Oracle® Database Oracle Clusterware and Oracle Real Application Clusters Installation Guide 10g Release 2 (10.2) for Solaris Operating System (SPARC 64-Bit) Part Number B14205-01 |
|
|
View PDF |
This chapter describes the storage configuration tasks that you must complete before you start Oracle Universal Installer. It includes information about the following tasks:
Reviewing Storage Options for Oracle Clusterware, Database, and Recovery Files
Configuring Storage for Oracle Clusterware Files on a Supported Shared File System
Configuring Storage for Oracle Clusterware Files on Raw Devices
This section describes supported options for storing Oracle Clusterware files, Oracle Database files, and data files. It includes the following sections:
Use the following overview to help you select your storage option:
There are two ways of storing Oracle Clusterware files:
A supported shared file system: Supported file systems include the following:
Cluster File System: A supported cluster file system. At the time of this release, there is no supported cluster file system. Refer to the Certify page available on the OracleMetaLink Web site (http://metalink.oracle.com
) for a list of certified cluster file systems.
Network File System (NFS): A file-level protocol that enables access and sharing of files
Raw partitions: Raw partitions are disk partitions that are not mounted and written to using the operating system, but instead are accessed directly by the application.
There are three ways of storing Oracle Database and recovery files:
Automatic Storage Management: Automatic Storage Management (ASM) is an integrated, high-performance database file system and disk manager for Oracle files.
A supported shared file system: Supported file systems include the following:
OSCP-Certified NAS Network File System (NFS): Note that if you intend to use NFS for your data files, then you should create partitions large enough for the database files when you create partitions for Oracle Clusterware
Raw partitions (database files only): A raw partition is required for each database file.
See Also: For information about certified compatible storage options, refer to the Oracle Storage Compatibility Program (OSCP) Web site, which is at the following URL:
|
For all installations, you must choose the storage option that you want to use for Oracle Clusterware files and Oracle Database files. If you want to enable automated backups during the installation, then you must also choose the storage option that you want to use for recovery files (the flash recovery area). You do not have to use the same storage option for each file type.
For single-instance Oracle Database installations using Oracle Clusterware for failover, you must use ASM, or shared raw disks if you do not want the failover processing to include dismounting and remounting disks.
The following table shows the storage options supported for storing Oracle Clusterware files, Oracle Database files, and Oracle Database recovery files. Oracle Database files include data files, control files, redo log files, the server parameter file, and the password file. Oracle Clusterware files include the Oracle Cluster Registry (OCR), a mirrored OCR file (optional), the Oracle Clusterware voting disk, and additional voting disk files (optional).
Note: For the most up-to-date information about supported storage options for RAC installations, refer to the Certify pages on the OracleMetaLink Web site:http://metalink.oracle.com |
Storage Option | File Types Supported | |||
---|---|---|---|---|
OCR and Voting Disk | Oracle Software | Database | Recovery | |
Automatic Storage Management | No | No | Yes | Yes |
Local storage | No | Yes | No | No |
NFS file system
Note: Requires a certified NAS device |
Yes | Yes | Yes | Yes |
Shared raw partitions | Yes | No | Yes | No |
Use the following guidelines when choosing the storage options that you want to use for each file type:
You can choose any combination of the supported storage options for each file type provided that you satisfy any requirements listed for the chosen storage options.
Oracle recommends that you choose Automatic Storage Management (ASM) as the storage option for database and recovery files.
For Standard Edition RAC installations, ASM is the only supported storage option for database or recovery files.
You cannot use ASM to store Oracle Clusterware files, because these files must be accessible before any Oracle instance starts.
If you intend to use ASM with RAC, and you are configuring a new ASM instance, then you must ensure that your system meets the following conditions:
All nodes on the cluster have the release 2 (10.2) version of Oracle Clusterware installed
Any existing ASM instance on any node in the cluster is shut down
If you intend to upgrade an existing RAC database, or a RAC database with ASM instances, then you must ensure that your system meets the following conditions:
The RAC database or RAC database with ASM instance is running on the node from which the Oracle Universal Installer (OUI) and Database Configuration Assistant (DBCA) is run
The RAC database or RAC database with an ASM instance is running on the same nodes that you intend to make members of the new cluster installation. For example, if you have an existing RAC database running on a three-node cluster, then you must install the upgrade on all three nodes. You cannot upgrade only 2 nodes of the cluster, removing the third instance in the upgrade.
See Also: Oracle Database Upgrade Guide for information about how to prepare for upgrading an existing database |
If you do not have a storage option that provides external file redundancy, then you must configure at least three voting disk areas to provide voting disk redundancy.
When you have determined your disk storage options, you must perform the following tasks in the following order:
1: Check for available shared storage with CVU
Refer to Checking for Available Shared Storage with CVU
2: Configure shared storage for Oracle Clusterware files
To use a file system (NFS) for Oracle Clusterware files, refer to Configuring Storage for Oracle Clusterware Files on a Supported Shared File System
To use raw devices (partitions) for Oracle Clusterware files, refer to "Configuring Storage for Oracle Clusterware Files on Raw Devices"
3: Configure storage for Oracle Database files and recovery files
To use Automatic Storage Management for database or recovery file storage, refer to "Configuring Database File Storage on ASM and Raw Devices".
To use raw devices (partitions) for database file storage, refer to "Configuring Database File Storage on Raw Devices".
To check for all shared file systems available across all nodes on the cluster with an NFS file system, use the following command:
/mountpoint/clusterware/cluvfy/runcluvfy.sh comp ssa -n node_list
If you want to check the shared accessibility of a specific shared storage type to specific nodes in your cluster, then use the following command syntax:
/mountpoint/clusterware/cluvfy/runcluvfy.sh comp ssa -n node_list -s storageID_list
In the preceding syntax examples, the variable mountpoint
is the mountpoint path of the installation media, the variable node_list
is the list of nodes you want to check, separated by commas, and the variable storageID_list
is the list of storage device IDs for the storage devices managed by the file system type that you want to check.
For example, if you want to check the shared accessibility from node1 and node2 of storage devices /dev/c0t0d0s2
and /dev/c0t0d0s3
, and your mountpoint is /dev/dvdrom/
, then enter the following command:
/dev/dvdrom/clusterware/cluvfy/runcluvfy.sh comp ssa -n node1,node2 -s\ /dev/c0t0d0s2,/dev/c0t0d0s3
If you do not specify specific storage device IDs in the command, then the command searches for all available storage devices connected to the nodes on the list
Oracle Universal Installer (OUI) does not suggest a default location for the Oracle Cluster Registry (OCR) or the Oracle Clusterware voting disk. If you choose to create these files on a file system, then review the following sections to complete storage requirements for Oracle Clusterware files:
Requirements for Using a file system for Oracle Clusterware Files
Creating Required Directories for Oracle Clusterware Files on Shared File Systems
To use a file system for Oracle Clusterware files, the file system must comply with the following requirements
To use an NFS file system, it must be on a certified NAS device
Note: If you are using a shared file system on a NAS device to store a shared Oracle home directory for Oracle Clusterware or RAC, then you must use the same NAS device for Oracle Clusterware file storage. |
If you choose to place your Oracle Cluster Registry (OCR) files on a shared file system, then you should ensure one of the following is true:
If you intend to use a shared file system to store database files, then you should ensure that you use at least two independent file systems, with the database files on one file system, and the recovery files on a different file system.
The oracle
user must have write permissions to create the files in the path that you specify.
Note: If you are upgrading from Oracle9i release 2, then you can continue to use the raw device or shared file that you used for the SRVM configuration repository instead of creating a new file for the OCR. |
Use Table 3-1 to determine the partition size for shared file systems:
Table 3-1 Shared file system Volume Size Requirements
File Types Stored | Number of Volumes | Volume Size |
---|---|---|
Oracle Clusterware files (OCR and voting disks) with external redundancy | 1 | At least 120 MB for each volume |
Oracle Clusterware files (OCR and voting disks) with redundancy provided by Oracle | 1 | At least 120 MB for each volume |
Redundant Oracle Clusterware files with redundancy provided by Oracle (mirrored OCR and two additional voting disks) | 1 | At least 140 MB (100 MB for the mirrored OCR, and 20 MB each for the additional voting disks) |
Oracle Database files | 1 | At least 1.2 GB for each volume |
Recovery files
Note: Recovery files must be on a different volume than database files |
1 | At least 2 GB for each volume |
In Table 3-1, the total required volume size is cumulative. For example, to store all files on the shared file system, you should have at least 3.4 GB of storage available over a minimum of two volumes.
If you are using NFS, then you must set the values for the NFS buffer size parameters rsize
and wsize
to at least 16384. Oracle recommends that you use the value 32768.
For example, if you decide to use rsize and wsize buffer settings with the value 32768, then update the /etc/vfstab
file on each node with an entry similar to the following:
nfs_server:/vol/DATA/oradata /home/oracle/netapp nfs -yes rw,hard,nointr,rsize=32768,wsize=32768,tcp,noac,vers=3
If you use NFS mounts, then Oracle recommends that you use the option forcedirectio
to force direct I/O for better performance. However, if you add forcedirectio
to the mount option, then the same mount point cannot be used for Oracle software binaries, executables, shared libraries, and objects. You can only use the forcedirectio
option for Oracle data files, the OCR, and voting disks. For these mount points, enter the following line:
nfs_server:/vol/DATA/oradata /home/oracle/netapp nfs -yes rw,hard,nointr,rsize=32768,wsize=32768,tcp,noac,forcedirectio,vers=3
Use the following instructions to create directories for Oracle Clusterware files. If you intend to use a file system to store Oracle Clusterware files, then you can also configure file systems for the Oracle Database and recovery files.
Note: For NFS storage, you must complete this procedure only if you want to place the Oracle Clusterware files on a separate file system to the Oracle base directory. |
To create directories for the Oracle Clusterware files on separate file systems to the Oracle base directory, follow these steps:
If necessary, configure the shared file systems that you want to use and mount them on each node.
Note: The mount point that you use for the file system must be identical on each node. Make sure that the file systems are configured to mount automatically when a node restarts. |
Use the df -k
command to determine the free disk space on each mounted file system.
From the display, identify the file systems that you want to use:
File Type | File System Requirements |
---|---|
Oracle Clusterware files | Choose a file system with at least 120 MB of free disk space |
Database files | Choose either:
|
Recovery files | Choose a file system with at least 2 GB of free disk space. |
If you are using the same file system for more than one type of file, then add the disk space requirements for each type to determine the total disk space requirement.
Note the names of the mount point directories for the file systems that you identified.
If the user performing installation (typically, oracle
) has permissions to create directories on the disks where you plan to install Oracle Clusterware and Oracle Database, then OUI creates the Oracle Clusterware file directory, and DBCA creates the Oracle Database file directory, and the Recovery file directory.
If the user performing the installation does not have write access, then you must create these directories manually using commands similar to the following to create the recommended subdirectories in each of the mount point directories and set the appropriate owner, group, and permissions on them:
Oracle Clusterware file directory:
# mkdir /mount_point/oracrs # chown oracle:oinstall /mount_point/oracrs # chmod 775 /mount_point/oracrs
Database file directory:
# mkdir /mount_point/oradata # chown oracle:oinstall /mount_point/oradata # chmod 775 /mount_point/oradata
Recovery file directory (flash recovery area):
# mkdir /mount_point/flash_recovery_area # chown oracle:oinstall /mount_point/flash_recovery_area # chmod 775 /mount_point/flash_recovery_area
By making the Oracle user the owner of these directories, this permits them to be read by multiple Oracle homes, including those with different OSDBA groups.
When you have completed creating subdirectories in each of the mount point directories, and set the appropriate owner, group, and permissions, you have completed CFS or NFS configuration.
The following subsection describe how to configure Oracle Clusterware files on raw partitions.
Note: For RAC installations, Solaris Volume Manager volumes or partitions are not currently supported for Oracle Clusterware or database file storage. |
Table 3-2 lists the number and size of the raw partitions that you must configure for Oracle Clusterware files.
Table 3-2 Raw Partitions Required for Oracle Clusterware Files on AIX
Note: If you put Oracle Clusterware files on a Cluster File System (CFS) then you should ensure that the CFS volumes are at least 500 GB in size. |
Database files consist of the files that make up the database, and the recovery area files. There are four options for storing database files:
Network File System (NFS)
Automatic Storage Management (ASM)
Raw partitions (Database files only--not for the recovery area)
During configuration of Oracle Clusterware, if you selected NFS, and the volumes that you created are large enough to hold the database files and recovery files, then you have completed required pre-installation steps. You can proceed to Chapter 4, "Installing Oracle Clusterware".
If you want to place your database files on ASM, then proceed to Configuring Disks for Automatic Storage Management.
If you want to place your database files on raw devices, and manually provide storage management for your database and recovery files, then proceed to "Configuring Database File Storage on Raw Devices".
Note: Databases can consist of a mixture of ASM files and non-ASM files. Refer to Oracle Database Administrator's Guide for additional information about ASM. |
This section describes how to configure disks for use with Automatic Storage Management. Before you configure the disks, you must determine the number of disks and the amount of free disk space that you require. The following sections describe how to identify the requirements and configure the disks on each platform:
Note: For Automatic Storage Management installations, Although this section refers to disks, you can also use zero-padded files on a certified NAS storage device in an Automatic Storage Management disk group. Refer to Oracle Database Installation Guide for Solaris Operating System (SPARC 64-Bit) for information about creating and configuring NAS-based files for use in an Automatic Storage Management disk group. |
To identify the storage requirements for using Automatic Storage Management, you must determine how many devices and the amount of free disk space that you require. To complete this task, follow these steps:
Determine whether you want to use Automatic Storage Management for Oracle Database files, recovery files, or both.
Note: You do not have to use the same storage mechanism for database files and recovery files. You can use the file system for one file type and Automatic Storage Management for the other.If you choose to enable automated backups and you do not have a shared file system available, then you must choose Automatic Storage Management for recovery file storage. |
If you enable automated backups during the installation, you can choose Automatic Storage Management as the storage mechanism for recovery files by specifying an Automatic Storage Management disk group for the flash recovery area. Depending on how you choose to create a database during the installation, you have the following options:
If you select an installation method that runs Database Configuration Assistant in interactive mode (for example, by choosing the Advanced database configuration option) then you can decide whether you want to use the same Automatic Storage Management disk group for database files and recovery files, or you can choose to use different disk groups for each file type.
The same choice is available to you if you use Database Configuration Assistant after the installation to create a database.
If you select an installation method that runs Database Configuration Assistant in noninteractive mode, then you must use the same Automatic Storage Management disk group for database files and recovery files.
Choose the Automatic Storage Management redundancy level that you want to use for the Automatic Storage Management disk group.
The redundancy level that you choose for the Automatic Storage Management disk group determines how Automatic Storage Management mirrors files in the disk group and determines the number of disks and amount of disk space that you require, as follows:
External redundancy
An external redundancy disk group requires a minimum of one disk device. The effective disk space in an external redundancy disk group is the sum of the disk space in all of its devices.
Because Automatic Storage Management does not mirror data in an external redundancy disk group, Oracle recommends that you use only RAID or similar devices that provide their own data protection mechanisms as disk devices in this type of disk group.
Normal redundancy
In a normal redundancy disk group, Automatic Storage Management uses two-way mirroring by default, to increase performance and reliability. A normal redundancy disk group requires a minimum of two disk devices (or two failure groups). The effective disk space in a normal redundancy disk group is half the sum of the disk space in all of its devices.
For most installations, Oracle recommends that you select normal redundancy disk groups.
High redundancy
In a high redundancy disk group, Automatic Storage Management uses three-way mirroring to increase performance and provide the highest level of reliability. A high redundancy disk group requires a minimum of three disk devices (or three failure groups). The effective disk space in a high redundancy disk group is one-third the sum of the disk space in all of its devices.
While high redundancy disk groups do provide a high level of data protection, you must consider the greater cost of additional storage devices before deciding to select high redundancy disk groups.
Determine the total amount of disk space that you require for the database files and recovery files.
Use the following table to determine the minimum number of disks and the minimum disk space requirements for the installation:
Redundancy Level | Minimum Number of Disks | Database Files | Recovery Files | Both File Types |
---|---|---|---|---|
External | 1 | 1.15 GB | 2.3 GB | 3.45 GB |
Normal | 2 | 2.3 GB | 4.6 GB | 6.9 GB |
High | 3 | 3.45 GB | 6.9 GB | 10.35 GB |
For RAC installations, you must also add additional disk space for the Automatic Storage Management metadata. You can use the following formula to calculate the additional disk space requirements (in MB):
15 + (2 * number_of_disks) + (126 * number_of_Automatic_Storage_Management_instances)
For example, for a four-node RAC installation, using three disks in a high redundancy disk group, you require an additional 525 MB of disk space:
15 + (2 * 3) + (126 * 4) = 525
If an Automatic Storage Management instance is already running on the system, then you can use an existing disk group to meet these storage requirements. If necessary, you can add disks to an existing disk group during the installation.
The following section describes how to identify existing disk groups and determine the free disk space that they contain.
Optionally, identify failure groups for the Automatic Storage Management disk group devices.
Note: You need to complete this step only if you intend to use an installation method that runs Database Configuration Assistant in interactive mode, for example, if you intend to choose the Custom installation type or the Advanced database configuration option. Other installation types do not enable you to specify failure groups. |
If you intend to use a normal or high redundancy disk group, then you can further protect your database against hardware failure by associating a set of disk devices in a custom failure group. By default, each device comprises its own failure group. However, if two disk devices in a normal redundancy disk group are attached to the same SCSI controller, then the disk group becomes unavailable if the controller fails. The controller in this example is a single point of failure.
To protect against failures of this type, you could use two SCSI controllers, each with two disks, and define a failure group for the disks attached to each controller. This configuration would enable the disk group to tolerate the failure of one SCSI controller.
Note: If you define custom failure groups, then you must specify a minimum of two failure groups for normal redundancy disk groups and three failure groups for high redundancy disk groups. |
If you are sure that a suitable disk group does not exist on the system, then install or identify appropriate disk devices to add to a new disk group. Use the following guidelines when identifying appropriate disk devices:
All of the devices in an Automatic Storage Management disk group should be the same size and have the same performance characteristics.
Do not specify more than one partition on a single physical disk as a disk group device. Automatic Storage Management expects each disk group device to be on a separate physical disk.
Although you can specify a logical volume as a device in an Automatic Storage Management disk group, Oracle does not recommend their use. Logical volume managers can hide the physical disk architecture, preventing Automatic Storage Management from optimizing I/O across the physical devices.
See Also: The "Configuring Disks for Automatic Storage Management" section for information about completing this task |
If you want to store either database or recovery files in an existing Automatic Storage Management disk group, then you have the following choices, depending on the installation method that you select:
If you select an installation method that runs Database Configuration Assistant in interactive mode (for example, by choosing the Advanced database configuration option), then you can decide whether you want to create a disk group, or use an existing one.
The same choice is available to you if you use Database Configuration Assistant after the installation to create a database.
If you select an installation method that runs Database Configuration Assistant in noninteractive mode, then you must choose an existing disk group for the new database; you cannot create a disk group. However, you can add disk devices to an existing disk group if it has insufficient free space for your requirements.
Note: The Automatic Storage Management instance that manages the existing disk group can be running in a different Oracle home directory. |
To determine whether an existing Automatic Storage Management disk group exists, or to determine whether there is sufficient disk space in a disk group, you can use Oracle Enterprise Manager Grid Control or Database Control. Alternatively, you can use the following procedure:
View the contents of the oratab
file to determine whether an Automatic Storage Management instance is configured on the system:
# more /var/opt/oracle/oratab
If an Automatic Storage Management instance is configured on the system, then the oratab
file should contain a line similar to the following:
+ASM2:oracle_home_path
In this example, +ASM2
is the system identifier (SID) of the Automatic Storage Management instance, with the node number appended, and oracle_home_path
is the Oracle home directory where it is installed. By convention, the SID for an Automatic Storage Management instance begins with a plus sign.
Set the ORACLE_SID and ORACLE_HOME environment variables to specify the appropriate values for the Automatic Storage Management instance that you want to use.
Connect to the Automatic Storage Management instance as the SYS user with SYSDBA privilege and start the instance if necessary:
# $ORACLE_HOME/bin/sqlplus "SYS/SYS_password as SYSDBA"
SQL> STARTUP
Enter the following command to view the existing disk groups, their redundancy level, and the amount of free disk space in each one:
SQL> SELECT NAME,TYPE,TOTAL_MB,FREE_MB FROM V$ASM_DISKGROUP;
From the output, identify a disk group with the appropriate redundancy level and note the free space that it contains.
If necessary, install or identify the additional disk devices required to meet the storage requirements listed in the previous section.
Note: If you are adding devices to an existing disk group, then Oracle recommends that you use devices that have the same size and performance characteristics as the existing devices in that disk group. |
To configure disks for Automatic Storage Management (ASM) using raw devices, complete the following tasks:
To use ASM with raw partitions, you must create sufficient partitions for your data files, and then bind the partitions to raw devices. To do this, follow the instructions provided for Oracle Clusterware in the section "Configuring Storage for Oracle Clusterware Files on Raw Devices".
Make a list of the raw device names you create for the data files, and have it available during database installation.
When you have completed creating and configuring ASM with raw partitions, proceed to Chapter 4, "Installing Oracle Clusterware"
The following subsections describe how to configure raw partitions for database files:
This section describes how to configure raw logical volumes using VERITAS Cluster Volume Manager (CVxVM) with Sun Cluster 3.1 on SPARC systems.
To create a shared disk group:
If necessary, install the shared disks that you intend to use for the disk group and restart the system.
To ensure that the disks are available, enter the following command:
# /usr/sbin/format
The output from this command is similar to the following:
AVAILABLE DISK SELECTIONS: 0. c0t0d0 <ST34321A cyl 8892 alt 2 hd 15 sec 63> /pci@1f,0/pci@1,1/ide@3/dad@0,0 1. c1t5d0 <SUN9.0G cyl 4924 alt 2 hd 27 sec 133> /pci@1f,0/pci@1/scsi@1/sd@5,0
This command displays information about each disk attached to the system, including the device name (c
x
t
y
d
z
).
From the list, identify the device names for the disk devices that you want to add to a disk group, then use Ctrl+D to exit from the format
utility.
Enter the following command on every node to verify that the devices you identified are not mounted as file systems:
# df -k
This command displays information about the partitions (slices) on disk devices that are mounted as file systems. The device name for a slice includes the disk device name followed by the slice number, for example c
x
t
y
d
z
s
n
, where s
n
is the slice number. Slice 2 (s2
) represents the entire disk. The disk devices that you choose must not be shown as mounted partitions.
Enter the following commands to verify that the devices you identified are not already part of a disk group:
# /usr/sbin/vxdiskconfig # /usr/sbin/vxdisk list
The vxdisk list
command identifies the disk devices that are already configured in a disk group. The word online in the STATUS column also identifies disks that have been initialized and placed under VxVM control. The word error in the STATUS column identifies disks that are not initialized.
The disk devices that you choose must not be in an existing disk group.
If the disk devices that you want to use are not initialized, then enter a command similar to the following to initialize each disk:
# /usr/sbin/vxdiskadd cxtydz
To create a shared disk group, enter a command similar to the following, specifying all of the disks that you want to add to the group:
# /usr/sbin/vxdg -s init diskgroup diskname=devicename ...
In this example:
-s
indicates that you want to create a shared disk group
diskgroup
is the name of the disk group that you want to create, for example, oradg
diskname
is an administrative name that you assign to a disk, for example orad01
devicename
is the device name, for example, c1t0d0
Creating Raw Logical Volumes in the New Disk Group
To create the required raw logical volumes in the new disk group:
Choose a name for the database that you want to create.
The name that you choose must start with a letter and have no more than four characters, for example, orcl
.
Identify the logical volumes that you must create.
Table 3-3 lists the number and size of the logical volumes that you must create for database files.
Table 3-3 Raw Logical Volumes Required for Database Files on Solaris
Note: For RAC installations, Solaris Volume Manager volumes or partitions are not currently supported for Oracle Clusterware or database file storage. |
To create the logical volume for the Oracle Cluster Registry, enter a command similar to the following:
# /usr/sbin/vxassist -g diskgroup make ora_ocr_raw_100m 100m user=root \
group=oinstall mode=640
In this example, diskgroup
is the name of the disk group you created previously, for example, oradg
.
To create the required logical volumes, enter commands similar to the following:
# /usr/sbin/vxassist -g diskgroup make volume size user=oracle \ group=dba mode=660
In this example:
diskgroup
is the name of the disk group that you created previously, for example oradg
volume
is the name of the logical volume that you want to create
Oracle recommends that you use the sample names shown in the previous table for the logical volumes. Substitute the dbname
variable in the sample logical volume name with the name you chose for the database in step 1.
size
is the size of the logical volume, for example, 500m
represents 500 MB
user=oracle group=dba mode=660
specifies the owner, group, and permissions on the volume
Specify the Oracle software owner user and the OSDBA group for the user
and group
values (typically oracle
and dba
).
The following example shows a sample command used to create an 800 MB logical volume in the oradg
disk group for the SYSAUX tablespace of a database named test
:
# /usr/sbin/vxassist -g oradb make test_sysaux_5800m 5800m \ user=oracle group=dba mode=660
Deporting the Disk Group and Importing It on the Other Cluster Nodes
To deport the disk group and import it on the other nodes in the cluster:
Deport the disk group:
# /usr/sbin/vxdg deport diskgroup
Log into each cluster node and complete the following steps:
Enter the following command to cause VxVM to examine the disk configuration:
# /usr/sbin/vxdctl enable
Import the shared disk group:
# /usr/sbin/vxdg -s import diskgroup
Start all logical volumes:
# /usr/sbin/vxvol startall
Note: You must complete this procedure only if you are using raw devices for database files. You do not specify the raw devices for the Oracle Clusterware files in the Database Configuration Assistant raw device mapping file. |
To allow Database Configuration Assistant to identify the appropriate raw device for each database file, you must create a raw device mapping file, as follows:
Set the ORACLE_BASE environment variable to specify the Oracle base directory that you identified or created previously:
Bourne, Bash, or Korn shell:
$ ORACLE_BASE=/u01/app/oracle ; export ORACLE_BASE
C shell:
% setenv ORACLE_BASE /u01/app/oracle
Create a database file subdirectory under the Oracle base directory and set the appropriate owner, group, and permissions on it:
# mkdir -p $ORACLE_BASE/oradata/dbname
# chown -R oracle:oinstall $ORACLE_BASE/oradata
# chmod -R 775 $ORACLE_BASE/oradata
In this example, dbname
is the name of the database that you chose previously.
Change directory to the $ORACLE_BASE/oradata/
dbname
directory.
Edit the dbname
_raw.conf
file in any text editor to create a file similar to the following:
Note: The following example shows a sample mapping file for a two-instance RAC cluster. |
system=/dev/vx/rdsk/diskgroup/dbname_system_raw_500m sysaux=/dev/vx/rdsk/diskgroup/dbname_sysaux_raw_5800m example=/dev/vx/rdsk/diskgroup/dbname_example_raw_160m users=/dev/vx/rdsk/diskgroup/dbname_users_raw_120m temp=/dev/vx/rdsk/diskgroup/dbname_temp_raw_250m undotbs1=/dev/vx/rdsk/diskgroup/dbname_undotbs1_raw_500m undotbs2=/dev/vx/rdsk/diskgroup/dbname_undotbs2_raw_500m redo1_1=/dev/vx/rdsk/diskgroup/dbname_redo1_1_raw_120m redo1_2=/dev/vx/rdsk/diskgroup/dbname_redo1_2_raw_120m redo2_1=/dev/vx/rdsk/diskgroup/dbname_redo2_1_raw_120m redo2_2=/dev/vx/rdsk/diskgroup/dbname_redo2_2_raw_120m control1=/dev/vx/rdsk/diskgroup/dbname_control1_raw_110m control2=/dev/vx/rdsk/diskgroup/dbname_control2_raw_110m spfile=/dev/vx/rdsk/diskgroup/dbname_spfile_raw_5m pwdfile=/dev/vx/rdsk/diskgroup/dbname_pwdfile_raw_5m
Use the following guidelines when creating or editing this file:
Each line in the file must have the following format:
database_object_identifier=raw_device_path
For a single-instance database, the file must specify one automatic undo tablespace data file (undotbs1
), and at least two redo log files (redo1_1
, redo1_2
).
For a RAC database, the file must specify one automatic undo tablespace data file (undotbs
n
) and two redo log files (redo
n
_1
, redo
n
_2
) for each instance.
Specify at least two control files (control1
, control2
).
To use manual instead of automatic undo management, specify a single RBS tablespace data file (rbs
) instead of the automatic undo management tablespace data files.
Save the file, and note the file name that you specified.
If you are using raw devices for database storage, then set the DBCA_RAW_CONFIG environment variable to specify the full path to the raw device mapping file:
Bourne, Bash, or Korn shell:
$ DBCA_RAW_CONFIG=$ORACLE_BASE/oradata/dbname/dbname_raw.conf $ export DBCA_RAW_CONFIG
C shell:
$ setenv DBCA_RAW_CONFIG=$ORACLE_BASE/oradata/dbname/dbname_raw.conf