sun Microsystems, Inc.

Products covered by and information contained in this service manual are controlled by U.S. Export Control laws and may be subject to the
export or import laws in other countries. Nuclear, missile, chemical biological weapons or nuclear maritime end uses or end users, whether
direct or indirect, are strictly prohibited. Export or reexport to countries subject to U.S. embargo or to entities identified on U.S. export exclusion
lists, including, but not limited to, the denied persons and specially designated nationals lists is strictly prohibited.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT,
ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits reserves.

Droits du gouvernement americain, utlisateurs gouvernmentaux logiciel commercial. Les utilisateurs gouvernmentaux sont soumis au contrat
de licence standard de Sun Microsystems, Inc., ainsi qu aux dispositions en vigueur de la FAR (Federal Acquisition Regulations) et des
supplements a celles-ci.

Distribue par des licences qui en restreignent l’utilisation.

Cette distribution peut comprendre des composants developpes par des tierces parties.

Des parties de ce produit pourront etre derivees Cray CF90, un produit de Cray Inc.

Des parties de ce produit pourront etre derivees des systemes Berkeley BSD licencies par l’Universite de Californie.UNIX est une marque
deposee aux Etats-Unis et dans d’autres pays et licenciee exclusivement par X/Open Company, Ltd.

libdwarf et libredblack sont déposent 2000 Silicon Graphics, Inc. et sont disponible sous le GNU Moins Général Public Permis de
http://www.sgi.com.

Sun, Sun Microsystems, le logo Sun, Java, Sun ONE Studio, le logo Solaris et le logo Sun ONE sont des marques de fabrique ou des marques
deposees de Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays.

Netscape et Netscape Navigator sont des marques de fabrique ou des marques déposées de Netscape Communications Corporation aux Etats-
Unis et dans d’autres pays.

Toutes les marques SPARC sont utilisees sous licence et sont des marques de fabrique ou des marques deposees de SPARC International, Inc.
aux Etats-Unis et dans d’autres pays. Les produits protant les marques SPARC sont bases sur une architecture developpee par Sun
Microsystems, Inc.

Les produits qui font l’objet de ce manuel d’entretien et les informations qu’il contient sont regis par la legislation americaine en matiere de
controle des exportations et peuvent etre soumis au droit d’autres pays dans le domaine des exportations et importations. Les utilisations
finales, ou utilisateurs finaux, pour des armes nucleaires, des missiles, des armes biologiques et chimiques ou du nucleaire maritime,
directement ou indirectement, sont strictement interdites. Les exportations ou reexportations vers des pays sous embargo des Etats-Unis, ou
vers des entites figurant sur les listes d’exclusion d’exportation americaines, y compris, mais de maniere non exclusive, la liste de personnes qui
font objet d’un ordre de ne pas participer, d’une facon directe ou indirecte, aux exportations des produits ou des services qui sont regi par la
legislation americaine en matiere de controle des exportations et la liste de ressortissants specifiquement designes, sont rigoureusement
interdites.

LA DOCUMENTATION EST FOURNIE “EN L’ÉTAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET GARANTIES EXPRESSES
OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR LA LOI APPLICABLE, Y COMPRIS NOTAMMENT
TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A
L’ABSENCE DE CONTREFAÇON.

Contents

Before You Begin ix

Typographic Conventions ix

Shell Prompts x

Accessing Compiler Collection Tools and Man Pages xi

Accessing Compiler Collection Documentation xiii

Accessing Related Solaris Documentation xv

Resources for Developers xvi

Contacting Sun Technical Support xvi

Sun Welcomes Your Comments xvi

1. OpenMP API Summary 1–1

1.1 Where to Find the OpenMP Specifications 1–1

1.2 Special Conventions Used Here 1–2

1.3 Directive Formats 1–2

1.4 Conditional Compilation 1–3

1.5 PARALLEL - Parallel Region Construct 1–4

1.6 Work-Sharing Constructs 1–5

1.6.1 DO and for Constructs 1–5

1.6.2 SECTIONS Construct 1–6

1.6.3 SINGLE Construct 1–7
iii

1.6.4 Fortran WORKSHARE Construct 1–8

1.7 Combined Parallel Work-sharing Constructs 1–8

1.7.1 PARALLEL DO and parallel for Constructs 1–9

1.7.2 PARALLEL SECTIONS Construct 1–9

1.7.3 PARALLEL WORKSHARE Construct 1–10

1.8 Synchronization Constructs 1–10

1.8.1 MASTER Construct 1–11

1.8.2 CRITICAL Construct 1–11

1.8.3 BARRIER Construct 1–12

1.8.4 ATOMIC Construct 1–12

1.8.5 FLUSH Construct 1–13

1.8.6 ORDERED Construct 1–14

1.9 Data Environment Directives 1–15

1.9.1 THREADPRIVATE Directive 1–15

1.10 OpenMP Directive Clauses 1–16

1.10.1 Data Scoping Clauses 1–16

1.10.1.1 PRIVATE Clause 1–16

1.10.1.2 SHARED Clause 1–16

1.10.1.3 DEFAULT Clause 1–16

1.10.1.4 FIRSTPRIVATE Clause 1–17

1.10.1.5 LASTPRIVATE Clause 1–17

1.10.1.6 COPYIN Clause 1–17

1.10.1.7 COPYPRIVATE Clause 1–18

1.10.1.8 REDUCTION Clause 1–18

1.10.2 Scheduling Clauses 1–19

1.10.2.1 STATIC Scheduling 1–19

1.10.2.2 DYNAMIC Scheduling 1–19

1.10.2.3 GUIDED Scheduling 1–19
iv OpenMP API User’s Guide • May 2003

1.10.2.4 RUNTIME Scheduling 1–20

1.10.3 NUM_THREADS Clause 1–20

1.10.4 Placement of Clauses on Directives 1–20

1.11 OpenMP Runtime Library Routines 1–22

1.11.1 Fortran OpenMP Routines 1–22

1.11.2 C/C++ OpenMP Routines 1–22

1.11.3 Run-time Thread Management Routines 1–23

1.11.3.1 OMP_SET_NUM_THREADS Routine 1–23

1.11.3.2 OMP_GET_NUM_THREADS Routine 1–23

1.11.3.3 OMP_GET_MAX_THREADS Routine 1–23

1.11.3.4 OMP_GET_THREAD_NUM Routine 1–24

1.11.3.5 OMP_GET_NUM_PROCS Routine 1–24

1.11.3.6 OMP_IN_PARALLEL Routine 1–24

1.11.3.7 OMP_SET_DYNAMIC Routine 1–25

1.11.3.8 OMP_GET_DYNAMIC Routine 1–25

1.11.3.9 OMP_SET_NESTED Routine 1–25

1.11.3.10 OMP_GET_NESTED Routine 1–26

1.11.4 Routines That Manage Synchronization Locks 1–26

1.11.4.1 OMP_INIT_LOCK and OMP_INIT_NEST_LOCK
Routines 1–27

1.11.4.2 OMP_DESTROY_LOCK and OMP_DESTROY_NEST_LOCK
Routines 1–27

1.11.4.3 OMP_SET_LOCK and OMP_SET_NEST_LOCK Routines
1–27

1.11.4.4 OMP_UNSET_LOCK and OMP_UNSET_NEST_LOCK
Routines 1–28

1.11.4.5 OMP_TEST_LOCK and OMP_TEST_NEST_LOCK
Routines 1–28

1.11.5 Timing Routines 1–28

1.11.5.1 OMP_GET_WTIME Routine 1–29
Contents v

1.11.5.2 OMP_GET_WTICK Routine 1–29

2. Implementation-Dependent Issues 2–1

3. Compiling for OpenMP 3–1

3.1 Compiler Options To Use 3–1

3.2 Fortran 95 OpenMP Validation 3–3

3.3 OpenMP Environment Variables 3–4

3.4 Stacks and Stack Sizes 3–5

4. Converting to OpenMP 4–1

4.1 Converting Legacy Fortran Directives 4–1

4.1.1 Converting Sun-Style Fortran Directives 4–2

4.1.1.1 Issues Between Sun-Style Fortran Directives and
OpenMP 4–3

4.1.2 Converting Cray-Style Fortran Directives 4–4

4.1.2.1 Issues Between Cray-Style Fortran Directives and
OpenMP Directives 4–4

4.2 Converting Legacy C Pragmas 4–4

4.2.1 Issues Between Legacy C Pragmas and OpenMP 4–6
vi OpenMP API User’s Guide • May 2003

Tables

TABLE 3-1 OpenMP Environment Variables 3–4

TABLE 3-2 Multiprocessing Environment Variables 3–5

TABLE 4-1 Converting Sun Parallelization Directives to OpenMP 4–2

TABLE 4-2 DOALL Qualifier Clauses and OpenMP Equivalent Clauses 4–2

TABLE 4-3 SCHEDTYPE Scheduling and OpenMP schedule Equivalents 4–3

TABLE 4-4 OpenMP Equivalents for Cray-Style DOALL Qualifier Clauses 4–4

TABLE 4-5 Converting Legacy C Parallelization Pragmas to OpenMP 4–5

TABLE 4-6 taskloop Optional Clauses and OpenMP Equivalents 4–5

TABLE 4-7 SCHEDTYPE Scheduling and OpenMP schedule Equivalents 4–6
vii

viii OpenMP API User’s Guide • May 2003

Before You Begin

The OpenMP API User’s Guide summarizes the OpenMP Fortran 95, C, and C++
application program interface (API) for building multiprocessing applications. Sun™

ONE Studio compilers support the OpenMP API.

This guide is intended for scientists, engineers, and programmers who have a
working knowledge of the Fortran, C, or C++ languages, and the OpenMP parallel
programming model. Familiarity with the Solaris™ operating environment or
UNIX® in general is also assumed.

Typographic Conventions

TABLE P-1 Typeface Conventions

Typeface Meaning Examples

AaBbCc123 The names of commands, files,
and directories; on-screen
computer output

Edit your .login file.
Use ls -a to list all files.
% You have mail.

AaBbCc123 What you type, when contrasted
with on-screen computer output

% su

Password:

AaBbCc123 Book titles, new words or terms,
words to be emphasized

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be superuser to do this.

AaBbCc123 Command-line placeholder text;
replace with a real name or value

To delete a file, type rm filename.
ix

Shell Prompts

TABLE P-2 Code Conventions

Code
Symbol Meaning Notation Code Example

[] Brackets contain arguments
that are optional.

O[n] O4, O

{ } Braces contain a set of choices
for a required option.

d{y|n} dy

| The “pipe” or “bar” symbol
separates arguments, only one
of which may be chosen.

B{dynamic|static} Bstatic

: The colon, like the comma, is
sometimes used to separate
arguments.

Rdir[:dir] R/local/libs:/U/a

… The ellipsis indicates omission
in a series.

xinline=f1[,…fn] xinline=alpha,dos

Shell Prompt

C shell machine-name%

C shell superuser machine-name#

Bourne shell and Korn shell $

Superuser for Bourne shell and Korn shell #
x OpenMP API User’s Guide • May 2003

Accessing Compiler Collection Tools and
Man Pages
The compiler collection components and man pages are not installed into the
standard /usr/bin/ and /usr/share/man directories. To access the compilers and
tools, you must have the compiler collection component directory in your PATH
environment variable. To access the man pages, you must have the compiler
collection man page directory in your MANPATH environment variable.

For more information about the PATH variable, see the csh(1), sh(1), and ksh(1)
man pages. For more information about the MANPATH variable, see the man(1) man
page. For more information about setting your PATH variable and MANPATH variables
to access this release, see the installation guide or your system administrator.

Note – The information in this section assumes that your Sun ONE Studio compiler
collection components are installed in the /opt directory. If your software is not
installed in the /opt directory, ask your system administrator for the equivalent
path on your system.

Accessing the Compilers and Tools
Use the steps below to determine whether you need to change your PATH variable to
access the compilers and tools.

▼ To Determine Whether You Need to Set Your PATH
Environment Variable

1. Display the current value of the PATH variable by typing the following at a
command prompt.

2. Review the output to find a string of paths that contain /opt/SUNWspro/bin/.

If you find the path, your PATH variable is already set to access the compilers and
tools. If you do not find the path, set your PATH environment variable by following
the instructions in the next procedure.

% echo $PATH
Before You Begin xi

▼ To Set Your PATH Environment Variable to Enable Access to
the Compilers and Tools

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your PATH environment variable.

/opt/SUNWspro/bin

Accessing the Man Pages
Use the following steps to determine whether you need to change your MANPATH
variable to access the man pages.

▼ To Determine Whether You Need to Set Your MANPATH
Environment Variable

1. Request the dbx man page by typing the following at a command prompt.

2. Review the output, if any.

If the dbx(1) man page cannot be found or if the man page displayed is not for the
current version of the software installed, follow the instructions in the next
procedure for setting your MANPATH environment variable.

▼ To Set Your MANPATH Environment Variable to Enable
Access to the Man Pages

1. If you are using the C shell, edit your home .cshrc file. If you are using the
Bourne shell or Korn shell, edit your home .profile file.

2. Add the following to your MANPATH environment variable.

/opt/SUNWspro/man

% man dbx
xii OpenMP API User’s Guide • May 2003

Accessing Compiler Collection
Documentation
You can access the documentation at the following locations:

■ The documentation is available from the documentation index that is installed
with the software on your local system or network at
file:/opt/SUNWspro/docs/index.html.

If your software is not installed in the /opt directory, ask your system
administrator for the equivalent path on your system.

■ Most manuals are available from the docs.sun.comsm web site. The following
titles are available through your installed software only:

■ Standard C++ Library Class Reference
■ Standard C++ Library User’s Guide
■ Tools.h++ Class Library Reference
■ Tools.h++ User’s Guide

■ The release notes are available from the docs.sun.com web site.

The docs.sun.com web site (http://docs.sun.com) enables you to read, print,
and buy Sun Microsystems manuals through the Internet. If you cannot find a
manual, see the documentation index that is installed with the software on your
local system or network.

Note – Sun is not responsible for the availability of third-party web sites mentioned
in this document and does not endorse and is not responsible or liable for any
content, advertising, products, or other materials on or available from such sites or
resources. Sun will not be responsible or liable for any damage or loss caused or
alleged to be caused by or in connection with use of or reliance on any such content,
goods, or services available on or through any such sites or resources.
Before You Begin xiii

Documentation in Accessible Formats
The documentation is provided in accessible formats that are readable by assistive
technologies for users with disabilities. You can find accessible versions of
documentation as described in the following table. If your software is not installed
in the /opt directory, ask your system administrator for the equivalent path on your
system.

Related Compiler Collection Documentation
The following table describes related documentation that is available at
file:/opt/SUNWspro/docs/index.html and http://docs.sun.com. If your
software is not installed in the /opt directory, ask your system administrator for the
equivalent path on your system.

Type of Documentation Format and Location of Accessible Version

Manuals (except third-party
manuals)

HTML at http://docs.sun.com

Third-party manuals:
• Standard C++ Library Class

Reference
• Standard C++ Library

User’s Guide
• Tools.h++ Class Library

Reference
• Tools.h++ User’s Guide

HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Readmes and man pages HTML in the installed software through the documentation
index at file:/opt/SUNWspro/docs/index.html

Release notes HTML at http://docs.sun.com/

Document Title Description

Fortran Programming Guide Describes how to write effective Fortran code on
Solaris environments; input/output, libraries,
performance, debugging, and parallel processing.

Fortran Library Reference Details the Fortran library and intrinsic routines

Fortran User’s Guide Describes the compile-time environment and
command-line options for the f95 compiler. Also
includes guidelines for migrating legacy f77
programs to f95.
xiv OpenMP API User’s Guide • May 2003

Accessing Related Solaris
Documentation
The following table describes related documentation that is available through the
docs.sun.com web site.

C User’s Guide Describes the compile-time environment and
command-line options for the cc compiler.

C++ User’s Guide Describes the compile-time environment and
command-line options for the CC compiler.

Numerical Computation Guide Describes issues regarding the numerical accuracy of
floating-point computations.

Document Collection Document Title Description

Solaris Reference Manual
Collection

See the titles of man page
sections.

Provides information about the
Solaris operating environment.

Solaris Software Developer
Collection

Linker and Libraries Guide Describes the operations of the
Solaris link-editor and runtime
linker.

Solaris Software Developer
Collection

Multithreaded Programming
Guide

Covers the POSIX and Solaris
threads APIs, programming
with synchronization objects,
compiling multithreaded
programs, and finding tools for
multithreaded programs.

Document Title Description
Before You Begin xv

Resources for Developers
Visit http://www.sun.com/developers/studio and click the Compiler
Collection link to find these frequently updated resources:

■ Articles on programming techniques and best practices

■ A knowledge base of short programming tips

■ Documentation of compiler collection components, as well as corrections to the
documentation that is installed with your software

■ Information on support levels

■ User forums

■ Downloadable code samples

■ New technology previews

You can find additional resources for developers at
http://www.sun.com/developers/.

Contacting Sun Technical Support
If you have technical questions about this product that are not answered in this
document, go to:

http://www.sun.com/service/contacting

Sun Welcomes Your Comments
Sun is interested in improving its documentation and welcomes your comments and
suggestions. Email your comments to Sun at this address:

docfeedback@sun.com

Please include the part number (817-0933-10) of the document in the subject line of
your email.
xvi OpenMP API User’s Guide • May 2003

CHAPTER 1

OpenMP API Summary

The OpenMP™ Application Program Interface is a portable, parallel programming
model for shared memory multiprocessor architectures, developed in collaboration
with a number of computer vendors. The specifications were created and are
published by the OpenMP Architecture Review Board. For more information on the
OpenMP developer community, including tutorials and other resources, see their
web site at:
http://www.openmp.org/.

The OpenMP API is the recommended parallel programming model for all Sun ONE
Studio compilers on SPARC® and UltraSPARC® platforms. See Chapter 4 for
guidelines on converting legacy Fortran and C parallelization directives to OpenMP.

This chapter summarizes the directives, run-time library routines, and environment
variables comprising the OpenMP Version 2.0 Application Program Interfaces, as
implemented by the Sun ONE Studio Fortran 95, C and C++ compilers.

1.1 Where to Find the OpenMP
Specifications
The material presented in this chapter is only a summary with many details left out
intentionally for the sake of brevity. In all cases, refer to the OpenMP specification
documents for complete details.

The Fortran and C/C++ OpenMP 2.0 specifications can be found on the official
OpenMP website, http://www.openmp.org/.
1-1

1.2 Special Conventions Used Here
In the tables and examples that follow, Fortran directives and source code are shown
in upper case, but are case-insensitive.

The term structured-block refers to a block of Fortran or C/C++ statements having no
transfers into or out of the block.

Constructs within square brackets, [...], are optional.

Throughout this manual, “Fortran” refers to the Fortran 95 language and compiler,
f95.

The terms “directive” and “pragma” are used interchangeably in this manual.

1.3 Directive Formats
Only one directive-name can be specified on a directive line, and applies to the
succeeding program statement.

Fortran:

Fortran fixed format accepts three directive “sentinels”, free format only one. In the
Fortran examples that follow, free format will be used.

C/C++:

C and C++ use the standard preprocessing directive starting with #pragma omp.

OpenMP 2.0 Fortran

Fixed Format:

C$OMP directive-name optional_clauses...
!$OMP directive-name optional_clauses...
*$OMP directive-name optional_clauses...

The sentinel must start in column one; continuation lines must have a non-blank or non-
zero character in column 6.
Comments may appear after column 6 on the directive line, initiated by an exclamation
point (!). The rest of the line after the ! is ignored.
1-2 OpenMP API User’s Guide • May 2003

1.4 Conditional Compilation
The OpenMP API defines the preprocessor symbol _OPENMP to be used for
conditional compilation. In addition, OpenMP Fortran API accepts a conditional
compilation sentinel.

Free Format:

!$OMP directive-name optional_clauses...

May appear anywhere on a line, preceded only by whitespace; an ampersand (&) at the
end of the line identifies a continued line.
Comments may appear on the directive line, initiated by an exclamation point (!). The
rest of the line is ignored.

OpenMP 2.0 C/C++

#pragma omp directive-name optional_clauses...
Each pragma must end with a new-line character, and follows the conventions of
standard C and C++ for compiler pragmas.
Pragmas are case sensitive. The order in which clauses appear is not significant. White
space can appear after and before the # and between words.
The directive applies to the succeeding statement, which must be a structured block.

OpenMP 2.0 Fortran

Fixed Format:

!$ fortran_95_statement
C$ fortran_95_statement
*$ fortran_95_statement
c$ fortran_95_statement

The sentinel must start in column 1 and have no intervening blanks. With OpenMP
compilation enabled, the sentinel is replaced by two blanks. The rest of the line must
conform to standard Fortran fixed format conventions. Example:

C23456789

!$ 10 iam = OMP_GET_THREAD_NUM() +

!$ 1 index

OpenMP 2.0 Fortran
Chapter 1 OpenMP API Summary 1-3

1.5 PARALLEL - Parallel Region Construct
The PARALLEL directive defines a parallel region, which is a region of the program
that must be executed by multiple threads in parallel.

Free Format:

!$ fortran_95_statement

This sentinel can appear in any column, preceded only by white space, and must
appear as a single word. Fortran free format conventions apply to the rest of the line.
Example:

C23456789

!$ iam = OMP_GET_THREAD_NUM() + &

!$& index

Fortran Preprocessor:

Compiling with OpenMP enabled defines the preprocessor symbol _OPENMP.

#ifdef _OPENMP

iam = OMP_GET_THREAD_NUM()+index

#endif

OpenMP 2.0 C/C++

C/C++ Preprocessor:

Compiling with OpenMP enabled defines the macro _OPENMP.

#ifdef _OPENMP

iam = omp_get_thread_num() + index;

#endif

OpenMP 2.0 Fortran

!$OMP PARALLEL [clause[[,]clause]...]
structured-block

!$OMP END PARALLEL

OpenMP 2.0 Fortran
1-4 OpenMP API User’s Guide • May 2003

There are many special conditions and restrictions. Programmers are urged to refer
to the appropriate OpenMP specification document for the details.

TABLE 1-1 identifies the clauses that can appear with this construct.

1.6 Work-Sharing Constructs
Work-sharing constructs divide the execution of the enclosed code region among the
members of the team of threads that encounter it. Work sharing constructs must be
enclosed within a parallel region for the construct to execute in parallel.

There are many special conditions and restrictions on these directives and the code
they apply to. Programmers are urged to refer to the appropriate OpenMP
specification document for the details.

1.6.1 DO and for Constructs
Specifies that the iterations of the DO or for loop that follows must be executed in
parallel.

OpenMP 2.0 C/C++

#pragma omp parallel [clause[[,]clause]...]
structured-block

OpenMP 2.0 Fortran

!$OMP DO [clause[[,] clause]...]
do_loop

[!$OMP END DO [NOWAIT]]

The DO directive specifies that the iterations of the DO loop that immediately follows
should be executed in parallel. This directive must appear within a parallel region to be
effective.
Chapter 1 OpenMP API Summary 1-5

1.6.2 SECTIONS Construct
The SECTIONS consruct encloses a non-iterative block of code to be divided among
threads in the team. Each block is executed once by a thread in the team.

OpenMP 2.0 C/C++

#pragma omp for [clause[[,]clause]...]
for-loop

The for pragma specifies that the iterations of the for-loop that immediately follows
should be executed in parallel. This pragma must appear within a parallel region to be
effective. The for pragma places restrictions on the structure of the corresponding for
loop, and it must have canonical shape:

for (initexpr; var logicop b; increxpr)
where:
• initexpr is one of the following:

var = lb
integer_type var = lb

• increxpr is one of the following expression forms:
++var
var++
--var
var--
var += incr
var -= incr
var = var + incr
var = incr + var
var = var - incr

• var is a signed integer variable, made implicitly private for the range of the for. var
must not be modified within the body of the for statement. Its value is indeterminate
after the loop, unless specified lastprivate.

• logicop is one of the following logical operators:
< <= > >=

• lb, b, and incr are loop invariant integer expressions.

There are further restrictions on the use of < or <= and > or >= as logicalop in the for
statement. See the OpenMP C/C++ specifications for details.
1-6 OpenMP API User’s Guide • May 2003

Each section is preceded by a SECTION directive, which is optional for the first
section.

TABLE 1-1 identifies the clauses that can appear with this construct.

1.6.3 SINGLE Construct
The structured block enclosed by SINGLE is executed by only one thread in the team.
Threads in the team that are not executing the SINGLE block wait at the end of the
block unless NOWAIT is specified.

OpenMP 2.0 Fortran

!$OMP SECTIONS [clause[[,] clause]...]
[!$OMP SECTION]

structured-block
[!$OMP SECTION

structured-block]
...
!$OMP END SECTIONS [NOWAIT]

OpenMP 2.0 C/C++

#pragma omp sections [clause[[,]clause]...]
{

[#pragma omp section]
structured-block

[#pragma omp section

structured-block]
...

}

OpenMP 2.0 Fortran

!$OMP SINGLE [clause[[,] clause]...]
structured-block

!$OMP END SINGLE [end-modifier]
Chapter 1 OpenMP API Summary 1-7

TABLE 1-1 identifies the clauses that can appear with this construct.

1.6.4 Fortran WORKSHARE Construct
The WORKSHARE construct divides the work of executing the enclosed code block into
separate units of work, and causes the threads of the team to share the work such
that each unit is executed only once.

There is no C/C++ equivalent to the Fortran WORKSHARE construct.

1.7 Combined Parallel Work-sharing
Constructs
The combined parallel work-sharing constructs are shortcuts for specifying a parallel
region that contains one work-sharing construct.

There are many special conditions and restrictions on these directives and the code
they apply to. Refer to the appropriate OpenMP specification document for the
complete details. The description that follows is intended only as a summary and is
not complete.

TABLE 1-1 identifies the clauses that can appear with these constructs.

OpenMP 2.0 C/C++

#pragma omp single [clause[[,] clause]...]
structured-block

OpenMP 2.0 Fortran

!$OMP WORKSHARE

structured-block
!$OMP END WORKSHARE [NOWAIT]
1-8 OpenMP API User’s Guide • May 2003

1.7.1 PARALLEL DO and parallel for Constructs
Shortcut for specifying a parallel region that contains a single DO or for loop.
Equivalent to a PARALLEL directive followed immediately by a DO or for directive.
clause can be any of the clauses accepted by the PARALLEL and DO/for directives,
except the NOWAIT modifier.

1.7.2 PARALLEL SECTIONS Construct
Shortcut for specifying a parallel region that contains a single SECTIONS directive.
Equivalent to a PARALLEL directive followed by a SECTIONS directive. clause can be
any of the clauses accepted by the PARALLEL and SECTIONS directives, except the
NOWAIT modifier.

OpenMP 2.0 Fortran

!$OMP PARALLEL DO [clause[[,] clause]...]
do_loop

[!$OMP END PARALLEL DO]

OpenMP 2.0 C/C++

#pragma omp parallel for [clause[[,] clause]...]
for-loop

OpenMP 2.0 Fortran

!$OMP PARALLEL SECTIONS [clause[[,] clause]...]
[!$OMP SECTION]

structured-block
[!$OMP SECTION

structured-block]
...
!$OMP END PARALLEL SECTIONS
Chapter 1 OpenMP API Summary 1-9

1.7.3 PARALLEL WORKSHARE Construct
The Fortran PARALLEL WORKSHARE construct provides a shortcut for specifying a
parallel region that contains a single WORKSHARE directive. clause can be one of the
clauses accepted by either the PARALLEL or WORKSHARE directive.

There is no C/C++ equivalent.

1.8 Synchronization Constructs
The following constructs specify thread synchronization. There are many special
conditions and restrictions regarding these constructs that are too numerous to
summarize here. Programmers are urged to refer to the appropriate OpenMP
specification document for the complete details.

OpenMP 2.0 C/C++

#pragma omp parallel sections [clause[[,] clause]...]
{

[#pragma omp section]
structured-block

[#pragma omp section

structured-block]
...
}

OpenMP 2.0 Fortran

!$OMP PARALLEL WORKSHARE [clause[[,] clause]...]
structured-block

!$OMP END PARALLEL WORKSHARE
1-10 OpenMP API User’s Guide • May 2003

1.8.1 MASTER Construct
Only the master thread of the team executes the block enclosed by this directive. The
other threads skip this block and continue. There is no implied barrier on entry to or
exit from the master construct.

1.8.2 CRITICAL Construct
Restrict access to the structured block to only one thread at a time. The optional name
argument identifies the critical region. All unnamed CRITICAL directives map to the
same name. Critical section names are global entities of the program and must be
unique. For Fortran, if name appears on the CRITICAL directive, it must also appear
on the END CRITICAL directive. For C/C++, the identifier used to name a critical
region has external linkage and is in a name space which is separate from the name
spaces used by labels, tags, members, and ordinary identifiers.

OpenMP 2.0 Fortran

!$OMP MASTER

structured-block
!$OMP END MASTER

OpenMP 2.0 C/C++

#pragma omp master

structured-block

OpenMP 2.0 Fortran

!$OMP CRITICAL [(name)]
structured-block

!$OMP END CRITICAL [(name)]

OpenMP 2.0 C/C++

#pragma omp critical [(name)]
structured-block
Chapter 1 OpenMP API Summary 1-11

1.8.3 BARRIER Construct
Synchronizes all the threads in a team. Each thread waits until all the others in the
team have reached this point.

After all threads in the team have encountered the barrier, each thread in the team
begins executing the statements after the BARRIER directive in parallel.

Note that because the barrier pragma does not have a C/C++ statement as part of
its syntax, there are restrictions on its placement within a program. See the C/C++
OpenMP specifications for details.

1.8.4 ATOMIC Construct
Ensures that a specific memory location is to be updated atomically, rather than
exposing it to the possibility of multiple, simultaneous writing threads.

This implementation replaces all ATOMIC directives by enclosing the expression-statement
in a critical section.

OpenMP 2.0 Fortran

!$OMP BARRIER

OpenMP 2.0 C/C++

#pragma omp barrier
1-12 OpenMP API User’s Guide • May 2003

1.8.5 FLUSH Construct
Thread-visible Fortran variables or C objects are written back to memory at the point
at which this directive appears. The FLUSH directive only provides consistency
between operations within the executing thread and global memory. The optional

OpenMP 2.0 Fortran

!$OMP ATOMIC

expression-statement

The directive applies only to the immediately following statement, which must be in one
of these forms:

x = x operator expression
x = expression operator x
x = intrinsic(x, expr-list)
x = intrinsic(expr-list, x)

where:
• x is a scalar of intrinsic type
• expression is a scalar expression that does not reference x
• expr-list is a non-empty, comma-separated list of scalar expressions that do not reference

x (see the OpenMP 2.0 Fortran specifications for details)
• intrinsic is one of MAX, MIN, IAND, IOR, or IEOR.
• operator is one of + - * / .AND. .OR. .EQV. .NEQV.

OpenMP 2.0 C/C++

#pragma omp atomic

expression-statement

The pragma applies only to the immediately following statement, which must be in one of
these forms:

x binop = expr
x++
++x
x--
--x

where:
• x in an lvalue expression with scalar type.
• expr is an expression with scalar type that does not reference x.
• binop is not an overloaded operator and one of: +, *, -, /, &, ^, |, <<, or >>.
Chapter 1 OpenMP API Summary 1-13

variable-list consists of a comma-separated list of variables or objects that need to be
flushed. A FLUSH directive without a variable-list synchronizes all thread-visible
shared variables or objects.

Note that because the flush pragma does not have a C/C++ statement as part of its
syntax, there are restrictions on its placement within a program. See the C/C++
OpenMP specifications for details.

1.8.6 ORDERED Construct
The enclosed block is executed in the order that iterations would be executed in a
sequential execution of the loop.

OpenMP 2.0 Fortran

!$OMP FLUSH [(variable-list)]

OpenMP 2.0 C/C++

#pragma omp flush [(variable-list)]

OpenMP 2.0 Fortran

!$OMP ORDERED

structured-block
!$OMP END ORDERED

The enclosed block is executed in the order that iterations would be executed in a
sequential execution of the loop. It can appear only in the dynamic extent of a DO or
PARALLEL DO directive. The ORDERED clause must be specified on the closest DO directive
enclosing the block.
A loop to which a DO directive applies must not execute the same ordered directive more
than once per iteration, and it must not execute more than one ordered directive.
1-14 OpenMP API User’s Guide • May 2003

1.9 Data Environment Directives
The following directives control the data environment during execution of parallel
constructs.

1.9.1 THREADPRIVATE Directive
Makes the list of objects (Fortran common blocks and named variables, C and C++
named variables) private to a thread but global within the thread.

See the OpenMP specifications (section 2.6.1 in the Fortran specifications, secton 2.7.1 in the
C/C++ specifications) for the complete details and restrictions.

OpenMP 2.0 C/C++

#pragma omp ordered

structured-block

The enclosed block is executed in the order that iterations would be executed in a
sequential execution of the loop. It can appear only in the dynamic extent of a for or
parallel for directive with the ordered clause specified.
A loop with a for construct must not execute the same ordered directive more than
once per iteration, and it must not execute more than one ordered directive.

OpenMP 2.0 Fortran

!$OMP THREADPRIVATE(list)

Common block names must appear between slashes. To make a common block
THREADPRIVATE, this directive must appear after every COMMON declaration of that
block.

OpenMP 2.0 C/C++

#pragma omp threadprivate (list)

Each variable in list at file, namespace, or block scope must refer to a variable
declaration at file, namespace, or block scope that lexically preceds the pragma.
Chapter 1 OpenMP API Summary 1-15

1.10 OpenMP Directive Clauses
This section summarizes the data scoping and scheduling clauses that can appear on
OpenMP directives.

1.10.1 Data Scoping Clauses
Several directives accept clauses that allow a user to control the scope attributes of
variables within the extent of the construct. If no data scope clause is specified for a
directive, the default scope for variables affected by the directive is SHARED.

Fortran: list is a comma-separated list of named variables or common blocks that are
accessible in the scoping unit. Common block names must appear within slashes (for
example, /ABLOCK/).

There are important restrictions on the use of these scoping clauses. Refer to section 2.6.2
in the Fortran specifications, and section 2.7.2 in the C/C++ specifications for
complete details.

TABLE 1-1 identifies the directives on which these clauses can appear.

1.10.1.1 PRIVATE Clause

private(list)

Declares the variables in the optional comma-separated list to be private to each
thread in a team.

1.10.1.2 SHARED Clause

shared(list)

All the threads in the team share the variables that appear in list, and access the
same storage area.

1.10.1.3 DEFAULT Clause

Fortran

DEFAULT(PRIVATE | SHARED | NONE)
1-16 OpenMP API User’s Guide • May 2003

C/C++

default(shared | none)

Specify scoping attribute for all variables within a parallel region. THREADPRIVATE
variables are not affected by this clause. If not specified, DEFAULT(SHARED) is
assumed. A variable’s default data-sharing attribute can be overridden by using the
private, firstprivate, lastprivate, reduction, and shared clauses.

1.10.1.4 FIRSTPRIVATE Clause

firstprivate(list)

The variables in list are PRIVATE. In addition, private copies of the variables are
initialized from the original object existing before the construct.

1.10.1.5 LASTPRIVATE Clause

lastprivate(list)

The variables in the list are PRIVATE. In addition, when the LASTPRIVATE clause
appears on a DO or for directive, the thread that executes the sequentially last
iteration updates the version of the variable before the construct. On a SECTIONS
directive, the thread that executes the lexically last SECTION updates the version of
the object it had before the construct.

1.10.1.6 COPYIN Clause

Fortran

COPYIN(list)

The COPYIN clause applies only to variables, common blocks, and variables in
common blocks that are declared as THREADPRIVATE. In a parallel region, COPYIN
specifies that the data in the master thread of the team be copied to the
threadprivate copies of the common block at the beginning of the parallel region.

C/C++

copyin(list)

The COPYIN clause applies only to variables that are declared as
THREADPRIVATE. In a parallel region, COPYIN specifies that the data in the
master thread of the team be copied to the threadprivate copies at the beginning
of the parallel region.
Chapter 1 OpenMP API Summary 1-17

1.10.1.7 COPYPRIVATE Clause

Fortran

COPYPRIVATE(list)

Uses a private variable to broadcast a value, or a pointer to a shared object, from
one member of a team to the other members. COPYPRIVATE clause can only
appear on the END SINGLE directive. The broadcast occurs after the execution of
the structured block associated with the single construct, and before any threads
in the team have left the barrier at the end of the construct. The variables in list
must not appear in a PRIVATE or FIRSTPRIVATE clause of the SINGLE construct
specifying COPYPRIVATE.

C/C++

copyprivate(list)

Uses a private variable to broadcast a value from one member of a team to the
other members. The copyprivate clause can only appear on the single
directive. The broadcast occurs after the execution of the structured block
associated with the single construct, and before any threads in the team have
left the barrier at the end of the construct. The variables in list must not appear in
a private or firstprivate clause for the same single directive.

1.10.1.8 REDUCTION Clause

Fortran

REDUCTION(operator|intrinsic:list)

operator is one of: +, *, -, .AND., .OR., .EQV., .NEQV.

intrinsic is one of: MAX, MIN, IAND, IOR, IEOR

Variables in list must be named variables of intrinsic type.

C/C++

reduction(operator:list)

operator is one of: +, *, -, &, ^, |, &&, ||

The REDUCTION clause is intended to be used on a region in which the reduction
variable is used only in reduction statements. The variables in list must be SHARED in
the enclosing context. A private copy of each variable is created for each thread as if
it were PRIVATE. At the end of the reduction, the shared variable is updated by
combining the original value with the final value of each of the private copies.

See section 2.6.2.6 in the Fortran OpenMP specifications, and section 2.7.2.6 in the
C/C++ specifications for complete details and restrictions on REDUCTION clauses
and constructs.
1-18 OpenMP API User’s Guide • May 2003

1.10.2 Scheduling Clauses
The SCHEDULE clause specifies how iterations in a Fortran DO loop or C/C++ for
loop are divided among the threads in a team. TABLE 1-1 shows which directives
allow the SCHEDULE clause.

There are important restrictions on the use of these scheduling clauses. Refer to
section 2.3.1 in the Fortran specification, and section 2.4.1 in the C/C++ specification
for complete details.

schedule(type [,chunk])

Specifies how iterations of the DO or for loop are divided among the threads of the
team. type can be one of STATIC, DYNAMIC, GUIDED, or RUNTIME. In the absence of
a SCHEDULE clause, Sun ONE Studio compilers use STATIC scheduling. chunk must
be an integer expression.

1.10.2.1 STATIC Scheduling

schedule(static[,chunk])

Iterations are divided into pieces of a size specified by chunk. The pieces are
statically assigned to threads in the team in a round-robin fashion in the order of the
thread number. If not specified, chunk is chosen so that the iterations divide into
contiguous chunks nearly equal in size with one chunk assigned to each thread.

1.10.2.2 DYNAMIC Scheduling

schedule(dynamic[,chunk])

Iterations are divided into pieces of a size specified by chunk, and assigned to a
waiting thread. As each thread finishes its piece of the iteration space, it dynamically
obtains the next set of iterations. When no chunk is specified, it defaults to 1.

1.10.2.3 GUIDED Scheduling

schedule(guided[,chunk])

With GUIDED, the chunk size is reduced in an exponentially decreasing manner with
each dispatched piece of the iterations. chunk specifies the minimum number of
iterations to dispatch each time. (The size of the initial chunk of the iterations is
implementation dependent; see Chapter 2.). When no chunk is specified, it defaults
to 1.
Chapter 1 OpenMP API Summary 1-19

1.10.2.4 RUNTIME Scheduling

schedule(runtime)

Scheduling is deferred until runtime. Schedule type and chunk size will be
determined from the value of the OMP_SCHEDULE environment variable. (Default is
SCHEDULE(STATIC).

1.10.3 NUM_THREADS Clause
The OpenMP API provides a NUM_THREADS clause on the PARALLEL, PARALLEL
SECTIONS, PARALLEL DO, PARALLEL for,and PARALLEL WORKSHARE directives.

num_threads(scalar_integer_expression)

Specifies the number of threads in the team created when a thread enters a parallel
region. scalar_integer_expression is the number of threads requested, and supersedes
the number of threads defined by a prior call to the OMP_SET_NUM_THREADS library
function, or the value of the OMP_NUM_THREADS environment variable. If dynamic
thread management is enabled, the request is the maximum number of threads to use.

Note that num_threads does not apply to subsequent regions.

1.10.4 Placement of Clauses on Directives
TABLE 1-1 shows the clauses that can appear on these directives and pragmas:

■ PARALLEL
■ DO
■ for
■ SECTIONS
■ SINGLE
■ PARALLEL DO
■ parallel for
■ PARALLEL SECTIONS
■ PARALLEL WORKSHARE
1-20 OpenMP API User’s Guide • May 2003

1. Fortran only: COPYPRIVATE can appear on the END SINGLE directive.

2. For Fortran, a NOWAIT modifier can appear on the END DO, END SECTIONS, END
SINGLE, or END WORKSHARE directives.

3. Only Fortran supports WORKSHARE and PARALLEL WORKSHARE.

TABLE 1-1 Pragmas Where Clauses Can Appear

Clause/Pragma PARALLEL DO/for SECTIONS SINGLE
PARALLEL
DO/for

PARALLEL
SECTIONS

PARALLEL
WORKSHARE3

IF • • • •

PRIVATE • • • • • • •

SHARED • • • •

FIRSTPRIVATE • • • • • • •

LASTPRIVATE • • • •

DEFAULT • • • •

REDUCTION • • • • • •

COPYIN • • • •

COPYPRIVATE •1

ORDERED • •

SCHEDULE • •

NOWAIT •2 •2 •2

NUM_THREADS • • • •
Chapter 1 OpenMP API Summary 1-21

1.11 OpenMP Runtime Library Routines
OpenMP provides a set of callable library routines to control and query the parallel
execution environment, a set of general purpose lock routines, and two portable
timer routines. Full details appear in the Fortran and C/C++ OpenMP specifications.

1.11.1 Fortran OpenMP Routines
The Fortran run-time library routines are external procedures. In the following
summary, int_expr is a scalar integer expression, and logical_expr is a scalar logical
expression.

The OMP_ functions returning INTEGER(4) and LOGICAL(4) are not intrinsic and
must be declared properly, otherwise the compiler will assume REAL. Interface
declarations for the OpenMP Fortran runtime library routines summarized below
are provided by the Fortran include file omp_lib.h and a Fortran MODULE
omp_lib, as described in the Fortran OpenMP specifications.

Supply an INCLUDE 'omp_lib.h' statement or #include "omp_lib.h"
preprocessor directive, or a USE omp_lib statement in every program unit that
references these library routines.

Compiling with -Xlist will report any type mismatches.

The integer parameter omp_lock_kind defines the KIND type parameters used for
simple lock variables in the OMP_*_LOCK routines.

The integer parameter omp_nest_lock_kind defines the KIND type parameters
used for the nestable lock variables in the OMP_*_NEST_LOCK routines.

The integer parameter openmp_version is defined as a preprocessor macro
_OPENMP having the form YYYYMM where YYYY and MM are the year and month
designations of the version of the OpenMP Fortran API.

1.11.2 C/C++ OpenMP Routines
The C/C++ run-time library functions are external functions.

The header <omp.h> declares two types, several functions that can be used to
control and query the parallel execution environment, and lock functions that can be
used to synchronize access to data.
1-22 OpenMP API User’s Guide • May 2003

The type omp_lock_t is an object type capable of representing that a lock is
available, or that a thread owns a lock. These locks are referred to as simple locks.

The type omp_nest_lock_t is an object type capable of representing that a lock is
available, or that a thread owns a lock. These locks are referred to as nestable locks.

1.11.3 Run-time Thread Management Routines
For details, refer to the appropriate OpenMP specifications.

1.11.3.1 OMP_SET_NUM_THREADS Routine

Sets the number of threads to use for subsequent parallel regions

Fortran

SUBROUTINE OMP_SET_NUM_THREADS(int_expr)

C/C++

#include <omp.h>
void omp_set_num_threads(int num_threads);

1.11.3.2 OMP_GET_NUM_THREADS Routine

Returns the number of threads currently in the team executing the parallel region
from which it is called.

Fortran

INTEGER(4) FUNCTION OMP_GET_NUM_THREADS()

C/C++

#include <omp.h>
int omp_get_num_threads(void);

1.11.3.3 OMP_GET_MAX_THREADS Routine

Returns maximum value that can be returned by calls to the OMP_GET_NUM_THREADS
function.

Fortran

INTEGER(4) FUNCTION OMP_GET_MAX_THREADS()
Chapter 1 OpenMP API Summary 1-23

C/C++

#include <omp.h>
int omp_get_max_threads(void);

1.11.3.4 OMP_GET_THREAD_NUM Routine

Returns the thread number, within its team, of the thread executing the call to this
function. This number lies between 0 and OMP_GET_NUM_THREADS()-1, with 0
being the master thread.

Fortran

INTEGER(4) FUNCTION OMP_GET_THREAD_NUM()

C/C++

#include <omp.h>
int omp_get_thread_num(void);

1.11.3.5 OMP_GET_NUM_PROCS Routine

Return the number of processors available to the program.

Fortran

INTEGER(4) FUNCTION OMP_GET_NUM_PROCS()

C/C++

#include <omp.h>
int omp_get_num_procs(void);

1.11.3.6 OMP_IN_PARALLEL Routine

Determine whether or not thread is executing within the dynamic extent of a parallel
region.

Fortran

LOGICAL(4) FUNCTION OMP_IN_PARALLEL()

Returns .TRUE. if called within the dynamic extent of a parallel region, .FALSE.
otherwise.

C/C++

#include <omp.h>
int omp_in_parallel(void);
1-24 OpenMP API User’s Guide • May 2003

Returns nonzero if called within the dynamic extent of a parallel region, zero
otherwise.

1.11.3.7 OMP_SET_DYNAMIC Routine

Enables or disables dynamic adjustment of the number of available threads.
(Dynamic adjustment is enabled by default.)

Fortran

SUBROUTINE OMP_SET_DYNAMIC(logical_expr)

Dynamic adjustment is enabled when logical_expr evaluates to .TRUE., and is
disabled otherwise.

C/C++

#include <omp.h>
void omp_set_dynamic(int dynamic);

If dynamic evaluates as nonzero, dynamic adjustment is enabled; otherwise it is
disabled.

1.11.3.8 OMP_GET_DYNAMIC Routine

Determine whether or not dynamic thread adjustment is enabled.

Fortran

LOGICAL(4) FUNCTION OMP_GET_DYNAMIC()

Returns .TRUE. if dynamic thread adjustment is enabled, .FALSE. otherwise.

C/C++

#include <omp.h>
int omp_get_dynamic(void);

Returns nonzero if dynamic thread adjustment is enabled, zero otherwise.

1.11.3.9 OMP_SET_NESTED Routine

Enables or disables nested parallelism. (Nested parallelism is not supported, and is
disabled by default.)

Fortran

SUBROUTINE OMP_SET_NESTED(logical_expr)

C/C++
Chapter 1 OpenMP API Summary 1-25

#include <omp.h>
void omp_set_nested(int nested);

1.11.3.10 OMP_GET_NESTED Routine

Determine whether or not nested parallelism is enabled. (Nested parallelism is not
supported, and is disabled by default.)

Fortran

LOGICAL(4) FUNCTION OMP_GET_NESTED()

Returns .FALSE.. Nested parallelism is not supported.

C/C++

#include <omp.h>
int omp_get_nested(void);

Returns zero. Nested parallelism is not supported.

1.11.4 Routines That Manage Synchronization Locks
Two types of locks are supported: simple locks and nestable locks. Nestable locks
may be locked multiple times by the same thread before being unlocked; simple
locks may not be locked if they are already in a locked state. Simple lock variables
may only be passed to simple lock routines, and nested lock variables only to nested
lock routines.

Fortran:

The lock variable var must be accessed only through these routines. Use the
parameters OMP_LOCK_KIND and OMP_NEST_LOCK_KIND (defined in
omp_lib.h INCLUDE file and the omp_lib MODULE) for this purpose. For
example,

INTEGER(KIND=OMP_LOCK_KIND) :: var
INTEGER(KIND=OMP_NEST_LOCK_KIND) :: nvar

C/C++:

Simple lock variables must have type omp_lock_t and must be accessed only
through these functions. All simple lock functions require an argument that points
to omp_lock_t type.

Nested lock variables must have type omp_nest_lock_t, and similarly all
nested lock functions require an argument that points to omp_nest_lock_t type.
1-26 OpenMP API User’s Guide • May 2003

1.11.4.1 OMP_INIT_LOCK and OMP_INIT_NEST_LOCK Routines

Initialize a lock variable for subsequent calls.

Fortran

SUBROUTINE OMP_INIT_LOCK(var)

SUBROUTINE OMP_INIT_NEST_LOCK(nvar)

C/C++

#include <omp.h>
void omp_init_lock(omp_lock_t *lock);

void omp_init_nest_lock(omp_nest_lock_t *lock);

1.11.4.2 OMP_DESTROY_LOCK and OMP_DESTROY_NEST_LOCK
Routines

Removes a lock variable.

Fortran

SUBROUTINE OMP_DESTROY_LOCK(var)

SUBROUTINE OMP_DESTROY_NEST_LOCK(nvar)

C/C++

#include <omp.h>

void omp_destroy_lock(omp_lock_t *lock);

void omp_destroy_nest_lock(omp_nest_lock_t *lock);

1.11.4.3 OMP_SET_LOCK and OMP_SET_NEST_LOCK Routines

Forces the executing thread to wait until the specified lock is available. The thread is
granted ownership of the lock when it is available.

Fortran

SUBROUTINE OMP_SET_LOCK(var)

SUBROUTINE OMP_SET_NEST_LOCK(nvar)

C/C++

#include <omp.h>

void omp_set_lock(omp_lock_t *lock);

void omp_set_nest_lock(omp_nest_lock_t *lock);
Chapter 1 OpenMP API Summary 1-27

1.11.4.4 OMP_UNSET_LOCK and OMP_UNSET_NEST_LOCK Routines

Releases the executing thread from ownership of the lock. Behavior is undefined if
the thread does not own that lock.

Fortran

SUBROUTINE OMP_UNSET_LOCK(var)

SUBROUTINE OMP_UNSET_NEST_LOCK(nvar)

C/C++

#include <omp.h>

void omp_unset_lock(omp_lock_t *lock);

void omp_unset_nest_lock(omp_nest_lock_t *lock);

1.11.4.5 OMP_TEST_LOCK and OMP_TEST_NEST_LOCK Routines

OMP_TEST_LOCK attempts to set the lock associated with lock variable. Call does not
block execution of the thread.

OMP_TEST_NEST_LOCK returns the new nesting count if the lock was set successfully,
otherwise it returns 0. Call does not block execution of the thread.

Fortran

LOGICAL(4) FUNCTION OMP_TEST_LOCK(var)

Returns .TRUE. if the lock was set, .FALSE. otherwise.

INTEGER(4) FUNCTION OMP_TEST_NEST_LOCK(nvar)

Returns nesting count if lock was set successfully, zero otherwise.

C/C++

#include <omp.h>
int omp_test_lock(omp_lock_t *lock);

Returns a nonzero value if lock was set successfully, zero otherwise.

int omp_test_nest_lock(omp_nest_lock_t *lock);

Returns lock nest count if lock was set successfully, zero otherwise.

1.11.5 Timing Routines
Two functions support a portable wall clock timer.
1-28 OpenMP API User’s Guide • May 2003

1.11.5.1 OMP_GET_WTIME Routine

Returns the elapsed wall clock time in seconds “since some arbitrary time in the
past”.

Fortran

REAL(8) FUNCTION OMP_GET_WTIME()

C/C++

#include <omp.h>
double omp_get_wtime(void);

1.11.5.2 OMP_GET_WTICK Routine

Returns the number of seconds between successive clock ticks.

Fortran

REAL(8) FUNCTION OMP_GET_WTICK()

C/C++

#include <omp.h>
double omp_get_wtick(void);
Chapter 1 OpenMP API Summary 1-29

1-30 OpenMP API User’s Guide • May 2003

CHAPTER 2

Implementation-Dependent Issues

This chapter notes specific issues in the OpenMP 2.0 Fortran and C/C++
specifications that are implementation dependent. For last-minute information
regarding the latest compiler releases, see the C, C++, and Fortran readme files.

Scheduling

■ The default, in the absence of an explicit OMP_SCHEDULE environment variable, or
an explicit SCHEDULE clause, is static scheduling.

Number of Threads

■ Without an explicit num_threads() clause, call to the
omp_set_num_threads() function, or an explicit definition of the
OMP_NUM_THREADS environment variable, the default number of threads in a
team is 1.

Dynamic Threads

■ Without an explicit call to the omp_set_dynamic() function, or an explicit
definition of the OMP_DYNAMIC environment variable, the default is to enable
dynamic thread adjustment. When dynamic thread adjustment is enabled, the
number of threads is limited to the number of available processors.

Nested Parallelism

■ Nested parallelism is not supported in this implementation, and is disabled by
default. Nested parallel regions are executed by a single thread only.

ATOMIC Directive

■ This implementation replaces all ATOMIC directives and pragmas by enclosing the
target statement in a critical region.
2-1

GUIDED Initial and Minimum Chunk Size

■ The default minimum chunk size with SCHEDULE(GUIDED, chunk) is 1. The
default initial chunk size is the number of iterations in the loop divided by the
number of threads executing the loop.

Explicitly Threaded Programs

■ Programs using threads can call routines that contain OpenMP directives.
2-2 OpenMP API User’s Guide • May 2003

CHAPTER 3

Compiling for OpenMP

This chapter describes how to compile programs that utilize the OpenMP API.

To run a parallelized program in a multithreaded environment, you must set the
OMP_NUM_THREADS environment variable prior to program execution. This tells the
runtime system the maximum number of threads the program can create. The
default is 1. In general, set OMP_NUM_THREADS to the available number of processors
on the target platform.

The compiler readme files contain information about limitations and known
deficiencies regarding their OpenMP implementation. Readme files are viewable
directly by invoking the compiler with the -xhelp=readme flag, or by pointing an
HTML browser to the documentation index for the installed software at

file:/opt/SUNWspro/docs/index.html

3.1 Compiler Options To Use
To enable explicit parallelization with OpenMP directives, compile your program
with the cc, CC, or f95 option flag -xopenmp. This flag can take an optional
keyword argument. (The f95 compiler accepts both -xopenmp and -openmp as
synonyms.)
3-1

The -xopenmp flag accepts the following keyword sub-options.

If you do not specify -xopenmp on the command line, the compiler assumes
-xopenmp=none (disabling recognition of OpenMP pragmas).

If you specify -xopenmp but without a keyword sub-option, the compiler assumes
-xopenmp=parallel.

Do not specify -xopenmp together with -xparallel or -xexplicitpar on the
command line.

Specifying -xopenmp= with parallel , noopt , or stubs will define the _OPENMP
preprocessor token to be YYYYMM (specifically 200203L for C/C++ and 200011
for Fortran 95).

When debugging OpenMP programs with dbx, compile with -xopenmp=noopt -g

The default optimization level for -xopenmp might change in future releases.
Warning messages can be avoided by specifying an appropriate optimization level
explicitly.

With Fortran 95, -xopenmp , -xopenmp=parallel, -xopenmp=noopt will add
-stackvar automatically.

-xopenmp=parallel Enables recognition of OpenMP pragmas. The minimum
optimization level for -xopenmp=parallel is -xO3. The
compiler changes the optimization from a lower level to -xO3
if necessary, and issues a warning.

-xopenmp=noopt Enables recognition of OpenMP pragmas. The compiler does
not raise the level if it is lower than -xO3.
If you explicitly set the optimization lower than -xO3, as in
-xO2 -openmp=noopt the compiler will issue an error.
If you do not specify an optmization level with
-openmp=noopt, the OpenMP pragmas are recognized, the
program is parallelized accordingly, but no optimization is
done.
(This sub-option applies to cc and f95 only; CC issues a
warning if specified, and no OpenMP parallelization is done.)

-xopenmp=stubs Disables recognition of OpenMP pragmas, links to stub
library routines, and does not change the optimization level.
Use this option if your application makes explicit calls to the
OpenMP runtime library routines and you want to compile it
to execute serially.

-xopenmp=none Disables recognition of OpenMP pragmas and does not
change the optimization level. (Default)
3-2 OpenMP API User’s Guide • May 2003

3.2 Fortran 95 OpenMP Validation
You can obtain a static, interprocedural validation of a Fortran 95 program’s
OpenMP directives by using the f95 compiler’s global program checking feature.
Enable OpenMP checking by compiling with the -XlistMP flag. (Diagnostic
messages from -XlistMP appear in a separate file created with the name of the
source file and a .lst extension). The compiler will diagnose the following
violations and parallelization inhibitors:

■ Violations in the specifications of parallel directives, including improper nesting.

■ Parallelization inhibitors due to data usage, detected by interprocedural
dependence analysis.

■ Parallelization inhibitors detected by interprocedural pointer analysis.

For example, compiling a source file ord.f with -XlistMP produces a diagnostic
file ord.lst:

FILE "ord.f"
 1 !$OMP PARALLEL
 2 !$OMP DO ORDERED
 3 do i=1,100
 4 call work(i)
 5 end do
 6 !$OMP END DO
 7 !$OMP END PARALLEL
 8
 9 !$OMP PARALLEL
 10 !$OMP DO
 11 do i=1,100
 12 call work(i)
 13 end do
 14 !$OMP END DO
 15 !$OMP END PARALLEL
 16 end
 17 subroutine work(k)
 18 !$OMP ORDERED
 ^
**** ERR-OMP: It is illegal for an ORDERED directive to bind to a
directive (ord.f, line 10, column 2) that does not have the
ORDERED clause specified.
 19 write(*,*) k
 20 !$OMP END ORDERED
 21 return
 22 end
Chapter 3 Compiling for OpenMP 3-3

In this example, the ORDERED directive in subroutine WORK receives a diagnostic that
refers to the second DO directive because it lacks an ORDERED clause.

3.3 OpenMP Environment Variables
The OpenMP specifications define four environment variables that control the
execution of OpenMP programs. These are summarized in the following table.

Additional multiprocessing environment variables affect execution of OpenMP
programs and are not part of the OpenMP specifications. These are summarized in
the following table.

TABLE 3-1 OpenMP Environment Variables

Environment Variable Function

OMP_SCHEDULE Sets schedule type for DO, PARALLEL DO, parallel for,
for, directives/pragmas with schedule type RUNTIME
specified. If not defined, a default value of STATIC is used.
value is “type[,chunk]”
Example: setenv OMP_SCHEDULE “GUIDED,4”

OMP_NUM_THREADS or
PARALLEL

Sets the number of threads to use during execution, unless
set by a NUM_THREADS clause, or a call to
OMP_SET_NUM_THREADS(). If not set, a default of 1 is used.
value is a positive integer. (Current maximum is 128). For
compatibility with legacy programs, setting the PARALLEL
environment variable has the same effect as setting
OMP_NUM_THREADS. However, if they are both set to
different values, the runtime library will issue an error
message.
Example: setenv OMP_NUM_THREADS 16

OMP_DYNAMIC Enables or disables dynamic adjustment of the number of
threads available for execution of parallel regions. If not set,
a default value of TRUE is used. value is either TRUE or
FALSE.
Example: setenv OMP_DYNAMIC FALSE

OMP_NESTED Enables or disables nested parallelism. (Nested parallelism is
not supported).
value is either TRUE or FALSE. (This variable has no effect.)
Example: setenv OMP_NESTED FALSE
3-4 OpenMP API User’s Guide • May 2003

3.4 Stacks and Stack Sizes
The executing program maintains a main memory stack for the initial thread
executing the program, as well as distinct stacks for each helper thread. Stacks are
temporary memory address spaces used to hold arguments and automatic variables
over subprogram or function references.

In general, the default main stack size is about 8 megabytes. Compiling Fortran
programs with the f95 -stackvar option forces the allocation of local variables and
arrays on the stack as if they were automatic variables. Use of -stackvar with
OpenMP programs is implied with explicitly parallelized programs because it

TABLE 3-2 Multiprocessing Environment Variables

Environment Variable Function

SUNW_MP_WARN Controls warning messages issued by the OpenMP runtime
library. If set TRUE the runtime library issues warning messages
to stderr; FALSE disables warning messages. The default is
FALSE.
Example:
setenv SUNW_MP_WARN FALSE

SUNW_MP_THR_IDLE Controls the end-of-task status of each helper thread executing
the parallel part of a program. You can set the value to spin,
sleep ns, or sleep nms. The default is SPIN — the thread
spins (or busy-waits) after completing a parallel task until a new
parallel task arrives.
Choosing SLEEP time specifies the amount of time a helper
thread should spin-wait after completing a parallel task. If, while
a thread is spinning, a new task arrives for the thread, the tread
executes the new task immediately. Otherwise, the thread goes to
sleep and is awakened when a new task arrives. time may be
specified in seconds, (ns) or just (n), or milliseconds, (nms).
SLEEP with no argument puts the thread to sleep immediately
after completing a parallel task. SLEEP, SLEEP (0), SLEEP
(0s), and SLEEP (0ms) are all equivalent.
Example: setenv SUNW_MP_THR_IDLE SLEEP(50ms)

STACKSIZE Sets the stack size for each thread. The value is in kilobytes.
The default thread stack sizes are 4 Mb on 32-bit SPARC V8
platforms, and 8 Mb on 64-bit SPARC V9 platforms.
Example:
setenv STACKSIZE 8192 sets the thread stack size to 8 Mb
Chapter 3 Compiling for OpenMP 3-5

improves the optimizer’s ability to parallelize calls in loops. (See the Fortran User’s
Guide for a discussion of the -stackvar flag.) However, this may lead to stack
overflow if not enough memory is allocated for the stack.

Use the limit C-shell command, or the ulimit ksh/sh command, to display or set
the size of the main stack.

Each helper thread of a multithreaded program has its own thread stack. This stack
mimics the initial (or main) thread stack but is unique to the thread. The thread’s
PRIVATE arrays and variables (local to the thread) are allocated on the thread stack.
The default size is 4 megabytes on 32-bit systems and 8 megabytes on 64-bit systems.
The size of the helper thread stack is set with the STACKSIZE environment variable.

Finding the best stack size might have to be determined by trial and error. If the
stack size is too small for a thread to run it may cause silent data corruption in
neighboring threads, or segmentation faults. If you are unsure about stack
overflows, compile your Fortran or C programs with the -xcheck=stkovf flag to
force a segmentation fault on stack overflow. This stops the program before any data
corruption can occur.

demo% setenv STACKSIZE 16384 <-Set thread stack size to 16 Mb (C shell)

demo% STACKSIZE=16384 <-Same, using Bourne/Korn shell
demo% export STACKSIZE
3-6 OpenMP API User’s Guide • May 2003

CHAPTER 4

Converting to OpenMP

This chapter gives guidelines for converting legacy programs using Sun or Cray
directives and pragmas to OpenMP.

4.1 Converting Legacy Fortran Directives
Legacy Fortran programs use either Sun or Cray style parallelization directives. A
description of these directives can be found in the chapter Parallelization in the
Fortran Programming Guide.
4-1

4.1.1 Converting Sun-Style Fortran Directives
The following tables give OpenMP near equivalents to Sun parallelization directives
and their subclauses. These are only suggestions.

The DOALL directive can take the following optional qualifier clauses.

TABLE 4-1 Converting Sun Parallelization Directives to OpenMP

Sun Directive Equivalent OpenMP Directive

C$PAR DOALL [qualifiers] !$omp parallel do [qualifiers]

C$PAR DOSERIAL No exact equivalent. You can use:
!$omp master

loop
!$omp end master

C$PAR DOSERIAL* No exact equivalent. You can use:
!$omp master

loopnest
!$omp end master

C$PAR TASKCOMMON block[,...] !$omp threadprivate (/block/[,...])

TABLE 4-2 DOALL Qualifier Clauses and OpenMP Equivalent Clauses

Sun DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

PRIVATE(v1,v2,...) private(v1,v2,...)

SHARED(v1,v2,...) shared(v1,v2,...)

MAXCPUS(n) num_threads(n). No exact equivalent.

READONLY(v1,v2,...) No exact equivalent. You can achieve the same effect by using
firstprivate(v1,v2,...).

STOREBACK(v1,v2,...) No exact equivalent. You can achieve the same effect by using
lastprivate(v1,v2,...).

SAVELAST No exact equivalent. You can achieve the same effect by using
lastprivate(v1,v2,...).

REDUCTION(v1,v2,...) reduction(operator:v1,v2,...) Must supply the reduction
operator as well as the list of variables.

SCHEDTYPE(spec) schedule(spec) (See TABLE 4-3)
4-2 OpenMP API User’s Guide • May 2003

The SCHEDTYPE(spec) clause accepts the following scheduling specifications.

4.1.1.1 Issues Between Sun-Style Fortran Directives and OpenMP
■ Scoping of variables (shared or private) must be declared explicitly with OpenMP.

With Sun directives, the compiler uses its own default scoping rules for variables
not explicitly scoped in a PRIVATE or SHARED clause: all scalars are treated as
PRIVATE, and all array references are SHARED. With OpenMP, the default data
scope is SHARED unless a DEFAULT(PRIVATE) clause appears on the PARALLEL DO
directive. A DEFAULT(NONE) clause causes the compiler to flag variables not
scoped explicitly.

■ Since there is no DOSERIAL directive, mixing automatic and explicit OpenMP
parallelization may have different effects: some loops may be automatically
parallelized that would not have been with Sun directives.

■ OpenMP provides a richer parallelism model by providing parallel regions and
parallel sections. It could be possible to get better performance by redesigning the
parallelism strategies of a program using Sun directives to take advantage of
these features of OpenMP.

TABLE 4-3 SCHEDTYPE Scheduling and OpenMP schedule Equivalents

SCHEDTYPE(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(STATIC) schedule(static)

SCHEDTYPE(SELF(chunksize)) schedule(dynamic,chunksize)
Default chunksize is 1.

SCHEDTYPE(FACTORING(m)) No OpenMP equivalent.

SCHEDTYPE(GSS(m)) schedule(guided, m)
Default m is 1.
Chapter 4 Converting to OpenMP 4-3

4.1.2 Converting Cray-Style Fortran Directives
Cray-style Fortran parallelization directives are identical to Sun-style except that the
sentinel that identifies these directives is !MIC$. Also, the set of qualifier clauses on
the !MIC$ DOALL is different.

4.1.2.1 Issues Between Cray-Style Fortran Directives and OpenMP
Directives

The differences are the same as for Sun-style directives, except that there is no
equivalent for the Cray AUTOSCOPE.

4.2 Converting Legacy C Pragmas
The C compiler accepts legacy pragmas for explicit parallelization. These are
described in the C User’s Guide. As with the Fortran directives, these are only
suggestions.

TABLE 4-4 OpenMP Equivalents for Cray-Style DOALL Qualifier Clauses

Cray DOALL Clause OpenMP PARALLEL DO Equivalent Clauses

SHARED(v1,v2,...) SHARED(v1,v2,...)

PRIVATE(v1,v2,...) PRIVATE(v1,v2,...)

AUTOSCOPE No equivalent. Scoping must be explicit, or with the DEFAULT
clause.

SAVELAST No exact equivalent. You can achieve the same effect by using
lastprivate.

MAXCPUS(n) num_threads(n). No exact equivalent.

GUIDED schedule(guided, m)
Default m is 1.

SINGLE schedule(dynamic,1)

CHUNKSIZE(n) schedule(dynamic,n)

NUMCHUNKS(m) schedule(dynamic,n/m) where n is the number of iterations
4-4 OpenMP API User’s Guide • May 2003

The legacy parallelization pragmas are:

The taskloop pragma can take on one or more of the following optional clauses.

TABLE 4-5 Converting Legacy C Parallelization Pragmas to OpenMP

Legacy C Pragma Equivalent OpenMP Pragma

#pragma MP taskloop [clauses] #pragma omp parallel for [clauses]

#pragma MP serial_loop No exact equivalent. You can use
#pragma omp master

loop

#pragma MP serial_loop_nested No exact equivalent. You can use
#pragma omp master

loopnest

TABLE 4-6 taskloop Optional Clauses and OpenMP Equivalents

taskloop Clause OpenMP parallel for Equivalent Clause

maxcpus(n) No equivalent. Use num_threads(n)

private(v1,v2,...) private(v1,v2,...)

shared(v1,v2,...) shared(v1,v2,...)

readonly(v1,v2,...) No exact equivalent. You can achieve the same effect by using
firstprivate(v1,v2,...).

storeback(v1,v2,...) No exact equivalent. You can achieve the same effect by using
lastprivate(v1,v2,...).

savelast(v1,v2,...) No exact equivalent. You can achieve the same effect by using
lastprivate(v1,v2,...).

reduction(v1,v2,...) reduction(operator:v1,v2,...) Must supply the reduction
operator as well as the list of variables.

schedtype(spec) schedule(spec) (See TABLE 4-7)
Chapter 4 Converting to OpenMP 4-5

The schedtype(spec) clause accepts the following scheduling specifications.

4.2.1 Issues Between Legacy C Pragmas and OpenMP
■ Variables declared within a parallel construct are scoped private. A

default(none) clause on a #pragma omp parallel for directive causes the
compiler to flag variables not scoped explicitly.

■ Since there is no serial_loop directive, mixing automatic and explicit OpenMP
parallelization may have different effects: some loops may be automatically
parallelized that would not have been with legacy C directives.

■ Because OpenMP provides a richer parallelism model, it might often be possible
to get better performance by redesigning the parallelism strategies of a program
that uses legacy C directives to take advantage of these features.

TABLE 4-7 SCHEDTYPE Scheduling and OpenMP schedule Equivalents

schedtype(spec) OpenMP schedule(spec) Clause Equivalent

SCHEDTYPE(STATIC) schedule(static)

SCHEDTYPE(SELF(chunksize)) schedule(dynamic,chunksize)
Note: Default chunksize is 1.

SCHEDTYPE(FACTORING(m)) No OpenMP equivalent.

SCHEDTYPE(GSS(m)) schedule(guided, m)
Default m is 1.
4-6 OpenMP API User’s Guide • May 2003

Index
A
accessible documentation, 1–xiv

B
barrier, 1–10

C
C, 3–1
common blocks

in data scoping clauses, 1–16
compilers, accessing, 1–xi
compiling for OpenMP, 3–1
conditional compilation, 1–3
converting to OpenMP

Cray-style Fortran directives, 4–4
legacy C pragmas, 4–4
Sun-style Fortran directives, 4–2

critical region, 1–10

D
data scoping clauses

COPYIN, 1–17
COPYPRIVATE, 1–18
DEFAULT, 1–17
FIRSTPRIVATE, 1–17
LASTPRIVATE, 1–17
PRIVATE, 1–16
REDUCTION, 1–18

SHARED, 1–16
directive

formats, 1–2
See pragma

directive clauses
data scoping, 1–16
scheduling, 1–19

directives
ATOMIC, 1–12, 2–1
BARRIER, 1–11
CRITICAL, 1–11
DO, 1–5
FLUSH, 1–13
for, 1–6
MASTER, 1–11
ORDERED, 1–14
PARALLEL, 1–3, 1–4
PARALLEL DO, 1–9
parallel for, 1–9
PARALLEL SECTIONS, 1–9
PARALLEL WORKSHARE, 1–10
SECTION, 1–6
SECTIONS, 1–6
SINGLE, 1–7
THREADPRIVATE, 1–15
validation (Fortran 95), 3–3
WORKSHARE, 1–8

documentation index, 1–xiii
documentation, accessing, 1–xiii to 1–xiv
dynamic thread adjustment, 3–4
dynamic threads, 2–1
Index-1

E
environment variables, 3–4
explicitly threaded programs, 2–2

H
header files

omp.h, 1–22
omp_lib.h, 1–22

I
idle threads, 3–5
implementation, 2–1

M
man pages, accessing, 1–xi
MANPATH environment variable, setting, 1–xii
master thread, 1–10

N
nested parallelism, 2–1, 3–4
NUM_THREADS, 1–20
number of threads, 1–20, 2–1

OMP_NUM_THREADS, 3–4

O
omp.h, 1–22
OMP_DESTROY_LOCK(), 1–27
OMP_DESTROY_NEST_LOCK(), 1–27
OMP_DYNAMIC, 3–4
OMP_GET_DYNAMIC(), 1–25
OMP_GET_MAX_THREADS(), 1–23
OMP_GET_NESTED(), 1–26
OMP_GET_NUM_PROCS(), 1–24
OMP_GET_NUM_THREADS(), 1–23
OMP_GET_THREAD_NUM(), 1–24
OMP_GET_WTICK(), 1–29
OMP_GET_WTIME(), 1–29
OMP_IN_PARALLEL(), 1–24
OMP_INIT_LOCK(), 1–27
OMP_INIT_NEST_LOCK(), 1–27

omp_lib.h, 1–22
OMP_NESTED, 3–4
OMP_NUM_THREADS, 3–4
OMP_SCHEDULE, 3–4
OMP_SET_DYNAMIC(), 1–25
OMP_SET_LOCK(), 1–27
OMP_SET_NEST_LOCK(), 1–27
OMP_SET_NESTED(), 1–25
OMP_SET_NUM_THREADS(), 1–23
OMP_TEST_LOCK(), 1–28
OMP_TEST_NEST_LOCK(), 1–28
OMP_UNSET_LOCK(), 1–28
OMP_UNSET_NEST_LOCK(), 1–28
OpenMP 2.0 specifications, 1–1
ordered region, 1–14

P
parallel region, 1–3, 1–4
PATH environment variable, setting, 1–xii
pragma

See directive

R
run-time

C/C++, 1–22
Fortran, 1–22

S
scheduling, 2–1, 2–2

OMP_SCHEDULE, 3–4
scheduling clauses

SCHEDULE, 1–19, 2–1, 2–2
shell prompts, 1–x
SLEEP, 3–5
SPIN, 3–5
stack size, 3–5
STACKSIZE, 3–5
SUNW_MP_THR_IDLE, 3–5
SUNW_MP_WARN, 3–5
synchronization, 1–10
synchronization locks, 1–26
Index-2 OpenMP API User’s Guide • May 2003

T
thread stack size, 3–5
timing routines, 1–28
typographic conventions, 1–ix

V
validation of directives (Fortran 95), 3–3

W
warning messages, 3–5
work-sharing, 1–5

combined directives, 1–8

X
-XlistMP, 3–3
-xopenmp, 3–1
Index-3

Index-4 OpenMP API User’s Guide • May 2003

	OpenMP API User’s Guide
	Contents
	Tables
	Before You Begin
	Typographic Conventions
	Shell Prompts
	Accessing Compiler Collection Tools and Man Pages
	Accessing Compiler Collection Documentation
	Accessing Related Solaris Documentation
	Resources for Developers
	Contacting Sun Technical Support
	Sun Welcomes Your Comments

	OpenMP API Summary
	1.1 Where to Find the OpenMP Specifications
	1.2 Special Conventions Used Here
	1.3 Directive Formats
	1.4 Conditional Compilation
	1.5 PARALLEL - Parallel Region Construct
	1.6 Work-Sharing Constructs
	1.6.1 DO and for Constructs
	1.6.2 SECTIONS Construct
	1.6.3 SINGLE Construct
	1.6.4 Fortran WORKSHARE Construct

	1.7 Combined Parallel Work-sharing Constructs
	1.7.1 PARALLEL DO and parallel for Constructs
	1.7.2 PARALLEL SECTIONS Construct
	1.7.3 PARALLEL WORKSHARE Construct

	1.8 Synchronization Constructs
	1.8.1 MASTER Construct
	1.8.2 CRITICAL Construct
	1.8.3 BARRIER Construct
	1.8.4 ATOMIC Construct
	1.8.5 FLUSH Construct
	1.8.6 ORDERED Construct

	1.9 Data Environment Directives
	1.9.1 THREADPRIVATE Directive

	1.10 OpenMP Directive Clauses
	1.10.1 Data Scoping Clauses
	1.10.1.1 PRIVATE Clause
	1.10.1.2 SHARED Clause
	1.10.1.3 DEFAULT Clause
	1.10.1.4 FIRSTPRIVATE Clause
	1.10.1.5 LASTPRIVATE Clause
	1.10.1.6 COPYIN Clause
	1.10.1.7 COPYPRIVATE Clause
	1.10.1.8 REDUCTION Clause

	1.10.2 Scheduling Clauses
	1.10.2.1 STATIC Scheduling
	1.10.2.2 DYNAMIC Scheduling
	1.10.2.3 GUIDED Scheduling
	1.10.2.4 RUNTIME Scheduling

	1.10.3 NUM_THREADS Clause
	1.10.4 Placement of Clauses on Directives

	1.11 OpenMP Runtime Library Routines
	1.11.1 Fortran OpenMP Routines
	1.11.2 C/C++ OpenMP Routines
	1.11.3 Run-time Thread Management Routines
	1.11.3.1 OMP_SET_NUM_THREADS Routine
	1.11.3.2 OMP_GET_NUM_THREADS Routine
	1.11.3.3 OMP_GET_MAX_THREADS Routine
	1.11.3.4 OMP_GET_THREAD_NUM Routine
	1.11.3.5 OMP_GET_NUM_PROCS Routine
	1.11.3.6 OMP_IN_PARALLEL Routine
	1.11.3.7 OMP_SET_DYNAMIC Routine
	1.11.3.8 OMP_GET_DYNAMIC Routine
	1.11.3.9 OMP_SET_NESTED Routine
	1.11.3.10 OMP_GET_NESTED Routine

	1.11.4 Routines That Manage Synchronization Locks
	1.11.4.1 OMP_INIT_LOCK and OMP_INIT_NEST_LOCK Routines
	1.11.4.2 OMP_DESTROY_LOCK and OMP_DESTROY_NEST_LOCK Routines
	1.11.4.3 OMP_SET_LOCK and OMP_SET_NEST_LOCK Routines
	1.11.4.4 OMP_UNSET_LOCK and OMP_UNSET_NEST_LOCK Routines
	1.11.4.5 OMP_TEST_LOCK and OMP_TEST_NEST_LOCK Routines

	1.11.5 Timing Routines
	1.11.5.1 OMP_GET_WTIME Routine
	1.11.5.2 OMP_GET_WTICK Routine

	Implementation-Dependent Issues
	Compiling for OpenMP
	3.1 Compiler Options To Use
	3.2 Fortran 95 OpenMP Validation
	3.3 OpenMP Environment Variables
	3.4 Stacks and Stack Sizes

	Converting to OpenMP
	4.1 Converting Legacy Fortran Directives
	4.1.1 Converting Sun-Style Fortran Directives
	4.1.1.1 Issues Between Sun-Style Fortran Directives and OpenMP

	4.1.2 Converting Cray-Style Fortran Directives
	4.1.2.1 Issues Between Cray-Style Fortran Directives and OpenMP Directives

	4.2 Converting Legacy C Pragmas
	4.2.1 Issues Between Legacy C Pragmas and OpenMP

	Index

