
MONITORING AND
TUNING ORACLE -

CHAPTER 22 PART 1
This material is extracted from the first half of Chapter 22 of Configuring and Tuning
Databases on the Solaris Platform, by Allan N. Packer, (c) 2002, Sun Microsystems
Press. The second half of the chapter will appear in the August edition of Sun Blue-
Prints Online. Chapter 21, Drill-Down Monitoring of Database Servers, was presented
in the June 2002 edition of Sun BluePrints Online.

In this chapter we consider tuning recommendations for Oracle in both OLTP
and DSS environments after first examining methods of monitoring and con-
figuring Oracle. We also explore Oracle9i enhancements that support
dynamic reconfiguration, and we investigate issues related to crash recovery.

M a n a g i n g O r a c l e B e h a v i o r
Oracle can be monitored and managed with Oracle Enterprise Manager
(OEM), a powerful GUI-based tool that allows detailed monitoring of all
aspects of database behavior and that supports database management. Ora-
cle also provides access to the database information stored in its memory-res-
ident performance tables (often referred to simply as system tables). This
information can be retrieved either with SQL or supplied scripts. In this sec-
tion we discuss these monitoring methods, explore ways of displaying and
changing Oracle tunable parameters, and consider explain plans (query exe-
cution plans).

Running Administrative Commands
Starting and shutting down Oracle require special privileges, as do alter
system statements. The method of connecting to Oracle to run administra-
tive commands has changed more than once over the last few releases; the
different methods for the major versions are shown below.
1

2 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
Before Oracle7.3, the sqldba command was used as shown in the follow-
ing example based on Oracle7.1.3.

From Oracle7.3, the most commonly used command was svrmgrl , as
shown in the following example based on Oracle 8.0.5.

From Oracle9i, svrmgrl is no longer supported. The approved connection
method is based on the sqlplus command. This method also works with ear-
lier versions of Oracle, such as Oracle8 and Oracle8i. The connection can be
achieved in two steps, as shown in the example below, which is based on
Oracle8.1.5.

The same effect can be achieved with a single command, as shown in the
following example based on Oracle9.0.1.

alameda% sqldba mode=line

SQL*DBA: Release 7.1.3.2.0 - Production on Mon Aug 6 12:10:17
2001
Copyright (c) Oracle Corporation 1979, 1994. All rights reserved.

Oracle7 Server Release 7.1.3.2.0 - Production Release
With the parallel query option
PL/SQL Release 2.1.3.2.0 - Production

SQLDBA> connect internal
Connected.

1.oracle8 svrmgrl

Oracle Server Manager Release 3.0.5.0.0 - Production

(c) Copyright 1997, Oracle Corporation. All Rights Reserved.

Oracle8 Enterprise Edition Release 8.0.5.0.0 - Production
PL/SQL Release 8.0.5.0.0 - Production

SVRMGR> connect internal
Connected.

oracle8.1.5% sqlplus /nolog

SQL*Plus: Release 8.1.5.0.0 - Production on Mon Aug 6
12:16:19 2001

(c) Copyright 1999 Oracle Corporation. All rights reserved.

SQL> connect / as sysdba
Connected.

Managing Oracle Behavior 3
Throughout the rest of this chapter, I use “sysdba ” as an abbreviation of
the command sequences used to connect to Oracle to run administrative com-
mands. You should substitute the appropriate command for your Oracle
release (sqldba , svrmgrl , or sqlplus).

Viewing Current Oracle Tunable Parameters

You can display parameter settings for the current Oracle instance by run-
ning the show parameters command as sysdba . You can also display the
settings for a single parameter or a group of parameters. For example, to dis-
play all settings for parameters containing the string block , run the follow-
ing command as sysdba :

Changing Tunable Parameters for Oracle

Most Oracle tunables reside in a file called init${ORACLE_SID}.ora (usu-
ally referred to as init.ora), where $ORACLE_SID is the environment vari-
able used to set the instance ID of the current Oracle instance. The
init.ora file is typically located in the $ORACLE_HOME/dbs directory.

This file allows the database administrator to set values for the tunable
parameters that determine the behavior of the Oracle instance. System
default values are used for any parameters that are not set. The parameter
values in the init.ora file are only used when Oracle is started.

Some parameters can be changed dynamically with the set clause of the
alter system commands; the number of such parameters has increased
with recent versions of Oracle.

pae280% sqlplus "/ as sysdba"

SQL*Plus: Release 9.0.1.0.0 - Production on Mon Aug 6 12:19:15
2001

(c) Copyright 2001 Oracle Corporation. All rights reserved.

Connected to an idle instance.

SQL> show parameter block

NAME TYPE VALUE
------------------------------------ ------- ------------
db_block_buffers integer 8192
db_block_checking boolean FALSE
db_block_checksum boolean FALSE
db_block_lru_latches integer 1
db_block_max_dirty_target integer 8192
db_block_size integer 2048
db_file_multiblock_read_count integer 8
hash_multiblock_io_count integer 0
sort_multiblock_read_count integer 2

4 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
Some sites also use a config.ora file, referenced from init.ora with the
ifile parameter, to store static parameters such as db_name and
db_block_size .

Making Dynamic Parameter Changes Persistent

Oracle9i introduced a method of storing and maintaining configuration
parameters based on a new Server Parameter File (spfile). As we have seen,
tunable parameters can be changed dynamically with the set clause of the
alter system statement. The spfile allows such changes to survive a
database reboot. Without the spfile , all changes are lost when the database
is shut down; unless the database administrator remembers to separately
update the init.ora file, changes do not persistent across database reboots.

An spfile can be created from an init.ora file by the following state-
ment run as sysdba :

It is not actually necessary to supply the spfile name; if no name is spec-
ified, the name and location of the new spfile will default to
$ORACLE_HOME/dbs/spfile$ORACLE_SID.ora . The spfile is a binary file
that must not be manually edited; changes should be made with the alter
system statement instead.

After an spfile is created, the database must be shut down and restarted
before the file takes effect. If a startup command is issued without a pfile
clause, the server parameter file will be used rather than the init.ora file.
You can still boot Oracle with the init.ora file by supplying a pfile clause
identifying the init.ora file. The new SPFILE configuration parameter can
be used to specify the location of the spfile .

When parameters are modified with the alter system statement, a
scope clause can be used to specify the scope of the change. Supported val-
ues are:

• scope=spfile . The change is made to the spfile only. Changes to
both dynamic and static parameters take effect only when the database
is next started.

• scope=memory . The change is applied to the running instance only and
takes immediate effect for dynamic parameters. This option is not sup-
ported for static parameters.

• scope=both . The change is applied to both the spfile and the run-
ning instance and takes immediate effect for dynamic parameters. This
option is not supported for static parameters.

SQL> create spfile='$ORACLE_HOME/dbs/spfileaccts.ora'
 2 from pfile='$ORACLE_HOME/dbs/initaccts.ora';

File created.

Managing Oracle Behavior 5
The default scope is both if the database was started with an spfile , and
memory if it was not.

A parameter can be returned to its system default value with the following
statement:

You can create an init.ora file from an spfile with the following com-
mand:

The file names can be eliminated if default names are used for init.ora
and spfile .

Finally, the current active parameters can be viewed with the show
parameters statement or by querying the v$parameter view (or the
v$parameter2 view). The v$spparameter view displays the current con-
tents of the spfile , or NULL values if the spfile is not in use.

Viewing and Changing Hidden Parameters

As well as the init.ora parameters described above, Oracle includes a num-
ber of hidden init.ora parameters, each of which begins with an under-
score (_). These hidden parameters can be set in the init.ora file just as for
the normal parameters. There are occasions when modifying a hidden param-
eter can prove beneficial for performance reasons, and later in this chapter I
identify some situations where modifying a hidden parameter might be help-
ful.

Let me issue an Important Disclaimer, though: the parameters are hid-
den by Oracle for a reason! Before changing them on a production system,
discuss your plans with Oracle support. I will take no responsibility for data-
base corruption or other problems resulting from your unsupported use of
hidden parameters, and you should expect Oracle and Sun to take the same
position.

That said, the following query will display hidden parameters for Oracle8
and later releases:

The isdefault column shows whether the current value for this parame-
ter is the default (true or false). Note that similar information can be

alter system set parameter = '';

create pfile=’$ORACLE_HOME/dbs/backup_initaccts.ora
from spfile=’$ORACLE_HOME/dbs/spfileaccts.ora’

select a.ksppinm "name", a.ksppdesc "description",
b.ksppstvl "current", b.ksppstdf "isdefault"
from x$ksppi a, x$ksppcv b
where a.indx = b.indx
and substr(a.ksppinm,1,1) = '_'
order by a.ksppinm;

6 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
obtained from Oracle7, although that release only provides the x$ksppi view,
and not the x$ksppcv view.

On the book website (http://www.solarisdatabases.com) I have included a
script called _params that simplifies this process for Oracle8 and later
releases. If run with no parameters, it displays all hidden parameters. If a
string is passed to the script, it displays all hidden parameters matching the
string.

Monitoring Error Messages
Oracle writes error, warning, and notification messages to the
alert${ORACLE_SID}.log file, located in the $ORACLE_HOME/rdbms/log
directory (unless an alternate directory has been specified with the
BACKGROUND_DUMP_DEST parameter). This file is often referred to simply as
alert.log . The alert log is a good first place to visit when trying to under-
stand and resolve problems with an Oracle instance.

Using Oracle Enterprise Manager
Oracle Enterprise Manager (OEM) provides access to database monitoring
and administration capabilities with an intuitive graphical user interface.
OEM displays the buffer cache hit rate and many other important Oracle
metrics.

Since the Oracle8.1.6 release, the OEM console runs on Solaris as well as
on Windows platforms. To invoke the OEM console, run the oemapp com-
mand from the command line (after first ensuring that your DISPLAY envi-
ronment variable is set appropriately):

It may first be necessary to run the Enterprise Manager Configuration
Assistant program, emca, to create a repository.

Rather than considering OEM in any detail, in this chapter I focus on the
lower-level data provided by scripts in the hope that such a focus will offer
more insight into the underlying mechanisms used by Oracle.

Monitoring Oracle System Tables
Oracle maintains a number of internal views that record statistics about the
database and offers scripts that present the same information in a more
understandable fashion.

v$ Views
Oracle’s internal views have names starting with v$. Although they appear to
be tables, they are actually internal memory structures that are not persis-
tent—that is, they only exist while the instance is active.

oracle% oemapp console &

Managing Oracle Behavior 7
A few examples of v$ views are given in the following list:

• v$system_event: Shows a summary of all the events waited for in the
instance since it started.

• v$session_event: Shows a summary of all the events the session has
waited for since it started.

• v$session_wait: Shows the current waits for a session. This view is
an important starting point for finding current bottlenecks.

• v$sysstat : Shows system statistics.
• v$sesstat : Shows system session statistics.
• v$session : Shows user-session-related information.
• v$parameter : Shows session parameters. To see the current parameter

settings, try running the following command as sysdba :
select name, value from v$parameter

The v$system_parameter view shows systemwide parameters for the
instance.

• v$waitstat : Shows buffer wait statistics (the number of times a user
process had to wait for various buffers).

• v$filestat : Shows file access statistics.

We will encounter a number of other v$ views later in this chapter.

The utlbstat and utlestat Scripts
Although all the v$ views can be accessed with standard SQL statements,
Oracle provides a simpler mechanism in the form of two scripts, utlb-
stat.sql and utlestat.sql . The first is run at the start of a measure-
ment interval, and the second at the end of the measurement interval. The
results are saved in a file called report.txt in the current directory. Many
of the more important v$ views are represented in this report. Before run-
ning the scripts, make sure that Oracle is collecting timed statistics. If the
timed_statistics parameter is set to false , you can change it dynami-
cally as sysdba with the following command:

The parameter can be reset to false in the same way after the scripts
have been run.

You can also permanently set the timed_statistics parameter to true
in init.ora. The CPU overhead associated with timed statistics is small,
and Oracle recommends setting the parameter permanently.

The way to run the utlbstat and utlestat scripts is shown below:

alter system set timed_statistics = true;

oracle$ sqlplus ”/ as sysdba”
<< Various messages deleted >>
SQL> @$ORACLE_HOME/rdbms/admin/utlbstat
<< Pause for a suitable period of time... >>
<< Database activity during this period will be reported >>
SQL> @$ORACLE_HOME/rdbms/admin/utlestat

8 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
A sample report.txt for Oracle9i is presented later in this chapter, along
with detailed comments and monitoring suggestions.

The Statspack Scripts
Oracle8.1.6 also introduced the statspack scripts. These scripts report infor-
mation similar to that reported by the utlbstat and utlestat scripts,
although more data is collected and some useful ratios are calculated for you.
The utlbstat /utlestat scripts will eventually be phased out—this chapter
focuses on their output rather than statspack output because they cover a
broader range of releases.

For detailed information about installing and running the statspack
scripts, refer to $ORACLE_HOME/rdbms/admin/spdoc.txt in the Oracle9i
release and $ORACLE_HOME/rdbms/admin/statspack.doc in the Oracle8i
release.

After installation (carried out with the spcreate.sql script for Oracle9i
and with the statscre.sql script for Oracle8i), as sysdba you create snap-
shots in the following way:

To create a report, run the spreport.sql script (Oracle9i) or the
statsrep.sql script (Oracle8i). The following example shows the appropri-
ate syntax for Oracle9i.

As this example illustrates, the ? character can be used instead of
$ORACLE_HOME within sqlplus .

This script prompts for the IDs of two previously created snapshots and,
after prompting for a report file name, creates a report based on activity
occurring between the two snapshots.

Generating Explain Plans

Before retrieving data in response to a query, the database optimizer deter-
mines how best to access the data. In practice, especially for DSS queries,
there is often more than one path the optimizer can choose (for example,
either to retrieve the data with an index or directly from the base table). The
sequence of steps the optimizer chooses is referred to as a query execution
plan, or explain plan (the role of the database optimizer is discussed in detail
in Chapter 8).

In an ideal world, the optimizer would always choose the optimal plan. The
real world is rarely so straightforward, unfortunately. So because the query
plan is so important, especially to DSS performance, it is often necessary to
provide the optimizer with hints that can be embedded in SQL statements.

SQL> connect perfstat/perfstat
SQL> execute statspack.snap;

SQL> @?/rdbms/admin/spreport

Managing Oracle Behavior 9
As previously stated, it is beyond the scope of this book to cover applica-
tion and SQL tuning. Nonetheless, it is sometimes useful to know how to gen-
erate an execution plan for an SQL statement.

As of Oracle 7.3, generating an explain plan from sqlplus is as easy as
running the set autotrace on command before running the query. Note
that if the plan_table has not already been created, you will need to run
the $ORACLE_HOME/rdbms/admin/utlxplan.sql script first:

An example of autotrace is shown below.

SQL> @?/rdbms/admin/utlxplan

Table created.

SQL> set autotrace on
SQL> select scale, power, company
 2 from tpcd
 3 where company like ’%Sun%’
 4 order by scale, power;

 SCALE POWER COMPANY
---------- ---------- ------------------------------
 30 702.8 Sun
 100 13738.7 Sun
 300 2009.5 Sun
 300 3270.6 Sun
 300 8113.2 Sun
 1000 8870.6 Sun
 1000 12931.9 Sun
 1000 70343.7 Sun
 1000 121824.7 Sun

9 rows selected.

Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE
 1 0 SORT (ORDER BY)
 2 1 TABLE ACCESS (FULL) OF ’TPCD’

Statistics
--
 203 recursive calls
 4 db block gets
 58 consistent gets
 17 physical reads
 60 redo size
 894 bytes sent via SQL*Net to client
 715 bytes received via SQL*Net from client
 4 SQL*Net roundtrips to/from client
 5 sorts (memory)
 0 sorts (disk)
 9 rows processed

10 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
Explain plans can also be generated with the utlxplan script. This
method, which also works with earlier versions of Oracle, is illustrated below.
Once again, if the plan_table has not already been created, you will need to
run the utlxplan.sql script, as shown.

When using this method of printing explain plans, it is simplest to execute
the following SQL command between explain plans:

Note that the first statement, which runs the utlxplan script, only needs
to be run once (it creates the PLAN_TABLE table).

As of Oracle 7.2, the select statement above can be enhanced as follows:

SQL> @$ORACLE_HOME/rdbms/admin/utlxplan

Table created.

SQL> explain plan
 2 set Statement_ID = ’TEST’
 3 for
 4 select a.invoice_date
 5 from gl_je_lines a, gl_je_headers b
 6 where je_line_num = 1
 7 and a.je_header_id = b.je_header_id
 8 order by invoice_date desc;

Explained.

SQL> select
 2 LPAD(’ ’,2*Level)||
 3 Operation||’ ’||Options||’ ’||
 4 decode(Object_Owner,NULL,’’,
 5 Object_Owner||’. ’||Object_Name)||’ ’||
 6 decode(Optimizer,NULL,’’,Optimizer)
 7 Q_Plan
 8 from PLAN_TABLE
 9 connect by prior ID = Parent_ID and Statement_ID =’TEST’
 10 start with ID = 0 and Statement_ID = ’TEST’;

Q_PLAN
--
 SELECT STATEMENT RULE
 SORT ORDER BY
 NESTED LOOPS
 TABLE ACCESS FULL GL. GL_JE_HEADERS ANALYZED
 TABLE ACCESS BY ROWID GL. GL_JE_LINES ANALYZED
 INDEX UNIQUE SCAN GL. GL_JE_LINES_U1 ANALYZED

6 rows selected.

delete from PLAN_TABLE where Statement_ID = ’TEST’;

select
LPAD(’ ’,2*Level)||

Managing Oracle Behavior 11
Oracle9i introduced a new view—v$sql_plan —that provides access to the
execution plans for recently executed cursors. The information provided is
similar to that produced by an explain plan statement. Unlike the
explain plan statement, which shows a theoretical plan, the v$sql_plan
view shows the actual plan that was used.

Calculating the Buffer Cache Hit Rate
As we saw in Chapter 7, the buffer cache hit rate plays an important role in
database performance, especially for OLTP workloads. The Oracle buffer
cache is sized according to the db_block_buffers parameter in init.ora
(or the db_cache_size parameter in Oracle9i).

The statspack report shows the buffer cache hit rate (under Buffer Hit
Ratio for Oracle8.1.6, and under Buffer Hit % for later releases). The
report.txt file produced by the utlbstat and utlestat scripts does not
calculate the hit rate, although all the necessary information is there.

The Buffer Cache Hit Rate Formula
The buffer cache hit rate can be calculated from the variables listed below
(not all of them are used for all Oracle releases):

• physical reads : The number of read requests that required a block to
be read from disk.

• physical reads direct : The number of read requests that read a
block from disk, bypassing the buffer cache. Reads carried out during
parallel table scans, for example, bypass the buffer cache.

• physical reads direct (LOB) : The number of large-object (LOB)
read requests that read a block from disk, bypassing the buffer cache.

• db block gets : Incremented when blocks are read for update and
when segment header blocks are read.

• consistent gets : The number of times a consistent read was
requested for a block.
This statistic measures the number of block accesses involving System
Change Number (SCN) checks. The SCN is a unique number assigned
by Oracle to data file and block headers in ascending sequence to iden-

Operation||’ ’||Options||’ ’||
decode(Object_Owner,NULL,’’,
Object_Owner||’. ’||Object_Name)||’ ’||
decode(Optimizer,NULL,’’,Optimizer)||’ ’||
decode(Cost,NULL,’’,
 ’ Cost=’||Cost||
 ’ Rows Expected=’||Cardinality)
Q_Plan
from PLAN_TABLE
connect by prior ID = Parent_ID and Statement_ID = ’TEST’
start with ID = 0 and Statement_ID = ’TEST’;

12 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
tify transaction modifications. It is checked to ensure that data is up-to-
date. If the SCN for a row has changed since the transaction started,
then the row must have been updated by another transaction; the
before-image of the row will have been stored in a rollback segment.
The SCN is incremented as changes are made to data. Each row (and
the block in which it is stored) holds a copy of the SCN that was current
when the row was last changed. When the block is flushed to disk by the
Database Writers, the SCN on disk will match the SCN for the same
block in the buffer cache.
Oracle uses the SCN to ensure that data remains consistent and to
assist in recovery after a crash. During roll-forward recovery, if the SCN
for a block on disk is the same or later than the SCN in the redo log,
there is no need to roll forward the transaction.

Figure 1 shows the formula for calculating the cache hit rate before the
Oracle8i releases.

 Figure 1 Oracle Buffer Cache Hit Rate Formula before Oracle8i

Figure 2 shows the formula for calculating the cache hit rate for the
Oracle8.1.5 and Oracle8.1.6 releases.

 Figure 2 Oracle Buffer Cache Hit Rate Formula for Oracle8.1.5/8.1.6

For Oracle8.1.7 and Oracle9i, use the formula shown in Figure 3 to calcu-
late the buffer cache hit rate.

 Figure 3 Oracle Buffer Cache Hit Rate Formula for Oracle8.1.7/9i

Cache Hit Rate Prediction
Oracle9i introduced a new view—v$db_cache_advice —to help with the
challenging task of determining the optimal size for the buffer cache. Before
this view can be used, the following statement must be executed:

alter system set db_cache_advice = on;

cachehitrate 1 physicalreads
dbblockgets consistentgets+()

--- 
 – 

  100×=

cachehitrate 1 physicalreads physicalreadsdirect–
dbblockgets consistentgets physicalreadsdirect–+()

--- 
 – 

  100×=

1 physicalreads physicalreadsdirect– physicalreadsdirectLOB–
dbblockgets consistentgets physicalreadsdirect– physicalreadsdirectLOB–+()

--- 
 – 

  100×

Monitor ing Oracle wi th ut lbsta t/ut lestat 13
This statement will cause approximately 100 bytes to be allocated in the
shared pool per buffer and will also result in a small CPU overhead. The
shared pool memory can be preallocated by setting the db_cache_advice
parameter to ready or on in init.ora before the database is started. The
default value for db_cache_advice is off .

After a workload has been running for a time, the view can be queried. The
collecting of statistics is terminated when the db_cache_advice parameter
is set to off or to ready .

The v$db_cache_advice view reports the estimated number of physical
reads that would have been required for 20 different buffer cache sizes, rang-
ing from 10% of the current size to 200% of the current size. The information
helps you to assess the likely impact on the I/O subsystem of either decreas-
ing or increasing the size of the buffer cache.

M o n i t o r i n g O r a c l e w i t h u t l b s t a t / u t l e s t a t
To illustrate the process of monitoring Oracle, we examine an Oracle9i
report.txt file created with the utlbstat.sql and utlestat.sql
scripts (described in “The utlbstat and utlestat Scripts” on page 7). The report
is interspersed with comments about some of the highlights; my objective is
to explore the main statistics that might require action rather than to
attempt to explain every item.

Note that although we follow the order used by report.txt , the best way
to begin understanding instance behavior is to examine wait events. The
statspack scripts recognize this by reporting the top five wait events almost
at the beginning of the report.

The Library Cache
The first section of the report deals with the library cache. The library cache
stores SQL and PL/SQL statements for reuse by other applications (in the
SQL AREA), and also caches other objects for Oracle’s internal use.

SQL> column library format a12 trunc;
SQL> column pinhitratio heading ‘PINHITRATI’;
SQL> column gethitratio heading ‘GETHITRATI’;
SQL> column invalidations heading ‘INVALIDATI’;
SQL> set numwidth 10;
SQL> Rem Select Library cache statistics.The pin hit rate should be high.
SQL> select namespace library,
 2 gets,
 3 round(decode(gethits,0,1,gethits)/decode(gets,0,1,gets),3)
 4 gethitratio,
 5 pins,
 6 round(decode(pinhits,0,1,pinhits)/decode(pins,0,1,pins),3)
 7 pinhitratio,
 8 reloads, invalidations
 9 from stats$lib;

14 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
Gets measure the number of times Oracle set up a reference to objects in
the cache, and pins measure the number of times objects were referenced.
The gethitratio and pinhitratio should be as close to 1 as possible (at
least .95), and reloads should be no more than 2% of gets . These elements
cannot be individually tuned, but increasing the size of the shared pool (the
shared_pool_size parameter in init.ora) can help improve the hit
ratios.

User Connections

The next section of the report deals with database connections.

LIBRARY GETS GETHITRATI PINS PINHITRATI RELOADS INVALIDATI
------------ -------- ---------- --------- ---------- -------- ----------
BODY 1172 1 1172 .999 1 0
CLUSTER 0 1 0 1 0 0
INDEX 818 .001 818 .001 0 0
JAVA DATA 0 1 0 1 0 0
JAVA RESOURC 0 1 0 1 0 0
JAVA SOURCE 0 1 0 1 0 0
OBJECT 0 1 0 1 0 0
PIPE 0 1 0 1 0 0
SQL AREA 517004 .986 2246870 .991 9115 4878
TABLE/PROCED 26899 .974 1739839 .999 1254 0
TRIGGER 0 1 0 1 0 0

11 rows selected.

SQL> column “Statistic” format a27 trunc;
SQL> column “Per Transaction” heading “Per Transact”;
SQL> column ((start_users+end_users)/2) heading “((START_USER”
SQL> set numwidth 12;
SQL> Rem The total is the total value of the statistic between the time
SQL> Rem bstat was run and the time estat was run. Note that the estat
SQL> Rem script logs on to the instance so the per_logon statistics will
SQL> Rem always be based on at least one logon.
SQL> select ‘Users connected at ‘,to_char(start_time, ‘dd-mon-yy
hh24:mi:ss’),’:’,start_users from stats$dates;

‘USERSCONNECTEDAT’

TO_CHAR(START_TIME

‘
-

START_USERS

Users connected at 17-aug-01 10:01:30 : 41

SQL> select ‘Users connected at ‘,to_char(end_time, ‘dd-mon-yy
hh24:mi:ss’),’:’,end_users from stats$dates;

‘USERSCONNECTEDAT’

TO_CHAR(END_TIME,’

‘
-

 END_USERS

Users connected at 17-aug-01 10:31:24 : 41

SQL> select ‘avg # of connections: ‘,((start_users+end_users)/2) from
stats$dates;

‘AVG#OFCONNECTIONS:’

((START_USER

avg # of connections: 41

Monitor ing Oracle wi th ut lbsta t/ut lestat 15
The number of connections at the start and end of the monitoring period
and the average number of connections all help track user connectivity. Note
that connections do not necessarily equate to users, though, since some users
may have more than one connection and administrative scripts (including the
one used to create this report) also count as connections. Conversely, transac-
tion monitors allow multiple users to share a single connection.

The duration of the monitoring period is also shown at the end of the
report. In this case it was almost exactly 30 minutes.

Database Statistics
The statistics below include some of the most important measures to be moni-
tored. If you examine the SQL command that generated these results, you
will notice that only statistics with non-zero values are reported. Conse-
quently, if you run utlbstat /utlestat again later, you might find that new
rows appear in this section of the report and other rows may have disap-
peared.

SQL> select n1.name “Statistic”,
 2 n1.change “Total”,
 3 round(n1.change/trans.change,2) “Per Transaction”,
 4 round(n1.change/((start_users + end_users)/2),2) “Per Logon”,
 5 round(n1.change/(to_number(to_char(end_time, ‘J’))*60*60*24 -
 6 to_number(to_char(start_time, ‘J’))*60*60*24 +
 7 to_number(to_char(end_time, ‘SSSSS’)) -
 8 to_number(to_char(start_time, ‘SSSSS’)))
 9 , 2) “Per Second”
 10 from
 11 stats$stats n1,
 12 stats$stats trans,
 13 stats$dates
 14 where
 15 trans.name=’user commits’
 16 and n1.change != 0
 17 order by n1.name;

Statistic

Total

Per
Transact

Per Logon

Per Second

CR blocks created 11909 .04 290.46 6.64
Cached Commit SCN reference 158232 .49 3859.32 88.2
DBWR buffers scanned 590396 1.82 14399.9 329.09
DBWR checkpoint buffers wri 704570 2.18 17184.63 392.74
DBWR checkpoints 2 0 .05 0
DBWR free buffers found 402083 1.24 9806.9 224.13
DBWR lru scans 22320 .07 544.39 12.44
DBWR make free requests 22320 .07 544.39 12.44
DBWR summed scan depth 590396 1.82 14399.9 329.09
DBWR transaction table writ 68 0 1.66 .04
DBWR undo block writes 32991 .1 804.66 18.39

16 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
SQL*Net roundtrips to/from 421556 1.3 10281.85 234.98
background checkpoints comp 2 0 .05 0
background checkpoints star 2 0 .05 0
background timeouts 3947 .01 96.27 2.2
branch node splits 1210 0 29.51 .67
buffer is not pinned count 7280085 22.48 177563.05 4058.02
buffer is pinned count 1530511 4.73 37329.54 853.13
bytes received via SQL*Net 101119623 312.28 2466332.27 56365.45
bytes sent via SQL*Net to c 235602857 727.59 5746411.15 131328.24
calls to get snapshot scn: 501750 1.55 12237.8 279.68
calls to kcmgas 408813 1.26 9971.05 227.88
calls to kcmgcs 83029 .26 2025.1 46.28
cleanouts and rollbacks - c 8645 .03 210.85 4.82
cleanouts only - consistent 4922 .02 120.05 2.74
cluster key scan block gets 6431181 19.86 156858.07 3584.83
cluster key scans 6431132 19.86 156856.88 3584.8
commit cleanout failures: b 1 0 .02 0
commit cleanout failures: b 69 0 1.68 .04
commit cleanout failures: c 303 0 7.39 .17
commit cleanout failures: c 676 0 16.49 .38
commit cleanouts 4006646 12.37 97723.07 2233.36
commit cleanouts successful 4005597 12.37 97697.49 2232.77
consistent changes 11959 .04 291.68 6.67
consistent gets 10345798 31.95 252336.54 5766.89
consistent gets - examinati 2841078 8.77 69294.59 1583.66
cursor authentications 26 0 .63 .01
data blocks consistent read 11954 .04 291.56 6.66
db block changes 13297163 41.06 324321.05 7412.02
db block gets 9020588 27.86 220014.34 5028.2
deferred (CURRENT) block cl 2208212 6.82 53858.83 1230.89
dirty buffers inspected 42360 .13 1033.17 23.61
enqueue releases 423982 1.31 10341.02 236.34
enqueue requests 423997 1.31 10341.39 236.34
enqueue waits 11430 .04 278.78 6.37
execute count 2275386 7.03 55497.22 1268.33
free buffer inspected 42398 .13 1034.1 23.63
free buffer requested 763898 2.36 18631.66 425.81
hot buffers moved to head o 831102 2.57 20270.78 463.27
immediate (CR) block cleano 13567 .04 330.9 7.56
immediate (CURRENT) block c 530423 1.64 12937.15 295.66
leaf node splits 66072 .2 1611.51 36.83
logons cumulative 2 0 .05 0
messages received 320324 .99 7812.78 178.55
messages sent 320326 .99 7812.83 178.55
native hash arithmetic exec 4836175 14.94 117955.49 2695.75
no work - consistent read g 6989419 21.58 170473.63 3896
opened cursors cumulative 121 0 2.95 .07
parse count (failures) 1 0 .02 0
parse count (hard) 5 0 .12 0
parse count (total) 120 0 2.93 .07
physical reads 678283 2.09 16543.49 378.08
physical reads direct 94 0 2.29 .05
physical writes 935315 2.89 22812.56 521.36
physical writes direct 94 0 2.29 .05
physical writes non checkpo 603082 1.86 14709.32 336.17
prefetched blocks 1558 0 38 .87

Monitor ing Oracle wi th ut lbsta t/ut lestat 17
Note that four sets of values are reported for each statistic:

• Total. This value shows the total number of events of this type during
the monitoring interval.

• Per Transaction. This column is normalized according to the number
of user commits (you will notice a value of 1 for that row). Note that
the rate of user commits can provide an alternate measure of applica-
tion workload in the absence of higher-level information about business
transactions (such as the number of invoices processed during a speci-
fied period of time).

• Per Logon. Normalizing the statistic according to the number of logons
(user connections) can help in predicting the impact of changing the
number of users and user connections. Bear in mind, though, that
logged-on connections may not all be active.

recursive calls 2034976 6.28 49633.56 1134.32
redo blocks written 4683822 14.46 114239.56 2610.83
redo buffer allocation retr 72 0 1.76 .04
redo entries 6864072 21.2 167416.39 3826.13
redo log space requests 72 0 1.76 .04
redo size 2276348068 7029.82 55520684.59 1268867.37
redo synch writes 328737 1.02 8017.98 183.24
redo wastage 46160068 142.55 1125855.32 25730.25
redo writes 186021 .57 4537.1 103.69
rollback changes - undo rec 39610 .12 966.1 22.08
rollbacks only - consistent 3257 .01 79.44 1.82
rows fetched via callback 173830 .54 4239.76 96.9
serializable aborts 12052 .04 293.95 6.72
session logical reads 19366372 59.81 472350.54 10795.08
session pga memory 50759728 156.76 1238042.15 28294.16
session pga memory max 50653084 156.43 1235441.07 28234.72
session uga memory 38770192 119.73 945614.44 21611.03
session uga memory max 38828836 119.91 947044.78 21643.72
shared hash latch upgrades 450999 1.39 10999.98 251.39
shared hash latch upgrades 2 0 .05 0
sorts (disk) 857 0 20.90 .48
sorts (memory) 71791 .22 1751 40.02
sorts (rows) 1924399 5.94 46936.56 1072.69
summed dirty queue length 263847 .81 6435.29 147.07
switch current to new buffe 11 0 .27 .01
table fetch by rowid 201420 .62 4912.68 112.27
table scan blocks gotten 3002 .01 73.22 1.67
table scan rows gotten 948 0 23.12 .53
table scans (short tables) 12 0 .29 .01
transaction rollbacks 4917 .02 119.93 2.74
user calls 421017 1.3 10268.71 234.68
user commits 323813 1 7897.88 180.5
user rollbacks 13640 .04 332.68 7.6
write clones created in for 356 0 8.68 .2

100 rows selected.

18 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
• Per Second. This value helps put the totals in perspective. For exam-
ple, the I/O capability of a disk is usually expressed in I/Os per second,
so knowing that 935,315 physical writes were completed is not as useful
as knowing that on average 521 physical writes were completed per sec-
ond. Early versions of Oracle did not include this useful column.

The Buffer Cache Hit Rate
Using the Oracle9i cache hit rate equation presented earlier in this chapter
and the information reported above, we can calculate the cache hit rate for
the monitoring interval:

Buffer Cache Hit Rate
= (1 − ((678283 − 94 − 0) ÷ (9020588 + 10345798 − 94 − 0)))

× 100
= 96.5%

Given a cache hit rate of 96.5%, the miss rate is 3.5%—a miss rate that
could probably be reduced.

Is the hit rate acceptable? Given the rate of physical reads (approximately
380 per second) and the rate of physical writes (approximately 520 per sec-
ond), the average disk I/O rate is 900 I/Os per second. That load could proba-
bly be handled by fifteen 7200 rpm disks or twelve 10000 rpm disks, although
it would be wise to configure up to 50% more disks to allow for peaks of I/O
activity.

If 20 to 25 disks are in use for the database and the I/O is balanced evenly
across all the disks, it may not be necessary to try to improve the cache hit
rate. On the other hand, if fewer disks are in use and they are heavily uti-
lized, reducing the miss rate might significantly improve performance, pro-
vided adequate memory is available for the purpose (never increase the size
of the buffer cache so much that applications begin to page). Remember, too,
that increasing the cache size will make little change to the rate of physical
writes.

The issues related to monitoring the buffer cache hit rate and sizing the
buffer cache are explored in more detail in Chapter 7 of Configuring and Tun-
ing Databases on the Solaris Platform, beginning with “Monitoring the Buffer
Cache” on page 76.

Other Statistics to Monitor
We conclude this section of the report.txt file by considering a few high-
lights from the long list of statistics reported by utlbstat and utlestat .

• dirty buffers inspected . This statistic measures the number of
times a shadow process found a dirty buffer on the least recently used
(LRU) list. Normally the Database Writers find such dirty buffers and
move them to a linked list of dirty buffer headers. If the Database Writ-
ers are working effectively, this statistic should be zero (and therefore
not appear in the report) or have a low value. Adding more Database
Writers (the db_writer_processes parameter in init.ora) should

Monitor ing Oracle wi th ut lbsta t/ut lestat 19
help resolve a problem of this type. In this case, dirty buffers have been
found 24 times a second, or on average for one in eight transactions, sug-
gesting that the number of Database Writers could be usefully
increased.

• redo log space requests . This statistic measures the number of
times shadow processes stalled waiting for log file space. A common
myth is that the statistic reports the number of times a process stalls
during commits because there was not enough room in the log buffer.
Stalls can occur during checkpoints.

• sorts (disk) and sorts (memory) . The first of these statistics mea-
sures the number of sorts that spill to the temporary tablespace because
they could not fit in the memory allocated by the sort_area_size
parameter in init.ora . The second statistic shows the number of sorts
that were able to complete in memory without resorting to the tempo-
rary tablespace. The report above shows 857 sorts to disk over a 30-
minute period compared to 71,791 sorts in memory. So just over 1% of
all sorts spilled to disk, at a rate of less than one per minute. There is
little reason to increase sort_area_size in this case.

• table scans (short tables) and table scans (long tables) . The
first of these statistics shows the number of table scans carried out on
short tables (less than or equal to 5 blocks in length) or on tables that
have been flagged as cached.

Tables can be specified as cached when the table is created, or later with
the alter table command from sqlplus (for example, alter table
customer cache;). Normally, blocks read during a full table scan are
marked as least recently used, and the space they consume is quickly
reclaimed. By contrast, blocks read from cached tables during a table
scan are treated as most recently used blocks. Caching small, heavily
accessed tables can improve performance in some cases.

The second statistic shows the number of table scans on larger tables
(none appeared in the report). Large table scans should be avoided in
OLTP environments since they impact overall system performance and
lower the buffer cache hit rate. Creating appropriate indexes or modify-
ing the application can overcome the problem.

Systemwide Wait Events

You can dynamically view the events reported in the next section of the
report.txt file by querying the v$system_event and v$session_event
views as sysdba . The report below breaks down the wait events into two cat-
egories: nonbackground processes and background processes, where back-
ground processes are Oracle system processes like PMON, SMON, and LGWR. The
wait events are sorted in descending order of total time spent waiting (in
units of hundredths of seconds).

20 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
SQL> column “Event Name” format a32 trunc;
SQL> set numwidth 13;
SQL> Rem System wide wait events for non-background processes (PMON,
SQL> Rem SMON, etc). Times are in hundredths of seconds. Each one of
SQL> Rem these is a context switch which costs CPU time. By looking at
SQL> Rem the Total Time you can often determine what is the bottleneck
SQL> Rem that processes are waiting for. This shows the total time spent
SQL> Rem waiting for a specific event and the average time per wait on
SQL> Rem that event.
SQL> select n1.event “Event Name”,
 2 n1.event_count “Count”,
 3 n1.time_waited “Total Time”,
 4 round(n1.time_waited/n1.event_count, 2) “Avg Time”
 5 from stats$event n1
 6 where n1.event_count > 0
 7 order by n1.time_waited desc;

Event Name Count Total Time Avg Time
-------------------------------- ------------- ------------- ------------
db file sequential read 679244 2231864 3.29
SQL*Net message from client 423411 2164652 5.11
log file sync 329826 516878 1.57
enqueue 11472 71489 6.23
latch free 1736 2194 1.26
db file parallel read 40 481 12.03
log file switch completion 53 393 7.42
SQL*Net message to client 423405 327 0
control file sequential read 83 119 1.43
buffer busy waits 379 113 .3
SQL*Net break/reset to client 2284 61 .03

11 rows selected.

SQL> Rem System wide wait events for background processes (PMON,SMON,etc)
SQL> select n1.event “Event Name”,
 2 n1.event_count “Count”,
 3 n1.time_waited “Total Time”,
 4 round(n1.time_waited/n1.event_count, 2) “Avg Time”
 5 from stats$bck_event n1
 6 where n1.event_count > 0
 7 order by n1.time_waited desc;

Event Name Count Total Time Avg Time
-------------------------------- ------------- ------------- ------------
rdbms ipc message 331631 779378 2.35
db file parallel write 229188 603152 2.63
pmon timer 597 175435 293.86
smon timer 5 150002 30000.4
log file parallel write 186846 80079 .43
db file scattered read 377 2168 5.75
control file parallel write 613 1021 1.67
latch free 155 248 1.6
LGWR wait for redo copy 747 142 .19
control file sequential read 96 101 1.05
async disk IO 100 63 .63
db file sequential read 7 10 1.43
log file single write 4 4 1
direct path read 94 2 .02
log file sequential read 2 1 .5
direct path write 94 0 0

16 rows selected.

Monitor ing Oracle wi th ut lbsta t/ut lestat 21
The SQL*Net message from client wait event simply means that the
shadow process is waiting for the client to do something. Consequently, sub-
stantial wait times for this event do not usually indicate a problem (unless
the waits are due to network delays). The converse event, SQL*Net message
to client , shows the delay when shadow processes send messages to cli-
ents; large delays could indicate network problems.

Wait events that should be monitored include those in the following list:

• free buffer waits . A lot of time spent waiting for free buffers sug-
gests that the Database Writers are not flushing dirty buffers fast
enough to keep up with demand. This event does not appear in the
report above, but if it should appear as a major wait event, try increas-
ing the db_writer_processes parameter in init.ora .

• buffer busy waits . Buffer busy waits occur when shadow processes
were unable to access a buffer because it was in use by another process.
The report above shows a tiny number of waits of this type.
If buffer busy waits are one of the top wait events in terms of percent-
age of time waited, check the v$waitstat view to find out what type of
blocks are affected (this information is also presented later in
report.txt , in “Buffer Busy Wait Statistics” on page 27).
You can also check the v$session_wait view to find out the file ID (the
P1 column) and the block ID (the P2 column) of the affected block. The
file ID can be used to query the dba_extents view (you will need to add
a where file_id = n clause, where n is the file ID from the
v$session_wait view) to get the details of the segment that the block
ID falls within.
Each data block supports a limited number of concurrent accesses for
update or delete operations; a table with a large number of rows per
block and high concurrency can experience frequent buffer busy wait
events as a result. The INITRANS parameter determines the number of
concurrent accesses (the default is 1 for tables and 2 for indexes). If the
segment identified in v$session_wait belongs to a table or index, you
could increase the INITRANS storage parameter. The INITRANS param-
eter can only be set during table or index creation, so it may be neces-
sary to drop and recreate the table or index.
For tables subject to high insert concurrency, increase the FREELISTS
storage parameter to improve performance if the buffer busy wait
events are related to inserts. The FREELISTS parameter also must be
specified at create time.

• enqueues . Although this wait event appears in the report above, the
number of events and wait time do not suggest a problem. If enqueue
waits represent a high proportion of the time spent waiting, you can try
to identify the enqueue waited for. Oracle9i provides a view—
v$enqueue_stat —for this purpose; see statspack for more informa-
tion before Oracle9i. Enqueue waits are a symptom of some other prob-
lem.

22 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
Latch Wait Events

Latch wait information can be obtained from the v$latch view. When a latch
is not available, in some cases the requesting process may spin (that is, con-
sume CPU) for a time before trying again, depending on the nature of the
latch request. If the latch is still unavailable, the process will go to sleep and
try again when it wakes up. The next section of report.txt deals with
latches of this type. The same information can also be obtained from the
name, gets , misses , and sleeps columns in the v$latch view.

The subsequent section deals with no-wait latches. Processes unable to
acquire latches requested in this way do not sleep, but time out and retry
immediately. The immediate_gets and immediate_misses columns in
v$latch also provide this information.

When monitoring latches, check the hit ratio, which indicates the degree of
contention on the latch. Check also the number of gets, which indicates how
hot (that is, how much in demand) a latch is, and the number of sleeps, which
indicates the number of times the process had to sleep while waiting for the
latch.

The worst-case scenario with latches is that a process will be preempted by
the operating system while holding a high-contention latch. Database perfor-
mance for some Solaris systems (particularly midrange systems) improves if
the CPU allocation available to processes is increased. This issue and its reso-
lution are discussed in “The TS Class” on page 220 of Configuring and Tun-
ing Databases on the Solaris Platform.

Latches with Waits

The first section of the latch report deals with latches with waits.

SQL> column latch_name format a18 trunc;
SQL> set numwidth 11;
SQL> Rem Latch statistics. Latch contention will show up as a large value
for
SQL> Rem the ‘latch free’ event in the wait events above.
SQL> Rem Sleeps should be low.The hit_ratio should be high.
SQL> select name latch_name, gets, misses,
 2 round((gets-misses)/decode(gets,0,1,gets),3)
 3 hit_ratio,
 4 sleeps,
 5 round(sleeps/decode(misses,0,1,misses),3) “SLEEPS/MISS”
 6 from stats$latches
 7 where gets != 0
 8 order by name;

LATCH_NAME

GETS

MISSES

HIT-RATIO

SLEEPS

SLEEPS/MISS

FIB s.o chain latc 8 0 1 0 0
FOB s.o list latch 75 0 1 0 0
active checkpoint 135993 82 .999 4 .049

Monitor ing Oracle wi th ut lbsta t/ut lestat 23
No-Wait Latches

The remainder of this section of the report deals with no-wait latches. It is
followed by suggestions on latch monitoring.

cache buffers chai 67102082 5408 1 131 .024
cache buffers lru 1211707 386 1 8 .021
channel handle poo 4 0 1 0 0
channel operations 582 0 1 0 0
checkpoint queue l 5377441 1310 1 92 .07
child cursor hash 12 0 1 0 0
dml lock allocatio 110 0 1 0 0
enqueue hash chain 859206 1146 .999 117 .102
enqueues 1047133 820 .999 23 .028
event group latch 2 0 1 0 0
hash table column 4 0 1 0 0
ktm global data 5 0 1 0 0
latch wait list 958 0 1 0 0
library cache 4660957 12857 .997 465 .036
list of block allo 892019 301 1 44 .146
loader state objec 4 0 1 0 0
messages 1158227 551 1 42 .076
multiblock read ob 834 0 1 0 0
ncodef allocation 29 0 1 0 0
post/wait queue la 655696 1722 .997 152 .088
process allocation 2 0 1 0 0
process group crea 4 0 1 0 0
redo allocation 7233318 20538 .997 374 .018
redo copy 136 80 .412 93 1.163
redo writing 1166363 1394 .999 140 .1
row cache objects 121417 7 1 0 0
sequence cache 3 0 1 0 0
session allocation 334950 295 .999 7 .024
session idle bit 1009326 512 .999 26 .051
session switching 29 0 1 0 0
shared pool 224 0 1 0 0
sort extent pool 34 0 1 0 0
transaction alloca 1263687 2378 .998 77 .032
transaction branch 29 0 1 0 0
undo global data 1376947 2983 .998 77 .026
user lock 4 0 1 0 0

39 rows selected.

SQL> set numwidth 16
SQL> Rem Statistics on no_wait gets of latches. A no_wait get does not
SQL> Rem wait for the latch to become free, it immediately times out.
SQL> select name latch_name,
 2 immed_gets nowait_gets,
 3 immed_miss nowait_misses,
 4 round((immed_gets/(immed_gets+immed_miss)), 3)
 5 nowait_hit_ratio
 6 from stats$latches
 7 where immed_gets + immed_miss != 0
 8 order by name;

LATCH_NAME NOWAIT_GETS NOWAIT_MISSES NOWAIT_HIT_RATIO
------------------ ---------------- ---------------- ----------------
cache buffers chai 806427 38 1
cache buffers lru 763359 1090 .999
process allocation 2 0 1
redo copy 6861266 55595 .992

24 Monitor ing and Tuning Oracle - Chapter 22 Par t 1
The hit_ratio should be close to 1. The following list indicates the main
latches to monitor:

• cache buffers chains . When searching for a block in the cache, a
shadow process uses a hashing algorithm to find the appropriate hash
bucket and then follows a hash chain to scan for the block. Fewer hash
buckets means longer hash chains, more searching, and higher conten-
tion on the cache buffers chains latch. Inefficient SQL statements,
such as heavily accessed statements using indexes that are not highly
selective, can cause high contention for this latch.

Identify the scale of any potential problem with the following SQL (for
Oracle8 and later releases) as sysdba :

• cache buffers lru chains . This latch protects the LRU chain. High
contention could indicate that the Database Writers are not operating
efficiently, for example, due to a slow or overloaded I/O subsystem.

• library cache . A number of factors contribute to high library cache
latch contention. Sometimes you can alleviate the contention simply by
increasing the size of the shared pool (the shared_pool_size parame-
ter in init.ora). Other changes that might be necessary to relieve
library cache contention include those in the following list:

• Keep large SQL statements into the shared pool (with the
dbms_shared_pool.keep procedure).

• Use bind variables to reduce SQL statement parsing. For example,
the following two statements are parsed and stored independently
in the shared pool, even though they are almost identical:

The preferred approach is to use a bind variable (for example,
:cust_id) and to assign the value for cust_id to the bind vari-
able. The two statements can then be consolidated into a single
statement:

Use of bind variables reduces latch contention and also reduces the
pressure on free space in the shared pool.

• Fully qualify object names. For example, use:

select count(*) from x$bh;
select dbarfil “File”, dbablk “Block”, count(*)
 from x$bh group by dbafil, dbablk
 having count(*) > 1;

select cust_name from customer
 where cust_id = 12345;
select cust_name from customer
 where cust_id = 23456;

select cust_name from customer
 where cust_id = :cust_id;

select * from accts.customer;

Monitor ing Oracle wi th ut lbsta t/ut lestat 25
rather than:

• Flush the shared pool if fragmentation occurs (run the alter
system flush shared_pool command as sysdba). Fragmenta-
tion problems are typically accompanied by the ORA-4031 error
message: More shared memory is needed than was allocated
in the shared pool . Note that flushing the shared pool provides
short-term relief at the cost of a short-term performance hit but
does not solve the problem. The previous suggestions should pro-
vide longer-term solutions.

• redo copy . If the hit ratio is low for the redo copy latch, it may be
possible to reduce the contention by increasing the number of redo
copy latches with the hidden _log_simultaneous_copies parame-
ter in init.ora . Normally this parameter is based on the number of
CPUs on the system. Do not change this parameter in Oracle9i. For
more information on hidden parameters, including caveats, refer to
“Viewing and Changing Hidden Parameters” on page 5.

The second half of Chapter 22 will appear in the August edition of Sun BluePrints
Online. The chapter is extracted from Configuring and Tuning Databases on the
Solaris Platform, by Allan N. Packer, (c) 2002, Sun Microsystems Press.

select * from customer;

26 Monitor ing and Tuning Oracle - Chapter 22 Par t 1

	Monitoring and Tuning Oracle - Chapter 22 Part 1
	Managing Oracle Behavior
	Running Administrative Commands
	Viewing Current Oracle Tunable Parameters
	Changing Tunable Parameters for Oracle
	Making Dynamic Parameter Changes Persistent
	Viewing and Changing Hidden Parameters
	Monitoring Error Messages
	Using Oracle Enterprise Manager
	Monitoring Oracle System Tables
	v$ Views
	The utlbstat and utlestat Scripts
	The Statspack Scripts

	Generating Explain Plans
	Calculating the Buffer Cache Hit Rate
	The Buffer Cache Hit Rate Formula
	Figure�1 Oracle Buffer Cache Hit Rate Formula before Oracle8i
	Figure�2 Oracle Buffer Cache Hit Rate Formula for Oracle8.1.5/8.1.6
	Figure�3 Oracle Buffer Cache Hit Rate Formula for Oracle8.1.7/9i

	Cache Hit Rate Prediction

	Monitoring Oracle with utlbstat/utlestat
	The Library Cache
	User Connections
	Database Statistics
	The Buffer Cache Hit Rate
	Other Statistics to Monitor

	Systemwide Wait Events
	Latch Wait Events
	Latches with Waits
	No-Wait Latches
	Monitoring and Tuning Oracle - Chapter 22 Part 2

	Monitoring Oracle with utlbstat/utlestat
	Buffer Busy Wait Statistics
	Rollback Segments
	Modified init.ora Parameters
	Dictionary Cache Statistics
	Tablespace and Database File I/O Activity
	Date, Time, and Version Details

	Monitoring the Shared Pool
	Tuning Oracle
	Tuning init.ora
	Setting Tunable Parameters for OLTP Workloads
	Setting Tunable Parameters for DSS Workloads

	Applying Other Tuning Tips
	Using Oracle with File Systems
	Asynchronous I/O with File Systems
	Recommended Settings with File Systems

	Optimizing Oracle Load Performance
	Load the Database Tables
	Analyze the Database Tables
	Create the Indexes
	Analyze the Indexes

	Planning for Indexes
	Using an SGA Larger Than 2 Gbytes

	Reconfiguring Oracle9i Dynamically
	Oracle9i Dynamic System Global Area
	How Oracle Chooses Between ISM and DISM
	The Benefits of Using Dynamic SGA

	Recovering Oracle
	The Influence of Checkpoints on Recovery Time
	Figure�4 Data disk activity during and between checkpoints

	The Influence of Checkpoints on Performance
	The v$instance_recovery view
	Other Parameters Influencing Recovery

