ORACLE

Oracle® Database
Administrator's Guide

11gRelease 1 (11.1)
B28310-01

July 2007

Oracle Database Administrator’s Guide, 11 Release 1 (11.1)
B28310-01

Copyright © 2001, 2007, Oracle. All rights reserved.

Primary Author: Steve Fogel

Contributing Author: Tony Morales, Padmaja Potineni, Sheila Moore

Contributors: David Austin, Bharat Baddepudi, Prasad Bagal, Cathy Baird, Mark Bauer, Eric Belden, Allen
Brumm, Atif Chaudhry, Sudip Datta, Mark Dilman, Jacco Draaijer, Harvey Eneman, Marcus Fallen, Amit
Ganesh, GP Gongloor, Vira Goorah, Carolyn Gray, Joan Gregoire, Shivani Gupta, Daniela Hansell, Lilian
Hobbs, Bill Hodak, Wei Huang, Pat Huey, Robert Jenkins, Bhushan Khaladkar, Balaji Krishnan, Srinath
Krishnaswamy, Vasudha Krishnaswamy, Bala Kuchibhotla, Sushil Kumar, Vikram Kumar, Paul Lane, Adam
Lee, Bill Lee, Sue K. Lee, Chon Lei, Yunrui Li, Ilya Listvinsky, Bryn Llewellyn, Catherine Luu, Scott Lynn,
Raghu Mani, Vineet Marwah, Colin McGregor, Mughees Minhas, Krishna Mohan, Sheila Moore, Valarie
Moore, Niloy Mukherjee, Sujatha Muthulingam, Gary Ngai, Waleed Ojeil, Rod Payne, Hanlin Qian, Ananth
Raghavan, Mark Ramacher, Ravi Ramkissoon, Ann Rhee, Yair Sarig, Vikram Shukla, Bipul Sinha, Anupam
Singh, Wayne Smith, Jags Srinivasan, Deborah Steiner, Janet Stern, Michael Stewart, Mahesh Subramaniam,
Nick Taylor, Anh-Tuan Tran, Alex Tsukerman, Kothanda Umamageswaran, Guhan Viswanathan, Eric Voss,
Daniel M. Wong, Wanli Yang, Paul Youn, Wei Zhang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Contents

PUrOIACE ...t XXV
AN S Lo 1= U< J RO XXV
Documentation AcCeSSIDILILYcciiiiiiiiiiiiiiic e XXV
Related DOCUITIEIESveovieeeeieceeeeeeeeeeee ettt ettt et ete e ete e st eeaeetessaeeeteessseesbeesntessteessasenseeseesnseeneas XXVi
CONMVEILIONS ..oeietitieeeeeetteee e et e e eee et e e ee ettt eeeeesaateeeeeesataseeesessaassessessasaeesssensasasesesssabeessssnsstaseeesnsnrarees XXVi

What's New in Oracle Database Administrator's Guide?..............cccooovveee. XXVii
Oracle Database 11¢ Release 1 (11.1) New Features in the Administrator's Guide...................... XXVii

Part | Basic Database Administration

Overview of Administering an Oracle Database

Types of Oracle Database USELS ...t 1-1
Database AdMUNISITATOTLSc.eccviiuiieiiciieieceeie ettt ettt ettt raesbe e e e beesbeeseess e seessesseerseseeneas 1-2
SECUTTLY OFfICOTS ...ttt 1-2
NetWOrk AdMINISITATOIS. ...ccuveiviiieticieie ettt ettt et e st e et e raesteeraebeessesbeessesseessesseessenseeseas 1-2
ApPPlication DEVELOPETS.........cciuiiiiiiiiiiiiiiiiiiicc e 1-2
Application AdmINIStrators.........ccoviiiuriiiiiiicieeci e 1-3
DAtabas@ USEIS ..c.evevieeieiieiiietieieeie ettt ettt este ettt et e ete e b e eseeaeeraebeesaesbeessesseessesseessanseessenseessenseeneas 1-3

Tasks of a Database AdmINiStrator............ccociiiiiiiiiiiiicie ettt et eveereens 1-3
Task 1: Evaluate the Database Server Hardwareccoceveveeviieienieeieieeieeeeereeee e 1-4
Task 2: Install the Oracle Database SOftWaTeccecvevieeeeiiieieieceete e 1-4
Task 3: Plan the Database...........cc.ooviiieiiciiirecieceeeeetecteettete ettt eae et et ere e seennas 1-4
Task 4: Create and Open the Database ... 1-5
Task 5: Back Up the Database............cccccovviiiiniiiiiiiiiiiiiii s 1-5
Task 6: ENroll System USETS........ccccccuiiiiiiiiiiiiiiiiiiiiiiiccics e 1-5
Task 7: Implement the Database Design..........c.ccccevuiiiiiiiiiiiiiniiiiiii, 1-5
Task 8: Back Up the Fully Functional Databasec.cccccocoviiiininnnnnnii, 1-5
Task 9: Tune Database Performanceccocvecueeueeiieiieiiereeie ettt ve e eae e seennes 1-6
Task 10: Download and Install PAtChesccooieieieeieniieieieceeeeeeee et 1-6
Task 11: Roll Out to Additional HOSESccuecveeiiiiiiiiciieiiciete ettt 1-6

Selecting an Instance with Environment Variables................ccccccocoiiiiiiie 1-7

Identifying Your Oracle Database Software Release..............cccccccociviiiiiinniiiinnniiccce 1-7
Release NUMDET FOIMAL.........cciiviiiiiciiiiceececeeeectettet ettt st e e sttt e e e snesaeeneas 1-8
Checking Your Current Release NUMDET ... 1-8

Database Administrator Security and Privileges...............ccccooviiniinnnnie, 1-9

The Database Administrator's Operating System Account...........ccccoooiiiiiiiineicccccee, 1-9
Database Administrator USEINamescovuieuiviiiimiiiiiicescs e 1-9
Database Administrator Authentication ... 1-11
Administrative Privilegescocooiiiiiiiiiiic 1-11
Selecting an Authentication Method for Database Administratorscccccccceccveecnnnene 1-13
Using Operating System Authentication.............cooooiiiiiiiii, 1-14
Using Password File Authentication............ccooooiiiiii 1-15
Creating and Maintaining a Password File...............cccooiiin, 1-17
UsIiNg ORAPWD ... 1-17
Setting REMOTE_LOGIN_ PASSWORDFILEcccccoooiiiiiiiiiniiiciceesceeeenenns 1-19
Adding Users to a Password File...........cccciiiiiiiiiiiiiiiecccceeceeeeeeeeeeeeeeeee s 1-19
Maintaining a Password File ... 1-20
Data UHLIHES ... 1-21

Creating and Configuring an Oracle Database

Deciding How to Create an Oracle Databaseccccooviniiiiniiii, 2-1
Manually Creating an Oracle Database..............ccccocoooiiiniiiiiiniiiis 2-2
Considerations Before Creating the Databasec.coooeuiiiiiiiiiiiiicicc 2-2
Creating the Database............cooiiiiiii 2-4
Understanding the CREATE DATABASE Statement..............ccccooiiiiininiiie, 2-10
Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM 2-10
Creating a Locally Managed SYSTEM Tablespace...........ccccouiruiieiniiicieiiiciceeeccece 2-11
Creating the SYSAUX TablESPACEc.cuevvuviriiiiiririiiciireeceeecree s 2-12
Using Automatic Undo Management: Creating an Undo Tablespace.........c.ccccoooeuereinnnnen. 2-13
Creating a Default Permanent Tablespacecccooiiiiiiiiic, 2-14
Creating a Default Temporary Tablespace.........ccccccceurvviirrriniriniirreeceerreeeeeeeeee s 2-14
Specifying Oracle-Managed Files at Database Creationccccooooeiiiiiiiiiiiic, 2-15
Supporting Bigfile Tablespaces During Database Creation.............cccccoooiviiiieiiiiiciciciccnnn, 2-16
Specifying the Database Time Zone and Time Zone File...........cccccccceeiiiinniicciccccne 2-17
Specifying FORCE LOGGING MOde.........coiiuiiiiiicieiiiicieiei i 2-18
Understanding Initialization Parametersccccccociiiiiiiiiiniiis 2-19
Determining the Global Database Name..........cccccccciiiiiiiiiiicceeceeeeeeeeeeeeeeeees 2-21
Specifying a Flash RECOVEry AT€accccoviuiieiiiiiiiiccc 2-22
Specifying Control FIles ... 2-22
Specifying Database BIOCK SIZESccccoioiuiiiiiiiiiiiiiiicccceccee e 2-23
Specifying the Maximum Number of Processes............ccceuoiieieiiiiiciiiiiiccecc, 2-24
Specifying the DDL Lock TImMeouUtccccccuiiiiiiiiiiiiiiiiiiiicciiccieeeee s 2-24
Specifying the Method of Undo Space Managementcccccoeueuvvveeerenrneneninenensceereeeees 2-25
The COMPATIBLE Initialization Parameter and Irreversible Compatibility 2-25
Setting the License Parameter ... 2-26
Troubleshooting Database Creation ..o 2-26
Dropping a Database ..o 2-26
Managing Initialization Parameters Using a Server Parameter File..............c..ccccocviiinnne. 2-27
What Is a Server Parameter File? ... 2-27
Migrating to a Server Parameter Fileccccoooiiiiiiiiiiii 2-28

Creating a Server Parameter File ... 2-28

Storing the Server Parameter File on HARD-Enabled Storagecccocevvininnnnnninne 2-30

The SPFILE Initialization Parameter ... 2-32
Changing Initialization Parameter Valuescccccocevvririrnnininirrcrcreeeeeeeeeeeeeseees 2-32
Clearing Initialization Parameter Values.............ccooouoiiiriiiiiiciciccce 2-34
Exporting the Server Parameter Filecccocooiiii 2-34
Backing Up the Server Parameter Fileccccccoceiiniiinniiicre e 2-34
Recovering a Lost or Damaged Server Parameter File............coooooueviiiiiiiiiiiiice, 2-35
Viewing Parameter Settingsoooeiiiiiiiiiiiiiii 2-35
Defining Database Services ... 2-36
DEPLOYING SEIVICES ...ovviiieiiiieiiiitcie ettt s 2-37
Configuring SEIVICESc.oviuiuiiiiiicieieieictct e 2-38
USINE SEIVICES ..ottt 2-38
Considerations After Creating a Database.............ccooiiiiiiiii 2-39
Some Security Considerations.............oceueieiiriciiiiiceie e 2-39
Enabling Transparent Data ENCIYPHONc.cceuiiiiiiiiiiiiiccceceeeeeseeee s 2-40
Creating a Secure External Password Store ... 2-40
Installing the Oracle Database Sample Schemas...............coceueiiiriiiiiiiciccc e, 2-41
Database Data Dictionary VIEWS ... 2-41

Starting Up and Shutting Down

Starting Up a Database...............ccccoiiiiiiiiiic e 3-1
Options for Starting Up a Database...........cccoiiiiiiiiii 3-1
Understanding Initialization Parameter Files............ccooooiiiii, 3-2
Preparing to Start Up an INStance..........cccoviiiiiiiiiiiniiiiicce 3-4
Starting Up an INStANCec.cuoviuiiiiiici 3-4

Altering Database Availability ... 3-7
Mounting a Database to an INStance ... 3-7
Opening a Closed Database............ccocuoiiiiiiiiiiii 3-7
Opening a Database in Read-Only Mode............coooiiiiiiii 3-8
Restricting Access to an Open Database...........cccoccciiiiiiiiiiiiiceccceeeeeee e 3-8

Shutting Down a Database.............cccooiii s 3-8
Shutting Down with the NORMAL Clauseccccooviiiieiiininiiieiccee e 3-9
Shutting Down with the IMMEDIATE Clause.........c.ccccceiiiiiiiieceeecieieeeeeienenenenenenes 3-9
Shutting Down with the TRANSACTIONAL Clauseccccooocueiiiiriciiiiicieecccee 3-10
Shutting Down with the ABORT Clause...........cccccceiuiiiiiiiiiiiiiiiiiciiccccciceecceeeeees 3-10
ShutdOWn TIMEOULvieieiiiiiccc e 3-11

Quiescing a Database ... 3-11
Placing a Database into a Quiesced Statec.cooveiiiiiiiiiiic e, 3-11
Restoring the System to Normal Operation...........c.ccccocececiceiieceeeeceeeeeeereeeneneneees 3-12
Viewing the Quiesce State of an INStanCe............c.ovoeeiiiiiiiiiii e, 3-13

Suspending and Resuming a Database ... 3-13

Managing Processes

About Dedicated and Shared Server PrOCESSES.........ooovuiviveiiieeiieeeeeee et eeeeeaeeseeeeesaeeesiaeeeserneeas 4-1
Dedicated SEIVET PTOCESSESooovuieeeiieiieeeeeeeee et eeeeete et eeeaeeeteeesaeeeaeseateesseeesseesseeenasensesssseeseenseesns 4-1
SRATEA SEIVET PIOCESSES ..ottt ettt e e et e e et e e ssaaeeseaaeessnaessenansssnseessnreeesnns 4-2

vi

About Database Resident Connection Pooling...............ccccccooviiiiiiiiicccs 4-4

Differences Between Dedicated Servers, Shared Servers, and Database Resident Connection
Pooling 4-5

Restrictions on Using Database Resident Connection PoOolingcccccecovuvvvvrinnnnnnircncnce. 4-6
Configuring Oracle Database for Shared Server ... 4-6
Initialization Parameters for Shared Server ... 4-6
Enabling Shared SEIVET ...t 4-7
Configuring DiSpatChers ... 4-9
Shared Server Data Dictionary VIEWS.........ccocuouiiiiiiiiiiicicccc s 4-14
Configuring Database Resident Connection Pooling...............ccccccoovinniiinniiniiin, 4-15
Enabling Database Resident Connection POOINGccoeviiiiiiiiiiiiiicce, 4-15
Configuring the Connection Pool for Database Resident Connection Pooling 4-16
Data Dictionary Views for Database Resident Connection Pooling...........ccccccceueuevirinucnnuene. 4-18
About Oracle Database Background Processes..............cccocovvvveiiiiiiiniiiiinnciiiecces 4-18
Managing Processes for Parallel SQL Executionccccoovviiiiiiniinniii 4-19
About Parallel EXeCUtiOn SEIVETScccooiiiiimiiiiiiiiiiiciice e 4-20
Altering Parallel Execution for @ SeSSION...........cceiiuriiiiiiiicicci e 4-20
Managing Processes for External Procedurescccooviniiiiiiniiis 4-21
Terminating SeSSIONS............cccoiiiiiiiiiiiii s 4-22
Identifying Which Session to Terminate..........c...cocoueunieiiniiininicice s 4-22
Terminating an Active SeSSION........ccccciiiiiiiii 4-23
Terminating an Inactive SESSIONcccvviviiiiiiiiiiii 4-23
Process and Session Data Dictionary VIews..............ccccccoiviiiininiiiinnicccccc 4-24

Managing Memory

About Memory Management.............ccccoovviiiiiiiiiiiniiiniiiii s 5-1
Memory Architecture OVeIVIEW...........cccooviiiiiiiiiiiiiiiniiii s 5-2
Using Automatic Memory Managementccccciviviniiiiiininiiiiicccencenes 5-3
About Automatic Memory Managementccccueuiiieieiiiicieiiieiee e 5-3
Enabling Automatic Memory Managementccccooorieieiiinieiiicce e 5-4
Monitoring and Tuning Automatic Memory Managementcccoceeevurerernercrerrerceencrerenenn. 5-6
Configuring Memory Manually ... s 5-7
Using Automatic Shared Memory Managementccccoevreiniiceeinicce e 5-7
Using Manual Shared Memory Management............ccccccceeueueememeieememememneeneeneneneneneeenenenens 5-14
Using Automatic PGA Memory Managementcocoeueueiiieieiniiiceicce e 5-19
Using Manual PGA Memory Managementcccccceueurieiiieininiiiiieieiieeseceieeeeeeeneeees 5-20
Memory Management Reference. ... 5-21
Platforms That Support Automatic Memory Management..............ccooeuevniireieiniicieieennen, 5-21
Memory Management Data Dictionary VIews ..o 5-21

Managing Users and Securing the Database

The Importance of Establishing a Security Policy for Your Database.............c.ccccoevvinniiinnnncn. 6-1
Managing Users and ReSOUTCES..............ccccouiuiuiiiiiiiiiiii s 6-1
Managing User Privileges and Roles ..o, 6-2
Auditing Database USecccccvviiiiiiiiiiiiiiic s 6-2
Predefined User ACCOUNLScoruiiiiiiiiiiiiicictccccee s 6-2

7 Monitoring Database Operations

Monitoring Errors and ALerts..............ccocoviiiiiiiiiiiniiiii s 7-1
Monitoring Errors with Trace Files and the Alert Log ..o 7-1
Monitoring with Server-Generated AleTtscooooeioiiiiiiiiiiii e 7-4

Monitoring Performance..............ccocooviiiiiiiiiiiiii 7-6
MONItOTING LOCKS ... 7-7
Monitoring Wait EVeNts ..o 7-7
Performance Monitoring Data Dictionary VIEWS.........cccoouoioiiriiiiiiiciiicceceee 7-7

8 Managing Diagnostic Data

About the Oracle Database Fault Diagnosability Infrastructure.............c.cccccoovvnnnnnnnnnn. 8-1
Fault Diagnosability Infrastructure OVErview ... 8-2
About Incidents and Problems............ccooiiiiiiiii 8-3
Fault Diagnosability Infrastructure Componentscooooerieiiiieioiiiicicceeccee, 8-4
Structure, Contents, and Location of the Automatic Diagnostic Repositorycccccccceueeeee. 8-6

Investigating, Reporting, and Resolving a Problemcccooooiiiiiiiiice, 8-9
Roadmap—Investigating, Reporting, and Resolving a Problem...........cccccoevvnnnnininininnnnn. 8-9
Task 1 — View Critical Error Alerts in Enterprise Managercccccccccceeeueceeiceneeceennnnes 8-11
Task 2 —View Problem Details...........cccooiiiiiiiiiiiiiiis 8-12
Task 3 — (Optional) Gather Additional Diagnostic Informationccccccevviviviinnnnnn. 8-12
Task 4 — (Optional) Create a Service ReqUESL.........ccccceueuiiiiiiiiiiiiiiiiccceccr e 8-12
Task 5 — Package and Upload Diagnostic Data to Oracle Support..........cccccevvvviiininninnn 8-13
Task 6 — Track the Service Request and Implement Any Repairs............cococoreiniiicieieininnnnen. 8-14
Task 7 — Close INCIAENEScoviviviiiiiiiii e 8-15

Viewing Problems with the Enterprise Manager Support Workbench.................ccccceiinnn. 8-16

Creating a User-Reported Problem ... 8-17

Viewing the Alert LOog ..o 8-18

Finding Trace Files ... 8-19

Running Health Checks with Health Monitor................ccccccoiiiiiiiiiiiiccca 8-19
About Health MONILOTciiiiiiiiiiiiic e 8-20
Running Health Checks Manuallycccoooeioiiiiiiiii 8-21
Viewing Checker REPOTIESccociiiiiiiiiiiiiccc s 8-22
Health MONItOT VIEWSovuiiiiiiiiiiiicicc e 8-24

Repairing SQL Failures with the SQL Repair AdViSorcccccccviinniiiinniiiiiccce, 8-25
About the SQL Repair AdVISOTccccoiimiiiiiiiiiiiiiiiieiiicee s 8-25
Running the SQL Repair AdVISOT........ccccceuiiiiiiiiiiiiiiiiccccece s 8-26
Viewing, Disabling, or Removing a SQL Patch ..., 8-27

Repairing Data Corruptions with the Data Recovery Advisorcccccooeiiiiiiiiiiiinns 8-27

Creating, Editing, and Uploading Custom Incident Packages.............cccccccvviiinnniiinnnnnnnn, 8-29
About Incident PaCKages..........cccocovviiiiiiiiiiiiiiiiiiiic s 8-29
Packaging and Uploading Problems with Custom Packagingcccccccevuvviininnnnnnnnne. 8-32
Viewing and Modifying Incident Packages ... 8-35
Setting Incident Packaging Preferences ... 8-41

Part Il Oracle Database Structure and Storage

vii

10

11

viii

Managing Control Files

What Is @ Control FIle? ... 9-1
Guidelines for Control Files ... s 9-2
Provide Filenames for the Control Files ..., 9-2
Multiplex Control Files on Different DisKScccoooeueiiiiiiiiiiiiieiiccccec 9-2
Back Up Control FALEScciuiiiiiiiiiiiiiceceeceeeeeee e 9-3
Manage the Size of Control Filescoiiiiiii e, 9-3
Creating Control Files ... s 9-3
Creating Initial Control FILEs ... 9-3
Creating Additional Copies, Renaming, and Relocating Control Filesc.c.ccccooveiiinnnnei. 9-4
Creating New Control Files ... 9-4
Troubleshooting After Creating Control Files..............ccccoccoooiiiiiiiii, 9-7
Checking for Missing or Extra Filesccccoeoiiiiiiiiiicic i 9-7
Handling Errors During CREATE CONTROLFILEcccoooiiiiiiii e 9-7
Backing Up Control Files.............ccocooiiiiiiiiiiiiic e 9-8
Recovering a Control File Using a Current COPYccoviiiiiiiiiiiiiiccccccccscecnnes 9-8
Recovering from Control File Corruption Using a Control File COpyccccocovvrueiiiiicieininnnen. 9-8
Recovering from Permanent Media Failure Using a Control File COpy......cccccccoceeucuciccrcennes 9-8
Dropping Control FAles ... 9-9
Control Files Data Dictionary VIEWS...........ccccooiiiiiiiiiiiiii s 9-9

Managing the Redo Log

What Is the Redo LOG?.........cccoviiiiiiiiiiiiic s 10-1
RedO TRIAASvviiiiiiiiic e 10-1
Redo LOg CONENES.......cooeieeiiiiicit et 10-2
How Oracle Database Writes to the Redo Logccouoviiiii 10-2

Planning the Redo LOg ... 10-4
Multiplexing Redo Log Filescoiiiiiiiii 10-4
Placing Redo Log Members on Different Disks...........cccocooeieiiiiiieiniiiicc, 10-6
Setting the Size of Redo Log Members ... 10-7
Choosing the Number of Redo Log Filesc.cooiiiiiiiiiii 10-7
Controlling ATChiVe Lag ..o s 10-8

Creating Redo Log Groups and Members..............cccccoiiiniiiiininiiiiices 10-9
Creating Redo LOg GIoUPS ..ottt 10-9
Creating Redo Log MemDETS..........ccccoouviiiiiiiiiiiiiiiniiiicn e 10-10

Relocating and Renaming Redo Log Membersccccooiiiininiiiiinniiiccces 10-10

Dropping Redo Log Groups and Members ... 10-11
Dropping LOg GIOUPSceueiiiiiiiiiiiiicict s sn e 10-12
Dropping Redo Log MEMDETS........c.ccovuiiiiiiiiriiiiiciiiiiciceeeerseeee s 10-12

Forcing Log SWitches...........c.coooiiiiiiii 10-13

Verifying Blocks in Redo Log Files ... 10-13

Clearing a Redo Log File...........ccccccoiiiiiiiiiiccc e 10-14

Redo Log Data Dictionary VIeWScccoiiiiiiiiiiiiicccccn e 10-15

Managing Archived Redo Logs
What Is the Archived Redo Log? ... 11-1

12

Choosing Between NOARCHIVELOG and ARCHIVELOG Modeccccovviriiiiinininnnnas 11-2

Running a Database in NOARCHIVELOG Modecccccovviiiiininiiiiiiiiniiiicines 11-2
Running a Database in ARCHIVELOG Mode.........cccccoeuiuiiiiiiininiiiiirieciceeeceeeeeeeeeeees 11-3
Controlling Archiving ... 11-4
Setting the Initial Database Archiving Mode...........cccooiiiiiiii e, 11-4
Changing the Database Archiving Mode ..o 11-4
Performing Manual ArchiVing..........cccoeeieiiiiiiiiiice e 11-5
Adjusting the Number of Archiver Processesc.cooceueiiiicieieiiicicieecccie e 11-5
Specifying the Archive Destination ..., 11-6
Specifying Archive Destinations..........c.ccooiiiiiieiiiiiiicc 11-6
Understanding Archive Destination Status ..., 11-8
Specifying the Mode of Log TransSmission............cccccccciviiniiiiniiiiininccc 11-9
Normal Transmission Mode..........cccoviiiiiiiiniiiiiiiiic s 11-9
Standby Transmission MOEcoiiuieiiiiicic e 11-9
Managing Archive Destination Failure ..., 11-11
Specifying the Minimum Number of Successful Destinations.............cccccoeevniirieiiiicicnnnee. 11-11
Rearchiving to a Failed Destinationccoooiiiiii 11-13
Controlling Trace Output Generated by the Archivelog Processcccoovviiiinininnnnns 11-13
Viewing Information About the Archived Redo Logccccccccciiiiniiiniiiiiiiice 11-14
Archived Redo Logs VIEWSccuoiiiiiicii e 11-14
The ARCHIVE LOG LIST Command.........ccccoceueiimmiininiiiiiiieieeceeeenee e, 11-15
Managing Tablespaces
Guidelines for Managing Tablespaces............cccccccoviiiiiiiiiiiiii 12-1
Using Multiple TableSpaces...........cccviiiiiiiiiiiiiiiiiiiiccic s 12-2
Assigning Tablespace Quotas t0 USers..........ccouoiiuiiiiiiiicieiiccec i 12-2
Creating TableSPacesccccoiiiiiiiiniii s 12-2
Locally Managed Tablespaces.............coccueuiiriiiiiiiiiciici 12-3
Bigfile TableSPACESc.cvoiiuiieiiceciie 12-6
Encrypted TableSPacesccoccuiucuiiiiciiiiiiiiieiciccieieiee ettt sees 12-8
Temporary TableSPaces..........cccoviiiiiiiiiiiiiiiiiii 12-10
Multiple Temporary Tablespaces: Using Tablespace Groups...........cccccevuvuvvirennninincnencnnaes 12-12
Specifying Nonstandard Block Sizes for Tablespaces.............ccccocoeiininiiiinniniiiniiiines 12-14
Controlling the Writing of Redo Records..............ccccoiiiiiiiiiiniiiiicccs 12-14
Altering Tablespace Availability ... 12-15
Taking Tablespaces OffliNe.........c.ccccceuruiiiiiiiiriiiiiirrrere e 12-15
Bringing Tablespaces ONlNe.............oooouiiiiiiiiiiiiicc 12-16
Using Read-Only TabIeSPacescccouiiiiiiiiiiiiiiiiicccccsee s 12-17
Making a Tablespace Read-Onlyccccoooviiiiiiiininir e 12-17
Making a Read-Only Tablespace Writablecccoooiiiiiiii 12-19
Creating a Read-Only Tablespace on a WORM Devicecoooeueiiiiniiiiicnieniccecne, 12-19
Delaying the Opening of Datafiles in Read-Only Tablespacescccceeeviiiiiciiccnnes 12-20
Altering and Maintaining TablesSpaces..............cccocooviiiiiiiiii 12-20
Altering a Locally Managed Tablespace...........cccccoceuiuiiiiiiiininiiiiiiicniiiiirinnsensssseens 12-20
Altering a Bigfile Tablespace.........ccccccvuriiiiiiiriiiiiiiirrceerr e 12-21
Altering a Locally Managed Temporary Tablespace...........cccococueiiciiiiiiciciiiccicci 12-21
Shrinking a Locally Managed Temporary Tablespacecccccovuvvinininininininininiiiiiiicnnes 12-22

13

Renaming TablesSpaces ... 12-23

Dropping TablesSpaces ... 12-23
Managing the SYSAUX TableSpace...........ccccocoeiiiiiiiiiiiiiiniiiiic s 12-24
Monitoring Occupants of the SYSAUX Tablespacecccccoovviiiiiiiiiiiiiniiicicnnes 12-24
Moving Occupants Out Of or Into the SYSAUX Tablespace..........ccccoviiiriiiiiniiiininnas 12-25
Controlling the Size of the SYSAUX TableSpace ... 12-25
Diagnosing and Repairing Locally Managed Tablespace Problems.............cccooovvriinnnne. 12-26
Scenario 1: Fixing Bitmap When Allocated Blocks are Marked Free (No Overlap)............ 12-27
Scenario 2: Dropping a Corrupted Segmentccceueueiriveriiirirrnnirrirrreree e 12-27
Scenario 3: Fixing Bitmap Where Overlap is Reported ..o 12-27
Scenario 4: Correcting Media Corruption of Bitmap Blocks..........cccoeeiiiriiiicii 12-28
Scenario 5: Migrating from a Dictionary-Managed to a Locally Managed Tablespace...... 12-28
Migrating the SYSTEM Tablespace to a Locally Managed Tablespace.............cccooovrinnninnn. 12-28
Transporting Tablespaces Between Databasescccccoooiiiiiiiiiiiiice, 12-29
Introduction to Transportable Tablespaces..........ccccccceucueurrireriiieiririricereeeeereeeeee s 12-29
About Transporting Tablespaces Across Platforms...........ccccooeeeiiiiiiiiiiinnn, 12-30
Limitations on Transportable Tablespace Use...........cccoooceiiiiiiiiiiiicciiccc e, 12-31
Compeatibility Considerations for Transportable Tablespaces.........c.cccocoeveviiieincccicnnne. 12-33
Transporting Tablespaces Between Databases: A Procedure and Example 12-33
Using Transportable Tablespaces: SCENArioscccouoirueueieiiieieieiiccice e 12-41
Moving Databases Across Platforms Using Transportable Tablespaces............c.cccccceeuneee. 12-44
Tablespace Data Dictionary VIEWScccoiiiiiiiiiiiiniiiicc s 12-44
Example 1: Listing Tablespaces and Default Storage Parameterscccccoovriieinnnnn. 12-45
Example 2: Listing the Datafiles and Associated Tablespaces of a Database....................... 12-45
Example 3: Displaying Statistics for Free Space (Extents) of Each Tablespace.................... 12-46

Managing Datafiles and Tempfiles

Guidelines for Managing Datafiles..............cccooiiiiiiiiii e 13-1
Determine the Number of Datafilescccocoiiiiiiiiiiiiii 13-2
Determine the Size of Datafiles..........cccoiiiiiiiiiiiinii e 13-3
Place Datafiles Appropriately ... 13-4
Store Datafiles Separate from Redo Log Files...........cccoovoiiiiiiiiiniiiiccee, 13-4

Creating Datafiles and Adding Datafiles to a Tablespace ... 13-4

Changing Datafile Sizecccooiiiiiiiiii 13-5
Enabling and Disabling Automatic Extension for a Datafile...........ccccccccevvninnninnnnnne 13-5
Manually Resizing a Datafile ..o 13-6

Altering Datafile Availability ..o 13-6
Bringing Datafiles Online or Taking Offline in ARCHIVELOG Mode........cccccccevuvivinininnnne 13-7
Taking Datafiles Offline in NOARCHIVELOG Mode..........ccocovuiiirrniniiiirriniienreeeeeenes 13-7
Altering the Availability of All Datafiles or Tempfiles in a Tablespacecccooeueuennencn. 13-8

Renaming and Relocating Datafiles................ccccooiiiiiiiiiiiiiiicccceeeeeenas 13-8
Procedures for Renaming and Relocating Datafiles in a Single Tablespacec.......... 13-9
Procedure for Renaming and Relocating Datafiles in Multiple Tablespaces....................... 13-10

Dropping Datafiles ..o 13-11

Verifying Data Blocks in Datafiles ... 13-12

Copying Files Using the Database Server ..o 13-12
Copying a File on a Local File SYstem.........ccccccciiiiiiiniiiiiiiniiiiiiciiccnnsnsseas 13-13

14

15

Third-Party File Transfer ... 13-14

File Transfer and the DBMS_SCHEDULER Package..........cccccooiiiiiiiiiiiiiiiiiinnes 13-14
Advanced File Transfer MechanmiSms.............cccoviiiiiiniriiiiies s 13-15
Mapping Files to Physical Devices ..o 13-15
Overview of Oracle Database File Mapping Interfaceccccooooiiiiin 13-16
How the Oracle Database File Mapping Interface Works..........c.ccccccecuiiiinnnnnnninnnes 13-16
Using the Oracle Database File Mapping Interface............cccoooioiiiiiii 13-20
File Mapping EXamples...........coruiiiiiiiioiiiciecee vt 13-23
Datafiles Data Dictionary VIEWS..........cccooiiiiiiiiiiiiniii e 13-25
Managing Undo
WHhat Is UNdO?.......c.cooii e 14-1
Introduction to Automatic Undo Managementccccccooviiniiiininiiiiinncccce 14-2
Overview of Automatic Undo Managementcccoueiiiiiiieieiicicieecece e 14-2
About the Undo Retention Period ..o, 14-3
Setting the Minimum Undo Retention Period ..o 14-6
Sizing a Fixed-Size Undo Tablespace.............ccccoiiimiiiiiiiiiiiiinna 14-6
The Undo Advisor PL/SQL INTEIfaCEcovevievieieeteeeeeteeteete ettt et eve et e ae s 14-7
Managing Undo TableSPpacescccccciiiiiiiiiiniiiiiiici s 14-7
Creating an Undo TableSpacecoocueiiiiiiiiiiieie e 14-8
Altering an Undo TableSPace.........cccccuiuiuiiiiiiiiiiiiiiieeeeeeeteeieie e seaeaeaeees 14-9
Dropping an Undo Tablespace ... s 14-9
Switching Undo Tablespaces............coruiiiiiiiiiice 14-10
Establishing User Quotas for Undo Space..........ccccovvueiriririvniirinnrnrreereereeeceee s 14-11
Managing Space Threshold Alerts for the Undo Tablespacecccccououiiieiiiininicininnnen, 14-11
Migrating to Automatic Undo Management............ccccoooiiiiiiiiiiiiiiicccccenes 14-11
Undo Space Data Dictionary VIEWS ..o 14-11
Using Oracle-Managed Files
What Are Oracle-Managed Files?.............ccccocooiiiiiiiiiiiiiis 15-1
Who Can Use Oracle-Managed Files?...........ccooooiiiiiii e 15-2
Benefits of Using Oracle-Managed Files............ccccccciiiiiiiiiiiiiiccccceeees 15-3
Oracle-Managed Files and Existing Functionalitycccccoceeviiiininiiiinnccceee 15-3
Enabling the Creation and Use of Oracle-Managed Files.............cccocoooiiiiiiiiiiiiiinnnns 15-3
Setting the DB_CREATE_FILE_DEST Initialization Parameter.............ccccccceeviininnnnnnnne. 15-4
Setting the DB_RECOVERY_FILE_DEST Parameter..........c.cccccecueueeueueuimeieneieeeeieeeeeeeennees 15-5
Setting the DB_CREATE_ONLINE_LOG_DEST _n Initialization Parameter 15-5
Creating Oracle-Managed Files ... 15-5
How Oracle-Managed Files Are Namedccccccciiiiiiiiiiiicceceeieeeieeneeeenenenenens 15-6
Creating Oracle-Managed Files at Database Creation...........cccccoooiiiiiiiciiiccc, 15-7
Creating Datafiles for Tablespaces Using Oracle-Managed Files............ccccccooovvivnnininnnnn. 15-12
Creating Tempfiles for Temporary Tablespaces Using Oracle-Managed Files 15-13
Creating Control Files Using Oracle-Managed Filescccoooiiiiiiniiie, 15-14
Creating Redo Log Files Using Oracle-Managed Files...........ccccocooovininiiiiininccne, 15-16
Creating Archived Logs Using Oracle-Managed Files...........cccccccceviiinniinnnnncnnnne 15-17
Behavior of Oracle-Managed Files..............cccooiiiiiiiiiiiii s 15-17

xi

Dropping Datafiles and Tempfilescocooiiiiiiiiiiii 15-18

Dropping Redo Log Files ... 15-18
ReNaming FIlESc.c.coiuiiiiiiiiiiiiicecc et 15-18
Managing Standby Databases ..o 15-18
Scenarios for Using Oracle-Managed Filesccccoooiiiiiicccnes 15-18
Scenario 1: Create and Manage a Database with Multiplexed Redo Logsc.ccccecrvueuce. 15-19
Scenario 2: Create and Manage a Database with Database and Flash Recovery Areas 15-22
Scenario 3: Adding Oracle-Managed Files to an Existing Database............c.ccccceevininninnn 15-23

Partlll Schema Objects

16

17

Xii

Managing Schema Objects

Creating Multiple Tables and Views in a Single Operation..............ccccccoceiiiiiiiiiiiiiinn, 16-1
Analyzing Tables, Indexes, and Clusters...............cccoviiiiininiiiiniiiies 16-2
Using DBMS_STATS to Collect Table and Index Statistics...........ccccoeveeiiiiiiiiiciniiiiennn, 16-2
Validating Tables, Indexes, Clusters, and Materialized Views.........cccccoevviviininiiinninnnnnnn, 16-3
Listing Chained Rows of Tables and CIUSLETScccccceuiuiiemiiiiieeccceeeeeeeeeneenenens 16-4
Truncating Tables and CIUSLeTrScccceiiiiiiiiiiiiiii s 16-6
Using DELETEccoiiiiiiiiiiriiciic s 16-6
Using DROP and CREATEccociiiiiiccceeeeeeee et enenes 16-6
Using TRUNCATE ... s 16-6
Enabling and Disabling TIigGETS ... 16-7
ENabling TTIG@ETSc.cuiuiiiiiiiiiiiiiicicieeiccce ettt eees 16-8
DiSabING TTIGERTScuviiiiiiecieiiiiictcie et 16-9
Managing Integrity Constraints ..o 16-9
Integrity Constraint States ... 16-10
Setting Integrity Constraints Upon Definition.............coeeiiiiii 16-11
Modifying, Renaming, or Dropping Existing Integrity Constraintscccccccoeevviirennnee. 16-12
Deferring Constraint Checkscccoviiiiiiiiiiincerrrr e 16-14
Reporting Constraint EXCEPLIONS.........ccccvveviviiiiiiiiiiiiiiicccc s 16-14
Viewing Constraint Information...........ccccioiiiiiiiiiieees 16-16
Renaming Schema ODbjects...........cccocoiiiiiiiiiiiiic e 16-16
Managing Object Dependencies ... 16-17
About Object Dependencies and Object Invalidation.............ccceevviiiiinnnnnnnnnnnne, 16-17
Manually Recompiling Invalid Objects with DDL..........cccccccciiiiiiiiiiiicrrceereene 16-18
Manually Recompiling Invalid Objects with PL/SQL Package Procedures........................ 16-18
Managing Object Name ReSOIUtionccooiiiiiiiiiiiiiiiicccccccenas 16-19
Switching to a Different Schema ... 16-21
Displaying Information About Schema Objectscccoooiiiii, 16-21
Using a PL/SQL Package to Display Information About Schema Objects 16-21
Schema Objects Data Dictionary VIEWS.........cccooviiiiiiiiiiiiiiccicciicccicicecceseecee e 16-22

Managing Space for Schema Objects

Managing Tablespace ALerts ... 17-1
Setting Alert Thresholds ..o 17-2
VIEWINEG ALETLS ..o 17-3

18

J 55 0 =X 5 o) 1 1< USROSt 17-3

Managing Space in Data BIOCKS............cccccooviiiiiiiiiiii s 17-4
Specifying the INITRANS Parameter...........ccccoeueuruririririrnininenrrreeeeeseeesees e 17-4
Managing Storage Parameters ..o 17-5
Identifying the Storage Parameters ..o 17-5
Specifying Storage Parameters at Object Creation..........c.cccoecuvuvuciievieericnnrccreeeeeeees 17-6
Setting Storage Parameters for CIUSLersc.coviuiiiiiiiiiiiii 17-6
Setting Storage Parameters for Partitioned Tables.............ccooiiiiiii, 17-6
Setting Storage Parameters for Index Segments............cccocceieeuiicieiiiceeceeeeeeeenenees 17-6
Setting Storage Parameters for LOBs, Varrays, and Nested Tablesccccccooeriiiinnnen. 17-7
Changing Values of Storage Parameterscccouoiiioiicieicccc e, 17-7
Understanding Precedence in Storage Parameters.............ccococeiiceeiiiceecceececeennee 17-7
Managing Resumable Space Allocation.............cccoovvviiiiiiiiiiiiiii 17-8
Resumable Space Allocation OVeIVIeW ...t 17-8
Enabling and Disabling Resumable Space Allocation.............cccoeciiiiicnciiicccccccenenes 17-10
Using a LOGON Trigger to Set Default Resumable Mode..........ccoooiiiiiiiiiiiiiie, 17-12
Detecting Suspended Statements................oooiiuiiiiiiiii e 17-12
Operation-Suspended ALETt...........coiiini e 17-14
Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger-............ 17-14
Reclaiming Wasted Space ... 17-15
Understanding Reclaimable Unused SPace ... 17-16
Using the Segment AdVISOT ... 17-16
Shrinking Database Segments Online...........ccccoooiiiiiiiiiiiiicc e 17-28
Deallocating Unused SPaCEc.ccucuruririiiiiiiririiiirrrscer e 17-30
Understanding Space Usage of Datatypescccccovvviiniiiiniiie 17-31
Displaying Information About Space Usage for Schema Objectsccccoviiiiiiinnn. 17-31
Using PL/SQL Packages to Display Information About Schema Object Space Usage....... 17-31
Schema Objects Space Usage Data Dictionary VIiews.........ccocovvvviiinniininnnn, 17-32
Capacity Planning for Database Objectscccooiiiiiiiiiiiiiiices 17-35
Estimating the Space Use of @ Tablecccoiiiiiiiiiiicccccccccccceeeecenes 17-35
Estimating the Space Use of an INdeX ..o, 17-36
Obtaining Object Growth Trends ... 17-36
Managing Tables
ADOUE TADIES.......coceiiiiiiiiic ettt e 18-1
Guidelines for Managing Tables.............ccccccoviiiiiiniiiiiii 18-2
Design Tables Before Creating Them............cocoouiiiiiiiiiii e, 18-2
Consider Your Options for the Type of Table to Create...........ccccoevrviiiiiiiniceiiicceee, 18-3
Specify the Location of Each Table..........ccccccciiiiiiiiiiiiiceceeeeeeeeeeeeeeeeeeeeees 18-3
Consider Parallelizing Table Creationcoccoiieiiiiicicicce e, 18-4
Consider Using NOLOGGING When Creating Tablescccccccevvriiiiiiviniiininiiiicne 18-4
Consider Using Table COMPIESSION........ccuiuiuiiriririiiiieiricieeeieirreceee s 18-5
Consider Encrypting Columns That Contain Sensitive Dataccoceeioiiceiiiiiciiicine, 18-6
Estimate Table Size and Plan Accordingly...........cccccccucviiiiiiiiniiiniiiiiiiicicccees 18-7
Restrictions to Consider When Creating Tables..........ccccccccceiiiiiininiiiirccreeeeeeees 18-7
Creating Tables ... 18-8
Example: Creating a Tablecccocoiiiiiiiiiiiie s 18-8

xiii

Creating a Temporary Table.........cccccooiii s 18-9

Parallelizing Table Creation ... 18-11
Loading Tables ..o 18-11
Inserting Data with DML Error LOGgIng.........ccooiriiiiiiiiieiiiiiicieecci 18-12
Inserting Data Into Tables Using Direct-Path INSERTccooooiiiiiiiiii, 18-15
Automatically Collecting Statistics on Tables ..., 18-19
Altering Tables............ccccooviiiiiiiiiii e 18-20
Reasons for Using the ALTER TABLE Statementcccoooiiiiiiiiiiiiiccce 18-20
Altering Physical Attributes of a Table.........cccccccociiiiiiiiiiicerereee e 18-21
Moving a Table to a New Segment or Tablespacecccccoorueiiiiciiciiicii 18-21
Manually Allocating Storage for a Table.............cooooiiiiiiii e, 18-22
Modifying an Existing Column Definition...........c.cccccceeiiciiiiniiiircccereeeeeerceeeaes 18-22
Adding Table COIUMNSc.cvoiiiiiiicc e 18-22
Renaming Table COIUMNS...........coooiiiiiic e 18-23
Dropping Table COIUMINScccoeuiiiiiiiiiiiiiicccreercer e 18-23
Placing a Table in Read-Only Mode..........ccoeuiiiiiiiiicicc 18-24
Redefining Tables Online..............ccoooiiiiiiiiiic e 18-26
Features of Online Table Redefinition ..o, 18-26
Performing Online Redefinition with DBMS_REDEFINITION............cccocoevviviiiniiinininnnnnnnn. 18-27
Results of the Redefinition Process...........cccoooviiiiiiiiiiiiiiniiiiiiiae 18-31
Performing Intermediate Synchronization............cocecceoiviiiiiiiiiiiiccccccccccccenenes 18-31
Aborting Online Table Redefinition and Cleaning Up After Errorsccccovvviviivinnnnnce. 18-32
Restrictions for Online Redefinition of Tables............cccccccoviiiiiiniiiiiiiiii 18-32
Online Redefinition of a Single Partition ... 18-33
Online Table Redefinition EXamples..........c.cccoovviiiiiiiiiiiiicccevcnnes 18-34
Privileges Required for the DBMS_REDEFINITION Package.........c.cccoovomueininiicunieiiincnnne, 18-40
Auditing Table Changes Using Flashback Transaction Queryccccccocoovviviniiinnnnnnne, 18-41
Recovering Tables Using the Flashback Table Feature..............ccccooooiiiiiiiiiiiiiinns 18-41
Dropping Tablesccccoviiiiiiiiiiiiii e 18-42
Using Flashback Drop and Managing the Recycle Bincccccoviiiinii 18-43
What Is the Recycle Bin? ... 18-43
Enabling and Disabling the Recycle Bin.........ccccccccciiiiiiiiiininiiiiiiiiiicnincccs 18-44
Viewing and Querying Objects in the Recycle Bin ..o 18-45
Purging Objects in the Recycle Bin.........cooiiiiiii e, 18-45
Restoring Tables from the Recycle Bin..........ccccccoiiiiiiiiiiiniiiiiiiinncs 18-46
Managing Index-Organized Tablescccoviiiiiiniiiiii 18-47
What Are Index-Organized Tables? ... 18-48
Creating Index-Organized Tables............ccccccoeiiiiiiiiiniiiiiiiiiic s 18-48
Maintaining Index-Organized Tables ..o 18-53
Creating Secondary Indexes on Index-Organized Tables...........cccccoviiiiiniiiiiiiinnnns 18-54
Analyzing Index-Organized Tablescccccccoiiiiiiiiiiiniiiices 18-55
Using the ORDER BY Clause with Index-Organized Tables...........cccooiiiiininiiincnnne. 18-56
Converting Index-Organized Tables to Regular Tables...........cccccoooviiiiiiiiiiiiines 18-56
Managing External Tablescccccooiviiiiiiniiiiiiic e 18-57
Creating External Tablesccccccciiiiiiiiiiieeccrrr e 18-58
Altering External Tables...........cccccooiiiiiiiiiiiiii e 18-61
Dropping External Tablescccccooviiiiiiiiiiiiiiiiiiiii e 18-61

Xiv

19

20

System and Object Privileges for External Tables..............ccoooeiiiiiiiiii 18-62

Tables Data Dictionary VIEWS ..o 18-62
Managing Indexes
ADOUL INAEXES ... s 19-1
Guidelines for Managing INdexesc.ccooiiiiiiiiiiiii s 19-2
Create Indexes After Inserting Table Datacccocueiiiirieiiiiiiiic 19-2
Index the Correct Tables and CoOIUMNScccccvvviiiiiiiiiniiiiis 19-3
Order Index Columns for Performance ..o, 19-3
Limit the Number of Indexes for Each Table..........ccccccocoviiiiiniiiiiiiiiiic 19-4
Drop Indexes That Are No Longer Requiredcccooooiiiiiiiiiiiiccccc 19-4
Estimate Index Size and Set Storage Parameters...........c.ccccccceueueiecereeiieeiececceeeeeeneees 19-4
Specify the Tablespace for Each IndeX.........cccccovviiiiiiiiiiiiiiiiiiiiiiccc 19-4
Consider Parallelizing Index Creation...........ccouoiiiiieiiicieicccec e 19-5
Consider Creating Indexes with NOLOGGINGc.cccccoeuriviiiiiirrinninrrrrncreeeeeeseseecenes 19-5
Consider Costs and Benefits of Coalescing or Rebuilding Indexes..........c.ccccouirieiniirnnnnee. 19-5
Consider Cost Before Disabling or Dropping Constraints..........c.cocococueiiioireeiiiicciceiccinen. 19-6
Creating INAeXes............ccoiiiiiiiiii s 19-6
Creating an Index EXPLICItLYc.ooovuiieiiieii 19-7
Creating a Unique Index EXpLiCitly ..o, 19-7
Creating an Index Associated with a Constraint............ccccceevvvirrviniiinnncrrreeeeeeees 19-8
Collecting Incidental Statistics when Creating an IndeX..........c.ccooevoiiiiiiiiiciicicn, 19-9
Creating a Large INAeXccouoiiiiiii e 19-9
Creating an IndexX OnlINe..........ccocociiiiiiiiieece e 19-9
Creating a Function-Based INdeX.........c.ccooiiiiiiiiiii 19-10
Creating a Key-Compressed INdeX...........cooovrieiiiiiiiiiiiiiicec 19-11
Creating an Invisible INAeX.......cccccciiiiiiiiiiiirc e 19-11
ARering INA@XESc.ccoviiiiiiiiiiiii s 19-12
Altering Storage Characteristics of an IndeX..........oooiii, 19-13
Rebuilding an Existing INAEXccccceuriciiiiiiiiiiiiiiiiiccrrccrer e 19-13
Making an Index INVisibleccccceiiiiiiii 19-14
Monitoring INdex USAZEccccoeuiiiiririiiiiiiiiiiiiiinicin e 19-14
Monitoring Space Use of INA@XEScccccovviuiiiiiiiiiiiiii s 19-14
Dropping INAeXes.........c.ccooiiiiiiiiiiiiii s 19-15
Indexes Data Dictionary VIEWSccccooiiiiiiiiiiiiiiiicccc e 19-16
Managing Clusters
ADOUL CIUSTETS ... 20-1
Guidelines for Managing CIUSterscccccoviiiiiiiiiiii 20-2
Choose Appropriate Tables for the CIUStercccccoviiiiiiiiiii 20-3
Choose Appropriate Columns for the Cluster Keyccccooviiiiiicc, 20-3
Specify the Space Required by an Average Cluster Key and Its Associated Rows 20-3
Specify the Location of Each Cluster and Cluster Index ROWS ..., 20-4
Estimate Cluster Size and Set Storage Parameters...........ccccoovvvieeieinicciiiniccecceeeccnee, 20-4
Creating CIUSEETSccoiiiiiiiiii s 20-4
Creating Clustered Tables.........cc.oooiiiiiiiii 20-5

XV

21

22

XVi

Creating Cluster INA@XeS........cciiuiiiiiiiiiiiiiii s 20-5

AREring CIUSEEISccoviiiiiiiiiiiiii s 20-6
Altering Clustered Tablesc.cccciiiiiiiiiiice e 20-6
Altering Cluster INA@XESc.cuiiuriiiiiiciiic e 20-7

Dropping CLUSEETS........c.coiiiiiiiiiiii s 20-7
Dropping Clustered Tables...........ccooiiiiiiiiiiececceeee e 20-8
Dropping Cluster INA@XeS.........coviiiiiiiiiiiiiiiiiiiii s 20-8

Clusters Data Dictionary VIEWS ... 20-8

Managing Hash Clusters

About Hash CIUSEETIS............ccccoviiiiiiiiiiiiiiii s 21-1
When to Use Hash CIUSEers.............ccoovoiiiiieiiiiicc s 21-2
Situations Where Hashing Is Useful............coooiiii 21-2
Situations Where Hashing Is Not Advantageous ..o, 21-2
Creating Hash CIUSEErs ..o 21-2
Creating a Sorted Hash CIUSteT...........cooouiioiiiiii 21-3
Creating Single-Table Hash CIUSteTScccooiiiiiiiiiiiiicc 21-4
Controlling Space Use Within a Hash Cluster.........cccccccciiiiiiiniicrcnceeeeerecenes 21-4
Estimating Size Required by Hash Clusters...........cccooiiiiiiiiiiiiiii, 21-7
Altering Hash CIUSEETSccccccoviiiiiiiiiiiiiiiii s 21-7
Dropping Hash CIUSters ..o 21-7
Hash Clusters Data Dictionary VIEWS..........ccccocoeviviiiiiiiiiiiiccs 21-8

Managing Views, Sequences, and Synonyms

MaANaGing VIEWSc.cooiiiiiiiiiiiii s 22-1
ADOUE VIEWS ..t 22-1
Creating VIBWS ... s 22-1
RePlacing VIBWSociiiiiiieieiccte it 22-3
Using Views in QUETIEScccoiuiiiiiiiiiiiii e 22-4
Updating @ JOIN VIEWccciiiiiiiiicccctcccieice et eeees 22-5
ARETING VIBWS ..ottt 22-12
DIOPPING VIEWSouviiiiiiiicicicetc st 22-12

Managing SEQUENCES...........cccoiviiiiiiiiiii s 22-12
ADOUL SEQUEIICES ...t 22-12
Creating SEQUENCESc.couiiiiiiiiiicc e 22-13
AETING SEUETIICES.ocviviiiiiiiicicieie et 22-13
USING SEQUENCESoviiieieittt ettt 22-14
Dropping SEQUENCEScciiiiiiiiiiiicii e 22-16

Managing SYNOMYINScccoiiiiiiiiiiiii e 22-17
ADOUL SYNONYINS ..ottt 22-17
Creating SYNONYIMS.......cccoviiiiiiiiiic e 22-17
Using Synonyms in DML Statementsccccccoviiiiiiiiiniiiiccccccnens 22-18
DIOPPING SYNOMYINS......ooceieiiiiiiiieteitct ettt 22-18

Views, Synonyms, and Sequences Data Dictionary Viewscccccovvnvnnnnnnnnnnnnne. 22-18

23

Repairing Corrupted Data

Options for Repairing Data Block Corruption ... 23-1
About the DBMS_REPAIR Packagecccccoooiiiiiiiiiiiiiiiiccccscsnnns 23-1
DBMS_REPAIR PIrOCEAUIES.....coivviieeeieeeeeeeeeeeeetee e et eeaee et e st ssenaeessanesssnseseensnessnnnes 23-2
Limitations and ReStriCtions..........cccocovviviiiiiiiiiiiiiiis 23-2
Using the DBMS_REPAIR Package.............cccccooiviiiiiiiiiiiiiiiiccc s 23-2
Task 1: Detect and Report COrruptionscccveeeieieiiiieiininiincc s 23-3
Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR...........ccccocovinniniinninnnnne. 23-4
Task 3: Make Objects Usablecccccciiiiiiiiiiiicccceee s 23-5
Task 4: Repair Corruptions and Rebuild Lost Datacccccoeieiiiiiiiiiiiicccce, 23-5
DBMS_REPAIR EXaMPIES......oooiiiiiiiiiiiiiiiciict e 23-5
Examples: Building a Repair Table or Orphan Key Tablec.ccccccoeviiiiiivninnnnicnne 23-6
Example: Detecting COrruptionccccceiiiiiiieininiiiiiiiice s 23-7
Example: Fixing Corrupt BIOCKScoouiiiiiiiiiicic 23-8
Example: Finding Index Entries Pointing to Corrupt Data Blocks.........cccccceeueuevicnvnnnne. 23-9
Example: Skipping Corrupt BIOCKScccvuiiiiiiiiiiiiiiiicicicccccce s 23-9

Part IV Database Resource Management and Task Scheduling

24

25

Managing Automated Database Maintenance Tasks
About Automated Maintenance Tasks............cccocovveiiiiiiiiiiiiiii s 24-1
About Maintenance WINdOWScccccovviiiiiniiiniii s 24-2
Configuring Automated Maintenance Tasks..............ccccooiiiiininiiiiie, 24-3
Enabling and Disabling Maintenance Tasks for all Maintenance Windows......................... 24-3
Enabling and Disabling Maintenance Tasks for Specific Maintenance Windows 24-4
Configuring Maintenance WindowWscccccoiiiiniiiiiiiis 24-4
Modifying a Maintenance WindoOw............coooiiiiiiiiiiiiicicc 24-4
Creating a New Maintenance Window ... 24-4
Removing a Maintenance Window ... 24-5
Configuring Resource Allocations for Automated Maintenance Tasks............ccccocoeviiinnnnns 24-5
About Resource Allocations for Automated Maintenance Tasks...........cccccceeeiiiiiiinninicnnee. 24-5
Changing Resource Allocations for Automated Maintenance Tasks.........c.cccccccoeueurvrueennnne. 24-6
Automated Maintenance Tasks Referencecccoooviiiiiiiiiiiniiiicccs 24-6
Predefined Maintenance WINAOWScoccivirrieiiiinniicinneceeevcee s 24-7
Automated Maintenance Tasks Database Dictionary VIeWs.........cccccceecuevvrciinvnncenenes 24-7
Managing Resource Allocation with Oracle Database Resource Manager
About Oracle Database Resource Manager................ccoooiininiiiinniniiiiniccccsnnens 25-1
What Problems Does the Resource Manager Address?ccooeueveiiiieiiininciciiiccieee, 25-2
How Does the Resource Manager Address These Problems?...........c.ccccccceeiiiiiiiicncicnennee. 25-2
Elements of the Resource Managerc.cccccucciiiiieiiiiciiiceieieieieeeeieee e esesesesesenenenes 25-3
About Resource Allocation Methods ..o 25-6
About Resource Manager Administration Privileges............cccooooviviiiiiiiiiinineece, 25-8
Creating a Simple Resource Plan ..o 25-9
Creating a Complex Resource Plan..............cccooiiiiiiiiiiiccnne 25-11
About the Pending Areacccccviiiviiiiiiiiiiiiiiiiiin e 25-11

xvii

26

xviii

Creating a Pending ATa.........cccouiuruiiiiciciicic e 25-12

Creating Resource Consumer GIOUPSccccooveieiiieiiiiiniiiiiiii e 25-12
Creating a Resource PLan ... 25-13
Creating Resource Plan Directives ... 25-14
Validating the Pending Area...........cooooooviiiiiiiiii e 25-18
Submitting the Pending ATeaccccovueiiiiiiiiiiiiiiinicer e 25-19
Clearing the Pending ATea ..ottt 25-20
Assigning Sessions to Resource Consumer Groups...........ccccocoeeiniiininiinininnncnineeccne e 25-20
Overview of Assigning Sessions to Resource Consumer Groupsc.ccceeeveeeeererirererecncnes 25-21
Assigning an Initial Resource Consumer GroUp........ccooeeueieiiucieieiiicieieiieie i 25-21
Manually Switching Resource Consumer Groups.........cceoeueecueieieicucieieiiccieieccie e 25-21
Specifying Automatic Resource Consumer Group Switchingcccccoeeveiiiioiniciicnnne. 25-22
Specifying Session-to—Consumer Group Mapping Rules...........cccccoiiiiiiiiiiiiininns 25-24
Enabling Users or Applications to Manually Switch Consumer Groups...........ccccceuvunenene 25-27
Granting and Revoking the Switch Privilege.........cccocoiiiiiiiiiiiiiiiccceceeeeeeaes 25-28
Enabling Oracle Database Resource Manager and Switching Plans.............ccccoooiiiini. 25-30
Putting It All Together: Oracle Database Resource Manager Examplescccocoeennin. 25-31
Multilevel Plan EXamplecccooiiiiiiiirrerr e 25-31
Example of Using Several Resource Allocation Methods..........c.cooeiiiiiiiiiiiiiici, 25-33
An Oracle-Supplied Mixed Workload Plan ..o, 25-34
Maintaining Consumer Groups, Plans, and Directives...............ccccocoeiiiniiinniine, 25-35
Updating a Consumer GIOUP........ccoevviiiiiiiiiiiiiiiiiinin s 25-36
Deleting @ CoNSUMET GIOUPccovurueiiiiiiieiiiicie ettt e 25-36
Updating @ PLanc.covoiiiiiiiiiiecccceecee et 25-36
Deleting @ Plan.........coooouoiiiii 25-36
Updating a Resource Plan Directivecooooiiiiiiiiiiiccccc 25-37
Deleting a Resource Plan DireCtivecccccocvcucuiiiiiiiiiiiiinicecceieeeeeeeeeeeses s 25-37
Viewing Database Resource Manager Configuration and Statusccccooinnnn. 25-37
Viewing Consumer Groups Granted to Users or Rolescocooiiiiiiiiiiice, 25-37
Viewing Plan INfOrmation ... 25-38
Viewing Current Consumer Groups for SeSSions...........ccceueviicieieiiecieieiisie e, 25-38
Viewing the Currently Active Plans...........cccooviiiiniiiiiiiccccccccees 25-38
Monitoring Oracle Database Resource Manager ..o 25-39
Interacting with Operating-System Resource Controlcccooooiiiiiiiiiiiiin, 25-41
Guidelines for Using Operating-System Resource Control...........cccccoovvveiiiiciininiiicenennen. 25-42
Oracle Database Resource Manager Reference...............ccccooeviinininiiinniiinniicces 25-42
Predefined Resource Plans and Consumer GIoups...........ccoiiviiiminiiniiniiisennnns 25-43
DBMS_RESOURCE_MANAGER Package Procedures SUummaryccccocoveveninircnenncnnnes 25-44
Resource Manager Data Dictionary VIEWS ..o 25-45

Oracle Scheduler Concepts

Overview of the SChedUIEr............cooieiirieee et ene e ens 26-1
What Can the SCheduler DO?.........ooioieiiieieeieeeee ettt s s reetesre s e sseesaesreeneas 26-2
Basic Scheduler CONCEPLS ..o 26-3
PIOGTAIMS ..ot s 26-3
SCREAUIES ...ttt ettt et et e e st e be s st e sbesssebeessassaessenseensesseessesseensenseas 26-4
JODIS ettt ettt ettt s e e ae ekt et e b e b et en b e st entente s e st eseeneeseeseesentenee 26-4

BV OIS ettt e e e e et s e e et e e e et abe e e e seaaareeeeeeaaraeeeeenaares 26-6

CRAINS .ottt ettt b ettt bbbttt et b e 26-7
How Programs, Jobs, and Schedules are Related............cccccocciiiiiiiiiiiiciccccceee 26-7
Advanced Scheduler CONCEPLScooiiiiiiiiiiiiiic s 26-8
JOD CLASSES ...ttt ettt ettt et s e st e b bt bt s b et et e b et et et e e e aeebeeaeeheebeebeeae 26-8
WINAOWS....oiii ettt st sttt st 26-9
WINAOW GIOUPS ...viviviviiiitiiitiiiiictcttitct ettt 26-10
EXEEINAL JODS ..ottt sttt bt sttt ettt ne bbb e 26-11
Scheduler Support for Oracle Data Guardcccccecieiiniiiiiecereeceeeee e 26-13
Scheduler ArchitectUre..... ..ottt e 26-13
TRE JOD TaDIE......cviiiiieeieeeeee ettt e 26-14
The JOD COOTAINALOT ...cuveuieeiiiieiiitieiiieteiet ettt e se sttt e et esaeseeseeseesessessessessessessessessesensensenes 26-14
HOW JODS EXECULE.....c.eiiiiiiiiitieeee ettt sttt ettt eb b 26-15
JOD STAVES ...ttt ettt ettt ettt ettt a e a e bt b e b et et et et neeneeneeaeeaetas 26-15
Using the Scheduler in Real Application Clusters Environments...........cccccovoceciiincnnee. 26-16

27 Scheduling Jobs with Oracle Scheduler

Scheduler Objects and Their Naming...........ccccccooooiiiiiiiniiiii 27-1
USING JODS ..o s 27-2
Job Tasks and Their ProCedures..........ccoieieiririiriinieieieie ettt sttt 27-2
Creating JODS ..o 27-2
COPYING JODS oo 27-7
ARETING JODS .eeiiee s 27-8
RUNNING JODS ...t 27-8
SEOPPING JODS ...t 27-9
DIOPPING JODS ..o 27-10
DiSADING JODS ...t 27-11
ENabNG JODS w..vviieii 27-11
USING PTOZIAmMIS..........viiiiiiiiiit st 27-12
Program Tasks and Their Procedures...........cccccccoeiriiiiiiniininrrrccreeeeee s 27-12
Creating PrOGIamscouiiieiiiiiieiec e 27-12
AEriNg PrOGIAMS. ...c.cuiiiiiiiiiiicicrcc e 27-14
Dropping PrOGIamSccovuiuiiiiiiiiiiiiici e 27-14
Disabling PrOZIamSccceiiiiiiiieieiicie ettt 27-15
Enabling Programs...........cccccciiiiiiiiiiiniiiiiiiiiciins s 27-15
Using Schedules ... 27-15
Schedule Tasks and Their Procedurescccoveviiiniiiiiiiininiiniiins 27-16
Creating Schedules...........ccciiiiiiiiiiii e 27-16
AEring SCREAULES ... 27-16
Dropping Schedules...........cooiiiiiiiiiii 27-17
Setting the Repeat Interval...........cccocoviiiiiiiiiiiii e 27-17
USING JOD CIASSESovviiiiiiiiii s 27-21
Job Class Tasks and Their Procedurescocceiveririniinienenieieieteeeeee et 27-21
Creating JOb Classes.........cccciuiiiiiiiiiniiiiiccr e 27-22
ARETING JOD ClASSESvuviiiiiiciciciceec e 27-22
Dropping JOb Classes..........cviiiiiiiiiiiiiiiiiiiiiicecse s 27-22
USING WINAOWS.......ooiiiiiiiiii e 27-22

Xix

Window Tasks and Their ProCeAUIESoooviiivvieiiieeeeeeeeeee et 27-23

Creating WINAOWS ..o 27-23
ARETING WINAOWS ...t 27-25
Opening WINAOWSc.oiiiiiiiieiei et 27-25
Closing WINAOWScuouiiiiiieci e 27-26
Dropping WINAOWSc.cuviiiiriiiiireeerree sttt 27-26
Disabling WINAOWS ..ottt 27-27
Enabling WindOWS...........cooiiiii s 27-27
Overlapping WINAOWScoviiiirriirr et 27-28
USINg WINAOW GIOUPS........ccovviiiiiiiiii s 27-30
Window Group Tasks and Their Procedurescooooiiiiiiiiiiiicee 27-30
Creating WINAOW GIOUPS.....ccceueuiuiiririririeiriririreeeesris s 27-30
Dropping WINAOW GIOUPS.......cccoeuiiiieiiiiiiiiiciiiicinics s 27-31
Adding a Member to @ Window GIOUPccooiimiiiiiiiiciecci 27-31
Dropping a Member from a Window GIOUP........cccouvriririieiniiiniicccccccccecccecececenenes 27-32
Enabling @ WindOow GIOUP.......cocoiurieiiiiciicci ettt 27-32
Disabling @ Window GIOUP.......ccccrueiiiiieiicie s 27-32
USING EVENES ...t s 27-33
Using Events Raised by the Scheduler..............coooo, 27-33
Using Events Raised by an Application...........ccoeueieiiiiiiiiicciccccc 27-36
USING CRaINS ..o s 27-40
Chain Tasks and Their Procedures...........c.cccocoviiiiiiiniiiiiis 27-40
Creating Chains ... 27-41
Defining Chain SEEPScccuiuiiiiiiiiciiciccceeee et 27-41
Adding Rules to @ Chain........cccoiiiiiiiiiiiiiiicc e 27-42
Enabling Chains ..o 27-43
Creating Jobs fOr CRainsc.ccccciiiiiiiiiiiiiceeeere e 27-44
Dropping Chainsccccoviiiiiiiiiiii s 27-44
RUNNING CRaINSooeieiice e e 27-45
Dropping Rules from a Chaincccccceiiiiiiiiiiiiiiiccrrnc e 27-45
Disabling Chainsccccovuiviiiiiiiiiiiii 27-45
Dropping Chain StePS ..o 27-46
Altering Chain SEEPS....c.ceuiiiiiiiiciiicicircecerc e 27-46
Handling Stalled Chainscccocoviiiiiiiiiiiiiiic e 27-47
Allocating Resources AmMONg JODS ..o 27-47
Allocating Resources Among Jobs Using Resource Managerccccccevvevevrvenevnerenenccnes 27-47
Example of Resource Allocation fOr JODS........ccovviiiniiiiiiiice, 27-48

28 Administering Oracle Scheduler

XX

Configuring the Scheduler ... 28-1
Monitoring and Managing the Scheduler ... 28-7
Viewing the Currently Active Window and Resource Plan............cccooiviiiiiiiiccnnn 28-7
Finding Information About Currently Running JObSsccooeiiiiiiiiiiiiiice, 28-7
Monitoring and Managing Window and Job Logscccoeeuviirniniiiiiiiccccece, 28-8
Changing JOD PriOTItIesccccoviiiiiiririiriiiicrrccrrr e 28-12
Monitoring Running Chains............coiriiiiiiic s 28-12
Managing Scheduler SECUTItY ..o 28-13

Enabling and Disabling Remote External Jobs.............cccoooiiiiiiiii 28-13

Setting Up the Database ... 28-13
Installing and Configuring the Scheduler Agentc.cccccciiiiiiiinniinrrrcerreeae 28-14
Disabling Remote External JODS..........ccooiiiiiiiiiiiiic e 28-16
Import/Export and the Scheduler ..., 28-16
Troubleshooting the Scheduler ... 28-16
Understanding Why a Job Fails to RUN ..o, 28-17
Job Recovery After a Failure........cccooooiiiiiiiii s 28-18
Understanding Why a Program Becomes Disabled..........c.cccccccoeeuiiiiiiiniiccnciccene 28-18
Understanding Why a Window Fails to Take Effectccoooooi, 28-18
Examples of Using the Scheduler ..., 28-19
Examples of Creating JoDSc.cccciiiiiiiirrccr e 28-19
Examples of Creating Job Classes..........ccccouirieiiiiiiiiiiicic 28-20
Examples of Creating Programscccouoiiieiiiiicieiiccie i 28-21
Examples of Creating WINAOWSc.ccciuiiiiiiiiininiiiicrrcccrree s 28-22
Example of Creating Window GIoups ... 28-23
Examples of Setting Attributes...........cooooiiiiiiiii 28-24
Examples of Creating Chainscccccceviiiiiiriiiiiiriecrrrr e 28-27
Examples of Creating Jobs and Schedules Based on Events..........cccccoooiiiiiiiiiniinicnne. 28-28
Example of Creating a Job In an Oracle Data Guard Environment............ccccccevvivinninnnn 28-29
Scheduler Reference ... 28-30
Scheduler PrivileGes........ccccviiiiiiiiiiiiiiiiiii 28-30
Scheduler Data Dictionary VIEWS.........ccoiiriiiiiiciciicice s 28-31

Part V Distributed Database Management

29 Distributed Database Concepts

Distributed Database Archite@Ctureccoccvioiiiiiiiiiiiiiieiceeeee e e e 29-1
Homogenous Distributed Database Systems...........c.cccocciiiiiiiiiiiiiicccceceeeeeees 29-1
Heterogeneous Distributed Database Systems............ccoooeiiiiiiiiiiiiiciii e, 29-3
Client/Server Database ATChItECTULC........coooiiiieiie ettt ettt e et e es e e sesaaeas 29-4

Database LINKS........ccoccveiiiiiiiieieieeeeeteseee ettt ettt e et et e sstesse s e e seessesseensesseenseeseensenneensennes 29-5
What Are Database LINKS?.......cccccveieiieciiniieiesiieiese ettt ettt e st ssestessaesasssessesssassenseas 29-6
What Are Shared Database LINKS?c.ccvcviiirieiiiiiiiieiieeee ettt ere v e veeanes 29-7
Why Use Database LINKS?........cccoiiiiiiiiiiiiicccececeeee et seneseeees 29-8
Global Database Names in Database Links.........ccccocveviirieriinieiiiieeceeeeeeeeeer e 29-8
Names for Database LINKSccooiiiiiieiicecceceereeteee ettt ettt e v e eaeereeaeeneen 29-9
Types of Database LINKSccccociiiiiiiiiiiiiccrrrr e 29-10
Users of Database LINKSc.coiiiiiiiiieiiecieieetesie ettt ee e e e seeeessesseessessaessessnessensenns 29-11
Creation of Database Links: EXamples.........c.cccovviiiiiiiiiiiiicccccccccceceeennes 29-13
Schema Objects and Database LInKscccooviririiiiiniiiiiiccicccceeeceeceneeeneeenenes 29-14
Database Link ReSEIICHONS.c.cccveriieierieeierie ettt ete st et ereeaesreesse e esesseessassaessesseenes 29-16

Distributed Database AdminiStrationcccccoociiiiiiiiiiiicececceeeeeee e 29-16
Site AULONOMY ...t 29-16
Distributed Database SeCUTity.........cccooiiueiiiiiiciiiii 29-17
Auditing Database LInNKSccccoiiiiiiiiiiiiiiicccc e 29-21

XXi

JaNo s N1 oV n =X w o) o N Ko Te) I TN 29-22

Transaction Processing in a Distributed System...............ccccoooiiiiii, 29-23
Remote SQL StateIMENTScc..eccuiiiiieiicie ettt ee et e ae et e e teeetae e beesaseeseesssesseeseeees 29-23
Distributed SQL STateMENLScc.ecievieriieiereeteeeeeteetesreeeesteseesseeaessessessesssessesssessesssensesssenns 29-24
Shared SQL for Remote and Distributed Statementsccocovveevvieeeeeeecceceee e 29-24
Remote Transactions.........ccccoviiiiiiiiiiiiii e 29-24
Distributed Transactions ... 29-25
Two-Phase Commit Mechanism ... 29-25
Database Link Name ReSOIULIONc.ccoueuiiiiriiiiiiiiiiiiccccccccccccceciceseee e 29-25
Schema Object Name ReSOIUtiON........cciiviiiiiiiiiiiiiiicc s 29-27
Global Name Resolution in Views, Synonyms, and Procedurescccccoeveiriiiiirnnnnn. 29-29

Distributed Database Application Developmentcccooeinieineiiniiniinicneneeeeeenee 29-31
Transparency in a Distributed Database System...........ccccooiiiiiiiii, 29-31
Remote Procedure Calls (RPCS)....c.coeireireirieinieinieinictnietrteeeieteieste ettt ee 29-33
Distributed Query OptimiZation ..o 29-33

Character Set Support for Distributed Environmentsccccccoocoiiniiinniiiininns 29-34
Client/Server ENVITONIMIEIEcocuviiiiiiiieeeie ettt ettt e e e e e sae e sssaeeesnaeeesneessanees 29-34
Homogeneous Distributed ENvironmentccocoeeeueervninnnnnennereneeceeec e 29-35
Heterogeneous Distributed Environmentccocooiiiiiiiic 29-35

30 Managing a Distributed Database

Managing Global Names in a Distributed Systemccococoviiiiiiii 30-1
Understanding How Global Database Names Are Formed..............ccoooiiiiiiiiniiiiiicinne, 30-1
Determining Whether Global Naming Is Enforced ... 30-2
Viewing a Global Database Name...........cccccoooiiiiiiiiiiiic 30-3
Changing the Domain in a Global Database Name............c.cccccoooeiiiiiiiiiiiic, 30-3
Changing a Global Database Name: SCENATiOccccoeeueueuiuiueueuiieeiieecieeeieeieereeenene s 30-3

Creating Database Links...........cccoooiiiiiiiiiic e 30-6
Obtaining Privileges Necessary for Creating Database Links...........cccocoovriiiiiiiiiiniinnnn, 30-6
Specifying LiNK TYPES ...c.c.ciiiiiiiiiiiiiiccceccceee et 30-7
Specifying Link USEIS.......cocuiiiiiiiiieiiici ittt 30-8
Using Connection Qualifiers to Specify Service Names Within Link Names...................... 30-10

Using Shared Database Links............cccccccooviiiiiiiiiiiiccs 30-10
Determining Whether to Use Shared Database Links............ccccooiiiiiiiiiiiic 30-11
Creating Shared Database Links..........ccccccccciiiiiiiiinininiiiiicnes 30-12
Configuring Shared Database Linkscccooiiniiiiiiiiiiccccccccccceccseeeeenenes 30-12

Managing Database Links..............cccccocoviiiiiiiiiiiic e 30-14
Closing Database LINKS.........ccccociiiiiiiiiiiiiiiiiiiiii e 30-14
Dropping Database LInKScccccccceiiiiiiiiiiiiiiirnecnrrn e 30-15
Limiting the Number of Active Database Link Connectionsc.cccoceueueirinicniiciniciennne. 30-16

Viewing Information About Database Linksccccccooiiiiiiiiiiiiiiccccccce, 30-16
Determining Which Links Are in the Database...........ccccccevuviiirrnninnirrnrreeeerccnes 30-16
Determining Which Link Connections Are Open ..o 30-17

Creating Location TranSparency ... 30-18
Using Views to Create Location Transparency ... 30-19
Using Synonyms to Create Location Transparencyccceceeeveiececicieiiiciciescceienie e 30-20
Using Procedures to Create Location Transparencyccceeinicneeiicceececcnenen, 30-21

XXii

31

32

Managing Statement TranSpParenCy ..o 30-23

Managing a Distributed Database: Examplesc.ccccccooiiiiiiiiiiccnes 30-24
Example 1: Creating a Public Fixed User Database Linkcccccoeoiiiiiiiniiicciiccnnes 30-25
Example 2: Creating a Public Fixed User Shared Database Link............cccccoooiiiiniinnennnne. 30-25
Example 3: Creating a Public Connected User Database Link...........cccccooviiiiiiiiinnnnes 30-25
Example 4: Creating a Public Connected User Shared Database Link..........c.cccccoevrueinncnce. 30-26
Example 5: Creating a Public Current User Database Link...........ccccooooiiiiiiiininna, 30-26

Developing Applications for a Distributed Database System

Managing the Distribution of Application Dataccccccoevviiiiiiiiiii 31-1

Controlling Connections Established by Database Linkscccccccoceiiiiiiiiiiiiiiinn, 31-1

Maintaining Referential Integrity in a Distributed Systemccccococooiiiin 31-2

Tuning Distributed Queries ..o 31-3
Using Collocated INlNe VIEWSc.ouiuiiioiiiiiieicci s 31-3
Using Cost-Based OptimiZation...........ccceiiiiiiiiiiieiiceceeeieeeteeeneneeeenereseeeseseseneeeeeeees 31-4
USING HINES «oiviiiiiiittitt bbb s 31-6
Analyzing the Execution Plancooiiiiiii 31-7

Handling Errors in Remote Procedures ... 31-8

Distributed Transactions Concepts

What Are Distributed Transactions? ... 32-1
DML and DDL TTanSaCtioNsccceuiuiuiiiiiiiiiiiiniitiiiieeeieeeee et senns 32-2
Transaction Control Statements...........ccccceviiiiiiiiiiiiii 32-2

Session Trees for Distributed Transactions.............cccooooeriiiiiiiicccccc e 32-3
CLENTS .ot 32-4
Database SEIVETSccccciiiiiiiiiiiiiiiii s 32-4
Local COOTAINALOTSc.cvivimiiiiiiiiiiic e 32-4
Global CoOrdinatorcceuiviiiiiiiiiieiiiicice s 32-4
Commit POINt Site ...c.cuoiiiiiiiiiicic s 32-5

Two-Phase Commit MechanisSm ... 32-7
Prepare PRase..........cooiiiiiiiiii s 32-8
COMIMIE PRASE ...ttt 32-10
FOT@et PRASE......coviiiiiiciccc et 32-11

IN-Doubt Transactions ..o 32-11
Automatic Resolution of In-Doubt Transactions.............ccccoeeiiiiiiiiiiiiiiiicccicenes 32-12
Manual Resolution of In-Doubt Transactions.............cccceeeviiniiiiniicenne 32-13
Relevance of System Change Numbers for In-Doubt Transactionscccccceeeevriuninnne. 32-14

Distributed Transaction Processing: Case Study ..., 32-14
Stage 1: Client Application Issues DML Statements.........ccccccccueueueieueieiernninnnnnnrerene 32-14
Stage 2: Oracle Database Determines Commit Point Sitecccooeeiiiiiiiiiiiiii 32-15
Stage 3: Global Coordinator Sends Prepare Responseccccoeeueecueieiicneieiniceieccenne, 32-16
Stage 4: Commit Point Site COMMILScoueviviiiiiiiiiiiie 32-17
Stage 5: Commit Point Site Informs Global Coordinator of Commit.........cccoovvriiinininnne. 32-17
Stage 6: Global and Local Coordinators Tell All Nodes to Commit.........cccccevvuriviiirinininnnnes 32-17
Stage 7: Global Coordinator and Commit Point Site Complete the Commit....................... 32-18

xXiii

33

Managing Distributed Transactions

Specifying the Commit Point Strength of a Node ... 33-1
Naming Transactions ... 33-2
Viewing Information About Distributed Transactionsccccccoevvviiiiiiiiniii 33-2
Determining the ID Number and Status of Prepared Transactionsccccccouevereieininnnen. 33-2
Tracing the Session Tree of In-Doubt Transactionscccccceceeurreeicnvnennreeerreeeenes 33-4
Deciding How to Handle In-Doubt Transactions...............ccccccceveviiiiiiininiiccceceens 33-5
Discovering Problems with a Two-Phase Commuitcccooiirioiiiiiiccce, 33-6
Determining Whether to Perform a Manual Override...........ccccocoeiiiiiiiniiieciccceeee, 33-6
Analyzing the Transaction Datacccouoviiiiiiiicii 33-7
Manually Overriding In-Doubt Transactions................ccccceevvivviniiinin 33-8
Manually Committing an In-Doubt Transaction..........c.ccccceevveerirrnininrnrrcrrreeeeeeeaes 33-8
Manually Rolling Back an In-Doubt Transaction............cccceueieieieiiiciiicceecccc 33-9
Purging Pending Rows from the Data Dictionary.............cccoooeiiiiiiiiiiii, 33-9
Executing the PURGE_LOST_DB_ENTRY Procedurec.ccccovveirininininiciiiicccncenenes 33-10
Determining When to Use DBMS_TRANSACTIONccccccoiviniiiinniiiinicns 33-10
Manually Committing an In-Doubt Transaction: Examplecccccocovvinnnnnnnnnnn 33-11
Step 1: Record User FEedback ..o 33-11
Step 2: Query DBA_2PC_PENDING........ccccoviiiiiiiniiiinscs s 33-11
Step 3: Query DBA_2PC_NEIGHBORS on Local Node...........cccccovvininininiiniiiiiines 33-13
Step 4: Querying Data Dictionary Views on AIl NOdes ..o 33-14
Step 5: Commit the In-Doubt Transaction.............ccceeeeeiiiiiniiiii 33-16
Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING..........cccccccvvvninnnnnninne 33-16
Data Access Failures Due t0 LoCKS ... 33-17
Transaction TIMEOULScoiiiiiiiii e 33-17
Locks from In-Doubt TTansactionsccccvvvivininiiininiiiiisses 33-17
Simulating Distributed Transaction Failurecccooiinis 33-17
Forcing a Distributed Transaction to Fail............cccooiii, 33-18
Disabling and Enabling RECOcccccooiiiiiiii e 33-18
Managing Read Consistency..........ccccooviiiiiiiiiiiiii s 33-19

Part VI Appendices

A Moving from DBMS_JOB to DBMS_SCHEDULER
Creating @ JODcccooiiiiiiiii s A-1
ATETING @ JOD ..o s A-1
Removing a Job from the Job QUeUe...........ccccoooiiiiiiiiiiiiiiiiciec et A-2
Index

XXiv

Audience

Preface

This document describes how to create, configure, and administer an Oracle database.

This document is intended for database administrators who perform the following
tasks:

» Create an Oracle database
= Ensure the smooth operation of an Oracle database
= Monitor the operation of an Oracle database

To use this document, you need to be familiar with relational database concepts. You
should also be familiar with the operating system environment under which you are
running Oracle Database.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

XXV

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see these Oracle resources:
» Oracle Database 2 Day DBA
» Oracle Database Concepts
» Oracle Database SQL Language Reference
» Oracle Database Reference
» Oracle Database PL/SQL Packages and Types Reference
» Oracle Database Storage Administrator's Guide
» Oracle Database VLDB and Partitioning Guide
» Oracle Database Error Messages
» Oracle Database Net Services Administrator's Guide
» Oracle Database Backup and Recovery User's Guide
» Oracle Database Performance Tuning Guide
» Oracle Database Advanced Application Developer’s Guide
» Oracle Database PL/SQL Language Reference
» SQL*Plus User's Guide and Reference

Many of the examples in this book use the sample schemas, which are installed by
default when you select the Basic Installation option with an Oracle Database
installation. Refer to Oracle Database Sample Schemas for information on how these
schemas were created and how you can use them yourself.

Conventions

The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XXVi

What's New in Oracle Database
Administrator's Guide?

This section describes new features of Oracle Database 11g Release 1 (11.1) that are
documented in this guide, and provides pointers to additional information.

Oracle Database 11g Release 1 (11.1) New Features in the
Administrator's Guide

Simplified and improved automatic memory management

You can now set a single initialization parameter (MEMORY_TARGET) to indicate
the total amount of memory that is to be allocated to the database (the SGA and
instance PGA). The system then automatically and dynamically tunes all SGA and
PGA components for optimal performance. You can still designate minimum sizes
individually for the SGA and instance PGA.

See "Using Automatic Memory Management" on page 5-3

New fault diagnosability infrastructure to prevent, detect, diagnose, and help
resolve critical database errors

The goals of the fault diagnosability infrastructure are preventing and detecting
problems (critical errors) proactively, limiting damage and interruptions after a
problem is detected, reducing problem diagnostic time, reducing problem
resolution time, and simplifying customer interaction with Oracle Support. The
framework includes technologies such as health checks that run when a critical
error occurs; proactive in-memory tracing for many database components to
permit first-failure data capture; an Incident Packaging Service that packages all
diagnostic data for a problem into a zip file for transmission to Oracle Support;
and Enterprise Manager Support Workbench, which provides a graphical
environment for investigating, reporting, and resolving problems. Also included is
integration with the new SQL Repair Advisor, for diagnosing and repairing
SQL-related problems, the SQL Test Case Builder, which gathers all required
schema and environment information to enable a SQL problem to be reproduced
on another Oracle database, and the Data Recovery Advisor, which helps
diagnose, evaluate the impact of, and repair data corruptions and other data
failures.

See Chapter 8, "Managing Diagnostic Data" on page 8-1
Invisible Indexes

Making an index invisible is an alternative to making it unusable or dropping it if
you want to test whether overall performance will improve by removing an index.

XXVii

XXViii

An invisible index is by default ignored by the optimizer, but unlike an unusable
index, is maintained during DML statements. You have the option to change an
initialization parameter at the system or session level to cause the optimizer to use
invisible indexes.

See "Creating an Invisible Index" on page 19-11
Virtual columns

Tables can now include virtual columns. The value of a virtual column in a row is
derived by evaluating an expression. The expression can include columns from the
same table, constants, SQL functions, and user-defined PL/SQL functions. In some
cases, a virtual column eliminates the need to create a separate view. You can
create an index on a virtual column, and you can use a virtual column as a
partition or subpartition key.

See "About Tables" on page 18-1. For detailed information on virtual columns, see
Oracle Database Concepts.

Enhanced security for password-based authentication by enabling use of mixed
case in passwords.

See "Database Administrator Authentication" on page 1-11.
Database resident connection pooling

Database resident connection pooling (DRCP) provides a connection pool in the
database server for typical Web application usage scenarios where the application
acquires a database connection, works on it for a relatively short duration, and
then releases it. DRCP pools "dedicated" servers, which are the equivalent of a
server foreground process and a database session combined. DRCP enables
sharing of database connections across middle-tier processes on the same
middle-tier host and across middle-tier hosts. This results in significant reduction
in database resources needed to support a large number of client connections,
thereby boosting the scalability of both middle-tier and database tiers.

See "About Database Resident Connection Pooling" on page 4-4
Tablespace-level encryption

You can encrypt any permanent tablespace to protect sensitive data. Tablespace
encryption is completely transparent to your applications. When you encrypt a
tablespace, all tablespace blocks are encrypted. All segment types are supported
for encryption, including tables, clusters, indexes, LOBs, table and index
partitions, and so on.

See "Encrypted Tablespaces" on page 12-8.
Finer-grained schema object dependencies for increased availability

Invalidation of dependent schema objects in response to changes in the objects
they depend upon is greatly reduced in Oracle Database 11g, increasing
application availability during maintenance, upgrades, and online table
redefinition. Between a referenced object and each of its dependent objects, the
database tracks the elements of the referenced object that are involved in the
dependency. For example, if a single-table view selects only a subset of columns in
a table, only those columns are involved in the dependency. For each dependent of
an object, if a change is made to the definition of any element involved in the
dependency (including dropping the element), the dependent object is
invalidated. Conversely, if changes are made only to definitions of elements that
are not involved in the dependency, the dependent object remains valid.

Enhanced automated maintenance task infrastructure

You can now exercise finer control over automated maintenance task scheduling.
New installations of Oracle Database have the following default configuration for
automated maintenance tasks and for the maintenance windows that they run in:

— There are three automated maintenance tasks: optimizer statistics gathering,
Automatic Segment Advisor, and Automatic SQL Tuning Advisor.

Automatic SQL Tuning Advisor examines high load SQL statements and
makes recommendations for improving query performance. It can be
configured to automatically implement SQL profile recommendations.

— There is a separate maintenance window for each day of the week. All
maintenance tasks are scheduled to run in all maintenance windows by
default.

— There is a default Resource Manager plan enabled. It contains a subplan that
limits the amount of resources that automated maintenance tasks consume.

With Enterprise Manager or with PL/SQL package procedures, you can change
the start time and duration of all maintenance windows, eliminate or add
maintenance windows, and prevent particular maintenance tasks from running in
particular maintenance windows. You can also adjust resource allocations for
maintenance tasks relative to each other and to your applications.

See Chapter 24, "Managing Automated Database Maintenance Tasks".

Encrypting table columns using the transparent data encryption feature of Oracle
Database now supports SecureFile LOBs.

See Oracle Database SecureFiles and Large Objects Developer’s Guide for more
information.

Table compression now supported in OLTP environments
Compressed tables now support the following operations:
- DML statements

- Add and drop column

See "Consider Using Table Compression" on page 18-5.
Result cache in the system global area

Results of queries and query fragments can be cached in memory in the result
cache. The database can then use cached results to answer future executions of
these queries and query fragments. Because retrieving results from the result cache
is faster than rerunning a query, frequently run queries experience a significant
performance improvement when their results are cached.

The result cache occupies memory in the shared pool.

See "Specifying the Result Cache Maximum Size" on page 5-18.
Enhancements to Oracle Scheduler

Oracle Scheduler includes the following enhancements:

- Lightweight jobs—Lightweight jobs are not schema objects like regular
Scheduler jobs. They are based on a job template from which privileges and (in
some cases) job metadata are inherited. They have a significant improvement
in create and drop time over regular jobs because they do not have the
overhead of creating a schema object. Use lightweight jobs when you need to
create and drop hundreds or thousands of jobs per second.

See "Jobs" on page 26-4.

XXiX

XXX

- Remote external jobs—A remote external job is an operating system executable
that runs outside the database, is scheduled by Oracle Scheduler, and runs on
a host computer other than the computer running the Oracle database that
schedules it. The remote host does not require an Oracle database. Instead, it
has a Scheduler agent, installed separately, that the scheduling database
communicates with to start external jobs. The agent is also involved in
returning execution results to the scheduling database.

See "External Jobs" on page 26-11.

- Extended support for Oracle Data Guard environments—Scheduler jobs can
be designated to run only when the database is in the role of the primary
database, or only when the database is in the role of a logical standby
database.

See "Scheduler Support for Oracle Data Guard" on page 26-13.
Enhancements to Oracle Database Resource Manager
Oracle Database Resource Manager includes the following enhancements:

— Per-session I/O limits—Sessions that exceed I/O resource consumption limits
can be automatically switched to another consumer group.

See "Specifying Automatic Resource Consumer Group Switching" on
page 25-22.

- New out-of-the-box mixed workload resource plan—Oracle Database 11g
includes a predefined resource plan, MIXED_ WORKLOAD_ PLAN, that prioritizes
interactive operations over batch operations, and includes the required
subplans and consumer groups recommended by Oracle.

See "An Oracle-Supplied Mixed Workload Plan" on page 25-34.

- New Automatic Workload Repository (AWR) snapshots of Resource Manager
dynamic performance views, for historical statistical data on resource plan
activations, CPU resources consumed by consumer group, and CPU waits by
consumer group.

See "Monitoring Oracle Database Resource Manager" on page 25-39.
Default automatic undo management mode

A newly installed 11g instance defaults to automatic undo management mode, and
if the database is created with Database Configuration Assistant, an undo
tablespace is automatically created. A null value for the UNDO_MANAGEMENT
initialization parameter now defaults to automatic undo management.

See "Overview of Automatic Undo Management" on page 14-2
Enhanced online index creation and rebuild

Online index creation and rebuild prior to this release required a DML-blocking
lock at the beginning and at the end of the rebuild for a short period of time. This
lock could delay other DML statements and therefore cause a performance spike.
This lock is no longer required, making these online index operations fully
transparent.

See "Creating an Index Online" on page 19-9.
Ability to online redefine tables that have materialized view logs

Tables with materialized view logs can now be redefined online. Materialized
view logs are now one of the dependent objects that can be copied to the interim

table with the DBMS_REDEFINITION.COPY_TABLE_DEPENDENTS package
procedure.

See "Redefining Tables Online" on page 18-26
Read-only tables

You can set any table to read-only mode with the ALTER TABLE statement. This
provides an alternative to placing a table's containing tablespace in read-only
mode.

See "Placing a Table in Read-Only Mode" on page 18-24.
Transportable tablespace enhancements

Data Pump now supports the transportable tablespace function for tablespaces
with XMLIype tables and with schema objects with XMLIypes.

See "Transporting Tablespaces Between Databases" on page 12-29
Optimized ALTER TABLE... ADD COLUMN

For certain types of tables, when adding a column that has both a NOT NULL
constraint and a default value, the database can optimize the resource usage and
storage requirements for the operation. It does so by storing the default value for
the new column as table metadata, avoiding the need to store the value in all
existing records.

In addition, the following ADD COLUMN operations can now run concurrently with
DML operations:

- Add a NOT NULL column with a default value

- Add a nullable column without a default value

- Add a virtual column

Enhancements to initialization parameter management

The following enhancements are made to the handling of initialization parameters:

— The server parameter file (SPFILE) has a new format for compliance with
Oracle's HARD initiative. This initiative helps to prevent writing corrupted
data to disk, and is implemented at the software and storage hardware levels.

- New commands enable you to create a text initialization parameter file
(PFILE) or server parameter file (SPFILE) from the current values of
initialization parameters in memory.

— Upon startup, values of initialization parameters are written to the alert log in
such a way as to make it easy to copy and paste them to create a new PFILE.

— The name and path of the PFILE or SPFILE used to start the instance is written
to the alert log.

— Oracle Database automatically resilvers a mirrored copy of the SPFILE when
needed.

Data Definition Language (DDL) commands can wait for locks

You can now set a single initialization parameter, DDL._LOCK_TIMEOUT, to specify
how long a DDL command waits for the exclusive locks that it requires on internal
structures before it fails.

See "Specifying the DDL Lock Timeout" on page 2-24

XXXi

XXXii

Part |

Basic Database Administration

Part I provides an overview of the responsibilities of a database administrator, and
describes how to accomplish basic database administration tasks. It contains the
following chapters:

Chapter 1, "Overview of Administering an Oracle Database"
Chapter 2, "Creating and Configuring an Oracle Database"
Chapter 3, "Starting Up and Shutting Down"

Chapter 4, "Managing Processes"

Chapter 5, "Managing Memory"

Chapter 6, "Managing Users and Securing the Database"
Chapter 7, "Monitoring Database Operations"

Chapter 8, "Managing Diagnostic Data"

1

Overview of Administering an Oracle

Database

This chapter presents an overview of the environment and tasks of an Oracle Database
administrator (DBA). It also discusses DBA security and how you obtain the necessary
administrative privileges.

The following topics are discussed:

Types of Oracle Database Users

Tasks of a Database Administrator

Selecting an Instance with Environment Variables
Identifying Your Oracle Database Software Release
Database Administrator Security and Privileges
Database Administrator Authentication

Creating and Maintaining a Password File

Data Utilities

Types of Oracle Database Users

The types of users and their roles and responsibilities depend on the database site. A
small site can have one database administrator who administers the database for
application developers and users. A very large site can find it necessary to divide the
duties of a database administrator among several people and among several areas of
specialization.

This section contains the following topics:

Database Administrators
Security Officers

Network Administrators
Application Developers
Application Administrators

Database Users

Overview of Administering an Oracle Database 1-1

Types of Oracle Database Users

Database Administrators

Each database requires at least one database administrator (DBA). An Oracle Database
system can be large and can have many users. Therefore, database administration is
sometimes not a one-person job, but a job for a group of DBAs who share
responsibility.

A database administrator's responsibilities can include the following tasks:
» Installing and upgrading the Oracle Database server and application tools

= Allocating system storage and planning future storage requirements for the
database system

s Creating primary database storage structures (tablespaces) after application
developers have designed an application

s Creating primary objects (tables, views, indexes) once application developers have
designed an application

= Modifying the database structure, as necessary, from information given by
application developers

= Enrolling users and maintaining system security

= Ensuring compliance with Oracle license agreements

= Controlling and monitoring user access to the database

= Monitoring and optimizing the performance of the database
= Planning for backup and recovery of database information
= Maintaining archived data on tape

= Backing up and restoring the database

s Contacting Oracle for technical support

Security Officers

In some cases, a site assigns one or more security officers to a database. A security
officer enrolls users, controls and monitors user access to the database, and maintains
system security. As a DBA, you might not be responsible for these duties if your site
has a separate security officer. Please refer to Oracle Database Security Guide for
information about the duties of security officers.

Network Administrators

Some sites have one or more network administrators. A network administrator, for
example, administers Oracle networking products, such as Oracle Net Services. Please
refer to Oracle Database Net Services Administrator’s Guide for information about the
duties of network administrators.

See Also: Part V, "Distributed Database Management", for
information on network administration in a distributed
environment

Application Developers

Application developers design and implement database applications. Their
responsibilities include the following tasks:

= Designing and developing the database application

1-2 Oracle Database Administrator’s Guide

Tasks of a Database Administrator

= Designing the database structure for an application

» Estimating storage requirements for an application

= Specifying modifications of the database structure for an application

= Relaying this information to a database administrator

s Tuning the application during development

= Establishing security measures for an application during development

Application developers can perform some of these tasks in collaboration with DBAs.
Please refer to Oracle Database Advanced Application Developer’s Guide for information
about application development tasks.

Application Administrators

An Oracle Database site can assign one or more application administrators to
administer a particular application. Each application can have its own administrator.

Database Users

Database users interact with the database through applications or utilities. A typical
user's responsibilities include the following tasks:

» Entering, modifying, and deleting data, where permitted

= Generating reports from the data

Tasks of a Database Administrator

The following tasks present a prioritized approach for designing, implementing, and
maintaining an Oracle Database:

Task 1: Evaluate the Database Server Hardware
Task 2: Install the Oracle Database Software
Task 3: Plan the Database

Task 4: Create and Open the Database

Task 5: Back Up the Database

Task 6: Enroll System Users

Task 7: Implement the Database Design

Task 8: Back Up the Fully Functional Database
Task 9: Tune Database Performance

Task 10: Download and Install Patches

Task 11: Roll Out to Additional Hosts

These tasks are discussed in the sections that follow.

Note: When upgrading to a new release, back up your existing
production environment, both software and database, before
installation. For information on preserving your existing
production database, see Oracle Database Upgrade Guide.

Overview of Administering an Oracle Database 1-3

Tasks of a Database Administrator

Task 1: Evaluate the Database Server Hardware

Evaluate how Oracle Database and its applications can best use the available computer
resources. This evaluation should reveal the following information:

» How many disk drives are available to the Oracle products
» How many, if any, dedicated tape drives are available to Oracle products

s How much memory is available to the instances of Oracle Database you will run
(see your system configuration documentation)

Task 2: Install the Oracle Database Software

As the database administrator, you install the Oracle Database server software and any
front-end tools and database applications that access the database. In some distributed
processing installations, the database is controlled by a central computer (database
server) and the database tools and applications are executed on remote computers
(clients). In this case, you must also install the Oracle Net components necessary to
connect the remote machines to the computer that executes Oracle Database.

For more information on what software to install, see "Identifying Your Oracle
Database Software Release" on page 1-7.

See Also: For specific requirements and instructions for
installation, refer to the following documentation:
s The Oracle documentation specific to your operating system

s The installation guides for your front-end tools and Oracle Net
drivers

Task 3: Plan the Database

As the database administrator, you must plan:

s The logical storage structure of the database
» The overall database design

= A backup strategy for the database

It is important to plan how the logical storage structure of the database will affect
system performance and various database management operations. For example,
before creating any tablespaces for your database, you should know how many
datafiles will make up the tablespace, what type of information will be stored in each
tablespace, and on which disk drives the datafiles will be physically stored. When
planning the overall logical storage of the database structure, take into account the
effects that this structure will have when the database is actually created and running.
Consider how the logical storage structure of the database will affect:

s The performance of the computer executing running Oracle Database
» The performance of the database during data access operations
= The efficiency of backup and recovery procedures for the database

Plan the relational design of the database objects and the storage characteristics for
each of these objects. By planning the relationship between each object and its physical
storage before creating it, you can directly affect the performance of the database as a
unit. Be sure to plan for the growth of the database.

1-4 Oracle Database Administrator’s Guide

Tasks of a Database Administrator

In distributed database environments, this planning stage is extremely important. The
physical location of frequently accessed data dramatically affects application
performance.

During the planning stage, develop a backup strategy for the database. You can alter
the logical storage structure or design of the database to improve backup efficiency.

It is beyond the scope of this book to discuss relational and distributed database
design. If you are not familiar with such design issues, please refer to accepted
industry-standard documentation.

Part II, "Oracle Database Structure and Storage", and Part III, "Schema Objects",
provide specific information on creating logical storage structures, objects, and
integrity constraints for your database.

Task 4: Create and Open the Database

After you complete the database design, you can create the database and open it for
normal use. You can create a database at installation time, using the Database
Configuration Assistant, or you can supply your own scripts for creating a database.

Please refer to Chapter 2, "Creating and Configuring an Oracle Database", for
information on creating a database and Chapter 3, "Starting Up and Shutting Down"
for guidance in starting up the database.

Task 5: Back Up the Database

After you create the database structure, carry out the backup strategy you planned for
the database. Create any additional redo log files, take the first full database backup
(online or offline), and schedule future database backups at regular intervals.

See Also: Oracle Database Backup and Recovery User’s Guide

Task 6: Enroll System Users

After you back up the database structure, you can enroll the users of the database in
accordance with your Oracle license agreement, and grant appropriate privileges and
roles to these users. Please refer to Chapter 6, "Managing Users and Securing the
Database" for guidance in this task.

Task 7: Implement the Database Design

After you create and start the database, and enroll the system users, you can
implement the planned logical structure database by creating all necessary
tablespaces. When you have finished creating tablespaces, you can create the database
objects.

Part II, "Oracle Database Structure and Storage" and Part III, "Schema Objects" provide
information on creating logical storage structures and objects for your database.

Task 8: Back Up the Fully Functional Database

When the database is fully implemented, again back up the database. In addition to
regularly scheduled backups, you should always back up your database immediately
after implementing changes to the database structure.

Overview of Administering an Oracle Database 1-5

Tasks of a Database Administrator

Task 9: Tune Database Performance

Optimizing the performance of the database is one of your ongoing responsibilities as
a DBA. Oracle Database provides a database resource management feature that helps
you to control the allocation of resources among various user groups. The database
resource manager is described in Chapter 25, "Managing Resource Allocation with
Oracle Database Resource Manager".

See Also: Oracle Database Performance Tuning Guide for
information about tuning your database and applications

Task 10: Download and Install Patches

After installation and on a regular basis, download and install patches. Patches are
available as single interim patches and as patchsets (or patch releases). Interim
patches address individual software bugs and may or may not be needed at your
installation. Patch releases are collections of bug fixes that are applicable for all
customers. Patch releases have release numbers. For example, if you installed Oracle
Database 10.2.0.0, the first patch release will have a release number of 10.2.0.1.

See Also: Oracle Database Installation Guide for your platform for
instructions on downloading and installing patches.

Task 11: Roll Out to Additional Hosts

After you have an Oracle Database installation properly configured, tuned, patched,
and tested, you may want to roll that exact installation out to other hosts. Reasons to
do this include the following;:

= You have multiple production database systems.

= You want to create development and test systems that are identical to your
production system.

Instead of installing, tuning, and patching on each additional host, you can clone your
tested Oracle Database installation to other hosts, saving time and eliminating
inconsistencies. There are two types of cloning available to you:

s Cloning an Oracle home—TJust the configured and patched binaries from the
Oracle home directory and subdirectories are copied to the destination host and
"fixed" to match the new environment. You can then start an instance with this
cloned home and create a database.

You can use the Enterprise Manager Clone Oracle Home tool to clone an Oracle
home to one or more destination hosts. You can also manually clone an Oracle
home using a set of provided scripts and Oracle Universal Installer.

s Cloning a database—The tuned database, including database files, initialization
parameters, and so on, are cloned to an existing Oracle home (possibly a cloned
home).

You can use the Enterprise Manager Clone Database tool to clone an Oracle
database instance to an existing Oracle home.
See Also:

» Oracle Universal Installer and OPatch User’s Guide and Enterprise
Manager online help for details on how to clone an Oracle home.

= Enterprise Manager online help for instructions for cloning a
database.

1-6 Oracle Database Administrator's Guide

Identifying Your Oracle Database Software Release

Selecting an Instance with Environment Variables

Before you attempt to use SQL*Plus to connect locally to an Oracle instance, you must
ensure that environment variables are set properly. When multiple database instances
exist on one server, or when an Automatic Storage Management (ASM) instance exists
on the same server as one or more database instances, the environment variables
determine which instance SQL*Plus connects to. (This is also true when there is only
one Oracle instance on a server.)

For example, each Oracle instance (database or ASM) has a unique system identifier
(SID). To connect to an instance, you must at a minimum set the ORACLE_SID
environment variable to the SID of that instance. Depending on the operating system,
you may need to set other environment variables to properly change from one instance
to another.

Refer to the Oracle Database Installation Guide or administration guide for your
operating system for details on environment variables and for information on
switching instances.

Note: This discussion applies only when you make a local
connection—that is, when you initiate a SQL*Plus connection from the
same machine on which the target instance resides, without specifying
an Oracle Net Services connect identifier. When you make a
connection through Oracle Net Services, either with SQL*Plus on the
local or a remote machine, or with Enterprise Manager, the
environment is automatically set for you.

For more information on connect identifiers, see Oracle Database Net
Services Administrator’s Guide.

Solaris Example

The following Solaris example sets the environment variables that are required for
selecting an instance. When switching between instances with different Oracle homes,
the ORACLE_HOME environment variable must be changed.

% setenv ORACLE_SID SALL
setenv ORACLE_HOME /u0l/app/oracle/product/10.1.0/db_1
setenv LD_LIBRARY PATH /usr/lib:/usr/dt/lib:/usr/openwin/lib:/usr/ccs/lib

oe

oe

Most UNIX installations come with two scripts, oraenv and coraenv, that can be
used to easily set these environment variables. For more information, see
Administrator’s Reference for UNIX Systems.

Windows Example

On Windows, you must set only the ORACLE_SID environment variable to select an
instance before starting SQL*Plus.

SET ORACLE_SID=SAL1

Identifying Your Oracle Database Software Release

Because Oracle Database continues to evolve and can require maintenance, Oracle
periodically produces new releases. Not all customers initially subscribe to a new
release or require specific maintenance for their existing release. As a result, multiple
releases of the product exist simultaneously.

Overview of Administering an Oracle Database 1-7

Identifying Your Oracle Database Software Release

As many as five numbers may be required to fully identify a release. The significance
of these numbers is discussed in the sections that follow.

Release Number Format

To understand the release nomenclature used by Oracle, examine the following
example of an Oracle Database server labeled "Release 10.1.0.1.0".

Figure 1-1 Example of an Oracle Database Release Number

10.1.0.1.0

Major database J L Platform specific

release number release number

Database maintenance Component specific
release number release number

Application server
release number

Note: Starting with release 9.2, maintenance releases of Oracle
Database are denoted by a change to the second digit of a release
number. In previous releases, the third digit indicated a particular
maintenance release.

Major Database Release Number

The first digit is the most general identifier. It represents a major new version of the
software that contains significant new functionality.

Database Maintenance Release Number

The second digit represents a maintenance release level. Some new features may also
be included.

Application Server Release Number
The third digit reflects the release level of the Oracle Application Server (OracleAS).

Component-Specific Release Number

The fourth digit identifies a release level specific to a component. Different
components can have different numbers in this position depending upon, for example,
component patch sets or interim releases.

Platform-Specific Release Number

The fifth digit identifies a platform-specific release. Usually this is a patch set. When
different platforms require the equivalent patch set, this digit will be the same across
the affected platforms.

Checking Your Current Release Number

To identify the release of Oracle Database that is currently installed and to see the
release levels of other database components you are using, query the data dictionary
view PRODUCT_COMPONENT_VERSION. A sample query follows. (You can also query

1-8 Oracle Database Administrator's Guide

Database Administrator Security and Privileges

the VSVERSION view to see component-level information.) Other product release
levels may increment independent of the database server.

COL PRODUCT FORMAT A35
COL VERSION FORMAT Al5
COL STATUS FORMAT Al5
SELECT * FROM PRODUCT_COMPONENT_VERSION;

PRODUCT VERSION STATUS
NLSRTL 10.2.0.1.0 Production
Oracle Database 10g Enterprise Edition 10.2.0.1.0 Prod
PL/SQL 10.2.0.1.0 Production

It is important to convey to Oracle the results of this query when you report problems
with the software.

Database Administrator Security and Privileges

To perform the administrative tasks of an Oracle Database DBA, you need specific
privileges within the database and possibly in the operating system of the server on
which the database runs. Access to a database administrator's account should be
tightly controlled.

This section contains the following topics:
s The Database Administrator's Operating System Account

s Database Administrator Usernames

The Database Administrator's Operating System Account

To perform many of the administrative duties for a database, you must be able to
execute operating system commands. Depending on the operating system on which
Oracle Database is running, you might need an operating system account or ID to gain
access to the operating system. If so, your operating system account might require
operating system privileges or access rights that other database users do not require
(for example, to perform Oracle Database software installation). Although you do not
need the Oracle Database files to be stored in your account, you should have access to
them.

See Also: Your operating system specific Oracle documentation.
The method of creating the account of the database administrator is
specific to the operating system.

Database Administrator Usernames

Two user accounts are automatically created when Oracle Database is installed:
m SYS (default password: CHANGE_ON_INSTALL)

= SYSTEM (default password: MANAGER)

Overview of Administering an Oracle Database 1-9

Database Administrator Security and Privileges

Note: Both Oracle Universal Installer (OUI) and Database
Configuration Assistant (DBCA) now prompt for SYS and SYSTEM
passwords and do not accept the default passwords
"change_on_install" or "manager", respectively.

If you create the database manually, Oracle strongly recommends
that you specify passwords for SYS and SYSTEM at database
creation time, rather than using these default passwords. Please
refer to "Protecting Your Database: Specifying Passwords for Users
SYS and SYSTEM" on page 2-10 for more information.

Create at least one additional administrative user and grant to that user an appropriate
administrative role to use when performing daily administrative tasks. Do not use SYS
and SYSTEM for these purposes.

Note Regarding Security Enhancements: In this release of Oracle
Database and in subsequent releases, several enhancements are
being made to ensure the security of default database user
accounts. You can find a security checklist for this release in Oracle
Database Security Guide. Oracle recommends that you read this
checklist and configure your database accordingly.

SYS

When you create an Oracle Database, the user SYS is automatically created and
granted the DBA role.

All of the base tables and views for the database data dictionary are stored in the
schema SYS. These base tables and views are critical for the operation of Oracle
Database. To maintain the integrity of the data dictionary, tables in the SYS schema are
manipulated only by the database. They should never be modified by any user or
database administrator, and no one should create any tables in the schema of user SYS.
(However, you can change the storage parameters of the data dictionary settings if
necessary.)

Ensure that most database users are never able to connect to Oracle Database using the
SYS account.

SYSTEM

When you create an Oracle Database, the user SYSTEM is also automatically created
and granted the DBA role.

The SYSTEM username is used to create additional tables and views that display
administrative information, and internal tables and views used by various Oracle
Database options and tools. Never use the SYSTEM schema to store tables of interest to
non-administrative users.

The DBA Role

A predefined DBA role is automatically created with every Oracle Database
installation. This role contains most database system privileges. Therefore, the DBA
role should be granted only to actual database administrators.

1-10 Oracle Database Administrator's Guide

Database Administrator Authentication

Note: The DBA role does not include the SYSDBA or SYSOPER
system privileges. These are special administrative privileges that
allow an administrator to perform basic database administration
tasks, such as creating the database and instance startup and
shutdown. These system privileges are discussed in
"Administrative Privileges" on page 1-11.

Database Administrator Authentication

As a DBA, you often perform special operations such as shutting down or starting up
a database. Because only a DBA should perform these operations, the database
administrator usernames require a secure authentication scheme.

This section contains the following topics:

Administrative Privileges
Selecting an Authentication Method for Database Administrators
Using Operating System Authentication

Using Password File Authentication

Administrative Privileges

Administrative privileges that are required for an administrator to perform basic
database operations are granted through two special system privileges, SYSDBA and
SYSOPER. You must have one of these privileges granted to you, depending upon the
level of authorization you require.

Note: The SYSDBA and SYSOPER system privileges allow access
to a database instance even when the database is not open. Control
of these privileges is totally outside of the database itself.

The SYSDBA and SYSOPER privileges can also be thought of as
types of connections that enable you to perform certain database
operations for which privileges cannot be granted in any other
fashion. For example, you if you have the SYSDBA privilege, you
can connect to the database by specifying CONNECT AS SYSDBA.

SYSDBA and SYSOPER

The following operations are authorized by the SYSDBA and SYSOPER system
privileges:

Overview of Administering an Oracle Database 1-11

Database Administrator Authentication

System Privilege Operations Authorized

SYSDBA s Perform STARTUP and SHUTDOWN operations
= ALTER DATABASE: open, mount, back up, or change character set
L] CREATE DATABASE
L] DROP DATABASE
L] CREATE SPFILE
L] ALTER DATABASE ARCHIVELOG
L] ALTER DATABASE RECOVER
s Includes the RESTRICTED SESSION privilege

Effectively, this system privilege allows a user to connect as user SYS.

SYSOPER s Perform STARTUP and SHUTDOWN operations
= CREATE SPFILE
= ALTER DATABASE OPEN/MOUNT/BACKUP
= ALTER DATABASE ARCHIVELOG

= ALTER DATABASE RECOVER (Complete recovery only. Any form
of incomplete recovery, such as UNTIL
TIME | CHANGE | CANCEL | CONTROLFILE requires connecting as
SYSDBA.)

s Includes the RESTRICTED SESSION privilege

This privilege allows a user to perform basic operational tasks, but
without the ability to look at user data.

The manner in which you are authorized to use these privileges depends upon the
method of authentication that you use.

When you connect with SYSDBA or SYSOPER privileges, you connect with a default
schema, not with the schema that is generally associated with your username. For
SYSDBA this schema is SYS; for SYSOPER the schema is PUBLIC.

Connecting with Administrative Privileges: Example

This example illustrates that a user is assigned another schema (SYS) when connecting
with the SYSDBA system privilege. Assume that the sample user oe has been granted
the SYSDBA system privilege and has issued the following statements:

CONNECT oe/oe
CREATE TABLE admin_test (name VARCHAR2 (20));

Later, user oe issues these statements:

CONNECT oe/oe AS SYSDBA
SELECT * FROM admin_test;

User oe now receives the following error:

ORA-00942: table or view does not exist

Having connected as SYSDBA, user oe now references the SYS schema, but the table
was created in the oe schema.

See Also:
= "Using Operating System Authentication" on page 1-14
s "Using Password File Authentication" on page 1-15

1-12 Oracle Database Administrator’s Guide

Database Administrator Authentication

Selecting an Authentication Method for Database Administrators

Database Administrators can authenticate through the database data dictionary, (using
an account password) like other users. Keep in mind that beginning with Oracle
Database 11g Release 1, database passwords are case sensitive. (You can disable case
sensitivity and return to pre-Release 11g behavior by setting the
SEC_CASE_SENSITIVE_LOGON initialization parameter to FALSE.)

In addition to normal data dictionary authentication, the following methods are
available for authenticating database administrators with the SYSDBA or SYSOPER
privilege:

= Operating system (OS) authentication
= A password file

These methods are required to authenticate a database administrator when the
database is not started or otherwise unavailable. (They can also be used when the
database is available.)

Notes:

s These methods replace the CONNECT INTERNAL syntax
provided with earlier versions of Oracle Database. CONNECT
INTERNAL is no longer supported.

= Operating system authentication takes precedence over
password file authentication. If you meet the requirements for
operating system authentication, then even if you use a
password file, you will be authenticated by operating system
authentication.

Your choice will be influenced by whether you intend to administer your database
locally on the same machine where the database resides, or whether you intend to
administer many different databases from a single remote client. Figure 1-2 illustrates
the choices you have for database administrator authentication schemes.

Figure 1-2 Database Administrator Authentication Methods

Remote Database Local Database
Administration Administration

Do you Do you
have a secure Yes want to use OS Yes Use OS
connection? authentication? authentication
Use a

» | password file

Overview of Administering an Oracle Database 1-13

Database Administrator Authentication

If you are performing remote database administration, consult your Oracle Net
documentation to determine whether you are using a secure connection. Most popular
connection protocols, such as TCP/IP and DECnet, are not secure.

See Also: Oracle Database Net Services Administrator’s Guide

Nonsecure Remote Connections

To connect to Oracle Database as a privileged user over a nonsecure connection, you
must be authenticated by a password file. When using password file authentication,
the database uses a password file to keep track of database usernames that have been
granted the SYSDBA or SYSOPER system privilege. This form of authentication is
discussed in "Using Password File Authentication" on page 1-15.

Local Connections and Secure Remote Connections

You can connect to Oracle Database as a privileged user over a local connection or a
secure remote connection in two ways:

» If the database has a password file and you have been granted the SYSDBA or
SYSOPER system privilege, then you can connect and be authenticated by a
password file.

» If the server is not using a password file, or if you have not been granted SYSDBA
or SYSOPER privileges and are therefore not in the password file, you can use
operating system authentication. On most operating systems, authentication for
database administrators involves placing the operating system username of the
database administrator in a special group, generically referred to as OSDBA. Users
in that group are granted SYSDBA privileges. A similar group, OSOPER, is used to
grant SYSOPER privileges to users.

Using Operating System Authentication

This section describes how to authenticate an administrator using the operating
system.

OSDBA and OSOPER

Two special operating system groups control database administrator connections
when using operating system authentication. These groups are generically referred to
as OSDBA and OSOPER. The groups are created and assigned specific names as part
of the database installation process. The specific names vary depending upon your
operating system and are listed in the following table:

Operating System Group UNIX User Group Windows User Group
OSDBA dba ORA_DBA
OSOPER oper ORA_OPER

The default names assumed by the Oracle Universal Installer can be overridden. How
you create the OSDBA and OSOPER groups is operating system specific.

Membership in the OSDBA or OSOPER group affects your connection to the database
in the following ways:

= If you are a member of the OSDBA group and you specify AS SYSDBA when you
connect to the database, then you connect to the database with the SYSDBA system
privilege.

1-14 Oracle Database Administrator’s Guide

Database Administrator Authentication

= If you are a member of the OSOPER group and you specify AS SYSOPER when
you connect to the database, then you connect to the database with the SYSOPER
system privilege.

s If you are not a member of either of these operating system groups and you
attempt to connect as SYSDBA or SYSOPER, the CONNECT command fails.

See Also: Your operating system specific Oracle documentation
for information about creating the OSDBA and OSOPER groups

Preparing to Use Operating System Authentication
To enable operating system authentication of an administrative user:

1. Create an operating system account for the user.

2. Add the account to the OSDBA or OSOPER operating system defined groups.

Connecting Using Operating System Authentication

A user can be authenticated, enabled as an administrative user, and connected to a
local database by typing one of the following SQL*Plus commands:

CONNECT / AS SYSDBA
CONNECT / AS SYSOPER
For a remote database connection over a secure connection, the user must also specify

the net service name of the remote database:

CONNECT /@net_service_name AS SYSDBA
CONNECT /@net_service_name AS SYSOPER

See Also: SQL*Plus User’s Guide and Reference for syntax of the
CONNECT command

Using Password File Authentication

This section describes how to authenticate an administrative user using password file
authentication.

Preparing to Use Password File Authentication

To enable authentication of an administrative user using password file authentication
you must do the following:

1. If not already created, create the password file using the ORAPWD utility:

ORAPWD FILE=filename PASSWORD=password ENTRIES=max_users

Notes:

s When you invoke Database Configuration Assistant (DBCA) as
part of the Oracle Database installation process, DBCA creates a
password file.

= Beginning with Oracle Database 11g Release 1, passwords in the
password file are case sensitive unless you include the
IGNORECASE = Y command-line argument.

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLUSIVE.
(This is the default).

Overview of Administering an Oracle Database 1-15

Database Administrator Authentication

Note: REMOTE_LOGIN_ PASSWORDFILE is a static initialization
parameter and therefore cannot be changed without restarting the
database.

3. Connect to the database as user SYS (or as another user with the administrative
privileges).

4, If the user does not already exist in the database, create the user and assign a
password.

Keep in mind that beginning with Oracle Database 11g Release 1, database
passwords are case sensitive. (You can disable case sensitivity and return to
pre—Release 11g behavior by setting the SEC_CASE_SENSITIVE_LOGON
initialization parameter to FALSE.

5. Grant the SYSDBA or SYSOPER system privilege to the user:

GRANT SYSDBA to oe;

This statement adds the user to the password file, thereby enabling connection AS
SYSDBA.

See Also: "Creating and Maintaining a Password File" on
page 1-17 for instructions for creating and maintaining a password
file.

Connecting Using Password File Authentication

Administrative users can be connected and authenticated to a local or remote database
by using the SQL*Plus CONNECT command. They must connect using their username
and password and the AS SYSDBA or AS SYSOPER clause. Note that beginning with
Oracle Database 11g Release 1, passwords are case-sensitive unless the password file
was created with the IGNORECASE = Y option..

For example, user oe has been granted the SYSDBA privilege, so oe can connect as
follows:

CONNECT oe/oe AS SYSDBA
However, user oe has not been granted the SYSOPER privilege, so the following
command will fail:

CONNECT oe/oe AS SYSOPER

Note: Operating system authentication takes precedence over
password file authentication. Specifically, if you are a member of
the OSDBA or OSOPER group for the operating system, and you
connect as SYSDBA or SYSOPER, you will be connected with
associated administrative privileges regardless of the
username/password that you specify.

If you are not in the OSDBA or OSOPER groups, and you are not in
the password file, then attempting to connect as SYSDBA or as
SYSOPER fails.

See Also: SQL*Plus User’s Guide and Reference for syntax of the
CONNECT command

1-16 Oracle Database Administrator's Guide

Creating and Maintaining a Password File

Creating and Maintaining a Password File

You can create a password file using the password file creation utility, ORAPWD. For
some operating systems, you can create this file as part of your standard installation.

This section contains the following topics:

s Using ORAPWD

s Setting REMOTE_LOGIN_ PASSWORDFILE
= Adding Users to a Password File

= Maintaining a Password File

See Also:
s "Using Password File Authentication" on page 1-15

» "Selecting an Authentication Method for Database
Administrators" on page 1-13

Using ORAPWD
The syntax of the ORAPWD command is as follows:

ORAPWD FILE=filename PASSWORD=password [ENTRIES=numusers]
[FORCE={Y|N}] [IGNORECASE={Y|N}] [NOSYSDBA={Y|N}]

Command parameters are summarized in the following table.

Parameter Description

FILE Name to assign to the password file. See your operating system
documentation for name requirements. You must supply a complete path. If
you supply only a file name, the file is written to the current directory.

PASSWORD The sYS user password. The SYS user name and password are written to the
file.

ENTRIES (Optional) Maximum number of entries (user accounts) to permit in the file.

FORCE (Optional) If y, permits overwriting an existing password file.

IGNORECASE (Optional) If y, passwords are treated as case-insensitive.

NOSYSDBA (Optional) For Data Vault installations. See the Data Vault installation guide
for your platform for more information.

There are no spaces permitted around the equal-to (=) character.

The following command creates a password file named orapworcl that allows up to
30 privileged users with different passwords. In this example, the file is initially
created with the password secret for users connecting as SYS.

orapwd FILE=orapworcl PASSWORD=secret ENTRIES=30

The parameters in the ORAPWD utility are described in detail in the sections that follow.

FILE

This parameter sets the name of the password file being created. You must specify the
full path name for the file. If you supply only a file name, the file is written to the
current directory. The contents of this file are encrypted, and the file cannot be read
directly. This parameter is mandatory.

Overview of Administering an Oracle Database 1-17

Creating and Maintaining a Password File

The types of filenames allowed for the password file are operating system specific.
Some operating systems require the password file to adhere to a specific format and be
located in a specific directory. Other operating systems allow the use of environment
variables to specify the name and location of the password file. For name and location
information for the Unix and Linux operating systems, see Administrator’s Reference for
UNIX-Based Operating Systems. For Windows, see Platform Guide for Microsoft Windows.
For other operating systems, see your operating system documentation.

If you are running multiple instances of Oracle Database using Oracle Real
Application Clusters, the environment variable for each instance should point to the
same password file.

Caution: It is critically important to the security of your system
that you protect your password file and the environment variables
that identify the location of the password file. Any user with access
to these could potentially compromise the security of the
connection.

PASSWORD

This parameter sets the password for user SYS. If you issue the ALTER USER
statement to change the password for SYS after connecting to the database, both the
password stored in the data dictionary and the password stored in the password file
are updated. This parameter is mandatory.

Note: You cannot change the password for SYS if
REMOTE_LOGIN_PASSWORDFILE is set to SHARED. An error
message is issued if you attempt to do so.

ENTRIES

This parameter specifies the number of entries that you require the password file to
accept. This number corresponds to the number of distinct users allowed to connect to
the database as SYSDBA or SYSOPER. The actual number of allowable entries can be
higher than the number of users, because the ORAPWD utility continues to assign
password entries until an operating system block is filled. For example, if your
operating system block size is 512 bytes, it holds four password entries. The number of
password entries allocated is always a multiple of four.

Entries can be reused as users are added to and removed from the password file. If
you intend to specify REMOTE_LOGIN_PASSWORDFILE=EXCLUSIVE, and to allow the
granting of SYSDBA and SYSOPER privileges to users, this parameter is required.

Caution: When you exceed the allocated number of password
entries, you must create a new password file. To avoid this
necessity, allocate a number of entries that is larger than you think
you will ever need.

FORCE

This parameter, if set to Y, enables you to overwrite an existing password file. An error
is returned if a password file of the same name already exists and this parameter is
omitted or set to N.

1-18 Oracle Database Administrator's Guide

Creating and Maintaining a Password File

IGNORECASE

If this parameter is set to y, passwords are case-insensitive. That is, case is ignored
when comparing the password that the user supplies during login with the password
in the password file.

See Also: Oracle Database Security Guide for more information about
case-sensitivity in passwords.

Setting REMOTE_LOGIN_ PASSWORDFILE

In addition to creating the password file, you must also set the initialization parameter
REMOTE_LOGIN_PASSWORDFILE to the appropriate value. The values recognized are:

= NONE: Setting this parameter to NONE causes Oracle Database to behave as if the
password file does not exist. That is, no privileged connections are allowed over
nonsecure connections.

s EXCLUSIVE: (The default) An EXCLUSIVE password file can be used with only
one instance of one database. Only an EXCLUSIVE file can be modified. Using an
EXCLUSIVE password file enables you to add, modify, and delete users. It also
enables you to change the SYS password with the ALTER USER command.

= SHARED: A SHARED password file can be used by multiple databases running on
the same server, or multiple instances of an Oracle Real Application Clusters
(RAC) database. A SHARED password file cannot be modified. This means that you
cannot add users to a SHARED password file. Any attempt to do so or to change
the password of SYS or other users with the SYSDBA or SYSOPER privileges
generates an error. All users needing SYSDBA or SYSOPER system privileges must
be added to the password file when REMOTE_LOGIN_PASSWORDFILE is set to
EXCLUSIVE. After all users are added, you can change
REMOTE_LOGIN_PASSWORDFILE to SHARED, and then share the file.

This option is useful if you are administering multiple databases or a RAC
database.

If REMOTE_LOGIN_PASSWORDFILE is set to EXCLUSIVE or SHARED and the password
file is missing, this is equivalent to setting REMOTE_LOGIN_PASSWORDFILE to NONE.

Adding Users to a Password File

When you grant SYSDBA or SYSOPER privileges to a user, that user's name and
privilege information are added to the password file. If the server does not have an
EXCLUSIVE password file (that is, if the initialization parameter
REMOTE_LOGIN_PASSWORDFILE is NONE or SHARED, or the password file is missing),
Oracle Database issues an error if you attempt to grant these privileges.

A user's name remains in the password file only as long as that user has at least one of
these two privileges. If you revoke both of these privileges, Oracle Database removes
the user from the password file.

Creating a Password File and Adding New Users to It
Use the following procedure to create a password and add new users to it:

1. Pollow the instructions for creating a password file as explained in "Using
ORAPWD" on page 1-17.

2, Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLUSIVE.
(This is the default.)

Overview of Administering an Oracle Database 1-19

Creating and Maintaining a Password File

Note: REMOTE_LOGIN_ PASSWORDFILE is a static initialization
parameter and therefore cannot be changed without restarting the
database.

3. Connect with SYSDBA privileges as shown in the following example:

CONNECT SYS/password AS SYSDBA

4. Start up the instance and create the database if necessary, or mount and open an
existing database.

5. Create users as necessary. Grant SYSDBA or SYSOPER privileges to yourself and
other users as appropriate. See "Granting and Revoking SYSDBA and SYSOPER
Privileges", later in this section.

Granting and Revoking SYSDBA and SYSOPER Privileges

If your server is using an EXCLUSIVE password file, use the GRANT statement to grant
the SYSDBA or SYSOPER system privilege to a user, as shown in the following
example:

GRANT SYSDBA TO oe;

Use the REVOKE statement to revoke the SYSDBA or SYSOPER system privilege from a
user, as shown in the following example:

REVOKE SYSDBA FROM oe;

Because SYSDBA and SYSOPER are the most powerful database privileges, the WITH
ADMIN OPTION is not used in the GRANT statement. That is, the grantee cannot in turn
grant the SYSDBA or SYSOPER privilege to another user. Only a user currently
connected as SYSDBA can grant or revoke another user's SYSDBA or SYSOPER system
privileges. These privileges cannot be granted to roles, because roles are available only
after database startup. Do not confuse the SYSDBA and SYSOPER database privileges
with operating system roles.

See Also: Oracle Database Security Guide for more information on
system privileges

Viewing Password File Members

Use the VSPWFILE_USERS view to see the users who have been granted SYSDBA or
SYSOPER system privileges for a database. The columns displayed by this view are as

follows:

Column Description

USERNAME This column contains the name of the user that is recognized by the
password file.

SYSDBA If the value of this column is TRUE, then the user can log on with
SYSDBA system privileges.

SYSOPER If the value of this column is TRUE, then the user can log on with

SYSOPER system privileges.

Maintaining a Password File

This section describes how to:

1-20 Oracle Database Administrator's Guide

Data Utilities

= Expand the number of password file users if the password file becomes full

= Remove the password file

Expanding the Number of Password File Users

If you receive the file full error (ORA-1996) when you try to grant SYSDBA or
SYSOPER system privileges to a user, you must create a larger password file and
regrant the privileges to the users.

Replacing a Password File
Use the following procedure to replace a password file:

1. Identify the users who have SYSDBA or SYSOPER privileges by querying the
VSPWFILE_USERS view.

2. Delete the existing password file.

3. Follow the instructions for creating a new password file using the ORAPWD utility
in "Using ORAPWD" on page 1-17. Ensure that the ENTRIES parameter is set to a
number larger than you think you will ever need.

4. Follow the instructions in "Adding Users to a Password File" on page 1-19.

Removing a Password File

If you determine that you no longer require a password file to authenticate users, you
can delete the password file and then optionally reset the
REMOTE_LOGIN_PASSWORDFILE initialization parameter to NONE. After you remove
this file, only those users who can be authenticated by the operating system can
perform SYSDBA or SYSOPER database administration operations.

Data Utilities

Oracle utilities are available to help you maintain the data in your Oracle Database.

SQL*Loader

SQL*Loader is used both by database administrators and by other users of Oracle
Database. It loads data from standard operating system files (such as, files in text or C
data format) into database tables.

Export and Import Utilities

The Data Pump utility enables you to archive data and to move existing data between
one Oracle Database and another. Also available is the original Import utility for
importing data from earlier releases. Beginning with Release 11g, the original Export
utility is desupported for general use and is recommended only in very specific
circumstances.

See Also: Oracle Database Utilities for detailed information about
these utilities

Overview of Administering an Oracle Database 1-21

Data Utilities

1-22 Oracle Database Administrator's Guide

2

Creating and Configuring an Oracle
Database

This chapter describes how to create and configure an Oracle Database, and contains
the following topics:

Deciding How to Create an Oracle Database

Manually Creating an Oracle Database

Understanding the CREATE DATABASE Statement
Understanding Initialization Parameters

Troubleshooting Database Creation

Dropping a Database

Managing Initialization Parameters Using a Server Parameter File
Defining Database Services

Considerations After Creating a Database

Database Data Dictionary Views

See Also:

s Chapter 15, "Using Oracle-Managed Files" for information
about creating a database whose underlying operating system
files are automatically created and managed by the Oracle
Database server

= Your platform-specific Oracle Real Application Clusters
Installation Guide for additional information specific to an
Oracle Real Application Clusters environment

Deciding How to Create an Oracle Database

You can create an Oracle Database in three ways:

Use the Database Configuration Assistant (DBCA).

DBCA can be launched by the Oracle Universal Installer, depending upon the type
of install that you select, and provides a graphical user interface (GUI) that guides
you through the creation of a database. You can also launch DBCA as a standalone
tool at any time after Oracle Database installation to create or make a copy (clone)
of a database. Refer to Oracle Database 2 Day DBA for detailed information on
creating a database using DBCA.

Creating and Configuring an Oracle Database 2-1

Manually Creating an Oracle Database

s Use the CREATE DATABASE statement.

You can use the CREATE DATABASE SQL statement to create a database. If you do
so, you must complete additional actions before you have an operational database.
These actions include creating users and temporary tablespaces, building views of
the data dictionary tables, and installing Oracle built-in packages. These actions
can be performed by executing prepared scripts, many of which are supplied for
you.

If you have existing scripts for creating your database, consider editing those
scripts to take advantage of new Oracle Database features. Oracle provides a
sample database creation script and a sample initialization parameter file with the
Oracle Database software files. Both the script and the file can be edited to suit
your needs. See "Manually Creating an Oracle Database" on page 2-2.

s Upgrade an existing database.

If you are already using a earlier release of Oracle Database, database creation is
required only if you want an entirely new database. You can upgrade your
existing Oracle Database and use it with the new release of the database software.
The Oracle Database Upgrade Guide manual contains information about upgrading
an existing Oracle Database.

The remainder of this chapter discusses creating a database manually.

Manually Creating an Oracle Database

This section takes you through the planning stage and the actual creation of the
database.

Considerations Before Creating the Database

Database creation prepares several operating system files to work together as an
Oracle Database. You need only create a database once, regardless of how many
datafiles it has or how many instances access it. You can create a database to erase
information in an existing database and create a new database with the same name
and physical structure.

The following topics can help prepare you for database creation.
= Planning for Database Creation

s Meeting Creation Prerequisites

Planning for Database Creation

Prepare to create the database by research and careful planning. Table 2-1 lists some
recommended actions:

Table 2-1 Database Planning Tasks

Action Additional Information
Plan the database tables and indexes and estimate the amount of Part II, "Oracle Database
space they will require. Structure and Storage"

Part III, "Schema Objects"

2-2 Oracle Database Administrator's Guide

Manually Creating an Oracle Database

Table 2-1 (Cont.) Database Planning Tasks

Action

Additional Information

Plan the layout of the underlying operating system files your
database will comprise. Proper distribution of files can improve
database performance dramatically by distributing the I/O during
file access. You can distribute I/O in several ways when you install
Oracle software and create your database. For example, you can
place redo log files on separate disks or use striping. You can situate
datafiles to reduce contention. And you can control data density
(number of rows to a data block).

Oracle Database
Performance Tuning Guide

Your Oracle operating
system specific
documentation

Consider using Oracle-managed files and Automatic Storage
Management to create and manage the operating system files that
make up your database storage.

Chapter 15, "Using
Oracle-Managed Files"

Oracle Database Storage
Administrator’s Guide

Select the global database name, which is the name and location of
the database within the network structure. Create the global
database name by setting both the DB_NAME and DB_DOMAIN
initialization parameters.

"Determining the Global
Database Name" on
page 2-21

Familiarize yourself with the initialization parameters contained in
the initialization parameter file. Become familiar with the concept
and operation of a server parameter file. A server parameter file
lets you store and manage your initialization parameters
persistently in a server-side disk file.

"Understanding
Initialization Parameters"
on page 2-19

"What Is a Server

Parameter File?" on
page 2-27

Oracle Database Reference

Select the database character set.

All character data, including data in the data dictionary, is stored in
the database character set. You must specify the database character
set when you create the database.

If clients using different character sets will access the database, then
choose a superset that includes all client character sets. Otherwise,
character conversions may be necessary at the cost of increased
overhead and potential data loss.

You can also specify an alternate character set.

Caution: AL32UTFS8 is the Oracle Database character set that is
appropriate for XMLType data. It is equivalent to the IANA
registered standard UTF -8 encoding, which supports all valid XML
characters.

Do not confuse Oracle Database database character set UTF8 (no
hyphen) with database character set AL32UTF8 or with character
encoding UTF-8. Database character set UTF8 has been superseded
by AL32UTF8. Do not use UTF8 for XML data. UTF8 supports only
Unicode version 3.1 and earlier; it does not support all valid XML
characters. AL32UTF8 has no such limitation.

Using database character set UTF8 for XML data could potentially
cause a fatal error or affect security negatively. If a character that is
not supported by the database character set appears in an
input-document element name, a replacement character (usually
"?") is substituted for it. This will terminate parsing and raise an
exception.

Oracle Database
Globalization Support
Guide

Consider what time zones your database must support.

Oracle Database uses one of two time zone files as the source of
valid time zones. The default time zone file is timezonelrg.dat.
It contains more time zones than the other time zone file,
timezone.dat.

"Specifying the Database
Time Zone File" on
page 2-17

Creating and Configuring an Oracle Database 2-3

Manually Creating an Oracle Database

Table 2-1 (Cont.) Database Planning Tasks

Action

Additional Information

Select the standard database block size. This is specified at database
creation by the DB_BLOCK_SIZE initialization parameter and
cannot be changed after the database is created.

The SYSTEM tablespace and most other tablespaces use the
standard block size. Additionally, you can specify up to four
nonstandard block sizes when creating tablespaces.

"Specifying Database
Block Sizes" on page 2-23

Determine the appropriate initial sizing for the SYSAUX tablespace.

"Creating the SYSAUX
Tablespace" on page 2-12

Plan to use a default tablespace for non-SYSTEM users to prevent
inadvertent saving of database objects in the SYSTEM tablespace.

"Creating a Default
Permanent Tablespace”
on page 2-14

Plan to use an undo tablespace to manage your undo data.

Chapter 14, "Managing
Undo"

Develop a backup and recovery strategy to protect the database
from failure. It is important to protect the control file by
multiplexing, to choose the appropriate backup mode, and to
manage the online and archived redo logs.

Chapter 10, "Managing
the Redo Log"

Chapter 11, "Managing
Archived Redo Logs"

Chapter 9, "Managing
Control Files"

Oracle Database Backup
and Recovery User’s Guide

Familiarize yourself with the principles and options of starting up
and shutting down an instance and mounting and opening a
database.

Chapter 3, "Starting Up
and Shutting Down"

Meeting Creation Prerequisites

Before you can create a new database, the following prerequisites must be met:

» The desired Oracle software must be installed. This includes setting various
environment variables unique to your operating system and establishing the

directory structure for software and database files.

= You must have the operating system privileges associated with a fully operational
database administrator. You must be specially authenticated by your operating
system or through a password file, allowing you to start up and shut down an
instance before the database is created or opened. This authentication is discussed

in "Database Administrator Authentication" on page 1-11.

= Sufficient memory must be available to start the Oracle Database instance.

= Sufficient disk storage space must be available for the planned database on the

computer that runs Oracle Database.

All of these are discussed in the Oracle Database Installation Guide specific to your
operating system. If you use the Oracle Universal Installer, it will guide you through
your installation and provide help in setting environment variables and establishing

directory structure and authorizations.

Creating the Database

This section presents the steps involved when you create a database manually. These
steps should be followed in the order presented. The prerequisites described in the
preceding section must already have been completed. That is, you have established the

2-4 Oracle Database Administrator's Guide

Manually Creating an Oracle Database

environment for creating your Oracle Database, including most operating system
dependent environmental variables, as part of the Oracle software installation process.

Step 1: Decide on Your Instance Identifier (SID)

Step 2: Establish the Database Administrator Authentication Method
Step 3: Create the Initialization Parameter File

Step 4: Connect to the Instance

Step 5: Create a Server Parameter File (Recommended)

Step 6: Start the Instance

Step 7: Issue the CREATE DATABASE Statement

Step 8: Create Additional Tablespaces

Step 9: Run Scripts to Build Data Dictionary Views

Step 10: Run Scripts to Install Additional Options (Optional)
Step 11: Back Up the Database.

The examples shown in these steps create an example database mynewdb.

Notes:

» The steps in this section contain cross-references to other parts
of this book and to other books. These cross-references take you
to material that will help you to learn about and understand
the initialization parameters and database structures with
which you are not yet familiar.

s If you are using Oracle Automatic Storage Management to
manage your disk storage, you must start the ASM instance
and configure your disk groups before performing the
following steps. For information about Automatic Storage
Management, see Oracle Database Storage Administrator’s Guide.

Step 1: Decide on Your Instance Identifier (SID)

An instance is made up of the system global area (SGA) and the background processes
of an Oracle Database. Decide on a unique Oracle system identifier (SID) for your
instance and set the ORACLE_SID environment variable accordingly. This identifier is
used to distinguish this instance from other Oracle Database instances that you may
create later and run concurrently on your system.

The following example for UNIX operating systems sets the SID for the instance that
you will connect to in Step 4: Connect to the Instance:

% setenv ORACLE_SID mynewdb

Step 2: Establish the Database Administrator Authentication Method

You must be authenticated and granted appropriate system privileges in order to
create a database. You can use the password file or operating system authentication
method. Database administrator authentication and authorization is discussed in the
following sections of this book:

s "Database Administrator Security and Privileges" on page 1-9

Creating and Configuring an Oracle Database 2-5

Manually Creating an Oracle Database

s "Database Administrator Authentication" on page 1-11

s "Creating and Maintaining a Password File" on page 1-17

Step 3: Create the Initialization Parameter File

When an Oracle instance starts, it reads an initialization parameter file. This file can be
a read-only text file, which must be modified with a text editor, or a read /write binary
tile, which can be modified dynamically by the database (for tuning) or with SQL
commands that you submit. The binary file, which is preferred, is called a server
parameter file. In this step, you create a text initialization parameter file. In a later
step, you can optionally create a server parameter file from the text file.

One way to create the text initialization parameter file is to edit a copy of the sample
initialization parameter file that Oracle provides on the distribution media, or the
sample presented in this book.

Note: On Unix operating systems, the Oracle Universal Installer
installs a sample text initialization parameter file in the following
location:

SORACLE_HOME/dbs/init.ora

For convenience, store your initialization parameter file in the Oracle Database default
location, using the default name. Then when you start your database, it will not be
necessary to specify the PFILE clause of the STARTUP command, because Oracle
Database automatically looks in the default location for the initialization parameter
file.

For name, location, and sample content for the initialization parameter file, and for a
discussion of how to set initialization parameters, see "Understanding Initialization
Parameters" on page 2-19.

Step 4: Connect to the Instance
Start SQL*Plus and connect to your Oracle Database instance AS SYSDBA.

$ SQLPLUS /nolog
CONNECT SYS/password AS SYSDBA

Step 5: Create a Server Parameter File (Recommended)

Oracle recommends that you create a server parameter file. The server parameter file
enables you to change initialization parameters with database commands and persist
the changes across a shutdown and startup. You create the server parameter file from
your edited text initialization file. For more information, see "Managing Initialization
Parameters Using a Server Parameter File" on page 2-27.

The following script creates a server parameter file from the text initialization
parameter file and writes it to the default location. The script can be executed before or
after instance startup, but after you connect as SYSDBA. The database must be
restarted before the server parameter file takes effect.

-- create the server parameter file

CREATE SPFILE='/u0l/oracle/dbs/spfilemynewdb.ora' FROM
PFILE='/u0l/oracle/admin/initmynewdb/scripts/init.ora';

SHUTDOWN

-- the next startup will use the server parameter file

EXIT

2-6 Oracle Database Administrator's Guide

Manually Creating an Oracle Database

Step 6: Start the Instance

Start an instance without mounting a database. Typically, you do this only during
database creation or while performing maintenance on the database. Use the STARTUP
command with the NOMOUNT clause. In this example, because the server parameter file
is stored in the default location, you are not required to specify the PFILE clause:

STARTUP NOMOUNT

At this point, the SGA is created and background processes are started in preparation
for the creation of a new database. The database itself does not yet exist.

See Also:

s "Managing Initialization Parameters Using a Server Parameter
File" on page 2-27

» Chapter 3, "Starting Up and Shutting Down", to learn how to
use the STARTUP command

Step 7: Issue the CREATE DATABASE Statement

To create the new database, use the CREATE DATABASE statement. The following
statement creates database mynewdb:

CREATE DATABASE mynewdb
USER SYS IDENTIFIED BY pz6r58
USER SYSTEM IDENTIFIED BY yltzb5p
LOGFILE GROUP 1 ('/uOl/oracle/oradata/mynewdb/redo0l.log') SIZE 100M,
GROUP 2 ('/u0l/oracle/oradata/mynewdb/redo02.log') SIZE 100M,
GROUP 3 ('/ul0l/oracle/oradata/mynewdb/redo03.log') SIZE 100M
MAXLOGFILES 5
MAXLOGMEMBERS 5
MAXLOGHISTORY 1
MAXDATAFILES 100
MAXINSTANCES 1
CHARACTER SET US7ASCII
NATIONAL CHARACTER SET AL16UTF16
DATAFILE '/u0l/oracle/oradata/mynewdb/system0l.dbf' SIZE 325M REUSE
EXTENT MANAGEMENT LOCAL
SYSAUX DATAFILE '/u0Ol/oracle/oradata/mynewdb/sysaux01.dbf' SIZE 325M REUSE
DEFAULT TABLESPACE tbs_1
DEFAULT TEMPORARY TABLESPACE temptsl
TEMPFILE '/u0Ol/oracle/oradata/mynewdb/temp0l.dbf"’
SIZE 20M REUSE
UNDO TABLESPACE undotbs
DATAFILE '/u0Ol/oracle/oradata/mynewdb/undotbs01.dbf"’
SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

A database is created with the following characteristics:

s The database is named mynewdb. Its global database name is
mynewdb.us.oracle.com. See "DB_NAME Initialization Parameter" and
"DB_DOMAIN Initialization Parameter" on page 2-22.

s Three control files are created as specified by the CONTROL_FILES initialization
parameter, which was set before database creation in the initialization parameter
file. See "Sample Initialization Parameter File" on page 2-20 and "Specifying
Control Files" on page 2-22.

s The password for user SYS is pz6r58 and the password for SYSTEM is y1tz5p.
The two clauses that specify the passwords for SYS and SYSTEM are not

Creating and Configuring an Oracle Database 2-7

Manually Creating an Oracle Database

mandatory in this release of Oracle Database. However, if you specify either
clause, you must specify both clauses. For further information about the use of
these clauses, see "Protecting Your Database: Specifying Passwords for Users SYS
and SYSTEM" on page 2-10.

s The new database has three redo log files as specified in the LOGFILE clause.
MAXLOGFILES, MAXLOGMEMBERS, and MAXLOGHISTORY define limits for the redo
log. See Chapter 10, "Managing the Redo Log".

= MAXDATAFILES specifies the maximum number of datafiles that can be open in
the database. This number affects the initial sizing of the control file.

Note: You can set several limits during database creation. Some of
these limits are limited by and affected by operating system limits.
For example, if you set MAXDATAFILES, Oracle Database allocates
enough space in the control file to store MAXDATAFILES filenames,
even if the database has only one datafile initially. However,
because the maximum control file size is limited and operating
system dependent, you might not be able to set all CREATE
DATABASE parameters at their theoretical maximums.

For more information about setting limits during database creation,
see the Oracle Database SQL Language Reference and your operating
system specific Oracle documentation.

= MAXINSTANCES specifies that only one instance can have this database mounted
and open.

s The US7ASCITI character set is used to store data in this database.

s The AL16UTF16 character set is specified as the NATIONAL CHARACTER SET,
used to store data in columns specifically defined as NCHAR, NCLOB, or
NVARCHAR2.

» The SYSTEM tablespace, consisting of the operating system file
/u0l/oracle/oradata/mynewdb/system01.dbf is created as specified by
the DATAFILE clause. If a file with that name already exists, it is overwritten.

» The SYSTEM tablespace is a locally managed tablespace. See "Creating a Locally
Managed SYSTEM Tablespace" on page 2-11.

= A SYSAUX tablespace is created, consisting of the operating system file
/u0l/oracle/oradata/mynewdb/sysaux01.dbf as specified in the SYSAUX
DATAFILE clause. See "Creating the SYSAUX Tablespace" on page 2-12.

s The DEFAULT TABLESPACE clause creates and names a default permanent
tablespace for this database.

s The DEFAULT TEMPORARY TABLESPACE clause creates and names a default
temporary tablespace for this database. See "Creating a Default Temporary
Tablespace" on page 2-14.

= The UNDO TABLESPACE clause creates and names an undo tablespace that is used
to store undo data for this database if you have specified
UNDO_MANAGEMENT=AUTO in the initialization parameter file. See "Using
Automatic Undo Management: Creating an Undo Tablespace" on page 2-13.

= Redo log files will not initially be archived, because the ARCHIVELOG clause is not
specified in this CREATE DATABASE statement. This is customary during database
creation. You can later use an ALTER DATABASE statement to switch to

2-8 Oracle Database Administrator's Guide

Manually Creating an Oracle Database

ARCHIVELOG mode. The initialization parameters in the initialization parameter
file for mynewdb relating to archiving are LOG_ARCHIVE_DEST_1 and
LOG_ARCHIVE_FORMAT. See Chapter 11, "Managing Archived Redo Logs".

See Also:
s "Understanding the CREATE DATABASE Statement” on
page 2-10

» Oracle Database SQL Language Reference for more information
about specifying the clauses and parameter values for the
CREATE DATABASE statement

Step 8: Create Additional Tablespaces

To make the database functional, you need to create additional files and tablespaces
for users. The following sample script creates some additional tablespaces:

CONNECT SYS/password AS SYSDBA
-- create a user tablespace to be assigned as the default tablespace for users
CREATE TABLESPACE users LOGGING
DATAFILE '/uOl/oracle/oradata/mynewdb/users0l.dbf’
SIZE 25M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED
EXTENT MANAGEMENT LOCAL;
-- create a tablespace for indexes, separate from user tablespace
CREATE TABLESPACE indx LOGGING
DATAFILE '/uOl/oracle/oradata/mynewdb/indx01.dbf"
SIZE 25M REUSE AUTOEXTEND ON NEXT 1280K MAXSIZE UNLIMITED
EXTENT MANAGEMENT LOCAL;

For information about creating tablespaces, see Chapter 12, "Managing Tablespaces".

Step 9: Run Scripts to Build Data Dictionary Views

Run the scripts necessary to build views, synonyms, and PL/SQL packages:
CONNECT SYS/password AS SYSDBA

@/ull/oracle/rdbms/admin/catalog.sql

@/ull/oracle/rdbms/admin/catproc.sql
EXIT

The following table contains descriptions of the scripts:

Script Description

CATALOG. SQL Creates the views of the data dictionary tables, the dynamic
performance views, and public synonyms for many of the views.
Grants PUBLIC access to the synonyms.

CATPROC. SQL Runs all scripts required for or used with PL/SQL.

Step 10: Run Scripts to Install Additional Options (Optional)

You may want to run other scripts. The scripts that you run are determined by the
features and options you choose to use or install. Many of the scripts available to you
are described in the Oracle Database Reference.

If you plan to install other Oracle products to work with this database, see the
installation instructions for those products. Some products require you to create
additional data dictionary tables. Usually, command files are provided to create and
load these tables into the database data dictionary.

Creating and Configuring an Oracle Database 2-9

Understanding the CREATE DATABASE Statement

See your Oracle documentation for the specific products that you plan to install for
installation and administration instructions.

Step 11: Back Up the Database.

Take a full backup of the database to ensure that you have a complete set of files from
which to recover if a media failure occurs. For information on backing up a database,
see Oracle Database Backup and Recovery User’s Guide.

Understanding the CREATE DATABASE Statement

When you execute a CREATE DATABASE statement, Oracle Database performs (at least)
a number of operations. The actual operations performed depend on the clauses that
you specify in the CREATE DATABASE statement and the initialization parameters that
you have set. Oracle Database performs at least these operations:

» Creates the datafiles for the database

» Creates the control files for the database

» Creates the redo log files for the database and establishes the ARCHIVELOG mode.
» Creates the SYSTEM tablespace

» Creates the SYSAUX tablespace

» Creates the data dictionary

= Sets the character set that stores data in the database

= Sets the database time zone

= Mounts and opens the database for use

This section discusses several of the clauses of the CREATE DATABASE statement. It
expands upon some of the clauses discussed in "Step 7: Issue the CREATE DATABASE
Statement" on page 2-7 and introduces additional ones. Many of the CREATE
DATABASES clauses discussed here can be used to simplify the creation and
management of your database.

The following topics are contained in this section:

= Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM
» Creating a Locally Managed SYSTEM Tablespace

» Creating the SYSAUX Tablespace

» Using Automatic Undo Management: Creating an Undo Tablespace

» Creating a Default Temporary Tablespace

= Specifying Oracle-Managed Files at Database Creation

= Supporting Bigfile Tablespaces During Database Creation

= Specifying the Database Time Zone and Time Zone File

s Specifying FORCE LOGGING Mode

Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM

The clauses of the CREATE DATABASE statement used for specifying the passwords for
users SYS and SYSTEM are:

m USER SYS IDENTIFIED BY password

2-10 Oracle Database Administrator's Guide

Understanding the CREATE DATABASE Statement

m USER SYSTEM IDENTIFIED BY password

If you omit these clauses, these users are assigned the default passwords
change_on_install and manager, respectively. A record is written to the alert log
indicating that the default passwords were used. To protect your database, you should
change these passwords using the ALTER USER statement immediately after database
creation.

Oracle strongly recommends that you specify these clauses, even though they are
optional in this release of Oracle Database. The default passwords are commonly
known, and if you neglect to change them later, you leave database vulnerable to
attack by malicious users.

See Also: "Some Security Considerations" on page 2-39

Creating a Locally Managed SYSTEM Tablespace

Specify the EXTENT MANAGEMENT LOCAL clause in the CREATE DATABASE statement
to create a locally managed SYSTEM tablespace. The COMPATIBLE initialization
parameter must be set to 10.0.0 or higher for this statement to be successful. If you do
not specify the EXTENT MANAGEMENT LOCAL clause, by default the database creates a
dictionary-managed SYSTEM tablespace. Dictionary-managed tablespaces are
deprecated.

Alocally managed SYSTEM tablespace has AUTOALLOCATE enabled by default, which
means that the system determines and controls the number and size of extents. You
may notice an increase in the initial size of objects created in a locally managed
SYSTEM tablespace because of the autoallocate policy. It is not possible to create a
locally managed SYSTEM tablespace and specify UNIFORM extent size.

When you create your database with a locally managed SYSTEM tablespace, ensure
that the following conditions are met:

= A default temporary tablespace must exist, and that tablespace cannot be the
SYSTEM tablespace.

To meet this condition, you can specify the DEFAULT TEMPORARY TABLESPACE
clause in the CREATE DATABASE statement, or you can omit the clause and let
Oracle Database create the tablespace for you using a default name and in a
default location.

= You caninclude the UNDO TABLESPACE clause in the CREATE DATABASE
statement to create a specific undo tablespace. If you omit that clause, Oracle
Database creates a locally managed undo tablespace for you using the default
name and in a default location.

See Also:

» Oracle Database SQL Language Reference for more specific
information about the use of the DEFAULT TEMPORARY
TABLESPACE and UNDO TABLESPACE clauses when EXTENT
MANAGEMENT LOCAL is specified for the SYSTEM tablespace

s "Locally Managed Tablespaces" on page 12-3

= "Migrating the SYSTEM Tablespace to a Locally Managed
Tablespace" on page 12-28

Creating and Configuring an Oracle Database 2-11

Understanding the CREATE DATABASE Statement

Creating the SYSAUX Tablespace

The SYSAUX tablespace is always created at database creation. The SYSAUX tablespace
serves as an auxiliary tablespace to the SYSTEM tablespace. Because it is the default
tablespace for many Oracle Database features and products that previously required
their own tablespaces, it reduces the number of tablespaces required by the database
and that you must maintain. Other functionality or features that previously used the
SYSTEM tablespace can now use the SYSAUX tablespace, thus reducing the load on the
SYSTEM tablespace.

You can specify only datafile attributes for the SYSAUX tablespace, using the SYSAUX
DATAFILE clause in the CREATE DATABASE statement. Mandatory attributes of the
SYSAUX tablespace are set by Oracle Database and include:

= PERMANENT

s READWRITE

s EXTENT MANAGMENT LOCAL

s SEGMENT SPACE MANAGMENT AUTO

You cannot alter these attributes with an ALTER TABLESPACE statement, and any
attempt to do so will result in an error. You cannot drop or rename the SYSAUX
tablespace.

The size of the SYSAUX tablespace is determined by the size of the database
components that occupy SYSAUX. See Table 2-2 for a list of all SYSAUX occupants.
Based on the initial sizes of these components, the SYSAUX tablespace needs to be at
least 240 MB at the time of database creation. The space requirements of the SYSAUX
tablespace will increase after the database is fully deployed, depending on the nature
of its use and workload. For more information on how to manage the space
consumption of the SYSAUX tablespace on an ongoing basis, please refer to the
"Managing the SYSAUX Tablespace" on page 12-24.

If you include a DATAFILE clause for the SYSTEM tablespace, then you must specify
the SYSAUX DATAFILE clause as well, or the CREATE DATABASE statement will fail.
This requirement does not exist if the Oracle-managed files feature is enabled (see
"Specifying Oracle-Managed Files at Database Creation" on page 2-15).

If you issue the CREATE DATABASE statement with no other clauses, then the software
creates a default database with datafiles for the SYSTEM and SYSAUX tablespaces
stored in system-determined default locations, or where specified by an
Oracle-managed files initialization parameter.

The SYSAUX tablespace has the same security attributes as the SYSTEM tablespace.

Note: This book discusses the creation of the SYSAUX database at
database creation. When upgrading from a release of Oracle
Database that did not require the SYSAUX tablespace, you must
create the SYSAUX tablespace as part of the upgrade process. This is
discussed in Oracle Database Upgrade Guide.

Table 2-2 lists the components that use the SYSAUX tablespace as their default
tablespace during installation, and the tablespace in which they were stored in earlier
releases:

2-12 Oracle Database Administrator's Guide

Understanding the CREATE DATABASE Statement

Table 2-2 Database Components and the SYSAUX Tablespace

Component Using SYSAUX

Tablespace in Earlier Releases

Analytical Workspace Object Table

Enterprise Manager Repository

SYSTEM

OEM_REPOSITORY

LogMiner SYSTEM
Logical Standby SYSTEM
OLAP API History Tables CWMLITE
Oracle Data Mining ODM
Oracle Spatial SYSTEM
Oracle Streams SYSTEM
Oracle Text DRSYS
Oracle Ultra Search DRSYS
Oracle interMedia ORDPLUGINS Components SYSTEM
Oracle interMedia ORDSYS Components SYSTEM
Oracle interMedia SI_INFORMTN_SCHEMA SYSTEM

Components

Server Manageability Components New in Oracle Database 11g

Statspack Repository User-defined
Oracle Scheduler New in Oracle Database 11g
Workspace Manager SYSTEM

The installation procedures for these components provide the means of establishing
their occupancy of the SYSAUX tablespace.

See Also: "Managing the SYSAUX Tablespace" on page 12-24 for
information about managing the SYSAUX tablespace

Using Automatic Undo Management: Creating an Undo Tablespace

Automatic undo management uses an undo tablespace.To enable automatic undo
management, set the UNDO_MANAGEMENT initialization parameter to AUTO in your
initialization parameter file. In this mode, undo data is stored in an undo tablespace
and is managed by Oracle Database. If you want to define and name the undo
tablespace yourself, you must also include the UNDO TABLESPACE clause in the
CREATE DATABASE statement at database creation time. If you omit this clause, and
automatic undo management is enabled (by setting the UNDO_MANAGEMENT
initialization parameter to AUTO), the database creates a default undo tablespace
named SYS_UNDOTBS.

See Also:

= "Specifying the Method of Undo Space Management" on
page 2-25

s Chapter 14, "Managing Undo", for information about the
creation and use of undo tablespaces

Creating and Configuring an Oracle Database 2-13

Understanding the CREATE DATABASE Statement

Creating a Default Permanent Tablespace

The DEFAULT TABLESPACE clause of the CREATE DATABASE statement specifies a
default permanent tablespace for the database. Oracle Database assigns to this
tablespace any non-SYSTEM users for whom you do not explicitly specify a different
permanent tablespace. If you do not specify this clause, then the SYSTEM tablespace is
the default permanent tablespace for non-SYSTEM users. Oracle strongly recommends
that you create a default permanent tablespace.

See Also: Oracle Database SQL Language Reference for the syntax of
the DEFAULT TABLESPACE clause of CREATE DATABASE and
ALTER DATABASE

Creating a Default Temporary Tablespace

The DEFAULT TEMPORARY TABLESPACE clause of the CREATE DATABASE statement
creates a default temporary tablespace for the database. Oracle Database assigns this
tablespace as the temporary tablespace for users who are not explicitly assigned a
temporary tablespace.

You can explicitly assign a temporary tablespace or tablespace group to a user in the
CREATE USER statement. However, if you do not do so, and if no default temporary
tablespace has been specified for the database, then by default these users are assigned
the SYSTEM tablespace as their temporary tablespace. It is not good practice to store
temporary data in the SYSTEM tablespace, and it is cumbersome to assign every user a
temporary tablespace individually. Therefore, Oracle recommends that you use the
DEFAULT TEMPORARY TABLESPACE clause of CREATE DATABASE.

Note: When you specify a locally managed SYSTEM tablespace,
the SYSTEM tablespace cannot be used as a temporary tablespace. In
this case the database creates a default temporary tablespace. This
behavior is explained in "Creating a Locally Managed SYSTEM
Tablespace" on page 2-11.

You can add or change the default temporary tablespace after database creation. You
do this by creating a new temporary tablespace or tablespace group with a CREATE
TEMPORARY TABLESPACE statement, and then assign it as the temporary tablespace
using the ALTER DATABASE DEFAULT TEMPORARY TABLESPACE statement. Users
will automatically be switched (or assigned) to the new default temporary tablespace.

The following statement assigns a new default temporary tablespace:

ALTER DATABASE DEFAULT TEMPORARY TABLESPACE tempts2;

The new default temporary tablespace must already exist. When using a locally
managed SYSTEM tablespace, the new default temporary tablespace must also be
locally managed.

You cannot drop or take offline a default temporary tablespace, but you can assign a
new default temporary tablespace and then drop or take offline the former one. You
cannot change a default temporary tablespace to a permanent tablespace.

Users can obtain the name of the current default temporary tablespace by querying the
PROPERTY_NAME and PROPERTY_VALUE columns of the DATABASE_PROPERTIES
view. These columns contain the values "DEFAULT_ TEMP_TABLESPACE" and the
default temporary tablespace name, respectively.

2-14 Oracle Database Administrator's Guide

Understanding the CREATE DATABASE Statement

See Also:

» Oracle Database SQL Language Reference for the syntax of the
DEFAULT TEMPORARY TABLESPACE clause of CREATE
DATABASE and ALTER DATABASE

s "Temporary Tablespaces" on page 12-10 for information about
creating and using temporary tablespaces

= "Multiple Temporary Tablespaces: Using Tablespace Groups"
on page 12-12 for information about creating and using
temporary tablespace groups

Specifying Oracle-Managed Files at Database Creation

You can minimize the number of clauses and parameters that you specify in your
CREATE DATABASE statement by using the Oracle-managed files feature. You do this
either by specifying a directory in which your files are created and managed by Oracle
Database, or by using Automatic Storage Management. When you use Automatic
Storage Management, you specify a disk group in which the database creates and
manages your files, including file redundancy and striping.

By including any of the initialization parameters DB_CREATE_FILE_DEST,
DB_CREATE_ONLINE_LOG_DEST_n, or DB_RECOVERY_FILE_DEST in your
initialization parameter file, you instruct Oracle Database to create and manage the
underlying operating system files of your database. Oracle Database will
automatically create and manage the operating system files for the following database
structures, depending on which initialization parameters you specify and how you
specify clauses in your CREATE DATABASE statement:

n Tablespaces
s Temporary tablespaces
= Control files
= Redo log files
= Archive log files
s Flashback logs
= Block change tracking files
= RMAN backups
See Also: "Specifying a Flash Recovery Area" on page 2-22 for

information about setting initialization parameters that create a
flash recovery area

The following CREATE DATABASE statement shows briefly how the Oracle-managed
files feature works, assuming you have specified required initialization parameters:

CREATE DATABASE rbdbl
USER SYS IDENTIFIED BY pz6r58
USER SYSTEM IDENTIFIED BY yltz5p
UNDO TABLESPACE undotbs
DEFAULT TEMPORARY TABLESPACE temptsl;

= No DATAFILE clause is specified, so the database creates an Oracle-managed
datafile for the SYSTEM tablespace.

Creating and Configuring an Oracle Database 2-15

Understanding the CREATE DATABASE Statement

= No LOGFILE clauses are included, so the database creates two Oracle-managed
redo log file groups.

= No SYSAUX DATAFILE is included, so the database creates an Oracle-managed
datafile for the SYSAUX tablespace.

= No DATAFILE subclause is specified for the UNDO TABLESPACE clause, so the
database creates an Oracle-managed datafile for the undo tablespace.

= No TEMPFILE subclause is specified for the DEFAULT TEMPORARY TABLESPACE
clause, so the database creates an Oracle-managed tempfile.

s Ifno CONTROL_FILES initialization parameter is specified in the initialization
parameter file, then the database also creates an Oracle-managed control file.

= If you are using a server parameter file (see "Managing Initialization Parameters
Using a Server Parameter File" on page 2-27), the database automatically sets the
appropriate initialization parameters.

See Also:

» Chapter 15, "Using Oracle-Managed Files", for information
about the Oracle-managed files feature and how to use it

» Oracle Database Storage Administrator’s Guide. for information
about Automatic Storage Management

Supporting Bigfile Tablespaces During Database Creation

Oracle Database simplifies management of tablespaces and enables support for
ultra-large databases by letting you create bigfile tablespaces. Bigfile tablespaces can
contain only one file, but that file can have up to 4G blocks. The maximum number of
datafiles in an Oracle Database is limited (usually to 64K files). Therefore, bigfile
tablespaces can significantly enhance the storage capacity of an Oracle Database.

This section discusses the clauses of the CREATE DATABASE statement that let you
include support for bigfile tablespaces.

See Also: "Bigfile Tablespaces" on page 12-6 for more information
about bigfile tablespaces

Specifying the Default Tablespace Type

The SET DEFAULT. . .TABLESPACE clause of the CREATE DATABASE statement to
determines the default type of tablespace for this database in subsequent CREATE
TABLESPACE statements. Specify either SET DEFAULT BIGFILE TABLESPACE or
SET DEFAULT SMALLFILE TABLESPACE. If you omit this clause, the default is a
smallfile tablespace, which is the traditional type of Oracle Database tablespace. A
smallfile tablespace can contain up to 1022 files with up to 4M blocks each.

The use of bigfile tablespaces further enhances the Oracle-managed files feature,
because bigfile tablespaces make datafiles completely transparent for users. SQL
syntax for the ALTER TABLESPACE statement has been extended to allow you to
perform operations on tablespaces, rather than the underlying datafiles.

The CREATE DATABASE statement shown in "Specifying Oracle-Managed Files at
Database Creation" on page 2-15 can be modified as follows to specify that the default
type of tablespace is a bigfile tablespace:

CREATE DATABASE rbdbl
USER SYS IDENTIFIED BY pz6r58
USER SYSTEM IDENTIFIED BY yltzb5p

2-16 Oracle Database Administrator's Guide

Understanding the CREATE DATABASE Statement

SET DEFAULT BIGFILE TABLESPACE
UNDO TABLESPACE undotbs
DEFAULT TEMPORARY TABLESPACE temptsl;

To dynamically change the default tablespace type after database creation, use the SET
DEFAULT TABLESPACE clause of the ALTER DATABASE statement:

ALTER DATABASE SET DEFAULT BIGFILE TABLESPACE;

You can determine the current default tablespace type for the database by querying the
DATABASE_PROPERTIES data dictionary view as follows:

SELECT PROPERTY_VALUE FROM DATABASE_PROPERTIES
WHERE PROPERTY_NAME = 'DEFAULT_TBS_TYPE';

Overriding the Default Tablespace Type

The SYSTEM and SYSAUX tablespaces are always created with the default tablespace
type. However, you can explicitly override the default tablespace type for the UNDO
and DEFAULT TEMPORARY tablespace during the CREATE DATABASE operation.

For example, you can create a bigfile UNDO tablespace in a database with the default
tablespace type of smallfile as follows:

CREATE DATABASE rbdbl

BIGFILE UNDO TABLESPACE undotbs
DATAFILE '/u0Ol/oracle/oradata/mynewdb/undotbs01.dbf"’
SIZE 200M REUSE AUTOEXTEND ON MAXSIZE UNLIMITED;

You can create a smallfile DEFAULT TEMPORARY tablespace in a database with the
default tablespace type of bigfile as follows:

CREATE DATABASE rbdbl
SET DEFAULT BIGFILE TABLSPACE

SMALLFILE DEFAULT TEMPORARY TABLESPACE temptsl
TEMPFILE '/u0l/oracle/oradata/mynewdb/temp0l.dbf’
SIZE 20M REUSE

Specifying the Database Time Zone and Time Zone File

You can specify the database time zone and the supporting time zone file.

Setting the Database Time Zone

Set the database time zone when the database is created by using the SET TIME_ZONE
clause of the CREATE DATABASE statement. If you do not set the database time zone,
then it defaults to the time zone of the server's operating system.

You can change the database time zone for a session by using the SET TIME_ZONE
clause of the ALTER SESSION statement.

See Also: Oracle Database Globalization Support Guide for more
information about setting the database time zone

Specifying the Database Time Zone File

Two time zone files are included in the Oracle home directory. The default time zone
file is SORACLE_HOME/oracore/zoneinfo/timezonelrg.dat. A smaller time
zone file can be found in $SORACLE_HOME/oracore/zoneinfo/timezone.dat.

Creating and Configuring an Oracle Database 2-17

Understanding the CREATE DATABASE Statement

If you are already using the smaller time zone file and you want to continue to use it in
an Oracle Database 11¢ environment or if you want to use the smaller time zone file
instead of the default time zone file, then complete the following tasks:

1. Shut down the database.

2, Set the ORA_TZFILE environment variable to the full path name of the
timezone.dat file.

3. Restart the database.

If you are already using the default time zone file, then it is not practical to change to
the smaller time zone file because the database may contain data with time zones that
are not part of the smaller time file.

All databases that share information must use the same time zone datafile.

The time zone files contain the valid time zone names. The following information is
also included for each time zone:

s Offset from Coordinated Universal Time (UTC)

s Transition times for Daylight Saving Time

= Abbreviations for standard time and Daylight Saving Time

To view the time zone names in the file being used by your database, use the following
query:

SELECT * FROM V$TIMEZONE_NAMES;

Specifying FORCE LOGGING Mode

Some data definition language statements (such as CREATE TABLE) allow the
NOLOGGING clause, which causes some database operations not to generate redo
records in the database redo log. The NOLOGGING setting can speed up operations that
can be easily recovered outside of the database recovery mechanisms, but it can
negatively affect media recovery and standby databases.

Oracle Database lets you force the writing of redo records even when NOLOGGING has
been specified in DDL statements. The database never generates redo records for
temporary tablespaces and temporary segments, so forced logging has no affect for
objects.

See Also: Oracle Database SQL Language Reference for information
about operations that can be done in NOLOGGING mode

Using the FORCE LOGGING Clause

To put the database into FORCE LOGGING mode, use the FORCE LOGGING clause in
the CREATE DATABASE statement. If you do not specify this clause, the database is not
placed into FORCE LOGGING mode.

Use the ALTER DATABASE statement to place the database into FORCE LOGGING
mode after database creation. This statement can take a considerable time for
completion, because it waits for all unlogged direct writes to complete.

You can cancel FORCE LOGGING mode using the following SQL statement:
ALTER DATABASE NO FORCE LOGGING;
Independent of specifying FORCE LOGGING for the database, you can selectively

specify FORCE LOGGING or NO FORCE LOGGING at the tablespace level. However, if
FORCE LOGGING mode is in effect for the database, it takes precedence over the

2-18 Oracle Database Administrator's Guide

Understanding Initialization Parameters

tablespace setting. If it is not in effect for the database, then the individual tablespace
settings are enforced. Oracle recommends that either the entire database is placed into
FORCE LOGGING mode, or individual tablespaces be placed into FORCE LOGGING
mode, but not both.

The FORCE LOGGING mode is a persistent attribute of the database. That is, if the
database is shut down and restarted, it remains in the same logging mode. However, if
you re-create the control file, the database is not restarted in the FORCE LOGGING
mode unless you specify the FORCE LOGGING clause in the CREATE CONTROL FILE
statement.

See Also: "Controlling the Writing of Redo Records" on
page 12-14 for information about using the FORCE LOGGING clause
for tablespace creation.

Performance Considerations of FORCE LOGGING Mode

FORCE LOGGING mode results in some performance degradation. If the primary
reason for specifying FORCE LOGGING is to ensure complete media recovery, and
there is no standby database active, then consider the following:

= How many media failures are likely to happen?
= How serious is the damage if unlogged direct writes cannot be recovered?
» Is the performance degradation caused by forced logging tolerable?

If the database is running in NOARCHIVELOG mode, then generally there is no benefit
to placing the database in FORCE LOGGING mode. Media recovery is not possible in
NOARCHIVELOG mode, so if you combine it with FORCE LOGGING, the result may be
performance degradation with little benefit.

Understanding Initialization Parameters

When an Oracle instance starts, it reads initialization parameters from an initialization
parameter file. This file can be either a read-only text file, or a read /write binary file.
The binary file is called a server parameter file, and it always resides on the server. A
server parameter file enables you to change initialization parameters with ALTER
SYSTEM commands and to persist the changes across a shutdown and startup. It also
provides a basis for self-tuning by the Oracle Database server. For these reasons, it is
recommended that you use a server parameter file. You can create one manually from
your edited text initialization file, or automatically by using Database Configuration
Assistant (DBCA) to create your database.

Before you manually create a server parameter file, you can start an instance with a
text initialization parameter file. Upon startup, the Oracle instance first searches for a
server parameter file in a default location, and if it does not find one, searches for a
text initialization parameter file. You can also override an existing server parameter
file by naming a text initialization parameter file as an argument of the STARTUP
command.

For more information on server parameter files, see "Managing Initialization
Parameters Using a Server Parameter File" on page 2-27. For more information on the
STARTUP command, see "Understanding Initialization Parameter Files" on page 3-2.

Default file names and locations for the text initialization parameter file are shown in
the following table:

Creating and Configuring an Oracle Database 2-19

Understanding Initialization Parameters

Platform | Default Name Default Location
UNIX init$ORACLE_SID.ora $ORACLE_HOME/dbs
i?r?ux For example, the For example, the initialization parameter file for the

initialization parameter file | mynewdb database is stored in the following
for the mynewdb database location:

is named: /u0l/oracle/dbs/initmynewdb.ora

initmynewdb.ora

Windows | init $ORACLE _SID%.ora | $ORACLE_HOME%\database

Sample Initialization Parameter File

The following is an example of a text initialization parameter file used to start a
database instance on a UNIX system.

control_files (/u0d/1cg03/control.001.dbf,
/u0d/1cg03/control.002.dbf,
/u0d/1cg03/control.003.dbf)
db_name 1cg03

db_domain = us.oracle.com

log_archive_dest_1 =
"LOCATION=/net/fstlcg03/private/yaliu/testlog/log.1lcg03.fstlcg03/1cg03/arch"

log_archive_dest_state_1 = enable

db_recovery_file_dest =
/net/fstlcg03/private/yaliu/testlog/log.1lcg03.£fstlcg03/1cg03/arch

db_recovery_file_dest_size = 100G

db_block_size = 8192
processes = 1000
sessions = 1200
open_cursors = 1024
shared_servers =4
remote_listener = tnsfstlcg03
compatible = 11.1.0
memory_target = 1500M
ddl_lock_timeout =10
nls_language = AMERICAN
nls_territory = AMERICA

Oracle Database provides generally appropriate values in the sample initialization
parameter file provided with your database software or created for you by DBCA. You
can edit these Oracle-supplied initialization parameters and add others, depending
upon your configuration and options and how you plan to tune the database. For any
relevant initialization parameters not specifically included in the initialization
parameter file, the database supplies defaults.

If you are creating an Oracle Database for the first time, Oracle suggests that you
minimize the number of parameter values that you alter. As you become more familiar
with your database and environment, you can dynamically tune many initialization
parameters using the ALTER SYSTEM statement. If you are using a text initialization
parameter file, your changes are effective only for the current instance. To make them

2-20 Oracle Database Administrator's Guide

Understanding Initialization Parameters

permanent, you must update them manually in the initialization parameter file, or
they will be lost over the next shutdown and startup of the database. If you are using a
server parameter file, initialization parameter file changes made by the ALTER
SYSTEM statement can persist across shutdown and startup. This is discussed in
"Managing Initialization Parameters Using a Server Parameter File".

This section introduces you to some of the basic initialization parameters you can add
or edit before you create your new database.

The following topics are contained in this section:

s Determining the Global Database Name

» Specifying a Flash Recovery Area

= Specifying Control Files

= Specifying Database Block Sizes

= Specifying the Maximum Number of Processes

s Specifying the DDL Lock Timeout

s Specifying the Method of Undo Space Management

s The COMPATIBLE Initialization Parameter and Irreversible Compatibility

= Setting the License Parameter

See Also:

» Oracle Database Reference for descriptions of all initialization
parameters including their default settings

» Chapter 5, "Managing Memory" for a discussion of the
initialization parameters that pertain to memory management

Determining the Global Database Name

The global database name consists of the user-specified local database name and the
location of the database within a network structure. The DB_NAME initialization
parameter determines the local name component of the database name, and the
DB_DOMAIN parameter indicates the domain (logical location) within a network
structure. The combination of the settings for these two parameters must form a
database name that is unique within a network.

For example, to create a database with a global database name of
test.us.acme.com, edit the parameters of the new parameter file as follows:

DB_NAME = test
DB_DOMAIN = us.acme.com

You can rename the GLOBAL_NAME of your database using the ALTER DATABASE
RENAME GLOBAL_NAME statement. However, you must also shut down and restart the
database after first changing the DB_NAME and DB_DOMAIN initialization parameters
and re-creating the control file.

See Also: Oracle Database Utilities for information about using the

DBNEWID utility, which is another means of changing a database
name

Creating and Configuring an Oracle Database 2-21

Understanding Initialization Parameters

DB_NAME Initialization Parameter

DB_NAME must be set to a text string of no more than eight characters. During database
creation, the name provided for DB_NAME is recorded in the datafiles, redo log files,
and control file of the database. If during database instance startup the value of the
DB_NAME parameter (in the parameter file) and the database name in the control file
are not the same, the database does not start.

DB_DOMAIN Initialization Parameter

DB_DOMAIN is a text string that specifies the network domain where the database is
created. This is typically the name of the organization that owns the database. If the
database you are about to create will ever be part of a distributed database system,
give special attention to this initialization parameter before database creation.

See Also: PartV, "Distributed Database Management" for more
information about distributed databases

Specifying a Flash Recovery Area

A flash recovery area is a location in which Oracle Database can store and manage files
related to backup and recovery. It is distinct from the database area, which is a location
for the Oracle-managed current database files (datafiles, control files, and online redo
logs).

You specify a flash recovery area with the following initialization parameters:

= DB _RECOVERY_FILE DEST: Location of the flash recovery area. This can be a
directory, file system, or Automatic Storage Management (ASM) disk group. It
cannot be a raw file system.

In a RAC environment, this location must be on a cluster file system, ASM disk
group, or a shared directory configured through NFS.

= DB _RECOVERY_FILE DEST_ SIZE: Specifies the maximum total bytes to be used
by the flash recovery area. This initialization parameter must be specified before
DB_RECOVERY_FILE_DEST is enabled.

In a RAC environment, the settings for these two parameters must be the same on all
instances.

You cannot enable these parameters if you have set values for the
LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST parameters. You must
disable those parameters before setting up the flash recovery area. You can instead set
values for the LOG_ARCHIVE_DEST_n parameters. If you do not set values for local
LOG_ARCHIVE_DEST_n, then setting up the flash recovery area will implicitly set
LOG_ARCHIVE_DEST_10 to the flash recovery area.

Oracle recommends using a flash recovery area, because it can simplify backup and
recovery operations for your database.

See Also: Oracle Database Backup and Recovery User’s Guide to
learn how to create and use a flash recovery area

Specifying Control Files

The CONTROL_FILES initialization parameter specifies one or more control filenames
for the database. When you execute the CREATE DATABASE statement, the control
files listed in the CONTROL_FILES parameter are created.

2-22 Oracle Database Administrator's Guide

Understanding Initialization Parameters

If you do not include CONTROL_FILES in the initialization parameter file, then Oracle
Database creates a control file using a default operating system dependent filename or,
if you have enabled Oracle-managed files, creates Oracle-managed control files.

If you want the database to create new operating system files when creating database
control files, the filenames listed in the CONTROL_FILES parameter must not match
any filenames that currently exist on your system. If you want the database to reuse or
overwrite existing files when creating database control files, ensure that the filenames
listed in the CONTROL_FILES parameter match the filenames that are to be reused.

Caution: Use extreme caution when setting this specifying
CONTROL_FILE filenames. If you inadvertently specify a file that
already exists and execute the CREATE DATABASE statement, the
previous contents of that file will be overwritten.

Oracle strongly recommends you use at least two control files stored on separate
physical disk drives for each database.

See Also:
s Chapter 9, "Managing Control Files"

= "Specifying Oracle-Managed Files at Database Creation" on
page 2-15

Specifying Database Block Sizes

The DB_BLOCK_SIZE initialization parameter specifies the standard block size for the
database. This block size is used for the SYSTEM tablespace and by default in other
tablespaces. Oracle Database can support up to four additional nonstandard block
sizes.

DB_BLOCK_SIZE Initialization Parameter

The most commonly used block size should be picked as the standard block size. In
many cases, this is the only block size that you need to specity. Typically,
DB_BLOCK_SIZE is set to either 4K or 8K. If you do not set a value for this parameter,
the default data block size is operating system specific, which is generally adequate.

You cannot change the block size after database creation except by re-creating the
database. If the database block size is different from the operating system block size,
ensure that the database block size is a multiple of the operating system block size. For
example, if your operating system block size is 2K (2048 bytes), the following setting
for the DB_BLOCK_SIZE initialization parameter is valid:

DB_BLOCK_SIZE=4096

A larger data block size provides greater efficiency in disk and memory I/O (access
and storage of data). Therefore, consider specifying a block size larger than your
operating system block size if the following conditions exist:

s Oracle Database is on a large computer system with a large amount of memory
and fast disk drives. For example, databases controlled by mainframe computers
with vast hardware resources typically use a data block size of 4K or greater.

» The operating system that runs Oracle Database uses a small operating system
block size. For example, if the operating system block size is 1K and the default
data block size matches this, the database may be performing an excessive amount

Creating and Configuring an Oracle Database 2-23

Understanding Initialization Parameters

of disk I/O during normal operation. For best performance in this case, a database
block should consist of multiple operating system blocks.

See Also: Your operating system specific Oracle documentation
for details about the default block size.

Nonstandard Block Sizes

Tablespaces of nonstandard block sizes can be created using the CREATE
TABLESPACE statement and specifying the BLOCKSIZE clause. These nonstandard
block sizes can have any of the following power-of-two values: 2K, 4K, 8K, 16K or 32K.
Platform-specific restrictions regarding the maximum block size apply, so some of
these sizes may not be allowed on some platforms.

To use nonstandard block sizes, you must configure subcaches within the buffer cache
area of the SGA memory for all of the nonstandard block sizes that you intend to use.
The initialization parameters used for configuring these subcaches are described in
"Using Automatic Shared Memory Management" on page 5-7.

The ability to specify multiple block sizes for your database is especially useful if you
are transporting tablespaces between databases. You can, for example, transport a
tablespace that uses a 4K block size from an OLTP environment to a data warehouse
environment that uses a standard block size of 8K.

See Also:
s "Creating Tablespaces" on page 12-2

s "Transporting Tablespaces Between Databases" on page 12-29

Specifying the Maximum Number of Processes

The PROCESSES initialization parameter determines the maximum number of
operating system processes that can be connected to Oracle Database concurrently. The
value of this parameter must be a minimum of one for each background process plus
one for each user process. The number of background processes will vary according
the database features that you are using. For example, if you are using Advanced
Queuing or the file mapping feature, you will have additional background processes.
If you are using Automatic Storage Management, then add three additional processes.

If you plan on running 50 user processes, a good estimate would be to set the
PROCESSES initialization parameter to 70.

Specifying the DDL Lock Timeout

Data Definition Language (DDL) statements require exclusive locks on internal
structures. If these locks are unavailable when a DDL statement runs, the DDL
statement fails, though it might have succeeded if it had been executed subseconds
later.

To enable DDL statements to wait for locks, specify a DDL lock timeout—the number
of seconds a DDL command waits for its required locks before failing.

To specify a DDL lock timeout, use the DDL_LOCK_TIMEOUT parameter. The
permissible range of values for DDL._LOCK_TIMEOUT is 0 to 100,000. The default is 0.

You can set DDL._LOCK_TIMEOUT at the system level, or at the session level with an
ALTER SESSION statement.

2-24 Oracle Database Administrator's Guide

Understanding Initialization Parameters

Specifying the Method of Undo Space Management

Every Oracle Database must have a method of maintaining information that is used to
undo changes to the database. Such information consists of records of the actions of
transactions, primarily before they are committed. Collectively these records are called
undo data. This section provides instructions for setting up an environment for
automatic undo management using an undo tablespace.

See Also: Chapter 14, "Managing Undo"

UNDO_MANAGEMENT Initialization Parameter

The UNDO_MANAGEMENT initialization parameter determines whether or not an
instance starts in automatic undo management mode, which stores undo in an undo
tablespace. Set this parameter to AUTO to enable automatic undo management mode.
Beginning with Release 11g, AUTO is the default if the parameter is omitted or has no
value.

UNDO_TABLESPACE Initialization Parameter

When an instance starts up in automatic undo management mode, it attempts to select
an undo tablespace for storage of undo data. If the database was created in undo
management mode, then the default undo tablespace (either the system-created
SYS_UNDOTS tablespace or the user-specified undo tablespace) is the undo tablespace
used at instance startup. You can override this default for the instance by specifying a
value for the UNDO_TABLESPACE initialization parameter. This parameter is especially
useful for assigning a particular undo tablespace to an instance in an Oracle Real
Application Clusters environment.

If no undo tablespace has been specified during database creation or by the
UNDO_TABLESPACE initialization parameter, then the first available undo tablespace
in the database is chosen. If no undo tablespace is available, then the instance starts
without an undo tablespace. You should avoid running in this mode.

The COMPATIBLE Initialization Parameter and Irreversible Compatibility

The COMPATIBLE initialization parameter enables or disables the use of features in the
database that affect file format on disk. For example, if you create an Oracle Database
11g Release 1 (11.1) database, but specify COMPATIBLE = 10.0.0 in the initialization
parameter file, then features that requires 11.1 compatibility generate an error if you
try to use them. Such a database is said to be at the 10.0.0 compatibility level.

You can advance the compatibility level of your database. If you do advance the
compatibility of your database with the COMPATIBLE initialization parameter, there is
no way to start the database using a lower compatibility level setting, except by doing
a point-in-time recovery to a time before the compatibility was advanced.

The default value for the COMPATIBLE parameter is the release number of the most
recent major release.

Note: For Oracle Database 11g Release 1 (11.1), the default value
of the COMPATIBLE parameter is 11.1.0. The minimum value is
10.0.0. If you create an Oracle Database using the default value, you
can immediately use all the new features in this release, and you
can never downgrade the database.

Creating and Configuring an Oracle Database 2-25

Troubleshooting Database Creation

See Also:

» Oracle Database Upgrade Guide for a detailed discussion of
database compatibility and the COMPATIBLE initialization
parameter

» Oracle Database Backup and Recovery User’s Guide for information
about point-in-time recovery of your database

Setting the License Parameter

Note: Oracle no longer offers licensing by the number of
concurrent sessions. Therefore the LICENSE_MAX_SESSIONS and
LICENSE_SESSIONS_WARNING initialization parameters are no
longer needed and have been deprecated.

If you use named user licensing, Oracle Database can help you enforce this form of
licensing. You can set a limit on the number of users created in the database. Once this
limit is reached, you cannot create more users.

Note: This mechanism assumes that each person accessing the
database has a unique user name and that no people share a user
name. Therefore, so that named user licensing can help you ensure
compliance with your Oracle license agreement, do not allow
multiple users to log in using the same user name.

To limit the number of users created in a database, set the LICENSE_MAX_USERS
initialization parameter in the database initialization parameter file, as shown in the
following example:

LICENSE_MAX USERS = 200

Troubleshooting Database Creation

If database creation fails, you can look at the alert log to determine the reason for the
failure and to determine corrective action. The alert log is discussed in "Monitoring
Errors with Trace Files and the Alert Log" on page 7-1.

You should shut down the instance and delete any files created by the CREATE
DATABASE statement before you attempt to create it again. After correcting the error
that caused the failure of the database creation, try re-creating the database.

Dropping a Database

Dropping a database involves removing its datafiles, redo log files, control files, and
initialization parameter files. The DROP DATABASE statement deletes all control files
and all other database files listed in the control file. To use the DROP DATABASE
statement successfully, all of the following conditions must apply:

s The database must be mounted and closed.
s The database must be mounted exclusively--not in shared mode.

s The database must be mounted as RESTRICTED.

2-26 Oracle Database Administrator's Guide

Managing Initialization Parameters Using a Server Parameter File

An example of this statement is:
DROP DATABASE;
The DROP DATABASE statement has no effect on archived log files, nor does it have

any effect on copies or backups of the database. It is best to use RMAN to delete such
files. If the database is on raw disks, the actual raw disk special files are not deleted.

If you used the Database Configuration Assistant to create your database, you can use
that tool to delete (drop) your database and remove the files.

Managing Initialization Parameters Using a Server Parameter File

Initialization parameters for the Oracle Database have traditionally been stored in a
text initialization parameter file. For better manageability, you can choose to maintain
initialization parameters in a binary server parameter file that is persistent across
database startup and shutdown. This section introduces the server parameter file, and
explains how to manage initialization parameters using either method of storing the
parameters. The following topics are contained in this section.

= What Is a Server Parameter File?

= Migrating to a Server Parameter File

s Creating a Server Parameter File

= Storing the Server Parameter File on HARD-Enabled Storage
s The SPFILE Initialization Parameter

s Changing Initialization Parameter Values

s Clearing Initialization Parameter Values

= Exporting the Server Parameter File

= Backing Up the Server Parameter File

= Recovering a Lost or Damaged Server Parameter File

= Viewing Parameter Settings

What Is a Server Parameter File?

A server parameter file can be thought of as a repository for initialization parameters
that is maintained on the machine running the Oracle Database server. It is, by design,
a server-side initialization parameter file. Initialization parameters stored in a server
parameter file are persistent, in that any changes made to the parameters while an
instance is running can persist across instance shutdown and startup. This
arrangement eliminates the need to manually update initialization parameters to make
persistent any changes effected by ALTER SYSTEM statements. It also provides a basis
for self-tuning by the Oracle Database server.

A server parameter file is initially built from a text initialization parameter file using
the CREATE SPFILE statement. (It can also be created directly by the Database
Configuration Assistant.) The server parameter file is a binary file that cannot be
edited using a text editor. Oracle Database provides other interfaces for viewing and
modifying parameter settings in a server parameter file.

Creating and Configuring an Oracle Database 2-27

Managing Initialization Parameters Using a Server Parameter File

Caution: Although you can open the binary server parameter file
with a text editor and view its text, do not manually edit it. Doing so
will corrupt the file. You will not be able to start your instance, and
if the instance is running, it could fail.

When you issue a STARTUP command with no PFILE clause, the Oracle instance
searches an operating system—specific default location for a server parameter file from
which to read initialization parameter settings. If no server parameter file is found, the
instance searches for a text initialization parameter file. If a server parameter file exists
but you want to override it with settings in a text initialization parameter file, you
must specify the PFILE clause when issuing the STARTUP command. Instructions for
starting an instance using a server parameter file are contained in "Starting Up a
Database" on page 3-1.

Migrating to a Server Parameter File

If you are currently using a text initialization parameter file, use the following steps to
migrate to a server parameter file.

1. If the initialization parameter file is located on a client machine, transfer the file
(for example, FTP) from the client machine to the server machine.

Note: If you are migrating to a server parameter file in an Oracle
Real Application Clusters environment, you must combine all of
your instance-specific initialization parameter files into a single
initialization parameter file. Instructions for doing this and other
actions unique to using a server parameter file for instances that are
part of an Oracle Real Application Clusters installation are
discussed in Oracle Real Application Clusters Administration and
Deployment Guide and in your platform-specific Oracle Real
Application Clusters Installation Guide.

2. Create a server parameter file in the default location using the CREATE SPFILE
FROM PFILE statement. See "Creating a Server Parameter File" on page 2-28 for
instructions.

This statement reads the text initialization parameter file to create a server
parameter file. The database does not have to be started to issue a CREATE
SPFILE statement.

3. Start up or restart the instance.

The instance finds the new SPFILE in the default location and starts up with it.

Creating a Server Parameter File

You use the CREATE SPFILE statement to create a server parameter file. You must
have the SYSDBA or the SYSOPER system privilege to execute this statement.

Note: When you use the Database Configuration Assistant to create
a database, it automatically creates a server parameter file for you.

2-28 Oracle Database Administrator's Guide

Managing Initialization Parameters Using a Server Parameter File

The CREATE SPFILE statement can be executed before or after instance startup.
However, if the instance has been started using a server parameter file, an error is
raised if you attempt to re-create the same server parameter file that is currently being
used by the instance.

You can create a server parameter file (SPFILE) from an existing text initialization
parameter file or from memory. Creating the SPFILE from memory means copying the
current values of initialization parameters in the running instance to the SPFILE.

The following example creates a server parameter file from text initialization
parameter file /u0l/oracle/dbs/init.ora. In this example no SPFILE name is
specified, so the file is created with the platform-specific default name and location
shown in Table 2-3 on page 2-29.

CREATE SPFILE FROM PFILE='/u0l/oracle/dbs/init.ora';

The next example illustrates creating a server parameter file and supplying a name
and location.

CREATE SPFILE='/u0l/oracle/dbs/test_spfile.ora'
FROM PFILE='/u0l/oracle/dbs/test_init.ora';

The next example illustrates creating a server parameter file in the default location
from the current values of the initialization parameters in memory.

CREATE SPFILE FROM MEMORY;

Whether you use the default SPFILE name and default location or specify an SPFILE
name and location, if an SPFILE of the same name already exists in the location, it is
overwritten without a warning message.

When you create an SPFILE from a text initialization parameter file, comments
specified on the same lines as a parameter setting in the initialization parameter file
are maintained in the SPFILE. All other comments are ignored.

Oracle recommends that you allow the database to give the SPFILE the default name
and store it in the default location. This eases administration of your database. For
example, the STARTUP command assumes this default location to read the SPFILE.

Table 2-3 shows the default name and location for both the text initialization
parameter file (PFILE) and server parameter file (SPFILE) for the UNIX, Linux, and
Windows platforms. The table assumes that the SPFILE is a file. If it is a raw device,
the default name could be a logical volume name or partition device name, and the
default location could differ.

Table 2-3 PFILE and SPFILE Default Names and Locations on UNIX, Linux, and Windows
Platform PFILE Default Name SPFILE Default Name Default Location (PFILE and SPFILE)

UNIX and initORACLE_SID.ora spfileORACLE_SID.ora ORACLE_HOME/dbs or the same
Linux location as the datafiles

Windows initORACLE_SID.ora spfileORACLE_SID.ora ORACLE_HOME\database

Creating and Configuring an Oracle Database 2-29

Managing Initialization Parameters Using a Server Parameter File

Note: Upon startup, the instance first searches for an SPFILE named
spfileORACLE_SID.ora, and if not found, searches for
spfile.ora. Using spfile.ora enables all Real Application
Cluster (RAC) instances to use the same server parameter file.

If neither SPFILE is found, the instance searches for the text
initialization parameter file ini tORACLE_SID.ora.

If you create an SPFILE in a location other than the default location, you must create a
text initialization parameter file that points to the server parameter file. For more
information, see "Starting Up a Database" on page 3-1.

Storing the Server Parameter File on HARD-Enabled Storage

Starting with Release 11g, the server parameter file (SPFILE) is in a new format that is
compliant with the Oracle Hardware Assisted Resilient Data (HARD) initiative.
HARD defines a comprehensive set of data validation algorithms, implemented at
both the software and storage hardware levels, to ensure that no corrupt data is
written to permanent storage. To fully enable HARD protection for the data in your
SPFILE, the SPFILE must reside on HARD-enabled storage, and compatibility for your
database instance must be advanced to at least 11.0.0.

You can store the HARD-compliant SPFILE on non-HARD-enabled storage. In this
case, the new SPFILE format supports only detection of corrupt SPFILE data. Storing
the SPFILE on HARD-enabled storage prevents corrupt data from being written to
storage in the first place.

For more information about HARD, and for a list of storage vendors that supply
HARD-enabled storage systems, visit:
http://www.oracle.com/technology/deploy/availability/htdocs/HARD
.html.

Follow these guidelines for full HARD protection when installing or upgrading your
Oracle database:

When Installing or Initially Creating a Release 11g Database

When first installing or creating a Release 11¢ database, the COMPATIBLE initialization
parameter defaults to 11.1.0, so this requirement for a HARD-compliant server
parameter file (SPFILE) is met. You must then ensure that the SPFILE is stored on
HARD-enabled storage. To meet this requirement, do one of the following:

= For an Oracle Real Application Clusters environment without shared storage,
when DBCA prompts for the location of the SPFILE, specify a location on
HARD-enabled storage.

= For a single-instance installation, or for an Oracle Real Application Clusters
environment with shared storage, complete these steps:

1. Complete the database installation with Database Configuration Assistant
(DBCA).

The SPFILE is created in the default location. See Table 2-3 on page 2-29 for
information on default locations.

2. Do one of the following:

- Using an operating system command, copy the SPFILE to HARD-enabled
storage.

2-30 Oracle Database Administrator's Guide

Managing Initialization Parameters Using a Server Parameter File

— In SQL*Plus or another interactive environment such as SQL Developer,
connect to the database as user SYS and then submit the following
command:

CREATE SPFILE = 'spfile_name' FROM MEMORY;
where spfile_name is a complete path name, including file name, that
points to HARD-enabled storage.

Do one of the following:

— Create a text initialization parameter file (PFILE) in the default location
with the following single entry:

SPFILE = spfile name
where spfile_name is the complete path to the SPFILE on HARD-enabled
storage.

— On the UNIX and Linux platforms, in the default SPFILE location, create a
symbolic link to the SPFILE on HARD-enabled storage.

See Table 2-3 for default name and location information for PFILEs and
SPFILEs.

Shut down the database instance.
Delete the SPFILE in the default location.

Start up the database instance.

When Upgrading to Release 11g from an Earlier Database Release

When upgrading to Release 11g from an earlier database release, complete these steps
to migrate your SPFILE to the HARD-compliant format and to store the SPFILE on
HARD-enabled storage:

1.

Start SQL*Plus or another interactive query application, log in to the database as
user SYS or SYSTEM, and then enter the following command:

ALTER SYSTEM SET COMPATIBLE = '11.1.0' SCOPE = SPFILE;

WARNING: Advancing the compatibility level to 11.1.0 enables
Release 11g features and file formats and has wide repercussions.
Consult Oracle Database Upgrade Guide before proceeding.

Restart the database instance.

The database is now at compatibility level 11.1.0.

If your SPFILE is not already on HARD-enabled storage, complete the following
steps:

a.

In SQL*Plus or another interactive environment, connect to the database as
user SYS and then submit the following command:

CREATE SPFILE = 'spfile name' FROM MEMORY;

where spfile_name is a complete path name, including file name, that points to
HARD-enabled storage.

Do one of the following:

Creating and Configuring an Oracle Database 2-31

Managing Initialization Parameters Using a Server Parameter File

— Create a text initialization parameter file (PFILE) in the default location
with the following single entry:

SPFILE = spfile name

where spfile_name is the complete path to the SPFILE on HARD-enabled
storage.

- On the UNIX and Linux platforms, in the default SPFILE location, create a
symbolic link to the SPFILE on HARD-enabled storage.

See Table 2-3 for default name and location information for PFILEs and
SPFILEs.

c. Shut down the database instance.
d. Delete the SPFILE in the default location.

e. Start up the database instance.

The SPFILE Initialization Parameter

The SPFILE initialization parameter contains the name of the current server
parameter file. When the default server parameter file is used by the database—that is,
you issue a STARTUP command and do not specify a PFILE parameter—the value of
SPFILE is internally set by the server. The SQL*Plus command SHOW PARAMETERS
SPFILE (or any other method of querying the value of a parameter) displays the name
of the server parameter file that is currently in use.

Changing Initialization Parameter Values

The ALTER SYSTEM statement enables you to set, change, or restore to default the
values of initialization parameters. If you are using a text initialization parameter file,
the ALTER SYSTEM statement changes the value of a parameter only for the current
instance, because there is no mechanism for automatically updating text initialization
parameters on disk. You must update them manually to be passed to a future instance.
Using a server parameter file overcomes this limitation.

There are two kinds of initialization parameters:

= Dynamic initialization parameters can be changed for the current Oracle
Database instance. The changes take effect immediately.

= Static initialization parameters cannot be changed for the current instance. You
must change these parameters in the text initialization file or server parameter file
and then restart the database before changes take effect.

Setting or Changing Initialization Parameter Values

Use the SET clause of the ALTER SYSTEM statement to set or change initialization
parameter values. The optional SCOPE clause specifies the scope of a change as
described in the following table:

2-32 Oracle Database Administrator's Guide

Managing Initialization Parameters Using a Server Parameter File

SCOPE Clause Description
SCOPE = SPFILE The change is applied in the server parameter file only. The effect is
as follows:

= No change is made to the current instance.

s For both dynamic and static parameters, the change is effective
at the next startup and is persistent.

This is the only SCOPE specification allowed for static parameters.

SCOPE = MEMORY The change is applied in memory only. The effect is as follows:
= The change is made to the current instance and is effective
immediately.
= For dynamic parameters, the effect is immediate, but it is not
persistent because the server parameter file is not updated.
For static parameters, this specification is not allowed.
SCOPE = BOTH The change is applied in both the server parameter file and

memory. The effect is as follows:

= The change is made to the current instance and is effective
immediately.

s For dynamic parameters, the effect is persistent because the
server parameter file is updated.

For static parameters, this specification is not allowed.

It is an error to specify SCOPE=SPFILE or SCOPE=BOTH if the instance did not start up
with a server parameter file. The default is SCOPE=BOTH if a server parameter file was
used to start up the instance, and MEMORY if a text initialization parameter file was
used to start up the instance.

For dynamic parameters, you can also specify the DEFERRED keyword. When
specified, the change is effective only for future sessions.

When you specify SCOPE as SPFILE or BOTH, an optional COMMENT clause lets you
associate a text string with the parameter update. The comment is written to the server
parameter file.

The following statement changes the maximum number of failed login attempts before
the connection is dropped. It includes a comment, and explicitly states that the change
is to be made only in the server parameter file.

ALTER SYSTEM SET SEC_MAX_ FAILED LOGIN_ATTEMPTS=3
COMMENT="'Reduce from 10 for tighter security.'
SCOPE=SPFILE;

The next example sets a complex initialization parameter that takes a list of attributes.
Specifically, the parameter value being set is the LOG_ARCHIVE_DEST_n initialization
parameter. This statement could change an existing setting for this parameter or create
a new archive destination.

ALTER SYSTEM
SET LOG_ARCHIVE_DEST 4='LOCATION=/u02/oracle/rbdbl/', MANDATORY, 'REOPEN=2"
COMMENT="'Add new destimation on Nov 29'
SCOPE=SPFILE;

When a value consists of a list of parameters, you cannot edit individual attributes by

the position or ordinal number. You must specify the complete list of values each time
the parameter is updated, and the new list completely replaces the old list.

Creating and Configuring an Oracle Database 2-33

Managing Initialization Parameters Using a Server Parameter File

Clearing Initialization Parameter Values

You can use the ALTER SYSTEM RESET command to clear (remove) the setting of any
initialization parameter in the SPFILE that was used to start the instance. Neither
SCOPE=MEMORY nor SCOPE=BOTH are allowed. The SCOPE = SPFILE clause is not
required, but can be included.

You may want to clear a parameter in the SPFILE so that upon the next database
startup a default value is used.

See Also: Oracle Database SQL Language Reference for information
about the ALTER SYSTEM command

Exporting the Server Parameter File

You can use the CREATE PFILE statement to export a server parameter file (SPFILE)
to a text initialization parameter file. Doing so might be necessary for several reasons:

= For diagnostic purposes, listing all of the parameter values currently used by an
instance. This is analogous to the SQL*Plus SHOW PARAMETERS command or
selecting from the VSPARAMETER or V$PARAMETER2 views.

= To modify the server parameter file by first exporting it, editing the resulting text
file, and then re-creating it using the CREATE SPFILE statement

The exported file can also be used to start up an instance using the PFILE clause.

You must have the SYSDBA or the SYSOPER system privilege to execute the CREATE
PFILE statement. The exported file is created on the database server machine. It
contains any comments associated with the parameter in the same line as the
parameter setting.

The following example creates a text initialization parameter file from the SPFILE:
CREATE PFILE FROM SPFILE;
Because no names were specified for the files, the database creates an initialization

parameter file with a platform-specific name, and it is created from the
platform-specific default server parameter file.

The following example creates a text initialization parameter file from a server
parameter file, but in this example the names of the files are specified:

CREATE PFILE='/u0l/oracle/dbs/test_init.ora'
FROM SPFILE='/u0l/oracle/dbs/test_spfile.ora';

Note: An alternative is to create a PFILE from the current values of
the initialization parameters in memory. The following is an example
of the required command:

CREATE PFILE='/u0l/oracle/dbs/test_init.ora' FROM MEMORY;

Backing Up the Server Parameter File

You can create a backup of your server parameter file (SPFILE) by exporting it, as
described in "Exporting the Server Parameter File". If the backup and recovery strategy
for your database is implemented using Recovery Manager (RMAN), then you can use
RMAN to create a backup of the SPFILE. The SPFILE is backed up automatically by
RMAN when you back up your database, but RMAN also enables you to specifically
create a backup of the currently active SPFILE.

2-34 Oracle Database Administrator's Guide

Managing Initialization Parameters Using a Server Parameter File

See Also: Oracle Database Backup and Recovery User’s Guide

Recovering a Lost or Damaged Server Parameter File

If your server parameter file (SPFILE) becomes lost or corrupted, the current instance
may fail, or the next attempt at starting the database instance may fail. There are a
number of ways to recover the SPFILE:

If the instance is running, issue the following command to recreate the SPFILE
from the current values of initialization parameters in memory:

CREATE SPFILE FROM MEMORY;
This command creates the SPFILE with the default name and in the default

location. You can also create the SPFILE with a new name or in a specified
location. See "Creating a Server Parameter File" on page 2-28 for examples.

If you have a valid text initialization parameter file (PFILE), recreate the SPFILE
from the PFILE with the following command:

CREATE SPFILE FROM PFILE;

This command assumes that the PFILE is in the default location and has the
default name. See "Creating a Server Parameter File" on page 2-28 for the
command syntax to use when the PFILE is not in the default location or has a
non-default name.

Restore the SPFILE from backup.
See "Backing Up the Server Parameter File" on page 2-34 for more information.
If none of the previous methods are possible in your situation, perform these steps:

1. Create a text initialization parameter file (PFILE) from the parameter value
listings in the alert log.

When an instance starts up, the initialization parameters used for startup are
written to the alert log. You can copy and paste this section from the text
version of the alert log (without XML tags) into a new PFILE.

See "Viewing the Alert Log" on page 8-18 for more information.
2. Create the SPFILE from the PFILE.

See "Creating a Server Parameter File" on page 2-28 for instructions.

Read/Write Errors During a Parameter Update

If an error occurs while reading or writing the server parameter file during a
parameter update, the error is reported in the alert log and all subsequent parameter
updates to the server parameter file are ignored. At this point, you can take one of the
following actions:

Shut down the instance, recover the server parameter file and described earlier in
this section, and then restart the instance.

Continue to run the database if you do not care that subsequent parameter
updates will not be persistent.

Viewing Parameter Settings

You can view parameter settings in several ways, as shown in the following table.

Creating and Configuring an Oracle Database 2-35

Defining Database Services

Method Description

SHOW PARAMETERS This SQL*Plus command displays the values of initialization
parameters in effect for the current session.

SHOW SPPARAMETERS This SQL*Plus command displays the values of initialization
parameters in the server parameter file (SPFILE).

CREATE PFILE This SQL statement creates a text initialization parameter file
(PFILE) from the SPFILE or from the current in-memory settings.
You can then view the PFILE with any text editor.

VS$PARAMETER This view displays the values of initialization parameters in
effect for the current session.

V$PARAMETER?2 This view displays the values of initialization parameters in
effect for the current session. It is easier to distinguish list
parameter values in this view because each list parameter value
appears in a separate row.

V$SYSTEM_PARAMETER This view displays the values of initialization parameters in
effect for the instance. A new session inherits parameter values
from the instance-wide values.

V$SYSTEM_PARAMETER2 | This view displays the values of initialization parameters in
effect for the instance. A new session inherits parameter values
from the instance-wide values. It is easier to distinguish list
parameter values in this view because each list parameter value
appears in a separate row.

V$SPPARAMETER This view displays the current contents of the SPFILE. The view
returns FALSE values in the ISSPECIFIED column if an SPFILE
is not being used by the instance.

See Also: Oracle Database Reference for a complete description of
views

Defining Database Services
This section describes database services and includes the following topics:
s Deploying Services
= Configuring Services
s Using Services

Database services (services) are logical abstractions for managing workloads in Oracle
Database. Services divide workloads into mutually disjoint groupings. Each service
represents a workload with common attributes, service-level thresholds, and priorities.
The grouping is based on attributes of work that might include the application
function to be used, the priority of execution for the application function, the job class
to be managed, or the data range used in the application function or job class. For
example, the Oracle E-Business suite defines a service for each responsibility, such as
general ledger, accounts receivable, order entry, and so on.

Services are built into the Oracle Database, providing a single system image for
workloads, prioritization for workloads, performance measures for real transactions,
and alerts and actions when performance goals are violated. Services enable you to
configure a workload, administer it, enable and disable it, and measure the workload
as a single entity. You can do this using standard tools such as the Database
Configuration Assistant (DBCA), Net Configuration Assistant (NetCA), and Enterprise
Manager (EM). Enterprise Manager supports viewing and operating services as a
whole, with drill down to the instance-level when needed.

2-36 Oracle Database Administrator's Guide

Defining Database Services

In Real Application Clusters (RAC), a service can span one or more instances and
facilitate real workload balancing based on real transaction performance. This
provides end-to-end unattended recovery, rolling changes by workload, and full
location transparency. RAC also enables you to manage a number of service features
with Enterprise Manager, the DBCA, and the Server Control utility (SRVCTL).

Services also offer an extra dimension in performance tuning. Tuning by "service and
SQL" can replace tuning by "session and SQL" in the majority of systems where all
sessions are anonymous and shared. With services, workloads are visible and
measurable. Resource consumption and waits are attributable by application.
Additionally, resources assigned to services can be augmented when loads increase or
decrease. This dynamic resource allocation enables a cost-effective solution for
meeting demands as they occur. For example, services are measured automatically and
the performance is compared to service-level thresholds. Performance violations are
reported to Enterprise Manager, enabling the execution of automatic or scheduled
solutions.

See Also: Oracle Real Application Clusters Administration and
Deployment Guide

Deploying Services

When you configure database services, you give each service a unique global name,
associated performance goals, and associated importance. The services are tightly
integrated with Oracle Database and are maintained in the data dictionary. You can
find service information in the following service-specific views:

= DBA_SERVICES

= ALL_SERVICES or V$SERVICES
s VSACTIVE_SERVICES

= VSSERVICE_STATS

s VSSERVICE_EVENTS

» VSSERVICE_WAIT_CLASSES

= VSSERV_MOD_ACT_STATS

s VSSERVICE_METRICS

= VSSERVICE_METRICS_HISTORY
The following additional views also contain some information about services:
m VS$SSESSION

s VSACTIVE_SESSION_HISTORY
s DBA_RSRC_GROUP_MAPPINGS

= DBA_SCHEDULER_JOB_CLASSES

= DBA_THRESHOLDS

See Also: Oracle Database Reference for detailed information about
these views

Several Oracle Database features support services. The Automatic Workload
Repository (AWR) manages the performance of services. AWR records service
performance, including execution times, wait classes, and resources consumed by
service. AWR alerts warn when service response time thresholds are exceeded. The

Creating and Configuring an Oracle Database 2-37

Defining Database Services

dynamic views report current service performance metrics with one hour of history.
Each service has quality-of-service thresholds for response time and CPU
consumption.

In addition, the Database Resource Manager maps services to consumer groups. This
enables you to automatically manage the priority of one service relative to others. You
can use consumer groups to define relative priority in terms of either ratios or resource
consumption. This is described in more detail, for example, in Oracle Real Application
Clusters Deployment and Performance Guide.

Configuring Services

Services describe applications, application functions, and data ranges as either
functional services or data-dependent services. Functional services are the most
common mapping of workloads. Sessions using a particular function are grouped
together. For Oracle*Applications, ERP, CRM, and iSupport functions create a
functional division of the work. For SAP, dialog and update functions create a
functional division of the work.

In contrast, data-dependent routing routes sessions to services based on data keys. The
mapping of work requests to services occurs in the object relational mapping layer for
application servers and TP monitors. For example, in RAC, these ranges can be
completely dynamic and based on demand because the database is shared.

You can also define preconnect application services in RAC databases. Preconnect
services span instances to support a service in the event of a failure. The preconnect
service supports TAF preconnect mode and is managed transparently when using
RAC.

In addition to application services, Oracle Database also supports two internal
services: SYSSBACKGROUND is used by the background processes only and
SYSS$USERS is the default service for user sessions that are not associated with
services.

Use the DBMS_SERVICE package or set the SERVICE_NAMES parameter to create
application services on a single-instance Oracle Database. You can later define the
response time goal or importance of each service through EM, either individually or
by using the Enterprise Manager feature "Copy Thresholds From a Baseline" on the
Manage Metrics/Edit Threshold pages. You can also do this using PL/SQL.

Using Services

Using services requires no changes to your application code. Client-side work connects
to a service. Server-side work specifies the service when creating the job class for the
Job Scheduler and the database links for distributed databases. Work requests
executing under a service inherit the performance thresholds for the service and are
measured as part of the service.

Client-Side Use

Middle-tier applications and client-server applications use a service by specifying the
service as part of the connection in TNS connect data. This connect data may be in the
TNSnames file for thick Net drivers, in the URL specification for thin drivers, or may
be maintained in the Oracle Internet Directory. For example, data sources for the
Oracle Application Server 10g are set to route to a service. Using Easy Connect
Naming, this connection needs only the host name and service name (for example,
hr/hre@myDBhost /myservice). For Oracle E-Business Suite, the service is also

2-38 Oracle Database Administrator's Guide

Considerations After Creating a Database

maintained in the application database identifier and in the cookie for the ICX
parameters.

Server-Side Use

Server-side work, such as the Oracle Scheduler, parallel execution, and Oracle Streams
Advanced Queuing, set the service name as part of the workload definition.

For the Oracle Scheduler, the service that the job class uses is defined when the job
class is created. During execution, jobs are assigned to job classes, and job classes run
within services. Using services with job classes ensures that the work executed by the
job scheduler is identified for workload management and performance tuning.

For parallel query and parallel DML, the query coordinator connects to a service just
like any other client. The parallel query processes inherit the service for the duration of
the execution. At the end of query execution, the parallel execution processes revert to
the default service.

See Also: Chapter 27, "Scheduling Jobs with Oracle Scheduler" for
more information about the Oracle Scheduler.

Considerations After Creating a Database

After you create a database, the instance is left running, and the database is open and
available for normal database use. You may want to perform other actions, some of
which are discussed in this section.

Some Security Considerations

Note Regarding Security Enhancements: In this release of Oracle
Database and in subsequent releases, several enhancements are
being made to ensure the security of default database user
accounts. You can find a security checklist for this release in Oracle
Database Security Guide. Oracle recommends that you read this
checklist and configure your database accordingly.

After the database is created, you can configure it to take advantage of Oracle Identity
Management. For information on how to do this, please refer to Oracle Database
Enterprise User Security Administrator’s Guide.

A newly created database has at least three user accounts that are important for
administering your database: SYS, SYSTEM, and SYSMAN.

Caution: To prevent unauthorized access and protect the integrity
of your database, it is important that new passwords for user
accounts SYS and SYSTEM be specified when the database is
created. This is accomplished by specifying the following CREATE
DATABASE clauses when manually creating you database, or by
using DBCA to create the database:

s USER SYS IDENTIFIED BY

s USER SYSTEM IDENTIFIED BY

Creating and Configuring an Oracle Database 2-39

Considerations After Creating a Database

Additional administrative accounts are provided by Oracle Database that should be
used only by authorized users. To protect these accounts from being used by
unauthorized users familiar with their Oracle-supplied passwords, these accounts are
initially locked with their passwords expired. As the database administrator, you are
responsible for the unlocking and resetting of these accounts.

See Oracle Database 2 Day + Security Guide for a complete list of predefined user
accounts created with each new Oracle Database installation.

See Also:

= "Database Administrator Usernames" on page 1-9 for more
information about the users SYS and SYSTEM

» Oracle Database Security Guide to learn how to add new users
and change passwords

» Oracle Database SQL Language Reference for the syntax of the
ALTER USER statement used for unlocking user accounts

Enabling Transparent Data Encryption

Transparent data encryption is a feature that enables encryption of individual database
columns before storing them in the datafile, or enables encryption of entire
tablespaces. If users attempt to circumvent the database access control mechanisms by
looking inside datafiles directly with operating system tools, transparent data
encryption prevents such users from viewing sensitive information.

Users who have the CREATE TABLE privilege can choose one or more columns in a
table to be encrypted. The data is encrypted in the data files and in the audit logs (if
audit is turned on). Database users with appropriate privileges can view the data in
unencrypted format. For information on enabling and disabling transparent data
encryption, see Oracle Database Advanced Security Administrator’s Guide.

See Also:

s "Consider Encrypting Columns That Contain Sensitive Data" on
page 18-6

= "Encrypted Tablespaces" on page 12-8

Creating a Secure External Password Store

For large-scale deployments where applications use password credentials to connect to
databases, it is possible to store such credentials in a client-side Oracle wallet. An
Oracle wallet is a secure software container that is used to store authentication and
signing credentials.

Storing database password credentials in a client-side Oracle wallet eliminates the
need to embed usernames and passwords in application code, batch jobs, or scripts.
This reduces the risk of exposing passwords in the clear in scripts and application
code, and simplifies maintenance because you need not change your code each time
usernames and passwords change. In addition, not having to change application code
also makes it easier to enforce password management policies for these user accounts.

When you configure a client to use the external password store, applications can use
the following syntax to connect to databases that use password authentication:

CONNECT /@database_alias

2-40 Oracle Database Administrator's Guide

Database Data Dictionary Views

Note that you need not specify database login credentials in this CONNECT statement.
Instead your system looks for database login credentials in the client wallet.

See Also: Oracle Database Advanced Security Administrator’s Guide for
information about configuring your client to use a secure external
password store and for information about managing credentials in it.

Installing the Oracle Database Sample Schemas

The Oracle Database distribution media includes various SQL files that let you
experiment with the system, learn SQL, or create additional tables, views, or
synonymes.

Oracle Database includes sample schemas that help you to become familiar with
Oracle Database functionality. All Oracle Database documentation and training
materials are being converted to the Sample Schemas environment as those materials
are updated.

The Sample Schemas can be installed automatically by the Database Configuration
Assistant, or you can install them manually. The schemas and installation instructions
are described in detail in Oracle Database Sample Schemas.

Database Data Dictionary Views

In addition to the views listed previously in "Viewing Parameter Settings", you can
view information about your database content and structure using the following
views:

View Description

DATABASE_PROPERTIES Displays permanent database properties

GLOBAL_NAME Displays the global database name

VS$SDATABASE Contains database information from the control file

Creating and Configuring an Oracle Database 2-41

Database Data Dictionary Views

2-42 Oracle Database Administrator's Guide

3

Starting Up and Shutting Down

This chapter describes the procedures for starting up and shutting down an Oracle
Database instance and contains the following topics:

= Starting Up a Database
= Altering Database Availability
= Shutting Down a Database
= Quiescing a Database
= Suspending and Resuming a Database
See Also: Oracle Real Application Clusters Administration and

Deployment Guide for additional information specific to an Oracle
Real Application Clusters environment

Starting Up a Database

When you start up a database, you create an instance of that database and you
determine the state of the database. Normally, you start up an instance by mounting
and opening the database. Doing so makes the database available for any valid user to
connect to and perform typical data access operations. Other options exist, and these
are also discussed in this section.

This section contains the following topics relating to starting up an instance of a
database:

= Options for Starting Up a Database
s Understanding Initialization Parameter Files
»s Preparing to Start Up an Instance

s Starting Up an Instance

Options for Starting Up a Database

You can start up a database instance with SQL*Plus, Recovery Manager, or Enterprise
Manager.

Starting Up a Database Using SQL*Plus

You can start a SQL*Plus session, connect to Oracle Database with administrator
privileges, and then issue the STARTUP command. Using SQL*Plus in this way is the
only method described in detail in this book.

Starting Up and Shutting Down 3-1

Starting Up a Database

Starting Up a Database Using Recovery Manager

You can also use Recovery Manager (RMAN) to execute STARTUP and SHUTDOWN
commands. You may prefer to do this if your are within the RMAN environment and
do not want to invoke SQL*Plus.

See Also: Oracle Database Backup and Recovery User’s Guide for
information on starting up the database using RMAN

Starting Up a Database Using Oracle Enterprise Manager

You can use Oracle Enterprise Manager (EM) to administer your database, including
starting it up and shutting it down. EM combines a GUI console, agents, common
services, and tools to provide an integrated and comprehensive systems management
platform for managing Oracle products. EM Database Control, which is the portion of
EM that is dedicated to administering an Oracle database, enables you to perform the
functions discussed in this book using a GUI interface, rather than command line
operations.

See Also:

» Oracle Enterprise Manager Concepts

» Oracle Enterprise Manager Grid Control Installation and Basic
Configuration

» Oracle Database 2 Day DBA

The remainder of this section describes using SQL*Plus to start up a database instance.

Understanding Initialization Parameter Files

To start an instance, the database must read instance configuration parameters (the
initialization parameters) from either a server parameter file (SPFILE) or a text
initialization parameter file.

When you issue the SQL*Plus STARTUP command, the database attempts to read the
initialization parameters from an SPFILE in a platform-specific default location. If it
finds no SPFILE, it searches for a text initialization parameter file.

Note: For UNIX or Linux, the platform-specific default location
(directory) for the SPFILE and text initialization parameter file is:

SORACLE_HOME/dbs

For Windows NT and Windows 2000 the location is:

%ORACLE_HOME%\database

In the platform-specific default location, Oracle Database locates your initialization
parameter file by examining filenames in the following order:

1. spfileSORACLE_SID.ora
2. spfile.ora
3. 1nitSORACLE _SID.ora

The first two filenames represent SPFILEs and the third represents a text initialization
parameter file.

3-2 Oracle Database Administrator's Guide

Starting Up a Database

Note: The spfile.ora fileisincluded in this search path
because in an Oracle Real Application Clusters environment one
server parameter file is used to store the initialization parameter
settings for all instances. There is no instance-specific location for
storing a server parameter file.

For more information about the server parameter file for an Oracle
Real Application Clusters environment, see Oracle Real Application
Clusters Administration and Deployment Guide.

If you (or the Database Configuration Assistant) created a server parameter file, but
you want to override it with a text initialization parameter file, you can specify the
PFILE clause of the STARTUP command to identify the initialization parameter file.

STARTUP PFILE = /u0Ol/oracle/dbs/init.ora

Starting Up with a Non-Default Server Parameter File

A non-default server parameter file (SPFILE) is an SPFILE that is in a location other
than the default location. It is not usually necessary to start an instance with a
non-default SPFILE. However, should such a need arise, you can use the PFILE
clause to start an instance with a non-default server parameter file as follows:

1. Create a one-line text initialization parameter file that contains only the SPFILE
parameter. The value of the parameter is the non-default server parameter file
location.

For example, create a text initialization parameter file
/u0l/oracle/dbs/spf_init.ora that contains only the following parameter:

SPFILE = /ul0l/oracle/dbs/test_spfile.ora

Note: You cannot use the IFILE initialization parameter within a
text initialization parameter file to point to a server parameter file.
In this context, you must use the SPFILE initialization parameter.

2, Start up the instance pointing to this initialization parameter file.

STARTUP PFILE = /ull/oracle/dbs/spf_init.ora

The SPFILE must reside on the machine running the database server. Therefore, the
preceding method also provides a means for a client machine to start a database that
uses an SPFILE. It also eliminates the need for a client machine to maintain a
client-side initialization parameter file. When the client machine reads the
initialization parameter file containing the SPFILE parameter, it passes the value to
the server where the specified SPFILE is read.

Note that on the UNIX and Linux platforms, if your SPFILE is not in the default
location, you can also create a symbolic link to the SPFILE and place the symbolic link
in the default location.

See Table 2-3 on page 2-29 for information on PFILE and SPFILE default names and
locations.

Initialization Files and Automatic Storage Management

A database that uses Automatic Storage Management (ASM) usually has a non-default
SPFILE. If you use the Database Configuration Assistant (DBCA) to configure a

Starting Up and Shutting Down 3-3

Starting Up a Database

database to use ASM, DBCA creates an SPFILE for the database instance in an ASM
disk group, and then creates a text initialization parameter file in the default location
in the local file system to point to the SPFILE.

See Also: Chapter 2, "Creating and Configuring an Oracle
Database", for more information about initialization parameters,
initialization parameter files, and server parameter files

Preparing to Start Up an Instance

You must perform some preliminary steps before attempting to start an instance of
your database using SQL*Plus.

1. Ensure that environment variables are set so that you connect to the desired Oracle
instance. For details, see "Selecting an Instance with Environment Variables" on
page 1-7.

2. Start SQL*Plus without connecting to the database:

SQLPLUS /NOLOG

3. Connect to Oracle Database as SYSDBA:
CONNECT username/password AS SYSDBA

Now you are connected to the database and ready to start up an instance of your
database.

See Also: SQL*Plus User's Guide and Reference for descriptions and
syntax for the CONNECT, STARTUP, and SHUTDOWN commands.

Starting Up an Instance

You use the SQL*Plus STARTUP command to start up an Oracle Database instance.
You can start an instance in various modes:

= Start the instance without mounting a database. This does not allow access to the
database and usually would be done only for database creation or the re-creation
of control files.

» Start the instance and mount the database, but leave it closed. This state allows for
certain DBA activities, but does not allow general access to the database.

= Start the instance, and mount and open the database. This can be done in
unrestricted mode, allowing access to all users, or in restricted mode, allowing
access for database administrators only.

= Force the instance to start after a startup or shutdown problem, or start the
instance and have complete media recovery begin immediately.

Note: You cannot start a database instance if you are connected to
the database through a shared server process.

The following scenarios describe and illustrate the various states in which you can
start up an instance. Some restrictions apply when combining clauses of the STARTUP
command.

3-4 Oracle Database Administrator's Guide

Starting Up a Database

Note: It is possible to encounter problems starting up an instance
if control files, database files, or redo log files are not available. If
one or more of the files specified by the CONTROL_FILES
initialization parameter does not exist or cannot be opened when
you attempt to mount a database, Oracle Database returns a
warning message and does not mount the database. If one or more
of the datafiles or redo log files is not available or cannot be opened
when attempting to open a database, the database returns a
warning message and does not open the database.

See Also: SQL*Plus User’s Guide and Reference for information
about the restrictions that apply when combining clauses of the
STARTUP command

Starting an Instance, and Mounting and Opening a Database

Normal database operation means that an instance is started and the database is
mounted and open. This mode allows any valid user to connect to the database and
perform data access operations.

The following command starts an instance, reads the initialization parameters from the
default location, and then mounts and opens the database. (You can optionally specify
a PFILE clause.)

STARTUP

Starting an Instance Without Mounting a Database

You can start an instance without mounting a database. Typically, you do so only
during database creation. Use the STARTUP command with the NOMOUNT clause:

STARTUP NOMOUNT

Starting an Instance and Mounting a Database

You can start an instance and mount a database without opening it, allowing you to
perform specific maintenance operations. For example, the database must be mounted
but not open during the following tasks:

= Enabling and disabling redo log archiving options. For more information, please
refer to Chapter 11, "Managing Archived Redo Logs".

» Performing full database recovery. For more information, please refer to Oracle
Database Backup and Recovery User’s Guide

The following command starts an instance and mounts the database, but leaves the
database closed:

STARTUP MOUNT

Restricting Access to an Instance at Startup

You can start an instance, and optionally mount and open a database, in restricted
mode so that the instance is available only to administrative personnel (not general
database users). Use this mode of instance startup when you need to accomplish one
of the following tasks:

= Perform an export or import of data

» Perform a data load (with SQL*Loader)

Starting Up and Shutting Down 3-5

Starting Up a Database

s Temporarily prevent typical users from using data
s Perform certain migration or upgrade operations

Typically, all users with the CREATE SESSION system privilege can connect to an
open database. Opening a database in restricted mode allows database access only to
users with both the CREATE SESSION and RESTRICTED SESSION system privilege.
Only database administrators should have the RESTRICTED SESSION system
privilege. Further, when the instance is in restricted mode, a database administrator
cannot access the instance remotely through an Oracle Net listener, but can only access
the instance locally from the machine that the instance is running on.

The following command starts an instance (and mounts and opens the database) in
restricted mode:

STARTUP RESTRICT

You can use the RESTRICT clause in combination with the MOUNT, NOMOUNT, and
OPEN clauses.

Later, use the ALTER SYSTEM statement to disable the RESTRICTED SESSION
feature:

ALTER SYSTEM DISABLE RESTRICTED SESSION;

If you open the database in nonrestricted mode and later find that you need to restrict
access, you can use the ALTER SYSTEM statement to do so, as described in "Restricting
Access to an Open Database" on page 3-8.

See Also: Oracle Database SQL Language Reference for more
information on the ALTER SYSTEM statement

Forcing an Instance to Start

In unusual circumstances, you might experience problems when attempting to start a
database instance. You should not force a database to start unless you are faced with
the following:

= You cannot shut down the current instance with the SHUTDOWN NORMAL,
SHUTDOWN IMMEDIATE, or SHUTDOWN TRANSACTIONAL commands.

= You experience problems when starting an instance.

If one of these situations arises, you can usually solve the problem by starting a new
instance (and optionally mounting and opening the database) using the STARTUP
command with the FORCE clause:

STARTUP FORCE

If an instance is running, STARTUP FORCE shuts it down with mode ABORT before
restarting it. In this case, beginning with Oracle Database 10g Release 2, the alert log
shows the message "Shutting down instance (abort)"followedby"Starting

ORACLE instance (normal)." (Earlier versions of the database showed only
"Starting ORACLE instance (force)"in the alertlog.)

See Also: "Shutting Down with the ABORT Clause" on page 3-10
to understand the side effects of aborting the current instance

3-6 Oracle Database Administrator's Guide

Altering Database Availability

Starting an Instance, Mounting a Database, and Starting Complete Media Recovery

If you know that media recovery is required, you can start an instance, mount a
database to the instance, and have the recovery process automatically start by using
the STARTUP command with the RECOVER clause:

STARTUP OPEN RECOVER

If you attempt to perform recovery when no recovery is required, Oracle Database
issues an error message.

Automatic Database Startup at Operating System Start

Many sites use procedures to enable automatic startup of one or more Oracle Database
instances and databases immediately following a system start. The procedures for
performing this task are specific to each operating system. For information about
automatic startup, see your operating system specific Oracle documentation.

Starting Remote Instances

If your local Oracle Database server is part of a distributed database, you might want
to start a remote instance and database. Procedures for starting and stopping remote
instances vary widely depending on communication protocol and operating system.

Altering Database Availability

You can alter the availability of a database. You may want to do this in order to restrict
access for maintenance reasons or to make the database read only. The following
sections explain how to alter the availability of a database:

= Mounting a Database to an Instance
s Opening a Closed Database
= Opening a Database in Read-Only Mode

= Restricting Access to an Open Database

Mounting a Database to an Instance

When you need to perform specific administrative operations, the database must be
started and mounted to an instance, but closed. You can achieve this scenario by
starting the instance and mounting the database.

To mount a database to a previously started, but not opened instance, use the SQL
statement ALTER DATABASE with the MOUNT clause as follows:

ALTER DATABASE MOUNT;
See Also: "Starting an Instance and Mounting a Database" on
page 3-5 for a list of operations that require the database to be

mounted and closed (and procedures to start an instance and
mount a database in one step)

Opening a Closed Database

You can make a mounted but closed database available for general use by opening the
database. To open a mounted database, use the ALTER DATABASE statement with the
OPEN clause:

ALTER DATABASE OPEN;

Starting Up and Shutting Down 3-7

Shutting Down a Database

After executing this statement, any valid Oracle Database user with the CREATE
SESSION system privilege can connect to the database.

Opening a Database in Read-Only Mode

Opening a database in read-only mode enables you to query an open database while
eliminating any potential for online data content changes. While opening a database in
read-only mode guarantees that datafile and redo log files are not written to, it does
not restrict database recovery or operations that change the state of the database
without generating redo. For example, you can take datafiles offline or bring them
online since these operations do not affect data content.

If a query against a database in read-only mode uses temporary tablespace, for
example to do disk sorts, then the issuer of the query must have a locally managed
tablespace assigned as the default temporary tablespace. Otherwise, the query will fail.
This is explained in "Creating a Locally Managed Temporary Tablespace" on

page 12-11.

The following statement opens a database in read-only mode:

ALTER DATABASE OPEN READ ONLY;

You can also open a database in read /write mode as follows:

ALTER DATABASE OPEN READ WRITE;

However, read /write is the default mode.

Note: You cannot use the RESETLOGS clause with a READ ONLY
clause.

See Also: Oracle Database SQL Language Reference for more
information about the ALTER DATABASE statement

Restricting Access to an Open Database

To place an instance in restricted mode, where only users with administrative
privileges can access it, use the SQL statement ALTER SYSTEM with the ENABLE
RESTRICTED SESSION clause. After placing an instance in restricted mode, you
should consider killing all current user sessions before performing any administrative
tasks.

To lift an instance from restricted mode, use ALTER SYSTEM with the DISABLE
RESTRICTED SESSION clause.
See Also:

= "Terminating Sessions" on page 4-22 for directions for killing
user sessions

» "Restricting Access to an Instance at Startup"” on page 3-5 to
learn some reasons for placing an instance in restricted mode

Shutting Down a Database

To initiate database shutdown, use the SQL*Plus SHUTDOWN command. Control is not
returned to the session that initiates a database shutdown until shutdown is complete.

3-8 Oracle Database Administrator's Guide

Shutting Down a Database

Users who attempt connections while a shutdown is in progress receive a message like
the following:

ORA-01090: shutdown in progress - connection is not permitted

Note: You cannot shut down a database if you are connected to
the database through a shared server process.

To shut down a database and instance, you must first connect as SYSOPER or SYSDBA.
There are several modes for shutting down a database. These are discussed in the
following sections:

= Shutting Down with the NORMAL Clause

= Shutting Down with the IMMEDIATE Clause

= Shutting Down with the TRANSACTIONAL Clause
= Shutting Down with the ABORT Clause

Some shutdown modes wait for certain events to occur (such as transactions
completing or users disconnecting) before actually bringing down the database. There
is a one-hour timeout period for these events. This timeout behavior is discussed in
this additional section:

s Shutdown Timeout

Shutting Down with the NORMAL Clause

To shut down a database in normal situations, use the SHUTDOWN command with the
NORMAL clause:

SHUTDOWN NORMAL

The NORMAL clause is optional, because this is the default shutdown method if no
clause is provided.

Normal database shutdown proceeds with the following conditions:

= No new connections are allowed after the statement is issued.

= Before the database is shut down, the database waits for all currently connected
users to disconnect from the database.

The next startup of the database will not require any instance recovery procedures.

Shutting Down with the IMMEDIATE Clause

Use immediate database shutdown only in the following situations:
s Toinitiate an automated and unattended backup
= When a power shutdown is going to occur soon

= When the database or one of its applications is functioning irregularly and you
cannot contact users to ask them to log off or they are unable to log off

To shut down a database immediately, use the SHUTDOWN command with the
IMMEDIATE clause:

SHUTDOWN IMMEDIATE

Immediate database shutdown proceeds with the following conditions:

Starting Up and Shutting Down 3-9

Shutting Down a Database

s No new connections are allowed, nor are new transactions allowed to be started,
after the statement is issued.

= Any uncommitted transactions are rolled back. (If long uncommitted transactions
exist, this method of shutdown might not complete quickly, despite its name.)

= Oracle Database does not wait for users currently connected to the database to
disconnect. The database implicitly rolls back active transactions and disconnects
all connected users.

The next startup of the database will not require any instance recovery procedures.

Shutting Down with the TRANSACTIONAL Clause

When you want to perform a planned shutdown of an instance while allowing active
transactions to complete first, use the SHUTDOWN command with the TRANSACTIONAL
clause:

SHUTDOWN TRANSACTIONAL

Transactional database shutdown proceeds with the following conditions:

= No new connections are allowed, nor are new transactions allowed to be started,
after the statement is issued.

» After all transactions have completed, any client still connected to the instance is
disconnected.

= At this point, the instance shuts down just as it would when a SHUTDOWN
IMMEDIATE statement is submitted.

The next startup of the database will not require any instance recovery procedures.

A transactional shutdown prevents clients from losing work, and at the same time,
does not require all users to log off.

Shutting Down with the ABORT Clause

You can shut down a database instantaneously by aborting the database instance. If
possible, perform this type of shutdown only in the following situations:

The database or one of its applications is functioning irregularly and none of the other
types of shutdown works.

= You need to shut down the database instantaneously (for example, if you know a
power shutdown is going to occur in one minute).

= You experience problems when starting a database instance.

When you must do a database shutdown by aborting transactions and user
connections, issue the SHUTDOWN command with the ABORT clause:

SHUTDOWN ABORT

An aborted database shutdown proceeds with the following conditions:

s No new connections are allowed, nor are new transactions allowed to be started,
after the statement is issued.

» Current client SQL statements being processed by Oracle Database are
immediately terminated.

s Uncommitted transactions are not rolled back.

3-10 Oracle Database Administrator's Guide

Quiescing a Database

= Oracle Database does not wait for users currently connected to the database to
disconnect. The database implicitly disconnects all connected users.

The next startup of the database will require instance recovery procedures.

Shutdown Timeout

Shutdown modes that wait for users to disconnect or for transactions to complete have
a limit on the amount of time that they wait. If all events blocking the shutdown do
not occur within one hour, the shutdown command cancels with the following
message: ORA-01013: user requested cancel of current operation.

Quiescing a Database

Occasionally you might want to put a database in a state that allows only DBA
transactions, queries, fetches, or PL/SQL statements. Such a state is referred to as a
quiesced state, in the sense that no ongoing non-DBA transactions, queries, fetches, or
PL/SQL statements are running in the system.

Note: In this discussion of quiesce database, a DBA is defined as
user SYS or SYSTEM. Other users, including those with the DBA
role, are not allowed to issue the ALTER SYSTEM QUIESCE
DATABASE statement or proceed after the database is quiesced.

The quiesced state lets administrators perform actions that cannot safely be done
otherwise. These actions include:

= Actions that fail if concurrent user transactions access the same object--for
example, changing the schema of a database table or adding a column to an
existing table where a no-wait lock is required.

= Actions whose undesirable intermediate effect can be seen by concurrent user
transactions--for example, a multistep procedure for reorganizing a table when the
table is first exported, then dropped, and finally imported. A concurrent user who
attempts to access the table after it was dropped, but before import, would not
have an accurate view of the situation.

Without the ability to quiesce the database, you would need to shut down the database
and reopen it in restricted mode. This is a serious restriction, especially for systems
requiring 24 x 7 availability. Quiescing a database is much a smaller restriction,
because it eliminates the disruption to users and the downtime associated with
shutting down and restarting the database.

When the database is in the quiesced state, it is through the facilities of the Database
Resource Manager that non-DBA sessions are prevented from becoming active.
Therefore, while this statement is in effect, any attempt to change the current resource
plan will be queued until after the system is unquiesced. See Chapter 25, "Managing
Resource Allocation with Oracle Database Resource Manager" for more information
about the Database Resource Manager.

Placing a Database into a Quiesced State
To place a database into a quiesced state, issue the following statement:

ALTER SYSTEM QUIESCE RESTRICTED;

Starting Up and Shutting Down 3-11

Quiescing a Database

Non-DBA active sessions will continue until they become inactive. An active session is
one that is currently inside of a transaction, a query, a fetch, or a PL/SQL statement; or
a session that is currently holding any shared resources (for example, enqueues). No
inactive sessions are allowed to become active. For example, If a user issues a SQL
query in an attempt to force an inactive session to become active, the query will appear
to be hung. When the database is later unquiesced, the session is resumed, and the
blocked action is processed.

Once all non-DBA sessions become inactive, the ALTER SYSTEM QUIESCE
RESTRICTED statement completes, and the database is in a quiesced state. In an
Oracle Real Application Clusters environment, this statement affects all instances, not
just the one that issues the statement.

The ALTER SYSTEM QUIESCE RESTRICTED statement may wait a long time for
active sessions to become inactive. You can determine the sessions that are blocking
the quiesce operation by querying the V$BLOCKING_QUIESCE view. This view returns
only a single column: SID (Session ID). You can join it with VSSESSION to get more
information about the session, as shown in the following example:

select bl.sid, user, osuser, type, program
from vSblocking_quiesce bl, vS$session se
where bl.sid = se.sid;

See Oracle Database Reference for details on these view.

If you interrupt the request to quiesce the database, or if your session terminates
abnormally before all active sessions are quiesced, then Oracle Database automatically
reverses any partial effects of the statement.

For queries that are carried out by successive multiple Oracle Call Interface (OCI)
fetches, the ALTER SYSTEM QUIESCE RESTRICTED statement does not wait for all
fetches to finish. It only waits for the current fetch to finish.

For both dedicated and shared server connections, all non-DBA logins after this
statement is issued are queued by the Database Resource Manager, and are not

allowed to proceed. To the user, it appears as if the login is hung. The login will
resume when the database is unquiesced.

The database remains in the quiesced state even if the session that issued the statement
exits. A DBA must log in to the database to issue the statement that specifically
unquiesces the database.

Note: You cannot perform a cold backup when the database is in
the quiesced state, because Oracle Database background processes
may still perform updates for internal purposes even while the
database is quiesced. In addition, the file headers of online datafiles
continue to appear to be accessible. They do not look the same as if
a clean shutdown had been performed. However, you can still take
online backups while the database is in a quiesced state.

Restoring the System to Normal Operation
The following statement restores the database to normal operation:
ALTER SYSTEM UNQUIESCE;
All non-DBA activity is allowed to proceed. In an Oracle Real Application Clusters

environment, this statement is not required to be issued from the same session, or even
the same instance, as that which quiesced the database. If the session issuing the

3-12 Oracle Database Administrator's Guide

Suspending and Resuming a Database

ALTER SYSTEM UNQUIESCE statement terminates abnormally, then the Oracle
Database server ensures that the unquiesce operation completes.

Viewing the Quiesce State of an Instance

You can query the ACTIVE_STATE column of the V$INSTANCE view to see the current
state of an instance. The column values has one of these values:

= NORMAL: Normal unquiesced state.
= QUIESCING: Being quiesced, but some non-DBA sessions are still active.

m QUIESCED: Quiesced; no non-DBA sessions are active or allowed.

Suspending and Resuming a Database

The ALTER SYSTEM SUSPEND statement halts all input and output (I/O) to datafiles
(file header and file data) and control files. The suspended state lets you back up a
database without I/O interference. When the database is suspended all preexisting
I/0 operations are allowed to complete and any new database accesses are placed in a
queued state.

The suspend command is not specific to an instance. In an Oracle Real Application
Clusters environment, when you issue the suspend command on one system, internal
locking mechanisms propagate the halt request across instances, thereby quiescing all
active instances in a given cluster. However, if someone starts a new instance another
instance is being suspended, the new instance will not be suspended.

Use the ALTER SYSTEM RESUME statement to resume normal database operations.
The SUSPEND and RESUME commands can be issued from different instances. For
example, if instances 1, 2, and 3 are running, and you issue an ALTER SYSTEM
SUSPEND statement from instance 1, then you can issue a RESUME statement from
instance 1, 2, or 3 with the same effect.

The suspend /resume feature is useful in systems that allow you to mirror a disk or file
and then split the mirror, providing an alternative backup and restore solution. If you
use a system that is unable to split a mirrored disk from an existing database while
writes are occurring, then you can use the suspend /resume feature to facilitate the
split.

The suspend /resume feature is not a suitable substitute for normal shutdown
operations, because copies of a suspended database can contain uncommitted updates.

Caution: Do not use the ALTER SYSTEM SUSPEND statement as a
substitute for placing a tablespace in hot backup mode. Precede any
database suspend operation by an ALTER TABLESPACE BEGIN
BACKUP statement.

The following statements illustrate ALTER SYSTEM SUSPEND/RESUME usage. The
V$INSTANCE view is queried to confirm database status.

SQL> ALTER SYSTEM SUSPEND;

System altered

SQL> SELECT DATABASE_STATUS FROM V$SINSTANCE;
DATABASE_STATUS

SUSPENDED

Starting Up and Shutting Down 3-13

Suspending and Resuming a Database

SQL> ALTER SYSTEM RESUME;

System altered

SQL> SELECT DATABASE_STATUS FROM VSINSTANCE;
DATABASE_STATUS

ACTIVE

See Also: Oracle Database Backup and Recovery User’s Guide for
details about backing up a database using the database
suspend /resume feature

3-14 Oracle Database Administrator's Guide

4

Managing Processes

This chapter describes how to manage and monitor the processes of an Oracle
Database instance and contains the following topics:

= About Dedicated and Shared Server Processes

= About Database Resident Connection Pooling

s Configuring Oracle Database for Shared Server

= Configuring Database Resident Connection Pooling
= About Oracle Database Background Processes

= Managing Processes for Parallel SQL Execution

= Managing Processes for External Procedures

s Terminating Sessions

» Process and Session Data Dictionary Views

About Dedicated and Shared Server Processes

Oracle Database creates server processes to handle the requests of user processes
connected to an instance. A server process can be either of the following:

= A dedicated server process, which services only one user process
= A shared server process, which can service multiple user processes

Your database is always enabled to allow dedicated server processes, but you must
specifically configure and enable shared server by setting one or more initialization
parameters.

Dedicated Server Processes

Figure 4-1, "Oracle Database Dedicated Server Processes" illustrates how dedicated
server processes work. In this diagram two user processes are connected to the
database through dedicated server processes.

In general, it is better to be connected through a dispatcher and use a shared server
process. This is illustrated in Figure 4-2, "Oracle Database Shared Server Processes". A
shared server process can be more efficient because it keeps the number of processes
required for the running instance low.

In the following situations, however, users and administrators should explicitly
connect to an instance using a dedicated server process:

Managing Processes 4-1

About Dedicated and Shared Server Processes

= To submit a batch job (for example, when a job can allow little or no idle time for
the server process)

s To use Recovery Manager (RMAN) to back up, restore, or recover a database

To request a dedicated server connection when Oracle Database is configured for
shared server, users must connect using a net service name that is configured to use a
dedicated server. Specifically, the net service name value should include the
SERVER=DEDICATED clause in the connect descriptor.

See Also: Oracle Database Net Services Administrator’s Guide for
more information about requesting a dedicated server connection

Figure 4-1 Oracle Database Dedicated Server Processes

User User
Process Process

Application Application

Code Code

[Client Workstation
Database Server
Dedicated
Server
Process

Oracle Oracle

Server Code Server Code

Program
Interface

System Global Area

Shared Server Processes

Consider an order entry system with dedicated server processes. A customer phones
the order desk and places an order, and the clerk taking the call enters the order into
the database. For most of the transaction, the clerk is on the telephone talking to the
customer. A server process is not needed during this time, so the server process
dedicated to the clerk's user process remains idle. The system is slower for other clerks
entering orders, because the idle server process is holding system resources.

Shared server architecture eliminates the need for a dedicated server process for each
connection (see Figure 4-2).

4-2 Oracle Database Administrator's Guide

About Dedicated and Shared Server Processes

Figure 4-2 Oracle Database Shared Server Processes

User
Process

Application
Code

0 Client Workstation

Database Server

Dispatcher Processes |«

Shared
server
processes
Oracle
Server Code

7 o\

9 System Global Area

(5]

Request

Queue

Response
Queues

_—

In a shared server configuration, client user processes connect to a dispatcher. The
dispatcher can support multiple client connections concurrently. Each client
connection is bound to a virtual circuit, which is a piece of shared memory used by
the dispatcher for client database connection requests and replies. The dispatcher
places a virtual circuit on a common queue when a request arrives.

An idle shared server process picks up the virtual circuit from the common queue,
services the request, and relinquishes the virtual circuit before attempting to retrieve
another virtual circuit from the common queue. This approach enables a small pool of
server processes to serve a large number of clients. A significant advantage of shared
server architecture over the dedicated server model is the reduction of system
resources, enabling the support of an increased number of users.

For even better resource management, shared server can be configured for connection
pooling. Connection pooling lets a dispatcher support more users by enabling the
database server to time-out protocol connections and to use those connections to
service an active session. Further, shared server can be configured for session
multiplexing, which combines multiple sessions for transmission over a single
network connection in order to conserve the operating system's resources.

Managing Processes 4-3

About Database Resident Connection Pooling

Shared server architecture requires Oracle Net Services. User processes targeting the
shared server must connect through Oracle Net Services, even if they are on the same
machine as the Oracle Database instance.

See Also: Oracle Database Net Services Administrator’s Guide for
more detailed information about shared server, including features
such as connection pooling and session multiplexing

About Database Resident Connection Pooling

Database Resident Connection Pooling (DRCP) provides a connection pool in the
database server for typical Web application usage scenarios where the application
acquires a database connection, works on it for a relatively short duration, and then
releases it. DRCP pools "dedicated" servers, which is the equivalent of a server
foreground and a database session combined and henceforth are referred to as the
"pooled" servers.

DRCP complements middle-tier connection pools that share connections between
threads in a middle-tier process. In addition, DRCP enables sharing of database
connections across middle-tier processes on the same middle-tier host and even across
middle-tier hosts. This results in significant reduction in key database resources
needed to support a large number of client connections, thereby reducing the database
tier memory footprint and boosting the scalability of both middle-tier and database
tiers. Having a pool of readily available servers also has the additional benefit of
reducing the cost of creating and tearing down client connections.

DRCP is especially relevant for architectures with multi-process single threaded
application servers (such as PHP /Apache) that cannot perform middle-tier connection
pooling. The database can still scale to tens of thousands of simultaneous connections
with DRCP.

See Also:
» Oracle Call Interface Programmer’s Guide

» Oracle Database Concepts

When To Use Database Resident Connection Pooling

Database resident connection pooling is useful when multiple clients access the
database and when any of the following apply:

= A large number of client connections need to be supported with minimum
memory usage.

s The client applications are similar and can share or reuse sessions.

Applications are similar if they connect with the same database credentials and
use the same schema.

s The client applications acquire a database connection, work on it for a relatively
short duration, and then release it.

= Session affinity is not required across client requests.

s There are multiple processes and multiple hosts on the client side.

Advantages of Database Resident Connection Pooling
Using database resident connection pooling provides the following advantages:

= Enables resource sharing among multiple middle-tier client applications.

4-4 Oracle Database Administrator's Guide

About Database Resident Connection Pooling

= Improves scalability of databases and applications by reducing resource usage.

Differences Between Dedicated Servers, Shared Servers, and Database Resident
Connection Pooling

Table 4-1 lists the differences between dedicated servers, shared servers, and database
resident connection pooling.

Table 4-1 Differences Between Dedicated Servers, Shared Servers, and Database Resident Connection
Pooling

Database Resident Connection
Dedicated Servers Shared Servers Pooling

When a client request is received,a ~ When the first request is received When the first request is received

new server process and a session are from a client, the Dispatcher process from a client, the Connection Broker

created for the client. places this request on a common picks an available pooled server and
queue. The request is picked up by hands off the client connection to
an available shared server process. the pooled server.
The Dispatcher process then
manages the communication
between the client and the shared
server process.

If no pooled servers are available,
the Connection Broker creates one.
If the pool has reached its maximum
size, the client request is placed on
the wait queue until a pooled server
is available.

Releasing database resources Releasing database resources Releasing database resources
involves terminating the session involves terminating the session. involves releasing the pooled server
and server process. to the pool.

Memory requirement is Memory requirement is Memory requirement is
proportional to the number of proportional to the sum of the proportional to the number of
server processes and sessions. There shared servers and sessions. There pooled servers and their sessions.

is one server and one session for is one session for each client. There is one session for each pooled
each client. server.

Session memory is allocated from Session memory is allocated from Session memory is allocated from
the PGA. the SGA. the PGA.

Example of Memory Usage for Dedicated Server, Shared Server, and Database
Resident Connection Pooling

Consider an application in which the memory required for each session is 400 KB and
the memory required for each server process is 4 MB. The pool size is 100 and the
number of shared servers used is 100.

If there are 5000 client connections, the memory used by each configuration is as
follows:

= Dedicated Server
Memory used = 5000 X (400 KB + 4 MB) =22 GB

» Shared Server
Memory used = 5000 X 400 KB + 100 X 4 MB = 2.5 GB
Out of the 2.5 GB, 2 GB is allocated from the SGA.

= Database Resident Connection Pooling

Memory used = 100 X (400 KB + 4 MB) + (5000 X 35KB)= 615 MB

Managing Processes 4-5

Configuring Oracle Database for Shared Server

Restrictions on Using Database Resident Connection Pooling

You cannot perform the following activities with pooled servers:
= Shut down the database.

= Stop the database resident connection pool.

s Change the password for the connected user.

s Use shared database links to connect to a database resident connection pool that is
on a different instance.

= Use all Advanced Security Option (ASO) options such as encryption, certificates,
and so on.

= Use migratable sessions on the server side directly by using the OCI_MIGRATE
option or indirectly via OCIConnectionPool.

DDL statements that pertain to database users in the pool need to be performed
carefully, as the pre-DDL sessions in the pool can still be given to clients post-DDL. For
example, while dropping users, ensure that there are no sessions of that user in the
pool and no connections to the Broker that were authenticated as that user.

Sessions with explicit roles enabled, that are released to the pool, can be later handed
out to connections (of the same user) that need the default logon role. Avoid releasing
sessions with explicit roles, and instead terminate them.

Configuring Oracle Database for Shared Server

Shared memory resources are preconfigured to allow the enabling of shared server at
run time. You need not configure it by specifying parameters in your initialization
parameter file, but you can do so if that better suits your environment. You can start
dispatchers and shared server processes (shared servers) dynamically using the ALTER
SYSTEM statement.

This section discusses how to enable shared server and how to set or alter shared
server initialization parameters. It contains the following topics:

» Initialization Parameters for Shared Server
= Enabling Shared Server
s Configuring Dispatchers

= Shared Server Data Dictionary Views

See Also: Oracle Database SQL Language Reference for further
information about the ALTER SYSTEM statement

Initialization Parameters for Shared Server

The following initialization parameters control shared server operation:

= SHARED_SERVERS: Specifies the initial number of shared servers to start and the
minimum number of shared servers to keep. This is the only required parameter
for using shared servers.

= MAX SHARED_SERVERS: Specifies the maximum number of shared servers that
can run simultaneously.

= SHARED_SERVER_SESSIONS: Specifies the total number of shared server user
sessions that can run simultaneously. Setting this parameter enables you to reserve
user sessions for dedicated servers.

Oracle Database Administrator’s Guide

Configuring Oracle Database for Shared Server

= DISPATCHERS: Configures dispatcher processes in the shared server architecture.

s MAX DISPATCHERS: Specifies the maximum number of dispatcher processes that
can run simultaneously. This parameter can be ignored for now. It will only be
useful in a future release when the number of dispatchers is auto-tuned according
to the number of concurrent connections.

s CIRCUITS: Specifies the total number of virtual circuits that are available for
inbound and outbound network sessions.

See Also: Oracle Database Reference for more information about
these initialization parameters

Enabling Shared Server

Shared server is enabled by setting the SHARED_SERVERS initialization parameter to a
value greater than 0. The other shared server initialization parameters need not be set.
Because shared server requires at least one dispatcher in order to work, a dispatcher is
brought up even if no dispatcher has been configured. Dispatchers are discussed in
"Configuring Dispatchers" on page 4-9.

Shared server can be started dynamically by setting the SHARED_ SERVERS parameter
to a nonzero value with the ALTER SYSTEM statement, or SHARED_SERVERS can be
included at database startup in the initialization parameter file. If SHARED_SERVERS is
not included in the initialization parameter file, or is included but is set to 0, then
shared server is not enabled at database startup.

Note: For backward compatibility, if SHARED_SERVERS is not
included in the initialization parameter file at database startup, but
DISPATCHERS is included and it specifies at least one dispatcher,
shared server is enabled. In this case, the default for
SHARED_SERVERS is 1.

However, if neither SHARED_SERVERS nor DISPATCHERS is
included in the initialization file, you cannot start shared server
after the instance is brought up by just altering the DISPATCHERS
parameter. You must specifically alter SHARED_ SERVERS to a
nonzero value to start shared server.

Determining a Value for SHARED_SERVERS

The SHARED_SERVERS initialization parameter specifies the minimum number of
shared servers that you want created when the instance is started. After instance
startup, Oracle Database can dynamically adjust the number of shared servers based
on how busy existing shared servers are and the length of the request queue.

In typical systems, the number of shared servers stabilizes at a ratio of one shared
server for every ten connections. For OLTP applications, when the rate of requests is
low, or when the ratio of server usage to request is low, the connections-to-servers
ratio could be higher. In contrast, in applications where the rate of requests is high or
the server usage-to-request ratio is high, the connections-to-server ratio could be
lower.

The PMON (process monitor) background process cannot terminate shared servers
below the value specified by SHARED_SERVERS. Therefore, you can use this
parameter to stabilize the load and minimize strain on the system by preventing
PMON from terminating and then restarting shared servers because of coincidental
fluctuations in load.

Managing Processes 4-7

Configuring Oracle Database for Shared Server

If you know the average load on your system, you can set SHARED_SERVERS to an
optimal value. The following example shows how you can use this parameter:

Assume a database is being used by a telemarketing center staffed by 1000 agents. On
average, each agent spends 90% of the time talking to customers and only 10% of the
time looking up and updating records. To keep the shared servers from being
terminated as agents talk to customers and then spawned again as agents access the
database, a DBA specifies that the optimal number of shared servers is 100.

However, not all work shifts are staffed at the same level. On the night shift, only 200
agents are needed. Since SHARED_SERVERS is a dynamic parameter, a DBA reduces
the number of shared servers to 20 at night, thus allowing resources to be freed up for
other tasks such as batch jobs.

Decreasing the Number of Shared Server Processes

You can decrease the minimum number of shared servers that must be kept active by
dynamically setting the SHARED_SERVERS parameter to a lower value. Thereafter,
until the number of shared servers is decreased to the value of the SHARED_ SERVERS
parameter, any shared servers that become inactive are marked by PMON for
termination.

The following statement reduces the number of shared servers:
ALTER SYSTEM SET SHARED_SERVERS = 5;

Setting SHARED_SERVERS to 0 disables shared server. For more information, please
refer to "Disabling Shared Servers" on page 4-14.

Limiting the Number of Shared Server Processes

The MAX_SHARED_SERVERS parameter specifies the maximum number of shared
servers that can be automatically created by PMON. It has no default value. If no value
is specified, then PMON starts as many shared servers as is required by the load,
subject to these limitations:

» The process limit (set by the PROCESSES initialization parameter)

= A minimum number of free process slots (at least one-eighth of the total process
slots, or two slots if PROCESSES is set to less than 24)

= System resources

Note: On Windows NT, take care when setting
MAX_SHARED_SERVERS to a high value, because each server is a
thread in a common process.

The value of SHARED_SERVERS overrides the value of MAX_SHARED_SERVERS.
Therefore, you can force PMON to start more shared servers than the
MAX_SHARED_SERVERS value by setting SHARED_SERVERS to a value higher than
MAX_SHARED_SERVERS. You can subsequently place a new upper limit on the number
of shared servers by dynamically altering the MAX_ SHARED_SERVERS to a value
higher than SHARED_SERVERS.

The primary reason to limit the number of shared servers is to reserve resources, such
as memory and CPU time, for other processes. For example, consider the case of the
telemarketing center discussed previously:

The DBA wants to reserve two thirds of the resources for batch jobs at night. He sets
MAX_SHARED_SERVERS to less than one third of the maximum number of processes

4-8 Oracle Database Administrator's Guide

Configuring Oracle Database for Shared Server

(PROCESSES). By doing so, the DBA ensures that even if all agents happen to access
the database at the same time, batch jobs can connect to dedicated servers without
having to wait for the shared servers to be brought down after processing agents'
requests.

Another reason to limit the number of shared servers is to prevent the concurrent run
of too many server processes from slowing down the system due to heavy swapping,
although PROCESSES can serve as the upper bound for this rather than
MAX_SHARED_SERVERS.

Still other reasons to limit the number of shared servers are testing, debugging,
performance analysis, and tuning. For example, to see how many shared servers are
needed to efficiently support a certain user community, you can vary
MAX_SHARED_SERVERS from a very small number upward until no delay in response
time is noticed by the users.

Limiting the Number of Shared Server Sessions

The SHARED_SERVER_SESSIONS initialization parameter specifies the maximum
number of concurrent shared server user sessions. Setting this parameter, which is a
dynamic parameter, lets you reserve database sessions for dedicated servers. This in
turn ensures that administrative tasks that require dedicated servers, such as backing
up or recovering the database, are not preempted by shared server sessions.

This parameter has no default value. If it is not specified, the system can create shared
server sessions as needed, limited by the SESSTONS initialization parameter.

Protecting Shared Memory

The CIRCUITS parameter sets a maximum limit on the number of virtual circuits that
can be created in shared memory. This parameter has no default. If it is not specified,
then the system can create circuits as needed, limited by the DISPATCHERS
initialization parameter and system resources.

Configuring Dispatchers

The DISPATCHERS initialization parameter configures dispatcher processes in the
shared server architecture. At least one dispatcher process is required for shared server
to work.If you do not specify a dispatcher, but you enable shared server by setting
SHARED_ SERVER to a nonzero value, then by default Oracle Database creates one
dispatcher for the TCP protocol. The equivalent DISPATCHERS explicit setting of the
initialization parameter for this configuration is:

dispatchers=" (PROTOCOL=tcp) "

You can configure more dispatchers, using the DISPATCHERS initialization parameter,
if either of the following conditions apply:

= You need to configure a protocol other than TCP/IP. You configure a protocol
address with one of the following attributes of the DISPATCHERS parameter:

— ADDRESS
— DESCRIPTION
— PROTOCOL
= You want to configure one or more of the optional dispatcher attributes:
— DISPATCHERS

— CONNECTIONS

Managing Processes 4-9

Configuring Oracle Database for Shared Server

SESSTIONS
- TICKS

— LISTENER
— MULTIPLEX
- POOL

— SERVICE

Note: Database Configuration Assistant helps you configure this
parameter.

DISPATCHERS Initialization Parameter Attributes

This section provides brief descriptions of the attributes that can be specified with the
DISPATCHERS initialization parameter.

A protocol address is required and is specified using one or more of the following

attributes:

Attribute Description

ADDRESS Specify the network protocol address of the endpoint on which
the dispatchers listen.

DESCRIPTION Specify the network description of the endpoint on which the
dispatchers listen, including the network protocol address. The
syntax is as follows:

(DESCRIPTION= (ADDRESS=. . .))
PROTOCOL Specify the network protocol for which the dispatcher

generates a listening endpoint. For example:
(PROTOCOL=tcp)

See the Oracle Database Net Services Reference for further
information about protocol address syntax.

The following attribute specifies how many dispatchers this configuration should
have. It is optional and defaults to 1.

Attribute Description

DISPATCHERS Specify the initial number of dispatchers to start.

The following attributes tell the instance about the network attributes of each
dispatcher of this configuration. They are all optional.

Attribute Description

CONNECTIONS Specify the maximum number of network connections to allow
for each dispatcher.

SESSIONS Specify the maximum number of network sessions to allow for
each dispatcher.

TICKS Specify the duration of a TICK in seconds. A TICK is a unit of
time in terms of which the connection pool timeout can be
specified. Used for connection pooling.

4-10 Oracle Database Administrator's Guide

Configuring Oracle Database for Shared Server

Attribute Description

LISTENER Specify an alias name for the listeners with which the PMON
process registers dispatcher information. Set the alias to a name
that is resolved through a naming method.

MULTIPLEX Used to enable the Oracle Connection Manager session
multiplexing feature.

POOL Used to enable connection pooling.

SERVICE Specify the service names the dispatchers register with the
listeners.

You can specify either an entire attribute name a substring consisting of at least the
first three characters. For example, you can specify SESSIONS=3, SES=3, SESS=3, or
SESSI=3, and so forth.

See Also: Oracle Database Reference for more detailed descriptions
of the attributes of the DISPATCHERS initialization parameter

Determining the Number of Dispatchers

Once you know the number of possible connections for each process for the operating
system, calculate the initial number of dispatchers to create during instance startup,
for each network protocol, using the following formula:

Number of dispatchers =
CEIL (max. concurrent sessions / connections for each dispatcher)

CEIL returns the result roundest up to the next whole integer.

For example, assume a system that can support 970 connections for each process, and
that has:

= A maximum of 4000 sessions concurrently connected through TCP/IP and
= A maximum of 2,500 sessions concurrently connected through TCP/IP with SSL

The DISPATCHERS attribute for TCP/IP should be set to a minimum of five
dispatchers (4000 / 970), and for TCP/IP with SSL three dispatchers (2500 / 970:

DISPATCHERS=' (PROT=tcp) (DISP=5)', ' (PROT-tcps) (DISP=3)"

Depending on performance, you may need to adjust the number of dispatchers.

Setting the Initial Number of Dispatchers

You can specify multiple dispatcher configurations by setting DISPATCHERS to a
comma separated list of strings, or by specifying multiple DISPATCHERS parameters
in the initialization file. If you specify DISPATCHERS multiple times, the lines must be
adjacent to each other in the initialization parameter file. Internally, Oracle Database
assigns an INDEX value (beginning with zero) to each DISPATCHERS parameter. You
can later refer to that DISPATCHERS parameter in an ALTER SYSTEM statement by its
index number.

Some examples of setting the DISPATCHERS initialization parameter follow.

Example: Typical This is a typical example of setting the DISPATCHERS initialization
parameter.

DISPATCHERS=" (PROTOCOL=TCP) (DISPATCHERS=2) "

Managing Processes 4-11

Configuring Oracle Database for Shared Server

Example: Forcing the IP Address Used for Dispatchers The following hypothetical
example will create two dispatchers that will listen on the specified IP address. The
address must be a valid IP address for the host that the instance is on. (The host may
be configured with multiple IP addresses.)

DISPATCHERS=" (ADDRESS= (PROTOCOL=TCP) (HOST=144.25.16.201)) (DISPATCHERS=2) "

Example: Forcing the Port Used by Dispatchers To force the dispatchers to use a
specific port as the listening endpoint, add the PORT attribute as follows:

DISPATCHERS=" (ADDRESS= (PROTOCOL=TCP) (PORT=5000))"
DISPATCHERS=" (ADDRESS= (PROTOCOL=TCP) (PORT=5001))"

Altering the Number of Dispatchers

You can control the number of dispatcher processes in the instance. Unlike the number
of shared servers, the number of dispatchers does not change automatically. You
change the number of dispatchers explicitly with the ALTER SYSTEM statement. In
this release of Oracle Database, you can increase the number of dispatchers to more
than the limit specified by the MAX_DISPATCHERS parameter. It is planned that
MAX_DISPATCHERS will be taken into consideration in a future release.

Monitor the following views to determine the load on the dispatcher processes:
m VSQUEUE
s VSDISPATCHER

s VSDISPATCHER_RATE

See Also: Oracle Database Performance Tuning Guide for
information about monitoring these views to determine dispatcher
load and performance

If these views indicate that the load on the dispatcher processes is consistently high,
then performance may be improved by starting additional dispatcher processes to
route user requests. In contrast, if the load on dispatchers is consistently low, reducing
the number of dispatchers may improve performance.

To dynamically alter the number of dispatchers when the instance is running, use the
ALTER SYSTEM statement to modify the DISPATCHERS attribute setting for an
existing dispatcher configuration. You can also add new dispatcher configurations to
start dispatchers with different network attributes.

When you reduce the number of dispatchers for a particular dispatcher configuration,
the dispatchers are not immediately removed. Rather, as users disconnect, Oracle
Database terminates dispatchers down to the limit you specify in DISPATCHERS,

For example, suppose the instance was started with this DISPATCHERS setting in the
initialization parameter file:

DISPATCHERS=' (PROT=tcp) (DISP=2) ', ' (PROT=tcps) (DISP=2)"
To increase the number of dispatchers for the TCP/IP protocol from 2 to 3, and

decrease the number of dispatchers for the TCP/IP with SSL protocol from 2 to 1, you
can issue the following statement:

ALTER SYSTEM SET DISPATCHERS = ' (INDEX=0) (DISP=3)', '(INDEX=1) (DISP=1)";
or
ALTER SYSTEM SET DISPATCHERS = ' (PROT=tcp) (DISP=3)', '(PROT-tcps) (DISP=1)";

4-12 Oracle Database Administrator's Guide

Configuring Oracle Database for Shared Server

Note: You need not specify (DISP=1). It is optional because 1 is
the default value for the DISPATCHERS parameter.

If fewer than three dispatcher processes currently exist for TCP/ID, the database
creates new ones. If more than one dispatcher process currently exists for TCP/IP with
SSL, then the database terminates the extra ones as the connected users disconnect.

Suppose that instead of changing the number of dispatcher processes for the TCP/IP
protocol, you want to add another TCP/IP dispatcher that supports connection
pooling. You can do so by entering the following statement:

ALTER SYSTEM SET DISPATCHERS = ' (INDEX=2) (PROT=tcp) (POOL=on) ';

The INDEX attribute is needed to add the new dispatcher configuration. If you omit
(INDEX=2) in the preceding statement, then the TCP/IP dispatcher configuration at
INDEX 0 will be changed to support connection pooling, and the number of
dispatchers for that configuration will be reduced to 1, which is the default when the
number of dispatchers (attribute DISPATCHERS) is not specified.

Notes on Altering Dispatchers

s The INDEX keyword can be used to identify which dispatcher configuration to
modify. If you do not specify INDEX, then the first dispatcher configuration
matching the DESCRIPTION, ADDRESS, or PROTOCOL specified will be modified.
If no match is found among the existing dispatcher configurations, then a new
dispatcher will be added.

s The INDEX value can range from 0 to n-1, where n is the current number of
dispatcher configurations. If your ALTER SYSTEM statement specifies an INDEX
value equal to n, where n is the current number of dispatcher configurations, a
new dispatcher configuration will be added.

= To see the values of the current dispatcher configurations--that is, the number of
dispatchers, whether connection pooling is on, and so forth--query the
V$DISPATCHER_CONFIG dynamic performance view. To see which dispatcher
configuration a dispatcher is associated with, query the CONF_INDX column of the
VSDISPATCHER view.

= When you Change the DESCRIPTION, ADDRESS, PROTOCOL, CONNECTIONS,
TICKS, MULTIPLEX, and POOL attributes of a dispatcher configuration, the change
does not take effect for existing dispatchers but only for new dispatchers.
Therefore, in order for the change to be effective for all dispatchers associated with
a configuration, you must forcibly kill existing dispatchers after altering the
DISPATCHERS parameter, and let the database start new ones in their place with
the newly specified properties.

The attributes LISTENER and SERVICES are not subject to the same constraint.
They apply to existing dispatchers associated with the modified configuration.
Attribute SESSIONS applies to existing dispatchers only if its value is reduced.
However, if its value is increased, it is applied only to newly started dispatchers.

Shutting Down Specific Dispatcher Processes

With the ALTER SYSTEM statement, you leave it up to the database to determine
which dispatchers to shut down to reduce the number of dispatchers. Alternatively, it
is possible to shut down specific dispatcher processes. To identify the name of the
specific dispatcher process to shut down, use the V$DISPATCHER dynamic
performance view.

Managing Processes 4-13

Configuring Oracle Database for Shared Server

SELECT NAME, NETWORK FROM V$DISPATCHER;

Each dispatcher is uniquely identified by a name of the form Dnnn.
To shut down dispatcher D002, issue the following statement:

ALTER SYSTEM SHUTDOWN IMMEDIATE 'D002';

The IMMEDIATE keyword stops the dispatcher from accepting new connections and
the database immediately terminates all existing connections through that dispatcher.
After all sessions are cleaned up, the dispatcher process shuts down. If IMMEDIATE
were not specified, the dispatcher would wait until all of its users disconnected and all
of its connections terminated before shutting down.

Disabling Shared Servers

You disable shared server by setting SHARED_ SERVERS to 0. No new client can
connect in shared mode. However, when you set SHARED_SERVERS to 0, Oracle
Database retains some shared servers until all shared server connections are closed.
The number of shared servers retained is either the number specified by the preceding
setting of SHARED_SERVERS or the value of the MAX_SHARED_SERVERS parameter,
whichever is smaller. If both SHARED_SERVERS and MAX_ SHARED_SERVERS are set to
0, then all shared servers will terminate and requests from remaining shared server
clients will be queued until the value of SHARED_SERVERS or MAX_SHARED_SERVERS
is raised again.

To terminate dispatchers once all shared server clients disconnect, enter this statement:

ALTER SYSTEM SET DISPATCHERS = '';

Shared Server Data Dictionary Views

The following views are useful for obtaining information about your shared server
configuration and for monitoring performance.

View Description

V$DISPATCHER Provides information on the dispatcher processes,
including name, network address, status, various usage
statistics, and index number.

VS$SDISPATCHER_CONFIG Provides configuration information about the dispatchers.

V$DISPATCHER_RATE Provides rate statistics for the dispatcher processes.

VS$QUEUE Contains information on the shared server message
queues.

V$SHARED_SERVER Contains information on the shared servers.

VS$CIRCUIT Contains information about virtual circuits, which are

user connections to the database through dispatchers and
servers.

V$SHARED_SERVER_MONITOR Contains information for tuning shared server.

VS$SGA Contains size information about various system global
area (SGA) groups. May be useful when tuning shared
server.

V$SGASTAT Contains detailed statistical information about the SGA,
useful for tuning.

V$SHARED_POOL_RESERVED Lists statistics to help tune the reserved pool and space
within the shared pool.

4-14 Oracle Database Administrator's Guide

Configuring Database Resident Connection Pooling

See Also:

» Oracle Database Reference for detailed descriptions of these
views

» Oracle Database Performance Tuning Guide for specific
information about monitoring and tuning shared server

Configuring Database Resident Connection Pooling

The database server is preconfigured to allow database resident connection pooling.
However, you must explicitly enable this feature by starting the connection pool.

This section contains the following topics:
= Enabling Database Resident Connection Pooling
= Configuring the Connection Pool for Database Resident Connection Pooling

= Data Dictionary Views for Database Resident Connection Pooling

Enabling Database Resident Connection Pooling

Oracle Database includes a default connection pool called
SYS_DEFAULT_CONNECTION_POOL. By default, this pool is created, but not started.
To enable database resident connection pooling, you must explicitly start the
connection pool.

To enable database resident connection pooling:

1. Start the database resident connection pool, as described in "Starting the Database
Resident Connection Pool" on page 4-15.

2. Route the client connection requests to the connection pool, as described in
"Routing Client Connection Requests to the Connection Pool" on page 4-15.

Starting the Database Resident Connection Pool
To start the connection pool, use the following steps:

1. Start SQL*Plus and connect to the database as the SYS user.
2. Issue the following command:
SQL> EXECUTE DBMS_CONNECTION_POOL.START_POOL () ;
Once started, the connection pool remains in this state until it is explicitly stopped. The

connection pool is automatically restarted when the database instance is restarted if
the pool was active at the time of instance shutdown.

In an Oracle Real Application Clusters (RAC) environment, you can use any instance
to manage the connection pool. Any changes you make to the pool configuration are
applicable on all Oracle RAC instances.

Routing Client Connection Requests to the Connection Pool
In the client application, the connect string must specify the connect type as POOLED.

The following example shows an easy connect string that enables clients to connect to
a database resident connection pool:

oraclehost.company.com:1521/books.company .com: POOLED

Managing Processes 4-15

Configuring Database Resident Connection Pooling

The following example shows a TNS connect descriptor that enables clients to connect
to a database resident connection pool:

(DESCRIPTION= (ADDRESS=(PROTOCOL=tcp) (HOST=myhost)
(PORT=1521)) (CONNECT_DATA= (SERVICE_NAME=sales)
(SERVER=POOLED)))

Disabling Database Resident Connection Pooling

To disable database resident connection pooling, you must explicitly stop the
connection pool. Use the following steps:

1. Start SQL*Plus and connect to the database as the SYS user.
2. Issue the following command:

SQL> EXECUTE DBMS_CONNECTION_POOL.STOP_POOL() ;

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information on the DBMS_CONNECTION_POOL package.

Note: The operation of disabling the database resident connection
pool can be completed only when all client requests that have been
handed off to a server are completed.

Configuring the Connection Pool for Database Resident Connection Pooling

The connection pool is configured using default parameter values. You can use the
procedures in the DBMS_CONNECTION_POOL package to configure the connection pool
according to your usage. In an Oracle Real Application Clusters (RAC) environment,
the configuration parameters are applicable to each Oracle RAC instance.

Table 4-2 lists the parameters that you can configure for the connection pool.

Table 4-2 Configuration Parameters for Database Resident Connection Pooling

Parameter Name Description

MINSIZE The minimum number of pooled servers in the pool. The
default value is 4.

MAXSIZE The maximum number of pooled servers in the pool. The
default value is 40.

INCRSIZE The number of pooled servers by which the pool is
incremented if servers are unavailable when a client
application request is received. The default value is 3.

SESSION_CACHED_CURSORS The number of session cursors to cache in each pooled server
session. The default value is 20.

INACTIVITY_TIMEOUT The maximum time, in seconds, the pooled server can stay idle
in the pool. After this time, the server is terminated. The
default value is 300.

This parameter does not apply if the pool is at MINSIZE.

MAX_THINK_TIME The maximum time of inactivity, in seconds, for a client after it
obtains a pooled server from the pool. After obtaining a pooled
server from the pool, if the client application does not issue a
database call for the time specified by MAX_THINK_TIME, the
pooled server is freed and the client connection is terminated.
The default value is 30.

4-16 Oracle Database Administrator's Guide

Configuring Database Resident Connection Pooling

Table 4-2 (Cont.) Configuration Parameters for Database Resident Connection Pooling

Parameter Name Description

MAX_USE_SESSION The number of times a pooled server can be taken and released
to the pool. The default value is 5000.

MAX_LIFETIME_SESSION The time, in seconds, to live for a pooled server in the pool.
The default value is 3600.

NUM_CBROK The number of Connection Brokers that are created to handle
client requests. The default value is 1.

Creating multiple Connection Broker processes helps
distribute the load of client connection requests if there are a
large number of client applications.

MAXCONN_CBROK The maximum number of connections that each Connection
Broker can handle.

The default value is 40000. But if the maximum connections
allowed by the platform on which the database is installed is
lesser than the default value, this value overrides the value set
using MAXCONN_CBROK.

Set the per-process file descriptor limit of the operating system
sufficiently high so that it supports the number of connections
specified by MAXCONN_CBROK.

Using the CONFIGURE_POOL Procedure

The CONFIGURE_POOL procedure of the DBMS_CONNECTION_POOL package enables
you to configure the connection pool with advanced options. This procedure is usually
used when you need to modify all the parameters of the connection pool.

Using the ALTER_PARAM Procedure

The ALTER_PARAM procedure of the DBMS_CONNECTION_POOL package enables you
to alter a specific configuration parameter without affecting other parameters.

For example, the following command changes the minimum number of pooled servers
used:

SQL> EXECUTE DBMS_CONNECTION_POOL.ALTER_PARAM ('', 'MINSIZE','10');

The following example, changes the maximum number of connections that each
connection broker can handle to 50000.

SQL> EXECUTE DBMS_CONNECTION_POOL.ALTER_PARAM ('', 'MAXCONN_CBROK','50000');
Before you execute this command, ensure that the maximum number of connections

allowed by the platform on which your database is installed is not less than the value
you set for MAXCONN_CBROK.

For example, in Linux, the following entry in the /etc/security/limits. conf file
indicates that the maximum number of connections allowed for the user test_user
is 30000.

test_user HARD NOFILE 30000

To set the maximum number of connections that each connection broker can allow to
50000, first change the value in the 1imits. conf file to a value not less than 50000.

Restoring the Connection Pool Default Settings

If you have made changes to the connection pool parameters, but you want to revert to
the default pool settings, use the RESTORE_DEFAULT procedure of the

Managing Processes 4-17

About Oracle Database Background Processes

DBMS_CONNECTION_POOL package. The command to restore the connection pool to
its default settings is:

SQL> EXECUTE DBMS_CONNECTION_POOL.RESTORE_DEFAULTS () ;

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information on the DBMS_CONNECTION_POOL package.

Data Dictionary Views for Database Resident Connection Pooling

Table 4-3 lists the data dictionary views that provide information about database
resident connection pooling. Use these views to obtain information about your
connection pool and to monitor the performance of database resident connection
pooling.

Table 4-3 Data Dictionary Views for Database Resident Connection Pooling

View Description

DBA_CPOOL_INFO Contains information about the connection pool such as the pool
status, the maximum and minimum number of connections, and
timeout for idle sessions.

V$CPOOL_STATS Contains pool statistics such as the number of session requests,
number of times a session that matches the request was found in
the pool, and total wait time for a session request.

V$CPOOL_CC_STATS Contains connection class level statistics for the pool.

See Also: Oracle Database Reference for more information about these
views.

About Oracle Database Background Processes

To maximize performance and accommodate many users, a multiprocess Oracle
Database system uses background processes. Background processes consolidate
functions that would otherwise be handled by multiple database programs running
for each user process. Background processes asynchronously perform I/0 and
monitor other Oracle Database processes to provide increased parallelism for better
performance and reliability.

Table 4—4 describes the basic Oracle Database background processes, many of which
are discussed in more detail elsewhere in this book. The use of additional database
server features or options can cause more background processes to be present. For
example, when you use Advanced Queuing, the queue monitor (QMNr) background
process is present. When you specify the FILE_MAPPING initialization parameter for
mapping datafiles to physical devices on a storage subsystem, then the FMON process
is present.

4-18 Oracle Database Administrator's Guide

Managing Processes for Parallel SQL Execution

Table 4-4 Oracle Database Background Processes

Process Name

Description

Database writer (DBWn)

Log writer (LGWR)

Checkpoint (CKPT)

System monitor (SMON)

Process monitor (PMON)

Archiver (ARCn)

Recoverer (RECO)

Dispatcher (Dnnmn)

Global Cache Service
(LMS)

The database writer writes modified blocks from the database buffer cache to the
datafiles. Oracle Database allows a maximum of 20 database writer processes
(DBW0-DBW9 and DBWa-DBWj). The DB_WRITER_PROCESSES initialization
parameter specifies the number of DBWn processes. The database selects an
appropriate default setting for this initialization parameter or adjusts a user-specified
setting based on the number of CPUs and the number of processor groups.

For more information about setting the DB_WRITER_PROCESSES initialization
parameter, see the Oracle Database Performance Tuning Guide.

The log writer process writes redo log entries to disk. Redo log entries are generated
in the redo log buffer of the system global area (SGA). LGWR writes the redo log
entries sequentially into a redo log file. If the database has a multiplexed redo log,
then LGWR writes the redo log entries to a group of redo log files. See Chapter 10,
"Managing the Redo Log" for information about the log writer process.

At specific times, all modified database buffers in the system global area are written
to the datafiles by DBWn. This event is called a checkpoint. The checkpoint process is
responsible for signalling DBWn at checkpoints and updating all the datafiles and
control files of the database to indicate the most recent checkpoint.

The system monitor performs recovery when a failed instance starts up again. In an
Oracle Real Application Clusters database, the SMON process of one instance can
perform instance recovery for other instances that have failed. SMON also cleans up
temporary segments that are no longer in use and recovers dead transactions skipped
during system failure and instance recovery because of file-read or offline errors.
These transactions are eventually recovered by SMON when the tablespace or file is
brought back online.

The process monitor performs process recovery when a user process fails. PMON is
responsible for cleaning up the cache and freeing resources that the process was
using. PMON also checks on the dispatcher processes (described later in this table)
and server processes and restarts them if they have failed.

One or more archiver processes copy the redo log files to archival storage when they
are full or a log switch occurs. Archiver processes are the subject of Chapter 11,
"Managing Archived Redo Logs".

The recoverer process is used to resolve distributed transactions that are pending
because of a network or system failure in a distributed database. At timed intervals,
the local RECO attempts to connect to remote databases and automatically complete
the commit or rollback of the local portion of any pending distributed transactions.
For information about this process and how to start it, see Chapter 33, "Managing
Distributed Transactions".

Dispatchers are optional background processes, present only when the shared server
configuration is used. Shared server was discussed previously in "Configuring Oracle
Database for Shared Server" on page 4-6.

In an Oracle Real Application Clusters environment, this process manages resources
and provides inter-instance resource control.

See Also: Oracle Database Concepts for more information about
Oracle Database background processes

Managing Processes for Parallel SQL Execution

Note: The parallel execution feature described in this section is
available with the Oracle Database Enterprise Edition.

Managing Processes 4-19

Managing Processes for Parallel SQL Execution

This section describes how to manage parallel processing of SQL statements. In this
configuration Oracle Database can divide the work of processing an SQL statement
among multiple parallel processes.

The execution of many SQL statements can be parallelized. The degree of parallelism
is the number of parallel execution servers that can be associated with a single
operation. The degree of parallelism is determined by any of the following;:

s A PARALLEL clause in a statement

= For objects referred to in a query, the PARALLEL clause that was used when the
object was created or altered

= A parallel hint inserted into the statement
s A default determined by the database

An example of using parallel SQL execution is contained in "Parallelizing Table
Creation" on page 18-11.

The following topics are contained in this section:
= About Parallel Execution Servers

= Altering Parallel Execution for a Session

See Also:
» Oracle Database Concepts for a description of parallel execution

» Oracle Database Performance Tuning Guide for information about
using parallel hints

About Parallel Execution Servers

When an instance starts up, Oracle Database creates a pool of parallel execution
servers which are available for any parallel operation. A process called the parallel
execution coordinator dispatches the execution of a pool of parallel execution servers
and coordinates the sending of results from all of these parallel execution servers back
to the user.

The parallel execution servers are enabled by default, because by default the value for
PARALLEL_MAX_SERVERS initialization parameter is set >0. The processes are
available for use by the various Oracle Database features that are capable of exploiting
parallelism. Related initialization parameters are tuned by the database for the
majority of users, but you can alter them as needed to suit your environment. For ease
of tuning, some parameters can be altered dynamically.

Parallelism can be used by a number of features, including transaction recovery,
replication, and SQL execution. In the case of parallel SQL execution, the topic
discussed in this book, parallel server processes remain associated with a statement
throughout its execution phase. When the statement is completely processed, these
processes become available to process other statements.

See Also: Oracle Database Data Warehousing Guide for more

information about using and tuning parallel execution, including
parallel SQL execution

Altering Parallel Execution for a Session
You control parallel SQL execution for a session using the ALTER SESSION statement.

4-20 Oracle Database Administrator's Guide

Managing Processes for External Procedures

Disabling Parallel SQL Execution

You disable parallel SQL execution with an ALTER SESSION DISABLE PARALLEL
DML | DDL | QUERY statement. All subsequent DML (INSERT, UPDATE, DELETE), DDL
(CREATE, ALTER), or query (SELECT) operations are executed serially after such a
statement is issued. They will be executed serially regardless of any PARALLEL clause
associated with the statement or parallel attribute associated with the table or indexes
involved.

The following statement disables parallel DDL operations:

ALTER SESSION DISABLE PARALLEL DDL;

Enabling Parallel SQL Execution

You enable parallel SQL execution with an ALTER SESSION ENABLE PARALLEL
DML | DDL | QUERY statement. Subsequently, when a PARALLEL clause or parallel hint is
associated with a statement, those DML, DDL, or query statements will execute in
parallel. By default, parallel execution is enabled for DDL and query statements.

A DML statement can be parallelized only if you specifically issue an ALTER
SESSION statement to enable parallel DML:

ALTER SESSION ENABLE PARALLEL DML;

Forcing Parallel SQL Execution

You can force parallel execution of all subsequent DML, DDL, or query statements for
which parallelization is possible with the ALTER SESSION FORCE PARALLEL

DML | DDL | QUERY statement. Additionally you can force a specific degree of
parallelism to be in effect, overriding any PARALLEL clause associated with
subsequent statements. If you do not specify a degree of parallelism in this statement,
the default degree of parallelism is used. However, a degree of parallelism specified in
a statement through a hint will override the degree being forced.

The following statement forces parallel execution of subsequent statements and sets
the overriding degree of parallelism to 5:

ALTER SESSION FORCE PARALLEL DDL PARALLEL 5;

Managing Processes for External Procedures

External procedures are procedures written in one language that are called from
another program in a different language. An example is a PL/SQL program calling
one or more C routines that are required to perform special-purpose processing.

These callable routines are stored in a dynamic link library (DLL), or a libunit in the
case of a Java class method, and are registered with the base language. Oracle
Database provides a special-purpose interface, the call specification (call spec), that
enables users to call external procedures from other languages.

To call an external procedure, an application alerts a network listener process, which in
turn starts an external procedure agent. The default name of the agent is extproc,
and this agent must reside on the same computer as the database server. Using the
network connection established by the listener, the application passes to the external
procedure agent the name of the DLL or libunit, the name of the external procedure,
and any relevant parameters. The external procedure agent then loads, DLL or libunit,
runs the external procedure, and passes back to the application any values returned by
the external procedure.

Managing Processes 4-21

Terminating Sessions

To control access to DLLs, the database administrator grants execute privileges on the
appropriate DLLs to application developers. The application developers write the
external procedures and grant execute privilege on specific external procedures to
other users.

Note: The external library (DLL file) must be statically linked. In
other words, it must not reference any external symbols from other
external libraries (DLL files). Oracle Database does not resolve such
symbols, so they can cause your external procedure to fail.

The environment for calling external procedures, consisting of tnsnames . ora and
listener.ora entries, is configured by default during the installation of your
database. You may need to perform additional network configuration steps for a
higher level of security. These steps are documented in the Oracle Database Net Services
Administrator’s Guide.

See Also: Oracle Database Advanced Application Developer’s Guide
for information about external procedures

Terminating Sessions

Sometimes it is necessary to terminate current user sessions. For example, you might
want to perform an administrative operation and need to terminate all
non-administrative sessions. This section describes the various aspects of terminating
sessions, and contains the following topics:

s Identifying Which Session to Terminate
s Terminating an Active Session
= Terminating an Inactive Session

When a session is terminated, any active transactions of the session are rolled back,
and resources held by the session (such as locks and memory areas) are immediately
released and available to other sessions.

You terminate a current session using the SQL statement ALTER SYSTEM KILL
SESSION. The following statement terminates the session whose system identifier is 7
and serial number is 15:

ALTER SYSTEM KILL SESSION '7,15';

Identifying Which Session to Terminate

To identify which session to terminate, specify the session index number and serial
number. To identify the system identifier (SID) and serial number of a session, query
the V$SESSION dynamic performance view. For example, the following query
identifies all sessions for the user jward:

SELECT SID, SERIAL#, STATUS

FROM VSSESSION
WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS

7 15 ACTIVE
12 63 INACTIVE

4-22 Oracle Database Administrator's Guide

Terminating Sessions

A session is ACTIVE when it is making a SQL call to Oracle Database. A session is
INACTIVE if it is not making a SQL call to the database.

See Also: Oracle Database Reference for a description of the status
values for a session

Terminating an Active Session

If a user session is processing a transaction (ACTIVE status) when you terminate the
session, the transaction is rolled back and the user immediately receives the following
message:

ORA-00028: your session has been killed

If, after receiving the ORA-00028 message, a user submits additional statements
before reconnecting to the database, Oracle Database returns the following message:

ORA-01012: not logged on

An active session cannot be interrupted when it is performing network I/O or rolling
back a transaction. Such a session cannot be terminated until the operation completes.
In this case, the session holds all resources until it is terminated. Additionally, the
session that issues the ALTER SYSTEM statement to terminate a session waits up to 60
seconds for the session to be terminated. If the operation that cannot be interrupted
continues past one minute, the issuer of the ALTER SYSTEM statement receives a
message indicating that the session has been marked to be terminated. A session
marked to be terminated is indicated in VS SESSION with a status of KILLED and a
server that is something other than PSEUDO.

Terminating an Inactive Session

If the session is not making a SQL call to Oracle Database (is INACTIVE) when it is
terminated, the ORA-00028 message is not returned immediately. The message is not
returned until the user subsequently attempts to use the terminated session.

When an inactive session has been terminated, the STATUS of the session in the
V$SESSION view is KILLED. The row for the terminated session is removed from
V$SESSION after the user attempts to use the session again and receives the
ORA-00028 message.

In the following example, an inactive session is terminated. First, V$ SESSION is
queried to identify the SID and SERIAL# of the session, and then the session is
terminated.

SELECT SID, SERIAL#, STATUS, SERVER
FROM V$SESSION
WHERE USERNAME = 'JWARD';

SID SERIAL# STATUS SERVER
7 15 INACTIVE DEDICATED
12 63 INACTIVE DEDICATED

2 rows selected.

ALTER SYSTEM KILL SESSION '7,15';
Statement processed.

SELECT SID, SERIAL#, STATUS, SERVER

FROM V$SESSION
WHERE USERNAME = 'JWARD';

Managing Processes 4-23

Process and Session Data Dictionary Views

SID SERIAL# STATUS SERVER
7 15 KILLED PSEUDO
12 63 INACTIVE DEDICATED

2 rows selected.

Process and Session Data Dictionary Views

The following are the data dictionary views that can help you manage processes and

sessions.

View Description

V$PROCESS Contains information about the currently active processes

V$SESSION Lists session information for each current session

V$SESS_IO Contains I/O statistics for each user session

V$SESSION_LONGOPS Displays the status of various operations that run for longer
than 6 seconds (in absolute time). These operations currently
include many backup and recovery functions, statistics
gathering, and query execution. More operations are added
for every Oracle Database release.

V$SESSION_WAIT Displays the current or last wait for each session

VSSESSION_WAIT_ _HISTORY | Lists the last ten wait events for each active session

VSWAIT CHAINS Displays information about blocked sessions
V$SYSSTAT Contains session statistics
VSRESOURCE_LIMIT Provides information about current and maximum global

resource utilization for some system resources

V$SQLAREA Contains statistics about shared SQL areas. Contains one row
for each SQL string. Provides statistics about SQL statements
that are in memory, parsed, and ready for execution

4-24 Oracle Database Administrator's Guide

O

Managing Memory

This chapter describes how to manage memory allocation in an Oracle Database
instance. It discusses the database initialization parameters that affect the sizes of the
various memory components, and how to set them. The following topics are
discussed:

= About Memory Management

s Memory Architecture Overview

s Using Automatic Memory Management
s Configuring Memory Manually

= Memory Management Reference

About Memory Management

Memory management involves maintaining optimal sizes for the Oracle Database
instance memory structures as demands on the database change. The memory
structures that must be managed are the system global area (SGA) and the instance
program global area (instance PGA).

Oracle Database supports various memory management methods, which are chosen
by initialization parameter settings. Oracle recommends that you enable the method
known as automatic memory management.

Automatic Memory Management

Beginning with Release 11g, Oracle Database can manage the SGA memory and
instance PGA memory completely automatically. You designate only the total memory
size to be used by the instance, and Oracle Database dynamically exchanges memory
between the SGA and the instance PGA as needed to meet processing demands. This
capability is referred to as automatic memory management. With this memory
management method, the database also dynamically tunes the sizes of the individual
SGA components and the sizes of the individual PGAs.

Manual Memory Management

If you prefer to exercise more direct control over the sizes of individual memory
components, you can disable automatic memory management and configure the
database for manual memory management. There are a few different methods
available for manual memory management. Some of these methods retain some
degree of automation. The methods therefore vary in the amount of effort and
knowledge required by the DBA. These methods are:

= Automatic shared memory management - for the SGA

Managing Memory 5-1

Memory Architecture Overview

= Manual shared memory management - for the SGA
= Automatic PGA memory management - for the instance PGA
= Manual PGA memory management - for the instance PGA

These memory management methods are described later in this chapter.

Note: The easiest way to manage memory is to use the graphical
user interface of Oracle Enterprise Manager.

To manage memory with Enterprise Manager:

1. Do one of the following;:

- If you are using Oracle Enterprise Manager Database Control, access the
Database Home page. See Oracle Database 2 Day DBA for instructions.

- If you are using Oracle Enterprise Manager Grid Control, go to the
desired database target. The Database Home page is displayed.

2. At the top of the page, click Server to display the Server page.

3. In the Database Configuration section, click Memory Advisors.

See Also: Oracle Database Concepts for an introduction to the various
automatic and manual methods of managing memory.

Memory Architecture Overview

The basic memory structures associated with Oracle Database include:
= System Global Area (SGA)

The SGA is a group of shared memory structures, known as SGA components, that
contain data and control information for one Oracle Database instance. The SGA is
shared by all server and background processes. Examples of data stored in the
SGA include cached data blocks and shared SQL areas.

= Program Global Area (PGA)

A PGA is a memory region that contains data and control information for a server
process. It is nonshared memory created by Oracle Database when a server
process is started. Access to the PGA is exclusive to the server process. There is
one PGA for each server process. Background processes also allocate their own
PGAs. The total PGA memory allocated for all background and server processes
attached to an Oracle Database instance is referred to as the total instance PGA
memory, and the collection of all individual PGAs is referred to as the total
instance PGA, or just instance PGA.

Figure 5-1 illustrates the relationships among these memory structures.

5-2 Oracle Database Administrator's Guide

Using Automatic Memory Management

Figure 5-1 Oracle Database Memory Structures

Server Server Background
Process H PGA Process <—> PGA PI'OgceSS 4_’ PGA
1 2

! ! !

System Global Area

Java Buffer Redo
Pool Cache Buffer

Shared Streams Large Other
Pool Pool Pool Components

! !

Server Background
Process | 4= | PGA Pro%ess <—» | PGA
3

See Also: Oracle Database Concepts for more information on memory
architecture in an Oracle Database instance.

Using Automatic Memory Management

This section provides background information on the automatic memory management
feature of Oracle Database, and includes instructions for enabling this feature. The
following topics are covered:

= About Automatic Memory Management
= Enabling Automatic Memory Management

= Monitoring and Tuning Automatic Memory Management

About Automatic Memory Management

The simplest way to manage instance memory is to allow the Oracle Database instance
to automatically manage and tune it for you. To do so (on most platforms), you set
only a farget memory size initialization parameter (MEMORY_TARGET) and optionally a
maximum memory size initialization parameter (MEMORY_MAX_TARGET). The instance
then tunes to the target memory size, redistributing memory as needed between the
system global area (SGA) and the instance program global area (instance PGA).
Because the target memory initialization parameter is dynamic, you can change the
target memory size at any time without restarting the database. The maximum
memory size serves as an upper limit so that you cannot accidentally set the target
memory size too high, and so that enough memory is set aside for the Oracle Database
instance in case you do want to increase total instance memory in the future. Because
certain SGA components either cannot easily shrink or must remain at a minimum
size, the instance also prevents you from setting the target memory size too low.

If you create your database with Database Configuration Assistant (DBCA) and choose
the basic installation option, automatic memory management is enabled. If you choose
advanced installation, Database Configuration Assistant (DBCA) enables you to select
automatic memory management.

Managing Memory 5-3

Using Automatic Memory Management

Note: You cannot enable automatic memory management if the
LOCK_SGA initialization parameter is TRUE. See Oracle Database
Reference for information about this parameter.

See Also:

= "Platforms That Support Automatic Memory Management" on
page 5-21

Enabling Automatic Memory Management

If you did not enable automatic memory management upon database creation (either
by selecting the proper options in DBCA or by setting the appropriate initialization
parameters for the CREATE DATABASE SQL statement), you can enable it at a later
time. Enabling automatic memory management involves a shutdown and restart of the
database.

To enable automatic memory management
1. Start SQL*Plus and connect to the database as SYSDBA.

See "Database Administrator Security and Privileges" on page 1-9 and "Database
Administrator Authentication" on page 1-11 for instructions.

2. Calculate the minimum value for MEMORY_TARGET as follows:

a. Determine the current sizes of SGA_ TARGET and PGA_AGGREGATE_TARGET
by entering the following SQL*Plus command:

SHOW PARAMETER TARGET

SQL*Plus displays the values of all initialization parameters with the string
TARGET in the parameter name.

NAME TYPE VALUE
archive_lag_target integer 0
db_flashback_retention_target integer 1440
fast_start_io_target integer 0
fast_start_mttr_target integer 0
memory_max_target big integer 0
memory_target big integer 0
pga_aggregate_target big integer 90M
sga_target big integer 272M

b. Run the following query to determine the maximum instance PGA allocated
since the database was started:

select value from vSpgastat where name='maximum PGA allocated';
c. Compute the maximum value between the query result from step 2b and
PGA_AGGREGATE_TARGET. Add SGA_TARGET to this value.

memory_target = sga_target + max(pga_aggregate_target, maximum PGA
allocated)

For example, if SGA_TARGET is 272M and PGA_AGGREGATE_TARGET is 90M as
shown above, and if the maximum PGA allocated is determined to be 120M, then
MEMORY_TARGET should be at least 392M (272M + 120M).

5-4 Oracle Database Administrator's Guide

Using Automatic Memory Management

Choose the value for MEMORY_TARGET that you want to use.

This can be the minimum value that you computed in step 2, or you can choose to
use a larger value if you have enough physical memory available.

For the MEMORY_MAX_TARGET initialization parameter, decide on a maximum
amount of memory that you would want to allocate to the database for the
foreseeable future. That is, determine the maximum value for the sum of the SGA
and instance PGA sizes. This number can be larger than or the same as the
MEMORY_TARGET value that you chose in the previous step.

Do one of the following:

s If you started your Oracle Database instance with a server parameter file,
which is the default if you created the database with the Database
Configuration Assistant (DBCA), enter the following command:

ALTER SYSTEM SET MEMORY_MAX TARGET = nM SCOPE = SPFILE;

where 7 is the value that you computed in Step 4.

The SCOPE = SPFILE clause sets the value only in the server parameter file,
and not for the running instance. You must include this SCOPE clause because
MEMORY_MAX_TARGET is not a dynamic initialization parameter.

» If you started your instance with a text initialization parameter file, manually
edit the file so that it contains the following statements:

memory_max_target = nM
memory_target = mM

where 7 is the value that you determined in Step 4, and m is the value that you
determined in step 3.

Note: In a text initialization parameter file, if you omit the line for
MEMORY_MAX_TARGET and include a value for MEMORY_TARGET, the
database automatically sets MEMORY_MAX_TARGET to the value of
MEMORY_TARGET. If you omit the line for MEMORY_TARGET and
include a value for MEMORY_MAX_TARGET, the MEMORY_ TARGET
parameter defaults to zero. After startup, you can then dynamically
change MEMORY_TARGET to a nonzero value, provided that it does not
exceed the value of MEMORY_ MAX_TARGET.

Shut down and restart the database.
See Chapter 3, "Starting Up and Shutting Down" on page 3-1 for instructions.

If you started your Oracle Database instance with a server parameter file, enter the
following commands:

ALTER SYSTEM SET MEMORY_TARGET = nM;
ALTER SYSTEM SET SGA_TARGET = 0;
ALTER SYSTEM SET PGA_AGGREGATE_TARGET = 0;

where 7 is the value that you determined in step 3.

Managing Memory 5-5

Using Automatic Memory Management

Note: The preceding steps instruct you to set SGA_TARGET and
PGA_AGGREGATE_TARGET to zero so that the sizes of the SGA and
instance PGA are tuned up and down as required, without
restrictions. You can omit the statements that set these parameter
values to zero and leave either or both of the values as positive
numbers. In this case, the values act as minimum values for the sizes
of the SGA or instance PGA.

See Also:
= "About Automatic Memory Management" on page 5-3
= "Memory Architecture Overview" on page 5-2

» Oracle Database SQL Language Reference for information on the
ALTER SYSTEM SQL statement

Monitoring and Tuning Automatic Memory Management

The dynamic performance view V$MEMORY_DYNAMIC_COMPONENTS shows the
current sizes of all dynamically tuned memory components, including the total sizes of
the SGA and instance PGA.

The view V$SMEMORY_TARGET_ADVICE provides tuning advice for the MEMORY_
TARGET initialization parameter.

SQL> select * from vSmemory_ target_advice order by memory_size;

MEMORY_SIZE MEMORY SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR VERSION

180 5 458 1.344 0
270 75 367 1.0761 0
360 341 1 0
450 1.25 335 L9817 0
540 1.5 335 .9817 0
630 1.75 335 .9817 0
720 2 335 .9817 0

The row with the MEMORY_SIZE_FACTOR of 1 shows the current size of memory, as
set by the MEMORY_TARGET initialization parameter, and the amount of DB time
required to complete the current workload. In previous and subsequent rows, the
results show a number of alternative MEMORY_TARGET sizes. For each alternative size,
the database shows the size factor (the multiple of the current size), and the estimated
DB time to complete the current workload if the MEMORY_TARGET parameter were
changed to the alternative size. Notice that for a total memory size smaller than the
current MEMORY_TARGET size, estimated DB time increases. Notice also that in this
example, there is nothing to be gained by increasing total memory size beyond 450MB.
However, this situation might change if a complete workload has not yet been run.

Enterprise Manager provides an easy-to-use graphical memory advisor to help you
select an optimal size for MEMORY_TARGET. See Oracle Database 2 Day DBA for details.
See Also:

» Oracle Database Reference for more information about these
dynamic performance views

» Oracle Database Performance Tuning Guide for a definition of DB
time.

5-6 Oracle Database Administrator's Guide

Configuring Memory Manually

Configuring Memory Manually

If you prefer to exercise more direct control over the sizes of individual memory
components, you can disable automatic memory management and configure the
database for manual memory management. There are two different manual memory
management methods for the SGA, and two for the instance PGA.

The two manual memory management methods for the SGA vary in the amount of
effort and knowledge required by the DBA. With automatic shared memory management,
you set target and maximum sizes for the SGA. The database then tunes the total size
of the SGA to your designated target, and dynamically tunes the sizes of many SGA
components. With manual shared memory management, you set the sizes of several
individual SGA components, thereby determining the overall SGA size. You then
manually tune these individual SGA components on an ongoing basis.

For the instance PGA, there is automatic PGA memory management, in which you set a
target size for the instance PGA. The database then tunes the size of the instance PGA
to your target, and dynamically tunes the sizes of individual PGAs. There is also
manual PGA memory management, in which you set maximum work area size for each
type of SQL operator (such as sort or hash-join). This memory management method,
although supported, is not recommended.

The following sections provide details on all of these manual memory management
methods:

= Using Automatic Shared Memory Management
» Using Manual Shared Memory Management

s Using Automatic PGA Memory Management

s Using Manual PGA Memory Management

See Also: Oracle Database Concepts for an overview of Oracle
Database memory management methods.

Using Automatic Shared Memory Management

This section contains the following topics:

= About Automatic Shared Memory Management

s Components and Granules in the SGA

m Setting Maximum SGA Size

» Setting SGA Target Size

» Enabling Automatic Shared Memory Management

= Automatic Shared Memory Management Advanced Topics

See Also:

» Oracle Database Performance Tuning Guide for information about
tuning the components of the SGA

About Automatic Shared Memory Management

Automatic Shared Memory Management simplifies SGA memory management. You
specify the total amount of SGA memory available to an instance using the SGA_
TARGET initialization parameter and Oracle Database automatically distributes this
memory among the various SGA components to ensure the most effective memory
utilization.

Managing Memory 5-7

Configuring Memory Manually

When automatic shared memory management is enabled, the sizes of the different
SGA components are flexible and can adapt to the needs of a workload without
requiring any additional configuration. The database automatically distributes the
available memory among the various components as required, allowing the system to
maximize the use of all available SGA memory.

Oracle Database remembers the sizes of the automatically tuned components across
instance shutdowns if you are using a server parameter file (SPFILE). As a result, the
system does need to learn the characteristics of the workload again each time an
instance is started. It can begin with information from the past instance and continue
evaluating workload where it left off at the last shutdown.

Components and Granules in the SGA

The SGA comprises a number of memory components, which are pools of memory
used to satisfy a particular class of memory allocation requests. Examples of memory
components include the shared pool (used to allocate memory for SQL and PL/SQL
execution), the java pool (used for java objects and other java execution memory), and
the buffer cache (used for caching disk blocks). All SGA components allocate and
deallocate space in units of granules. Oracle Database tracks SGA memory use in
internal numbers of granules for each SGA component.

The memory for dynamic components in the SGA is allocated in the unit of granules.
Granule size is determined by total SGA size. Generally speaking, on most platforms,
if the total SGA size is equal to or less than 1 GB, then granule size is 4 MB. For SGAs
larger than 1 GB, granule size is 16 MB. Some platform dependencies may arise. For
example, on 32-bit Windows NT, the granule size is 8 MB for SGAs larger than 1 GB.
Consult your operating system specific documentation for more details.

You can query the V$SGAINFO view to see the granule size that is being used by an
instance. The same granule size is used for all components in the SGA.

If you specify a size for a component that is not a multiple of granule size, Oracle
Database rounds the specified size up to the nearest multiple. For example, if the
granule size is 4 MB and you specify DB_CACHE_SIZE as 10 MB, the database actually
allocates 12 MB.

Setting Maximum SGA Size

The sSGA_MAX_SIZE initialization parameter specifies the maximum size of the System
Global Area for the lifetime of the instance. You can dynamically alter the initialization
parameters affecting the size of the buffer caches, shared pool, large pool, Java pool,
and streams pool but only to the extent that the sum of these sizes and the sizes of the
other components of the SGA (fixed SGA, variable SGA, and redo log buffers) does not
exceed the value specified by SGA_MAX_SIZE.

If you do not specify SGA_MAX_SIZE, then Oracle Database selects a default value that
is the sum of all components specified or defaulted at initialization time. If you do
specify SGA_MAX_SIZE, and at the time the database is initialized the value is less
than the sum of the memory allocated for all components, either explicitly in the
parameter file or by default, then the database ignores the setting for SGA_ MAX_SIZE
and chooses a correct value for this parameter.

Setting SGA Target Size

You enable the automatic shared memory management feature by setting the SGA_
TARGET parameter to a nonzero value. This parameter in effect replaces the
parameters that control the memory allocated for a specific set of individual
components, which are now automatically and dynamically resized (tuned) as needed.

5-8 Oracle Database Administrator's Guide

Configuring Memory Manually

Note: The STATISTICS_LEVEL initialization parameter must be set
to TYPICAL (the default) or ALL for automatic shared memory
management to function.

The SGA_TARGET initialization parameter reflects the total size of the SGA. Table 5-1
lists the SGA components for which SGA_TARGET includes memory—the
automatically sized SGA components—and the initialization parameters
corresponding to those components.

Table 5-1 Automatically Sized SGA Components and Corresponding Parameters

SGA Component Initialization Parameter

Fixed SGA and other internal allocations needed by the Oracle ~ N/A
Database instance

The shared pool SHARED_POOL_SIZE
The large pool LARGE_POOL_SIZE
The Java pool JAVA_POOL_SIZE
The buffer cache DB_CACHE_SIZE

The Streams pool STREAMS_POOL_SIZE

The parameters listed in Table 5-2, if they are set, take their memory from SGA_
TARGET, leaving what is available for the components listed in Table 5-1.

Table 5-2 Manually Sized SGA Components that Use SGA_TARGET Space

SGA Component Initialization Parameter
The log buffer LOG_BUFFER
The keep and recycle buffer caches DB_KEEP_CACHE_SIZE

DB_RECYCLE_CACHE_SIZE

Nonstandard block size buffer caches DB_nK_CACHE_SIZE

In addition to setting SGA_TARGET to a nonzero value, you must set the value of all
automatically sized SGA components to zero to enable full automatic tuning of these
components.

Alternatively, you can set one or more of the automatically sized SGA components to a
nonzero value, which is then used as the minimum setting for that component during
SGA tuning. This is discussed in detail later in this section.

Note: An easier way to enable automatic shared memory
management is to use Oracle Enterprise Manager (EM). When you
enable automatic shared memory management and set the Total SGA
Size, EM automatically generates the ALTER SYSTEM statements to
set SGA_TARGET to the specified size and to set all automatically sized
SGA components to zero.

If you use SQL*Plus to set SGA_TARGET, you must then set the
automatically sized SGA components to zero or to a minimum value.

Managing Memory 5-9

Configuring Memory Manually

SGA and Virtual Memory For optimal performance in most systems, the entire SGA
should fit in real memory. If it does not, and if virtual memory is used to store parts of
it, then overall database system performance can decrease dramatically. The reason for
this is that portions of the SGA are paged (written to and read from disk) by the
operating system.

See your operating system documentation for instructions for monitoring paging
activity. You can also view paging activity from the Performance property page of the
Host page of Enterprise Manager.

Monitoring and Tuning SGA Target Size The V$SGAINFO view provides information on the
current tuned sizes of various SGA components.

The V$SGA_TARGET_ADVICE view provides information that helps you decide on a
value for SGA_TARGET.

SQL> select * from vS$sga_target_advice order by sga_size;

SGA_SIZE SGA_SIZE_FACTOR ESTD_DB_TIME ESTD_DB_TIME_FACTOR ESTD_PHYSICAL_READS

290 .5 448176 1.6578 1636103
435 .75 339336 1.2552 1636103
580 1 270344 1 1201780
725 1.25 239038 .8842 907584
870 1.5 211517 .7824 513881
1015 1.75 201866 L7467 513881
1160 2 200703 L7424 513881

The information in this view is similar to that provided in the VSMEMORY_TARGET_
ADVICE view for automatic memory management. See "Monitoring and Tuning
Automatic Memory Management" on page 5-6 for an explanation of that view.

Enterprise Manager provides an easy-to-use graphical memory advisor to help you
select an optimal size for SGA_TARGET. See Oracle Database 2 Day DBA for details.

See Also: Oracle Database Reference for more information about these
dynamic performance views

Enabling Automatic Shared Memory Management

The procedure for enabling automatic shared memory management (ASMM) differs
depending on whether you are changing to ASMM from manual shared memory
management or from automatic memory management.

To change to ASMM from manual shared memory management:
1. Run the following query to obtain a value for SGA_TARGET:

SELECT (
(SELECT SUM(value) FROM V$SGA) -
(SELECT CURRENT_SIZE FROM V$SGA_DYNAMIC_FREE_MEMORY)
) "SGA_TARGET"

FROM DUAL;

2. Set the value of SGA_TARGET, either by editing the text initialization parameter
file and restarting the database, or by issuing the following statement:

ALTER SYSTEM SET SGA_TARGET=value [SCOPE:{SPFILE|MEMORY‘BOTH}}

where value is the value computed in step 1 or is some value between the sum of
all SGA component sizes and SGA_MAX_SIZE. For more information on the

5-10 Oracle Database Administrator's Guide

Configuring Memory Manually

ALTER SYSTEM statement and its SCOPE clause, see Oracle Database SQL Language
Reference.

3. Do one of the following:

= For more complete automatic tuning, set the values of the automatically sized
SGA components listed in Table 5-1 to zero. Do this by editing the text
initialization parameter file or by issuing ALTER SYSTEM statements.

= To control the minimum size of one or more automatically sized SGA
components, set those component sizes to the desired value. (See the next
section for details.) Set the values of the other automatically sized SGA
components to zero. Do this by editing the text initialization parameter file or
by issuing ALTER SYSTEM statements.

To change to ASMM from automatic memory management:
1. Set the MEMORY_TARGET initialization parameter to 0.

ALTER SYSTEM SET MEMORY_TARGET = 0;

The database sets SGA_TARGET based on current SGA memory allocation.
2. Do one of the following:

= For more complete automatic tuning, set the values of the automatically sized
SGA components listed in Table 5-1 to zero. Do this by editing the text
initialization parameter file or by issuing ALTER SYSTEM statements.

= To control the minimum size of one or more automatically sized SGA
components, set those component sizes to the desired value. (See the next
section for details.) Set the values of the other automatically sized SGA
components to zero. Do this by editing the text initialization parameter file or
by issuing ALTER SYSTEM statements.

Example For example, suppose you currently have the following configuration of
parameters for an instance configured for manual shared memory management and
with SGA_MAX_SIZE set to 1200M:

» SHARED_POOL_SIZE =200M
s DB_CACHE_SIZE =500M
s LARGE_POOL_SIZE=200M

Also assume the following query results:

Query Result
SELECT SUM(value) FROM V$SGA 1200M
SELECT CURRENT_SIZE FROM V$SGA_DYNAMIC_FREE_MEMORY 208M

You can take advantage of automatic shared memory management by setting Total
SGA Size to 992M in Oracle Enterprise Manager, or by issuing the following
statements:

ALTER SYSTEM SET SGA_TARGET = 992M;
ALTER SYSTEM SET SHARED_POOL_SIZE = 0;
ALTER SYSTEM SET LARGE_POOL_SIZE = 0;
ALTER SYSTEM SET JAVA_POOL_SIZE = 0;
ALTER SYSTEM SET DB_CACHE_SIZE = 0;

Managing Memory 5-11

Configuring Memory Manually

ALTER SYSTEM SET STREAMS_POOL_SIZE = 0;

where 992M = 1200M minus 208M.

Automatic Shared Memory Management Advanced Topics

This section provides a closer look at automatic shared memory management. It
includes the following topics:

= Setting Minimums for Automatically Sized SGA Components
= Automatic Tuning and the Shared Pool

= Dynamic Modification of SGA_TARGET

» Modifying Parameters for Automatically Sized Components

» Modifying Parameters for Manually Sized Components

Setting Minimums for Automatically Sized SGA Components You can exercise some control
over the size of the automatically sized SGA components by specifying minimum
values for the parameters corresponding to these components. Doing so can be useful
if you know that an application cannot function properly without a minimum amount
of memory in specific components. You specify the minimum amount of SGA space
for a component by setting a value for its corresponding initialization parameter.

Manually limiting the minimum size of one or more automatically sized components
reduces the total amount of memory available for dynamic adjustment. This reduction
in turn limits the ability of the system to adapt to workload changes. Therefore, this
practice is not recommended except in exceptional cases. The default automatic
management behavior maximizes both system performance and the use of available
resources.

Automatic Tuning and the Shared Pool When the automatic shared memory management
feature is enabled, the internal tuning algorithm tries to determine an optimal size for
the shared pool based on the workload. It usually converges on this value by
increasing in small increments over time. However, the internal tuning algorithm
typically does not attempt to shrink the shared pool, because the presence of open
cursors, pinned PL/SQL packages, and other SQL execution state in the shared pool
make it impossible to find granules that can be freed. Therefore, the tuning algorithm
only tries to increase the shared pool in conservative increments, starting from a
conservative size and stabilizing the shared pool at a size that produces the optimal
performance benefit.

Dynamic Modification of SGA_TARGET The SGA_TARGET parameter can be dynamically
increased up to the value specified for the SGA_MAX_SIZE parameter, and it can also
be reduced. If you reduce the value of SGA_TARGET, the system identifies one or more
automatically tuned components for which to release memory. You can reduce SGA_
TARGET until one or more automatically tuned components reach their minimum size.
Oracle Database determines the minimum allowable value for SGA_TARGET taking
into account several factors, including values set for the automatically sized
components, manually sized components that use SGA_TARGET space, and number of
CPUs.

The change in the amount of physical memory consumed when SGA_TARGET is
modified depends on the operating system. On some UNIX platforms that do not
support dynamic shared memory, the physical memory in use by the SGA is equal to
the value of the SGA_MAX_SIZE parameter. On such platforms, there is no real benefit

5-12 Oracle Database Administrator's Guide

Configuring Memory Manually

in setting SGA_TARGET to a value smaller than SGA_MAX_SIZE. Therefore, setting
SGA_MAX_SIZE on those platforms is not recommended.

On other platforms, such as Solaris and Windows, the physical memory consumed by
the SGA is equal to the value of SGA_TARGET.

For example, suppose you have an environment with the following configuration:
s SGA_MAX_SIZE =1024M

» SGA_TARGET =512M

s DB_8K_CACHE_SIZE =128M

In this example, the value of SGA_TARGET can be resized up to 1024M and can also be
reduced until one or more of the automatically sized components reaches its minimum
size. The exact value depends on environmental factors such as the number of CPUs
on the system. However, the value of DB_8K_CACHE_SIZE remains fixed at all times
at 128M

Note: When enabling automatic shared memory management, it is
best to set SGA_TARGET to the desired nonzero value before starting
the database. Dynamically modifying SGA_TARGET from zero to a
nonzero value may not achieve the desired results because the shared
pool may not be able to shrink. After startup, you can dynamically
tune SGA_TARGET up or down as required.

Modifying Parameters for Automatically Sized Components When SGA_TARGET is not set, the
automatic shared memory management feature is not enabled. Therefore the rules
governing resize for all component parameters are the same as in earlier releases.
However, when automatic shared memory management is enabled, the manually
specified sizes of automatically sized components serve as a lower bound for the size
of the components. You can modify this limit dynamically by changing the values of
the corresponding parameters.

If the specified lower limit for the size of a given SGA component is less than its
current size, there is no immediate change in the size of that component. The new
setting only limits the automatic tuning algorithm to that reduced minimum size in the
future. For example, consider the following configuration:

= SGA_TARGET = 512M
= LARGE_POOL_SIZE = 256M
» Current actual large pool size = 284M

In this example, if you increase the value of LARGE_POOL_SIZE to a value greater
than the actual current size of the component, the system expands the component to
accommodate the increased minimum size. For example, if you increase the value of
LARGE_POOL_SIZE to 300M, then the system increases the large pool incrementally
until it reaches 300M. This resizing occurs at the expense of one or more automatically
tuned components.

If you decrease the value of LARGE_POOL_SIZE to 200, there is no immediate change
in the size of that component. The new setting only limits the reduction of the large
pool size to 200 M in the future.

Modifying Parameters for Manually Sized Components Parameters for manually sized

components can be dynamically altered as well. However, rather than setting a
minimum size, the value of the parameter specifies the precise size of the

Managing Memory 5-13

Configuring Memory Manually

corresponding component. When you increase the size of a manually sized
component, extra memory is taken away from one or more automatically sized
components. When you decrease the size of a manually sized component, the memory
that is released is given to the automatically sized components.

For example, consider this configuration:
] SGA_TARGET = 512M
] DB_8K_CACHE_SIZE =128M

In this example, increasing DB_8K_CACHE_SIZE by 16 M to 144M means that the 16M
is taken away from the automatically sized components. Likewise, reducing DB_8K_
CACHE_SIZE by 16M to 112M means that the 16M is given to the automatically sized
components.

Using Manual Shared Memory Management

If you decide not to use automatic memory management or automatic shared memory
management, you must manually configure several SGA component sizes, and then
monitor and tune these sizes on an ongoing basis as the database workload changes.
This section provides guidelines on setting the parameters that control the sizes of
these SGA components.

If you create your database with DBCA and choose manual shared memory
management, DBCA provides fields where you must enter sizes for the buffer cache,
shared pool, large pool, and Java pool. It then sets the corresponding initialization
parameters in the server parameter file (SPFILE) that it creates. If you instead create
the database with the CREATE DATABASE SQL statement and a text initialization
parameter file, you can do one of the following:

= Provide values for the initialization parameters that set SGA component sizes.

s Omit SGA component size parameters from the text initialization file. Oracle
Database chooses reasonable defaults for any component whose size you do not
set.

This section contains the following topics:

= Enabling Manual Shared Memory Management

= Setting the Buffer Cache Initialization Parameters
s Specifying the Shared Pool Size

= Specifying the Large Pool Size

= Specifying the Java Pool Size

= Specifying the Streams Pool Size

s Specifying the Result Cache Maximum Size

s Specifying Miscellaneous SGA Initialization Parameters

Enabling Manual Shared Memory Management

There is no initialization parameter that in itself enables manual shared memory
management. You effectively enable manual shared memory management by
disabling both automatic memory management and automatic shared memory
management.

To enable manual shared memory management:

1. Set the MEMORY_TARGET initialization parameter to 0.

5-14 Oracle Database Administrator's Guide

Configuring Memory Manually

2. Set the SGA_TARGET initialization parameter to 0.

You must then set values for the various SGA components, as described in the
following sections.

Setting the Buffer Cache Initialization Parameters

The buffer cache initialization parameters determine the size of the buffer cache
component of the SGA. You use them to specify the sizes of caches for the various
block sizes used by the database. These initialization parameters are all dynamic.

The size of a buffer cache affects performance. Larger cache sizes generally reduce the
number of disk reads and writes. However, a large cache may take up too much
memory and induce memory paging or swapping.

Oracle Database supports multiple block sizes in a database. If you create tablespaces
with non-standard block sizes, you must configure non-standard block size buffers to
accommodate these tablespaces. The standard block size is used for the SYSTEM
tablespace. You specify the standard block size by setting the initialization parameter
DB_BLOCK_SIZE. Legitimate values are from 2K to 32K.

If you intend to use multiple block sizes in your database, you must have the DB_
CACHE_SIZE and at least one DB_nK_CACHE_SIZE parameter set. Oracle Database
assigns an appropriate default value to the DB_CACHE_SIZE parameter, but the DB_
nK_CACHE_SIZE parameters default to 0, and no additional block size caches are
configured.

The sizes and numbers of non-standard block size buffers are specified by the
following parameters:

DB_2K_CACHE_SIZE
DB_4K_CACHE_SIZE
DB_8K_CACHE_SIZE
DB_16K_CACHE_SIZE
DB_32K_CACHE_SIZE

Each parameter specifies the size of the cache for the corresponding block size.

Note: Platform-specific restrictions regarding the maximum block
size apply, so some of these sizes might not be allowed on some
platforms.

See Also: "Specifying Nonstandard Block Sizes for Tablespaces" on
page 12-14

Example of Setting Block and Cache Sizes

DB_BLOCK_SIZE=4096
DB_CACHE_SIZE=1024M
DB_2K_CACHE_SIZE=256M
DB_8K_CACHE_SIZE=512M

In the preceding example, the parameter DB_BLOCK_SIZE sets the standard block size
of the database to 4K. The size of the cache of standard block size buffers is 1024MB.
Additionally, 2K and 8K caches are also configured, with sizes of 256MB and 512MB,
respectively.

Managing Memory 5-15

Configuring Memory Manually

Note: The DB_nK_CACHE_SIZE parameters cannot be used to size
the cache for the standard block size. If the value of DB_BLOCK_SIZE
is 1K, it is invalid to set DB_ nK_CACHE_SIZE. The size of the cache
for the standard block size is always determined from the value of
DB_CACHE_SIZE.

The cache has a limited size, so not all the data on disk can fit in the cache. When the
cache is full, subsequent cache misses cause Oracle Database to write dirty data
already in the cache to disk to make room for the new data. (If a buffer is not dirty, it
does not need to be written to disk before a new block can be read into the buffer.)
Subsequent access to any data that was written to disk and then overwritten results in
additional cache misses.

The size of the cache affects the likelihood that a request for data results in a cache hit.
If the cache is large, it is more likely to contain the data that is requested. Increasing
the size of a cache increases the percentage of data requests that result in cache hits.

You can change the size of the buffer cache while the instance is running, without
having to shut down the database. Do this with the ALTER SYSTEM statement.

Use the fixed view V$BUFFER_POOL to track the sizes of the different cache
components and any pending resize operations.

Multiple Buffer Pools You can configure the database buffer cache with separate buffer
pools that either keep data in the buffer cache or make the buffers available for new
data immediately after using the data blocks. Particular schema objects (tables,
clusters, indexes, and partitions) can then be assigned to the appropriate buffer pool to
control the way their data blocks age out of the cache.

= The KEEP buffer pool retains the schema object's data blocks in memory.

= The RECYCLE buffer pool eliminates data blocks from memory as soon as they are
no longer needed.

= The DEFAULT buffer pool contains data blocks from schema objects that are not
assigned to any buffer pool, as well as schema objects that are explicitly assigned
to the DEFAULT pool.

The initialization parameters that configure the KEEP and RECYCLE buffer pools are
DB_KEEP_CACHE_SIZE and DB_RECYCLE_CACHE_SIZE.

Note: Multiple buffer pools are only available for the standard block
size. Non-standard block size caches have a single DEFAULT pool.

See Also:

» Oracle Database Performance Tuning Guide for information about
tuning the buffer cache and for more information about multiple
buffer pools

Specifying the Shared Pool Size

The SHARED_POOL_SIZE initialization parameter is a dynamic parameter that lets
you specify or adjust the size of the shared pool component of the SGA. Oracle
Database selects an appropriate default value.

5-16 Oracle Database Administrator's Guide

Configuring Memory Manually

In releases before Oracle Database 10g Release 1, the amount of shared pool memory
that was allocated was equal to the value of the SHARED_POOL_SIZE initialization
parameter plus the amount of internal SGA overhead computed during instance
startup. The internal SGA overhead refers to memory that is allocated by Oracle
Database during startup, based on the values of several other initialization parameters.
This memory is used to maintain state for different server components in the SGA. For
example, if the SHARED_POOL_SIZE parameter is set to 64MB and the internal SGA
overhead is computed to be 12MB, the real size of the shared pool is 64+12=76MB,
although the value of the SHARED_POOL_SIZE parameter is still displayed as 64MB.

Starting with Oracle Database 10g Release 1, the size of the internal SGA overhead is
included in the user-specified value of SHARED_POOL_SIZE. If you are not using
automatic memory management or automatic shared memory management, the
amount of shared pool memory that is allocated at startup is equal to the value of the
SHARED_ POOL_SIZE initialization parameter, rounded up to a multiple of the granule
size. You must therefore set this parameter so that it includes the internal SGA
overhead in addition to the desired value for shared pool size. In the previous
example, if the SHARED_POOL_SIZE parameter is set to 64MB at startup, then the
available shared pool after startup is 64-12=52MB, assuming the value of internal SGA
overhead remains unchanged. In order to maintain an effective value of 64MB for
shared pool memory after startup, you must set the SHARED_POOL_SIZE parameter
to 64+12=76MB.

When migrating from a release that is earlier than Oracle Database 10g Release 1, the
Oracle Database 11g migration utilities recommend a new value for this parameter
based on the value of internal SGA overhead in the pre-upgrade environment and
based on the old value of this parameter. Beginning with Oracle Database 10g, the
exact value of internal SGA overhead, also known as startup overhead in the shared
pool, can be queried from the V$ SGAINFO view. Also, in manual shared memory
management mode, if the user-specified value of SHARED_POOL_SIZE is too small to
accommodate even the requirements of internal SGA overhead, then Oracle Database
generates an ORA-371 error during startup, with a suggested value to use for the
SHARED_POOL_SIZE parameter.

When you use automatic shared memory management in Oracle Database 11g, the
shared pool is automatically tuned, and an ORA-371 error would not be generated.

The Result Cache and Shared Pool Size The result cache takes its memory from the shared
pool. Therefore, if you expect to increase the maximum size of the result cache, take
this into consideration when sizing the shared pool.

See Also: "Specifying the Result Cache Maximum Size" on page 5-18

Specifying the Large Pool Size

The LARGE_POOL_SIZE initialization parameter is a dynamic parameter that lets you
specify or adjust the size of the large pool component of the SGA. The large pool is an
optional component of the SGA. You must specifically set the LARGE_POOL_SIZE
parameter if you want to create a large pool. Configuring the large pool is discussed in
Oracle Database Performance Tuning Guide.

Specifying the Java Pool Size

The JAVA_POOL_SIZE initialization parameter is a dynamic parameter that lets you
specify or adjust the size of the java pool component of the SGA. Oracle Database
selects an appropriate default value. Configuration of the java pool is discussed in
Oracle Database Java Developer’s Guide.

Managing Memory 5-17

Configuring Memory Manually

Specifying the Streams Pool Size

The STREAMS_POOL_SIZE initialization parameter is a dynamic parameter that lets
you specify or adjust the size of the Streams Pool component of the SGA. If STREAMS_
POOL_SIZE is set to 0, then the Oracle Streams product transfers memory from the
buffer cache to the Streams Pool when it is needed. For details, see the discussion of
the Streams Pool in Oracle Streams Concepts and Administration.

Specifying the Result Cache Maximum Size

The RESULT_CACHE_MAX_SIZE initialization parameter is a dynamic parameter that
enables you to specify the maximum size of the result cache component of the SGA.
Typically, there is no need to specify this parameter, because the default maximum size
is chosen by the database based on total memory available to the SGA and on the
memory management method currently in use. You can view the current default
maximum size by displaying the value of the RESULT_CACHE_MAX_SIZE parameter.
If you want to change this maximum size, you can set RESULT_CACHE_MAX_SIZE
with an ALTER SYSTEM statement or you can specify this parameter in the text
initialization parameter file. In each case, the value is rounded up to the nearest
multiple of 32K.

If RESULT_CACHE_MAX_SIZE is 0 upon instance startup, the result cache is disabled.
To reenable it you must set RESULT_CACHE_MAX_SIZE to a nonzero value (or remove
this parameter from the text initialization parameter file to get the default maximum
size) and then restart the database.

Note that after starting the database with the result cache disabled, if you use an
ALTER SYSTEM statement to set RESULT_CACHE_MAX_SIZE to a nonzero value but
do not restart the database, querying the value of the RESULT_CACHE_MAX_SIZE
parameter returns a nonzero value even though the result cache is still disabled. The
value of RESULT_CACHE_MAX_SIZE is therefore not the most reliable way to
determine if the result cache is enabled. You can use the following query instead:

SELECT dbms_result_cache.status() FROM dual;

DBMS_RESULT_CACHE.STATUS ()

ENABLED
The result cache takes its memory from the shared pool, so if you increase the
maximum result cache size, consider also increasing the shared pool size.

The view VSRESULT_CACHE_STATISTICS and the PL/SQL package procedure
DBMS_RESULT_CACHE.MEMORY_REPORT display information to help you determine
the amount of memory currently allocated to the result cache.

The PL/SQL package function DBMS_RESULT_CACHE . FLUSH clears the result cache
and releases all the memory back to the shared pool.

5-18 Oracle Database Administrator's Guide

Configuring Memory Manually

See Also:

» Oracle Database Performance Tuning Guide for more information
about the result cache

» Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_RESULT_CACHE package procedures
and functions.

» Oracle Database Reference for more information about the
VSRESULT_CACHE_STATISTICS view.

» Oracle Real Application Clusters Administration and Deployment
Guide for information on setting RESULT_CACHE_MAX_SIZE for a
cluster database.

Specifying Miscellaneous SGA Initialization Parameters

You can set a few additional initialization parameters to control how the SGA uses
memory.

Physical Memory The LOCK_SGA parameter, when set to TRUE, locks the entire SGA into
physical memory. This parameter cannot be used in conjunction with automatic
memory management or automatic shared memory management.

SGA Starting Address The SHARED_MEMORY_ADDRESS and HI_SHARED_MEMORY_
ADDRESS parameters specify the SGA's starting address at runtime. These parameters
are rarely used. For 64-bit platforms, HI_SHARED_MEMORY_ADDRESS specifies the
high order 32 bits of the 64-bit address.

Extended Buffer Cache Mechanism The USE_INDIRECT_DATA_ BUFFERS parameter
enables the use of the extended buffer cache mechanism for 32-bit platforms that can
support more than 4 GB of physical memory. On platforms that do not support this
much physical memory, this parameter is ignored. This parameter cannot be used in
conjunction with automatic memory management or automatic shared memory
management.

See Also:

» Oracle Database Reference for more information on these
initialization parameters

s "Using Automatic Memory Management" on page 5-3

s "Using Automatic Shared Memory Management" on page 5-7

Using Automatic PGA Memory Management

By default, Oracle Database automatically and globally manages the total amount of
memory dedicated to the instance PGA. You can control this amount by setting the
initialization parameter PGA_AGGREGATE_TARGET. Oracle Database then tries to
ensure that the total amount of PGA memory allocated across all database server
processes and background processes never exceeds this target.

If you create your database with DBCA, you can specify a value for the total instance
PGA. DBCA then sets the PGA_AGGREGATE_TARGET initialization parameters in the
server parameter file (SPFILE) that it creates. If you do not specify the total instance
PGA, DBCA chooses a reasonable default.

Managing Memory 5-19

Configuring Memory Manually

If you create the database with the CREATE DATABASE SQL statement and a text
initialization parameter file, you can provide a value for PGA_AGGREGATE_TARGET. If
you omit this parameter, the database chooses a default value.

With automatic PGA memory management, sizing of SQL work areas for all dedicated
server sessions is automatic and all *_AREA_SIZE initialization parameters are
ignored for these sessions. At any given time, the total amount of PGA memory
available to active work areas on the instance is automatically derived from the
parameter PGA_AGGREGATE_TARGET. This amount is set to the value of PGA_
AGGREGATE_TARGET minus the PGA memory allocated for other purposes (for
example, session memory). The resulting PGA memory is then allotted to individual
active work areas based on their specific memory requirements.

There are dynamic performance views that provide PGA memory use statistics. Most
of these statistics are enabled when PGA_AGGREGATE_TARGET is set.

= Statistics on allocation and use of work area memory can be viewed in the
following dynamic performance views:

V$SYSSTAT

V$SESSTAT

V$PGASTAT
V$SQL_WORKAREA
V$SQL_WORKAREA_ACTIVE

s The following three columns in the V$PROCESS view report the PGA memory
allocated and used by an Oracle Database process:

PGA_USED_MEM
PGA_ALLOCATED_MEM
PGA_MAX_MEM

Note: The automatic PGA memory management method applies to
work areas allocated by both dedicated and shared server process. See
Oracle Database Concepts for information about PGA memory
allocation in dedicated and shared server modes.

See Also:

» Oracle Database Reference for information about views mentioned
in this section

» Oracle Database Performance Tuning Guide for information about
using these views

Using Manual PGA Memory Management

Oracle Database supports manual PGA memory management, in which you manually
tune SQL work areas.

In releases earlier than Oracle Database 10g, the database administrator controlled the
maximum size of SQL work areas by setting the following parameters: SORT_AREA_
SIZE, HASH_AREA_SIZE, BITMAP_MERGE_AREA_SIZE and CREATE_BITMAP_
AREA_STIZE. Setting these parameters is difficult, because the maximum work area
size is ideally selected from the data input size and the total number of work areas
active in the system. These two factors vary greatly from one work area to another and

5-20 Oracle Database Administrator's Guide

Memory Management Reference

from one time to another. Thus, the various *_AREA_SIZE parameters are difficult to
tune under the best of circumstances.

For this reason, Oracle strongly recommends that you leave automatic PGA memory
management enabled.

If you decide to tune SQL work areas manually, you must set the WORKAREA_SIZE_
POLICY initialization parameter to MANUAL.

Note: The initialization parameter WORKAREA_SIZE_POLICY isa
session- and system-level parameter that can take only two values:
MANUAL or AUTO. The default is AUTO. You can set PGA_AGGREGATE_
TARGET, and then switch back and forth from auto to manual memory
management mode. When WORKAREA_SIZE_POLICY is set to AUTO,
your settings for *_AREA_SIZE parameters are ignored.

Memory Management Reference
This section contains the following reference topics for memory management:
= Platforms That Support Automatic Memory Management

= Memory Management Data Dictionary Views

Platforms That Support Automatic Memory Management

The following platforms support automatic memory management—the Oracle
Database ability to automatically tune the sizes of the SGA and PGA, redistributing
memory from one to the other on demand to optimize performance:

s Linux

= Solaris

= Windows
« HP-UX

s AIX

Memory Management Data Dictionary Views

The following dynamic performance views provide information on memory

management:

View Description

V$SGA Displays summary information about the system
global area (SGA).

V$SGAINFO Displays size information about the SGA, including
the sizes of different SGA components, the granule
size, and free memory.

V$SGASTAT Displays detailed information about how memory is
allocated within the shared pool, large pool, Java
pool, and Streams pool.

Managing Memory 5-21

Memory Management Reference

View

Description

V$SPGASTAT

Displays PGA memory usage statistics as well as
statistics about the automatic PGA memory manager
when it is enabled (that is, when PGA_AGGREGATE_
TARGET is set). Cumulative values in VSPGASTAT are
accumulated since instance startup.

VSMEMORY_DYNAMIC_COMPONENTS

Displays information on the current size of all
automatically tuned and static memory components,
with the last operation (for example, grow or shrink)
that occurred on each.

V$SGA_DYNAMIC_COMPONENTS

Displays the current sizes of all SGA components, and
the last operation for each component.

V$SGA_DYNAMIC_FREE_MEMORY

Displays information about the amount of SGA
memory available for future dynamic SGA resize
operations.

V$SMEMORY_CURRENT_RESIZE_OPS

Displays information about resize operations that are
currently in progress. A resize operation is an
enlargement or reduction of the SGA, the instance
PGA, or a dynamic SGA component.

V$SGA_CURRENT_RESIZE_OPS

Displays information about dynamic SGA component
resize operations that are currently in progress.

VSMEMORY_RESIZE_OPS

Displays information about the last 800 completed
memory component resize operations, including
automatic grow and shrink operations for SGA_
TARGET and PGA_AGGREGATE_TARGET.

V$SGA_RESIZE_OPS

Displays information about the last 800 completed
SGA component resize operations.

VSMEMORY_TARGET_ADVICE

Displays information that helps you tune MEMORY_
TARGET if you enabled automatic memory
management.

V$SGA_TARGET_ADVICE

Displays information that helps you tune SGA_
TARGET.

VSPGA_TARGET_ADVICE

Displays information that helps you tune PGA_
AGGREGATE_TARGET.

See Also: Oracle Database Reference for detailed information on
memory management views.

5-22 Oracle Database Administrator's Guide

6

Managing Users and Securing the Database

This chapter briefly discusses the creation and management of database users, with
special attention to the importance of establishing security policies to protect your
database, and provides cross-references to the appropriate security documentation.

The following topics are contained in this chapter:

s The Importance of Establishing a Security Policy for Your Database
= Managing Users and Resources

» Managing User Privileges and Roles

= Auditing Database Use

s Predefined User Accounts

The Importance of Establishing a Security Policy for Your Database

It is important to develop a security policy for every database. The security policy
establishes methods for protecting your database from accidental or malicious
destruction of data or damage to the database infrastructure.

Each database can have an administrator, referred to as the security administrator,
who is responsible for implementing and maintaining the database security policy If
the database system is small, the database administrator can have the responsibilities
of the security administrator. However, if the database system is large, a designated
person or group of people may have sole responsibility as security administrator.

For information about establishing security policies for your database, see Oracle
Database Security Guide.

Managing Users and Resources

To connect to the database, each user must specify a valid user name that has been
previously defined to the database. An account must have been established for the
user, with information about the user being stored in the data dictionary.

When you create a database user (account), you specify the following attributes of the
user:

s User name
s Authentication method
» Default tablespace

= Temporary tablespace

Managing Users and Securing the Database 6-1

Managing User Privileges and Roles

s Other tablespaces and quotas
s User profile

To learn how to create and manage users, see Oracle Database Security Guide.

Managing User Privileges and Roles

Privileges and roles are used to control user access to data and the types of SQL
statements that can be executed. The table that follows describes the three types of
privileges and roles:

Type Description

System privilege A system-defined privilege usually granted only by
administrators. These privileges allow users to perform specific
database operations.

Object privilege A system-defined privilege that controls access to a specific
object.
Role A collection of privileges and other roles. Some system-defined

roles exist, but most are created by administrators. Roles group
together privileges and other roles, which facilitates the granting
of multiple privileges and roles to users.

Privileges and roles can be granted to other users by users who have been granted the
privilege to do so. The granting of roles and privileges starts at the administrator level.
At database creation, the administrative user SYS is created and granted all system
privileges and predefined Oracle Database roles. User SYS can then grant privileges
and roles to other users, and also grant those users the right to grant specific privileges
to others.

To learn how to administer privileges and roles for users, see Oracle Database Security
Guide.

Auditing Database Use

You can monitor and record selected user database actions, including those performed
by administrators. There are several reasons why you might want to implement
database auditing. Complete background information and instructions for database
auditing are found in Oracle Database Security Guide.

Predefined User Accounts

Oracle Database includes a number of predefined user accounts. The three types of
predefined accounts are:

s Administrative accounts (SYS, SYSTEM, SYSMAN, and DBSNMP)

SYS and SYSTEM are described in "Database Administrator Security and
Privileges" on page 1-9. SYSMAN is used to perform Oracle Enterprise Manager
administration tasks. The management agent of Enterprise Manager uses the
DBSNMP account to monitor and manage the database. You must not delete these
accounts.

= Sample schema accounts

6-2 Oracle Database Administrator's Guide

Predefined User Accounts

These accounts are used for examples in Oracle Database documentation and
instructional materials. Examples are HR, SH, and OE. You must unlock these
accounts and reset their passwords before using them.

Internal accounts.

These accounts are created so that individual Oracle Database features or
components can have their own schemas. You must not delete internal accounts,
and you must not attempt to log in with them.

See Also: Oracle Database 2 Day + Security Guide for a table of
predefined accounts.

Managing Users and Securing the Database 6-3

Predefined User Accounts

6-4 Oracle Database Administrator's Guide

7

Monitoring Database Operations

It is important that you monitor the operation of your database on a regular basis.
Doing so not only informs you of errors that have not yet come to your attention but
also gives you a better understanding of the normal operation of your database. Being
familiar with normal behavior in turn helps you recognize when something is wrong.

This chapter describes some of the options available to you for monitoring the
operation of your database. It contains the following sections:

= Monitoring Errors and Alerts

= Monitoring Performance

Monitoring Errors and Alerts

The following sections explain how to monitor database errors and alerts. It contains
the following topics:

= Monitoring Errors with Trace Files and the Alert Log

= Monitoring with Server-Generated Alerts

Note: The easiest and best way to monitor the database for errors
and alerts is with the Database Home page in Enterprise Manager.
This section provides alternate methods for monitoring, using data
dictionary views, PL/SQL packages, and other command-line
facilities.

Monitoring Errors with Trace Files and the Alert Log

Each server and background process can write to an associated trace file. When an
internal error is detected by a process, it dumps information about the error to its trace
file. Some of the information written to a trace file is intended for the database
administrator, and other information is for Oracle Support Services. Trace file
information is also used to tune applications and instances.

Note: Critical errors also create incidents and incident dumps in the
Automatic Diagnostic Repository. See Chapter 8, "Managing
Diagnostic Data" on page 8-1 for more information.

The alert log is a chronological log of messages and errors, and includes the following
items:

Monitoring Database Operations 7-1

Monitoring Errors and Alerts

= Allinternal errors (ORA-600), block corruption errors (ORA-1578), and deadlock
errors (ORA-60) that occur

s Administrative operations, such as CREATE, ALTER, and DROP statements and
STARTUP, SHUTDOWN, and ARCHIVELOG statements

= Messages and errors relating to the functions of shared server and dispatcher
processes

= Errors occurring during the automatic refresh of a materialized view

s The values of all initialization parameters that had nondefault values at the time
the database and instance start

Oracle Database uses the alert log to record these operations as an alternative to
displaying the information on an operator's console (although some systems also
display information on the console). If an operation is successful, a "completed"
message is written in the alert log, along with a timestamp.

The alert log is maintained as both an XML-formatted file and a text-formatted file.
You can view either format of the alert log with any text editor or you can use the
ADRCT utility to view the XML-formatted version of the file with the XML tags
stripped.

Check the alert log and trace files of an instance periodically to learn whether the
background processes have encountered errors. For example, when the log writer
process (LGWR) cannot write to a member of a log group, an error message indicating
the nature of the problem is written to the LGWR trace file and the alert log. Such an
error message means that a media or I/O problem has occurred and should be
corrected immediately.

Oracle Database also writes values of initialization parameters to the alert log, in
addition to other important statistics.

The alert log and all trace files for background and server processes are written to the
Automatic Diagnostic Repository, the location of which is specified by the
DIAGNOSTIC_DEST initialization parameter. The names of trace files are operating
system specific, but each file usually includes the name of the process writing the file
(such as LGWR and RECO).

See Also:

= Chapter 8, "Managing Diagnostic Data" on page 8-1 for
information on the Automatic Diagnostic Repository.

= "Alert Log" on page 8-5 for additional information about the
alert log.

= "Viewing the Alert Log" on page 8-18
s Oracle Database Utilities for information on the ADRCI utility.

= Your operating system specific Oracle documentation for
information about the names of trace files

Controlling the Size of Trace Files

You can control the maximum size of all trace files (excluding the alert log) using the
initialization parameter MAX_DUMP_FILE_SIZE, which limits the file to the specified
number of operating system blocks. To control the size of an alert log, you must
manually delete the file when you no longer need it. Otherwise the database continues
to append to the file.

7-2 Oracle Database Administrator's Guide

Monitoring Errors and Alerts

You can safely delete the alert log while the instance is running, although you should
consider making an archived copy of it first. This archived copy could prove valuable
if you should have a future problem that requires investigating the history of an
instance.

Controlling When Oracle Database Writes to Trace Files

Background processes always write to a trace file when appropriate. In the case of the
ARCn background process, it is possible, through an initialization parameter, to
control the amount and type of trace information that is produced. This behavior is
described in "Controlling Trace Output Generated by the Archivelog Process" on
page 11-13. Other background processes do not have this flexibility.

Trace files are written on behalf of server processes whenever critical errors occur.
Additionally, setting the initialization parameter SQIL._ TRACE = TRUE causes the SQL
trace facility to generate performance statistics for the processing of all SQL statements
for an instance and write them to the Automatic Diagnostic Repository.

Optionally, you can request that trace files be generated for server processes.
Regardless of the current value of the SQL_TRACE initialization parameter, each
session can enable or disable trace logging on behalf of the associated server process
by using the SQL statement ALTER SESSION SET SQL_TRACE. This example
enables the SQL trace facility for a specific session:

ALTER SESSION SET SQL_TRACE TRUE;

Use the DBMS_SESSION or the DBMS_MONITOR packages if you want to control SQL
tracing for a session.

Caution: The SQL trace facility for server processes can cause
significant system overhead resulting in severe performance
impact, so you should enable this feature only when collecting
statistics.

See Also:

= Chapter 8, "Managing Diagnostic Data" on page 8-1 for more
information on how the database handles critical errors,
otherwise known as "incidents."

Reading the Trace File for Shared Server Sessions

If shared server is enabled, each session using a dispatcher is routed to a shared server
process, and trace information is written to the server trace file only if the session has
enabled tracing (or if an error is encountered). Therefore, to track tracing for a specific
session that connects using a dispatcher, you might have to explore several shared
server trace files. To help you, Oracle provides a command line utility program,
trcsess, which consolidates all trace information pertaining to a user session in one
place and orders the information by time.

See Also: Oracle Database Performance Tuning Guide for
information about using the SQL trace facility and using TKPROF
and trcsess to interpret the generated trace files

Monitoring Database Operations 7-3

Monitoring Errors and Alerts

Monitoring with Server-Generated Alerts

A server-generated alert is a notification from the Oracle Database server of an
impending problem. The notification may contain suggestions for correcting the
problem. Notifications are also provided when the problem condition has been
cleared.

Alerts are automatically generated when a problem occurs or when data does not
match expected values for metrics, such as the following:

s Physical Reads Per Second
s User Commits Per Second
= SQL Service Response Time

Server-generated alerts can be based on threshold levels or can issue simply because
an event has occurred. Threshold-based alerts can be triggered at both threshold
warning and critical levels. The value of these levels can be customer-defined or
internal values, and some alerts have default threshold levels which you can change if
appropriate. For example, by default a server-generated alert is generated for
tablespace space usage when the percentage of space usage exceeds either the 85%
warning or 97% critical threshold level. Examples of alerts not based on threshold
levels are:

m Snapshot Too 01d
m Resumable Session Suspended
n Recovery Area Space Usage

An alert message is sent to the predefined persistent queue ALERT_QUE owned by the
user SYS. Oracle Enterprise Manager reads this queue and provides notifications
about outstanding server alerts, and sometimes suggests actions for correcting the
problem. The alerts are displayed on the Enterprise Manager Database Home page
and can be configured to send email or pager notifications to selected administrators.
If an alert cannot be written to the alert queue, a message about the alert is written to
the Oracle Database alert log.

Background processes periodically flush the data to the Automatic Workload
Repository to capture a history of metric values. The alert history table and ALERT
QUE are purged automatically by the system at regular intervals.

Setting and Retrieving Thresholds for Server-Generated Alerts

You can view and change threshold settings for the server alert metrics using the SET_
THRESHOLD and GET_THRESHOLD procedures of the DBMS_SERVER_ALERTS PL/SQL
package. Examples of using these procedures are provided in the following sections:

= Setting Threshold Levels

= Retrieving Threshold Information

Note: The most convenient way to set and retrieve threshold values
is to use the graphical interface of Enterprise Manager. See Oracle
Database 2 Day DBA for instructions.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_SERVER_ALERTS package

7-4 Oracle Database Administrator's Guide

Monitoring Errors and Alerts

Setting Threshold Levels The following example shows how to set thresholds with the
SET_THRESHOLD procedure for CPU time for each user call for an instance:

DBMS_SERVER_ALERT.SET_THRESHOLD (
DBMS_SERVER_ALERT.CPU_TIME_PER_CALL, DBMS_SERVER_ALERT.OPERATOR_GE, '8000',
DBMS_SERVER_ALERT.OPERATOR_GE, '10000', 1, 2, 'instl'
DBMS_SERVER_ALERT.OBJECT_TYPE_SERVICE, 'main.regress.rdbms.dev.us.oracle.com');

In this example, a warning alert is issued when CPU time exceeds 8000 microseconds
for each user call and a critical alert is issued when CPU time exceeds 10,000
microseconds for each user call. The arguments include:

s CPU_TIME_ PER CALL specifies the metric identifier. For a list of support metrics,
see Oracle Database PL/SQL Packages and Types Reference.

» The observation period is set to 1 minute. This period specifies the number of
minutes that the condition must deviate from the threshold value before the alert
is issued.

s The number of consecutive occurrences is set to 2. This number specifies how
many times the metric value must violate the threshold values before the alert is
generated.

s The name of the instance is set to inst1.

s The constant DBMS_ALERT.OBJECT_TYPE_SERVICE specifies the object type on
which the threshold is set. In this example, the service name is
main.regress.rdbms.dev.us.oracle.com.

Retrieving Threshold Information To retrieve threshold values, use the GET_THRESHOLD
procedure. For example:

DECLARE
warning_operator BINARY_INTEGER;
warning_value VARCHAR2 (60) ;
critical_operator BINARY_ INTEGER;
critical_value VARCHAR2 (60) ;
observation_period BINARY_ INTEGER;
consecutive_occurrences BINARY INTEGER;
BEGIN

DBMS_SERVER_ALERT .GET_THRESHOLD (

DBMS_SERVER_ALERT.CPU_TIME_PER_CALL, warning_operator, warning_value,
critical_operator, critical_value, observation_period,
consecutive_occurrences, 'instl',

DBMS_SERVER_ALERT.OBJECT_TYPE_SERVICE, 'main.regress.rdbms.dev.us.oracle.com');

DBMS_OUTPUT. PUT_LINE ('Warning operator: " || warning_operator) ;

DBMS_OUTPUT . PUT_LINE ('Warning value: " || warning_value);

DBMS_OUTPUT.PUT_LINE('Critical operator: " || critical_operator);

DBMS_OUTPUT.PUT_LINE('Critical value: " || critical_value);

DBMS_OUTPUT. PUT_LINE ('Observation_period: " || observation_period);

DBMS_OUTPUT. PUT_LINE (|| consecutive_occurrences);

END;

/

You can also check specific threshold settings with the DBA_ THRESHOLDS view. For
example:

'Consecutive occurrences:'

SELECT metrics_name, warning_value, critical_value, consecutive_occurrences
FROM DBA_THRESHOLDS
WHERE metrics_name LIKE '$CPU Time$%';

Monitoring Database Operations 7-5

Monitoring Performance

Viewing Server-Generated Alerts

The easiest way to view server-generated alerts is by accessing the Database Home
page of Enterprise Manager. The following discussion presents other methods of
viewing these alerts.

If you use your own tool rather than Enterprise Manager to display alerts, you must
subscribe to the ALERT_QUE, read the ALERT_QUE, and display an alert notification
after setting the threshold levels for an alert. To create an agent and subscribe the agent
to the ALERT_QUE, use the CREATE_AQ_AGENT and ADD_SUBSCRIBER procedures of
the DBMS_AQADM package.

Next you must associate a database user with the subscribing agent, because only a
user associated with the subscribing agent can access queued messages in the secure
ALERT_QUE. You must also assign the enqueue privilege to the user. Use the ENABLE_
DB_ACCESS and GRANT_QUEUE_PRIVILEGE procedures of the DBMS_AQADM
package.

Optionally, you can register with the DBMS_AQ . REGISTER procedure to receive an
asynchronous notification when an alert is enqueued to ALERT_QUE. The notification
can be in the form of email, HTTP post, or PL/SQL procedure.

To read an alert message, you can use the DBMS_AQ . DEQUEUE procedure or
OCIAQDeq call. After the message has been dequeued, use the DBMS_SERVER_
ALERT . EXPAND_MESSAGE procedure to expand the text of the message.

See Also: Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_AQ, and DBMS_AQADM packages

Server-Generated Alerts Data Dictionary Views
The following data dictionary views provide information about server-generated

alerts.
View Description
DBA_THRESHOLDS Lists the threshold settings defined for the instance

DBA_OUTSTANDING_ALERTS Describes the outstanding alerts in the database

DBA_ALERT_HISTORY Lists a history of alerts that have been cleared

V$ALERT_TYPES Provides information such as group and type for each alert

VSMETRICNAME Contains the names, identifiers, and other information
about the system metrics

VSMETRIC Contains system-level metric values

VS$METRIC_HISTORY Contains a history of system-level metric values

See Also: Oracle Database Reference for information on static data
dictionary views and dynamic performance views

Monitoring Performance

Monitoring database performance is covered in detail in Oracle Database Performance
Tuning Guide. Here are some additional topics with details that are not covered in that
guide:

= Monitoring Locks

= Monitoring Wait Events

7-6 Oracle Database Administrator's Guide

Monitoring Performance

= Performance Monitoring Data Dictionary Views

Monitoring Locks

Locks are mechanisms that prevent destructive interaction between transactions
accessing the same resource. The resources can be either user objects, such as tables
and rows, or system objects not visible to users, such as shared data structures in
memory and data dictionary rows. Oracle Database automatically obtains and
manages necessary locks when executing SQL statements, so you need not be
concerned with such details. However, the database also lets you lock data manually.

A deadlock can occur when two or more users are waiting for data locked by each
other. Deadlocks prevent some transactions from continuing to work. Oracle Database
automatically detects deadlock situations and resolves them by rolling back one of the
statements involved in the deadlock, thereby releasing one set of the conflicting row
locks.

Oracle Database is designed to avoid deadlocks, and they are not common. Most often
they occur when transactions explicitly override the default locking of the database.
Deadlocks can affect the performance of your database, so Oracle provides some
scripts and views that enable you to monitor locks.

The utllockt. sql script displays, in a tree fashion, the sessions in the system that
are waiting for locks and the locks that they are waiting for. The location of this script
file is operating system dependent.

A second script, catblock. sql, creates the lock views that ut1lockt. sgl needs, so
you must run it before running ut 1lockt . sql.

See Also:
= "Performance Monitoring Data Dictionary Views" on page 7-7

» Oracle Database Concepts contains more information about locks.

Monitoring Wait Events

Wait events are statistics that are incremented by a server process to indicate that it
had to wait for an event to complete before being able to continue processing. A
session could wait for a variety of reasons, including waiting for more input, waiting
for the operating system to complete a service such as a disk write, or it could wait for
a lock or latch.

When a session is waiting for resources, it is not doing any useful work. A large
number of waits is a source of concern. Wait event data reveals various symptoms of
problems that might be affecting performance, such as latch contention, buffer
contention, and I/O contention.

Oracle provides several views that display wait event statistics. A discussion of these
views and their role in instance tuning is contained in Oracle Database Performance
Tuning Guide.

Performance Monitoring Data Dictionary Views

This section lists some of the data dictionary views that you can use to monitor an
Oracle Database instance. These views are general in their scope. Other views, more
specific to a process, are discussed in the section of this book where the process is
described.

Monitoring Database Operations 7-7

Monitoring Performance

View

Description

VSLOCK

Lists the locks currently held by Oracle Database and outstanding
requests for a lock or latch

DBA_BLOCKERS

Displays a session if it is holding a lock on an object for which
another session is waiting

DBA_WAITERS

Displays a session if it is waiting for a locked object

DBA_DDL_LOCKS

Lists all DDL locks held in the database and all outstanding
requests for a DDL lock

DBA_DML_LOCKS

Lists all DML locks held in the database and all outstanding
requests for a DML lock

DBA_LOCK

Lists all locks or latches held in the database and all outstanding
requests for a lock or latch

DBA_LOCK_INTERNAL

Displays a row for each lock or latch that is being held, and one
row for each outstanding request for a lock or latch

VSLOCKED_OBJECT

Lists all locks acquired by every transaction on the system

VSSESSION_WAIT

Lists the resources or events for which active sessions are waiting

V$SYSSTAT

Contains session statistics

VSRESOURCE_LIMIT

Provides information about current and maximum global resource
utilization for some system resources

V$SQLAREA Contains statistics about shared SQL area and contains one row for
each SQL string. Also provides statistics about SQL statements that
are in memory, parsed, and ready for execution

VSLATCH Contains statistics for nonparent latches and summary statistics for

parent latches

See Also: Oracle Database Reference for detailed descriptions of

these views

7-8 Oracle Database Administrator's Guide

8

Managing Diagnostic Data

Beginning with Release 11g, Oracle Database includes an advanced fault
diagnosability infrastructure for collecting and managing diagnostic data. Diagnostic
data includes the trace files, dumps, and core files that are also present in previous
releases, plus new types of diagnostic data that enable customers and Oracle Support
to identify, investigate, track, and resolve problems quickly and effectively.

This chapter explains how to:

View and manage diagnostic data generated by the database if a critical error or
data corruption occurs.

Investigate critical errors and data corruptions, and gather additional diagnostic
data.

Use an automated mechanism to upload first-failure diagnostic data to Oracle
Support.

Resolve some critical errors and data corruptions with Oracle advisors and other
self-service facilities.

The following topics are covered:

About the Oracle Database Fault Diagnosability Infrastructure
Investigating, Reporting, and Resolving a Problem

Viewing Problems with the Enterprise Manager Support Workbench
Creating a User-Reported Problem

Viewing the Alert Log

Finding Trace Files

Running Health Checks with Health Monitor

Repairing SQL Failures with the SQL Repair Advisor

Repairing Data Corruptions with the Data Recovery Advisor
Creating, Editing, and Uploading Custom Incident Packages

About the Oracle Database Fault Diagnosability Infrastructure

This section contains background information on the Oracle Database fault
diagnosability infrastructure. It contains the following topics:

Fault Diagnosability Infrastructure Overview

About Incidents and Problems

Managing Diagnostic Data 8-1

About the Oracle Database Fault Diagnosability Infrastructure

= Fault Diagnosability Infrastructure Components

= Structure, Contents, and Location of the Automatic Diagnostic Repository

Fault Diagnosability Infrastructure Overview

The fault diagnosability infrastructure aids in preventing, detecting, diagnosing, and
resolving problems. The problems that are targeted in particular are critical errors such
as those caused by database code bugs, metadata corruption, and customer data
corruption.

When a critical error occurs, it is assigned an incident number, and diagnostic data for
the error (such as trace files) are immediately captured and tagged with this number.
The data is then stored in the Automatic Diagnostic Repository (ADR)—a file-based
repository outside the database—where it can later be retrieved by incident number
and analyzed.

The goals of the fault diagnosability infrastructure are the following:
s First-failure diagnosis

= Problem prevention

» Limiting damage and interruptions after a problem is detected

= Reducing problem diagnostic time

= Reducing problem resolution time

s Simplifying customer interaction with Oracle Support

The keys to achieving these goals are the following technologies:

= Automatic capture of diagnostic data upon first failure—For critical errors, the
ability to capture error information at first-failure greatly increases the chance of a
quick problem resolution and reduced downtime. An always-on memory-based
tracing system proactively collects diagnostic data from many database
components, and can help isolate root causes of problems. Such proactive
diagnostic data is similar to the data collected by airplane "black box" flight
recorders. When a problem is detected, alerts are generated and the fault
diagnosability infrastructure is activated to capture and store diagnostic data. The
data is stored in a repository that is outside the database (and therefore available
when the database is down), and is easily accessible with command line utilities
and Enterprise Manager.

= Standardized trace formats—Standardizing trace formats across all database
components enables DBAs and Oracle Support personnel to use a single set of
tools for problem analysis. Problems are more easily diagnosed, and downtime is
reduced.

= Health checks—Upon detecting a critical error, the fault diagnosability
infrastructure can run one or more health checks to perform deeper analysis of a
critical error. Health check results are then added to the other diagnostic data
collected for the error. Individual health checks look for data block corruptions,
undo and redo corruption, data dictionary corruption, and more. As a DBA, you
can manually invoke these health checks, either on a regular basis or as required.

= Incident packaging service (IPS) and incident packages—The IPS enables you to
automatically and easily gather the diagnostic data—traces, dumps, health check
reports, and more—pertaining to a critical error and package the data into a zip
file for transmission to Oracle Support. Because all diagnostic data relating to a
critical error are tagged with that error's incident number, you do not have to

8-2 Oracle Database Administrator's Guide

About the Oracle Database Fault Diagnosability Infrastructure

search through trace files and other files to determine the files that are required for
analysis; the incident packaging service identifies the required files automatically
and adds them to the zip file. Before creating the zip file, the IPS first collects
diagnostic data into an intermediate logical structure called an incident package
(package). Packages are stored in the Automatic Diagnostic Repository. If you
choose to, you can access this intermediate logical structure, view and modify its
contents, add or remove additional diagnostic data at any time, and when you are
ready, create the zip file from the package and upload it to Oracle Support.

= Data Recovery Advisor—The Data Recovery Advisor integrates with database
health checks and RMAN to display data corruption problems, assess the extent of
each problem (critical, high priority, low priority), describe the impact of a
problem, recommend repair options, conduct a feasibility check of the
customer-chosen option, and automate the repair process.

= SQL Test Case Builder—For many SQL-related problems, obtaining a
reproducible test case is an important factor in problem resolution speed. The SQL
Test Case Builder automates the sometimes difficult and time-consuming process
of gathering as much information as possible about the problem and the
environment in which it occurred. After quickly gathering this information, you
can upload it to Oracle Support to enable support personnel to easily and
accurately reproduce the problem.

See Also:

» Oracle Database Performance Tuning Guide for more information on
SQL Test Case Builder

About Incidents and Problems

To facilitate diagnosis and resolution of critical errors, the fault diagnosability
infrastructure introduces two concepts for Oracle Database: problems and incidents.

A problem is a critical error in the database. Critical errors manifest as internal errors,
such as ORA-00600, or other severe errors, such as ORA-07445 (operating system
exception) or ORA-04031 (out of memory in the shared pool). Problems are tracked in
the ADR. Each problem has a problem key, which is a text string that describes the
problem. It includes an error code (such as ORA 600) and in some cases, one or more
error parameters.

An incident is a single occurrence of a problem. When a problem (critical error) occurs
multiple times, an incident is created for each occurrence. Incidents are timestamped
and tracked in the Automatic Diagnostic Repository (ADR). Each incident is identified
by a numeric incident ID, which is unique within the ADR. When an incident occurs,
the database:

= Makes an entry in the alert log.
= Sends an incident alert to Oracle Enterprise Manager (Enterprise Manager).

= Gatbhers first-failure diagnostic data about the incident in the form of dump files
(incident dumps).

» Tags the incident dumps with the incident ID.
= Stores the incident dumps in an ADR subdirectory created for that incident.

Diagnosis and resolution of a critical error usually starts with an incident alert. The
incident alert is displayed on the Enterprise Manager Database Home page. You can
then view the problem and its associated incidents with Enterprise Manager or with
the ADRCI command-line utility.

Managing Diagnostic Data 8-3

About the Oracle Database Fault Diagnosability Infrastructure

Incident Flood Control

It is conceivable that a problem could generate dozens or perhaps hundreds of
incidents in a short period of time. This would generate too much diagnostic data,
which would consume too much space in the ADR and could possibly slow down
your efforts to diagnose and resolve the problem. For these reasons, the fault
diagnosability infrastructure applies flood control to incident generation after certain
thresholds are reached. A flood-controlled incident is an incident that generates an
alert log entry, is recorded in the ADR, but does not generate incident dumps.
Flood-controlled incidents provide a way of informing you that a critical error is
ongoing, without overloading the system with diagnostic data. You can choose to view
or hide flood-controlled incidents when viewing incidents with Enterprise Manager or
ADRCI.

Threshold levels for incident flood control are predetermined and cannot be changed.
They are defined as follows:

= After five incidents occur for the same problem key in one hour, subsequent
incidents for this problem key are flood-controlled. Normal (non-flood-controlled)
recording of incidents for that problem key begins again in the next hour.

= After 25 incidents occur for the same problem key in one day, subsequent
incidents for this problem key are flood-controlled. Normal recording of incidents
for that problem key begins again on the next day.

In addition, after 50 incidents for the same problem key occur in one hour, or 250
incidents for the same problem key occur in one day, subsequent incidents for this
problem key are not recorded at all in the ADR. In these cases, the database writes a
message to the alert log indicating that no further incidents will be recorded. As long
as incidents continue to be generated for this problem key, this message is added to the
alert log every ten minutes until the hour or the day expires. Upon expiration of the
hour or day, normal recording of incidents for that problem key begins again.

See Also:

= "Viewing Problems with the Enterprise Manager Support
Workbench" on page 8-16

= 'Investigating, Reporting, and Resolving a Problem" on page 8-9

s "ADRCI Command-Line Utility" on page 8-6

Fault Diagnosability Infrastructure Components

The following are the key components of the fault diagnosability infrastructure:
= Automatic Diagnostic Repository (ADR)

= Alert Log

» Trace Files, Dumps, and Core Files

s Other ADR Contents

» Enterprise Manager Support Workbench

s ADRCI Command-Line Utility

Automatic Diagnostic Repository (ADR)

The ADR is a file-based repository for database diagnostic data such as traces, dumps,
the alert log, health monitor reports, and more. It has a unified directory structure
across multiple instances and multiple products. Beginning with Release 11g, the

8-4 Oracle Database Administrator's Guide

About the Oracle Database Fault Diagnosability Infrastructure

database, Automatic Storage Management (ASM), and other Oracle products or
components store all diagnostic data in the ADR. Each instance of each product stores
diagnostic data underneath its own home directory within the ADR. For example, in
an Oracle Real Application Clusters environment with shared storage and ASM, each
database instance and each ASM instance has an ADR home directory. ADR's unified
directory structure, consistent diagnostic data formats across products and instances,
and a unified set of tools enable customers and Oracle Support to correlate and
analyze diagnostic data across multiple instances.

Note: Beginning with Release 11g of Oracle Database, because all
diagnostic data, including the alert log, are stored in the ADR, the
initialization parameters BACKGROUND_DUMP_DEST and USER_
DUMP_DEST are deprecated. They are replaced by the initialization
parameter DIAGNOSTIC_DEST, which identifies the location of the
ADR.

See Also: "Structure, Contents, and Location of the Automatic
Diagnostic Repository” on page 8-6 for more information on the
DIAGNOSTIC_DEST parameter and on ADR homes.

Alert Log
The alert log is an XML file that is a chronological log of database messages and errors.
It is stored in the ADR and includes messages about the following:

n Critical errors (incidents)

= Administrative operations, such as starting up or shutting down the database,
recovering the database, creating or dropping a tablespace, and others.

s Errors during automatic refresh of a materialized view
s Other database events

You can view the alert log in text format (with the XML tags stripped) with Enterprise
Manager and with the ADRCI utility. There is also a text-formatted version of the alert
log stored in the ADR for backward compatibility. However, Oracle recommends that
any parsing of the alert log contents be done with the XML-formatted version, because
the text format is unstructured and may change from release to release.

See Also:
s "ADRCI Command-Line Utility" on page 8-6
= "Viewing the Alert Log" on page 8-18

Trace Files, Dumps, and Core Files

Trace files, dumps, and core files contain diagnostic data that are used to investigate
problems. They are stored in the ADR.

Trace Files Each server and background process can write to an associated trace file.
Trace files are updated periodically over the life of the process and can contain
information on the process environment, status, activities, and errors. In addition,
when a process detects a critical error, it writes information about the error to its trace
file. The SQL trace facility also creates trace files, which provide performance
information on individual SQL statements. You can enable SQL tracing for a session or
an instance.

Managing Diagnostic Data 8-5

About the Oracle Database Fault Diagnosability Infrastructure

Trace file names are platform-dependent. Typically, database background process trace
file names contain the Oracle SID, the background process name, and the operating
system process number, while server process trace file names contain the Oracle SID,
the string "ora", and the operating system process number. The file extension is . trc.
An example of a server process trace file name is orcl_ora_344.trc. Trace files are
sometimes accompanied by corresponding trace map (. trm) files, which contain
structural information about trace files and are used for searching and navigation.

Oracle Database includes tools that help you analyze trace files. For more information
on application tracing, SQL tracing, and tracing tools, see Oracle Database Performance
Tuning Guide.

See Also: "Finding Trace Files" on page 8-19

Dumps A dump is a specific type of trace file. A dump is typically a one-time output of
diagnostic data in response to an event (such as an incident), whereas a trace tends to
be continuous output of diagnostic data. When an incident occurs, the database writes
one or more dumps to the incident directory created for the incident. Incident dumps
also contain the incident number in the file name.

Core Files A core file contains a memory dump, in an all-binary, port-specific format.
Core file names include the string "core" and the operating system process ID. Core
files are useful to Oracle Support engineers only. Core files are not found on all
platforms.

Other ADR Contents

In addition to files mentioned in the previous sections, the ADR contains health
monitor reports, data repair records, SQL test cases, incident packages, and more.
These components are described later in the chapter.

Enterprise Manager Support Workbench

The Enterprise Manager Support Workbench (Support Workbench) is a facility that
enables you to investigate, report, and in some cases, repair problems (critical errors),
all with an easy-to-use graphical interface. The Support Workbench provides a
self-service means for you to gather first-failure diagnostic data, obtain a support
request number, and upload diagnostic data to Oracle Support with a minimum of
effort and in a very short time, thereby reducing time-to-resolution for problems. The
Support Workbench also recommends and provides easy access to Oracle advisors that
help you repair SQL-related problems, data corruption problems, and more.

ADRCI Command-Line Utility

The ADR Command Interpreter (ADRCI) is a utility that enables you to investigate
problems, view health check reports, and package and upload first-failure diagnostic
data to Oracle Support, all within a command-line environment. ADRCI also enables
you to view the names of the trace files in the ADR, and to view the alert log with
XML tags stripped, with and without content filtering.

For more information on ADRCI, see Oracle Database Utilities.

Structure, Contents, and Location of the Automatic Diagnostic Repository

The Automatic Diagnostic Repository (ADR) is a directory structure that is stored
outside of the database. It is therefore available for problem diagnosis when the
database is down.

8-6 Oracle Database Administrator's Guide

About the Oracle Database Fault Diagnosability Infrastructure

The ADR root directory is known as ADR base. Its location is set by the
DIAGNOSTIC_DEST initialization parameter. If this parameter is omitted or left null,
the database sets DIAGNOSTIC_DEST upon startup as follows:

s If environment variable ORACLE_BASE is set, DIAGNOSTIC_DEST is set to the
directory designated by ORACLE_BASE.

s If environment variable ORACLE_BASE is not set, DIAGNOSTIC_DEST is set to
ORACLE_HOME/log.

Within ADR base, there can be multiple ADR homes, where each ADR home is the
root directory for all diagnostic data—traces, dumps, the alert log, and so on—for a
particular instance of a particular Oracle product or component. For example, in an
Oracle Real Application Clusters environment with ASM, each database instance and
each ASM instance has an ADR home. All ADR homes share the same hierarchical
directory structure.

The location of an ADR home is given by the following path, which starts at the ADR
base directory:

diag/product_type/product_id/instance _id

Table 8-1 lists the values of the various path components for an Oracle Database
instance.

Table 8-1 ADR Home Path Components for Oracle Database

Path Component Value for Oracle Database
product_type rdbms

product_id database name

instance_id SID

For example, for a database with a SID and database name both equal to orclbi, the
ADR home would be in the following location:

ADR_base/diag/rdbms/orclbi/orclbi/

ADR Home Subdirectories

Within the ADR home directory are subdirectories where the database instance stores
diagnostic data. Table 8-2 lists some of these subdirectories and their contents.

Table 8-2 ADR Home Subdirectories

Subdirectory Name Contents

alert The XML-formatted alert log
cdump Core files
incident Multiple subdirectories, where each subdirectory is

named for a particular incident, and where each contains
dumps pertaining only to that incident

trace Background and server process trace files and SQL trace
files
(others) Other subdirectories of ADR home, which store incident

packages, health monitor reports, and other information

Managing Diagnostic Data 8-7

About the Oracle Database Fault Diagnosability Infrastructure

Figure 8-1 illustrates the directory hierarchy of the ADR for an Oracle Database
instance. Other ADR homes for other Oracle products or components (such as ASM or
Oracle Net Services) can exist within this hierarchy, under the same ADR base.

Figure 8—1 ADR Directory Structure for an Oracle Database Instance

N
ADR ——
base
diag
Vann W S
rdbms
Vann W
database name
Vann U S
ADR —
home SID
alert cdump incident trace (others)

ADR in an Oracle Real Application Clusters Environment

In an Oracle Real Application Clusters (RAC) environment, each node can have ADR
base on its own local storage, or ADR base can be set to a location on shared storage.
The following are the advantages of the shared storage approach:

= You can use ADRCI to view aggregated diagnostic data from all instances on a
single report.

= You can use the Data Recovery Advisor to help diagnose and repair corrupted
data blocks, corrupted or missing files, and other data failures. (For Oracle RAC,
the Data Recovery Advisor requires shared storage.)

See Oracle Database 2 Day DBA for more information on the Data Recovery
Advisor.

Viewing ADR Locations with the VSDIAG_INFO View
The V$DIAG_INFO view lists all important ADR locations.

SELECT * FROM VS$DIAG_INFO;

INST_ID NAME VALUE
1 Diag Enabled TRUE
1 ADR Base /ul0l/oracle
1 ADR Home /ul0l/oracle/diag/rdbms/orclbi/orclbi
1 Diag Trace /u0l/oracle/diag/rdbms/orclbi/orclbi/trace
1 Diag Alert /u0l/oracle/diag/rdbms/orclbi/orclbi/alert
1 Diag Incident /u0l/oracle/diag/rdbms/orclbi/orclbi/incident
1 Diag Cdump /ull/oracle/diag/rdbms/orclbi/orclbi/cdump
1 Health Monitor /ull/oracle/diag/rdbms/orclbi/orclbi/hm
1 Default Trace File /u0l/oracle/diag/rdbms/orclbi/orclbi/trace/orcl_ora_22769.trc
1 Active Problem Count 8

8-8 Oracle Database Administrator's Guide

Investigating, Reporting, and Resolving a Problem

1 Active Incident Count 20
The following table describes some of the information displayed by this view.

Table 8-3 Data in the VSDIAG_INFO View

Name Description

ADR Base Path of ADR base

ADR Home Path of ADR home for the current database instance

Diag Trace Location of background process trace files, server process trace files, SQL

trace files, and the text-formatted version of the alert log
Diag Alert Location of the XML-formatted version of the alert log

Default Trace File Path to the trace file for the current session

Investigating, Reporting, and Resolving a Problem

This section describes how to use the Enterprise Manager Support Workbench
(Support Workbench) to investigate and report a problem (critical error), and in some
cases, resolve the problem. The section begins with a "roadmap" that summarizes the
typical set of tasks that you must perform.

Note: The tasks described in this section are all Enterprise
Manager-based. You can also accomplish all of these tasks (or their
equivalents) with the ADRCI command-line utility, with PL/SQL
packages such as DBMS_HM and DBMS_ SQLDIAG, and with other
software tools. See Oracle Database Ultilities for more information on
the ADRCT utility, and see Oracle Database PL/SQL Packages and Types
Reference for information on PL/SQL packages.

See Also: "About the Oracle Database Fault Diagnosability
Infrastructure” on page 8-1 for more information on problems and
their diagnostic data

Roadmap—Investigating, Reporting, and Resolving a Problem

You can begin investigating a problem by starting from the Support Workbench home
page in Enterprise Manager. However, the more typical workflow begins with a
critical error alert on the Database Home page. This section provides an overview of
that workflow.

Figure 8-2 illustrates the tasks that you complete to investigate, report, and in some
cases, resolve a problem.

Managing Diagnostic Data 8-9

Investigating, Reporting, and Resolving a Problem

Figure 8-2 Workflow for Investigating, Reporting, and Resolving a Problem

View Critical
Error Alerts in
Enterprise
Manager

ORA—B86 88
View Problem Details

Close incidents

wTrack the Service
Request and
Implement Any

Gather additional
diagnostic
information

Package and Upload

Diagnotstic Data
0

<>

¥

Create a Service
Request /

Oracle Support

The following are task descriptions. Subsequent sections provide details for each task.

Task 1 - View Critical Error Alerts in Enterprise Manager on page 8-11

Start by accessing the Database Home page in Enterprise Manager, and reviewing
critical error alerts. Select an alert for which to view details, and then go to the
Problem Details page.

Task 2 —View Problem Details on page 8-12

Examine the problem details and view a list of all incidents that were recorded for
the problem. Display findings from any health checks that were automatically run.

Task 3 — (Optional) Gather Additional Diagnostic Information on page 8-12

Optionally run additional health checks or other diagnostics. For SQL-related
errors, optionally invoke the SQL Test Case Builder, which gathers all required
data related to a SQL problem and packages the information in a way that enables
the problem to be reproduced at Oracle Support.

Task 4 — (Optional) Create a Service Request on page 8-12

Optionally create a service request with OracleMetaLink and record the service
request number with the problem information. If you skip this step, you can create
a service request later, or the Support Workbench can create one for you.

Task 5 — Package and Upload Diagnostic Data to Oracle Support on page 8-13

Invoke a guided workflow (a wizard) that automatically packages the gathered
diagnostic data for a problem and uploads the data to Oracle Support.

Task 6 — Track the Service Request and Implement Any Repairs on page 8-14

Optionally maintain an activity log for the service request in the Support
Workbench. Run Oracle advisors to help repair SQL failures or corrupted data.

8-10 Oracle Database Administrator's Guide

Investigating, Reporting, and Resolving a Problem

s Task 7 - Close Incidents on page 8-15
Set status for one, some, or all incidents for the problem to Closed.

See Also: "Viewing Problems with the Enterprise Manager Support
Workbench" on page 8-16

Task 1 - View Critical Error Alerts in Enterprise Manager

You begin the process of investigating problems (critical errors) by reviewing critical
error alerts on the Database Home page.

To view critical error alerts:
1. Access the Database Home page in Enterprise Manager.

For Oracle Enterprise Manager Database Control, see Oracle Database 2 Day DBA
for instructions. For Oracle Enterprise Manager Grid Control, go to the desired
database target.

2. In the Alerts section, examine the table of alerts.

Critical error alerts are indicated by a red x in the Severity column, and the text
"Incident" in the Category column.

Note: You may have to click the hide/show icon next to the Alerts
heading to display the alerts table.

Figure 8-3 Alerts Table on the Database Home Page

¥ alerts
Categary | Al | Go) Critical * 1 Warning \b 1
|5everity |Eategorv|Name |Impact|Message Alert Triggered
x Incident Access Yiolation &n access violation detected in fud1fappforacle/disgfrdbms fordforclislert flog.xml at time/line number: |Feb 7, 2007
wed Feb 7 15141156 2007/153742, 3:45:23 FM
\b &lert Log Generic Alerk ORA-errar stack (07445 kkehwread(1+241) logged in Feb 7, 2007
Lag Errar ful1/app/orace/diagfrdbmsforcl orelitracelslert orcllog, 3149:15 PM

3. In the Message column, click the message of the critical error alert that you want
investigate.

The Incident page or Data Failure page appears. This page includes:
= Problem information, including the number of incidents for the problem

= A Performance and Critical Error graphical timeline for the 24-hour period in
which the critical error occurred.

= Alert details, including severity, timestamp, and message
= Controls that enable you to clear the alert or record a comment about it.

4. Review the Performance and Critical Error graphical timeline, and note any time
correlation between performance issues and the critical error. Optionally clear the
alert or leave a comment about it.

5. Do one of the following;:

s If you want to view the details of the problem associated with the critical error
alert that you are investigating, proceed with Task 2 —View Problem Details on
page 8-12.

Managing Diagnostic Data 8-11

Investigating, Reporting, and Resolving a Problem

= If the graphical timeline shows a large number of different problems over the
past 24 hours and you want to view a summary of all those problems,
complete these steps:

- Click View All Problems.
The Support Workbench home page appears.

- View problems and incidents as described in "Viewing Problems with the
Enterprise Manager Support Workbench" on page 8-16.

— Select a single problem and view problem details, as described in
"Viewing Problems with the Enterprise Manager Support Workbench" on
page 8-16.

— Continue with either Task 3 — (Optional) Gather Additional Diagnostic
Information on page 8-12 or Task 4 — (Optional) Create a Service Request
on page 8-12.

Task 2 -View Problem Details

You continue your investigation with the Problem Details page.

To view problem details:

1.

On the Incident page or Data Failure page, click View Problem Details.
The Problem Details page appears, showing the Incidents subpage.
(Optional) To view incident details, select an incident, and then click View.
The incident details page appears.

(Optional) On the Incident Details page, click Checker Findings to view the
Checker Findings subpage.

This page displays findings from any health checks that were automatically run
when the critical error was detected.

See Also: "Running Health Checks with Health Monitor" on
page 8-19

Task 3 — (Optional) Gather Additional Diagnostic Information

You can perform the following activities to gather additional diagnostic information
for a problem. This additional information is then automatically included in the
diagnostic data uploaded to Oracle Support. If you are unsure as to whether or not to
perform these activities, check with your Oracle Support representative.

Manually invoke additional health checks
See "Running Health Checks with Health Monitor" on page 8-19
Invoke the SQL Test Case Builder

See Oracle Database Performance Tuning Guide for instructions.

Task 4 — (Optional) Create a Service Request

At this point, you can create an Oracle Support service request and record the service
request number with the problem information. If you choose to skip this task, the
Support Workbench will automatically create a draft service request for you in Task 5.

8-12 Oracle Database Administrator's Guide

Investigating, Reporting, and Resolving a Problem

To create a service request:
1. On the Problem Details page, in the Investigate and Resolve section, click Go to
Metalink.

The OracleMetaLink Login and Registration page appears in a new browser
window.

Note: See "Viewing Problems with the Enterprise Manager Support
Workbench" on page 8-16 for instructions for returning to the Problem
Details page if you are not already there.

2. Login to OracleMetaLink and create a service request in the usual manner.
(Optional) Remember the service request number (SR#) for the next step.

3. (Optional) Return to the Problem Details page, and then do the following;:
a. In the Summary section, click the Edit button that is adjacent to the SR# label.
b. In the window that opens, enter the SR#, and then click OK.

The SR# is recorded in the Problem Details page. This is for your reference only.

Task 5 - Package and Upload Diagnostic Data to Oracle Support

For this task, you use the quick packaging process of the Support Workbench to
package and upload the diagnostic information for the problem to Oracle Support.
Quick packaging has a minimum of steps, organized in a guided workflow (a wizard).
The wizard assists you with creating an incident package (package) for a single
problem, creating a zip file from the package, and uploading the file. With quick
packaging, you are not able to edit or otherwise customize the diagnostic information
that is uploaded. However, quick packaging is the more direct, straightforward
method to package and upload diagnostic data.

If you want to edit or remove sensitive data from the diagnostic information, enclose
additional user files (such as application configuration files or scripts), or perform
other customizations before uploading, you must use the custom packaging process,
which is a more manual process and has more steps. See "Creating, Editing, and
Uploading Custom Incident Packages" on page 8-29 for instructions. If you choose to
follow those instructions instead of the instructions here in Task 5, continue with Task
6 — Track the Service Request and Implement Any Repairs on page 8-14 when you are
finished.

Note: The Support Workbench uses Oracle Configuration Manager to
upload the diagnostic data. If Oracle Configuration Manager is not
installed or properly configured, the upload may fail. In this case, a
message is displayed with a request that you upload the file to Oracle
Support manually. You can upload manually with OracleMetaLink.

For more information about Oracle Configuration Manager, see Oracle
Configuration Manager Installation and Administration Guide.

To package and upload diagnostic data to Oracle Support:

1. On the Problem Details page, in the Investigate and Resolve section, click Quick
Package.

The Create New Package page of the Quick Packaging wizard appears.

Managing Diagnostic Data 8-13

Investigating, Reporting, and Resolving a Problem

Note: See "Viewing Problems with the Enterprise Manager Support
Workbench" on page 8-16 for instructions for returning to the Problem
Details page if you are not already there.

£y T
p—
Create New Package Views Contents Wiews Manifest Schedule
Quick Packaging: Create New Package
Cancel] Step1cof4 |Mext)
Target database Loggedin As SYSTEM

Problems Selected ORA 600 [4136]

IJse quick packaging to generate an upload file for 3 single problem and send it to Cracle with default options, IF Oracle Configuration Manager is not set up,
the upload file will still be created but it will not be sent to Cracle,

*Package Mame |(ORAGDD413_20070630214407

Package Description
send to Oracle Support. ®ves O No
Mekalink Username
Metalink Password
Customer Support Identifier (CSI)
Counkry | United States w
Creabe new Service Requast (SR ®ves O no

2. Optionally enter a package name and description.

3. Fill in the remaining fields on the page. If you already created a service request for
this problem, select No next to Create new Service Request (SR).

If you select Yes, the Quick Packaging wizard creates a draft service request on
your behalf. You must later log in to OracleMetaLink and fill in the details of the
service request.

4. Click Next, and then proceed with the remaining pages of the Quick Packaging
wizard.

When the Quick Packaging wizard is complete, the package that it creates remains
available in the Support Workbench. You can then modify it with custom
packaging operations (such as adding new incidents) and reupload at a later time.
See "Viewing and Modifying Incident Packages" on page 8-35.

Task 6 - Track the Service Request and Implement Any Repairs

After uploading diagnostic information to Oracle Support, you might perform various
activities to track the service request, to collect additional diagnostic information, and
to implement repairs. Among these activities are the following:

» Adding an Oracle bug number to the problem information.

To do so, on the Problem Details page, click the Edit button that is adjacent to the
Bug# label. This is for your reference only.

» Adding comments to the problem activity log.

You may want to do this to share problem status or history information with other
DBAs in your organization. For example you could record the results of your
conversations with Oracle Support. To add comments, complete the following
steps:

8-14 Oracle Database Administrator's Guide

Investigating, Reporting, and Resolving a Problem

1. Access the Problem Details page for the problem, as described in "Viewing
Problems with the Enterprise Manager Support Workbench" on page 8-16.

2. Click Activity Log to display the Activity Log subpage.

3. In the Comment field, enter a comment, and then click Add Comment.
Your comment is recorded in the activity log.

As new incidents occur, adding them to the package and reuploading.

For this activity, you must use the custom packaging method described in
"Creating, Editing, and Uploading Custom Incident Packages" on page 8-29.

Running health checks.

See "Running Health Checks with Health Monitor" on page 8-19.
Running a suggested Oracle advisor to implement repairs.
Access the suggested advisor in one of the following ways:

— Problem Details page—In the Self-Service tab of the Investigate and Resolve
section

- Support Workbench home page—on the Checker Findings subpage
- Incident Details page—on the Checker Findings subpage

Table 84 lists the advisors that help repair critical errors.

Table 8-4 Oracle Advisors that Help Repair Critical Errors

Advisor Critical Errors Addressed See
Data Recovery Advisor Corrupted blocks, corrupted or missing files, ~ "Repairing Data Corruptions with
and other data failures the Data Recovery Advisor" on
page 8-27
SQL Repair Advisor SQL statement failures "Repairing SQL Failures with the

SQL Repair Advisor" on page 8-25

See Also: "Viewing Problems with the Enterprise Manager Support
Workbench" on page 8-16 for instructions for viewing the Checker
Findings subpage of the Incident Details page

Task 7 - Close Incidents

When a particular incident is no longer of interest, you can close it. By default, closed
incidents are not displayed on the Problem Details page.

All incidents, whether closed or not, are purged after 30 days. You can disable purging
for an incident on the Incident Details page.

To close incidents:

1.

Access the Support Workbench home page.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 8-16 for instructions.

Select the desired problem, and then click View.
The Problem Details page appears.

Select the incidents to close and then click Close.

Managing Diagnostic Data 8-15

Viewing Problems with the Enterprise Manager Support Workbench

4.

A confirmation page appears.

Enter an optional comment and click OK.

Viewing Problems with the Enterprise Manager Support Workbench

You use the Enterprise Manager Support Workbench home page (Figure 8—4 on
page 8-16) to view all problems or only those within a specified time period.

Figure 8—4 Enterprise Manager Support Workbench Home Page

Support Workbench

Problems {5)

Mew Problems in Last 24 Hours
Mew Incidents in Last 24 Hours

Wiew | Last 24 Hours |+

[Wiew)| Package)

Database Instance: database >

Checker Findings (15}

Logged in As SYSTEM

Page Refreshed May 13, 2007 10:58:18 PM PDT | Refresh .'Il

Packages (0}

Selact All | Select Mone | Show All Details | Hide Al Details

&ll Problems
All Incidents

1 All Anctive Problems
11 &l Active Incidents

3
25

| Co .'J Advanced Search

Select Details | ID|Description

|Numher OF Incidents Last Incident Last Comment Active Packaged SR#

O pestow 1 orais7s

O p»show

5 ORA 600 [dbgxtvHTTbParse: 1] 1

¥ Performance and Critical Error

15 May 13, 2007 10:04:25 PM PDT Yes Mo

May 12, 2007 11:41:55 FMPDT Yes Mo

2

v
=
=
[1 B CPuU
& W User /0
v 0 B wait
] 10:00 12 AM 2 4 & g 10 12 PM 2 4 & g8 10
= 12 May 12

2007

. - - - -
® ORAISTE

ORA 600 [dbgxkvHT ThParse: 1

To
1.

access the Support Workbench home page:
Access the Database Home page in Enterprise Manager.

See Oracle Database 2 Day DBA for the instructions for Oracle Enterprise Manager
Database Control. For Oracle Enterprise Manager Grid Control, go to the desired
database target.

Click Software and Support to view the Software and Support page.
In the Support section, click Support Workbench.

The Support Workbench home page appears, showing the Problems subpage. By
default the problems from the last 24 hours are displayed.

To view all problems, select All from the View list.

(Optional) If the Performance and Critical Error section is hidden, click the
Show/Hide icon adjacent to the section heading to show the section.

This section enables you to view any correlation between performance changes
and incident occurrences.

8-16 Oracle Database Administrator's Guide

Creating a User-Reported Problem

6. (Optional) Under the Details column, click Show to display a list of all incidents
for a problem, and then click an incident ID to display the Incident Details page.

To view details for a particular problem:
1. On the Support Workbench home page, select the problem, and then click View.

The Problem Details page appears, showing the Incidents subpage. The incidents
subpage shows all incidents that are open and that generated dumps—that is, that
were not flood-controlled.

2. (Optional) To view both open and closed incidents, select All Incidents in the
Status list. To view both normal and flood-controlled incidents, select All
Incidents in the Data Dumped list.

3. (Optional) To view details for an incident, select the incident, and then click View.
The Incident Details page appears.

4. (Optional) On the Incident Details page, to view checker findings for the incident,
click Checker Findings.

5. (Optional) On the Incident Details page, to view the user actions that are available
to you for the incident, click Additional Diagnostics. Each user action provides a
way for you to gather additional diagnostics for the incident or its problem.

See Also: "Incident Flood Control" on page 8-4

Creating a User-Reported Problem

System-generated problems—critical errors generated internally to the database—are
automatically added to the Automatic Diagnostic Repository (ADR) and tracked in the
Support Workbench. From the Support Workbench, you can gather additional
diagnostic data on these problems, upload diagnostic data to Oracle Support, and in
some cases, resolve the problems, all with the easy-to-use workflow that is explained
in "Investigating, Reporting, and Resolving a Problem" on page 8-9.

There may be a situation in which you want to manually add a problem that you
noticed to the ADR so that you can put that problem through that same workflow. An
example of such a situation might be a global database performance problem that was
not diagnosed by Automatic Diagnostic Database Monitor (ADDM). The Support
Workbench includes a mechanism for you to create and work with such a
user-reported problem.

To create a user-reported problem:
1. Access the Support Workbench home page.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 8-16 for instructions.

2. Under Related Links, click Create User-Reported Problem.
The Create User-Reported Problem page appears.

Managing Diagnostic Data 8-17

Viewing the Alert Log

Database Instance: database > Support Workbench = Logged in As SYSTEM
Create User-Reported Problem

[Cancel)

Please select an issue bvpe that best describes vour problem. MNote that critical errars are automatically detected and recorded as problems by the system,
Before proceeding, wou are advised ko run the recommended advisor as that may resolve the issue and therefore avoid creation of & new problem,

| Fun Recommended Admsurj | Continue with Creation of Prublemj

Select Issue type Description Recommended Advisor
O Syskem Performance General Database Performance AO0M
O Query Performance SCOL Query Performance SOL Advisar
O 3L Failure Mon-Incident 3L Failure 3L Repair Advisor
O Resource Usage Mermary of Hard Disk Usage Mermaty Advisor
O Mone of the above Enter Description about Your Issue

3. If your problem matches one of the listed issue types, select the issue type, and
then click Run Recommended Advisor to attempt to solve the problem with an
Oracle advisor.

4. If the recommended advisor did not solve the problem, or if you did not run an
advisor, do one of the following:

= If your problem matches one of the listed issue types, select the issue type, and
then click Continue with Creation of Problem.

= If your problem does not match one of the listed issue types, select the issue
type None of the Above, enter a description, and then click Continue with
Creation of Problem.

The Problem Details page appears.
5. Follow the instructions on the Problem Details page.
See "Investigating, Reporting, and Resolving a Problem" on page 8-9 for more

information.

See Also: "About the Oracle Database Fault Diagnosability
Infrastructure” on page 8-1 for more information on problems and the
ADR

Viewing the Alert Log

You can view the alert log with a text editor, with Enterprise Manager, or with the
ADRCI utility.

To view the alert log with Enterprise Manager:
1. Access the Database Home page in Enterprise Manager.

For Oracle Enterprise Manager Database Control, see Oracle Database 2 Day DBA
for instructions. For Oracle Enterprise Manager Grid Control, go to the desired
database target.

2. Under Related Links, click Alert Log Contents.
The View Alert Log Contents page appears.

3. Select the number of entries to view, and then click Go.

8-18 Oracle Database Administrator's Guide

Running Health Checks with Health Monitor

To view the alert log with a text editor:

1. Connect to the database with SQL*Plus or another query tool, such as SQL
Developer.

2. Query the V$DIAG_INFO view as shown in "Viewing ADR Locations with the
V3$DIAG_INFO View" on page 8-8.

3. To view the text-only alert log, without the XML tags, complete these steps:

a. Inthe VSDIAG_INFO query results, note the path that corresponds to the
Diag Trace entry, and change directory to that path.

b. Open file alert_SID.log with a text editor.
4. To view the XML-formatted alert log, complete these steps:

a. Inthe VSDIAG_INFO query results, note the path that corresponds to the
Diag Alert entry, and change directory to that path.

b. Open the file log.xml with a text editor.
See Also: Oracle Database Utilities for information about using the

ADRCT utility to view a text version of the alert log (with XML tags
stripped) and to run queries against the alert log

Finding Trace Files

Trace files are stored in the Automatic Diagnostic Repository (ADR), in the trace
directory under each ADR home. To help you locate individual trace files within this
directory, you can use data dictionary views. For example, you can find the path to
your current session's trace file or to the trace file for each Oracle process.

To find the trace file for your current session:
= Submit the following query:

SELECT VALUE FROM VSDIAG_INFO WHERE NAME = 'Default Trace File';

The full path to the trace file is returned.

To find the trace files for Oracle Database processes:
= Submit the following query:

SELECT PID, PROGRAM, TRACEFILE FROM VS$PROCESS;

See Also:

= "Structure, Contents, and Location of the Automatic Diagnostic
Repository" on page 8-6

s The ADRCI SHOW TRACEFILE command in Oracle Database
Utilities
Running Health Checks with Health Monitor

This section describes the Health Monitor and includes instructions on how to use it.
The following topics are covered:

= About Health Monitor
= Running Health Checks Manually
s Viewing Checker Reports

Managing Diagnostic Data 8-19

Running Health Checks with Health Monitor

s Health Monitor Views

About Health Monitor

Beginning with Release 11g, Oracle Database includes a framework called Health
Monitor for running diagnostic checks on the database.

About Health Monitor Checks

Health Monitor checks (also known as checkers, health checks, or checks) examine
various layers and components of the database. Health checks detect file corruptions,
physical and logical block corruptions, undo and redo corruptions, data dictionary
corruptions, and more. The health checks generate reports of their findings and, in
many cases, recommendations for resolving problems. Health checks can be run in
two ways:

= Reactive—The fault diagnosability infrastructure can run health checks
automatically in response to a critical error.

= Manual—As a DBA, you can manually run health checks using either the DBMS_
HM PL/SQL package or the Enterprise Manager interface. You can run checkers on
a regular basis if desired, or Oracle Support may ask you to run a checker while
working with you on a service request.

Health Monitor checks store findings, recommendations, and other information in the
Automatic Diagnostic Repository (ADR).

See Also: "Automatic Diagnostic Repository (ADR)" on page 8-4

Types of Health Checks

Health monitor runs the following checks:

» DB Structure Integrity Check—This check verifies the integrity of database files
and reports failures if these files are inaccessible, corrupt or inconsistent. If the
database is in mount or open mode, this check examines the log files and data files
listed in the control file. If the database is in NOMOUNT mode, only the control file is
checked.

= Data Block Integrity Check—This check detects disk image block corruptions
such as checksum failures, head/tail mismatch, and logical inconsistencies within
the block. Most corruptions can be repaired using Block Media Recovery.
Corrupted block information is also captured in the VSDATABASE BLOCK_
CORRUPTION view. This check does not detect inter-block or inter-segment
corruption.

= Redo Integrity Check—This check scans the contents of the redo log for
accessibility and corruption, as well as the archive logs, if available. The Redo
Integrity Check reports failures such as archive log or redo corruption.

= Undo Segment Integrity Check—This check finds logical undo corruptions,
which typically occur during rollback operations. After locating an undo
corruption, this check uses PMON and SMON to try to recover the corrupted
transaction. If this recovery fails, then Health Monitor stores information about the
corruption in V$CORRUPT_XID_LIST. Most undo corruptions can be resolved by
forcing a commit.

8-20 Oracle Database Administrator's Guide

Running Health Checks with Health Monitor

s Transaction Integrity Check—This check is identical to the Undo Segment
Integrity Check except that it checks only one specific transaction. The transaction
is passed to the check as an input parameter.

s Dictionary Integrity Check—This check examines the integrity of core dictionary
objects, such as tabs and cols. It performs the following operations:

- Verifies the contents of dictionary entries for each dictionary object.

— Performs a cross-row level check, which verifies that logical constraints on
rows in the dictionary are enforced.

— Performs an object relationship check, which verifies that parent-child
relationships between dictionary objects are enforced.

The Dictionary Integrity Check operates on the following dictionary objects:

tabs, clus, fets$, uets, segs, undos, tss, files, objs, inds, icols, cols,
users, conS, cdefs, ccols, bootstraps$, objauths, ugroups, tsgs, syns,
views, typed_views$, superobjs, seqgs, 1obs, coltypes, subcoltypes,
ntab$, refcon$, opgtypes, dependency$, accessS, viewcons$, icoldeps,
duals, sysauths, objprivs, defroles, and ecols.

Health checks can run in two modes:

= DB-online mode means the check can be run while the database is open (that is, in
OPEN mode or MOUNT mode).

s DB-offline mode means the check can be run when the instance is available but
the database itself is closed (that is, in NOMOUNT mode).

All the health checks can be run in DB-online mode. Only the Redo Integrity Check
and the DB Structure Integrity Check can be used in DB-offline mode.

Running Health Checks Manually

Health Monitor provides two ways to run health checks manually:
= By using the DBMS_HM PL/SQL package

= By using the Enterprise Manager interface, found on the Checkers subpage of the
Advisor Central page

Running Health Checks Using the DBMS_HM PL/SQL Package

The DBMS_HM procedure for running a health check is called RUN_CHECK. To call RUN_
CHECK, supply the name of the check and a name for the run, as follows:

BEGIN
dbms_hm.run_check('Dictionary Integrity Check', 'my_run');
END;

To obtain a list of health check names, run the following query:

SELECT NAME FROM VSHM_CHECK WHERE INTERNAL_CHECK='N';

DB Structure Integrity Check
Data Block Integrity Check
Redo Integrity Check
Transaction Integrity Check
Undo Segment Integrity Check
Dictionary Integrity Check

Managing Diagnostic Data 8-21

Running Health Checks with Health Monitor

Each health check can also accept a set of input parameters for controlling its
execution. You can view these inputs using the VSHM_CHECK_PARAM view. See Oracle
Database PL/SQL Packages and Types Reference for more information.

Running Health Checks Using Enterprise Manager
Enterprise Manager provides an interface for running Health Monitor checkers.

To run a Health Monitor Checker using Enterprise Manager:
1. On the Database Home page, in the Related Links section, click Advisor Central.

2. Click Checkers to view the Checkers subpage.

3. In the Checkers section, click the checker you want to run.

4. Enter values for each input parameter. These parameters are passed to the checker.
5. Click Run, confirm your parameters, and click Run again.

The list of input parameters for each checker is taken from the VSHM_CHECK_PARAM
view.

Viewing Checker Reports

After a checker has run, you can view a report of its execution. The report contains
findings, recommendations, and other information. You can view reports using
Enterprise Manager, the ADRCI utility, or the DBMS_HM PL/SQL package. The
following table indicates the report formats available with each viewing method.

Report Viewing Method Report Formats Available

Enterprise Manager HTML
DBMS_HM PL/SQL package =~ HTML, XML, and text
ADRCI utility XML

Results of checker runs (findings, recommendations, and other information) are stored
in the ADR, but reports are not generated immediately. When you request a report
with the DBMS_HM PL/SQL package or with Enterprise Manager, if the report does not
yet exist, it is first generated from the checker run data in the ADR, stored as a report
file in XML format in the HM subdirectory of the ADR home for the current instance,
and then displayed. If the report file already exists, it is just displayed. When using the
ADRCT utility, you must first run a command to generate the report file if it does not
exist, and then run another command to display its contents.

The preferred method to view checker reports is with Enterprise Manager. The
following sections provide instructions for all methods:

= Viewing Reports Using Enterprise Manager
= Viewing Reports Using DBMS_HM
= Viewing Reports Using the ADRCI Utility

See Also: "Automatic Diagnostic Repository (ADR)" on page 8-4

8-22 Oracle Database Administrator's Guide

Running Health Checks with Health Monitor

Viewing Reports Using Enterprise Manager

You can also view Health Monitor reports and findings for a given checker run using
Enterprise Manager.

To view run findings using Enterprise Manager
1. Access the Database Home page.

For Oracle Enterprise Manager Database Control, see Oracle Database 2 Day DBA
for instructions. For Oracle Enterprise Manager Grid Control, go to the desired
database target.

2. In the Related Links section, click Advisor Central.
3. Click Checkers to view the Checkers subpage.
4. Click the run name for the checker run that you want to view.

The Run Detail page appears, showing the findings for that checker run.
5. Click Runs to display the Runs subpage.

Enterprise Manager displays more information about the checker run.
6. Click View Report to view the report for the checker run.

The report is displayed in a new browser window.

Viewing Reports Using DBMS_HM

You can view Health Monitor checker reports with the DBMS_HM package function
GET_RUN_REPORT. This function enables you to request HTML, XML, or text
formatting. The default format is text, as shown in the following SQL*Plus example:

SET LONG 100000

SET LONGCHUNKSIZE 1000

SET PAGESIZE 1000

SET LINESIZE 512

SELECT DBMS_HM.GET_RUN_REPORT ('HM_RUN_1061') FROM DUAL;

DBMS_HM.GET RUN_REPORT ('HM_RUN_1061")

Run Name : HM_RUN_1061

Run Id : 1061

Check Name : Data Block Integrity Check

Mode : REACTIVE

Status : COMPLETED

Start Time : 2007-05-12 22:11:02.032292 -07:00
End Time : 2007-05-12 22:11:20.835135 -07:00
Error Encountered : 0

Source Incident Id : 7418

Number of Incidents Created : 0
Input Paramters for the Run
BLC_DF_NUM=1

BLC_BL_NUM=64349

Run Findings And Recommendations

Finding

Finding Name : Media Block Corruption
Finding ID : 1065

Type : FAILURE

Status : OPEN

Managing Diagnostic Data 8-23

Running Health Checks with Health Monitor

Priority : HIGH
Message : Block 64349 in datafile 1:
'/ade/sfogel_emdb/oracle/dbs/t_dbl.f' is media corrupt
Message : Object BMRTEST1 owned by SYS might be unavailable
Finding
Finding Name : Media Block Corruption
Finding ID : 1071
Type : FAILURE
Status : OPEN
Priority : HIGH
Message : Block 64351 in datafile 1:
' /ade/sfogel_emdb/oracle/dbs/t_dbl.f' is media corrupt
Message : Object BMRTEST2 owned by SYS might be unavailable

See Also: Oracle Database PL/SQL Packages and Types Reference for
details on the DBMS_HM package.

Viewing Reports Using the ADRCI Utility
You can create and view Health Monitor checker reports using the ADRCI utility.

To create and view a checker report using ADRCI

1. Ensure that operating system environment variables (such as ORACLE_HOME) are
set properly, and then enter the following command at the operating system
command prompt:

ADRCI

The utility starts and displays the following prompt:
adrci>>
Optionally, you can change the current ADR home. Use the SHOW HOMES

command to list all ADR homes, and the SET HOMEPATH command to change the
current ADR home. See Oracle Database Utilities for more information.

2. Enter the following command:

show hm_run

This command lists all the checker runs (stored in V$HM_RUN) registered in the
ADR repository.

3. Locate the checker run for which you want to create a report and note the checker
run name. The REPORT_FILE field contains a filename if a report already exists
for this checker run. Otherwise, generate the report with the following command:

create report hm_run run_name

4. To view the report, enter the following command:

show report hm_run run_name

See Also: "Automatic Diagnostic Repository (ADR)" on page 8-4

Health Monitor Views

Instead of requesting a checker report, you can view the results of a specific checker
run by directly querying the ADR data from which reports are created. This data is

8-24 Oracle Database Administrator's Guide

Repairing SQL Failures with the SQL Repair Advisor

available through the views V$HM_RUN, VSHM_FINDING, and V$HM_
RECOMMENDATION.

The following example queries the V$HM_RUN view to determine a history of checker
runs:

SELECT run_id, name, check_name, run_mode, src_incident FROM vS$hm_run;

RUN_ID NAME CHECK_NAME RUN_MODE SRC_INCIDENT
1 HM_RUN_1 DB Structure Integrity Check REACTIVE 0

101 HM_RUN_101 Transaction Integrity Check REACTIVE 6073
121 TXNCHK Transaction Integrity Check MANUAL 0
181 HMR_tab$ Dictionary Integrity Check MANUAL 0
981 Proct_ts$ Dictionary Integrity Check MANUAL 0
1041 HM_RUN_1041 DB Structure Integrity Check REACTIVE 0
1061 HM_RUN_1061 Data Block Integrity Check REACTIVE 7418

The next example queries the VSHM_FINDING view to obtain finding details for the
reactive data block check with RUN_ID 1061:

SELECT type, description FROM vShm_finding WHERE run_id = 1061;

TYPE DESCRIPTION

FAILURE Block 64349 in datafile 1: '/ade/sfogel_e
mdb/oracle/dbs/t_dbl.f' is media corrupt

FAILURE Block 64351 in datafile 1: '/ade/sfogel_e
mdb/oracle/dbs/t_dbl.f' is media corrupt

See Also:
= "Types of Health Checks" on page 8-20

» Oracle Database Reference for more information on the VSHM_ *
views

Repairing SQL Failures with the SQL Repair Advisor

In the rare case that a SQL statement fails with a critical error, you can run the SQL
Repair Advisor to try to repair the failed statement.

This section covers the following topics:

= About the SQL Repair Advisor

= Running the SQL Repair Advisor

= Viewing, Disabling, or Removing a SQL Patch

About the SQL Repair Advisor

You run the SQL Repair Advisor after a SQL statement fails with a critical error. The
advisor analyzes the statement and in many cases recommends a patch to repair the
statement. If you implement the recommendation, the applied SQL patch circumvents
the failure by causing the query optimizer to choose an alternate execution plan for
future executions.

Managing Diagnostic Data 8-25

Repairing SQL Failures with the SQL Repair Advisor

Running the SQL Repair Advisor

You run the SQL Repair Advisor from the Problem Details page of the Support
Workbench. The instructions in this section assume that you were already notified of a
critical error caused by your SQL statement and that you followed the workflow
described in "Investigating, Reporting, and Resolving a Problem" on page 8-9.

To run the SQL Repair Advisor:

1. Access the Problem Details page for the problem that pertains to the failed SQL
statement.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 8-16 for instructions.

2. In the Investigate and Resolve section, under the Self Service tab, under the
Resolve heading, click SQL Repair Advisor.

Database Instance: database > Support Workbench >

Logged in As SYSTEM
Problem Details: ORA 600 [13011]

Page Refreshed March 20, 2007 9:05:15 PM PDT | Refresh "Il

Investigate and Resolve

Surmary [Go to Metalink) (Quick Package)
SR# - it |
\Edn) Self service Oracle Support
Bug# - (Edit)
Active Yes Assess Damage
Packaged No Run Checkers
Mumber of Incidents 1 Database Instance Health
Last Incident .
Diagnose
Timestamp March 20, 2007 &:18:05 PM FDT Alert Lo

Incident Source System Generated Related Problems Across Topolog

Impact
CheckersRun 0
Checker Findings 0

Diagnostic Durmps For Last Incident

G0 to Metalink and Research

Resalve

5oL Repair Advisor

Incidents Activity Log

The SQL Repair Advisor page appears.

3. Enter an optional task name, set an optional time limit for the advisor task, and

adjust settings to schedule the advisor to run either immediately or at a future date
and time.

4. C(Click Submit.

A "processing page appears. After a short delay, the SQL Repair Results page
appears.

S0L Repair Results: SQL_DIAG_1174506262358

Page Refreshed Mar 21, 2007 12:45:50 PM PDT | Refresh "II

Started Mar 21, 2007 12:45:28 PM PDT
Completed Mar 21, 2007 12:45:46 PM PDT
Running Time (seconds) 18

Skatus COMPLETED
SQLID 9m7myytcbadid
Tirme Limit (seconds) 1800

Recommendations
[Wiew)
Select SQL Text Parsing Schema SQL ID SQL Patch
&) delete From £ E1 where t1.a = "a' and rowid <> {select max{rowid) from t £2 where tl,a=tZ,a andt1.... amZmvytchadi4 W

8-26 Oracle Database Administrator's Guide

Repairing Data Corruptions with the Data Recovery Advisor

A check mark in the SQL Patch column indicates that a recommendation is
present. The absence of a check mark in this column means that the SQL Repair
Advisor was unable to devise a patch for the SQL statement.

If a recommendation is present, click View to view the recommendation.

The Repair Recommendations page appears, showing the recommended patch for
the statement.

Click Implement.
The SQL Repair Results page returns, showing a confirmation message.

(Optional) Click Verify using SQL Worksheet to run the statement in the SQL
worksheet and verify that the patch successfully repaired the statement.

Viewing, Disabling, or Removing a SQL Patch

After you apply a SQL patch with the SQL Repair Advisor, you may want to view it to
confirm its presence, disable it, or remove it. One reason to remove a patch is if you
install a later release of Oracle Database that fixes the bug that caused the failure in the
patched SQL statement.

To view, disable, or remove a SQL patch:

1.

Access the Database Home page in Enterprise Manager.

For Oracle Enterprise Manager Database Control, see Oracle Database 2 Day DBA
for instructions. For Oracle Enterprise Manager Grid Control, go to the desired
database target.

At the top of the page, click Server to display the Server page.

In the Query Optimizer section, click SQL Plan Control.

The SQL Plan Control page appears. See the online help for information about this
page.

At the top of the page, click SQL Patch to display the SQL Patch subpage.

The SQL Patch subpage displays all SQL patches in the database.

Locate the desired patch by examining the associated SQL text.

Click the SQL text to view the complete text of the statement.

To disable the patch, select it, and then click Disable.

A confirmation message appears, and the patch status changes to DISABLED. You
can later reenable the patch by selecting it and clicking Enable.

To remove the patch, select it, and then click Drop.

A confirmation message appears.

See Also: "About the SQL Repair Advisor" on page 8-25

Repairing Data Corruptions with the Data Recovery Advisor

You use the Data Recovery Advisor to repair data block corruptions, undo
corruptions, data dictionary corruptions, and more. The Data Recovery Advisor
integrates with the Enterprise Manager Support Workbench (Support Workbench),
with the Health Monitor, and with the RMAN utility to display data corruption
problems, assess the extent of each problem (critical, high priority, low priority),

Managing Diagnostic Data 8-27

Repairing Data Corruptions with the Data Recovery Advisor

describe the impact of a problem, recommend repair options, conduct a feasibility
check of the customer-chosen option, and automate the repair process.

Oracle Database 2 Day DBA provides details on how to use the Data Recovery Advisor.

This section describes the various ways to access the advisor from the Support
Workbench.

The Data Recovery Advisor is automatically recommended by and accessible from the
Support Workbench when you are viewing;:

= Problem details for a problem that is related to a data corruption or other data
failure.

s Health checker findings that are related to a data corruption or other data failure.

The Data Recovery Advisor is also available from the Advisor Central page. A link to
this page can be found in the Related Links section of the Database Home page and of
the Performance page.

Note: The Data Recovery Advisor is available only when you are
connected as SYSDBA.

You access the Data Recovery Advisor from the Support Workbench in the following
ways:

s From the Problem Details page

Summary
SR

Bug#
Ackive
Packaged
Murnber of Incidents
First Incident
Last Incident
Timestamp
Incident Source
Imnpact
Checkers Run
Checker Findings

Incidents

Database Instance: database > Support Workbench =
Problem Dretails: ORA 1578

Ackiviby Log

Logged in As SYSTEM

Page Refreshed May 12, 2007 4:18:54 PM PDT | Refresh "II

Investigate and Resolve

(Go to Metalink) | Quick Package)

- [Edit) Self Service Oracle Support
Mo Assess Damage

No Checker Findings

4 Run Checkers

May 12, 2007 3:24:39 PM PDT Database Instance Health

Diagnose
flert Log
Related Problems Across Topalog

May 12, 2007 5:24:54 PM POT

System Generated

Ciagqnaostic Durps For Last Incident
Go ko Metalink and Research

Resolve

Data Recovery Advisor

Click the Data Recovery Advisor link in the Investigate and Resolve section.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 8-16 for instructions on how to access this page.

» From the Checker Findings subpage of the Support Workbench home page

8-28 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

Support Workbench
Page Refreshed May 12, 2007 4:25:15 PM PDT | Refresh "II

Problems (4 Checker Findings {15) Packages (0}

Search
Description Damage Translation Status Time Detected
Open v || &l || Go

Data Corruption
Select findings and click on the "Launch Recovery Advisor” butkon to repair those findings.

| Launch Recovery Advisor

Seleck All | Select Mone | Expand &l | Collapse &l

Select Description |Priority |Damage Translation Incident ID |5tatus |Time Detected
¥ All Findings
ictionaty health check: ritical amaged rowid is 1 - pen ay 12, i3k
D S0L dicti health check: Critical D d id is ABAAAEAABAAALGWAAA o] May 12, 2007 3:31:00 PM
ts$.online 41 on object 3% Failed description: Tablespace TEMP is referenced PDT
atafile 1 gl ome objects in tablespace might be pen ay 12, 125
I:l P> Datafile 1 High S bjects in tabl SYSTEM might by 5233 |0y May 12, 2007 3:25:15 PM
*ladefsfogel_emdbjoraclefdbst_dbi.F unavailable FDT
contains one or more corrupt blocks
O B> Undo segment 9 is corrupted High 237 Open May 12, 2007 3:28:21 PM
POT
|l B> Unda segment 10 is carrupted High 6239 Open May 12, 2007 3:29:20 PM
POT

Select one or more data corruption findings and then click Launch Recovery
Advisor.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 8-16 for instructions on how to access the Support Workbench home page.

See Also: Oracle Database 2 Day DBA for instructions for running the
Data Recovery Advisor

Creating, Editing, and Uploading Custom Incident Packages

This section provides background information on incident packages, and explains how
to create, modify, and upload customized packages with the Enterprise Manager
Support Workbench (Support Workbench) custom packaging process. The following
topics are covered:

= About Incident Packages

» Packaging and Uploading Problems with Custom Packaging
= Viewing and Modifying Incident Packages

= Setting Incident Packaging Preferences

See Also: "About the Oracle Database Fault Diagnosability
Infrastructure" on page 8-1

About Incident Packages

For the customized approach to uploading diagnostic data to Oracle Support, you first
collect the data into an intermediate logical structure called an incident package
(package). A package is a collection of metadata that is stored in the Automatic
Diagnostic Repository (ADR) and that points to diagnostic data files and other files
both in and out of the ADR. When you create a package, you select one or more
problems to add to the package. The Support Workbench then automatically adds to
the package the problem information, incident information, and diagnostic data (such

Managing Diagnostic Data 8-29

Creating, Editing, and Uploading Custom Incident Packages

as trace files and dumps) associated with the selected problems. Because a problem
can have many incidents (many occurrences of the same problem), by default only the
first three and last three incidents for each problem are added to the package,
excluding any incidents that are over 90 days old. You can change these default
numbers on the Incident Packaging Configuration page of the Support Workbench.

After the package is created, you can add any type of external file to the package,
remove selected files from the package, or edit selected files in the package to remove
sensitive data. As you add and remove package contents, only the package metadata is
modified.

When you are ready to upload the diagnostic data to Oracle Support, you first create a
zip file that contains all the files referenced by the package metadata. You then upload
the zip file through Oracle Configuration Manager.

Note: If you do not have Oracle Configuration Manager installed and
properly configured, you must upload the zip file manually through
OracleMetaLink.

For more information about Oracle Configuration Manager, see Oracle
Configuration Manager Installation and Administration Guide.

More information about packages is presented in the following sections:
= About Correlated Diagnostic Data in Incident Packages
= About Quick Packaging and Custom Packaging

See Also:

s '"Packaging and Uploading Problems with Custom Packaging" on
page 8-32

= "Viewing and Modifying Incident Packages" on page 8-35

About Correlated Diagnostic Data in Incident Packages

To improve the diagnosability of a problem, it is sometimes necessary to examine not
only diagnostic data that is directly related to the problem, but also diagnostic data
that is correlated with the directly related data. Diagnostic data can be correlated by
time, by process ID, or by other criteria. For example, when examining an incident, it
may be helpful to also examine an incident that occurred five minutes after the
original incident. Similarly, while it is clear that the diagnostic data for an incident
should include the trace file for the Oracle Database process that was running when
the incident occurred, it might be helpful to also include trace files for other processes
that are related to the original process.

Thus, when problems and their associated incidents are added to a package, any
correlated incidents are added at the same time, with their associated trace files.

During the process of creating the physical file for a package, the Support Workbench
calls upon the Incident Packaging Service to finalize the package. Finalizing means
adding to the package any additional trace files that are correlated by time to incidents
in the package, and adding other diagnostic information such as the alert log, health
checker reports, SQL test cases, configuration information, and so on. This means that
the number of files in the zip file may be greater than the number of files that the
Support Workbench had previously displayed as the package contents.

8-30 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

The Incident Packaging Service follows a set of rules to determine the trace files in the
ADR that are correlated to existing package data. You can modify some of those rules
in the Incident Packaging Configuration page in Enterprise Manager.

Because both initial package data and added correlated data may contain sensitive
information, it is important to have an opportunity to remove or edit files that contain
this information before uploading to Oracle Support. For this reason, the Support
Workbench enables you to run a command that finalizes the package as a separate
operation. After manually finalizing a package, you can examine the package contents,
remove or edit files, and then generate and upload a zip file.

Note: Finalizing a package does not mean closing it to further
modifications. You can continue to add diagnostic data to a finalized
package. You can also finalize the same package multiple times. Each
time that you finalize, any new correlated data is added.

See Also: "Setting Incident Packaging Preferences" on page 8-41

About Quick Packaging and Custom Packaging

The Enterprise Manager Support Workbench provides two methods for creating and
uploading an incident package: the quick packaging method and the custom
packaging method.

Quick Packaging—This is the more automated method with a minimum of steps,
organized in a guided workflow (a wizard). You select a single problem, provide a
package name and description, and then schedule upload of the package contents,
either immediately or at a specified date and time. The Support Workbench
automatically places diagnostic data related to the problem into the package, finalizes
the package, creates the zip file, and then uploads the file. With this method, you do
not have the opportunity to add, edit, or remove package files or add other diagnostic
data such as SQL test cases. However, it is the simplest and quickest way to get
first-failure diagnostic data to Oracle Support.

Note that when quick packaging is complete, the package that was created by the
wizard remains. You can then modify the package with custom packaging operations
at a later time and manually reupload.

Custom Packaging—This is the more manual method, with more steps. It is intended
for expert Support Workbench users who want more control over the packaging
process. With custom packaging, you can create a new package with one or more
problems, or you can add one or more problems to an existing package. You can then
perform a variety of operations on the new or updated package, including:

= Adding or removing problems or incidents

» Adding, editing, or removing trace files in the package
= Adding or removing external files of any type

» Adding other diagnostic data such as SQL test cases

» Manually finalizing the package and then viewing package contents to determine
if you must edit or remove sensitive data or remove files to reduce package size.

You might conduct these operations over a number of days, before deciding that you
have enough diagnostic information to send to Oracle Support.

Managing Diagnostic Data 8-31

Creating, Editing, and Uploading Custom Incident Packages

With custom packaging, you create the zip file and request upload to Oracle Support
as two separate steps. Each of these steps can be performed immediately or scheduled
for a future date and time.

See Also: "Task 5 — Package and Upload Diagnostic Data to Oracle
Support" on page 8-13 for instructions for the Quick Packaging
method

Packaging and Uploading Problems with Custom Packaging

This section walks you through an advanced workflow to view and package one or
more problems for upload to Oracle Support. This workflow uses the custom
packaging facility of the Support Workbench, which enables you to add, edit, and
remove files from the incident package (package) before uploading.

To package and upload problems with custom packaging:
1. Access the Support Workbench home page.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 8-16 for instructions.

2. (Optional) For each problem that you want to include in the package, indicate the
service request number (SR#) associated with the problem, if any. To do so,
complete the following steps for each problem:

a. In the Problems subpage at the bottom of the Support Workbench home page,
select the problem, and then click View.

Note: If you do not see the desired problem in the list of problems, or
if there are too many problems to scroll through, select a time period
from the View list and click Go. You can then select the desired
problem and click View.

The Problem Details page appears.

b. Next to the SR# label, click Edit, enter a service request number, and then click
OK.

The service request number is displayed on the Problem Details page.

c. Return to the Support Workbench home page by clicking Support Workbench
in the locator links at the top of the page.

Database Instance: database > Support Workbench =
Problem details (4)

3. On the Support Workbench home page, select the problems that you want to
package, and then click Package.

The Select Packaging Mode page appears.

Note: The packaging process may automatically select additional
correlated problems to add to the package. An example of a correlated
problem is one that occurs within a few minutes of the selected
problem. See "About Correlated Diagnostic Data in Incident Packages'
on page 8-30 for more information.

1

8-32 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

4. Select the Custom packaging option, and then click Continue.

The Select Package page appears.

Figure 8-5 Select Package Page

Database Instance: database > Support Workbench = Logaed in &s SYSTEM
Custom Packaging : Select Package
(Cancel) (0K
Prablems Selected ORA 600 [4136]
Select a package.
(@ TIP Create a new package or select an existing one. Problems chosen earlier will be added to this package.
&) Creats New Package
Package Mame |ORAG00415_20070702220937
Package Description
O select from Existing Packages
Seleck |Name Status Description Main Problem Keys |Ereated
O ORAGDS 20070702220511 Ackive CRA E03 July 2, 2007 10:08:59 PM PDT
O ORASO0413 20070630232432 Upload File aenerated ORA_600-4137_070630 ORA 600 [4137] June 30, 2007 11:25:17 PM PDT

5. Do one of the following:

= To create a new package, select the Create new package option, enter a
package name and description, and then click OK.

= To add the selected problems to an existing package, select the Select from
existing packages option, select the package to update, and then click OK.

The Customize Package page appears. It displays the problems and incidents that
are contained in the package, plus a selection of packaging tasks to choose from.
You run these tasks against the new package or the updated existing package.

Figure 86 Customize Package Page

Database Instance: database > Support Workbench - Logged in As SYSTEM

Confirmation
Package(Pkg_052207161722) has been created successfully,

Customize Package: Pkg_052207161722
Page Refreshed May 22, 2007 4:17:45 PMPDT | Refresh "Il

The package can be customized to edit its contents, to generate and include additional diagnostic data or to scrub user data. Once the package is ready it can be sent to Oracle Support.

Packaging Tasks

Summary
Status Ackive
Total Size {uncompressed) 2,56 MB Edit Contents Scrub User Data
Incremental Size {uncompressed) 2.56 MB Add Problems Copy out Files bo Edit Contents

Exclude Problems Copy in Files ko Replace Contents
Wigw Package Manifest

Created May 22, 2007 4:17:43 PM PDT
Description N/A

Problems in Package ORA 600 [dbgxbvHTThParse:1] Additional Diagnostic Data Send to Oracle Support
Gather Additional Durnps Einish Contents Preparation

Incidents Previously Excluded by User g Add External Files Generate Upload File

Files Excluded by User g Wiew Send Upload Files

Incidents Files Activity Log

6. (Optional) In the Packaging Tasks section, click links to perform one or more
packaging tasks. Or, use other controls on the Customize Package page and its

Managing Diagnostic Data 8-33

Creating, Editing, and Uploading Custom Incident Packages

subpages to manipulate the package. Return to the Customize Package page when
you are finished.

See "Viewing and Modifying Incident Packages" on page 8-35 for instructions for
some of the most common packaging tasks.

7. In the Packaging Tasks section of the Customize Package page, under the heading
Send to Oracle Support, click Finish Contents Preparation to finalize the package.

A list (or partial list) of files included in the package is displayed. (This may take a
while.) The list includes files that were determined to contain correlated diagnostic
information and added by the finalization process.

See "About Correlated Diagnostic Data in Incident Packages" on page 8-30 for a
definition of package finalization.

8. Click the Files link to view all the files in the package. Examine the list to see if
there are any files that might contain sensitive data that you do not want to
expose. If you find such files, exclude (remove) or edit them.

See "Editing Incident Package Files (Copying Out and In)" on page 8-37 and
"Removing Incident Package Files" on page 8-40 for instructions for editing and
removing files.

To view the contents of a file, click the eyeglasses icon in the rightmost column in
the table of files. Enter host credentials, if prompted.

Note: Trace files are generally for Oracle internal use only.

9. Click Generate Upload File.
The Generate Upload File page appears.

10. Select the Full or Incremental option to generate a full package zip file or an
incremental package zip file.

For a full package zip file, all the contents of the package (original contents and all
correlated data) are always added to the zip file.

For an incremental package zip file, only the diagnostic information that is new or
modified since the last time that you created a zip file for the same package is
added to the zip file. For example, if trace information was appended to a trace file
since that file was last included in the generated physical file for a package, the
trace file is added to the incremental package zip file. Conversely, if no changes
were made to a trace file since it was last uploaded for a package, that trace file is
not included in the incremental package zip file.

Note: The Incremental option is dimmed (unavailable) if an upload
file was never created for the package.

11. Schedule file creation either immediately or at a future date and time (select
Immediately or Later), and then click Submit.

File creation can use significant system resources, so it may be advisable to
schedule it for a period of low system usage.

A Processing page appears, and creation of the zip file proceeds. A confirmation
page appears when processing is complete.

8-34 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

12.

13.

14.

15.

16.

17.

Note: The package is automatically finalized when the zip file is
created.

Click OK.

The Customize Package page returns.

Click Send to Oracle.

The View/Send Upload Files page appears.

Select the zip files to upload, and then click Send to Oracle.

The Send to Oracle page appears. The selected zip files are listed in a table.

Fill in the requested OracleMetaLink information. Next to Create new Service

Request (SR), select Yes or No. If you select Yes, a draft service request will be
created for you. You must later log in to OracleMetaLink and fill in the service
request details. If you select No, enter an existing service request number.

Schedule the upload to take place immediately or at a future date and time, and
then click Submit.

A Processing page appears. If the upload is completed successfully, a confirmation
page appears. If the upload could not complete, an error page appears. The error
page may include a message that requests that you upload the zip file to Oracle
manually. If so, contact your Oracle Support representative for instructions.

Click OK.

The View /Send Upload Files page returns. Under the Time Sent column, check the
status of the files that you attempted to upload.

Note: The Support Workbench uses Oracle Configuration Manager to
upload the physical files. If Oracle Configuration Manager is not installed
or properly configured, the upload may fail. In this case, a message is
displayed with a path to the package zip file and a request that you
upload the file to Oracle Support manually. You can upload manually
with OracleMetaLink.

For more information about Oracle Configuration Manager, see Oracle
Configuration Manager Installation and Administration Guide.

See Also:

= "About Incidents and Problems" on page 8-3

= "About Incident Packages" on page 8-29

= "About Quick Packaging and Custom Packaging" on page 8-31

Viewing and Modifying Incident Packages

After creating an incident package with the custom packaging method, you can view

or modify the contents of the package before uploading the package to Oracle Support.
In addition, after using the quick packaging method to package and upload diagnostic
data, you can view or modify the contents of the package that the Support Workbench
created, and then reupload the package. To modify a package, you choose from among

Managing Diagnostic Data 8-35

Creating, Editing, and Uploading Custom Incident Packages

a selection of packaging tasks, most of which are available from the Customize Package
page.

This section provides instructions for some of the most common packaging tasks. It
includes the following topics:

= Editing Incident Package Files (Copying Out and In)

= Adding an External File to an Incident Package

= Removing Incident Package Files

= Viewing and Updating the Incident Package Activity Log

Also included are the following topics, which explains how to view package details
and how to access the Customize Package page for a particular package:

= Viewing Package Details

» Accessing the Customize Package Page

See Also:

= "About Incident Packages" on page 8-29

= "Packaging and Uploading Problems with Custom Packaging" on
page 8-32

Viewing Package Details

The Package Details page contains information about the incidents, trace files, and
other files in a package, and enables you to view and add to the package activity log.

To view package details:
1. Access the Support Workbench home page.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 8-16 for instructions.

2. Click the Packages link to view the Packages subpage.

A list of packages that are currently in the Automatic Diagnostic Repository (ADR)
is displayed.

3. (Optional) To reduce the number of packages displayed, enter text into the Search
field above the list, and then click Go.

All packages that contain the search text anywhere in the package name are
displayed. To view the full list of packages, click the Packages link again.

4. Under the Package Name column, click the link for the desired package.
The Package Details page appears.

Accessing the Customize Package Page

The Customize Package page is used to perform various packaging tasks, such as
adding and removing problems; adding, removing, and scrubbing (editing) package
files; and generating and uploading the package zip file.

To access the Customize Package page:

1. Access the Package Details page for the desired package, as described in "Viewing
Package Details" on page 8-36.

2. Click Customize Package.

8-36 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

The Customize Package page appears.

Editing Incident Package Files (Copying Out and In)

The Support Workbench enables you to edit one or more files in an incident package.
You may want to do this to delete or overwrite sensitive data in the files. To edit
package files, you must first copy the files out of the package into a designated
directory, edit the files with a text editor or other utility, and then copy the files back
into the package, overwriting the original package files.

The following procedure assumes that the package is already created and contains
diagnostic data.

To edit incident package files:
1. Access the Customize Package page for the desired incident package.

See "Accessing the Customize Package Page" on page 8-36 for instructions.

2. In the Packaging Tasks section, under the Scrub User Data heading, click Copy out
Files to Edit contents.

The Copy Out Files page appears. It displays the name of the host to which you
can copy files.

Figure 8-7 Copy Out Files Page

Copy out files
Cancel) oK)

Destination folder

Enter the desination folder where the file will be copied
Host myhost. mycompany.com
Destination Folder <?

Files to copy out
Select files to copy out

1-95 of 2704 v | Mext 25 3
Select All | Select None

File Has User
Select Source|rile Name Size Data Date Path

O Incident mydbl_ora_13579_il.trc 476 ves Tue Oct 03 /ade/hopark_uselabforacleflog,/diag/rdoms/suselab/suselab/incidentfincdir_1
bvtes 20:33:20 PDT 2006

O Incident mydbl_ora_13579_i1_2.trc 232 Yeg Tue Oct 03 Jfadehopark_uselaboracleflog/diag/rdoms/euselab/euselab/incident/fincdir_1
bytes 20:33:20 PDT 2006

O Incident mydbl_ora_13579_i1_sql 2trc 290 ves Tue Oct 03 fadeopark_uselaboracle/log/diag/irdbmsfsuselab/suselab/incident/incdir_1
bytes 20:33:20 PDT 2006

L Incident mydbl_ora_13579_i2.rc 476 veg Tue Oct 03 fade/hopark_uselabforacle log/diag/rdoms/suselab/suselab/incidentfincdir_2
bytes 20:33:20 PDT 2006

O Incident mydbl_ora_13579_i2_2.trc 232 Yag Tue Oct 03 Jadehopark_uselaboracleflog/diag/rdoms/euselab/euselab/incidentfincdir_2
bytes 20:33:20 PDT 2006

O Incident mydbl_ora_13579_i2_sql_2oc 280 v Tue Oct 03 fade hopark_uselabforacle log/disgfrdbms/dsuselab/suse labdncident fincdir_2
bytes 20:33:20 PDT 2006

3. Do one of the following to specify a destination directory for the files:
= Enter a directory path in the Destination Folder field.

» Click the flashlight icon next to the Destination Folder field, and then
complete the following steps:

- If prompted for host credentials, enter credentials for the host to which
you want to copy out the files, and then click OK. (Select Save as
Preferred Credential to avoid the prompt for credentials next time.)

— In the Browse and Select File or Directory window, click directory links to
move down the directory hierarchy, and click directory names next to the

Managing Diagnostic Data 8-37

Creating, Editing, and Uploading Custom Incident Packages

Path label to move up the directory hierarchy, until you see the desired
destination directory.

Browse and Select: File or Directory
(Cancel) (Select)
Host stadh43.us.oracle.com
User sfogel [Change)
Path / =
Search | (Go)
1-25 of 37 % | Blext 12 =
Select|Name |Elwner |Group | Size (KB)|Last Modified Time (PST) |
® ﬂ .autofsck ook rook 0 Feb 3, 2007 1:52:12 AM
O Ga caukormount rook rook 4 Jul 4, 2005 7:49:59 AM
O] ade rook rook 4 May 1, 2007 10:16:22 PM
[} & ade_autofs ronk roak 0 Feb 3, 2007 1:52:33 AM
O G bir ook rook 4 Mow 13, 2006 12:36:13 AM
O Gl bioot. raok roat 4 Mow 13, 2006 6:57:41 AM
O] chroat raok roat 4 Mow 13, 2006 6:58:07 AM
o 7] dev raok roat 5 Feb 23, 2007 12:16:20 PM
O Gl ekc ook rook 8 May 1, 2007 10:12:15 PM

To reduce the number of directories displayed in the list, enter search text
in the Search field and click Go. All directories that have the search text
anywhere in the directory name are displayed.

— Select the desired destination directory, and then click Select.

The Browse and Select File or Directory window closes, and the path to
the selected directory appears in the Destination Folder field of the Copy
Out Files page.

4. Under Files to Copy Out, select the desired files, and then click OK.

Note: If you do not see the desired files, they may be on another
page. Click the Next link to view the next page. Continue clicking
Next, or select from the list of file numbers (to the left of the Next link)
until you see the desired files. You can then select the files and click
OK.

The Customize Package page returns, displaying a confirmation message that lists
the files that were copied out.

5. Using a text editor or other utility, edit the files.

6. On the Customize Package page, in the Packaging Tasks section, under the Scrub
User Data heading, click Copy in Files to Replace Contents.

The Copy In Files page appears. It displays the files that you copied out.
7. Select the files to copy in, and then click OK.

The files are copied into the package, overwriting the existing files. The Customize
Package page returns, displaying a confirmation message that lists the files that
were copied in.

Adding an External File to an Incident Package
You can add any type of external file to an incident package.

8-38 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

To add an external file to an incident package:
Access the Customize Package page for the desired incident package.

1.

2.

See "Accessing the Customize Package Page" on page 8-36 for instructions.

Click the Files link to view the Files subpage.

Figure 8-8 Files Subpage of Customize Package Page

Incidents Files Ackivity Log

Exclude)

Select &l | Select None

Has

Size User

Select Source Name {MB} Data
O ncident mydbl_ora_13579_j4850.trc 0 Mo
O Incident mydbl_ora_13579_{4550_2.trc 0 Mo
4 Incident mydbl_ora_13579_j4849.trc 0 Mo
O Incident mydbl_ora_13579_i4549_2.trc 0 Mo

Incidents Files Activity Log

Timestamp

May 4, 2007
2:46:11 PM POT

May 4, 2007
9:46:11 PM PDT

May 4, 2007
9144148 PM PDT

May 4, 2007
9:44:48 FM FDT

Addl Incident Files | (add External Files)

Path Yiew
lade/sfogel_emdb/oracleflogidiag/rdbms/emdbemdbjincidentfincdir_4850 crex

Jade/sfogel_emdb/oracle/logdiagsrdbmsfemdbfemdbjincidentfincdir_4550 e ax
tade/sfagel_emdb/oracle/logidiagrdbmsfemdbfemdbjincident/incdir_4549 crex

tade/sfagel_emdb/oracle/log)diagsrdbmsfemdbfemdbfincidentfincdir_4549 oex

From this page, you can add and remove files to and from the package.

Note: The View list appears only for packages for which you already
created a physical file. It enables you to view either incremental
package contents or the full package contents. The default selection is
incremental package contents. This default selection displays only
those package files that were created or modified since the last time
that a physical file was generated for the package.

Click Add external files.

The Add External File page appears. It displays the host name from which you

may select a file.

Do one of the following to specify a file to add:

= Enter the full path to the file in the File Name field.

» Click the flashlight icon next to the File Name field, and then complete the

following steps:

- If prompted for host credentials, enter credentials for the host on which
the external file resides, and then click OK. (Select Save as Preferred
Credential to avoid the prompt for credentials next time.)

— In the Browse and Select File or Directory window, click directory links to
move down the directory hierarchy, and click directory names next to the
Path label to move up the directory hierarchy, until you see the desired

file.

Managing Diagnostic Data 8-39

Creating, Editing, and Uploading Custom Incident Packages

Browse and Select: File or Directory
(Cancel) (Select)
Host stadh43.us.oracle.com
User sfogel [Change)
Path / =
Search | (Go)
1-25 of 37 % | Blext 12 =
Select|Name |Elwner |Group | Size (KB)|Last Modified Time (PST) |
® ﬂ .autofsck ook rook 0 Feb 3, 2007 1:52:12 AM
O Ga caukormount rook rook 4 Jul 4, 2005 7:49:59 AM
ade roal rool ay 1, iR
O]) k k 4 May 1, 2007 10:16:22 PM
[} & ade_autofs ronk roak 0 Feb 3, 2007 1:52:33 AM
O G bin ook rook 4 Mow 13, 2006 12:36:13 AM
O Gl boot rook rook 4 Mow 13, 2006 6:57:41 AM
O] chroot rook rook 4 Mow 13, 2006 6:58:07 AM
(] 7] dey rook rook 5 Feb 28, 2007 12:16:20 PM
et roal rool ay 1, HEd
O Gl b k k & May 1, 2007 10:12:15 PM

To reduce the number of files or directories displayed in the list, enter
search text in the Search field and click Go. All files or directories that
have the search text anywhere in the file name or directory name are dis-
played.

— In the Select column, click to select the desired file, and then click Select.

The Browse and Select window closes, and the path to the selected file
appears in the File Name field of the Add External File page.

5. Click OK.

The Customize Package page returns, displaying the Files subpage. The selected
file is now shown in the list of files.

Removing Incident Package Files
You can remove one or more files of any type from the incident package.

To remove incident package files:
1. Access the Customize Package page for the desired incident package.

See "Accessing the Customize Package Page" on page 8-36 for instructions.
2. Click the Files link to view the Files subpage.
A list of files in the package is displayed.

If you have not yet generated a physical file for this package, all package files are
displayed in the list. If you have already generated a physical file, a View list
appears above the files list. It enables you to choose between viewing only
incremental package contents or the full package contents. The default selection is
incremental package contents. This default selection displays only those package
files that were created or modified since the last time that a physical file was
generated for the package. Select Full package contents from the View list to view
all package files.

3. Select the files to remove, and then click Exclude.

8-40 Oracle Database Administrator's Guide

Creating, Editing, and Uploading Custom Incident Packages

Note: If you do not see the desired files, they may be on another
page. Click the Next link to view the next page. Continue clicking
Next, or select from the list of file numbers (to the left of the Next link)
until you see the desired files. You can then select the files and click
Remove.

Viewing and Updating the Incident Package Activity Log

The Support Workbench maintains an activity log for each incident package. Most
activities that you perform on a package, such as adding or removing files or creating
a package zip file, are recorded in the log. You can also add your own notes to the log.
This is especially useful if more than one database administrator is working with
packages.

To view and update the incident package activity log:
1. Access the Package Details page for the desired incident package.

See "Accessing the Customize Package Page" on page 8-36 for instructions.
2. Click the Activity Log link to view the Activity Log subpage.
The activity log is displayed.

3. Toadd your own note to the activity log, enter text into the Note field, and then
click Add Note.

Your note is timestamped and appended to the list.

Setting Incident Packaging Preferences

This section provides instructions for setting incident packaging preferences.
Examples of incident packaging preferences include the number of days to retain
incident information, and the number of leading and trailing incidents to include in a
package for each problem. (By default, if a problem has many incidents, only the first
three and last three incidents are packaged.) You can change these and other incident
packaging preferences with Enterprise Manager or with the ADRCI utility.

To set incident packaging preferences with Enterprise Manager:
1. Access the Support Workbench home page.

See "Viewing Problems with the Enterprise Manager Support Workbench" on
page 8-16 for instructions.

2. In the Related Links section at the bottom of the page, click Incident Packaging
Configuration.

The View Incident Packaging Configuration page appears. Click Help to view
descriptions of the settings on this page.

3. Click Edit.
The Edit Incident Packaging Configuration page appears.
4. Edit settings, and then click OK to apply changes.

Managing Diagnostic Data 8-41

Creating, Editing, and Uploading Custom Incident Packages

See Also:
= "About Incident Packages" on page 8-29
= "About Incidents and Problems" on page 8-3

s "Task 5 — Package and Upload Diagnostic Data to Oracle Support"
on page 8-13

n Oracle Database Utilities for information on ADRCI

8-42 Oracle Database Administrator's Guide

Part li

Oracle Database Structure and Storage

This part describes database structure in terms of its storage components and how to
create and manage those components. It contains the following chapters:

Chapter 9, "Managing Control Files"

Chapter 10, "Managing the Redo Log"

Chapter 11, "Managing Archived Redo Logs"
Chapter 12, "Managing Tablespaces"

Chapter 13, "Managing Datafiles and Tempfiles"
Chapter 14, "Managing Undo"

Chapter 15, "Using Oracle-Managed Files"

9

Managing Control Files

This chapter explains how to create and maintain the control files for your database
and contains the following topics:

= WhatIs a Control File?
= Guidelines for Control Files
s Creating Control Files
s Troubleshooting After Creating Control Files
= Backing Up Control Files
= Recovering a Control File Using a Current Copy
= Dropping Control Files
= Control Files Data Dictionary Views
See Also: Chapter 15, "Using Oracle-Managed Files" for

information about creating control files that are both created and
managed by the Oracle Database server

What Is a Control File?

Every Oracle Database has a control file, which is a small binary file that records the
physical structure of the database. The control file includes:

s The database name

= Names and locations of associated datafiles and redo log files
» The timestamp of the database creation

» The current log sequence number

s Checkpoint information

The control file must be available for writing by the Oracle Database server whenever
the database is open. Without the control file, the database cannot be mounted and
recovery is difficult.

The control file of an Oracle Database is created at the same time as the database. By
default, at least one copy of the control file is created during database creation. On
some operating systems the default is to create multiple copies. You should create two
or more copies of the control file during database creation. You can also create control
files later, if you lose control files or want to change particular settings in the control
files.

Managing Control Files 9-1

Guidelines for Control Files

Guidelines for Control Files

This section describes guidelines you can use to manage the control files for a
database, and contains the following topics:

= Provide Filenames for the Control Files

= Multiplex Control Files on Different Disks
= Back Up Control Files

= Manage the Size of Control Files

Provide Filenames for the Control Files

You specify control file names using the CONTROL_FILES initialization parameter in
the database initialization parameter file (see "Creating Initial Control Files" on

page 9-3). The instance recognizes and opens all the listed file during startup, and the
instance writes to and maintains all listed control files during database operation.

If you do not specify files for CONTROL_FILES before database creation:

= If you are not using Oracle-managed files, then the database creates a control file
and uses a default filename. The default name is operating system specific.

= If you are using Oracle-managed files, then the initialization parameters you set to
enable that feature determine the name and location of the control files, as
described in Chapter 15, "Using Oracle-Managed Files".

= If you are using Automatic Storage Management, you can place incomplete ASM
filenames in the DB_CREATE_FILE_DEST and DB_RECOVERY_FILE_DEST
initialization parameters. ASM then automatically creates control files in the
appropriate places. See the sections "About ASM Filenames" and "Creating a
Database That Uses ASM" in Oracle Database Storage Administrator’s Guide for more
information.

Multiplex Control Files on Different Disks

Every Oracle Database should have at least two control files, each stored on a different
physical disk. If a control file is damaged due to a disk failure, the associated instance
must be shut down. Once the disk drive is repaired, the damaged control file can be
restored using the intact copy of the control file from the other disk and the instance
can be restarted. In this case, no media recovery is required.

The behavior of multiplexed control files is this:

s The database writes to all filenames listed for the initialization parameter
CONTROL_FILES in the database initialization parameter file.

s The database reads only the first file listed in the CONTROL_FILES parameter
during database operation.

= If any of the control files become unavailable during database operation, the
instance becomes inoperable and should be aborted.

Note: Oracle strongly recommends that your database has a
minimum of two control files and that they are located on separate
physical disks.

9-2 Oracle Database Administrator's Guide

Creating Control Files

One way to multiplex control files is to store a control file copy on every disk drive
that stores members of redo log groups, if the redo log is multiplexed. By storing
control files in these locations, you minimize the risk that all control files and all
groups of the redo log will be lost in a single disk failure.

Back Up Control Files

It is very important that you back up your control files. This is true initially, and every
time you change the physical structure of your database. Such structural changes
include:

= Adding, dropping, or renaming datafiles
= Adding or dropping a tablespace, or altering the read /write state of the tablespace
» Adding or dropping redo log files or groups

The methods for backing up control files are discussed in "Backing Up Control Files"
on page 9-8.

Manage the Size of Control Files

The main determinants of the size of a control file are the values set for the
MAXDATAFILES, MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, and
MAXINSTANCES parameters in the CREATE DATABASE statement that created the
associated database. Increasing the values of these parameters increases the size of a
control file of the associated database.

See Also:

= Your operating system specific Oracle documentation contains
more information about the maximum control file size.

» Oracle Database SQL Language Reference for a description of the
CREATE DATABASE statement

Creating Control Files
This section describes ways to create control files, and contains the following topics:
s Creating Initial Control Files
s Creating Additional Copies, Renaming, and Relocating Control Files

s Creating New Control Files

Creating Initial Control Files

The initial control files of an Oracle Database are created when you issue the CREATE
DATABASE statement. The names of the control files are specified by the
CONTROL_FILES parameter in the initialization parameter file used during database
creation. The filenames specified in CONTROL_FILES should be fully specified and are
operating system specific. The following is an example of a CONTROL_FILES
initialization parameter:

CONTROL_FILES = (/u0l/oracle/prod/controlOl.ctl,
/u02/oracle/prod/control02.ctl,
/u03/oracle/prod/control03.ctl)

If files with the specified names currently exist at the time of database creation, you
must specify the CONTROLFILE REUSE clause in the CREATE DATABASE statement,

Managing Control Files 9-3

Creating Control Files

or else an error occurs. Also, if the size of the old control file differs from the SIZE
parameter of the new one, you cannot use the REUSE clause.

The size of the control file changes between some releases of Oracle Database, as well
as when the number of files specified in the control file changes. Configuration
parameters such as MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY,
MAXDATAFILES, and MAXINSTANCES affect control file size.

You can subsequently change the value of the CONTROL_FILES initialization
parameter to add more control files or to change the names or locations of existing
control files.

See Also: Your operating system specific Oracle documentation
contains more information about specifying control files.

Creating Additional Copies, Renaming, and Relocating Control Files

You can create an additional control file copy for multiplexing by copying an existing
control file to a new location and adding the file name to the list of control files.
Similarly, you rename an existing control file by copying the file to its new name or
location, and changing the file name in the control file list. In both cases, to guarantee
that control files do not change during the procedure, shut down the database before
copying the control file.

To add a multiplexed copy of the current control file or to rename a control file:
1. Shut down the database.
2. Copy an existing control file to a new location, using operating system commands.

3. Edit the CONTROL_FILES parameter in the database initialization parameter file
to add the new control file name, or to change the existing control filename.

4. Restart the database.

Creating New Control Files

This section discusses when and how to create new control files.

When to Create New Control Files
It is necessary for you to create new control files in the following situations:

= All control files for the database have been permanently damaged and you do not
have a control file backup.

= You want to change the database name.

For example, you would change a database name if it conflicted with another
database name in a distributed environment.

Note: You can change the database name and DBID (internal
database identifier) using the DBNEWID utility. See Oracle Database
Utilities for information about using this utility.

s The compatibility level is set to a value that is earlier than 10.2.0, and you must
make a change to an area of database configuration that relates to any of the
following parameters from the CREATE DATABASE or CREATE CONTROLFILE
commands: MAXLOGFILES, MAXLOGMEMBERS, MAXLOGHISTORY, and
MAXINSTANCES. If compatibility is 10.2.0 or later, you do not have to create new

9-4 Oracle Database Administrator's Guide

Creating Control Files

control files when you make such a change; the control files automatically expand,
if necessary, to accommodate the new configuration information.

For example, assume that when you created the database or recreated the control
files, you set MAXLOGFILES to 3. Suppose that now you want to add a fourth redo
log file group to the database with the ALTER DATABASE command. If
compatibility is set to 10.2.0 or later, you can do so and the controlfiles
automatically expand to accommodate the new logfile information. However, with
compatibility set earlier than 10.2.0, your ALTER DATABASE command would
generate an error, and you would have to first create new control files.

For information on compatibility level, see "The COMPATIBLE Initialization
Parameter and Irreversible Compatibility" on page 2-25.

The CREATE CONTROLFILE Statement

You can create a new control file for a database using the CREATE CONTROLFILE
statement. The following statement creates a new control file for the prod database (a
database that formerly used a different database name):

CREATE CONTROLFILE
SET DATABASE prod
LOGFILE GROUP 1 ('/u0l/oracle/prod/redo01_01.log',
'/ull/oracle/prod/redo01_02.log"'),
GROUP 2 ('/u0l/oracle/prod/redo02_01.log',
'/ull/oracle/prod/redo02_02.1log"'),
GROUP 3 ('/u0l/oracle/prod/redo03_01.log',
'/u0l/oracle/prod/redo03_02.1log")
RESETLOGS
DATAFILE '/ulOl/oracle/prod/system0l.dbf' SIZE 3M,
'/ul0l/oracle/prod/rbs0l.dbs' SIZE 5M,
'/ull/oracle/prod/users0l.dbs' SIZE 5M,
'/ull/oracle/prod/temp0l.dbs' SIZE 5M
MAXLOGFILES 50
MAXLOGMEMBERS 3
MAXLOGHISTORY 400
MAXDATAFILES 200
MAXINSTANCES 6
ARCHIVELOG;

Cautions:

s The CREATE CONTROLFILE statement can potentially damage
specified datafiles and redo log files. Omitting a filename can
cause loss of the data in that file, or loss of access to the entire
database. Use caution when issuing this statement and be sure
to follow the instructions in "Steps for Creating New Control
Files".

» If the database had forced logging enabled before creating the
new control file, and you want it to continue to be enabled,
then you must specify the FORCE LOGGING clause in the
CREATE CONTROLFILE statement. See "Specifying FORCE
LOGGING Mode" on page 2-18.

See Also: Oracle Database SQL Language Reference describes the
complete syntax of the CREATE CONTROLFILE statement

Managing Control Files 9-5

Creating Control Files

Steps for Creating New Control Files
Complete the following steps to create a new control file.

1. Make a list of all datafiles and redo log files of the database.

If you follow recommendations for control file backups as discussed in "Backing
Up Control Files" on page 9-8, you will already have a list of datafiles and redo
log files that reflect the current structure of the database. However, if you have no
such list, executing the following statements will produce one.

SELECT MEMBER FROM VSLOGFILE;
SELECT NAME FROM V$DATAFILE;
SELECT VALUE FROM VSPARAMETER WHERE NAME = 'control_files';

If you have no such lists and your control file has been damaged so that the
database cannot be opened, try to locate all of the datafiles and redo log files that
constitute the database. Any files not specified in step 5 are not recoverable once a
new control file has been created. Moreover, if you omit any of the files that make
up the SYSTEM tablespace, you might not be able to recover the database.

2. Shut down the database.

If the database is open, shut down the database normally if possible. Use the
IMMEDIATE or ABORT clauses only as a last resort.

3. Back up all datafiles and redo log files of the database.
4, Start up a new instance, but do not mount or open the database:

STARTUP NOMOUNT

5. Create a new control file for the database using the CREATE CONTROLFILE
statement.

When creating a new control file, specify the RESETLOGS clause if you have lost
any redo log groups in addition to control files. In this case, you will need to
recover from the loss of the redo logs (step 8). You must specify the RESETLOGS
clause if you have renamed the database. Otherwise, select the NORESETLOGS
clause.

6. Store a backup of the new control file on an offline storage device. See "Backing Up
Control Files" on page 9-8 for instructions for creating a backup.

7. Edit the CONTROL_FILES initialization parameter for the database to indicate all
of the control files now part of your database as created in step 5 (not including the
backup control file). If you are renaming the database, edit the DB_NAME
parameter in your instance parameter file to specify the new name.

8. Recover the database if necessary. If you are not recovering the database, skip to
step 9.

If you are creating the control file as part of recovery, recover the database. If the
new control file was created using the NORESETLOGS clause (step 5), you can
recover the database with complete, closed database recovery.

If the new control file was created using the RESETLOGS clause, you must specify
USING BACKUP CONTROL FILE. If you have lost online or archived redo logs or
datafiles, use the procedures for recovering those files.

See Also: Oracle Database Backup and Recovery User’s Guide for
information about recovering your database and methods of
recovering a lost control file

9-6 Oracle Database Administrator's Guide

Troubleshooting After Creating Control Files

9. Open the database using one of the following methods:

= If you did not perform recovery, or you performed complete, closed database
recovery in step 8, open the database normally.

ALTER DATABASE OPEN;

= If you specified RESETLOGS when creating the control file, use the ALTER
DATABASE statement, indicating RESETLOGS.

ALTER DATABASE OPEN RESETLOGS;

The database is now open and available for use.

Troubleshooting After Creating Control Files

After issuing the CREATE CONTROLFILE statement, you may encounter some errors.
This section describes the most common control file errors:

s Checking for Missing or Extra Files
= Handling Errors During CREATE CONTROLFILE

Checking for Missing or Extra Files

After creating a new control file and using it to open the database, check the alert log
to see if the database has detected inconsistencies between the data dictionary and the
control file, such as a datafile in the data dictionary includes that the control file does
not list.

If a datafile exists in the data dictionary but not in the new control file, the database
creates a placeholder entry in the control file under the name MISSINGnnnn, where
nnnn is the file number in decimal. MISSINGnnnn is flagged in the control file as
being offline and requiring media recovery.

If the actual datafile corresponding to MISSINGnnnn is read-only or offline normal,
then you can make the datafile accessible by renaming MISSINGnnnn to the name of
the actual datafile. If MI SSINGnnnn corresponds to a datafile that was not read-only
or offline normal, then you cannot use the rename operation to make the datafile
accessible, because the datafile requires media recovery that is precluded by the results
of RESETLOGS. In this case, you must drop the tablespace containing the datafile.

Conversely, if a datafile listed in the control file is not present in the data dictionary,
then the database removes references to it from the new control file. In both cases, the
database includes an explanatory message in the alert log to let you know what was
found.

Handling Errors During CREATE CONTROLFILE

If Oracle Database sends you an error (usually error ORA-01173, ORA-01176,
ORA-01177,0RA-01215, or ORA-01216) when you attempt to mount and open the
database after creating a new control file, the most likely cause is that you omitted a
file from the CREATE CONTROLFILE statement or included one that should not have
been listed. In this case, you should restore the files you backed up in step 3 on

page 9-6 and repeat the procedure from step 4, using the correct filenames.

Managing Control Files 9-7

Backing Up Control Files

Backing Up Control Files

Use the ALTER DATABASE BACKUP CONTROLFILE statement to back up your
control files. You have two options:

1. Back up the control file to a binary file (duplicate of existing control file) using the
following statement:

ALTER DATABASE BACKUP CONTROLFILE TO '/oracle/backup/control.bkp';

2. Produce SQL statements that can later be used to re-create your control file:
ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

This command writes a SQL script to the database trace file where it can be
captured and edited to reproduce the control file.

See Also: Oracle Database Backup and Recovery User’s Guide for
more information on backing up your control files

Recovering a Control File Using a Current Copy

This section presents ways that you can recover your control file from a current
backup or from a multiplexed copy.

Recovering from Control File Corruption Using a Control File Copy

This procedure assumes that one of the control files specified in the CONTROL_FILES
parameter is corrupted, that the control file directory is still accessible, and that you
have a multiplexed copy of the control file.

1. With the instance shut down, use an operating system command to overwrite the
bad control file with a good copy:

% cp /ul03/oracle/prod/control03.ctl /u02/oracle/prod/control02.ctl

2. Start SQL*Plus and open the database:

SQL> STARTUP

Recovering from Permanent Media Failure Using a Control File Copy

This procedure assumes that one of the control files specified in the CONTROL_FILES
parameter is inaccessible due to a permanent media failure and that you have a
multiplexed copy of the control file.

1. With the instance shut down, use an operating system command to copy the
current copy of the control file to a new, accessible location:

% cp /ull/oracle/prod/control0l.ctl /u04/oracle/prod/control03.ctl
2, Edit the CONTROL_FILES parameter in the initialization parameter file to replace
the bad location with the new location:

CONTROL_FILES = (/u0l/oracle/prod/controlOl.ctl,
/ul02/oracle/prod/control02.ctl,
/u04/oracle/prod/control03.ctl)

3. Start SQL*Plus and open the database:

SQL> STARTUP

9-8 Oracle Database Administrator's Guide

Control Files Data Dictionary Views

If you have multiplexed control files, you can get the database started up quickly by
editing the CONTROL_FILES initialization parameter. Remove the bad control file
from CONTROL_FILES setting and you can restart the database immediately. Then you
can perform the reconstruction of the bad control file and at some later time shut down
and restart the database after editing the CONTROL_FILES initialization parameter to
include the recovered control file.

Dropping Control Files

You want to drop control files from the database, for example, if the location of a
control file is no longer appropriate. Remember that the database should have at least
two control files at all times.

1. Shut down the database.

2. Edit the CONTROL_FILES parameter in the database initialization parameter file
to delete the old control file name.

3. Restart the database.

Note: This operation does not physically delete the unwanted
control file from the disk. Use operating system commands to
delete the unnecessary file after you have dropped the control file
from the database.

Control Files Data Dictionary Views

The following views display information about control files:

View Description

VSDATABASE Displays database information from the control file

V$CONTROLFILE Lists the names of control files

V$CONTROLFILE_RECORD_SECTION | Displays information about control file record
sections

V$PARAMETER Displays the names of control files as specified in

the CONTROL_FILES initialization parameter

This example lists the names of the control files.

SQL> SELECT NAME FROM V$CONTROLFILE;

/ull/oracle/prod/control0l.ctl
/u02/oracle/prod/control02.ctl
/ul03/oracle/prod/control03.ctl

Managing Control Files 9-9

Control Files Data Dictionary Views

9-10 Oracle Database Administrator's Guide

10

Managing the Redo Log

This chapter explains how to manage the online redo log. The current redo log is
always online, unlike archived copies of a redo log. Therefore, the online redo log is
usually referred to as simply the redo log.

This chapter contains the following topics:
= What Is the Redo Log?
= Planning the Redo Log
s Creating Redo Log Groups and Members
= Relocating and Renaming Redo Log Members
= Dropping Redo Log Groups and Members
» Forcing Log Switches
= Verifying Blocks in Redo Log Files
» Clearing a Redo Log File
s Redo Log Data Dictionary Views
See Also: Chapter 15, "Using Oracle-Managed Files" for

information about redo log files that are both created and managed
by the Oracle Database server

What Is the Redo Log?

The most crucial structure for recovery operations is the redo log, which consists of
two or more preallocated files that store all changes made to the database as they
occur. Every instance of an Oracle Database has an associated redo log to protect the
database in case of an instance failure.

Redo Threads

When speaking in the context of multiple database instances, the redo log for each
database instance is also referred to as a redo thread. In typical configurations, only one
database instance accesses an Oracle Database, so only one thread is present. In an
Oracle Real Application Clusters environment, however, two or more instances
concurrently access a single database and each instance has its own thread of redo. A
separate redo thread for each instance avoids contention for a single set of redo log
files, thereby eliminating a potential performance bottleneck.

This chapter describes how to configure and manage the redo log on a standard
single-instance Oracle Database. The thread number can be assumed to be 1 in all

Managing the Redo Log 10-1

What Is the Redo Log?

discussions and examples of statements. For information about redo log groups in an
Oracle Real Application Clusters environment, please refer to Oracle Real Application
Clusters Administration and Deployment Guide.

Redo Log Contents

Redo log files are filled with redo records. A redo record, also called a redo entry, is
made up of a group of change vectors, each of which is a description of a change made
to a single block in the database. For example, if you change a salary value in an
employee table, you generate a redo record containing change vectors that describe
changes to the data segment block for the table, the undo segment data block, and the
transaction table of the undo segments.

Redo entries record data that you can use to reconstruct all changes made to the
database, including the undo segments. Therefore, the redo log also protects rollback
data. When you recover the database using redo data, the database reads the change
vectors in the redo records and applies the changes to the relevant blocks.

Redo records are buffered in a circular fashion in the redo log buffer of the SGA (see
"How Oracle Database Writes to the Redo Log" on page 10-2) and are written to one of
the redo log files by the Log Writer (LGWR) database background process. Whenever a
transaction is committed, LGWR writes the transaction redo records from the redo log
buffer of the SGA to a redo log file, and assigns a system change number (SCN) to
identify the redo records for each committed transaction. Only when all redo records
associated with a given transaction are safely on disk in the online logs is the user
process notified that the transaction has been committed.

Redo records can also be written to a redo log file before the corresponding transaction
is committed. If the redo log bulffer fills, or another transaction commits, LGWR
flushes all of the redo log entries in the redo log buffer to a redo log file, even though
some redo records may not be committed. If necessary, the database can roll back these
changes.

How Oracle Database Writes to the Redo Log

The redo log of a database consists of two or more redo log files. The database requires
a minimum of two files to guarantee that one is always available for writing while the
other is being archived (if the database is in ARCHIVELOG mode). See "Managing
Archived Redo Logs" on page 11-1 for more information.

LGWR writes to redo log files in a circular fashion. When the current redo log file fills,
LGWR begins writing to the next available redo log file. When the last available redo
log file is filled, LGWR returns to the first redo log file and writes to it, starting the
cycle again. Figure 10-1 illustrates the circular writing of the redo log file. The
numbers next to each line indicate the sequence in which LGWR writes to each redo
log file.

Filled redo log files are available to LGWR for reuse depending on whether archiving
is enabled.

s If archiving is disabled (the database is in NOARCHIVELOG mode), a filled redo log
file is available after the changes recorded in it have been written to the datafiles.

s If archiving is enabled (the database is in ARCHIVELOG mode), a filled redo log file
is available to LGWR after the changes recorded in it have been written to the
datafiles and the file has been archived.

10-2 Oracle Database Administrator's Guide

What Is the Redo Log?

Figure 10-1 Reuse of Redo Log Files by LGWR

Online redo 1,4,7,...
log file
#1

LGWR

Online redo 2,5,8,...
log file
#2

Online redo
log file
#3

3,6,9,...

Active (Current) and Inactive Redo Log Files

Oracle Database uses only one redo log files at a time to store redo records written
from the redo log buffer. The redo log file that LGWR is actively writing to is called the
current redo log file.

Redo log files that are required for instance recovery are called active redo log files.
Redo log files that are no longer required for instance recovery are called inactive redo
log files.

If you have enabled archiving (the database is in ARCHIVELOG mode), then the
database cannot reuse or overwrite an active online log file until one of the archiver
background processes (ARCn) has archived its contents. If archiving is disabled (the
database is in NOARCHIVELOG mode), then when the last redo log file is full, LGWR
continues by overwriting the first available active file.

Log Switches and Log Sequence Numbers

A log switch is the point at which the database stops writing to one redo log file and
begins writing to another. Normally, a log switch occurs when the current redo log file
is completely filled and writing must continue to the next redo log file. However, you
can configure log switches to occur at regular intervals, regardless of whether the
current redo log file is completely filled. You can also force log switches manually.

Oracle Database assigns each redo log file a new log sequence number every time a
log switch occurs and LGWR begins writing to it. When the database archives redo log
files, the archived log retains its log sequence number. A redo log file that is cycled
back for use is given the next available log sequence number.

Each online or archived redo log file is uniquely identified by its log sequence number.
During crash, instance, or media recovery, the database properly applies redo log files
in ascending order by using the log sequence number of the necessary archived and
redo log files.

Managing the Redo Log 10-3

Planning the Redo Log

Planning the Redo Log

This section provides guidelines you should consider when configuring a database
instance redo log and contains the following topics:

= Multiplexing Redo Log Files

s Placing Redo Log Members on Different Disks
= Setting the Size of Redo Log Members

s Choosing the Number of Redo Log Files

= Controlling Archive Lag

Multiplexing Redo Log Files

To protect against a failure involving the redo log itself, Oracle Database allows a
multiplexed redo log, meaning that two or more identical copies of the redo log can be
automatically maintained in separate locations. For the most benefit, these locations
should be on separate disks. Even if all copies of the redo log are on the same disk,
however, the redundancy can help protect against I/O errors, file corruption, and so
on. When redo log files are multiplexed, LGWR concurrently writes the same redo log
information to multiple identical redo log files, thereby eliminating a single point of
redo log failure.

Multiplexing is implemented by creating groups of redo log files. A group consists of a
redo log file and its multiplexed copies. Each identical copy is said to be a member of
the group. Each redo log group is defined by a number, such as group 1, group 2, and
SO on.

Figure 10-2 Multiplexed Redo Log Files

T N

Disk A

N~ N~
T 155 " D

A_LOG1 \ / B_LOGH Group 1
- LGWR 2
< / g / ~ \
\Q‘/_/\ / \\ \\L/ Group 2
AloG2| o A 2:4.6,... \ B_LOG2

Group 1
Group 2

In Figure 10-2, A_LOG1 and B_LOG1 are both members of Group 1, A_LOG2 and
B_LOG2 are both members of Group 2, and so forth. Each member in a group must be
exactly the same size.

Each member of a log file group is concurrently active—that is, concurrently written to
by LGWR—as indicated by the identical log sequence numbers assigned by LGWR. In
Figure 10-2, first LGWR writes concurrently to both A_L.OG1 and B_LOG1. Then it

10-4 Oracle Database Administrator's Guide

Planning the Redo Log

writes concurrently to both A_LOG2 and B_L0G2, and so on. LGWR never writes
concurrently to members of different groups (for example, to 2_1L.0G1 and B_LOG2).

Note: Oracle recommends that you multiplex your redo log files.
The loss of the log file data can be catastrophic if recovery is
required. Note that when you multiplex the redo log, the database
must increase the amount of I/O that it performs. Depending on
your configuration, this may impact overall database performance.

Responding to Redo Log Failure

Whenever LGWR cannot write to a member of a group, the database marks that
member as INVALID and writes an error message to the LGWR trace file and to the
database alert log to indicate the problem with the inaccessible files. The specific
reaction of LGWR when a redo log member is unavailable depends on the reason for
the lack of availability, as summarized in the table that follows.

Condition LGWR Action
LGWR can successfully write to at Writing proceeds as normal. LGWR writes to the
least one member in a group available members of a group and ignores the

unavailable members.

LGWR cannot access the next group at | Database operation temporarily halts until the group
a log switch because the group needs | becomes available or until the group is archived.
to be archived

All members of the next group are Oracle Database returns an error, and the database
inaccessible to LGWR at a log switch | instance shuts down. In this case, you may need to
because of media failure perform media recovery on the database from the

loss of a redo log file.

If the database checkpoint has moved beyond the lost
redo log, media recovery is not necessary, because the
database has saved the data recorded in the redo log
to the datafiles. You need only drop the inaccessible
redo log group. If the database did not archive the
bad log, use ALTER DATABASE CLEAR
UNARCHIVED LOG to disable archiving before the log

can be dropped.
All members of a group suddenly Oracle Database returns an error and the database
become inaccessible to LGWR while it | instance immediately shuts down. In this case, you
is writing to them may need to perform media recovery. If the media

containing the log is not actually lost--for example, if
the drive for the log was inadvertently turned
off--media recovery may not be needed. In this case,
you need only turn the drive back on and let the
database perform automatic instance recovery.

Legal and lllegal Configurations

In most cases, a multiplexed redo log should be symmetrical: all groups of the redo log
should have the same number of members. However, the database does not require
that a multiplexed redo log be symmetrical. For example, one group can have only one
member, and other groups can have two members. This configuration protects against
disk failures that temporarily affect some redo log members but leave others intact.

The only requirement for an instance redo log is that it have at least two groups.
Figure 10-3 shows legal and illegal multiplexed redo log configurations. The second
configuration is illegal because it has only one group.

Managing the Redo Log 10-5

Planning the Redo Log

Figure 10-3 Legal and lllegal Multiplexed Redo Log Configuration

o [

Disk A Disk B

(2)

Group 1 A_LOG1 B_LOGH
. -

))

— R

Group 2 A_LOG2 B_LOG2
- .

@D a»

Group 3 A _LOG3 B_LOG3

ILLEGAL /\ /\

Group 2

Group 3

N~

. l Group 3

Placing Redo Log Members on Different Disks

When setting up a multiplexed redo log, place members of a group on different
physical disks. If a single disk fails, then only one member of a group becomes
unavailable to LGWR and other members remain accessible to LGWR, so the instance
can continue to function.

If you archive the redo log, spread redo log members across disks to eliminate
contention between the LGWR and ARC#n background processes. For example, if you
have two groups of multiplexed redo log members (a duplexed redo log), place each
member on a different disk and set your archiving destination to a fifth disk. Doing so
will avoid contention between LGWR (writing to the members) and ARCn (reading
the members).

10-6 Oracle Database Administrator's Guide

Planning the Redo Log

Datafiles should also be placed on different disks from redo log files to reduce
contention in writing data blocks and redo records.

Setting the Size of Redo Log Members

When setting the size of redo log files, consider whether you will be archiving the redo
log. Redo log files should be sized so that a filled group can be archived to a single
unit of offline storage media (such as a tape or disk), with the least amount of space on
the medium left unused. For example, suppose only one filled redo log group can fit
on a tape and 49% of the tape storage capacity remains unused. In this case, it is better
to decrease the size of the redo log files slightly, so that two log groups could be
archived on each tape.

All members of the same multiplexed redo log group must be the same size. Members
of different groups can have different sizes. However, there is no advantage in varying
file size between groups. If checkpoints are not set to occur between log switches,

make all groups the same size to guarantee that checkpoints occur at regular intervals.

The minimum size permitted for a redo log file is 4 MB.

See Also: Your operating system-specific Oracle documentation.
The default size of redo log files is operating system dependent.

Choosing the Number of Redo Log Files

The best way to determine the appropriate number of redo log files for a database
instance is to test different configurations. The optimum configuration has the fewest
groups possible without hampering LGWR from writing redo log information.

In some cases, a database instance may require only two groups. In other situations, a
database instance may require additional groups to guarantee that a recycled group is
always available to LGWR. During testing, the easiest way to determine whether the
current redo log configuration is satisfactory is to examine the contents of the LGWR
trace file and the database alert log. If messages indicate that LGWR frequently has to
wait for a group because a checkpoint has not completed or a group has not been
archived, add groups.

Consider the parameters that can limit the number of redo log files before setting up or
altering the configuration of an instance redo log. The following parameters limit the
number of redo log files that you can add to a database:

s The MAXLOGFILES parameter used in the CREATE DATABASE statement
determines the maximum number of groups of redo log files for each database.
Group values can range from 1 to MAXLOGFILES. When the compatibility level is
set earlier than 10.2.0, the only way to override this upper limit is to re-create the
database or its control file. Therefore, it is important to consider this limit before
creating a database. When compatibility is set to 10.2.0 or later, you can exceed the
MAXLOGFILES limit, and the control files expand as needed. If MAXL.OGFILES is
not specified for the CREATE DATABASE statement, then the database uses an
operating system specific default value.

s The MAXLLOGMEMBERS parameter used in the CREATE DATABASE statement
determines the maximum number of members for each group. As with
MAXLOGFILES, the only way to override this upper limit is to re-create the
database or control file. Therefore, it is important to consider this limit before
creating a database. If no MAXL,OGMEMBERS parameter is specified for the CREATE
DATABASE statement, then the database uses an operating system default value.

Managing the Redo Log 10-7

Planning the Redo Log

See Also:

= Your operating system specific Oracle documentation for the
default and legal values of the MAXLOGFILES and
MAXLOGMEMBERS parameters

Controlling Archive Lag

You can force all enabled redo log threads to switch their current logs at regular time
intervals. In a primary/standby database configuration, changes are made available to
the standby database by archiving redo logs at the primary site and then shipping
them to the standby database. The changes that are being applied by the standby
database can lag behind the changes that are occurring on the primary database,
because the standby database must wait for the changes in the primary database redo
log to be archived (into the archived redo log) and then shipped to it. To limit this lag,
you can set the ARCHIVE_LAG_TARGET initialization parameter. Setting this
parameter lets you specify in seconds how long that lag can be.

Setting the ARCHIVE_LAG_TARGET Initialization Parameter

When you set the ARCHIVE_LAG_TARGET initialization parameter, you cause the
database to examine the current redo log of the instance periodically. If the following
conditions are met, then the instance will switch the log:

s The current log was created prior to n seconds ago, and the estimated archival
time for the current log is m seconds (proportional to the number of redo blocks
used in the current log), where n + m exceeds the value of the
ARCHIVE_LAG_TARGET initialization parameter.

s The current log contains redo records.

In an Oracle Real Application Clusters environment, the instance also causes other
threads to switch and archive their logs if they are falling behind. This can be
particularly useful when one instance in the cluster is more idle than the other
instances (as when you are running a 2-node primary/secondary configuration of
Oracle Real Application Clusters).

The ARCHIVE_LAG_TARGET initialization parameter specifies the target of how many
seconds of redo the standby could lose in the event of a primary shutdown or failure if
the Oracle Data Guard environment is not configured in a no-data-loss mode. It also
provides an upper limit of how long (in seconds) the current log of the primary
database can span. Because the estimated archival time is also considered, this is not
the exact log switch time.

The following initialization parameter setting sets the log switch interval to 30 minutes
(a typical value).

ARCHIVE_LAG_TARGET = 1800
A value of 0 disables this time-based log switching functionality. This is the default
setting.

You can set the ARCHIVE_LAG_TARGET initialization parameter even if there is no
standby database. For example, the ARCHIVE_LAG_TARGET parameter can be set
specifically to force logs to be switched and archived.

ARCHIVE_LAG_TARGET is a dynamic parameter and can be set with the ALTER
SYSTEM SET statement.

10-8 Oracle Database Administrator's Guide

Creating Redo Log Groups and Members

Caution: The ARCHIVE_LAG_TARGET parameter must be set to
the same value in all instances of an Oracle Real Application
Clusters environment. Fai