Programmer’s Reference Guide

IPlanet™ Portal Server 3.0

806-5248-01
May 2000

Copyright 2000 Sun Microsystems, Inc.. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, iPlanet, iPlanet Portal Server, and all Sun, Java, and iPlanet-based
trademarks and logos are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other
countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an
architecture developed by Sun Microsystems, Inc. ICA is a registered trademark of Citrix Systems, Inc., GO-Joe
and RapidX are trademarks of GraphOn Corporation, and pcAnywhere, ColorScale, and SpeedSend are U.S.
registered trademarks of Symantec Corporation. Information subject to change without notice. Federal
Acquisitions: Commercial Software -- Government Users Subject to Standard License Terms and Conditions

The product described in this document is distributed under licenses restricting its use, copying, distribution, and
decompilation. No part of the product or this document may be reproduced in any form by any means without
prior written authorization of the Sun Microsystems, Inc. and its licensors, if any.

THISDOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS,
REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Ccontents

PrefaCE . . 13
Who Should Use ThiS BOOK oo s 13
How This BoOK ISOrganized e e 13
DOCUMENTALION . . . o e 14
UsSiNg UNIX COMMAENGSot e e et e e e 14
What Typographic Conventions Meant 15
Shell Prompts in Command Examples 16
Chapter 1 Overview of the APIS e 17
Extending iPlanet Portal Server 17
The iPlanet Portal Server APIS 18
WHICh APIS 10 USE? . . o e 20
Understanding iPlanet Portal Server APIS 20
Identify Needed iPlanet Portal Server APIS 21
Content Provider APl ... 21
Profile and Policy APl 22
SESSION APl L 22
LOg AP e 23
Integrating an Application with iPlanet Portal Server Software 23
Chapter 2 Session APl 25
SESSION AP OVEIVIBW . . oo e e e e 25
Implementing the Session APl 25
Using the Session APl 25
Session API Transport Protocol 28
Session API Message FOrmMat e e 28
Session APl Classes and Interfaces i e 29

Contents 3

4

Sample SesSiON COdeo 30

Instructions for using the HelloServlet 30
Import the iPlanet Portal Server Classes e 32
Sample Code 33

Chapter 3 Profile and Policy APl e 35
Profile and Policy API OVEerVIEW e e 35
Profile and Policy API Functionality e 35
Implementing the Profile and Policy APl 37
Profile and Policy API Classesand Interfaces e 37
Interactions, Assumptions, and Dependencies 38
Exception Handlingo 38
Using the Profile and Policy APl 39

Getting Attribute Values 39

Setting Attribute Values 39

Checking Policy (Using Boolean Privileges) i 40

Checking Policy (Using LISt Privileges) 40
Import the iPlanet Portal Server Classes e 40
SaMPle Code . . o 41

Chapter 4 Log APl 43
LOg APl OVEIVIBW .ot e e e 43
Implementing the Log APl 44
iPlanet Portal SErver CIassesttt 44
Log APIL FuNCtionality 45
Creating LOgS « oottt 45
DElEtiNG LOgS .« ottt 46
WIHEING 10 @ L0Q . ..ot e 46
Reading from @ LOgo 47
Log List Retrieval o 48
QUEIYING LOGS o\ttt e e 48
SamMpPle Code . ..o 49
Chapter 5 Content Provider APl 51
Content Provider OVEIVIEW 51
Content Provider Functionality 51
Using the Sample Providers i e 52
Compiling Sample Provider Code ...t 52
Implementing the Content Provider APl 53
Provider Sample Code i 53

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

5

Chapter 6 Pluggable Authentication APl 57

Pluggable Authentication API OVEIVIEWt e e 57
Authentication Process OVEIVIEWt 58
Understanding the .properties File o 59
Writing a Pluggable Authentication Module 62
REQUITEMENTS . . e e e e e e e e e 62
ReCOMMENAtiONS e 63
About USING NelperS . . oo 63
Integrating the Module 63
SaMPle Code . . .o 65
Sample Properties Fileo 65
Sample Login Module SOUICEo 66
Sample XML File ... 67
Chapter 7 Single SignoN e .71
SiNgle SIgNON OVEIVIEW . . . oo e e e e 71
SPECIAl CaSES . .ttt 71
Instructions for using Single SigNoN 72
Command Line EXample 72
Include the iPlanet Portal Server CIassest e 73
Chapter 8 Using the Command Line Interface i, 77
Command Line Inferface OVerview e 77
HOW it WOTKS . .. 77
iPSadmin ComMaNd o 78
L2 T 78
USING IPSadmin . ..o 79
Importing a New COomPONENtttt e e e e 79
Creating a New Domain e 80
Creating a New Role 80
Creating a New User and AssigningaRole i . 81
Reading (Getting) a Profile 81
Changing a Profile 82
Deleting a Profileo 83
SaMPIE COE ... 83
Chapter 9 Using the iPlanet Portal Server APIS e 87
Instructions for using the HelloServlet 87
HelloServIet Properties e 88
HelloServiet XML 88
Prints HTML OQUEDUL oo e e e e e e 90
Setting PriVIlEgeS 90

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Attributes and Privileges 90

Initializing the Serviet 91
SesSioN AP EXamples oo 91
HTTP Request and RESPONSE oottt e e et et 91
SESSION EVENT . . . 92
Gt @ SESSION . oo\ttt 93
Profile API EXamples 93
Modify an Attribute 93
GetUser Profile o 94
Policy CheCKing o 94
Log APl EXample .. 95
Method handles Loggingt 95
Chapter 10 HTML Templateso e e e e 97
Setting up Login Pages for Different DOmains e 97
How Authentication Templates Work 97
Templates for Customizing the AuthenticationPages 97
How Desktop Templates Work 100
Templates for Customizing the iPlanet Portal Server Desktop 100
Appendix A HTTP/XML Interface i e e e 103
HTTP/XML Interface OVEIVIEW o e e e 103
Exchanging Information Between the Clientand the Server 104
XML DT DS .ttt e 104
PLL ReqQUESE SEt DTDot e e e 105
PLL ReSPONSe SEt DTDt e 105
PLL NOtification SEtDTDt e e e e e 106
Naming Response DTDot e e e 106
Naming ReqUeSt DTDot e 107
Naming Request XMLo e 107
Naming Response XML 108
Session-Related DTD and XMLo oo e 109
SessioNNOtIfication DTDot 109
SesSION REQUESE DTDt e e e 110
SesSioN RESPONSE DTD ...ttt e 111
Session Request XIMIL 112
Session ReSPONSE XML 112
Profile and Policy-related DTD and XML oot e e 113
Getting an Attribute Value Using XML 115
Log-related DT DSttt e e e 115
DTD for Log API COMMUNICAtIONt e 116

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Appendix B Putting Code Together e 117

Building an iPlanet Portal Server Provider 117
Define Specific Requirements and Functionality 118
Identify non-iPlanet Portal Server Functionality i i 118
Define Application Attributes/Privileges 119
Define the Provider to iPlanet Portal Server i 119

SaMPle COde . . o 121

Appendix C iPlanet Portal Server API EXceptionso ... 133

Profile API EXCEPLIONS . . ittt ettt e 133

LOGg APL EXCEPLIONSttt e e 135

SeSSION AP EXCEPLIONSottt e e e e 136

GlOSSaNY .\ ot . 139
INOEX .o e 149

Contents 7

8 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

List of Figures

Figure 1-1 End User Component Interaction Flow 18
Figure 2-1 Session Service Block Diagramt 27
Figure 3-1 The Profile and Policy API Organization Structure 36

List of Figures 9

10 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

May 2000

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

List of Tables

1-1 The iPlanet Portal Server APIS. i 18
6-1 Tasks to Customize Authentication 57
6-2 The .properties File Directivesot 60
10-1 HTML Template Files i i, 98
B-1 Minimal Routines foraProvider 117
B-2 Sample Provider Attributes. 119
B-3 Sample Attributes and Privileges. 121
C-1 Profile APLFEXCEPLIONS oot 133
C-2 Logging APLEXCeptionscouiiii i i 135
C-3 Session APIEXCEPLIONSot 136

11

12 iPlanet Portal Server 3.0 Programmer’s Reference Guide May 2000

Preface

The Programmer’s Reference Guide explains how to use the iPlanet™ Portal
Server 3.0 application programming interfaces (APIs), including the Java APIs and
the over-the-wire (non-Java) APIs.

Who Should Use This Book

This document is intended for developers who are writing or modifying
applications to communicate with the iPlanet Portal Server product.

How This Book Is Organized

This book contains the following chapters and appendices:
Overview of the APIs provides an introduction to some of the tools available

Session API defines applications to access session services provided by the Session
Server.

Profile and Policy API provides a mechanism to manage user profiles and to
impose policy.

Log API provides log management tools, and provides a set of Java classes so that
the applications can create, retrieve, submit, or delete log information.

Content Provider API details the basics of developing new content modules for
the desktop and introduces several sample providers.

Pluggable Authentication API describes requirements for writing a supplemental
authentication module, and provides information about customizing the
authentication pages.

Single Signon provides for session/user authentication at initial signon by the
session server.

13

Documentation

Using the Command Line Interface describes the command-line interface, and
how to import XML files to register (or update) iPlanet Portal Server applications
or content providers.

Using the iPlanet Portal Server APIs gives samples of the APIs and how to use
them.

HTML Templates contains information to make substantive changes to layout or
design of browser pages, or to add extra functionality.

HTTP/XML Interface details the processes and issues involved in communicating
with the iPlanet Portal Server applications using the exposed HTTP/XML
interface.

Putting Code Together describes the development process for a sample iPlanet
Portal Server desktop provider application that touches on the public APIs
available for integrating an application with the iPlanet Portal Server desktop.

iPlanet Portal Server API Exceptions lists the exceptions generated during an
error in the Profile, Logging, and Session APls.

Documentation

iPlanet Portal Server 3.0 documentation includes:

= iPlanet Portal Server 3.0 Installation Guide

= iPlanet Portal Server 3.0 Administration Guide

< iPlanet Portal Server 3.0 Programmer’s Reference Guide (this book)
= iPlanet Portal Server 3.0 Release Notes

= Online help for users and online help for system administrators

= http:// yourserver:port /docs/en_US/javadocs

Using UNIX Commands

This document contains some information on basic UNIX® commands and
procedures. For more information outside of this document, see the following:

« AnswerBook2™ online documentation for the Solaris™ software environment.

14 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

What Typographic Conventions Mean

= Browse for a specific book title or subject at:
http://docs.sun.com

What Typographic Conventions Mean

The following table describes the typographic conventions used in this book.

Typeface or
Symbol

Meaning

AaBbCc123

AaBbCc123

AaBbCc123

The names of commands, files,
and directories; on-screen
computer output

What you type, contrasted with
on-screen computer output

Book titles, new words or
terms, words to be

emphasized, or glossary terms.

Command-line placeholder;
replace with a real name or
value

Example
Edit your .login file.
Usels-a tolistall files.

machine_name% You have mail.

machine_name% su

Password:

Read Chapter 6 in the User’s Guide.
These are called class options.
You must be root to do this.

To delete a file, type rm filename.

Preface 15

Shell Prompts in Command Examples

Shell Prompts in Command Examples

The following table shows the default system prompt and superuser prompt for

16

the C shell, Bourne shell, and Korn shell.

Shell

Prompt

C shell prompt
C shell superuser prompt
Bourne shell and Korn shell prompt

Bourne shell and Korn shell superuser prompt

machine_name%
machine_name#
$

#

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Chapter 1

Overview of the APIs

The Programmer’s Reference Guide documents the public Java application
programming interfaces (APIs) that are included in the iPlanet Portal Server
product, as well as documents the exposed HTTP/XML interfaces.

The Programmer’s Reference Guide offers information to any programmer
customizing iPlanet Portal Server software. For example, use the Session and the
Profile APIs to integrate the application with the iPlanet Portal Server software and
utilize single signon capabilities, or the Content Provider modules for the user
desktop.

NOTE Detailed information on APIs is available in the Javadocs from
http:// yourserver-name:port /docs/en_US/javadocs/

Extending iPlanet Portal Server

iPlanet Portal Server can be extended in several ways, as illustrated in Figure 1-1
on page 18. If additional authentication capabilities are needed use the Pluggable
Authentication API to create them. To add Java based applications, use the Session,
Profile and Policy, and Log APIs to integrate them into the iPlanet Portal Server
framework. Finally, to have additional content providers in the iPlanet Portal
Server desktop, use the Content Provider API (and optionally other APIs) to
integrate the providers directly into the iPlanet Portal Server desktop.

17

/docs/en_US/javadocs/
/docs/en_US/javadocs/

The iPlanet Portal Server APIs

Figure 1-1

Milithardss afion

Load [fustomer
Radius [devsloped:

PR
rd

- -
End Ug&r |::_*~__ T::-::.II . :‘H"WI“":

"\-.x\\ L L]
4 By
T
LI
RS
*:;_‘ BadkRop

application | Cusbemer
& Pastit duvelapad

End User Component Interaction Flow

The end user interacts equally with the iPlanet Portal Server components as
configured by default and with additional components written to integrate with
the iPlanet Portal Server software.

The iPlanet Portal Server APIs

Table 1-1 summarizes the APIs in iPlanet Portal Server software.

18

Table 1-1 The iPlanet Portal Server APls

API Name

Description

Profile and Policy

The Profile allows applications to access profile information, with
the Profile and Policy API, stored on the iPlanet Portal Server.
Profile information includes user preferences, application
attributes, platform-wide attributes, and configuration
information. Applications may define and store their own
application-specific attributes and configuration with this API.

The Policy provides some methods, in the Profile and Policy API,
to determine user privileges.

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

The iPlanet Portal Server APIs

Table 1-1 The iPlanet Portal Server APls (Continued)

APl Name Description

Session The Session API allows applications to verify whether a user has a
valid session. When a user authenticates with the iPlanet Portal
Server product, a session is created and stored on the iPlanet
Portal Server. The Session API allows any application to validate
the user’s session and retrieve information about the session, such
as the session state, the time remaining, and the user name.

Logging The Log API allows applications to create, delete, write, and read
logs and log records to and from the iPlanet Portal Server.

Content Provider The Content Provider API provides methods for integrating
content with the iPlanet Portal Server desktop.

Pluggable Authentication The Authentication API allows the writing of a Java-based
pluggable authentication module for iPlanet Portal Server
software.

Writing programs that directly use the Java API is a far simpler and more efficient
solution than using the exposed HTTP/XML interface, because the Java API
“hides” the over-the-wire protocols, thus making implementation more
straightforward.

The classes that can be included in the Java implementation automatically handle
communication and data transfer with the iPlanet Portal Server. When considering
a non-Java application, see Appendix A for a description of the processes, the
communications protocols, the Document Type Definitions (DTDs), and other
issues associated with applications that use the exposed HTTP/XML interface.
Developers writing programs that will communicate with the exposed
HTTP/XML interface to iPlanet Portal Server need to understand and be able to
use eXtensible Markup Language (XML) and HTTP.

Chapter 1 Overview of the APIs 19

Understanding iPlanet Portal Server APIs

Which APIs to Use?

The iPlanet Portal Server APIs fall into several broad categories:

To do: Use these APlIs:

Application Optionally use Profile and Policy, Session, and
Development Logging.

Authentication Authentication, and optionally use Logging.
Extension

Desktop Extension Provider, and optionally use Profile and Policy,

Session, and Logging.

Understanding iPlanet Portal Server APIs

This section describes the development process for a sample iPlanet Portal Server
desktop provider application that touches on the public APIs available for
integrating an application with the iPlanet Portal Server desktop.

20

The following main steps outline the process:

1.
2.

6.
7.

Define high-level application requirements.

Determine which iPlanet Portal Server APls support the high-level
requirements.

Define the iPlanet Portal Server attributes.

Define the privileges that determine the policy for the application.

Create an XML file to define the provider to the iPlanet Portal Server desktop.
Import the XML file to the Profile server with ipsadmin

Configure and modify the applications through the Administration Console.

A non-Java iPlanet Portal Server application cannot directly use the Java APIs, it
must use the HTTP/XML interfaces that are defined in Appendix A, “HTTP/XML
Interface”. Each XML DTD specifies the content and format of the information that
can be sent to and received from the iPlanet Portal Server services.

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Identify Needed iPlanet Portal Server APIs

ldentify Needed iPlanet Portal Server APIs

Applications can interact with as many or as few of the APIs as necessary to
provide functionality. These application may be configured by the administrator,
either at a domain/role level or at the user-level, and by the user through the
standard desktop interface. Additionally, the configuration may be retained
between sessions. The application may also log the configuration settings of a user
every time they are changed, recording accesses to a corporate database, or any
other legitimate logging function, or if there is no logging requirement then there is
no need to use the Log API.

Content Provider API

The application may use this provider to:

= Display information in the provider's portion of the desktop
= Display a page to the user that allows setting configurations
= Handle the submission of the configuration parameters
Additional methods are provided to:

« Query information about the provider

e Set information for the provider

To use the default actions, just create a provider that will be imported into
(registered with) the iPlanet Portal Server product.

Registering a provider with the iPlanet Portal Server product requires creating an
XML file with the specific attributes and privileges for this provider and the
“common” attributes that a provider may have to utilize the default methods.

To import the XML into the Profile server use the ipsadmin command, and then
from the Administration Console register the provider to the iPlanet Portal Server
software.

Chapter 1 Overview of the APIs 21

Identify Needed iPlanet Portal Server APIs

22

Profile and Policy API

Because a user's configuration should be retained between sessions, it is
advantageous to store configuration parameters in the Profile server. To do this,
define appropriate attributes/privileges to be imported via the provider's XML file
and ipsadmin. These attributes and privileges can be retrieved and modified
through the Administration Console or the Profile and Policy API.

It is not a requirement to store anything in the Profile server, because a separate
database or even just a flat file on the iPlanet Portal Server could be used, but using
the profile server has some advantages:

= The profile server eliminates the need to create a new database and write
access routines

= The profile server is hierarchal in nature, making it easy to set configuration
parameters at a domain or role or user level

< InaniPlanet Portal Server configuration, with multiple servers, the Profile and
Policy API will access the common profile server. When writing applications
that use the Profile and Policy API, file locking and some database access
functions are handled “behind the scenes” by the Profile and Policy API

= Simple “out of the box” administration of the provider’s attributes and policy

Session API

The Session API is used to access information about a session. An iPlanet Portal
Server session contains the information needed to get a profile from which to
get/set attributes and will optionally check the policy to validate the iPlanet Portal
Server user.

The Session API also provides methods to get:
= ClientID

= The domain

= Session type

* Idletime

= Session time

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Integrating an Application with iPlanet Portal Server Software

Log API

It is possible to write to a log file separate from the iPlanet Portal Server Log API,
but using the Log API has some advantages:

The Logging API provides some other useful log-management functions. For
example, controlling the number and size of logs, that would have to be
redeveloped if the APl was not used

The logs can be administered through the Administration Console, and access
to the logs for any user is controlled by the Profile and Policy API

Integrating an Application with iPlanet Portal
Server Software

When writing an application, privileges can be created to be associated with users
and attributes and then be associated with uses and applications. For example, in a
payroll application, create a privilege associated with viewing salary, or with
changing salary, and create an attribute for a particular background color.

An overview of the sequence to integrate an application with iPlanet Portal Server
software is as follows:

1.

Identify data to be stored in the iPlanet Portal Server profile versus data that is
to be obtained from other sources.

Payroll data is probably stored in a payroll database, and it would not be
appropriate or necessary to migrate this to the iPlanet Portal Server profile
database. However, there is probably authentication information that the user
must enter to access the payroll database. For example, a user name and
password, could be defined as attributes in the iPlanet Portal Server profile.
See Chapter 7, “Single Signon”.

Decide which policy to assign for users whom access this application, and
define corresponding privileges and default values.

Create an XML file that defines the data identified in Step 1 and Step 2.

Use the iPlanet Portal Server ipsadmin utility on the command line to import
the XML and configure the Profile server to recognize the application.

Modify the application to use the iPlanet Portal Server APIs to identify the user
rather than prompting for authentication information, when using a
single-signon solution. This assumes that the application is already web-based.
The code should:

Chapter 1 Overview of the APIs 23

Integrating an Application with iPlanet Portal Server Software

a. Use the Session API to translate an HTTP request from the user into an
iPlanet Portal Server session.

b. Use the Profile and Policy API to access the application-specific
authentication information that is stored in the iPlanet Portal Server
profile.

6. Use the Administration console to provide access to the payroll application.

7. Use the Administration console to configure the policy for different roles.

24 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Chapter 2

Session API

Session API Overview

The Session Application Programming Interface (API) defines applications to
access session services provided by the Session Server. Java applications can access
session services by using the Java Session API.

Additionally, the Session API provides an XML DTD to define the format for data
streams to provide to the server session process and to define the format for data
streams coming from the server session process. These formats are required to
access session functions from non-Java client software, but can be transparently
integrated into Java applications, as shown in the sample code in this chapter.

Implementing the Session API

Using the Session API

A session represents a connection between a client and a server where information
is exchanged between the two entities. It is critical to maintain state information
between the two entities to prevent unauthorized clients from accessing resources
in the iPlanet Portal Server platform. A state object, called a cookie, is used to
maintain and store state information.

Sessions are a general mechanism which server side connections can use to both
store and retrieve information on the client side of the connection. The addition of
a simple, persistent, client-side state significantly extends the capabilities of
Web-based client/server applications. A server, when returning an HTTP object to
a client, may also send a piece of state information which the client will store.

25

Implementing the Session API

26

Included in that state object is a description of the session credentials for which that
state is valid. Any future HTTP requests made by the client which fall in that range
will include a transmittal of the current value of the state object from the client back
to the server.

There are two main types of sessions:
= User session
= Application session

A user session is associated with a user. An application session is associated with
an application without the context of a user. The session type (user or application)
property in a session is used to distinguish a user session from an application
session.

A session is created when a user or an application authenticates itself successfully.
The authentication service creates a new session in the iPlanet Portal Server
platform through a private interface provided by the Session Service. An active
session at minimum has the following properties:

Session ID A random string generated by session service to
uniquely identify the session. The string is carried in
every HTTP/HTTPS request headers as cookies.

Session type Whether this session is a user session or an application
session.
Clientid The user id or the application id depending on the

session type.

Domain name The domain name of the user/application they belong
to. It is used to distinguish users/applications of the
same name. The domain name property is where the
user’s profile is located in the role tree.

Creation time When the session is created.
Access time The latest time the session is accessed.
Session state Whether the session is valid or invalid.

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Implementing the Session API

Men Jara Based P lanet Application Java Based i-Flnet Application
Session AP XML Messages Jerra Sessiomn, Logzine / Profile and Policy AL
HITP/HITIlS Java Platform Lowe Level AL

Authentication

Platform Lo Level AFL

[rivate Sessicn Logzing /Profile and Policy
Progmmming Interface

Seapiom Server

Y

Semsiom Service [Profile

Figure 2-1 Session Service Block Diagram

The Session API can access session services provided by the iPlanet Portal Server
software by using over-the-wire protocol. This protocol consists of the transport
protocol and detailed message format in order to access iPlanet Portal Server
services. A Java implementation of this over-the-wire protocol is also provided so
that the transport protocol and message format details can be hidden from Java
application developers.

Non-Java applications access session services by using HTTP/HTTPS transport
protocol and XML messages defined by the Session APl to communicate with the
session server.

Chapter 2 Session APl 27

Implementing the Session API

28

Session API Transport Protocol

As HTTP is the main communication protocol in the iPlanet Portal Server platform
and well defined, there is no need to invent a new syntax and semantics for the
transport of the Session API, it is a natural choice to use HTTP as the transport
protocol to access those session services for the Session API.

Session APl Message Format

All session requests, responses, and events are encoded to XML. The main
advantage to use XML encoded message is that non-java applications can access
session services of the iPlanet Portal Server platform by using the required
transport protocol and XML message format described in this section.

The following are the main session requests used by the Session API:
= Getasession
« Getall valid sessions. (Protected by policy)
= Destroy a session. (Protected by policy)
= Logout a session
< Add a listener on a session
= Set session properties
A session can be destroyed by an administrator. It will also be destroyed based on
the session idle time and session maximum duration time.
Idle time The difference between the current time and
the last access time.

Session duration time The difference between the current time and
the session creation time.

The default maximum session idle time and duration time shall be in the Session
Service Profile, which makes it possible to assign different maximum idle and
duration time to different users and applications by overwriting those values in the
users profiles and applications profiles respectively.

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Implementing the Session API

Session API Classes and Interfaces

The classes that can be included in the Java implementation automatically handle
communication and data transfer with the iPlanet Portal Server product.

Session Class

SessionID Class

SessionEvent Class

SessionListener Interface

This class represents a session. It contains session
related information such as session id, session type
(user/application), client id (user id or application
id), session creation time, latest session access time,
and session state. It also allows applications to add
listener for session events.

This class is used by applications to identify
individual iPlanet Portal Server sessions. The
SessionID information includes the originating
domain of the user.

This class represents a session event. It contains the
session object for the event, event type, event time,
and event specific information corresponding to the
event type if any.

This is an interface which needs to be implemented
by applications in order to receive session events.

Chapter 2 Session API

29

Implementing the Session API

30

Sample Session Code

The following code sample illustrates how a new application might use the Session
API.

Instructions for using the HelloServlet
1. Set IPS_BASE to the iPlanet Portal Server installation directory.

2. Change directory and make the file as shown in the following example:

cd $IPS_BASE/SUNWips/sample/api

make

3. Copy the class files to the appropriate directory on the portal server under:
$IPS_BASE/SUNWips/lib
For example, all class files would be copied to:
$IPS_BASE/SUNWips/lib/com/iplanet/portalserver/api
4. Modify the web server configuration.
The web server configuration files are in the directory:
$IPS_BASE/netscape/server4/https- servername [config
where servername is the FQDN of the portal server.
5. Add the following line to the web server servlets.properties file:
servlet.helloservlet.code=com.iplanet.portalserver.api.HelloServiet

Replace the package and servlet names with the names that were chosen for
this HelloServlet.

6. Add the following line to the web server rules.properties file:
/helloservlet=helloservlet

7. Asroot, Import iwtHelloServlet.xml using ipsadmin , as shown in the
following example:

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Implementing the Session API

$IPS_BASE/SUNWips/bin/ipsadmin -import iwtHelloServilet.xml

8. copy file iwtHelloServlet.properties to $IPS_BASE/SUNWips/locale
directory

9. Restart the iPlanet Portal Server server.

letc/init.d/ipsserver start

10. Test the servlet by logging in to the iPlanet Portal Server desktop and entering
the following URL:

https://gateway/http://server:8080/helloserviet

where gateway and server are replaced by the names of the gateway and server.

Chapter 2 Session APl 31

Implementing the Session API

32

Import the iPlanet Portal Server Classes

At a minimum, the Java client application should import the iPlanet Portal Server
Profile, logging, and Session classes, as shown here.

Code Example 2-1 Importing iPlanet Portal Server Classes

Il @(#)HelloServlet.java 1.1 00/04/20 Copyright (c) 1999 Sun
Microsystems, Inc., All rights reserved.

package com.iplanet.portalserver.api;

import java.io.*;

import java.util.*;

import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Vector;

import com.iplanet.portalserver.session.*;
import com.iplanet.portalserver.profile.*;
import com.iplanet.portalserver.logging.*;
import com.iplanet.portalserver.util.*;

While directly access the classes as needed, importing the logging and session
classes will allow better use of the Session functions.

The sections below briefly describe some of the functionality available, but
reference the Javadocs online at:

http:// yourserver:port /docs/en_US/javadocs

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Implementing the Session API

Sample Code

The following code sample illustrates how a new application might use the Session

API.

Code Example 2-2 Sample Session API

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServietResponse

res)
throws ServletException, IOException {
try {
/| Get a session
SessionID sid = new SessionID(req);
Session sess = Session.getSession(sid);

/I Validate a session
if (sess.getState(false) = Session.VALID)
return;

/I Add a session listener
sess.addSessionListener(new HelloSessionListener());

} catch (SessionException e) {

}

class HelloSessionListener implements SessionListener {

public void sessionChanged(SessionEvent e) {
Session sessionEvt = null;

/I if the session is still valid, just return
[/l without doing anything
try {
sessionEvt = e.getSession();
if (sessionEvt.getState(false) == Session.VALID)
return;
else {
/I clean up profile before quitting

} catch (Exception se) {}

Chapter 2

Session API

33

Implementing the Session API

34 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Chapter 3

Profile and Policy API

Profile and Policy API Overview

The Profile and Policy Application Programming Interface (API) provides
developers of iPlanet Portal Server client software a mechanism to manage user
and role profiles. It also allows application programmers to perform policy checks
on the user before granting any permission. Additional, the iPlanet Portal Server
Administration console relies on the Profile and Policy APl to manage users and
roles.

Additionally, the Profile and Policy API provides an XML DTD to define the
format for data streams to provide to the server profile process and to define the
format for data streams coming from the server profile process. These formats are
required to access profile and policy functions from non-Java client software, but
can be transparently integrated into Java applications, as shown in the sample code
in this chapter.

Profile and Policy API Functionality

The Profile and Policy API performs a variety of profiling and access control tasks
within the iPlanet Portal Server environment, including:

= Returning any or all attributes and values to the calling application

= Uses the policy methods to check user access privilege before granting any
permission

All of the main entities controlled by the Profile and Policy API (users, roles, and
domains) are organized in a tree structure, as shown in Figure 3-1. Each entity
inherits attributes from its parent and separately maintains its own attributes,
which override inherited attributes.

35

Profile and Policy API Functionality

Rz
P T hm
LA, —

. .

¢ — [-

Ececatvgbe 1 4 Eamngle 2
J ‘H i
| L £y

Lradan AL AEnir | | |

F A Eng A
- A
rohidel [
‘ - - - Hundiam Soflewe Payabls Fecenable

Pres Abige Wit o M, Vo
oy) PR T B U
i ‘*’ "'- uari wir? usrd uars u]l: UM i
uzr | Wz [TE S uirk

Figure 3-1 The Profile and Policy APl Organization Structure

Profile and Policy attributes are stored in the form of name-value pairs in profile
database. Access privileges are special attributes stored in the Profile and Policy
database. Boolean type privileges have a boolean value of true or false. List type
privileges have an allow value list and a deny value list.

The policy for adomain, role or user is implemented by setting the privileges for an
individual domain, role, or user profile.

36 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Implementing the Profile and Policy API

Implementing the Profile and Policy API

As with the other APIs, implementing an iPlanet Portal Server client application in
Java is substantially less complex than implementing in any other language, simply
because referencing existing iPlanet Portal Server classes masks much of the
communication and protocol manipulation. Therefore, only be concerned with the
Profile attributes and values wanting to create, write to, read from, or otherwise
manipulate, and can ignore the communication protocols involved for all Java
client implementations.

Profile and Policy API Classes and Interfaces

The Profile and Policy API provides the following Java classes and interfaces:
= Profile Class provides the following methods:

o Profile methods provides common methods to create, delete, and access
profile attributes

o Policy methods provides methods to check access privileges

= ProfileEvent Class represents profile event notification. This notification is
generated when profile attribute, or privilege is changed

= Profile Exception Class is a generic profile service exception For simplicity this
profile API throws this exception with a specified exception type. See
Appendix C, “iPlanet Portal Server API Exceptions”

= Profile Listener (Interface) This interface needs to be implemented by the
applications in order to receive profile events

Specific implementation details are contained in the Profile and Policy API
Javadocs, available online at:

http:// yourserver:port /docs/en_US/javadocs

The following section outlines the procedures for using the Profile and Policy API
methods and classes.

Chapter 3 Profile and Policy APl 37

Implementing the Profile and Policy API

Interactions, Assumptions, and Dependencies
The Profile and Policy API uses:

< The Session API to validate the user session
e Platform low level API for over the wire communication

See Appendix A for more information about direct communication with the profile
Server process.

Additionally, it is assumed that applications supply lists of profile attributes,
access privileges, and their initial values.

Exception Handling

The Profile and Policy API performs a wide range of checks and throws exceptions
in the following cases. See Appendix C, “iPlanet Portal Server APl Exceptions” for
all the Profile API exceptions.

= Requested profile is not found

= Failure of store operation

= User does not have permission to do requested operation on an attribute
= Requested attribute is not found in user profile
= User session is not valid/inactive

= Privilege not found in user profile

= Invalid value supplied for attribute

= lllegal privilege name

< lllegal attribute name

= lllegal wild character expression

< lllegal wildcard expression

= lllegal match value

38 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Using the Profile and Policy API

Using the Profile and Policy API

The Profile and Policy API provides methods to add and delete roles to the
permission lists.

Each attribute defined in the Profile database has its own qualifiers, including:
o Read/Write permission Lists
o Remote flag

Read/Write permission Lists tell which role can perform read/write operations on an
attribute.

Getting Profile Object

For example, an application programmer could get a profile object with the Session
API, as follows:

Profile p = session.getUserprofile () ;

Getting Attribute Values

An application programmer could get a profile attribute with the Profile and Policy
API, as follows:

string name = p.getAttributeString ("HelloServlet-color") ;

o Returns HelloServlet-color attribute value

Setting Attribute Values

For example, an application programmer could set a profile attribute with the
Profile and Policy API, as follows:

p.getAttributeString ("HelloServlet-color","blue",Profile.NEW) ;

o Sets HelloServlet-color to blue

Chapter 3 Profile and Policy APl 39

Using the Profile and Policy API

Checking Policy (Using Boolean Privileges)

For example, an application programmer could check policy with the Profile and
Policy API, as follows:

p.isAllowed("HelloServlet-execute")

o Returns true if HelloServlet-execute is set to true

o Returns false if HelloServlet-execute is set to false

Checking Policy (Using List Privileges)

For example, an application programmer could set and check policy with the
Profile and Policy API, as follows:

p.isAllowed("HelloServlet-changeColor",session.getClientDomain()
,Profile.Regular

o Returns true if user domain is in allow list and not in deny list

o Returns true if allow list contains *’ and user domain is not in deny list
o Returns false if user domain is in deny list

o Returns false if user domain is not in deny list or allow list

Refer to Code Example 3-2 for a sample Profile API.

Import the iPlanet Portal Server Classes

At a minimum, the Java client application should import the iPlanet Portal Server
Profile, and Session classes, as shown here.

40 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Using the Profile and Policy API

Code Example 3-1 Importing iPlanet Portal Server Classes

import java.io.”;

import java.util.*;

import java.net.*;

import com.iplanet.portalserver.naming.*;
import com.iplanet.portalserver.session.*;
import com.iplanet.portalserver.profile.*;

Sample Code

The following code sample illustrates how a new application might use the Profile
API. This code segment uses the Session object to get the user profile, which will
then check a privilege. If the provider does not throw an exception, an attribute is
returned.

Code Example 3-2 Sample Profile API

public class HelloServlet extends HttpServlet {

public void doGet(HttpServletRequest req, HttpServietResponse

res)
throws ServletException, IOException {

try {

/I Get a session as described in the previous sample :
sess

/I Get user profile name from the session object
Profile p = s.getUserProfile();

/I Get a profile attributes

String color =

p.getAttributeString("HelloServlet-color");
String name = p.getAttributeString("HelloServlet-name");

/I Add a profile listener
p.addProfileListener(new HelloProfileListener());

/I Get policy information
if (p.isAllowed("HelloServlet-execute")) {
System.out.printin("User is allowed to execute this

program");
}

Chapter 3 Profile and Policy APl 41

Using the Profile and Policy API

Code Example 3-2 Sample Profile API (Continued)

/I The HelloServlet-changeColor is defined as a list type
privilege.
/I What's in the list is domains. If the user domain is
in the
/I privilege HelloServlet-changeColor’'s allow list, ths
user is allowed
// to change color. Otherwise, the user is denied to

change color.

if (p.isAllowed("HelloServlet-changeColor”,

s.getClientDomain(), Profile. REGULAR)) {
System.out.printin("User is allowed to change color");

}
} catch (ProfileException €) {

public class HelloProfileListener implements ProfileListener {
public void profileChanged(ProfileEvent notify){

Profile p = notify.getProfile();
int type = notify.getType();

/I Either the color or the name attribute may have changed
/I Get the new values for these attributes.
if (type == ProfileEvent.PROFILE_CHANGE) {

try {
String color =
p.getAttributeString("HelloServlet-color");
String name =
p.getAttributeString("HelloServlet-name");
} catch (ProfileException pe) {
System.out.printin("Profile: getAttribute() failed");

return;
}else {
/I no attributes were changed
/I profiles were created or deleted
return;

42 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Chapter 4

Log API

Log API Overview

This chapter provides an overview of Log Application Programming Interface
(API) which can be used by the iPlanet Portal Server applications to perform
logging activities.

The Log API provides log management tools for the iPlanet Portal Server
applications, and provides a set of Java classes so that the applications can create,
retrieve, submit, or delete log information.

Some of the information that can be tracked and recorded by the Log API include:
= User identification and actions taken
= System usage, access time, and failures

Additionally, the Log API provides an XML DTD to define the format for data
streams to provide to the server logging process and to define the format for data
streams coming from the server logging process. These formats are required to
access logging functions from non-Java client software, but can be transparently
integrated into Java applications, as shown in the sample code in this chapter.

The logging server process resides on the same network as the iPlanet Portal Server
application server and gateway. The log file format is ASCII text, so administrators
may use any utilities available to them for viewing ASCII text files.

NOTE The details of the Log API’s methods are in the Log API Javadocs,
available from the server at
http:// yourserver:port /docs/en_US/javadocs

43

Implementing the Log API

Implementing the Log API

44

As with the other APIs, implementing a client application in Java is substantially
less complex than implementing in any other language. By referencing existing
iPlanet Portal Server classes to create, write to, read from, or otherwise manipulate
logs, masks much of the communication and protocol manipulation.

The Log API provides:

Log Manager A set of Java classes to an application so that the
application can create or delete a log, submit or retrieve
log information, query a log, and retrieve a list of
available logs.

Log Record A Java class to allow an application to fill in a single log
request information from the application so that the
application can submit such single log request
information to a log file.

iIPlanet Portal Server Classes

At a minimum, the Java client application should import the logging and session
classes, as shown here.

Code Example 4-1 Importing iPlanet Portal Server Classes

import java.io.”

import java.util.*;

import java.net.*;

import com.iplanet.portalserver.session.*;

While directly access the classes as needed, importing the logging and session
classes will allow better use of the Logging functions.

The sections below briefly describe some of the functionality available, but
reference the Javadocs online at:

http:// yourserver:port /docs/en_US/javadocs

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Log API Functionality

Log API Functionality

The Log API offers the following capabilities to applications:

Creating Logs
Deleting Logs
Writing to a Log
Reading from a Log
Log List Retrieval
Querying Logs

Creating Logs

Applications can create a log file by invoking the LogManager constructor and
passing the requested log file name value to the create method.

Code Example 4-2 Create a New Log (Minimal Code)

LogManager logMgr = new LogManager(session);
try {

logMgr.create(“logname™);

} catch (LogException €) {

System.out.printin("Log Creation fails: " + e);

Create throws an exception if:

The filename is invalid
The file already exists

The application does not have permission to create files

Chapter 4 Log API 45

Log API Functionality

Deleting Logs

Applications can delete a log by constructing an object of type LogManager and
passing the log file name to the object’s delete method.

Code Example 4-3 Delete aLog (Minimal Code)

LogManager logMgr = new LogManager(session);
try {

logMgr.delete("logname™);

} catch (LogException e) {
System.out.printin("Log Deletion fails: " + e);

Delete throws an exception if:
= The log does not exist
= The filename is invalid

= The application does not have permission to delete files

Writing to a Log

Applications submit key-value pairs to log records, to a log. First, the application
must create a log record, then write to the log, and catch exceptions as required.

Code Example 4-4 Writing Records to a Log (Minimal Code)

LogManager logMgr = new LogManager(session);
LogRecord logrec = new LogRecord(key, value);
try {

logMgr.write("logname", logrec);

} catch (LogException e) {
System.out.printin("Log info writing fails: " + e);

LogException is thrown if;
e Failure of a log record submission

< Privilege denied

46 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Target log does not exist
Target log is inactive
Invalid session

Fatal system error

Reading from a Log

Applications retrieve information from a log and may selectively retrieve
information with a query. See “Querying Logs,” on page 48.

Code Example 4-5 Reading Records from a Log (Minimal Code)

Log API Functionality

LogManager logMgr = new LogManager(session);

Vector loginfo = new Vector();

try {

loginfo = logMgr.read("logname");

} catch (LogException e) {
System.out.printin("Log Info Retrieval fails: " + e);

A LogException is thrown if an error occurs as follows:

Invalid session is encountered
The reading privilege is denied
The target log does not exist

Other fatal system errors are encountered

Chapter 4 Log API 47

Log API Functionality

Log List Retrieval

Applications can get a list of all log names in the system.

Code Example 4-6 Retrieve Existing Log List (Minimal Code)

LogMgr logMgr = new LogManager(session);
Vector llist = new Vector();

try {

llist = logMgr.list();

} catch (LogException e) {
//ISystem.out.printin("Log List Retrieval fails: " + e);

A LogException is thrown if an error occurs for the following reasons:

Invalid session is encountered
The listing privilege is denied
The log list does not exist

Other fatal system errors are encountered

Querying Logs

To retrieve log records from a log with a query, the log should include such
information as:

A valid and existing log name.

A query string.

Code Example 4-7 Query Log Information (Minimal Code)

LogManager logMgr = new LogManager(session);

vector list = new vector()
try {
vector loginfo = logMgr.read("logname”, "domain = iplanet.com");

catch (LogException e) {
System.out.printin("Log Info Retrieval fails: " + €);

48 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Log API Functionality

This queries the specified log with the boolean query provided. For example, query
for “domain = sun.com”.

A LogException

Invalid session is encountered
The reading privilege is denied
The target log does not exist

Or other fatal system errors are encountered

Sample Code

The following sample code illustrates a basic implementation of logging
functionality.

Code Example 4-8 Sample Log API

is thrown if it an error occurs as follows:

LogManager Im = new LogManager(session);

llcreate a log
try {
Im.create("xyz");
} catch (LogException €) {
System.out.printin("e");

}

//submit log information
try {
for (int i=0; i<10; i++) {

LogRecord Ir = new LogRecord("typehello”, "msghello");

Im.write(Ir, "xyz");

} catch (LogException e) {
System.out.printin("e");

/Iretrieve log information
try {
Vector r = new Vector();
r = Im.read("xyz");
for (int i=0; i<r.size(); i++)
System.out.printin(r.elementAt(i));

}
} catch (LogException e) {
System.out.printin("e");

//delete a log

Chapter 4 Log API 49

Log API Functionality

50

Code Example 4-8 Sample Log API (Continued)

try {
Im.delete("xyz");

catch (LogException e) {
System.out.printin("e");

/lquery log information

try {
loginfo = logMgr.read("xyz", "
}

catch (LogException e) {
System.out.printin("e");

//obtain a list of log names in the system
try {

Vector Il = new Vector();

Il = Im.list();

for (inti=0;i < Il.size(); i++) {

}
catch (LogException e) {
System.out.printin("e");

domain = iplanet.com™);

System.out.printin(Il.elementAt(i));

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Chapter 5

Content Provider API

Content Provider Overview

The iPlanet Portal Server software allows multiple sources of information,
applications, and services to be displayed within a single page or set of pages that
the user can view in a browser. The page in which the content is included is known
as the desktop. The various sources of content are displayed in rectangular areas
arranged in rows and columns within the desktop called channels. A Java class,
called a provider, is responsible for converting the content in a file, or the output of
an application or service into the proper format for a channel. A number of
providers are shipped with the Portal Server including a bookmark provider, an
application provider, and a notes provider. As the desktop is imaged, each
provider is queried in turn for the content of its associated channel. Some
providers are capable of generating multiple channels based upon their
configuration. This chapter details the basics of developing new content channels
for the desktop and introduces a sample provider.

Content Provider Functionality

The iPlanet Portal Server desktop is designed to have four possible content layouts,
with various combinations of ‘thick’ and ‘thin’ columns. The main desktop layout
template consists of basic HTML to define the look (colors, logo, etc.) of the page,
and tags designed to be replaced with the content for each of the columns.

The content for the columns will be provided by providers, which are custom Java
classes. The Java classes are invoked by the desktop Servlet and the output is
inserted into the output of the entire desktop for display. Each provider may
define the look of the content section of part, or, the whole layout.

51

Using the Sample Providers

Channels can define their width as either thick or thin. This loosely defines the
amount of horizontal screen real estate for the channel; a thick channel subjectively
gets more horizontal screen real estate than a thin one. The absolute width is
dependent upon the size of the browser window. A channel will expand veritcally
as needed; there is no restriction on vertical sizing of a channel. Providers designed
for the ‘thin’ column should not be placed in the ‘thick’ column and vice-versa.

Using the Sample Providers

52

The iPlanet Portal Server package includes several sample Content Providers in the
SUNWips package. The following sections explain the process to compile the
providers, and add them to an existing iPlanet Portal Server installation.

See the iPlanet Portal Server Administration Guide for information on adding
custom providers.

TIP See Appendix B, “Putting Code Together”, an iPlanet Portal Server
desktop provider sample application that touches on the public APIs
available for integrating an application with the iPlanet Portal Server
desktop.

Compiling Sample Provider Code

Before compiling the sample provider code, set certain environment variables:
» setenv PATH $PATH:/usr/java/bin:/usr/ccs/bin

< JAVA_HOMEHo the Java directory (usually /usrfjava)

< |PS_BASE to the product installation directory (usually Zopt)

To compile the Sample Providers, use the following process:

1. Change to the top level of the samples directory.

cd /opt/SUNWips/samples

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Implementing the Content Provider API

2. Make the samples:

make

TIP Create a short shell script to more easily recompile the samples. The
following sample works well with a default installation.

#1/bin/sh

JAVA_HOME=/usr/java

IPS_BASE=/opt

export JAVA_HOME IPS_BASE IPS_ROOT
cd $IPS_ROOT

make

Implementing the Content Provider API

To use the Content Provider API, develop classes that implement or extend the
ProfileProviderAdapter, or the ProviderAdapter.

NOTE Complete documentation for all methods and classes is in the
Javadocs, available in the installation at:
http:// yourserver:port /docs/en_US/javadocs

Provider Sample Code

The following sample code implements a minimal Provider (HelloWorld). Compile
this code as above, then use the process documented above to add this provider to
the Portal Server system.

Chapter 5 Content Provider APl 53

Implementing the Content Provider API

Code Example 5-1 HelloWorld Content Provider

package com.iplanet.portalserver.providers.helloworld;

import java.lang.*;
import java.util. Map;

import com.iplanet.portalserver.providers.*;

/**

* This class implements a provider that prints the hello world
message.

* |t does not use the iPS Profile Service.

* <p>

* This class

* only overrides the methods in the class
<code>ProviderAdapter</code>

* that it needs to customize. In a production environment, you
should

* always implement all of the method in the
<code>Provider</code> interface.

* <p>

* When installing this class, you MUST register it with the
desktop under

* the same name returned by the <code>getName()</code> method!
*/

public class HelloWorldProvider extends ProviderAdapter
implements Provider {

public HelloWorldProvider() {
}

public StringBuffer getContent(Map m) throws
ProviderException {
StringBuffer content = new StringBuffer("Hello World!");

return content;

public String getTitle() {
return "Hello World Provider";

public String getDescription() {
return "This provider says 'Hello World!"";

public String getName() {
return "iwtHelloWorldProvider";

public String getBackgroundColor() {

54 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Implementing the Content Provider API

Code Example 5-1 HelloWorld Content Provider (Continued)

return "#CCCCCC";

}
}

Chapter 5 Content Provider APl 55

Implementing the Content Provider API

56 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Chapter 6

Pluggable Authentication API

Pluggable Authentication API Overview

This chapter describes requirements for writing a supplemental authentication
module to plug into iPlanet Portal Server and provides information about
customizing the authentication pages.

Table 6-1 Tasks to Customize Authentication

If you want to Do

Change login prompts Edit the .properties file associated with the login screen
that will be changed. See “Understanding the .properties
File,” on page 59.

Add authentication = Create .properties file for the authentication module.
capability See “Understanding the .properties File,” on page 59.

= Write and integrate an auth module.“Writing a Pluggable
Authentication Module,” on page 62.

Selectively enable or Refer to iPlanet Portal Server 3.0 Administration Guide
disable auth modules

Customize prompts and Refer to iPlanet Portal Server 3.0 Administration Guide
appearance for specific
Domains

The authentication methods available in iPlanet Portal Server include the

following:
< RADIUS
o RADUIS

57

Authentication Process Overview

o RADIUS-to-ACE/Server

o RADIUS-to-SafeWord
= RSA Security, Inc., Security Dynamics

o SecurlD, ACE/Server, ACE/Agent, Security Dynamics
= Secure Computing, Inc.

o SafeWord server and tokens

e S/Key

e UNIX/NIS
e NT

- LDAP

< Personal Digital Certificate

< Membership

TIP Before beginning to write authentication modules, contact the
e-Commerce Solutions sales representative to find out if the module
needed has already been written and is available from internal
resources.

For additional authentication capabilities, use the information in this chapter to
write a custom authentication module and integrate it into the Portal Server.

Authentication Process Overview

58

Custom iPlanet Portal Server authentication modules require two main
components:

e The .class file to authenticate the user

« The .properties file to specify prompts the user will see and the
information that will be passed to the authentication module

The .class file implements the authentication type that is added. Write the
authentication module to override certain methods provided by the API.

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Understanding the .properties File

For information about the methods the module must override, see
“Requirements,” on page 62.

Understanding the .properties File

The .properties file is the configuration file for an authentication module. The
file specifies the text, tokens, and password prompts for the login pages associated
with the authentication module.

Name the authentication module’s .properties file name with the base class
name (no package name) and the extension .properties

For example: Sample.properties.
This file must reside in /etc/opt/SUNWips/auth/default on the iPlanet
Portal Server software.

Code Example 6-1 The Form for the Properties File

SCREEN

TIMEOUT 60

TEXT Sample Login Page

TOKEN Enter User Name:
PASSWORD Enter User Password:

SCREEN

TIMEOUT 30

TEXT Sample Login Page 2
TOKEN Enter Favorite Color
TOKEN Enter Secret Pin Number
PASSWORD Enter Challenge form

Table 6-2 discusses the directives that can be included in a .properties file.

Chapter 6 Pluggable Authentication API 59

Understanding the .properties File

60

Table 6-2 The .properties

File Directives

Directive

Description

SCREEN

TIMEOUT n

TEXT

TOKEN yyy

PASSWORD zzz

IMAGE image-path

<REPLACE>

Each SCREEN entry corresponds to one authentication
state (authentication HTML page). The authentication
module can set which screen is next, or it can allow the
iPlanet Portal Server's auth servlet progress
through the screens sequentially.

The TIMEOUT directive is used to ensure that users
respond in a timely manner. If the time between when
the page is sent and the user submits his response is
greater than “n” seconds, a time-out page is sent.

The TEXT directive is similar to a title for the page, and
the text <xxx> appears at the top of the screen area
provided for the auth module. Only one TEXT directive
per SCREEN should be specified. If more than one is
provided, then the last one is displayed.

The TOKEN directive equates to the following HTML:

<P>yyy
<INPUT
TYPE="TEXT” NAME=TOKEN0>

The input field's name starts at TOKENO and
increments with each TOKEN or PASSWORD directive
specified per SCREEN.

The PASSWORD directive equates to the following
HTML:

<P>Yyyy
<INPUT
TYPE="PASSWORD” NAME=TOKENO0>

The input field's name starts at TOKENO and
increments with each PASSWORD or TOKEN directive
specified per SCREEN.

The IMAGE directive allows auth module writers to
display a background image on each page.

The REPLACE tag allows a module to substitute
dynamic text for the text accompanying token and
password descriptions.

Used in conjunction with the setReplaceText() method.

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Understanding the .properties File

The specific directives included will depend on the requirements of the
authentication method and the extent of customizing the appearance of the
prompts and displays through the authentication process.

Each SCREENNtry corresponds to one authentication state or authentication
HTML page. When an authentication session is invoked, one HTML page is sent
for each state. In Table 6-2 on page 60, the first state sends an HTML page asking
the users to enter a token and a password. When the users submit the token and
the password, the validate() method is called. The module gets the tokens,
validates them, and returns them. The second page is then sent and the
validate() method is again called.

If the module throws a LoginException , an authentication failed page is sent to
the user. If no exception is thrown, which implies successful completion, the users
are redirected to their default page. The TIMEOUTdirective is used to ensure that
the users respond in a timely manner. If the time between sending the page and the
response is greater than the TIMEOUT value, a time-out page is sent.

When multiple pages are sent to the user, the tokens from a previous page may be
retrieved by using the getTokenForState methods. Each page is referred to as a
state. The underlying authentication module keeps the tokens from the previous
states until the authentication is completed.

Each authentication session creates a new instance of the authentication Java class.
The reference to the class is released once the authentication session has either
succeeded or failed.

NOTE Any static data or reference to any static data in the authentication
module must be thread safe.

Chapter 6 Pluggable Authentication APl 61

Writing a Pluggable Authentication Module

writing a Pluggable Authentication Module

62

The following sections discuss the requirements and recommendations to follow
when writing a new authentication module.

Requirements

A pluggable authentication module for iPlanet Portal Server desktop must
override certain methods and should adhere to specific naming conventions and
standards for easy integration.

NOTE For a list and description of the methods used to write the
authentication module, see the JavaDocs at
http:// yourserver:port /docs/en_US/javadocs

= Extend com.iplanet.portalserver.auth.server.Login
= Override the validate() , init() , and getUserTokenld() methods

The validate method replaces the input gathering method. Each time the user
submits an HTML page, the validate() method will be called. In the method,
authentication-specific routines are called. At any point in this method, if the
authentication has failed, the module must throw a LoginException . If desired,
the reason for failure can be an argument to the exception. This reason will be
logged in the iPlanet Portal Server authentication log.

init() should be used if the class has any specific initialization such as loading a
JNI library.

init() is called once for each instance of the class. Every authentication session
creates a new instance of the class. Once a login session is completed the reference
to the class is released.

getUserTokenld() is called once at the end of a successful authentication
session by the iPlanet Portal Server authentication server. This is the string the
authenticated user will be known as in the iPlanet Portal Server environment. A
login session is deemed successful when all pages in the .properties file have
been sent and the module has not thrown an exception.

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Writing a Pluggable Authentication Module

Recommendations
< Add /opt/SUNWips/classes to the CLASSPATH environment variable

< Naming the authentication module in the following way allows (and forces)
the module’s class file to be installed with the other auth modules provided
with the iPlanet Portal Server software
com.iplanet.portalserver.service.auth.module.sample

About using helpers

A helper is a process that runs separately from the Portal Server but processes the
server's authentication requests associated with a given authentication module. In
the case of the Portal Server, a helper is a C-language process.

The helper listens for requests on a socket. If data is passed in the clear over the
connection, the helper should only accept requests originating from the localhost.
The helper can be started at boot time. The startup script is in:

/etc/rc3.d/S42ipsserver

Some authentication SDKs are supplied as C-language libraries that must be
statically linked. If using JNI is undesirable for portability, design, or performance
reasons, using an authentication helper is an option.

The UNIX, SafeWord, SecurID, and RADIUS authentication modules employ
helpers.

Integrating the Module

After the pluggable authentication module has been written and tested, it must be
integrated into the iPlanet Portal Server software with the following procedure.

1. Create a directory for the authentication module under:
/opt/'SUNWips/lib/

2. Putthe authentication .class file into the directory created for it.

3. Putthe corresponding .properties file in:
/etc/lopt/SUNWips/auth/default

4. Create an XML file to update the iwtAuth component of the Portal Server or
domain. See Table 6-4 on page 67 for an example of the XML file.

Chapter 6 Pluggable Authentication APl 63

Writing a Pluggable Authentication Module

a. Make a copy of /etc/opt/SUNWips/xml/iwtAuth.xml
For example, /etc/opt/SUNWips/xml/iwtAuth.xml.update
b. Add the values for your module to the new XML file.
Use the example XML file provided in Code Example 6-4 on page 67.

NOTE The new XML file includes only the attributes to be updated. The
component name part is omitted.

c. Import the XML file.

lopt/SUNWips/bin/ipsadmin change component iwtAuth <iwtAuth.xml.update>

5. Restart the iPlanet Portal Server.

Jopt/SUNWips/bin/ipsserver start

64 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Writing a Pluggable Authentication Module

Sample Code

The following samples show the form and content of the files associated with an
authentication module:

= Sample Properties File
< Sample Login Module Source

= Sample XML File

Sample Properties File
The following sample file Sample.properties can be located in:

/opt/SUNWips/sample/auth/module

where /opt is the directory in which it is installed by default.

Code Example 6-2 Sample.properties File

SCREEN

TEXT This is a sample login page
TOKEN First Name

TOKEN Last Name

SCREEN

TIMEOUT 30

TEXT Welcome to page 2
PASSWORD Your password

SCREEN

TIMEOUT 60

TEXT Welcome to page 3

TOKEN Enter <REPLACE>'s favorite food
PASSWORD Enter <REPLACE>'s favorite color

SCREEN

TEXT Welcome to page 4
PASSWORD your password
TOKEN anything here

Chapter 6 Pluggable Authentication APl 65

Writing a Pluggable Authentication Module

Sample Login Module Source
The following sample is in a file named Sample.java located in:

/opt/SUNWips/sample/auth/module/sample

where /opt is the directory in which it is installed by default.

Code Example 6-3 Sample Java Module—Sample.java

package com.iplanet.portalserver.sample.auth_modules;
import java.util.*;

import com.iplanet.portalserver.auth.server.*;

public class Sample extends Login {

private String userTokenld;
private String firstName;
private String lastName;

public Sample() throws LoginException{
System.out.printin("Sample()");

public void init() throws LoginException {
System.out.printin("Sample initialization");

public void validate() throws LoginException {
int currentState = getCurrentState();

if (currentState == 1) {
firstName = getToken(1);
lastName = getToken(2);
if (firstName.equals(") || lastName.equals(™)) {
throw new LoginException("names must not be

empty");
return;

else if (currentState == 2) {
String pass = getToken(1);
System.out.printin("Replace TExt first: " + firstName
+ " last: " + lastName);
setReplaceText(1, firstName);
setReplaceText(2, lastName);
return;

else if (currentState == 3) {
String[] tokens = getAllTokens();
for (int i=0; i<getNumberOfTokens(); i++) {

66 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Writing a Pluggable Authentication Module

Code Example 6-3 Sample Java Module—Sample.java (Continued)

System.out.printin(“Token-> " + tokensi]);

}

return;

else if (currentState == 4) {
String[] tokens = getAllTokensForState(1);
for (int i=0; i<getNumberOfTokensForState(1); i++) {
System.out.printin("Token-> " + tokens]i]);

}

userTokenld = firstName;

public String getUserTokenld() {
return userTokenld;

Sample XML File

The following is a sample XML file. The values in bold type represent the updates
made to the XML file. Replace the values in bold type with the values for the new
authentication module.

Code Example 6-4 Sample XML File—ispAuth.xml.update

<iwt:Att name="iwtAuth-authMenu"
desc="Authentication Menu"
type="multichoice"
idx="al"
userConfigurable="TRUE">
<Val>Radius</Val>
<Val>SecurlD</Val>
<Val>SafeWord</Val>
<Val>SKey</Val>
<Val>Unix</Val>
<Val>Ldap</Val>
<Val>NT</Val>
<Val>Sample</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>
<CVal>Radius</CVal>
<CVal>SecurlD</CVal>
<CVal>SafeWord</CVal>
<CVal>SKey</CVal>
<CVal>Unix</CVal>

Chapter 6 Pluggable Authentication APl 67

Writing a Pluggable Authentication Module

68

Code Example 6-4 Sample XML File—ispAuth.xml.update

(Continued)

<CVal>Ldap</CVal>
<CVal>NT</CVal>
<CVal>Sample</CVal>

</iwt:Att>

<iwt:Att name="iwtAuth-adminAuthModule"
desc="Admin Authenticator"
type="singlechoice"
idx="a4"

userConfigurable="TRUE">
<Val>Unix</Val>
<CVal>Radius</CVal>
<CVal>Simple</CVal>
<CVal>SecurlD</CVal>
<CVal>SafeWord</CVal>
<CVal>SKey</CVal>
<CVal>Unix</CVal>
<CVal>Ldap</CVal>
<CVal>NT</CVal>
<CVal>Sample</CVal>
<Rperm>ADMIN</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Att>

<iwt:Att name="iwtAuth-authenticators"
desc="Authentication Modules"
type="multichoice"
="
userConfigurable="TRUE">
<Val>com.iplanet.portalserver.auth.module.radius.

Radius</Val>

<Val>com.iplanet.portalserver.auth.module.securid.

SecurlD</Val>

<Val>com.iplanet.portalserver.auth.module.safeword.

SafeWord</Val>

<Val>com.iplanet.portalserver.auth.module.skey.SKey

</Val>

<Val>com.iplanet.portalserver.auth.module.unix.Unix

</Val>

<Val>com.iplanet.portalserver.auth.module.ldap.Ldap

</Val>

<Val>com.iplanet.portalserver.auth.module.cert.Cert

</Val>
<Val>com.iplanet.portalserver.auth.module.nt.NT

</Val>
<Val>com.iplanet.portalserver.auth.module.

application.Application</Val>

<Val>com.iplanet.portalserver.auth.module.sample.

Sample</Val>

<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>

<Wperm>ADMIN</Wperm>

<CVal>com.iplanet.portalserver.auth.module.radius.

Radius</CVal>

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Writing a Pluggable Authentication Module

Code Example 6-4 Sample XML File—ispAuth.xml.update (Continued)

<CVal>com.iplanet.portalserver.auth.module.securid.
SecurlD</CVal>
<CVal>com.iplanet.portalserver.auth.module.
safeword.SafeWord</CVal>
<CVal>com.iplanet.portalserver.auth.module.skey.
SKey</CVal>
<CVal>com.iplanet.portalserver.auth.module.unix.
Unix</CVal>
<CVal>com.iplanet.portalserver.auth.module.ldap.
Ldap</CVal>
<CVal>com.iplanet.portalserver.auth.module.cert.
Cert</CVal>
<CVal>com.iplanet.portalserver.auth.module.nt.NT
</CVal>
<CVal>com.iplanet.portalserver.auth.module.
application.Application</CVal>
<CVal>com.iplanet.portalserver.auth.module.

sample.Sample</CVal>
</iwt:Att>

Chapter 6 Pluggable Authentication APl 69

Writing a Pluggable Authentication Module

70 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Chapter 7

Single Signon

Single Signon Overview

The Single Signon provides developers of iPlanet Portal Server API’'s a mechanism
to let users access the applications freely after the initial session signon, rather than
prompting for authentication information to access each application during that
session. The session/user authentication is established at initial signon by the
session server.

At a high-level, single signon application development requires developers to:

a. Use the Session API to validate an HTTP request from the user into an
iPlanet Portal Server session.

b. Use the Profile and Policy API to access the application-specific
authentication information that is stored in the iPlanet Portal Server
profile.

c. Pass that information to the application.

Special Cases

HTTP Basic Authentication is automatically handled by the gateway. It monitors
user logins, then writes the URL and encrypted authentication information to the
Profile Server.

Similar to HTTP Basic Authentication is NetFile. NetFile notes what’s been used
(username, password, mount information) and remembers it for next time.

A system administrator can also pre populate URLSs in the Profile database.

Before logging into the Portal Server the servlet program will print out the value of
the session ID.

71

Instructions for using Single Signon

NOTE The cookie name would normally be retrieved by the application

from the http header.

Instructions for using Single Signon

This section provides information for linking a Single Signon authorization to a
user’s iPlanet Portal Server desktop.

72

Command Line Example

iPlanet Portal Server software must be installed to use this sample.

1.

2.

3.

Set IPS_BASE to the iPlanet Portal Server installation directory.
cd $IPS_BASE/SUNWips/sample/sso. then type make.

Copy the class files to the appropriate directory under:
$IPS_BASE/SUNWips/lib

on the portal server, e.g., the SSO.class would be copied to:
$IPS_BASE/SUNWips/lib/com/iplanet/portalserver/sso

Modify the web server configuration.

The web server configuration files are in the directory:
$IPS_BASE/netscape/server4/https- servername [config
where servername is the FQDN of the portal server.

Add the following line to the web server servlets.properties file:
servlet.sso.code=com.iplanet.portalserver.ss0.SSO

Replace the package and servlet names with the names chosen for this SSO
servlet

Add the following line to the web server rules.properties file:
/sso=sso

Restart the portal server:

iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Instructions for using Single Signon

etc/init.d/ipsserver start

8. Test the servlet by logging in to Portal Server and entering the following URL:

https:// gateway /http:// server:8080 [sso

Include the iPlanet Portal Server Classes

At a minimum, the Java client application should import the iPlanet Portal Server
Profile, Logging, and Session classes, as shown here.

package com.iplanet.porialserver.sso;

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.iplanet.portalserver.session.*;
import com.iplanet.portalserver.profile.*;
import com.iplanet.portalserver.logging.*;
import com.iplanet.portalserver.util.*;

Single signon checks to see if the session is valid by looking for the cookie (planted
by the Session) with the name iPlanetPortalServer.

Code Example 7-1 SSO.Java

public class SSO extends HttpServlet implements SessionListener{

private Vector v = new Vector();
private static boolean connectedToMailServer = false;

public void init(ServletConfig config) throws
ServletException {

Chapter 7 Single Signon 73

Instructions for using Single Signon

Code Example 7-1 SSO.Java (Continued)

public void doGet (HttpServletRequest req,

HttpServletResponse res)

throws ServletException, IOException {

v = new Vector();

SessionID sid = new SessionID(req);

Session sess=null;

try {
sess = Session.getSession(sid);
v.addElement("sessionID: " + sess.getID());
v.addElement("userID: " + sess.getClientID());
v.addElement("domain: " + sess.getClientDomain());

/I Possible states are VALID, INVALID, INACTIVE, DESTROYED
/l we only care whether it is valid or not

int state = sess.getState(false);
if (state != Session.VALID) {
v.addElement("user session invalid");

v.addElement("Session: Valid");
/I get the user profile associated with the session

Profile p = sess.getUserProfile();

String serverIMAP =
p.getAttributeString(“iwtUser-IMAPServerName");

String serverSMTP =
p.getAttributeString("iwtUser-SMTPServerName");

String userld = p.getAttributeString("iwtUser-IMAPUserld");

String passWord =

p.getAttributeString(“iwtUser-IMAPPassword");

if (lconnectedToMailServer) {
connect(userld, passWord);
connectedToMailServer = true;

v.addElement("IMAP server: " + serverIMAP);
v.addElement("SMTP server:" + serverSMTP);
v.addElement("user id: " + userld);
v.addElement("password:" + passWord);

catch(SessionException e){
v.addElement("Session invalid: " + e.getMessage());

}
catch(ProfileException e){
v.addElement("Profile exceptioin: "+ e.getMessage());

catch(Exception e){
v.addElement("Exception " + e.getMessage());

}
send_it(res, v);

74 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Code Example 7-1 SSO.Java (Continued)

Instructions for using Single Signon

void printProfile(Hashtable h, Profile p, String message) {
try {
v.addElement(message);
for (Enumeration e = h.keys(); e.hasMoreElements();) {
String s = (String)e.nextElement();
Enumeration ee = p.getAttribute(s);
v.addElement(s);
while (ee.hasMoreElements()) {
String ss = (String)ee.nextElement();
v.addElement(ss);
}
}

catch(Exception e){
v.addElement("Exception " + e.getMessage());

}

public void send_it(HttpServletResponse res, Vector st) {
try {
ServletOutputStream out = res.getOutputStream();
res.setContentType("text/html");
out.printin("<HEAD><TITLE> iPS SSO sample
</TITLE></HEAD><BODY>"),
out.printin("<h1> SSO iPS Sample </h1>");
for (int i=0;i<st.size();i++) {
out.printin("<P>" + (String)st.elementAt(i));

out.printin("</BODY>");
out.close();

}
catch (Exception e) {
o.printin("Exception™);

}

}

public void sessionChanged(SessionEvent evt) {
Session sess = evt.getSession();

try {
if (sess.getState(false) = Session.VALID) {

}

catch (SessionException e) {}

public String getServletinfo() {
return "iPS SSO sample™;

private void connect(String user, String pass) {
/I connect to mail server
return;

Chapter 7

Single Signon

75

Instructions for using Single Signon

Code Example 7-1 SSO.Java (Continued)

private static final PrintStream o = System.out;

76 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Chapter 8

Using the Command Line Interface

Command Line Inferface Overview

This chapter describes the command-line interface (ipsadmin) available for iPlanet
Portal Server administration. Use ipsadmin to import XML files to register (or
update) iPlanet Portal Server applications or content providers.

How it Works

As iPlanet Portal Server is installed, XML files shipped with the product are
imported into the Profile and Policy Server (using ipsadmin) to register the
existing applications. See /etc/opt/SUNWips/xml to see the XML code used.

If new applications are written that should be administered through the iPlanet
Portal Server desktop or if expanding on the capabilities of existing modules, it is
necessary to write and import an XML file to register the module with the Profile
and Policy Server. Additionally, use the ipsadmin command to script or automate
most routine tasks that could otherwise be accomplished through the
Administration Console. For example:

< Create domains
= Create roles

e Addauser

7

ipsadmin Command

Ipsadmin Command

By providing additional or new information to the Profile and Policy Server, the
ipsadmin command allows the creation or modification of:

« Avrole
« A user
e A domain

= A component

Usage

ipsadmin [-import |-chkxml] xmlfile

ipsadmin [change] [role Juser Jdomain |component] name[xmlfile]
ipsadmin [get | delete] [role Juser Jdomain |component] name
Where:

-import imports the xmlfile as a new component in the Profile service.

-chkxml checks the validity of the XML and reports errors without making any
changes to the Profile. You should use this before importing any data.

xmlfile comprises component name, attributes, and privileges as per the
webtopimport.dtd file. See Code Example 8-1 for the DTD and annotations.

create ,get,change,delete are operations that can be performed on a profile.
nameis the name of the profile to be operated on.
role , user ,domain , component are the types of the profile to be operated on.

file is the XML file containing the contents for the operation with regard to
attributes and privileges. This uses the iwt:Att and iwtPriv tags in the
wtimport.dtd file.

78 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Using ipsadmin

Using ipsadmin

Importing a New Component

1. Create a file newComponent.xml which describes what the Profile Server
must know about the component:

<iwt:Component name="newComponent”

Within this section, specify other “newComponent”-wide data, such as
description, resource bundle, and index.

>
<iwt:Att name="newComponent-attributel”

Within this section, specify other newComponent-attributel related data, such
as description, index, default value, and type.

>
</iwt:Att>
2. List as many other attributes as you require.

<iwt:Priv name="newComponent-privilegel”

Within this section, specify other newComponent-privilegel related data,
such as description, index, default value, or type.

>

</iwt:Att>

</iwt:Component>

3. Issue the ipsadmin command:

ipsadmin -import newComponent.xml

Chapter 8 Using the Command Line Interface 79

Using ipsadmin

NOTE ipsadmin registers the attributes and privileges in the iPlanet
Portal Server LDAP data store, but does not remove this metadata
if the component is deleted later with the ipsadmin delete
command. A subsequent addition of the same component (for
example, with extra attributes) will generate warnings that the
attributes and privileges are already registered; these are harmless
errors and are for information only.

Creating a New Domain

1. Create an XML file which contains attributes and privileges for this Domain.

This XML file looks like the XML in the “Importing a New Component”example,
except that it does not have the enclosing <iwt:Component> tags and it could
have attributes and privileges from any of the components currently imported. It
contains <iwt:Att and <iwt:Priv tags only.

2. Issue the ipsadmin command:

ipsadmin create domain SampleDomain SampleDomain.xml

Creating a New Role

1. Create an XML file which contains attributes and privileges for this role
(Employee, in this example).

This XML file looks like the XML in the “Importing a New Component”example,
except that it does not have the enclosing <iwt:Component> tags and it could
have attributes and privileges from any of the components currently imported. It
contains <iwt:Att and <iwt:Priv tags only.

2. Issue the ipsadmin command:

ipsadmin create role /SampleDomain/Employee xmlfile

80 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Using ipsadmin

Creating a New User and Assigning a Role

1. Create an XML file which contains attributes and privileges for this user.

This XML file looks like the XML in the “Importing a New Component” example,
except that it does not have the enclosing <iwt:Component> tags and it could
have attributes and privileges from any of the components currently imported. It
contains <iwt:Att and <iwt:Priv tags, plus these tags:

<iwt:Att name="iwtUser-role” >
<Val>/Sampledomain/Employee</Val>
</iwt:Att>

2. Execute the ipsadmin command:

ipsadmin create user SampleDomain/decoy xmlfile

Note that if the role attribute is omitted, ipsadmin will create the user, but issue a
warning that the role is not set. If that happens, the role can always be added later
using the ipsadmin change command.

Reading (Getting) a Profile

Use ipsadmin to read information out of the Profile Server, to more easily update
specific information or to modify the extracted information to create a similar, new
entry.

ipsadmin get domain SampleDomain

ipsadmin get component newComponent

ipsadmin get role /SampleDomain/Employee
ipsadmin get user /SampleDomain/decoy

Chapter 8 Using the Command Line Interface 81

Using ipsadmin

All display the attributes and privileges on stdout via the <iwt:Att and
<iwt:Priv tags. The output can be saved in a file and later used for updating or
creating another profile.

Changing a Profile

Use ipsadmin to modify existing Profile entries by specifying change on the
command line as well as the type of component that the XML specifies to change.

Here is an example on how to modify a user’s first name and last name, assume the
user is userl under domain dom1.

1. Create an XML file named /tmp/user.xml which contains following tags:

<iwt:Att name="iwtUserInfoProvider-firstName">
<Val>FirstName</Val>

</iwt:Att>

<iwt:Att name="iwtUserInfoProvider-lastName">
<Val>LastName</Val>

</iwt:Att>

The attributes name for user’s first name and last name are:
o iwtUserInfoProvider-firstName"
o iwtUserInfoProvider-lastName"

All the iPlanet Portal Server defined attributes and privileges could be find in the
XML files under /etc/opt/SUNWips/xml directory.

2. Issue the ipsadmin command

ipsadmin change user /dom1/userl /tmp/user.xml

82 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Sample Code

The XMLspecifies what needs to be changed and values enclosed within the
iwt:Att and iwt:Priv tags.

Deleting a Profile

Use ipsadmin to delete existing Profile entries by specifying delete on the
command line. For example:

ipsadmin delete user /SampleDomain/decoy
ipsadmin delete role /SUN/Employee

ipsadmin delete domain SUN

ipsadmin delete component newComponent

Sample Code

Code Example 8-1 XML Sample Compliant with import.dtd

<I--Component : >
<l-- name:name of the component ->
<l-- ver :Version no of this DTD -->
<l-- desc:Brief description in <3 words -->
<l-- resB:Relative path of resource bundle to -->
<l-- use for getting 118n desc version -->
<I-- idx :Index into res bundle to get 118n -->
<l-- version of desc. -->
<I-- Att*,Priv* : privileges and attributes -->
<l-- Naming Convention : -->
<l-- Component name : [a-zA-Z][a-zA-Z0-9]* -->
<l-- Attribute name : <ComponentName>-[[a-zA-Z0-9-]+ -->
<l-- Privilege name : <ComponentName>-[[a-zA-Z0-9-]+ -->
<l-- Absolutely NOT allowed : [./#_] -->
<l-- Special/lReserved attribute names: ->
<l-- desc stored as attribute called -->
<l-- "Description” (string) -->
<l-- idx stored as attribute called -->
<l-- "Desclndex" (string) ->
<l-- resB stored as attribute called -->
<l-- "ResourceBundle” (string) ->
<l-- All XML ATTs tagged with #IMPLIED are optional, -->
<l-- All XML ATTs tagged with #REQUIRED are mandatory -->
<IELEMENT iwt:Component (iwt:Att*, iwt:Priv*)>
<IATTLIST iwt:Component
name CDATA #REQUIRED

Chapter 8 Using the Command Line Interface 83

Sample Code

Code Example 8-1

<I---Component : -->
ver CDATA #FIXED "1.0"
desc CDATA #IMPLIED
resB CDATA #IMPLIED
idx CDATA #IMPLIED>

<!-- Privilege : -->

<l-- name:Name of the privilege -->
<l-- type:Type of the privilege -->

<l-- desc:Brief description in <3 words -->
<l-- idx :Index into resB to find 118n version -->
<l-- of the description -->

<l-- val :Default value for boolean type priv : -->
<l-- true=ALLOW, false=DENY ->
<l-- Dist:Deny List for list type privileges -->
<l-- Alst:Allow List for list type privileges -->
<l-- Special privilege : -->

<l-- "Execute" (boolean) represents execute -->
<l-- permission -->

<IELEMENT iwt:Priv (iwt:Dlst*,iwt: Alst*)>
<IATTLIST iwt:Priv

name CDATA #REQUIRED

type (booleanl|list) "boolean”

desc CDATA #IMPLIED

idx CDATA #IMPLIED

val (true|false) #IMPLIED

>
<I-- Attribute >

<l-- name:Name of the Attribute ->

<l-- desc:Brief description in <3 words -->

<l-- idx :Index into resB to find 118n version -->

<l-- userConfigurable:flag to indicate if attribute -->
<l-- value is allowed to be specified on a -->

<l-- per User/Role basis ->

<l-- type:Datatype of the value -->

<l-- of the description -->

<l-- Val:Value of the attribute - multiple for-->

<l-- "list" type attributes. -->

<l-- RPerm:List of roles allowed to read the value -->
<l-- Special keywords : ADMIN : admin role -->
<l-- OWNER : allow owner -->

<I-- WPerm:List of roles allowed to write the value -->
<l-- Special keywords : ADMIN : admin role -->
<I-- OWNER : allow owner -->

<l-- CVal:Possible choice values for choice* type -->
<I-- attributes. -->

<IELEMENT iwt:Att (iwt:Val*,iwt:RPerm* iwt:WPerm*,iwt:CVal*)>
<IATTLIST iwt:Att

name CDATA #REQUIRED

desc CDATA #IMPLIED

idx CDATA #IMPLIED

userConfigurable (TRUE|FALSE) "TRUE"

84 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

XML Sample Compliant with import.dtd (Continued)

Sample Code

Code Example 8-1 XML Sample Compliant with import.dtd (Continued)

<I--Component : >
type (string | number | boolean | singlechoice |
multichoice
|protected | stringlist | numberlist | binary)
"string"
>

<IELEMENT iwt:Val (#PCDATA)*>
<IELEMENT iwt:Dlst (#PCDATA)*>
<IELEMENT iwt:Alst (#PCDATA)*>
<IELEMENT iwt:CVal (#PCDATA)*>
<IELEMENT iwt:Rperm (#PCDATA)*>
<IELEMENT iwt:Wperm (#PCDATA)*>

<l-- Example ->

Chapter 8 Using the Command Line Interface 85

Sample Code

86 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Chapter 9

Using the iPlanet Portal Server APIs

Instructions for using the HelloServlet

1.
2.
3.

5.

Set IPS_BASE to the iPlanet Portal Server installation directory.

cd $IPS_BASE/SUNWips/sample/api then type make.

Copy the class files to the appropriate directory on the Portal Serverunder:
$IPS_BASE/SUNWips/lib

For example, all class files would be copied to:
$IPS_BASE/SUNWips/lib/com/iplanet/portalserver/api

Modify the web server configuration.

The web server configuration files are in the directory:
$IPS_BASE/netscape/server4/https-servername/config

where servername is the FQDN of the portal server.

Add the following line to the web server servlets.properties file:

servlet.helloservlet.code=com.iplanet.portalserver.api.HelloServiet

6.

8.

Replace the package and servlet names with the names you have chosen for
this HelloServlet

Add the following line to the web server rules.properties file:
/helloservlet=helloservlet

Import iwtHelloServlet.xml as root using ipsadmin

$IPS_BASE/SUNWips/bin/ipsadmin -import iwtHelloServlet.xml

87

Instructions for using the HelloServlet

9. Copy file iwtHelloServlet.properties to $IPS_BASE/SUNWips/locale
directory

10. Restart the portal server:

etclinit.d/ipsserver start

11. Test the servlet by logging in to Portal Server and entering the following URL.:

https://gateway/http://server:8080/HelloServlet

HelloServlet Properties

Code Example 9-1 HelloServlet.properties

al=Hello Application Profile

a2=Any user friendly name

a3=Your favourite color

a4=Hello Application

a5=Hello Application execute privilege
a6=Hello Application change color privilege

HelloServiet XML

Code Example 9-2 HelloServlet XML

<iwt:Component name="HelloServlet"
ver="1.0"
desc="Hello Application Profile"
resB="HelloServlet"
idx="a1">

<!-- String Attribute -->
<iwt:Att name="HelloServlet-name"
desc="Any user friendly name "

type="string"

88 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Instructions for using the HelloServlet

Code Example 9-2 HelloServlet. XML (Continued)

idx="a2"

userConfigurable="TRUE">

<Val></Val>

<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>

<Wperm>ADMIN</Wperm><Wperm>OWNER</Wperm>
</iwt:Att>

<!-- String Attribute -->
<iwt:Att name="HelloServlet-color"
desc="Your favourite color"
type="string"
idx="a3"
userConfigurable="TRUE">
<Val></Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm><Wperm>0OWNER</Wperm>
</iwt:Att>

<l-- String Attribute, Global/Platform attribute -->
<!-- Hence userconfigurable is set to false -->
<iwt:Att name="HelloServlet-title"
desc="Application description"
type="string"
idx="a4"
userConfigurable="FALSE">
<Val>HelloServlet</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm><Wperm>0OWNER</Wperm>
</iwt:Att>

<!-- Boolean privilege -->

<iwt:Priv name="HelloServlet-execute"
type="boolean"
desc="Hello Application execute privilege"
userConfigurable="TRUE"
idx="a5"
val="true">
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

<fiwt:Priv>

<!l-- List type privilege -->

<iwt:Priv name="HelloServlet-changeColor"
type="list"
desc="Hello Application change color privilege"
userConfigurable="TRUE"
idx="a6">

<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Priv>

</iwt:Component>

Chapter 9 Using the iPlanet Portal Server APIs 89

Setting Privileges

Prints HTML Output

Code Example 9-3 HTML Output

privaie void printViessage(HtipServietResponse res)

throws Exception {
res.setContentType("text/html");
ServletOutputStream out = res.getOutputStream();
out.printin("<html>");
out.printin("<head><title>HelloApp</title></head>");
out.printin("<body bgcolor="+ color);
out.printin("
");
out.printin("<CENTER>");
out.printin("<h2>");
/I Check if User is allowed to execute
// the Hello Application
if (UserlsAllowed) {

out.printin("Hello User: "+ name+ " II");
if (IchangeColorisAllowed) {
out.printin("You are not allowed to change color.");

}else {
out.printin("Sorry "+ name+ "!II");
out.printin("You are not allowed to execute the Hello

application.");

out.printin("</h2>");
out.printin("</CENTER>");
out.printin("</body></htmI>");

Before logging into the Portal Server the servlet program will print out the value of
the session ID.

NOTE The cookie name would normally be retrieved by the application
from the http header.

Setting Privileges

Attributes and Privileges

This servlet is a sample which uses 3 main APIs (Session API, Profile API, Logging
API)

90 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Session API Examples

Code Example 9-4 Attributes and Privileges
public class HelloServiet extends HttpServiet {

/I Attributes and Privileges as defined in the XML file
private static final String logfile = "HelloApp.log";
private static final String COLOR_ATTR = "HelloServlet-color";
private static final String NAME_ATTR = "HelloServlet-name”;
private static final String EXEC_PRIV= "HelloServlet-execute";
private static final String CHANGECOLOR_PRIV=

"HelloServlet-changeColor";

/I Local variables

private LogManager Imgr= null;

private LogRecord log= null;

private String color="#CCCCFF";

private String name= null;

private boolean UserlsAllowed= false;

private boolean changeColorlsAllowed= false;

Initializing the Servlet

Code Example 9-5 Initialize the Servlet

public void inif{ServietConfig config) throws ServietExcepiion {
super.init(config);

Session API Examples

HTTP Request and Response

Paramameter requests the HTTP request, paramameter responds the HTTP
response. If an 170 error has occurred, an 1/0 exception will be thrown.

Code Example 9-6 HTTP Request and Response

public void doGet(HttpServietRequest req, HttpServletResponse res)
try {

/I Get a Session object
Session sess = getSession(req);

/I Get user profile name

Chapter 9 Using the iPlanet Portal Server APIs 91

Session APl Examples

Code Example 9-6 HTTP Request and Response (Continued)

Profile p = getProfileName(sess);

/I Get the logManager and start logging
Imgr = startLogging(sess);

/I Get AccessControl information
getAccessControlinfo(sess, p);

// Print the output
printMessage(res);

} catch (LogException e) {

log = new LogRecord("Logging: *, "Error in Logging");
} catch (SessionException e) {

log = new LogRecord("Session: ", "Error in Session");
} catch (ProfileException e) {

log = new LogRecord("Profile: ", "Error in Profile");
} catch (Exception e) {

log = new LogRecord("Error: ", " Printing Hello");
} finally {

if (log == null)

log = new LogRecord("Hello Application:", "Success");

ry{ :
Imgr.write(log, lodfile);

} catch (Exception le) {
System.out.printin("Error: "+le);

Session Event

If the user logs out of his session or if user exceeds maximum idle time then the
Hello application returns.

Code Example 9-7 SessionEvent

class HelloSessionListener implements SessionListener {

public void sessionChanged(SessionEvent e) {
Session sessionEvt = null;

/l'if the session is still valid, just return
/I without doing anything
try {
sessionEvt = e.getSession();
if (sessionEvt.getState(false) == Session.VALID)
return;
else {
/I clean up profile before quitting

92 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Profile APl Examples

Code Example 9-7 SessionEvent (Continued)

class HelloSessionListener implements SessionListener {
} catch (Exception se) {}

Get a Session

Method handles Session and gets the user Session object and adds a
SessionListener.

Code Example 9-8 GetSession

SessionID sid = new SessionID(req);
Session sess = Session.getSession(sid);
if (sessionEvt.getState(false) == Session.VALID)
/I sessionChanged() is called if a SessionEvent occurs
sess.addSessionListener(new HelloSessionListener());

Profile APl Examples

Modify an Attribute
Modify an attribute for the Hello application and test if ProfileChanged is called.

Code Example 9-9 Modify an Attribute

public class HelloProfileListener implements ProfileListener {
public void profileChanged(ProfileEvent notify){

Profile p = notify.getProfile();
int type = notify.getType();

/I Either the color or the name attribute may have changed
/I Get the new values for these attributes.
if (type == ProfileEvent.PROFILE_CHANGE) {

try {
color = p.getAttributeString(COLOR_ATTR);

name = p.getAttributeString(NAME_ATTR);
} catch (ProfileException pe) {
System.out.printin("Profile: getAttribute() failed");

Chapter 9 Using the iPlanet Portal Server APIs

93

Profile APl Examples

Code Example 9-9 Modify an Attribute (Continued)

return;
}else {
/I no attributes were changed
/I profiles were created or deleted
return;

Get User Profile

Method handles user Profile and gets the user profile name and adds a profile
listener for any attribute changes in the current user profile.

Code Example 9-10 GetProfileName

privaie Profile getProfileName(Session s)
throws ProfileException {
Profile p = s.getUserProfile();
this.name = p.getProfileName();

/I profileChanged() is called if a ProfileEvent occurs
p.addProfileListener(new HelloProfileListener());
return p;

Policy Checking

Method handles user policy, checks if the user is allowed to execute the hello
application.

Code Example 9-11 Policy Checking

privaie void getAccessConirollnfo(Session s, Profile p)
throws ProfileException {
if (p.isAllowed(EXEC_PRIV)) {
this.UserlsAllowed = true;

}

/I The CHANGECOLOR_PRIV is defined as a list type privilege.
/l What's in the list is domains. If the user domain is in the

/I privlege CHANGECOLOR_PRIV’s allow list, ths user is allowed
/I to change color. Otherwise, the user is denied to change

color.

94 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Log API Example

Code Example 9-11 Policy Checking (Continued)

private void getAccessControlinfo(Session s, Profile p)
if (p.isAllowed(CHANGECOLOR_PRIV, s.getClientbomain(),

Profile. REGULAR)) {
this.changeColorlsAllowed = true;

Log API Example

Method handles Logging
Application creates a log file "Hello.log" and logs the first log entry.

Code Example 9-12 Create Log File

privaie LogManager stariLogging(Session s)
throws LogException {
LogManager Im = new LogManager(s);
Im.create(logfile);

return Im;

Chapter 9 Using the iPlanet Portal Server APIs 95

Log APl Example

96 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Chapter 10

HTML Templates

Setting up Login Pages for Different Domains

HTML templates can be edited to make substantive changes to layout or design of
pages, or to add extra functionality, beyond the services possible through the
Administration Console.

NOTE Strong HTML skills as well as a thorough understanding of web
servers, and server-side includes, are required to edit the template
files. If a template file is corrupted, it may be necessary to restore
the original files from the iPlanet Portal Server CD-ROM to recover
and gain access to the system.

How Authentication Templates Work

HTML template files control the layout and source of the iPlanet Portal Server
Desktop and of the other screens that users see. The templates are located on the
Portal Server in the directory:

/etc/opt/SUNWips/auth/default

Templates for Customizing the Authentication Pages

These templates allow customizing the login, logout, and time-out screens.

In the /etc/opt/SUNWips/auth/default directory, there are .html files that
control the overall appearance and .properties files that control the sequence of

prompts and the exchange of information between the user and the authentication
module.

97

Setting up Login Pages for Different Domains

NOTE See the Chapter 6, “Pluggable Authentication API” for more
information about <authentication-module>.properties
files.

The login pages come from a set of template HTML files. The default set of these is
located at /etc/opt/SUNWips/auth/default

To customize a login for different domains:

1. Go to the server machine (do the same to all server machines if there are
multiple servers).

2. Create a directory named the same as the name of the domain.
3. Copy all the .properties , .html and .gif files into that directory.
4. Customize the files in that directory for that domain.

Any domain that does not have it's own directory of templates will use the default
setin:

| etc/opt/SUNWips/auth/default

For example, if there are three domains: dm1, dm2, dm3, and the login will be
customized for dml, the directories will look like this:

letc/lopt/SUNWips/auth/default
/etc/opt/SUNWips/auth/dm1l

Both would contain a full set of the properties /html/gif files. The login to dm1l
would use the set in /etc/opt/SUNWips/auth/dm1/ , and the other domains
would use the default set in /etc/opt/SUNWips/auth/

The various files are:

Table 10-1 HTML Template Files

File Name

Description

login_menu.html

Is sent when more than one authentication module is
configured. This gives the iPlanet Portal Server end user a
choice of which module to use for authentication. The text
<subst data="rows">No menu?</subst> must be
somewhere in the document. It generates a list of URLS to the
authentication modules.

98 iPlanet Portal Server 3.0 Programmer’s Reference Guide * May 2000

Setting up Login Pages for Different Domains

Table 10-1 HTML Template Files (Continued)

File Name (Continued)

Description (Continued)

login_fail_template.html

Is sent when authentication has failed. This page contains no
required sections.

login_license_fail.html

Is sent when there are no more licenses. This page contains no
required sections.

login_reauth_menu.html

Is sent when an iPlanet Portal Server end user’s session has
been inactive for the time set in the Administration Console. It
contains a link for re authentication. Do not change the
JavaScript in this page.

login_trustProxy_warning.htmi

Is presented to iPlanet Portal Server end users who log in to the
iPlanet Portal Server Desktop using Netscape and do not have
the browser configured to accept all cookies. In this case the
end user cannot start the iPlanet Portal Server Java applets. If
this page is not to be displayed because the end user is not
allowed to run Java applets, replace the contents of this page
with an HTML refresh tag that contains zero time-out and is
redirected to /login/default

login_template.html

Is sent for individual authentication modules such as RADIUS
or UNIX. The seven subset text segments must remain after
modification. This page is also sent when logging in to the
iPlanet Portal Server Administration Console.

logout.html

Is called after the iPlanet Portal Server end user selects the
logout link on the iPlanet Portal Server Desktop. It contains no
required sections.

login_timeout_template.html

Is called during an authentication session if the iPlanet Portal
Server end user does not submit the login form within the
specified time. It has no required sections.

login_reauth_admin.html

Is sent when the administration session has expired. It contains
a link for re authentication.

login_timeout_admin.html

Is called during an administration session if nothing is entered
within the specified time. It has no required text.

login_fail_admin.html

Is sent when authentication has failed. This page contains no
required text.

logout_admin.html

Is called after the iPlanet Portal Server administrator selects the
logout link on the iPlanet Portal Server Administration
Console. It contains no required sections.

Chapter 10 HTML Templates 99

Setting up Login Pages for Different Domains

How Desktop Templates Work

HTML template files control the layout and source of the iPlanet Portal Server
Desktop and of the other screens that users see. The templates are located on the
Portal Server in the directory /etc/opt/SUNWips/desktop

Templates for Customizing the iPlanet Portal Server Desktop

HTML template files control the layout and source of the iPlanet Portal Server
Desktop. The templates are:

advancedTemplate.html Controls the Advanced page in the end
user’s iPlanet Portal Server Desktop. By
default, it is set to allow an applet that
downloads NetMail and installs it on a local
client, but you can add other functionality of
your choice.

feedbackTemplate.html Controls the appearance and layout of the
feedback form in the end user’s iPlanet
Portal Server Desktop.

prefTemplate.html Controls the appearance and layout of the
Edit Preferences page in the end user’s
iPlanet Portal Server Desktop.

userTemplate.html Controls the Front Page in the end user’s
iPlanet Portal Server Desktop.

These files can be edited to change the appearance, the information presented, and
the links. Add or remove various features according to the corporate policy or
security policy. These files can also be copied to build new templates.

The following tag definitions are used in the Desktop Pages.

Tag Definition

Description

noCache Various HTML directives to try and stop browser
from caching pages.

productName Replaced with Platform-productName attr.

openFrontPage js code to return to front page.

100 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Setting up Login Pages for Different Domains

Tag Definition (Continued)

Description (Continued)

style Various style/class defs used by the templates
(HTMI).

menubar HTML for the black menubar on the dt pages.

banner The desktop's banner (HTML).

title On dt's edit provider page, is iwt<provider>-title
attr.

providerName Providers iwt<provider>-name attr.

inlineError Place holder to insert an inline error msg in dt pages
(blank if no error).

contentOptions The content of the provider edit page that is
generated by the provider.

errMessage The actual text of the error message, inserted into

the inline error template.

thinProviders

HTML for the "thin" providers.

wideProviders

HTML for the "wide" providers.

size

Width for provider columns.

provider_cmds

The menubar for the provider (the buttons).

content

Content for the provider.

providerTitle

iwt<provider>-title attr.

openURLInParent

js code to open a url.

popupMenubar

Menubar for the detached provider.

providerContent

Provider content in popup form.

arrangeProvider

js code.

removeProvider

js code to remove a provider.

performSub*

js code.

selectAll

js code to select all.

switchColumns

js code.

<left|center|right>UserProviderList

List boxes of providers.

launchPopup

js code to detach provider.

Chapter 10 HTML Templates 101

Setting up Login Pages for Different Domains

Tag Definition (Continued)

Description (Continued)

serviceTimeout

iwtDesktop-serviceTimeout attr.

layout<n>Checked

Indicates which layout option is checked.

help_link

Help link for a page.

resourceCount, resourcelList,
windwoOptions

Used dynamically by some edit pages.

bookmarks

The content for the bookmark provider iwtXXXXXX
(in ui edit template); get subbed for that attr.

timezonelList

HTML list element.

timezones targetCount

Number of targets in netlet provider.

newRuleSelect

Indicator of new rule bing added in netlet provider.

targetList List of targets for NP.
content Content for the netlet provider.
apps Content for the app provider.

102 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Appendix A

HTTP/XML Interface

HTTP/XML Interface Overview

Programs or applications written in a non-Java language can also exchange
information with the iPlanet Portal Server product, although non-Java-based
clients are considerably less efficient to use and are more cumbersome to
implement. This appendix details the processes and issues involved in
communicating with the Portal Server using the exposed HTTP/XML interface (or
API, of sorts).

In general, this appendix applies to writing a standalone non-Java-based
application that is authenticated through the session ID from an iPlanet Portal
Server session or an application that will use any of the other exposed interfaces,
including Profile and Policy services, Logging, Session, or other interfaces.
Non-Java applications must explicitly exchange information with the server using
an over-the-wire protocol, rather than simply passing objects from class to class as
a Java-based client implementation can.

The mechanism for passing information from client application to iPlanet Portal
Server and back is through http posts. The structure of the information to pass is
defined by XML-based DTDs for each service.

Therefore, a minimal non-Java-based iPlanet Portal Server client application must
implement:

e HTTP 1.1 compliant client implementation to send information to the iPlanet
Portal Server server

= HTTP 1.1 compliant server implementation to receive information from the
iPlanet Portal Server if asynchronous communication or iPlanet Portal Server
-initiated communication is required

= XML parser to interpret the data stream coming from the iPlanet Portal Server
software

103

XML DTDs

A means of producing valid XML that is compliant with a given DTD

Exchanging Information Between the Client and the Server
The conversation between client and server is as follows:

1.

10.
11.
12.
13.

Get the property "ips.naming.url" from /Zetc/opt/SUNWips/platform.conf as
the naming URL.

Client posts a name request to the naming URL.
Server returns name response to client.

Client parses name response to determine URLSs for Session service, Profile
Service, and Logging Service.

Client posts a session request to the Session Service URL.
Server returns session response to client.
Client parses session response to determine session ID to use.

Client posts a profile request to the Profile Service URL with the session ID
obtained in Step 6.

Server returns profile response to client.

Client parses profile response to obtain profile attributes.
Client posts a logging request to the Logging Service URL.
Server returns logging response to client.

Client parses logging response to decide whether the logging request
succeeded.

XML DTDs

The following sections outline the DTDs that define information structures for
initial data exchanges between client software and the Portal Server. These
exchanges negotiate the URL for the subsequent exchanges with a specific
application (registered with the Profile and Policy server).

104

iPlanet Portal Server 3.0 Programmer’s Reference Guide ¢ May 2000

PLL Request Set DTD

XML DTDs

The request from the Portal Server to a name response will comply with the

following DTD.

Code Example A-1 PLL RequestSet DTD

<l-- This DTD is used by PLL -->
<IDOCTYPE RequestSet [
<IELEMENT RequestSet(Request)+>
<IATTLIST RequestSet

vers CDATA #REQUIRED

svcid CDATA #REQUIRED

regid CDATA #REQUIRED>
<IELEMENT Request(#PCDATA)*>
<IATTLIST Request

dtdid CDATA #IMPLIED>
1>

<?xml version="1.0" encoding="TSO-8859-1"7>

PLL Response Set DTD

The response from the Portal Server to a name request will comply with the

following DTD.

Code Example A-2 PLL ResponseSet DTD

<7xml version="1.0">
<!-- This DTD is used by PLL -->
<IDOCTYPE ResponseSet [
<IELEMENT ResponseSet(Response)+>
<IATTLIST ResponseSet

vers CDATA #REQUIRED

svcid CDATA #REQUIRED

regid CDATA #REQUIRED>
<IELEMENT Response(#PCDATA)*>
<IATTLIST Response

dtdid CDATA #IMPLIED>
1>

Appendix A HTTP/XML Interface

105

XML DTDs

PLL Notification Set DTD

The response from the Portal Server to a notification will comply with the
following DTD.

Code Example A-3 PLL NotificationSet DTD

<7xml version="1.0">
<l-- This DTD is used by PLL -->
<IDOCTYPE NotificationSet [
<IELEMENT NotificationSet(Notification)+>
<IATTLIST NotificationSet

vers CDATA #REQUIRED

svcid CDATA #REQUIRED

notid CDATA #REQUIRED>
<IELEMENT Notification(#PCDATA)*>
<IATTLIST Notification

dtdid CDATA #IMPLIED>
B

Naming Response DTD

The request from the Portal Server to a name response will comply with the
following DTD.

Code Example A-4 NamingResponse DTD

<7xmiversion="1.0">
<IDOCTYPE NamingResponse [
<IELEMENT NamingResponse (GetNamingProfile)
<IATTLIST NamingResponse
vers CDATA #REQUIRED
regid CDATA #REQUIRED>
<IELEMENT GetNamingProfile (Attribute*|Exception)>
<IELEMENT Attribute EMPTY>
<IATTLIST Attribute
name CDATA #REQUIRED
value CDATA #REQUIRED>
<IELEMENT Exception (#PCDATA)>
1>

106 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Naming Request DTD

XML DTDs

The initial request from a client application to the Portal Server always goes to the

URL:

http://server-name:port/NamingService

with a post, and must be XML compliant with the following DTD.

Code Example A-5 NamingRequest DTD

<7xmiversion="1.0">
<IDOCTYPE NamingRequest [
<IELEMENT NamingRequest (GetNamingProfile)>
<IATTLIST NamingRequest
vers CDATA #REQUIRED
regid CDATA #REQUIRED>
<IELEMENT GetNamingProfile EMPTY>
1>

Naming Request XML

Code Example A-6 NamingRequest XML

<?xml version="1.0" standalone="yes"7>
<RequestSet vers="1.0" svcid="ips.naming" reqid="0">
<Request>

/I BEGIN service specific XML message
<I[CDATA[<NamingRequest vers="1.0" reqid="0">
<GetNamingProfile>

</GetNamingProfile>

</NamingRequest>]]>

/I END service specific XML message

</Request>

</RequestSet>

Appendix A HTTP/XML Interface

107

XML DTDs

Naming Response XML

Code Example A-7 NamingResponse XML

<ResponseSet vers="1.0" svcid="ips.naming" reqid="0">
<Response>

/I BEGIN service specific XML
<!/[CDATA[<NamingResponse vers="1.0" reqid="0">
<GetNamingProfile>

<Attribute name="iwtPlatform-servers"

value="huanghe.red.iplanet.com "></Attribute>
<Attribute name="iwtNaming-loggingClass"

value="com.iplanet.portalserver.logging.service.LogService"></At

tribute>
<Attribute name="iwtNaming-resourceBundle"

value="iwtNaming"></Attribute>
<Attribute name="iwtNaming-sessionClass"

value="com.iplanet.portalserver.session.service.SessionRequestHa

ndler"></Attribute>
<Attribute name="iwtNaming-profileClass"

value="com.iplanet.portalserver.profile.service.ProfileService">

</Attribute>
<Attribute name="iwtNaming-description"

value="Naming"></Attribute>
<Attribute name="iwtNaming-profileURL"

value="http://huanghe.red.iplanet.com:8080/profileservice"></Att

ribute>
<Attribute name="iwtNaming-loggingURL"

value="http://huanghe.red.iplanet.com:8080/loggingservice"></Att

ribute>
<Attribute name="iwtNaming-sessionURL"

value="http://%host:8080/sessionservice"></Attribute>
</GetNamingProfile></NamingResponse>]|>

/I END service specific XML

</Response>
</ResponseSet>

Further exchanges are determined by the specific APl and DTDs for the service
being addressed.

108 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Session-Related DTD and XML

Session-Related DTD and XML

Implementing the Session API functionality in non-Java languages requires
providing and parsing XML-based data streams to communicate with the logging
processes on the server. The following sections detail the DTDs that describe
acceptable communication with the Session processes.

NOTE If accessing Session API functionality through Java programs, it is
not necessary to be aware of these implementation specifics,
because the Java interface makes these transparent to Java
programmers. See the first section of this chapter to learn to access
Session API functionality through Java programs.

SessionNotification DTD

The Session Notification DTD establishes for structure for the server to use when
providing information about the session status to a requesting client.

Code Example A-8 NotificationSet DTD

<7?xml version="1.0">
<l-- This DTD is used by PLL -->
<IDOCTYPE NoatificationSet [
<IELEMENT NotificationSet(Notification)+>
<IATTLIST NotificationSet

vers CDATA #REQUIRED

svcid CDATA #REQUIRED

notid CDATA #REQUIRED>
<IELEMENT Notification(#PCDATA)*>
<IATTLIST Notification

dtdid CDATA #IMPLIED>
1>

Appendix A HTTP/XML Interface 109

Session-Related DTD and XML

Session Request DTD

The Session Request DTD establishes the information structure for a client
application to modify or get a session from the Session server.

Code Example A-9 SessionRequest DTD

<?xml version="1.0">
<IDOCTYPE SessionRequest [
<IELEMENT SessionRequest (GetSession |
GetValidSessions |
DestroySession |
Logout |
AddSessionListener |
AddSessionListenerOnAllSessions |
SetProperty)>
<IATTLIST SessionRequest
vers CDATA #REQUIRED
reqid CDATA #REQUIRED>
<IELEMENT GetSession (SessionID)>
<IATTLIST GetSession
<l-- The reset attribute indicates whether resets the latest

access time -->
reset CDATA #REQUIRED>
<IELEMENT GetValidSessions (SessionID)>
<IELEMENT DestroySession (SessionID, DestroySessionID)>
<IELEMENT Logout (SessionID)>
<IELEMENT AddSessionListener (SessionID, URL)>
<IELEMENT AddSessionListenerOnAllSessions (SessionID, URL)>
<IELEMENT SetProperty (SessionID, Property)>
<IELEMENT Property>
<IATTLIST Property
name CDATA #REQUIRED
value CDATA #REQUIRED>
<IELEMENT SessionID (#PCDATA)>
<IELEMENT DestroySessionID (#PCDATA)>
<I[ELEMENT URL (#PCDATA)>
1>

110 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Session-Related DTD and XML

Session Response DTD

The Session Response DTD defines the information structure for the server’s
response to a session request.

Code Example A-10 SessionResponse DTD

<?xml version="1.0">
<IDOCTYPE SessionResponse [
<IELEMENT SessionResponse(GetSession |
GetActiveSessions |
DestroySession |
Logout |
AddSessionListener |
AddSessionListenerOnAllSessions |
SetProperty)>
<IATTLIST SessionResponse
vers CDATA #REQUIRED
reqid CDATA #REQUIRED>
<IELEMENT GetSession (Session|Exception)>
<IELEMENT GetActiveSessions (SessionList|Exception)>
<IELEMENT DestroySession (OK|Exception)>
<IELEMENT Logout (OK|Exception)>
<IELEMENT AddSessionListener (OK|Exception)>
<IELEMENT AddSessionListenerOnAllSessions (OK|Exception)>
<IELEMENT SetProperty (OK|Exception)>
<IELEMENT Session (Property)*>

<IATTLIST Session
sid CDATA #REQUIRED
stype (user|application) "user"
cid CDATA #REQUIRED
cdomain CDATA #REQUIRED
maxtime CDATA #REQUIRED
maxidle CDATA #REQUIRED
maxcaching CDATA #REQUIRED
timeleft CDATA #REQUIRED
timeidle CDATA #REQUIRED
state (invalid|valid|inactive|destroyed) "invalid">
<IELEMENT Property>
<IATTLIST Property
name CDATA #REQUIRED
value CDATA #REQUIRED>
<IELEMENT SessionList (Session)*>
<IELEMENT OK (#PCDATA)>
<IELEMENT Exception (#PCDATA)>
1>

Appendix A HTTP/XML Interface

111

Session-Related DTD and XML

Session Request XML

Code Example A-11 SessionRequest XML

<?xml version="1.0" encoding="IS0O-8859-1" standalone="yes"?>
<RequestSet vers="1.0" svcid="session" reqid="2">

<Request>

<!/[CDATA[<SessionRequest vers="1.0" reqid="1">

<GetSession reset="true">
<SessionID>fbaaa321f508529d@huanghe.eng.sun.com</SessionID>
</GetSession>

</SessionRequest>]]>

</Request>

</RequestSet>

Session Response XML

Code Example A-12 SessionResponse XML

<?xml version="1.0" encoding="IS0O-8859-1" standalone="yes"?>
<ResponseSet vers="1.0" svcid="session" reqid="2">

<Response>

<!/[CDATA[<SessionResponse vers="1.0" reqid="1">

<GetSession>

<Session sid="fbaaa321f508529d@huanghe.eng.sun.com" stype="application"
cid="authentication" cdomain="sun.com" maxtime="153722867280912930"
maxidle="153722867280912930" maxcaching="153722867280912930"
timeidle="0" timeleft="153722867280912930" state="valid">
</Session></GetSession>

</SessionResponse>]]>

</Response>

</ResponseSet>

112 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Profile and Policy-related DTD and XML

Profile and Policy-related DTD and XML

Implementing the Profile and Policy API functionality in non-Java languages
requires providing and parsing XML-based data streams to communicate with the
Profile and Policy processes on the server.

NOTE If accessing Profile and Policy API functionality through Java
programs, you need not be aware of these implementation
specifics, because the Java interface makes these transparent to Java
programmers. See the first section of this chapter to learn to access
Profile and Policy API functionality through Java programs.

The following sections provide the DTDs that describe XML formats used for
communicating with the Profile and Policy Service processes on the server.
Non-Java programs must implement XML parsers to send requests to the server
logging process in these formats as well as to interpret the XML-based responses
from the server Profile and Policy process.

Code Example A-13 ProfileService DTD

<IELEMENT ProfileService

(Message|GetProfile|SetProfile| DelProfile|
GetChildRoles|SetParent|

GetParent|GetUsers|Profile|Priv|Att|

Exception|Data*|AddProfileListner|RemoveProfileListener|Notifica
tion)>
<IATTLIST ProfileService
reqgid CDATA #REQUIRED
ver CDATA #REQUIRED>

<IELEMENT Message (#PCDATA)*>
<IELEMENT Profile (Att*,Priv¥)>
<IATTLIST Profile
profileName CDATA #REQUIRED
profileType CDATA #REQUIRED>

<IELEMENT Att
(Value*,Choice*,(ReadPermission?)*,(WritePermission?)*)>
<IATTLIST Att
attName CDATA #REQUIRED
attld CDATA
attMessage CDATA
attType (string | number | boolean | singlechoice |

multichoice

Appendix A HTTP/XML Interface 113

Profile and Policy-related DTD and XML

Code Example A-13 ProfileService DTD (Continued)

|protected | stringlist | numberlist) "string”
remoteFlag (true|false) "false"
overrideFlag (truelfalse) "true"
inheritFlag (truelfalse) "false">
<IELEMENT Value (#PCDATA)>
<IELEMENT ReadPermission (#PCDATA)>
<IELEMENT WritePermission (#PCDATA)>

<IELEMENT Priv (Allow*,Deny*)>
<IATTLIST Priv
privName CDATA #REQUIRED
privid CDATA
privMessage CDATA
privType (boolean | list) #REQUIRED>
<IELEMENT Allow (#PCDATA)>
<IELEMENT Deny (#PCDATA)>

<IELEMENT Exception (#PCDATA)>
<IELEMENT Data (#PCDATA)>

<IELEMENT GetProfile (Profile)>
<IATTLIST GetProfile
admin (truelfalse) "false" #REQUIRED>

<IELEMENT SetProfile (Profile)>
<IELEMENT DelPrcfile (Profile)>

<IELEMENT GetChildRoles (Wildchar?)>
<IATTLIST GetChildRoles
parent CDATA #REQUIRED>

<IELEMENT GetParent EMPTY >
<IATTLIST GetParent
child CDATA #REQUIRED>

<IELEMENT SetParent (#PCDATA)>
<IATTLIST SetParent
child CDATA #REQUIRED>

<IELEMENT GetUsers (wildchar?)>
<IATTLIST GetUsers
parent CDATA #REQUIRED>

<IELEMENT AddProfileListner Empty>

<IATTLIST AddProfileListner
profileName CDATA #REQUIRED
listnerURL CDATA #REQUIRED>

<IELEMENT RemoveProfileListner Empty>

<IATTLIST RemoveProfileListner
profileName CDATA #REQUIRED
listnerURL CDATA #REQUIRED>

114 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Log-related DTDs

Code Example A-13 ProfileService DTD (Continued)

<IELEMENT Wildchar (#PCDATA)>
<I[ELEMENT Role (#PCDATA)>

Getting an Attribute Value Using XML

Code Example A-14 GetProfile Request XML

Profile request: get iwtPlatform-locale value

<ProfileService ver="1.0" reqid="0"><GetProfile
searchFlag="false" admin="false"><Profile
profileName+"/component/iwtPlatform" profileType="7"><Att
attName="iwtPlatform-locale"></Att></Profile><?GetProfile></Prof
ileService>

Code Example A-15 GetProfile Response XML

Profile request: get iwtPlatform-locale value

<ProfileService ver="1.0" reqid="0"><Profile><Att
attName+"iwtPlatform-locale" attType="string" attld=""

attDes="Platform Locale" inheritFlag="true" overrideFlag="false"
remoteFlag="false"
emptyFlag="false"><Value>en_US</Value><ReadPermission>ADMIN</Rea
dPermission>OWNER</ReadPermission><WritePermission>ADMIN</WriteP
ermission></Att></Profile></ProfileService>

Log-related DTDs

Implementing the Log API functionality in non-Java languages requires providing
and parsing XML-based data streams to communicate with the logging processes
on the server.

Appendix A HTTP/XML Interface 115

Log-related DTDs

NOTE If accessing Log API functionality through Java programs, you
need not be aware of these implementation specifics, because the
Java interface makes these transparent to Java programmers. See
the first section of this chapter to learn to access Log API
functionality through Java programs.

The following sections detail the DTDs that describe acceptable communication

with the logging processes.

DTD for Log APl Communication

Code Example A-16 DTD for Log APl Communication

<?XML version="1.0">
<I--This DTD is used by Logging operation-->
<IDOCTYPE logging[

<IELEMENT logCreate (log)>

<IELEMENT logDelete (log)>

<IELEMENT logRecWrite (log, logRecord*)>
<IELEMENT logRecRead (log, queryString?)>
<IELEMENT logList (log*)>

<IELEMENT log>

<IATTLIST log
logName CDATA #REQUIRED
status CDATA #IMPLIED

maxFileSize = CDATA #IMPLIED
numHistoryFile CDATA #IMPLIED
location CDATA #IMPLIED

>

<IELEMENT queryString (#PCDATA)>
<IELEMENT logRecord (recType, recMsg)>

<IELEMENT recType (#PCDATA)>
<IELEMENT recMsg (#PCDATA)>

]

116 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Appendix B

Putting Code Together

This Appendix describes the development process for a sample iPlanet Portal
Server desktop provider application that touches on the public APIs available for
integrating an application with the iPlanet Portal Server desktop.

Building an iPlanet Portal Server Provider

Start by taking the HelloWorldProvider.java and reducing it to the bare minimum.

For example, change the class name to QuotationProvider and leave the shell
of the essential routines:

Table B-1 Minimal Routines for a Provider

Routine Purpose

QuotationProvider() The constructor

getHTMLContent() Used to display the provider's HTML on the desktop

getHTMLEditForm() Used to display an HTML form where the user can set
preferences.

processEditForm() Used to process the submitted form created in

getHTMLEditForm above.

117

Building an iPlanet Portal Server Provider

Define Specific Requirements and Functionality

For this example, the application should handle Quotation display, as described in
the following section:

Depending on a user-specific configuration parameter either:
o One quote of each user-specified category will be displayed
o Only one quote from all of the user-specified categories will be displayed

Depending on a user-specific configuration parameter, one of the following
will be displayed:

o The category of, and the quote
o Only the quote itself

For the “Edit” part of the provider, where the user can edit configuration
parameters, the following will displayed:

o A multiple-choice selection of the types of quotes to be displayed
o A checkbox to choose whether categories get displayed as well or not

In addition to the user-selectable configuration parameters, only an administrator
should be able to change the location of the quotations file (via the Administration
Console).

Identify non-iPlanet Portal Server Functionality

In this example, all of the quotations are in a file of the following format:
quote-type|quotation-text

For example:

Computers|blah blah blah - Scott McNealy

Politics|blah blah blah - Genghis kahn

where the category of the quotation is separated from the quotation itself by a
vertical bar ']". For the sake of this example, the file must be located in
Ivar/tmp/quotations . This can be overridden by an iPlanet Portal Server
administrator but not by the individual user.

118 iPlanet Portal Server 3.0 Programmer’s Reference Guide May 2000

Building an iPlanet Portal Server Provider

Define Application Attributes/Privileges

For an example, adopt a naming scheme that parallels the default providers that
come with iPlanet Portal Server, and name the provider iwtQuotationProvider. The
attributes will be called

Table B-2 Sample Provider Attributes

Attribute Description

iwtQuotationProvider-possibleCategories A multi valued set of strings representing the
possible categories of quotes a specific user
would be interested in. In the following
example, the quotation categories will be
limited to “Computers”, “Science”, and
“Freedom”.

iwtQuotationProvider-selectedCategories A multi valued set of strings representing the
categories of quotes a specific user would be
interested in, such as “Computers”, “Science”,
and “Freedom”.

iwtQuotationProvider-displayCategories A boolean value indicating whether categories
should be displayed with the quotations or
not.

iwtQuotationProvider-fileLocation A single string value indicating where the list
of quotations is to be found.

Define the Provider to iPlanet Portal Server

The provider must be registered with the iPlanet Portal Server before the Session,
Profile, or Logging APls may be used. To do this, write (or adapt) an XML file to
describe the attributes and privileges, then copy the XML file to
/etc/opt/SUNWiIps/xml, and use ipsadmin to import the XML file into the
Profile server. See Chapter 3, “Profile and Policy API” for more details of this
function.

The easiest way to begin is to adapt the example helloWorld3 provider's XML file.
Take it and modify the names of the component and attributes to be
iwtQuotationProvider . The only attributes/privileges in the XML file at this
point are the “common” attributes which any provider must have.

Next, add in the attributes specific to this application:

Appendix B Putting Code Together 119

Building an iPlanet Portal Server Provider

120

Code Example B-1 XML Defining Attributes and Privileges

<l--

Attributes, specific
-->

<iwt:Att name="iwtQuotationProvider-possibleCategories"
desc="Possible Quotation Categories"
type="stringlist"
idx="possible_quotation_categories"
userConfigurable="TRUE">
<Val>Computers</Val>
<Val>Freedom</Val>
<Val>Science</Val>
<Val>Work</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Att>

<iwt:Att name="iwtQuotationProvider-selectedCategories"
desc="Selected Quotation Categories"
type="stringlist"
idx="selected_categories"
userConfigurable="TRUE">
<Val>Computers</Val>
<Val>Freedom</Val>
<Val>Science</Val>
<Val>Work</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm><Wperm>OWNER</Wperm>
</iwt:Att>

<iwt:Att name="iwtQuotationProvider-displayCategories"
desc="Display category along with quotation?"
type="boolean"
idx="display_categories"
userConfigurable="TRUE">
<Val>true</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm><Wperm>OWNER</Wperm>
</iwt:Att>

<iwt:Att name="iwtQuotationProvider-fileLocation"
desc="Location of the quotations file"
type="string"
idx="file_location"
userConfigurable="TRUE">
<Val>/var/tmp/quotations</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Att>

iPlanet Portal Server 3.0 Programmer’s Reference Guide ¢ May 2000

Sample Code

Attribute by attribute, Table B-3 describes what the XML in the code example

means:

Table B-3 Sample Attributes and Privileges

Attribute

Description

iwtQuotationProvider-possibleCategories

iwtQuotationProvider-selectedCategories

iwtQuotationProvider-displayCategories

iwtQuotationProvider-fileLocation

This is a stringlist attribute that the ADMIN and
OWNER can read, but only the ADMIN can write. It is
preset to use the 3 quotation categories mentioned
above, in this example.

This is a stringlist attribute that the ADMIN and
OWNER can read and write. It is preset to the same
categories as the previous attribute.

This is a boolean attribute that the ADMIN and
OWNER can read and write. It is preset to “true”
indicating that category names will be displayed with
the quotes.

This is a a single string attribute that the ADMIN and
OWNER can read, but only the ADMIN can write. It is
preset to /var/tmp/quotations

Sample Code

The following code shows how the entire application came together.

Code Example B-2 Sample Desktop Provider File

order to:

preferences
/I - provide logging

/T QuotationProvider.java
/I This is a sample desktop provider application used to display
/I famous/humorous quotations on the desktop.

Il It shows how to use the ProfileProviderAdapter API to:
/I - display HTML content on the desktop
/I - allow the user to edit attributes

/Il It also invokes the Session, Profile and Logging APIs in

Il - get/set user-level attributes regarding quotation

/I Where the QuotationProvider.class file can be found.
package com.iplanet.portalserver.providers.quotations;

Appendix B Putting Code Together 121

Sample Code

Code Example B-2 Sample Desktop Provider File (Continued)

/I QuotationProvider.java

/I Use some basic Java classes
import java.lang.*;

import java.io.*;

import java.util.*;

/I Use some basic Java Servlet classes
import javax.servlet.*;
import javax.servlet.http.*;

/l Use some iPS classes

import com.iplanet.portalserver.desktop.util.*;

import com.iplanet.portalserver.providers.Provider;

import
com.iplanet.portalserver.providers.ProfileProviderAdapter;
import com.iplanet.portalserver.session.Session;

import com.iplanet.portalserver.profile.*;

/I The QuotationProvider Class
public class QuotationProvider extends ProfileProviderAdapter

implements Provider {

/I The constructor - don’'t need to do any special
initialization
/I so just invoke the ProfileProviderAdapter’s constructor.
public QuotationProvider() {
super();

/I Generate the HTML that will be displayed in this content
provider’s
/[area on the desktop
public StringBuffer getHTMLContent() throws Exception {
Profile p = getSession().getUserProfile();
StringBuffer content = new StringBuffer(); // Contains
HTML to be displayed.
Hashtable quotesHash = new Hashtable(); // A Hash of
quote Vectors, one vector per category.

BufferedReader quotesReader; /l Used to read
the quotes.
String quote; Il A single
guotation.
Random randomGenerator = new Random(); /I To randomly
pick quotes.

/I Read in the quotations into a Hashtable of Vectors,
each containg
/I the quotations of a specific category. If we can't read
the
/I quotations file it's okay - we just won't display any
quotes later.

122 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Sample Code

Code Example B-2 Sample Desktop Provider File (Continued)

/I QuotationProvider.java
/I The category and quotation are separated by a "|" in
the quotations
Il file.
try {
String quotationFileName =
p.getAttributeString(“iwtQuotationProvider-fileLocation");
guotesReader = new BufferedReader(new FileReader(new
File(quotationFileName)));
while ((quote = quotesReader.readLine()) != null) {
String type =
guote.substring(0,quote.indexOf(’|));
if (lquotesHash.containsKey(type)) {
quotesHash.put(type,new Vector());

((Vector)(quotesHash.get(type))).addElement(quote.substring(quot
e.indexOf(’|')+1));

%catch (Exception e) {

/I Determine if user’s preference is to display the
category along with a quotation.
_t;oolean displayCategories = true;
i
(p.getAttribute String(“iwtQuotationProvider-displayCategories").
equals(“false")) {
displayCategories = false;

/I Get the possible quotation categories.
Enumeration e =

p.getAttribute("iwtQuotationProvider-selectedCategories");

/l Print a quotation for each category selected by the
user.
while (e.hasMoreElements()) {
String category = (String)e.nextElement();

/I If the user wanted to display the category along
with the
[/l quotation then do so.
if (displayCategories) {
content.append("<BOLD>");
content.append(category);
content.append("</BOLD>");

/I If there are any quotations for this category, pick

a random
/I one and display it, otherwise note that we didn’t
find one.

Appendix B Putting Code Together

123

Sample Code

Code Example B-2 Sample Desktop Provider File (Continued)

/I QuotationProvider.java
if (quotesHash.containsKey(category)) {

Vector quoteVector =
(Vector)quotesHash.get(category);

int whichQuotelndex =
Math.abs(randomGenerator.nextint())%(quoteVector).size();

content.append("");

content.append("");

content.append((String)(quoteVector.elementAt(whichQuotelndex)))

content.append('");
content.append('");

}else {
content.append('");
content.append("");

content.append("(no quotes of this type found)");

content.append("'");
content.append('"),

}

}

/I Now return the HTML we have constructed.
return content;

/I Generate the HTML that will be displayed to let the user
set his preferences.
public StringBuffer getHTMLEditForm() {
StringBuffer content = new StringBuffer();

try {
Profile p = getSession().getUserProfile();

/I Display things in a single column table - so things
line up.
content.append("<P><TABLE>");

/I Let the user choose which categories he wants.
content.append("<TR>");

content.append("<TD VALIGN="top' HALIGN="left'>");
content.append("Types of Quotes to Display");
content.append("</TD>");

/l Get the user’s selected categories

Vector selectedCategories = new Vector();

Enumeration e2 =
p.getAttribute("iwtQuotationProvider-selectedCategories");

while (e2.hasMoreElements()) {

selectedCategories.addElement((String)e2.nextElement());

124 iPlanet Portal Server 3.0 Programmer’s Reference Guide May 2000

Sample Code

Code Example B-2 Sample Desktop Provider File (Continued)

/IQuotationProvider.java
/I List the possible categories, marking those that

have already
// been selected by the user.
content.append("<TD VALIGN="top' HALIGN="left'>");
Enumeration e =
p.getAttribute("iwtQuotationProvider-possibleCategories");
while (e.hasMoreElements()) {
String category = (String)e.nextElement();
content.append("<INPUT TYPE='checkbox'
NAME='category-");
content.append(category);
content.append(™ VALUE=");
content.append(category);
content.append("™);
if (selectedCategories.contains(category)) {
content.append(" CHECKED");

content.append(">");
content.append(category);
content.append("
");

}
content.append('</TD>");
content.append('</TR>");

/I Let the user decide if he wants to display a
category with each quotation.

content.append("<TR>");

content.append("<TD VALIGN="top' HALIGN="left'>");

content.append("<INPUT TYPE="checkbox'

NAME='display_categories' VALUE="yes");
if

(p.getAttributeString("iwtQuotationProvider-displayCategories").

equals("true")) {
content.append(* CHECKED");
}

Quotation™);
content.append("'</TD>");
content.append('</TR>");

content.append(">Display the Category Along With the

content.append("</TABLE>");
} catch (Exception e) {
}

return content;

/I Handle the submittal of the edit form.
public int processEditForm(HttpServletRequest req) throws
Exception {
Profile p = getSession().getUserProfile();
Enumeration parameterNames = req.getParameterNames();
Vector categorySelections = new Vector();

Appendix B Putting Code Together 125

Sample Code

Code Example B-2 Sample Desktop Provider File (Continued)

/IQuotationProvider.java
boolean displayCategories = false;

/I Check all the passed parameters and add the selected

categories
/I as well as check to see if user opted to display

categories.
while (parameterNames.hasMoreElements()) {
String parameter =

(String)parameterNames.nextElement();
if (parameter.equals("display_categories")) {
displayCategories = true;
} else if (parameter.startsWith("category-")) {
String category = req.getParameter(parameter);
categorySelections.addElement(category);

}

/I Set the list of selected categories for later storing

in the profile database.
p.setAttribute("iwtQuotationProvider-selectedCategories”,

categorySelections.elements(), Profile.NEW);

/I Set whether the user wants to display categories or not

for later
/[storing in the profile database.
if (displayCategories) {

p.setAttributeString("iwtQuotationProvider-displayCategories”,

"true”, Profile.NEW);
}else {

p.setAttributeString("iwtQuotationProvider-displayCategories"”,
"false", Profile. NEW);
}

/I Done processing the edit form - now store the user’s

preferences.
p.store(true);

return DtConstants.BUILD_FRONT;
}

}

The sample below is the complete XML file used to register this sample provider
with the Profile and Policy Server.

126 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Sample Code

Code Example B-3 Sample XML File

<l--
Copyright 11/30/99 Sun Microsystems, Inc. All Rights Reserved.

"@(#)iwtQuotationProvider.xml 1.2 99/11/30 Sun Microsystems"
>

<iwt:Component name="iwtQuotationProvider"
ver="1.0"
desc="Quotation Provider"
resB="iwtQuotationProvider.rb"
idx="iwtQuotationProvider-desc" >

<l--

Attributes, common
>

<iwt:Att name="iwtQuotationProvider-title"
desc="Title for this provider"
type="string"
idx="title-desc"
userConfigurable="TRUE">
<Val>Quotation Provider</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>
</iwt:Att>
<iwt:Att name="iwtQuotationProvider-width"
desc="Width for this provider"
type="singlechoice"
idx="width-desc"
userConfigurable="TRUE">
<Val>thick</Val>
<CVal>thin</CVal><CVal>thick</CVal>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>
</iwt:Att>
<iwt:Att name="iwtQuotationProvider-isDetached"
desc="Is this provider detached from the desktop?"
type="boolean"
idx="isDetached-desc"
userConfigurable="TRUE">
<Val>false</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm><Wperm>OWNER</Wperm>
</iwt:Att>
<iwt:Att name="iwtQuotationProvider-isMinimized"
desc="Is this provider minimized on the desktop?"
type="boolean"
idx="isMinimized-desc"
userConfigurable="TRUE">
<Val>false</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm><Wperm>0OWNER</Wperm>
</iwt:Att>
<iwt:Att name="iwtQuotationProvider-debug"

Appendix B Putting Code Together

127

Sample Code

Code Example B-3 Sample XML File (Continued)

desc="Is debugging output on for this provider?"
type="boolean”
idx="debug-desc"
userConfigurable="FALSE">
<Val>false</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Att>

<iwt:Att name="iwtQuotationProvider-helpLink"
desc="Help page for this provider"
type="string"
idx="helpLink-desc"
userConfigurable="TRUE">
<Val>user_help/desktop/desktopTOC.html</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Att>

<iwt:Att name="iwtQuotationProvider-templateKeys"
desc="Template keys for this provider"
type="stringlist"
idx="templateKeys-desc"
userConfigurable="TRUE">
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Att>

<iwt:Att name="iwtQuotationProvider-templateFiles"
desc="Template files for this provider"
type="stringlist"
idx="templateFiles-desc"
userConfigurable="TRUE">
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Att>

<iwt:Att name="iwtQuotationProvider-column"
desc="Column to display this provider in"
type="string"
idx="column-desc"
userConfigurable="TRUE">
<Val>1</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm><Wperm>OWNER</Wperm>

</iwt:Att>

<l--

Attributes, specific
>

<iwt:Att name="iwtQuotationProvider-possibleCategories"
desc="Possible Quotation Categories"
type="stringlist"
idx="possible_quotation_categories"
userConfigurable="FALSE">
<Val>Computers</Val>
<Val>Freedom</Val>
<Val>Science</Val>

128 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Code Example B-3 Sample XML File (Continued)

Sample Code

<Val>Stupid</Val>

<Val>Work</Val>

<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>

<Wperm>ADMIN</Wperm><Wperm>OWNER</Wperm>
</iwt:Att>

<iwt:Att name="iwtQuotationProvider-selectedCategories"
desc="Selected Quotation Categories"
type="stringlist"
idx="selected_categories"
userConfigurable="TRUE">
<Val>Computers</Val>
<Val>Freedom</Val>
<Val>Science</Val>
<Val>Stupid</Val>
<Val>Work</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm><Wperm>0OWNER</Wperm>
</iwt:Att>

<iwt:Att name="iwtQuotationProvider-displayCategories"
desc="Display category along with quotation?"
type="boolean"
idx="display_categories"
userConfigurable="TRUE">
<Val>true</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm><Wperm>0OWNER</Wperm>
</iwt:Att>

<iwt:Att name="iwtQuotationProvider-fileLocation"
desc="Location of the quotations file"
type="string"
idx="file_location"
userConfigurable="FALSE">
<Val>/var/tmp/quotations</Val>
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Att>

<l--

Priviliges, common
>

<iwt:Priv name="iwtQuotationProvider-isMinimizable"
desc="Can this provider be minimized on the desktop?"
type="boolean"”
idx="isMinimizable-desc"
userConfigurable="TRUE"
val="true">
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Priv>

<iwt:Priv name="iwtQuotationProvider-isDetachable"
desc="Can this provider be detached from the desktop?"

Appendix

B

Putting Code Together

129

Sample Code

130

Code Example B-3 Sample XML File (Continued)

type="boolean"”
idx="isDetachable-desc"
userConfigurable="TRUE"
val="true">
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Priv>

<iwt:Priv name="iwtQuotationProvider-hasHelp"
desc="Does this provider have a help page?"
type="boolean"
idx="hasHelp-desc"
userConfigurable="TRUE"
val="true">
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Priv>

<iwt:Priv name="iwtQuotationProvider-isEditable"
desc="Does this provider have an edit page?"
type="boolean"
idx="isEditable-desc"
userConfigurable="TRUE"
val="true">
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Priv>

<iwt:Priv name="iwtQuotationProvider-isRemovable"
desc="Can this provider be removed from the desktop?"
type="boolean"
idx="isRemovable-desc"
userConfigurable="TRUE"
val="true">
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Priv>

<iwt:Priv name="iwtQuotationProvider-hasBorder"

desc="Should this provider be drawn with a border around

it?"
type="boolean"”
idx="hasBorder-desc"
userConfigurable="TRUE"
val="true">
<Rperm>ADMIN</Rperm><Rperm>0OWNER</Rperm>
<Wperm>ADMIN</Wperm>

</iwt:Priv>

</iwt:Component>

The following code sample shows the sample quotations file used for this example.

iPlanet Portal Server 3.0 Programmer’s Reference Guide ¢ May 2000

Sample Code

Code Example B-4 Sample Quotation File

Computers['Tf you can't beat your computer at chess, try

kickboxing." -Anon.
Computers|"What goes up must come down. Ask any system

administrator." -Anon.
Computers|"Perl - The only language that looks the same before

and after RSA encryption." -Keith Bostic
Computers|"C makes it easy to shoot yourself in the foot. C++

makes it harder, but when you do, it blows away your whole leg."

-Bjarne Stroustrup

Freedom|"Live free or die." -New Hampshire State Motto
Freedom|"Man is free at the moment he wishes to be." -Voltaire
Freedom|"People demand freedom of speech as a compensation for

the freedom of thought which they seldom use." -Kierkegaard
Freedom|"The right to be heard does not autmatically include the

right to be taken seriously." -Hubert Humphrey
Freedom|"Extremism in the defense of liberty is no vice. And

moderation in the pursuit of justice is no virtue." -Barry

Goldwater
Freedom|"l disapprove of what you say, but | will defend to the

death your right to say it." -Voltaire
Science|"Give me a lever long enough and a fulcrum on which to

place it, and | shall move the world." -Archimedes, Pappus of

Alexandria
Science|"A scientific truth does not triumph by convincing its

opponents and making them see the light, but rather because its
opponents eventually die and a new generation grows up that is

familiar with it." -Maxwell Planck
Science|"Every great advance in science has issued from a new

audacity of imagination." -John Dewey, The Quest for Certainty

Appendix B Putting Code Together 131

Sample Code

132 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Appendix C

IPlanet Portal Server API Exceptions

Profile APl Exceptions

Table C-1

Profile APl Exceptions

Exception Type

Exception Description

100
101
102
103
104
105
106
107
108
118
119
122
300
301
310
311

Multivalued Attribute

No Attributes in profile

User role attribute not set

Not Boolean type privilege

Not List type privilege

Not valid match

No Privileges in profile

Privilege not found

Attribute not found

Invalid session

Not found

Invalid wildchar

Fatal exception initializing Data Store
Required data store initialization parameters not present
Invalid attribute value

Invalid privilege value

133

Profile API Exceptions

134

Table C-1 Profile API Exceptions (Continued)

Exception Type Exception Description

312 Invalid choice value

320 Invalid profile name

321 Invalid attribute or privilege name

322 Invalid parent profile name

323 Profile name already in use

324 Unable to create profile

325 Unable to remove profile

326 Invalid profile type

330 Unable to get attribute or privilege value from data store

331 Profile is not initialized

332 Unable to remove attribute from data store

333 Invalid operation for modifying attribute value

334 Unable to modify attribute value in data store

340 Invalid search filter

341 Search failed

700 No parent profile defined

701 No role defined for user

702 Profile does not exist

703 Undefined attribute or privilege

705 Invalid data

710 Can’t assign multi-value to single-value type attribute

711 Attribute is not configurable

720 Permission denied in getting attributes or privileges

721 Permission denied in setting attributes or privileges

722 Permission denied in creating profile

723 Permission denied in deleting profile

724 Permission denied

725 Set profile failed in overwriting customized attributes in sub
profiles

iPlanet Portal Server 3.0 Programmer’s Reference Guide ¢ May 2000

Table C-1

Log API Exceptions

Profile API Exceptions (Continued)

Exception Type

Exception Description

726
740
741
760
761
762
763
764
765
766
767
770
800
850
851

Permission denied in searching profile

Invalid attribute name or value provided in search profile
Invalid profile type provided in search profile
Invalid external attribute mapping

Unable to get external LDAP configuration attributes
Invalid search scope

Unable to read from external data store

Unable to write to external data store

Unable to connect to external data store

Unable to close external data store connection
Duplicate matches in external data store

Invalid external LDAP connection properties

Invalid Session Exception

Invalid Notification URL

Unable to remove profile service listener

Log API Exceptions

Table C-2

Logging API Exceptions

Exception Type

Exception Description

500
501
502
503
504
505

INVALID_SESSION
ALREADY_EXISTS
INACTIVE
LOG_HANDLER_ERROR
WRITE_ERROR
READ_ERROR

Appendix C iPlanet Portal Server API Exceptions

135

Session API Exceptions

Table C-2

Logging API Exceptions (Continued)

Exception Type

Exception Description

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
699

DELETE_ERROR
LIST_NOT_EXISTS
TYPE_ERROR
CREATE_ACCESS_DENIED
WRITE_ACCESS_DENIED
READ_ACCESS_DENIED
LIST_ACCESS_DENIED
PROFILE_ERROR
LOG_NOT_FOUND
NO_SUCH_SEGMENT _EXISTS
DELETE_ACCESS_DENIED
INVALID_LOG_NAME
READ_EXCEEDS_MAX
DRIVER_LOAD_FAILED
NULL_LOCATION
CONNECTION_FALIED
NULL_POINTER

SQL_ERROR

FATAL_ERROR

Session APl Exceptions

Table C-3

Session API Exceptions

Exception Type

Exception Descreiption

unexpectedResponse

unexpectedSession

Unexpected number of responses received

Unexpected number of sessions received

136 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Session API Exceptions

Table C-3 Session API Exceptions

Exception Type Exception Descreiption
invalidSessionID Invalid session ID

invalidSessionState Invalid session state

noPrivilege No privilege to perform this operation

Appendix C iPlanet Portal Server APl Exceptions 137

Session API Exceptions

138 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Glossary

access control Implements the privileges granted by authorization.

address In networking, a unique code that identifies a node to the network. Names
like i-planet.demo.sun.com are translated to “dotted quad” addresses (10.0.24.15)
by the Domain Name Service. (DNS).

administration console The administrator’s GUI interface to iPlanet Portal
Server 3.0.

APl Application Program Interface, a set of calling conventions or instructions
defining how programs invoke services in existing software packages.

applet A program written in the Java™ programming language to run within a
Web browser. An example would be the Java front ends to i-Planet’s NetMail and
NetFile applications.

attribute A configurable parameter of a profile.

ASP Access Service Provider. A company that, for a fee, provides access to
applications that users can run without owning their own copies. See ISP.

authentication The process of verifying a user’s identity.

authentication module An authentication module controls a specific
authentication process. For example, i-Planet provides authentication modules for
Microsoft Windows NT, UNIX, S/key, and others, as well as opening the
authentication API so other authentication modules can be written as needed.

authorization The process of granting specific access privileges to a user.
Authorization is based on authentication and enforced by access control.

139

140

CA See Certificate Authority.

cache In Web browsers, the archive of recently visited Web pages, graphics, or
other files that is stored in memory or on users’ disks.

CDP Certificate Discovery Protocol. Request and response protocol used by two
parties to transfer certificates.

certificate A set of data that identifies a person, machine, or application.

certificate identifier (ID) Generic naming scheme term used to identify a
particular self-generated or issued certificate. It effectively decouples the
identification of a key for purposes of key lookup and access control from issues of
network topology, routing, and IP addresses.

Certificate Authority (CA) Trusted network entity that digitally signs a
certificate containing information identifying the user; such as the user’s name, the
issued certificate, and the certificate’s expiration date. Verisign is one of the best
known CA'’s.

component An application or a service in i-Planet. Components have attributes
and privileges, much like users.

content filtering Practice of allowing or disallowing traffic based on the content
of the data being sent.

cookie General mechanism that server-side connections can use to store and
retrieve information on the client side of the connection. Cookies are small data
files written to a user’s hard drive by some Web sites when viewed in a Web
browser. These data files contain information the site can use to track such things
as passwords, lists of pages visited, and the date when a certain page was last
looked at.

data compression Application of an algorithm to reduce the space required to
store or the bandwidth required to transmit data.

decryption Process of decrypting information that has been encrypted. See
encryption.

demilitarized zone (DMZ) Small protected network between the public Internet
and a private intranet, usually demarcated with firewalls on both ends. This area is
used to provide limited public access to resources such as Web servers, FTP
servers, and other information resources.

iPlanet Portal Server 3.0 Programmer’s Reference Guide ¢ May 2000

desktop What the user sees on the screen. This usually includes a preferred set of
applications and access privileges.

digital signatures Data added to a document to identify the sender using a
public-key encryption scheme.

DMZ See demilitarized zone.

DNS Domain Name Service is a distributed name and address lookup
mechanism used to translate domain names (ips.demo.sun.com) to IP addresses
(10.23.134.24). It also allows reverse lookup, to translate IP addresses back into
names.

domain The last part of a fully qualified domain name that identifies the company
or organization that owns the domain name (for example, sun.com, sun.co.uk).

encryption Process of protecting information from unauthorized use by making
the information unintelligible. Some encryption methods employ codes, called
keys, which are used to encrypt the information. Contrast with decryption.

firewall Computer situated between an internal network and the rest of the
network that filters packets as they go by according to user-specified criteria.
Firewalls are normally used to protect systems on one side from unauthorized
access by users on the other side.

File Transfer Protocol (FTP) A file transfer protocol often used on TCP/IP
networks to copy files to and from remote computers.

fully qualified domain name The complete domain name of a system, including
the hostname, network name if applicable, and domain; for example west.sun.com.

gateway A system that provides and controls connections to another network.
See VPN.

host Name of a device on a TCP/IP network that has an IP address.

HTML Hypertext Markup Language. A file format, based on SGML, for
hypertext documents on the Internet.

HTTP Hypertext Transfer Protocol, which describes how Web browsers and Web
servers exchange information. See URL.

Glossary 141

142

HTTPS Hypertext Transfer Protocol Secure, which describes the use of HTTP
over an SSL connection, usually on port 443.

ICMP Internet Control Message Protocol. IP protocol that handles errors and
control messages, to enable routers to inform other routers (or hosts) of IP routing
problems or make suggestions of better routes. See ping.

IMAP Internet Message Access Protocol allows remote access to mailboxes and
folders. IMAP clients usually leave some or all messages and folders on the server,
unlike POP, in which all messages are downloaded.

Internet Protocol Protocol within TCP/IP suite used to link networks
worldwide, developed by the United States Department of Defense and is used on
the Internet. The prominent feature of this suite is the IP protocol.

IP See Internet Protocol.

ISP Internet Service Provider. A company providing Internet access. This service
often includes a phone number access code, username, and software—all for a

provider fee.

issued certificate Certificate that is issued by a Certificate Authority. See
self-generated certificate.

ISV Independent Software Vendor. Third-party software developer.
Java™ Object-oriented, platform independent programming language developed
by Sun Microsystems to solve a number of problems in modern programming

practice.

JDK Java Development Kit. Software tools used to write Java applets or
application programs.

key Code for encrypting or decrypting data.

LAN Local area network, a private network at a single location. Multiple LANSs
can be interconnected to form a WAN.

LDAP Lightweight Directory Access Protocol. One of the protocols used in
iPlanet Portal Server 3.0 to resolve profile attributes and privileges.

iPlanet Portal Server 3.0 Programmer’s Reference Guide ¢ May 2000

load balancer A load balancer controls connections to multiple gateway
machines to allow approximately equivalent loads on each of the available
systems.

NAT See network address translation.

Netlet A Java applet used in i-Planet to allow any TCP/IP-based applications to
securely connect to servers through an authenticated iPS connection.

network address translation (NAT) Function used when packets passing
through a firewall have their addresses changed (or translated) to different
network addresses. Address translation can be used to translate unregistered
addresses into a smaller set of registered addresses, thus allowing internal systems
with unregistered addresses to access systems on the Internet.

network mask Number used by software to separate the local subnet address
from the rest of a given IP address.

NFS™ Network File System. A file system distributed by Sun Microsystems that
enables a set of computers to cooperatively access each others files in a transparent
manner.

NIS and NIS+ Network Information Service. NIS+ is a newer version (with a
lookup service) for Solaris 2.x, with enhanced security.

node A transfer point within a network. Data is passed from node to node in a
network until the data reaches its final destination.

passphrase Collection of characters used in a similar manner to, although
typically longer than, a password. See password.

password Unique string of characters that a user types as an identification code; a
security measure to restrict access to computer systems and sensitive files.

personal digital certificate (PDC) An electronic certificate attached to a message
that authenticates a user. A personal digital certificate can be created by correctly
entering a userID and password, or by using an SSL certificate request that in turn
uses the security certificate of the server through which the user is connected.
PDC See personal digital certificate.

ping A TCP/IP command that verifies a connection to another host.

Glossary 143

144

plaintext Unencrypted message.

Point-to-Point Protocol (PPP) PPP (the successor to SLIP) provides
router-to-router and host-to-network connections over both synchronous and
asynchronous circuits. Used for TCP/IP connectivity, usually for PC’s over a
telephone line. Also known as PPTP.

POP Post Office Protocol; defines a mechanism with which Internet users can
connect to and download their waiting email messages.

PPP See Point-to-Point Protocol.

port The location (or socket) to which TCP/IP connections are made. Web servers
traditionally use port 80, while FTP uses port 21 and telnet uses port 23. i-Planet
uses some special ports, particularly on client systems, to securely communicate
through the iPS session to servers.

preference A user-specified choice about what appears or doesn’t appear on the
desktop, and how it appears, or other traits such as timeout settings.

private network A network of computers that is inaccessible unless you have
appropriate access privileges. Private networks may be as small as a one-office
LAN or as large as a multi-country enterprise network. See also public network.

privilege A type of access right that is granted to a user, a set of users, or a
resource that is specified by the particular type of authorization implemented.

profile The attributes and privileges for an iPS entity, such as user, role, domain,
or component.

profile server A special segment of iPlanet Portal Server 3.0that is devoted to
storing profile information.

protocol A formal description of messages to be exchanged and rules to be
followed for two or more systems to exchange information.

proxy A proxy is an intermediary program that makes and services requests on
behalf of clients. Proxies act as servers and clients in turn, and are used to control
the content of various network services. See reverse proxy.

public-key certificate A data structure containing a user’s public key, as well as
information about the time and date during which the certificate is valid.

iPlanet Portal Server 3.0 Programmer’s Reference Guide ¢ May 2000

public-key cryptography Also known as asymmetric key cryptography. In
public-key cryptosystems, everyone has two related complementary keys: a
publicly revealed key and a secret key (also frequently called a private key). Each
key unlocks the code that the other key makes. Knowing the public key does not
help you deduce the corresponding secret key. The public key can be published
and widely disseminated across a communications network. This protocol
provides privacy without the need for the secure channels that a conventional
cryptosystem requires.

public network Like the Internet, a public network carries traffic from a variety
of companies, individuals, and sources and is inherently insecure. Contrast with
private network.

query Process for extracting particular data.

reverse proxy A proxy which performs bi-directional URL rewriting and
translation between clients and servers. Unlike a proxy, which exists at the client
side, a reverse proxy exists at the server side of the network. In i-Planet, the reverse
proxy exists on theiPS gateway.

role A role defines all aspects of a user’s experience when running in the i-Planet
environment. A role can, for instance, correspond to a job title (manager, engineer,
sales, etc.) or can be defined other ways, such as a full member of a working group
or an observer. A role determines what a user sees and can use.

router Intermediary device responsible for deciding which of several paths
network (or Internet) traffic will follow.

secret key In public-key cryptography, a private key that is never disclosed to the
public. See public-key cryptography.

Secure Socket Layer (SSL) A form of secure, low-level encryption that is used by
other protocols like HTTP and FTP. The SSL protocol includes provisions for server
authentication, encryption of data in transit, and optional client authentication. The
version used in i-Planet uses RSA’s public and private key encryption, as well as a
digital certificate.

self-generated certificate Public key value only used when entities are named
using the message digest of their public value, and when these names are securely
communicated. See issued certificate.

session An i-Planet session is a sequence of interactions between a user and one
or more applications, starting with login and ending with logout or timeout.

Glossary 145

146

session key Common cryptographic technique to encrypt each individual
conversation between two people with a separate key.

SGML Standard Generalized Markup Language. Method of tagging a document
to apply to many format elements.

shared-key cryptography Also known as symmetric key cryptography.
Cryptography where each party must have the same key to encrypt or decrypt
ciphertext.

smart card A plastic card with a magnetized strip that is used for authentication.
SMTP Simple Mail Transfer Protocol. Used on the Internet to route email.

SMTP proxy A variant of SMTP that sends messages from one computer to
another on a network and is used on the Internet to route email.

SNMP Simple Network Management Protocol. Network management protocol
that enables a user to monitor and configure network hosts remotely.

SSL See Secure Socket Layer.

SSL Certificate An electronic token that means you or a vendor have given
approval to encrypt and decrypt your secure transactions, using PKI. You create a
self-signed SSL Certificate when you install i-Planet software. However, you can
also obtain an SSL Certificate from a certificate vendor who authorizes secure
communications services over the Internet.

subdomain The next-to-last part of a fully qualified domain name that identifies the
division or department within a company or organization that own the domain
name (for example, eng.sun.com, sales.sun.co.uk); not always specified.

subnet Working scheme that divides a single logical network into smaller
physical networks to simplify routing.

subnet mask Specifies which bits of the 32-bit IP address represent network
information. The subnet mask, like an IP address, is a 32-bit binary number: a 1 is
entered in each position that will be used for network information and a 0 is
entered in each position that will be used as node number information. See node.
symmetric key cryptography See shared-key cryptography.

TCP See transmission control protocol.

iPlanet Portal Server 3.0 Programmer’s Reference Guide ¢ May 2000

TCP/IP Transmission Control Protocol/Internet Protocol. Protocol suite
originally developed for the Internet. It is also called the Internet protocol suite.
Solaris networks run on TCP/IP by default.

telnet Virtual terminal protocol in the Internet suite of protocols. Enables users of
one host to log in to a remote host and interact as normal terminal users of that host.

telnet proxy An application which sits between the telnet client and telnet server
and acts as an intelligent relay.

transmission control protocol (TCP) Major transport protocol in the Internet
suite of protocols providing reliable, connection-oriented, full-duplex streams.
Uses IP for delivery. Encrypts only IP packet data, but not the headers.
Corresponds to the transport layer, which is the fourth of the seven ISO layers. See
TCP/IP.

transparent clustering A condition whereby multiple machines will appear to
the user to be a single machine. In i-Planet, the condition where multiple gateways
appear to the user to be a single gateway.

tunneling Process of encrypting an entire IP packet, and wrapping it in another
(unencrypted) IP packet. The source and destination addresses on the inner and
outer packets may be different.

tunnel address Destination address on the outer (unencrypted) IP packet to
which tunnel packets are sent. Generally used for encrypted gateways where the IP
address of the host serves as the intermediary for any or all hosts on a network
whose topology must remain unknown or hidden from the rest of the world.

URL Uniform Resource Locator. A code that searches for the location of a specific
address on the Internet.

user ID Name by which a user is known to the system.

Virtual Private Network A network with the appearance and functionality of a
regular network, but which is really like a private network within a public one.

The use of encryption in the lower protocol layers provides a secure connection
through an otherwise insecure network, typically the Internet. VPN'’s are generally
cheaper than true private networks using private lines, but rely on having the same
encryption system at both ends. The encryption may be performed by firewall
software or possibly by routers.

VPN gateway The entry point to a VPN. Typically protected by a firewall.

Glossary 147

VPN See Virtual Private Network.

WAN Wide area network, a private network (intranet) spanning more than one
physical location.

Watchdog A process that monitors a gateway and restarts the gateway if its
processes fail.

Web See World Wide Web.

Web page Document on the Web.

web server An application that responds to web requests such as HTTP, FTP, etc.
World Wide Web Network of servers on the Internet that provide information

and can include hypertext links to other documents on that server and often other
servers as well.

148 iPlanet Portal Server 3.0 Programmer’s Reference Guide « May 2000

Index

A G
APIs, Summary 18 glossary 139
Audience 13
P{
C HelloServlet Example 87
Command Line Interface 77 Sample Code
ipsadmin Command 78 Attributes and Privileges 90
Assigning a Role 81 HelloServlet Properties 88
Changing a Profile 82 HelloServlet XML 88
Creating New Domain 80 Prints HTML Output 90
Creating New Role 80 HelloServletExample
Deleting a Profile 83 Sample Code
Importing New Component 79 Initializing the Servlet 91
New User 81 HTML Templates 97
Reading a Profile 81 Authentication Templates 97
Overview 77 Customizing Authentication Pages 97
Sample Code 83 HTML Template Files 98
Content Provider API 51 Desktop Templates 100
Functionality 51 Desktop Pages 100
Implementing 53 HTTP/XML Interface 103
Overview 51 DTD 104
Sample Providers 52 DTD Samples

NamingRequest DTD 107
NamingResponse DTD 106
PLL NotificationSet DTD 106
PLL RequestSet DTD 105

Index 149

PLL ResonseSet DTD 105
Log-related DTDs 115
Log APl Communication DTD 116
Overview 103
Profile and Policy-related DTDs 113
GetProfile Response XML 115
ProfileService DTD 113
Profile and Policy-related XML 113
GetProfile Request XML 115
Session-Related DTDs 109
NotificationSet DTD 109
SessionRequest DTD 110
SessionResponse DTD 111
Session-Related XML 109
SessionRequest XML 112
SessionResponse XML 112
XML Samples
NamingRequest XML 107
NamingResponse XML 108

Integrating an Application 23

J

Javadocs 17

L

Log API 43

150

Creating Logs 45
Deleting Logs 46
Functionality 45
Implementing 44

Log List Retrieval 48
Overview 43
Querying Logs 48
Reading from a Log 47
Sample Code 49

Create a New Log 45

Delete a Log 46

Method Handles Logging 95

Query Log Information 48

Reading Records from a Log 47

Retrieve Existing Log List 48

Sample Log API 49

Writing Records to a Log 46
Writing to a Log 46

P

Pluggable Authentication API 57
.properties File 59
Overview 57
Process 58
Writing a Module 62
Integration 63
Recommendations 63
Sample Code 65
Preface 13
Profile and Policy API 35
Classes and Interfaces 37
Dependancies 38
Exception Handling 38
Functionality 35
Importing Classes 40
Overview 35
Sample Code 41
Using 39
Profile API
Sample Code
Modify an Attribute 93
Policy Checking 94
Provider Sample 117
Attributes and Privileges 119
Define the Provider 119
Minimal Routines 117
Non-Server Functionality 118
Requirements and Functionality 118
Sample Code
XML Defining Attributes and Privileges 120

iPlanet Portal Server 3.0 Programmer’s Reference Guide ¢ May 2000

S

Session API
Block Diagram 25
Classes and Interfaces 29
Session Class 29
Implementation 25
Message Format 28
Sample Code
Get a Session 93
HTTP Request and Response 91
Session Event 92
Transport Protocol 28
Single Signon 71
Instructions for Using 72
Overview 71
Sample Code 73
Special Cases 71

T

Typographic Conventions 15

Index

151

	Programmer’s Reference Guide
	iPlanet™ Portal Server 3.0
	Contents

	Preface 13
	Chapter�1

	Overview of the APIs 17
	Chapter�2

	Session API 25
	Chapter�3

	Profile and Policy API 35
	Chapter�4

	Log API 43
	Chapter�5

	Content Provider API 51
	Chapter�6

	Pluggable Authentication API 57
	Chapter�7

	Single Signon 71
	Chapter�8

	Using the Command Line Interface 77
	Chapter�9

	Using the iPlanet Portal Server APIs 87
	Chapter�10

	HTML Templates 97
	Appendix�A
	HTTP/XML Interface 103
	Appendix�B

	Putting Code Together 117
	Appendix�C

	iPlanet Portal Server API Exceptions 133

	List of Figures
	Preface

	Who Should Use This Book
	How This Book Is Organized
	Documentation
	Using UNIX Commands
	What Typographic Conventions Mean
	Shell Prompts in Command Examples
	Chapter�1
	Overview of the APIs

	Extending iPlanet Portal Server
	Figure 1-1 End User Component Interaction Flow

	The iPlanet Portal Server APIs
	Table 1-1 The iPlanet Portal Server APIs�
	Which APIs to Use?

	Understanding iPlanet Portal Server APIs
	1. Define high-level application requirements.
	2. Determine which iPlanet Portal Server APIs support the high-level requirements.
	3. Define the iPlanet Portal Server attributes.
	4. Define the privileges that determine the policy for the application.
	5. Create an XML file to define the provider to the iPlanet Portal Server desktop.
	6. Import the XML file to the Profile server with ipsadmin.
	7. Configure and modify the applications through the Administration Console.

	Identify Needed iPlanet Portal Server APIs
	Content Provider API
	Profile and Policy API
	Session API
	Log API

	Integrating an Application with iPlanet Portal Server Software
	1. Identify data to be stored in the iPlanet Portal Server profile versus data that is to be obta...
	2. Decide which policy to assign for users whom access this application, and define corresponding...
	3. Create an XML file that defines the data identified in Step 1 and Step 2.
	4. Use the iPlanet Portal Server ipsadmin utility on the command line to import the XML and confi...
	5. Modify the application to use the iPlanet Portal Server APIs to identify the user rather than ...
	a. Use the Session API to translate an HTTP request from the user into an iPlanet Portal Server s...
	b. Use the Profile and Policy API to access the application-specific authentication information t...

	6. Use the Administration console to provide access to the payroll application.
	7. Use the Administration console to configure the policy for different roles.
	Chapter�2
	Session API

	Session API Overview
	Implementing the Session API
	Using the Session API
	Figure 2-1 Session Service Block Diagram
	Session API Transport Protocol

	Session API Message Format
	Session API Classes and Interfaces
	Sample Session Code
	Instructions for using the HelloServlet
	1. Set IPS_BASE to the iPlanet Portal Server installation directory.
	2. Change directory and make the file as shown in the following example:
	3. Copy the class files to the appropriate directory on the portal server under:
	4. Modify the web server configuration.
	5. Add the following line to the web server servlets.properties file:
	6. Add the following line to the web server rules.properties file:
	7. As root, Import iwtHelloServlet.xml using ipsadmin, as shown in the following example:
	8. copy file iwtHelloServlet.properties to $IPS_BASE/SUNWips/locale directory
	9. Restart the iPlanet Portal Server server.
	10. Test the servlet by logging in to the iPlanet Portal Server desktop and entering the followin...

	Import the iPlanet Portal Server Classes
	Code Example 2-1 Importing iPlanet Portal Server Classes

	Sample Code
	Code Example 2-2 Sample Session API
	Chapter�3
	Profile and Policy API

	Profile and Policy API Overview
	Profile and Policy API Functionality
	Figure 3-1 The Profile and Policy API Organization Structure

	Implementing the Profile and Policy API
	Profile and Policy API Classes and Interfaces
	Interactions, Assumptions, and Dependencies
	Exception Handling

	Using the Profile and Policy API
	Getting Profile Object
	Getting Attribute Values
	Setting Attribute Values
	Checking Policy (Using Boolean Privileges)
	Checking Policy (Using List Privileges)
	Import the iPlanet Portal Server Classes
	Code Example 3-1 Importing iPlanet Portal Server Classes

	Sample Code
	Code Example 3-2 Sample Profile API�
	Chapter�4
	Log API

	Log API Overview
	Implementing the Log API
	iPlanet Portal Server Classes
	Code Example 4-1 Importing iPlanet Portal Server Classes

	Log API Functionality
	Creating Logs
	Code Example 4-2 Create a New Log (Minimal Code)

	Deleting Logs
	Code Example 4-3 Delete a Log (Minimal Code)

	Writing to a Log
	Code Example 4-4 Writing Records to a Log (Minimal Code)

	Reading from a Log
	Code Example 4-5 Reading Records from a Log (Minimal Code)

	Log List Retrieval
	Code Example 4-6 Retrieve Existing Log List (Minimal Code)

	Querying Logs
	Code Example 4-7 Query Log Information (Minimal Code)

	Sample Code
	Code Example 4-8 Sample Log API�
	Chapter�5
	Content Provider API

	Content Provider Overview
	Content Provider Functionality

	Using the Sample Providers
	Compiling Sample Provider Code
	1. Change to the top level of the samples directory.
	2. Make the samples:

	Implementing the Content Provider API
	Provider Sample Code
	Code Example 5-1 HelloWorld Content Provider�
	Chapter�6
	Pluggable Authentication API

	Pluggable Authentication API Overview
	Table 6-1 Tasks to Customize Authentication

	Authentication Process Overview
	Understanding the .properties File
	Code Example 6-1 The Form for the Properties File
	Table 6-2 The .properties File Directives�

	Writing a Pluggable Authentication Module
	Requirements
	Recommendations
	About using helpers

	Integrating the Module
	1. Create a directory for the authentication module under:
	2. Put the authentication .class file into the directory created for it.
	3. Put the corresponding .properties file in:
	4. Create an XML file to update the iwtAuth component of the Portal Server or domain. See Table�6...
	a. Make a copy of /etc/opt/SUNWips/xml/iwtAuth.xml
	b. Add the values for your module to the new XML file.
	c. Import the XML file.

	5. Restart the iPlanet Portal Server.

	Sample Code
	Sample Properties File
	Code Example 6-2 Sample.properties File

	Sample Login Module Source
	Code Example 6-3 Sample Java Module—Sample.java�

	Sample XML File
	Code Example 6-4 Sample XML File—ispAuth.xml.update�
	Chapter�7
	Single Signon

	Single Signon Overview
	a. Use the Session API to validate an HTTP request from the user into an iPlanet Portal Server se...
	b. Use the Profile and Policy API to access the application-specific authentication information t...
	c. Pass that information to the application.
	Special Cases

	Instructions for using Single Signon
	Command Line Example
	1. Set IPS_BASE to the iPlanet Portal Server installation directory.
	2. cd $IPS_BASE/SUNWips/sample/sso. then type make.
	3. Copy the class files to the appropriate directory under:
	4. Modify the web server configuration.
	5. Add the following line to the web server servlets.properties file:
	6. Add the following line to the web server rules.properties file:
	7. Restart the portal server:
	8. Test the servlet by logging in to Portal Server and entering the following URL:

	Include the iPlanet Portal Server Classes
	Code Example 7-1 SSO.Java�
	Chapter�8
	Using the Command Line Interface

	Command Line Inferface Overview
	How it Works
	ipsadmin Command
	Usage

	Using ipsadmin
	Importing a New Component
	1. Create a file newComponent.xml which describes what the Profile Server must know about the com...
	2. List as many other attributes as you require.
	3. Issue the ipsadmin command:

	Creating a New Domain
	1. Create an XML file which contains attributes and privileges for this Domain.
	2. Issue the ipsadmin command:

	Creating a New Role
	1. Create an XML file which contains attributes and privileges for this role (Employee, in this e...
	2. Issue the ipsadmin command:

	Creating a New User and Assigning a Role
	1. Create an XML file which contains attributes and privileges for this user.
	2. Execute the ipsadmin command:

	Reading (Getting) a Profile
	Changing a Profile
	1. Create an XML file named /tmp/user.xml which contains following tags:
	2. Issue the ipsadmin command

	Deleting a Profile

	Sample Code
	Code Example 8-1 XML Sample Compliant with import.dtd�
	Chapter�9
	Using the iPlanet Portal Server APIs

	Instructions for using the HelloServlet
	1. Set IPS_BASE to the iPlanet Portal Server installation directory.
	2. cd $IPS_BASE/SUNWips/sample/api then type make.
	3. Copy the class files to the appropriate directory on the Portal Serverunder:
	4. Modify the web server configuration.
	5. Add the following line to the web server servlets.properties file:
	6. Replace the package and servlet names with the names you have chosen for this HelloServlet
	7. Add the following line to the web server rules.properties file:
	8. Import iwtHelloServlet.xml as root using ipsadmin:
	9. Copy file iwtHelloServlet.properties to $IPS_BASE/SUNWips/locale directory
	10. Restart the portal server:
	11. Test the servlet by logging in to Portal Server and entering the following URL:
	HelloServlet Properties
	Code Example 9-1 HelloServlet.properties

	HelloServlet XML
	Code Example 9-2 HelloServlet.XML�

	Prints HTML Output
	Code Example 9-3 HTML Output

	Setting Privileges
	Attributes and Privileges
	Code Example 9-4 Attributes and Privileges

	Initializing the Servlet
	Code Example 9-5 Initialize the Servlet

	Session API Examples
	HTTP Request and Response
	Code Example 9-6 HTTP Request and Response�

	Session Event
	Code Example 9-7 SessionEvent�

	Get a Session
	Code Example 9-8 GetSession

	Profile API Examples
	Modify an Attribute
	Code Example 9-9 Modify an Attribute�

	Get User Profile
	Code Example 9-10 GetProfileName

	Policy Checking
	Code Example 9-11 Policy Checking�

	Log API Example
	Method handles Logging
	Code Example 9-12 Create Log File
	Chapter�10
	HTML Templates

	Setting up Login Pages for Different Domains
	How Authentication Templates Work
	Templates for Customizing the Authentication Pages
	1. Go to the server machine (do the same to all server machines if there are multiple servers).
	2. Create a directory named the same as the name of the domain.
	3. Copy all the .properties, .html and .gif files into that directory.
	4. Customize the files in that directory for that domain.
	Table 10-1 HTML Template Files�

	How Desktop Templates Work
	Templates for Customizing the iPlanet Portal Server Desktop
	Appendix�A
	HTTP/XML Interface

	HTTP/XML Interface Overview
	Exchanging Information Between the Client and the Server
	1. Get the property "ips.naming.url" from /etc/opt/SUNWips/platform.conf as the naming URL.
	2. Client posts a name request to the naming URL.
	3. Server returns name response to client.
	4. Client parses name response to determine URLs for Session service, Profile Service, and Loggin...
	5. Client posts a session request to the Session Service URL.
	6. Server returns session response to client.
	7. Client parses session response to determine session ID to use.
	8. Client posts a profile request to the Profile Service URL with the session ID obtained in Step 6.
	9. Server returns profile response to client.
	10. Client parses profile response to obtain profile attributes.
	11. Client posts a logging request to the Logging Service URL.
	12. Server returns logging response to client.
	13. Client parses logging response to decide whether the logging request succeeded.

	XML DTDs
	PLL Request Set DTD
	Code Example A-1 PLL RequestSet DTD

	PLL Response Set DTD
	Code Example A-2 PLL ResponseSet DTD

	PLL Notification Set DTD
	Code Example A-3 PLL NotificationSet DTD

	Naming Response DTD
	Code Example A-4 NamingResponse DTD

	Naming Request DTD
	Code Example A-5 NamingRequest DTD

	Naming Request XML
	Code Example A-6 NamingRequest XML

	Naming Response XML
	Code Example A-7 NamingResponse XML

	Session-Related DTD and XML
	SessionNotification DTD
	Code Example A-8 NotificationSet DTD

	Session Request DTD
	Code Example A-9 SessionRequest DTD

	Session Response DTD
	Code Example A-10 SessionResponse DTD�

	Session Request XML
	Code Example A-11 SessionRequest XML

	Session Response XML
	Code Example A-12 SessionResponse XML

	Profile and Policy-related DTD and XML
	Code Example A-13 ProfileService DTD�
	Getting an Attribute Value Using XML
	Code Example A-14 GetProfile Request XML
	Code Example A-15 GetProfile Response XML

	Log-related DTDs
	DTD for Log API Communication
	Code Example A-16 DTD for Log API Communication�
	Appendix�B
	Putting Code Together

	Building an iPlanet Portal Server Provider
	Table B-1 Minimal Routines for a Provider
	Define Specific Requirements and Functionality
	Identify non-iPlanet Portal Server Functionality
	Define Application Attributes/Privileges
	Table B-2 Sample Provider Attributes

	Define the Provider to iPlanet Portal Server
	Code Example B-1 XML Defining Attributes and Privileges�
	Table B-3 Sample Attributes and Privileges

	Sample Code
	Code Example B-2 Sample Desktop Provider File�
	Code Example B-3 Sample XML File�
	Code Example B-4 Sample Quotation File�
	Appendix�C
	iPlanet Portal Server API Exceptions

	Profile API Exceptions
	Table C-1 Profile API Exceptions�

	Log API Exceptions
	Table C-2 Logging API Exceptions�

	Session API Exceptions
	Table C-3 Session API Exceptions
	Glossary

	access control
	address
	administration console
	API
	applet
	attribute
	ASP
	authentication
	authentication module
	authorization
	CA
	cache
	CDP
	certificate
	certificate identifier (ID)
	Certificate Authority (CA)
	component
	content filtering
	cookie
	data compression
	decryption
	demilitarized zone (DMZ)
	desktop
	digital signatures
	DMZ
	DNS
	domain
	encryption
	firewall
	File Transfer Protocol (FTP)
	fully qualified domain name
	gateway
	host
	HTML
	HTTP
	HTTPS
	ICMP
	IMAP
	Internet Protocol
	IP
	ISP
	issued certificate
	ISV
	Java™
	JDK
	key
	LAN
	LDAP
	load balancer
	NAT
	Netlet
	network address translation (NAT)
	network mask
	NFS™
	NIS and NIS+
	node
	passphrase
	password
	personal digital certificate (PDC)
	PDC
	ping
	plaintext
	Point-to-Point Protocol (PPP)
	POP
	PPP
	port
	preference
	private network
	privilege
	profile
	profile server
	protocol
	proxy
	public-key certificate
	public-key cryptography
	public network
	query
	reverse proxy
	role
	router
	secret key
	Secure Socket Layer (SSL)
	self-generated certificate
	session
	session key
	SGML
	shared-key cryptography
	smart card
	SMTP
	SMTP proxy
	SNMP
	SSL
	SSL Certificate
	subdomain
	subnet
	subnet mask
	symmetric key cryptography
	TCP
	TCP/IP
	telnet
	telnet proxy
	transmission control protocol (TCP)
	transparent clustering
	tunneling
	tunnel address
	URL
	user ID
	Virtual Private Network
	VPN gateway
	VPN
	WAN
	Watchdog
	Web
	Web page
	web server
	World Wide Web
	Index
	A
	C
	G
	H
	I
	J
	L
	P
	S
	T

