
N12346C
VERITAS NetBackup™ 5.1
DataStore SDK

Programmer’s Guide for XBSA™ 1.1.0

Disclaimer

The information contained in this publication is subject to change without notice. VERITAS Software
Corporation makes no warranty of any kind with regard to this manual, including, but not limited to,
the implied warranties of merchantability and fitness for a particular purpose. VERITAS Software
Corporation shall not be liable for errors contained herein or for incidental or consequential damages
in connection with the furnishing, performance, or use of this manual.

VERITAS Legal Notice

Copyright © 2002-2004 VERITAS Software Corporation. All rights reserved. VERITAS, the VERITAS

Logo, and all other VERITAS product names and slogans are trademarks or registered trademarks of

VERITAS Software Corporation. VERITAS, VERITAS NetBackup, the VERITAS logo, Reg. U.S. Pat. &

Tm. Off. Other product names and/or slogans mentioned herein may be trademarks or registered

trademarks of their respective companies.

Portions of this software are derived from the RSA Data Security, Inc. MD5 Message-Digest

Algorithm. Copyright 1991-92, RSA Data Security, Inc. Created 1991. All rights reserved.

VERITAS Software Corporation

350 Ellis Street

Mountain View, CA 94043

USA

Phone 650–527–8000 Fax 650–527–2908

www.veritas.com

Third-Party Copyrights
ACE 5.2A: ACE(TM) is copyrighted by Douglas C.Schmidt and his research group at Washington University and University of California, Irvine,
Copyright (c) 1993-2002, all rights reserved.

IBM XML for C++ (XML4C) 3.5.1: Copyright (c) 1999,2000,2001 Compaq Computer Corporation; Copyright (c) 1999,2000,2001 Hewlett-Packard
Company; Copyright (c) 1999,2000,2001 IBM Corporation; Copyright (c) 1999,2000,2001 Hummingbird Communications Ltd.; Copyright (c)
1999,2000,2001 Silicon Graphics, Inc.; Copyright (c) 1999,2000,2001 Sun Microsystems, Inc.; Copyright (c) 1999,2000,2001 The Open Group; All
rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, provided that the above copyright notice(s) and this permission
notice appear in all copies of the Software and that both the above copyright notice(s) and this permission notice appear in supporting
documentation.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/).

JacORB 1.4.1: The licensed software is covered by the GNU Library General Public License, Version 2, June 1991.

Open SSL 0.9.6: This product includes software developed by the OpenSSL Project * for use in the OpenSSL Toolkit. (http://www.openssl.org/)

TAO (ACE ORB) 1.2a: TAO(TM) is copyrighted by Douglas C. Schmidt and his research group at Washington University and University of
California, Irvine, Copyright (c) 1993-2002, all rights reserved.
ii NetBackup XBSA Programmer’s Guide

Contents

Tables . ix

Preface . xi

What Is In This Manual? .xii

Getting Help . xiii

Glossary .xv

Conventions .xv

Chapter 1. Requirements .1

Supported Systems . 1

Requirements for Compiling . 3

Dependencies . 3

Chapter 2. Introduction to NetBackup XBSA .5

What is NetBackup XBSA? . 5

What Does NetBackup XBSA Do? . 5

Terminology . 6

Important Concepts . 7

Resources . 7

Chapter 3. How to Set Up the SDK .9

How to Install the SDK . 9

Installation Requirements . 9

Installation Instructions for UNIX Platforms . 9

Installation Instructions for Windows Platforms . 10

iii

Configuration . 10

Description of XBSA SDK Package . 10

Library Files . 11

Header Files . 12

Chapter 4. Using the NetBackup XBSA Interface . 13

Getting Help with the API . 13

NetBackup XBSA Data Structures . 13

Object Data . 13

Object Descriptors . 14

Query Descriptors . 16

Buffers . 17

Buffer Size . 17

Private Buffer Space . 18

Use of BSA_DataBlock32 in BSASendData() . 19

Use of BSA_DataBlock32 in BSAGetData() . 19

Shared Memory . 20

NetBackup XBSA Environment . 21

Environment Variable Definitions . 22

Extended Environment Variable Definitions . 24

XBSA Sessions and Transactions . 32

Sessions . 32

Initialization and Termination . 32

Authentication . 32

Transactions . 33

Backup Transaction . 33

Restore Transaction . 34

Delete Transaction . 34

Query Transaction . 35

Creating a NetBackup XBSA Application . 36

iv NetBackup XBSA Programmer’s Guide

Initiating a Session . 36

Modifying XBSA Environment within a session . 36

Session Example . 37

Backup - Creating an object . 38

Creating an Object . 39

NetBackup Object Ownership . 41

Creating an Empty Object . 43

Backup Example . 44

Query - Finding an object descriptor . 46

Querying for an object . 46

Query Example . 47

Restore - Retrieving an object’s data . 49

Restoring an object . 49

Redirected Restore to a Different Client . 50

Restore Example . 50

Multiple Object Restore . 53

Multiple Object Restore Example . 54

Delete - Deleting an Object . 59

Delete Example . 60

Logging and NetBackup . 61

Client in a Cluster . 61

Performance Considerations . 62

Chapter 5. How to Build an XBSA Application .63

Getting Help . 63

Flags and Defines . 63

How to Build in Debug Mode . 63

How to Debug the Application . 63

Static Libraries . 64

Dynamic Libraries . 64

Contents v

End-user Configuration . 65

Chapter 6. How to Run a NetBackup XBSA Application . 67

Creating a NetBackup Policy . 67

Selecting a Storage Unit . 67

Adding New Schedules . 67

Adding Script Files to the Files List . 68

Adding New Clients . 68

Running a NetBackup XBSA Application . 68

Backups and Restores Initiated by NetBackup (via a script) 68

Backups and Restores from the Command Line . 69

Chapter 7. API Reference . 71

Error Messages . 71

Function Calls . 73

Conventions . 75

Function Specifications . 76

BSABeginTxn . 76

BSACreateObject . 78

BSADeleteObject . 82

BSAEndData . 84

BSAEndTxn . 85

BSAGetData . 87

BSAGetEnvironment . 89

BSAGetLastError . 91

BSAGetNextQueryObject . 93

BSAGetObject . 95

BSAInit . 98

BSAQueryApiVersion . 101

BSAQueryObject . 102

BSAQueryServiceProvider . 105

vi NetBackup XBSA Programmer’s Guide

BSASendData . 107

BSATerminate . 109

NBBSAAddToMultiObjectRestoreList . 110

NBBSAEndGetMultipleObjects . 111

NBBSAGetEnv . 112

NBBSAGetErrorString . 113

NBBSAGetMultipleObjects . 114

NBBSAGetServerError . 116

NBBSALogMsg . 118

NBBSASetEnv . 119

NBBSAUpdateEnv . 121

NBBSAValidateFeatureId . 122

Type Definitions . 123

Enumerated Types . 124

BSA_CopyType . 124

BSA_ObjectStatus . 124

BSA_ObjectType . 125

BSA_Vote . 126

Constant Values . 126

Data Structures . 127

BSA_ApiVersion . 127

BSA_DataBlock32 . 127

BSA_ObjectDescriptor . 129

BSA_ObjectName . 131

BSA_ObjectOwner . 132

BSA_QueryDescriptor . 132

BSA_SecurityToken . 134

Chapter 8. How to Use the Sample Files .135

What the Sample Files Do . 135

Contents vii

Sample Programs . 135

Sample Scripts . 136

Description of Sample Files . 137

How to Build the Sample Programs . 137

Chapter 9. Support and Updates . 141

Index . 143

viii NetBackup XBSA Programmer’s Guide

Tables

Chapters in This Manual .xii

Conventions. xvi

Platform Support Matrix for NetBackup XBSA SDK . 1

XBSA Terms. 6

SDK/DataStore/XBSA Directories . 11

Header Files . 12

BSA_ObjectDescriptor Attributes. 14

BSA_QueryDescriptor Attributes. 16

Parameters in the BSA.DATABlock32 Structure . 18

XBSA Environment Variables . 22

NetBackup Environment Variables . 22

XBSA Environment Variables for NetBackup Configuration Values 24

Extended Environment Variables . 24

Required BSA.ObjectDescriptor Fields . 39

Error Messages for NetBackup XBSA Functions . 71

XBSA Function Specifications. 73

NetBackup XBSA Function Extensions . 74

XBSA Type Definitions . 123

BSA_CopyType Enumeration Values . 124

BSA_ObjectStatus Enumeration Values . 125

BSA_ObjectType Enumeration Values . 125

BSA_Vote Enumeration Values . 126

XBSA Constant Values . 126

ix

BSA_ApiVersion Structure Fields . 127

BSA_DataBlock32 Structure Fields . 128

BSA_ObjectDescriptor Structure Fields . 129

BSA_ObjectName Structure Fields . 131

BSA_ObjectOwner Structure Fields . 132

BSA_QueryDescriptor Structure Fields . 133

Description of Sample Files . 137

x NetBackup XBSA Programmer’s Guide

Preface

This document describes the NetBackup XBSA Application Programming Interface (API)
and how applications or facilities needing data storage management for backup or archive
purposes can use this interface to create a backup or archive application that
communicates with NetBackup.

The NetBackup XBSA API specification is based on the Open Group Technical Standard
Systems Management: Backup Services API (XBSA). Although every effort has been made
to conform to this specification, there are some cases that do not. These exceptions are
noted throughout the document. See “Resources” on page 7 for more information on this
specification.

This document is intended for software developers who are or will be creating a backup,
archive, or other application that will be using NetBackup for data storage management.

This guide assumes some knowledge of NetBackup. While it is possible to create a fairly
generic XBSA Application, there are certain environment variables and running
instructions that are specific to NetBackup. While most of these do not need to be used,
they can greatly enhance the usability of the application. Refer to the NetBackup System
Administrator's Guide for UNIX, Volume I, or NetBackup System Administrator's Guide for
Windows, Volume I, to find information on specific topics such as policies, schedules and
other concepts specific to NetBackup.
xi

What Is In This Manual?
What Is In This Manual?

Chapters in This Manual

Chapter Description

“Requirements”

“Introduction to NetBackup XBSA”

“How to Set Up the SDK”

“Using the NetBackup XBSA Interface”

“How to Build an XBSA Application”

“How to Run a NetBackup XBSA
Application”

“API Reference”

“How to Use the Sample Files”

“Support and Updates”

Describes the requirements for compiling and running the
XBSA Application.

Describes summarizes the functionality that XBSA
provides, and explains important concepts and
terminology regarding it.

Describes the SDK package and how to install and
configure it.

Describes the XBSA Data Structures, Environment,
Sessions and Transactions, and how to create an
application.

Explains how to build an XBSA application.

Explains how to run an XBSA application that you have
created.

Describes the type definitions and data structures used by
the NetBackup XBSA Interface.

Explains how to use the XBSA sample files included in the
SDK.

Briefly describes how to obtain support and updates for
this product.
xii NetBackup XBSA Programmer’s Guide

Getting Help
Getting Help
VERITAS offers you a variety of support options.

Accessing the VERITAS Technical Support Web Site

The VERITAS Support Web site allows you to:

◆	 obtain updated information about NetBackup, including system requirements,
supported platforms, and supported peripherals

◆ contact the VERITAS Technical Support staff and post questions to them

◆ get the latest patches, upgrades, and utilities

◆ view the NetBackup Frequently Asked Questions (FAQ) page

◆ search the knowledge base for answers to technical support questions

◆ receive automatic notice of product updates

◆ find out about NetBackup training

◆ read current white papers related to NetBackup

The address for the VERITAS Technical Support Web site follows:

◆ http://support.veritas.com

Subscribing to VERITAS Email Notification Service

Subscribe to the VERITAS Email notification service to be informed of software alerts,
newly published documentation, Beta programs, and other services.

Go to http://support.veritas.com. Select a product and click “E-mail Notifications” on the
right side of the page. Your customer profile ensures you receive the latest VERITAS
technical information pertaining to your specific interests.

Accessing VERITAS Telephone Support

Telephone support for NetBackup is only available with a valid support contract. To
contact VERITAS for technical support, dial the appropriate phone number listed on the
Technical Support Guide included in the product box and have your product license
information ready for quick navigation to the proper support group.
Preface xiii

Getting Help
▼ To locate the telephone support directory on the VERITAS web site

1. Open http://support.veritas.com in your web browser.

2.	 Click the Phone Support icon. A page that contains VERITAS support numbers from
around the world appears.

Accessing VERITAS E-mail Support

▼ To contact support using E-mail on the VERITAS web site

1. Open http://support.veritas.com in your web browser.

2.	 Click the E-mail Support icon. A brief electronic form will appear and prompt you to:

◆ Select a language of your preference

◆ Select a product and a platform

◆ Associate your message to an existing technical support case

◆ Provide additional contact and product information, and your message

3. Click Send Message.

Contacting VERITAS Licensing

For license information call 1-800-634-4747 option 3, fax 1-650-527-0952, or e-mail
amercustomercare@veritas.com.
xiv NetBackup XBSA Programmer’s Guide

Glossary
Glossary
If you encounter unfamiliar terminology, consult the NetBackup online glossary. The
glossary contains terms and definitions for NetBackup and all additional NetBackup
options and agents.

The NetBackup online glossary is included in the NetBackup help file.

▼ To access the NetBackup online glossary

1. In the NetBackup Administration Console, click Help > Help Topics.

2. Click the Contents tab.

3. Click Glossary of NetBackup Terms.

Use the scroll function to navigate through the glossary.

Conventions
The following conventions apply throughout the documentation set.

Product-Specific Conventions

The following term is used in the NetBackup 5.1 documentation to increase readability
while maintaining technical accuracy.

◆ Microsoft Windows, Windows

Terms used to describe a specific product or operating system developed by
Microsoft, Inc. Some examples you may encounter in NetBackup documentation are,
Windows servers, Windows 2000, Windows Server 2003, Windows clients, Windows
platforms, or Windows GUI.

When Windows or Windows servers is used in the documentation, it refers to all of
the currently supported Windows operating systems. When a specific Windows
product is identified in the documentation, only that particular product is valid in that
instance.

For a complete list of Windows operating systems and platforms that NetBackup
supports, refer to the NetBackup Release Notes for UNIX and Windows or go to the
VERITAS support web site at http://www.support.veritas.com.
Preface xv

Conventions
Typographical Conventions

Here are the typographical conventions used throughout the manuals:

Conventions

Convention Description

GUI Font	 Used to depict graphical user interface (GUI) objects, such as fields,
listboxes, menu commands, and so on. For example: Enter your
password in the Password field.

Italics	 Used for placeholder text, book titles, new terms, or emphasis. Replace
placeholder text with your specific text. For example: Replace filename
with the name of your file. Do not use file names that contain spaces.

This font is also used to highlight NetBackup server-specific or operating
system-specific differences. For example: This step is only applicable for
NetBackup Enterprise Server.

Code	 Used to show what commands you need to type, to identify pathnames
where files are located, and to distinguish system or application text that
is displayed to you or that is part of a code example.

Key+Key	 Used to show that you must hold down the first key while pressing the
second key. For example: Ctrl+S means hold down the Ctrl key while
you press S.

You should use the appropriate conventions for your platform. For example, when
specifying a path, use backslashes on Microsoft Windows and slashes on UNIX.
Significant differences between the platforms are noted in the text.

Tips, notes, and cautions are used to emphasize information. The following samples
describe when each is used.

Tip Used for nice-to-know information, like a shortcut.

Note	 Used for important information that you should know, but that shouldn’t cause any
damage to your data or your system if you choose to ignore it.

Caution	 Used for information that will prevent a problem. Ignore a caution at your own
risk.
xvi NetBackup XBSA Programmer’s Guide

Conventions
Command Usage

The following conventions are frequently used in the synopsis of command usage.

brackets []

The enclosed command line component is optional.

Vertical bar or pipe (|)

Separates optional arguments from which the user can choose. For example, when a
command has the following format:

command arg1|arg2

In this example, the user can use either the arg1 or arg2 variable.

Navigating Multiple Menu Levels

When navigating multiple menu levels, a greater-than sign (>) is used to indicate a
continued action.

The following example shows how the > is used to condense a series of menu selections
into one step:

❖	 Select Start > Programs > VERITAS NetBackup > NetBackup Administration
Console.

The corresponding actions could be described in more steps as follows:

1. Click Start in the task bar.

2. Move your cursor to Programs.

3. Move your cursor to the right and highlight VERITAS NetBackup.

4.	 Move your cursor to the right. First highlight and then click NetBackup
Administration Console.
Preface xvii

Conventions
xviii NetBackup XBSA Programmer’s Guide

Requirements
1

This chapter describes the requirements for compiling and running the XBSA Application.

Supported Systems
The following operating systems are supported by the NetBackup XBSA SDK.

Platform Support Matrix for NetBackup XBSA SDK

Hardware Type Operating System and Version

HP9000 - PA-RISC

HP Itanium

HP Tru64/Alpha

IBM

IBM

IBM

Intel 32-bit/Windows

Intel 32-bit/Windows

Intel 32-bit/Windows

Intel 32-bit/Windows

Intel 32-bit/Windows

Intel 32-bit/Windows

Intel 64-bit/Windows

HP-UX 11.0, 11.11 (11.11i) (32/64 bit)

HP-UX 11.23

TRU64 5.1, 5.1a, 5.1b

AIX 4.3.3.10

AIX 5.1 RS/6000, SP, pSeries (32/64 bit)

AIX 5.2 RS/6000, SP, pSeries (32/64 bit)

Windows NT 4.0, SP6A

Windows 2000, SP4

Windows 2000 SAK

Windows XP, SP1

Windows 2003

Windows Storage Server 2003

Windows XP SP1

1

Supported Systems
Platform Support Matrix for NetBackup XBSA SDK (continued)

Hardware Type Operating System and Version

Intel 64-bit/Windows

Intel 32-bit/Linux

Intel 32-bit/Linux

Intel 32-bit/Linux

Intel 32-bit/Linux

Intel 32-bit/Linux

Intel 64-bit/Linux

Intel 64-bit/Linux

SGI

Sun

Windows 2003

Linux Red Hat 8.0, 9.0

Linux Red Hat AS/ES 2.1

Linux Red Hat WS 2.1

Linux SuSE 8.1, 8.2

Linux SuSE SLES 8

Linux RedHat AS/ES 3.0

Linux SUSE SLES 8.0

IRIX 6.5.18 - 6.5.20 (32/64 bit)

Solaris 7, 8, 9 (32/64 bit)
2 NetBackup XBSA Programmer’s Guide

Requirements for Compiling
Requirements for Compiling
◆ ANSI-compatible compiler

Dependencies

Developing an Application

◆ NetBackup

◆ DataStore License Key

◆ NetBackup DataStore SDK installed

Running an Application

◆ NetBackup client installed (on client running XBSA application)

◆ DataStore License Key (on NetBackup server)

Chapter 1, Requirements 3

Dependencies
4 NetBackup XBSA Programmer’s Guide

Introduction to NetBackup XBSA
2

This chapter summarizes the functionality that XBSA provides and explains important
concepts and terminology regarding it.

What is NetBackup XBSA?
XBSA is an Open Group Technical Standard defining a Backup Services API (XBSA). The
XBSA specification consists of source procedure calls, type definitions, data structures,
and return codes to be used by client applications to use a backup service, NetBackup, to
store and manage data.

The NetBackup XBSA is an API to NetBackup developed to the XBSA specifications. The
NetBackup XBSA interface has extended the XBSA specifications to make it easier to use
and enhance performance when used with NetBackup.

NetBackup XBSA is provided as a Software Developers Kit (SDK) that includes the header
files and libraries required to create an XBSA application.

What Does NetBackup XBSA Do?
The NetBackup XBSA interface allows an XBSA application to create, query, retrieve, and
delete data objects using NetBackup for data storage. The operations on the objects use
the rules and policies defined and enforced by NetBackup. Examples of these rules and
policies include what type of media the objects are stored on, number of copies, retention
policies, scheduled operations, etc.

Objects are CREATED and RETRIEVED as a stream of data. Each object also has a set of
attributes that are used to describe the object. These attributes include a CopyId, created
by the NetBackup XBSA interface, which uniquely defines the object. Other attributes are
specified and used by the XBSA application to describe the object. When retrieving an
object, the object is returned as a data stream and it is up to the XBSA application to
restore it to its original form.
5

Terminology
An XBSA application can also QUERY the NetBackup XBSA interface for objects that it
owns. This query is based on a subset of the attributes that were specified. The result of a
query is a list, possibly empty, of objects and their attributes.

Objects can also be DELETED when they are no longer needed by the XBSA application.
Deleting an object prevents it from being retrieved or queried but does not necessarily
delete the data. When the actual data gets deleted is a function of NetBackup.

Terminology
Fundamental terms necessary to understand this NetBackup XBSA are described below.

XBSA Terms

Term Definition

XBSA Application

NetBackup XBSA
Interface

NetBackup XBSA
Environment

NetBackup XBSA
Session

NetBackup XBSA
Object

Application-specific software that uses the NetBackup XBSA API to request
NetBackup services. Typically an XBSA Application is tightly bound to a
user application (such as a DBMS) or an operating system service (such as a
file system).

The NetBackup software that communicates with NetBackup to carry out
the functions defined by this specification.

The NetBackup XBSA Environment is the environment that exists between
the NetBackup XBSA Interface and the XBSA Application. This environment
is defined by a NetBackup XBSA session. NetBackup XBSA Environment
variables are used to pass specific NetBackup information between the
XBSA Application and the NetBackup XBSA Interface. Setting platform
environment variables (such as getenv or setenv) has no effect on the
NetBackup XBSA Environment.

A NetBackup XBSA session is a logical connection between a XBSA
Application and NetBackup XBSA Interface. A session begins with a call to
BSAInit() and ends with a call to BSATerminate(). Nested sessions are not
supported.

The NetBackup XBSA API uses an object-based paradigm. Every data object
visible and transferred at the NetBackup XBSA Interface is a NetBackup
XBSA Object. It is up to the XBSA Application to define the objects that it
will backup and restore.
6 NetBackup XBSA Programmer’s Guide

Important Concepts
Important Concepts
To get the most out of using the NetBackup XBSA interface, a working knowledge of
NetBackup is required. Allowing the XBSA application to control some of the NetBackup
concepts such as policy, schedule, timeouts, multiplexing, etc., will allow the XBSA
application to be more robust and perform better in a NetBackup environment. Other
items, such as storage units, determine where data gets stored, which could affect the
XBSA application.

Note, however, that the NetBackup XBSA interface does not provide an interface for
managing the configuration, media, jobs, etc. These types of operations must be done
through other NetBackup command line or graphical interfaces.

Resources
The NetBackup XBSA API specification is based on the Open Group Technical Standard
for Systems Management: Backup Services API (XBSA) Document Number: C425. More
information on this standard can be found at
http://www.opengroup.org/products/publications/catalog/c425.htm.f
Chapter 2, Introduction to NetBackup XBSA 7

http://www.opengroup.org/products/publications/catalog/c425.htm

Resources
8 NetBackup XBSA Programmer’s Guide

How to Set Up the SDK
3

How to Install the SDK

The NetBackup for DataStore SDK is released on a separate CD from the rest of
NetBackup. You must have this CD to install the SDK. Once installed, the files should be
moved to the environment where the development of the XBSA application is to be done.

Installation Requirements
◆	 NetBackup 5.1 server software is installed and operational on the server where the

SDK will be installed.

◆	 There must be adequate disk space (approximately 20 M) on the server that will
receive the software.

Installation Instructions for UNIX Platforms

▼ To install the SDK on UNIX platforms

1. Log in as the root user on the machine.

If you are already logged in, but are not the root user, execute the following
command.

su - root

2. Make sure a valid license key for NetBackup DataStore has been registered.

Refer to the NetBackup System Administrator's Guide for UNIX, Volume I, or NetBackup
System Administrator's Guide for Windows, Volume I, for information on adding license
keys.

3. Insert the NetBackup DataStore SDK CD-ROM into the drive.

4. Change the working directory to the CD-ROM directory.
9

Configuration
cd /CD_mount_point

5.	 Load and install the software by executing the install script.

./install

A prompt will appear asking if the package is correct.

Answer y.

The SDK files will be extracted into the directory
install_path/netbackup/openv/sdk.

File version_dstore will be extracted into directory install_path/openv/share.

Installation Instructions for Windows Platforms

▼ To install the SDK on Windows platforms

1. Insert the CD-ROM into the drive.

◆	 On systems with AutoPlay enabled for CD-ROM drives, the install program starts
automatically.

◆	 On systems that have AutoPlay disabled, click the Start button and choose Run.
Type D:\Autorun\AutoRunI.exe, where D:\ is your CD-ROM drive.

Configuration
Creating an XBSA application using the NetBackup XBSA SDK should require a
minimum of setup. The SDK is installed as read only in the NetBackup directory. It is
recommended that the files that are going to be used be moved to the development
environment of the application.

The sample directory provides a Makefile for UNIX platforms and one for Windows
platforms. They will create valid executables for the sample programs, but they should
be used as guides only and the developers should use the compile options and libraries
that are optimal for their application. The XBSA libraries and header files themselves do
not require any special options.

Description of XBSA SDK Package
The NetBackup SDK contains the libraries with the XBSA interfaces for each of the
platforms that the SDK supports. There are header files that are required to compile an
XBSA Application. The SDK is installed in the NetBackup directory, either
10 NetBackup XBSA Programmer’s Guide

Library Files
/usr/openv/netbackup/sdk/DataStore/XBSA on UNIX or
install_directory\VERITAS\NetBackup\sdk\DataStore\XBSA on Windows.
This directory will contain all files necessary to build an XBSA Application.

The package contains the following directories.

SDK/DataStore/XBSA Directories

Directory Description

samples Contains sample programs and scripts.

lib Contains the library files for each supported system.

include Contains the header files.

Library Files
The NetBackup XBSA SDK contains the archive libraries for each of the systems. Installed
with the NetBackup client is an XBSA shared object library. This allows the developer to
choose the method of binding for each application. Both of these libraries contain all XBSA
functions and all external references.

The XBSA libraries are found in the directory sdk/DataStore/XBSA/lib. In this
directory is a directory for each hardware type. Within each of these directories is a
directory for each supported operating system level. For UNIX operating systems, there is
the libxbsa.a library. For the Windows operating systems, there is both an xbsa.lib
and a xbsas.lib. The xbsa.lib was generated when creating the xbsa.dll and
xbsas.lib is a full static library.
Chapter 3, How to Set Up the SDK 11

Header Files
Header Files
There are two header files that are released with the SDK. These should be used when
compiling the XBSA Application. These header files are found in directory
~sdk/DataStore/XBSA/include.

Header Files

File Description

xbsa.h Header file that contains the XBSA defined structures.

nbbsa.h	 Header file that contains NetBackup specific definitions for the NetBackup
XBSA Interface.
12 NetBackup XBSA Programmer’s Guide

Using the NetBackup XBSA Interface
4

Getting Help with the API

While working with the API, you can obtain information about XBSA. The following are
additional sources of information:

◆	 “API Reference” on page 71 contains reference information about the XBSA’s
functions.

◆	 Sample applications are included with XBSA. For information on the samples, see
“How to Use the Sample Files” on page 135.

NetBackup XBSA Data Structures
This section describes the XBSA data structures and explains how the NetBackup XBSA
interface and the XBSA Application use them for creating and manipulating XBSA objects.

Object Data
NetBackup XBSA Object data contains the actual data entity that is archived or backed up
by an XBSA Application. The NetBackup XBSA API supports only one type of object data,
namely, a variable-length, unstructured and uninterpreted byte-stream.

To a particular XBSA Application, however, the XBSA Object Data can contain an internal
structure that reflects the data of the Application Object or Objects that the XBSA
Application archived or backed up. In this context the XBSA Object Data can contain, for
example, one of the following: a UNIX file system, a UNIX directory, a file, a document, a
disk image, a data stream, or a memory dump.

Through the NetBackup XBSA Interface, object data can be stored, retrieved, or deleted,
but not searched or modified. Since object data may be stored on slow (or off-line) media,
it is generally not advisable for an XBSA Application to store metadata in object data,
especially information that could influence a data-retrieval decision.
13

NetBackup XBSA Data Structures
However, the metadata of an XBSA Object, which is stored in the catalog, may be
replicated in its object data if it could enhance the performance of the restore of the object.
This is an XBSA Application implementation decision.

Object Descriptors
A NetBackup XBSA Object has a BSA_ObjectDescriptor, containing cataloging
information and optional application-specific object metadata. Cataloging information is
capable of interpretation and searching by the NetBackup XBSA Interface.
Application-specific object metadata is not interpretable by the NetBackup XBSA Interface
but may be retrieved and interpreted by an application. Using an object’s objectName or
its assigned copyId identifier, the corresponding BSA_ObjectDescriptor and object data
can be retrieved through the NetBackup XBSA Interface.

A BSA_ObjectDescriptor consists of a collection of object attributes. The basic data types
used for XBSA Object attributes are:

◆ Fixed-length character strings

◆	 Hierarchical character strings (with a specified delimiter, and a length limit on the
overall string)

◆ Enumerations

◆ Integers (with a specified range limit)

◆	 Date-time (in a standard C TM structure) format and precision, for example,
yyyymmddhhmm)

The attributes are shown in the following table:

BSA_ObjectDescriptor Attributes

Attribute Data Type Searchable

objectOwner (consisting of two parts) Yes

bsa_ObjectOwner [fixed-length character string]

app_ObjectOwner [hierarchical character string]

objectName (consisting of two parts) Yes

objectSpaceName [fixed-length character string]

pathName [hierarchical character string]

createTime [date-time] Yes
14 NetBackup XBSA Programmer’s Guide

NetBackup XBSA Data Structures
BSA_ObjectDescriptor Attributes (continued)

Attribute Data Type Searchable

copyType [enumeration] Yes

copyId 64-bit unsigned integer No

restoreOrder 64-bit unsigned integer No

resourceType [fixed-length character string] No

objectType [enumeration] Yes

objectStatus [enumeration] Yes

objectDescription [fixed-length character string] No

estimatedSize [64-bit unsigned integer] No

objectInfo [fixed-length byte string] No

Each NetBackup XBSA Object is a copy of certain application object(s):

◆	 To preserve the semantics of the use of each copy within the BSA_ObjectDescriptor,
each NetBackup XBSA Object has a copyType of either backup or archive, which is
recognized by the NetBackup XBSA Interface so that the two types of objects can be
managed differently and accessed separately. Note that it is up to the XBSA
Application to manage these types differently, as the NetBackup XBSA Interface only
keeps track of which type the object is.

◆	 Each NetBackup XBSA Object also has an objectStatus of either most_recent or
not_most_recent.

◆	 To capture an application object's type information, the corresponding NetBackup
XBSA Object may have a resourceType (for example, “filesystem”) and a possibly
resource-specific BSA_ObjectType (for example, BSA_ObjectType_FILE).

A XBSA Application may search for a particular NetBackup XBSA Object within a certain
search scope (for example, among objects in a certain objectSpaceName) by qualifying the
search on the value of the appropriate searchable attributes.

On the other hand, non-searchable, application-specific attributes may be provided by a
XBSA Application for storage in the BSA_ObjectDescriptor, but the NetBackup XBSA
Interface does not interpret these attributes. They are stored in the NetBackup XBSA
Object attributes objectInfo, resourceType, and objectDescription.
Chapter 4, Using the NetBackup XBSA Interface 15

NetBackup XBSA Data Structures
The objectInfo field defaults to a character string. It can also be used to store binary data
by using the NBBSA_OBJINFO_LEN XBSA environment variable.

Through these descriptor attributes, application-specific metadata may be stored in the
catalog so that this metadata can be efficiently retrieved without retrieving the actual
object data stored in the repository. These attributes can be used by a XBSA Application
to maintain inter-object relationships and dependencies. Be aware though that some
consideration should be given to how much data is being stored in the NetBackup
Catalog. The amount of metadata stored with a few large objects can be larger than that
stored for a million small objects.

Query Descriptors
A BSA_QueryDescriptor is the structure that is used in the query process to find an
individual or set of objects. It contains those fields from the object descriptor that are
searchable. When doing a query, it is required that the enumeration fields are specified. If
they are unknown, they all allow an “ANY” enumeration. It is also required to specify the
objectName.pathName. Wild cards are allowed for this field and “/*” is a valid pathname
for querying. The other strings in the descriptor can be empty strings, but they will still be
used for comparison to find an object descriptor that matches the query descriptor. If
these fields are unknown, wild cards are allowed here also. The start (createTime_from)
and end (createTime_to) dates are not required.

The attributes of the BSA_QueryDescriptor are shown in the following table:

BSA_QueryDescriptor Attributes

Attribute Data Type

objectOwner (consisting of two parts)

bsa_objectOwner [fixed-length character string]

app_objectOwner [hierarchical character string]

objectName (consisting of two parts)

objectSpaceName [fixed-length character string]

pathName [hierarchical character string]

createTime_from [date-time]

createTime_to [date-time]
16 NetBackup XBSA Programmer’s Guide

NetBackup XBSA Data Structures
BSA_QueryDescriptor Attributes (continued)

Attribute Data Type

CopyType [enumeration]

objectType [enumeration]

objectStatus [enumeration]

Note	 The createTime_from and createTime_to fields are not part of the XBSA
specification for the BSA_QueryDescriptor structure. The NetBackup XBSA
Interface is using 2 reserved fields from the BSA_QueryDescriptor structure to
allow this information to be used (if available) for the query. These fields are not
required, although if the XBSA Application can specify these dates, it can, in some
instances, greatly speed up query time.

Buffers
All buffers that are used by NetBackup XBSA Interface are allocated by the XBSA
Application. The NetBackup XBSA Interface fills data into the buffers, but never allocates
any memory that is passed back to the XBSA Application. This simplifies buffer allocation
and deletion since the XBSA Application is solely responsible.

However, to allow the NetBackup XBSA Interface to influence how buffers should be
allocated and to provide an interface with the ability to reserve private sections in certain
buffers, the API uses several conventions.

Buffer Size

For API calls that specify the size of the buffer as a separate parameter, the interface uses
the following convention to signal that a buffer is not large enough and provide the XBSA
Application with the means to discover what the correct size should be.

The parameter that specifies the size is a pointer, so that the NetBackup XBSA Interface
can alter the parameter. The size is always in bytes. If the size is adequate and a valid
buffer is given, the NetBackup XBSA Interface will copy the requested data into the buffer
and set the actual size in the size parameter.

If the size is inadequate, the NetBackup XBSA Interface will not copy the data into the
buffer. It will set the size parameter to the actual size of the data to be copied and return
from the function call with BSA_RC_BUFFER_TOO_SMALL. This allows the XBSA
Application to allocate a buffer of adequate size and to call the function again.
Chapter 4, Using the NetBackup XBSA Interface 17

NetBackup XBSA Data Structures
The functions that use this convention are BSAGetEnvironment(), NBBSAGetEnv() and
BSAQueryServiceProvider().

Private Buffer Space

For function calls that use the BSA_DataBlock32 structure, a convention has been adopted
that allows the NetBackup XBSA Interface to reserve certain portions of the buffer for its
own use. There are two areas that can be reserved by the NetBackup XBSA Interface:

Header A contiguous area starting at offset 0 (that is, the start of the buffer)

Trailer A contiguous area that ends at the end of the buffer (that is, the tail of the
buffer)

The area reserved for the XBSA Application is the:

Data Segment A contiguous area that lies in between the Header and Trailer

To make this preference known to the XBSA Application, the NetBackup XBSA Interface
may set certain parameters in the BSA_DataBlock32 structure when a data transfer is
initiated. Specifically, when the XBSA Application issues either the BSACreateObject() call
or the BSAGetObject() call, the BSA_DataBlock32 structure is not used for passing data
but for passing the NetBackup XBSA Interface's preference. The parameters that are set by
the NetBackup XBSA Interface, and their meaning, are specified in the following table:

Parameters in the BSA.DATABlock32 Structure

Parameter Preference

bufferLen == 0	 The interface has no restrictions on the buffer length. No trailer portion is
required.

bufferLen != 0	 The interface accepts buffers that are at least bufferLen bytes in length
(minimum length). It also accepts larger buffers. For a BSASendData() call,
the interface accepts a trailer that is as least as large as: trailerBytes >=
(bufferLen - numBytes - headerBytes) For a BSAGetData() call, the interface
returns a trailer that is not larger than: trailerBytes <= (bufferLen ­
numBytes - headerBytes)

numBytes == 0	 The interface has no restrictions on the length of the data portion of the
buffer.
18 NetBackup XBSA Programmer’s Guide

NetBackup XBSA Data Structures
Parameters in the BSA.DATABlock32 Structure (continued)

Parameter Preference

numBytes != 0	 The interface accepts (for a BSASendData() call), or returns (for a
BSAGetData() call), a data segment that does not exceed numBytes bytes.

headerBytes == 0 The interface only accepts or returns buffers with no header.

headerBytes != 0	 The length of the header portion of buffers accepted or returned by the
interface is headerBytes bytes.

bufferPtr Not used

Subsequent calls to BSAGetData() or BSASendData() must adhere to the preferences that
were specified by the NetBackup XBSA Interface.

The NetBackup XBSA Interface can write anything into the header and trailer area of the
actual buffer, as specified by the bufferPtr parameter in the BSA_DataBlock32 structure.

The NetBackup XBSA Interface has a buffer size limit of 1 Gigabyte.

Note	 For NetBackup XBSA Version 1.1.0, there are no header or trailer requirements. The
format documented here is defined by the XBSA specifications and may be used in
the future by NetBackup.

Use of BSA_DataBlock32 in BSASendData()

For BSASendData(), all parameters in the BSA_DataBlock32 structure must be set by the
XBSA Application and adhere to the NetBackup XBSA Interface preferences or the
function will fail with a BSA_RC_INVALID_DATABLOCK error. The NetBackup XBSA
Interface is not allowed to change any of the parameters.

The buffers being passed by BSASendData() must be full. This means that numBytes must
be equal to bufferLen. The buffer for the last BSASendData() call for an object does not
need to be full.

Use of BSA_DataBlock32 in BSAGetData()

For BSAGetData(), all parameters in the BSA_DataBlock32 structure must be set by the
XBSA Application and adhere to the NetBackup XBSA Interface preferences or the
function will fail with a BSA_RC_INVALID_DATABLOCK error. The NetBackup XBSA
Interface will change the numBytes parameter setting the actual number of bytes copied
into the data segment. NetBackup is not allowed to change any of the other parameters.
Chapter 4, Using the NetBackup XBSA Interface 19

NetBackup XBSA Data Structures
Shared Memory

Note	 Passing of data in shared memory blocks between the XBSA Application and the
NetBackup XBSA Interface is not supported for NetBackup XBSA Version 1.1.0.

The BSA_DataBlock32 structure contains fields to allow the use of shared memory blocks
for passing data between a XBSA Application and the NetBackup XBSA Interface. The
shareId and shareOffset fields of the BSA_DataBlock32 structure are used to define shared
memory buffers. NetBackup XBSA Interface version 1.1.0 does not use these fields.
20 NetBackup XBSA Programmer’s Guide

NetBackup XBSA Environment
NetBackup XBSA Environment
The NetBackup XBSA environment is created when an XBSA Application calls BSAInit()
to initiate a session. This environment only exists between the NetBackup XBSA Interface
and the XBSA Application. XBSA environment variables are used to pass specific
NetBackup information in both directions between the XBSA Application and the
NetBackup XBSA Interface. The environment variables are generally set or modified by
the XBSA Application, but the NetBackup XBSA Interface does create and/or modify
some variables in order to pass information back to the XBSA Application. Setting
platform environment variables (getenv or setenv) has no effect on the NetBackup XBSA
environment.

There are restrictions on when some of the variables can be set/modified. Most of them
can be set on the call to BSAInit(), which initiates a session. Some can also be modified
within a session but outside of a transaction. And a few can be modified within a
transaction. These limitations are outlined below in the descriptions for each of the
variables.

Each XBSA environment variable is defined as a keyword followed by an “=” and
followed by a null-terminated value. No spaces are allowed around the “=”.
“BSA_API_VERSION=1.1.0” is valid while “BSA_API_VERSION = 1.1.0” is not.

The functions used to create, modify, and view these environment variables are:

◆ BSAInit()

◆ BSAGetEnvironment()

◆ NBBSAUpdateEnv()

◆ NBBSASetEnv()

◆ NBBSAGetEnv()

These functions are defined later in the API Function Definitions section of this document.
Chapter 4, Using the NetBackup XBSA Interface 21

NetBackup XBSA Environment
Environment Variable Definitions
The following XBSA environment variables are defined as part of the XBSA specification
and are accepted by the NetBackup XBSA Interface.

XBSA Environment Variables

Variable Name Description Format

BSA_API_VERSION	 Mandatory. Specifies the version of the
specification that the calling XBSA
Application requires. BSAQueryApiVersion()
can retrieve the value of the current
NetBackup XBSA Interface.

BSA_DELIMITER 	 Optional. The delimiter used in hierarchical
character strings (default “/”).

BSA_SERVICE_PROVIDER	 Optional. Identifies the XBSA implementation.
BSAQueryServiceProvider() can retrieve this
value.

BSA_SERVICE_HOST	 Optional. Identifies a specific host system for
the NetBackup Server.

A string containing 3 numeric
elements, (version, issue, level)
separated by periods.

A single ASCII character.

A hierarchical character string
with 3 fields.

A string containing a host name.

In addition to the environment variables defined in the XBSA specification, the following
NetBackup XBSA environment variables are defined as part of this specification. These
are specific to NetBackup and have no relevance to other XBSA implementations. See the
NetBackup System Administrator's Guide for UNIX, Volume I, or NetBackup System
Administrator's Guide for Windows, Volume I, for a more complete definition of NetBackup
policy, schedule, and logging. The NetBackup environment variables all are prefaced with
“NB.”

NetBackup Environment Variables

Variable Name Description Format

NBBSA_CLIENT_HOST	 Optional. Identifies a specific host system for A string containing a host
the NetBackup client. name.

NBBSA_DB_TYPE Optional. This specifies a specific policy type. A string containing the policy

type.

NBBSA_FEATURE_ID Optional. This specifies a specific NetBackup An integer value.
licensed feature within the DataStore policy
type.
22 NetBackup XBSA Programmer’s Guide

NetBackup XBSA Environment
NetBackup Environment Variables (continued)

Variable Name Description Format

NBBSA_KEYWORD	 Optional. If this is specified, this value will be
used for the NetBackup Keyword field for this
image.

NBBSA_LOG_DIRECTORY	 Optional. Identifies the name of directory that
will contain the log files of the XBSA
Application.

NBBSA_OBJECT_GROUP	 Optional. This variable is used to define the
object group owner of an object being created.

NBBSA_OBJECT_OWNER 	 Optional. This variable is used to define the
object owner of an object being created.

NBBSA_OBJINFO_LEN	 Optional. If this variable is set before an XBSA
Object is created the objectInfo field will be
considered to be of this length and the object
will be considered binary.

NBBSA_POLICY	 Optional. Identifies a specific NetBackup
policy to be used.

NBBSA_SCHEDULE	 Optional. Identifies a specific NetBackup
XBSA Schedule to be used.

NBBSA_USE_OBJECT_GROUP	 Optional. This variable can be set to cause the
group of an object to be something other than
the login user creating the object.

NBBSA_USE_OBJECT_OWNER	 Optional. This variable can be set to cause the
owner of an object to be something other than
the login user creating the object.

A string containing a
keyword value <= 100
characters.

A string containing a single
directory name.

A string containing the
group.

A string containing the
owner.

An integer value <= 256.

A string containing a
NetBackup policy name.

A string containing a
NetBackup schedule name.

An integer value between 0
and 4.

An integer value between 0
and 4.
Chapter 4, Using the NetBackup XBSA Interface 23

NetBackup XBSA Environment
The following XBSA environment variables are set by the NetBackup XBSA Interface from
values in the NetBackup configuration files. These environment variables are used to pass
required information from NetBackup to the XBSA Application. Descriptions of these
NetBackup configuration values can be found in the NetBackup System Administrator's
Guide for UNIX, Volume I, or NetBackup System Administrator's Guide for Windows, Volume I.

XBSA Environment Variables for NetBackup Configuration Values

Variable Name Description Format

NBBSA_VERBOSE_LEVEL

NBBSA_MULTIPLEXING

NBBSA_SERVER_BUFFSIZE

NBBSA_MEDIA_MOUNT_TIMEOUT

NBBSA_CLIENT_READ_TIMEOUT

The verbose level of the database logs. 	 An integer value
between 0 and 9.

The NetBackup MULTIPLEXING value. An integer value.

The NetBackup Server Buffer Size value. 	 An integer value in
bytes.

The NetBackup MEDIA_MOUNT_TIMEOUT An integer value in
value. seconds.

The NetBackup CLIENT_READ_TIMEOUT An integer value in
value. This value can be modified by the XBSA seconds.
Application.

Extended Environment Variable Definitions

Extended Environment Variables

Variable Name Extended Description

BSA_API_VERSION	 BSA_API_VERSION specifies the version of the XBSA specification. It
is set by the XBSA Application as the version that the XBSA Application
requires. This value is required to be in the environmental variable list
in the call to BSAInit(), where it will be verified as a supported version
of the NetBackup XBSA Interface.

The current value of BSA_API_VERSION that is supported by the
NetBackup XBSA Interface can be retrieved with a call to
BSAQueryApiVersion().

Once BSA_API_VERSION has been set in the XBSA environment, it
cannot be changed via calls to NBBSAUpdateEnv() or NBBSASetEnv().

The version supported for this feature pack is “1.1.0”.
24 NetBackup XBSA Programmer’s Guide

NetBackup XBSA Environment
Extended Environment Variables (continued)

Variable Name Extended Description

BSA_DELIMITER 	 BSA_DELIMITER is the delimiter used in hierarchical character strings.
The NetBackup XBSA Interface sets this XBSA environment variable.

The delimiter used by this feature pack is “/”. This value can be
retrieved by BSAQueryServiceProvider().

BSA_SERVICE_HOST	 BSA_SERVICE_HOST identifies the host system for the NetBackup
Server. If this variable is not provided, the currently configured server
for the NetBackup Client will be used.

See the NetBackup System Administrator's Guide for UNIX, Volume
I, or NetBackup System Administrator's Guide for Windows, Volume
I, for information on how to use the configuration file, bp.conf, to
specify the NetBackup servers.

This XBSA environment variable may be set by the XBSA Application
via BSAInit(), NBBSASetEnv(), or NBBSAUpdateEnv() but may not be
set or modified after a transaction has begun.

BSA_SERVICE_PROVIDER	 BSA_SERVICE_PROVIDER identifies the XBSA implementation. The
NetBackup XBSA Interface sets this XBSA environment variable.

It is defined as: VERITAS/NetBackup/1.1.0.

BSAQueryServiceProvider() may also retrieve this value.

NBBSA_CLIENT_HOST	 NBBSA_CLIENT_HOST identifies a specific host system as the
NetBackup client. If this variable is not provided, the host the XBSA
Application is running on is the client.

This variable is useful for queries and restores when restoring data that
was backed up from a different host than the host where the data is
being restored. For backups, if the NBBSA_CLIENT_HOST is logically
different from the client host the backup is being initiated from, this
will result in an error, as you cannot create objects from another host.

This XBSA environment variable may be set by the XBSA Application
via BSAInit(), NBBSASetEnv(), or NBBSAUpdateEnv() but may not be
set or modified after a transaction has begun.
Chapter 4, Using the NetBackup XBSA Interface 25

NetBackup XBSA Environment
Extended Environment Variables (continued)

Variable Name Extended Description

NBBSA_CLIENT_READ_TIMEOUT	 NBBSA_CLIENT_READ_TIMEOUT is used to determine or reset the
NetBackup CLIENT_READ_TIMEOUT value.

The NetBackup XBSA Interface creates this XBSA environment variable
in the function BSACreateObject() or BSAGetObject(). After
BSACreateObject(), the NBBSA_CLIENT_READ_TIMEOUT value may
be reset by the XBSA Application via NBBSAUpdateEnv() or
NBBSASetEnv(). Setting it at any other time will have no effect.

See the NetBackup System Administrator's Guide for UNIX, Volume
I, or NetBackup System Administrator's Guide for Windows, Volume
I, for more information about CLIENT_READ_TIMEOUT.

NBBSA_DB_TYPE	 NBBSA_DB_TYPE is an internal string representation of a NetBackup
policy type. This is generally only used for NetBackup internal agents,
but in certain instances may be set up for external use. If this variable is
not specified, it defaults to the SDK default of DataStore policy type. If
this variable is used, the NBBSA_FEATURE_ID must also be specified.

NBBSA_FEATURE_ID	 NBBSA_FEATURE_ID identifies a specific NetBackup licensed feature
to be used for the session. If this variable is not provided, the default
DataStore feature id will be used. In general this environment variable
does not need to be set, but it allows an application, working with
NetBackup product management, to use a specific NetBackup license.

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified
after a transaction has begun.

NBBSA_KEYWORD	 NBBSA_KEYWORD will allow the XBSA Application to specify a
NetBackup keyword. This keyword is typically used to group images
together and can speed up a search. If this variable is specified for a
backup transaction, the keyword will be stored with the image. If it is
specified before a query or restore transaction, the keyword will be
used to help in the search process.

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified
after a transaction has begun.
26 NetBackup XBSA Programmer’s Guide

NetBackup XBSA Environment
Extended Environment Variables (continued)

Variable Name Extended Description

NBBSA_LOG_DIRECTORY	 NBBSA_LOG_DIRECTORY identifies the name of directory that will
contain the log files of the NetBackup XBSA Interface and possibly for
the XBSA Application. This directory will be located in
/usr/openv/netbackup/logs on UNIX and
install_directory\VERITAS\NetBackup\Logs on Windows. If
not specified, the directory name will be exten_client.

All debug messages from the NetBackup XBSA Interface and from
function NBBSALogMsg() go to a dated log file in this directory.

This value may be set by the XBSA Application via BSAInit(). It may not
be modified after the call to BSAInit().

NBBSA_MEDIA_MOUNT_TIMEOUT	 NBBSA_MEDIA_MOUNT_TIMEOUT is used to determine the
NetBackup MEDIA_MOUNT_TIMEOUT value.

The NetBackup XBSA Interface creates this XBSA environment variable
in the function BSACreateObject() or BSAGetObject().
NBBSA_MEDIA_MOUNT_TIMEOUT may not be modified by the
XBSA Application.

See the NetBackup System Administrator's Guide for UNIX, Volume
I, or NetBackup System Administrator's Guide for Windows, Volume
I, for more information about MEDIA_MOUNT_TIMEOUT.

NBBSA_MULTIPLEXING	 NBBSA_MULTIPLEXING the number of streams that NetBackup has
been configured to accept at one time.

The NetBackup XBSA Interface creates this XBSA environment variable
in the function BSACreateObject() or BSAGetObject().
NBBSA_MULTIPLEXING may not be modified by the XBSA
Application.

See the NetBackup System Administrator's Guide for UNIX, Volume
I, or NetBackup System Administrator's Guide for Windows, Volume
I, for more information about multiplexing.

NBBSA_OBJECT_GROUP	 NBBSA_OBJECT_GROUP can be used in conjunction with variable
NBBSA_USE_OBJECT_GROUP to define the group ownership of an
object. When NBBSA_USE_OBJECT_GROUP = VxENV_OWNER, the
name defined in this string becomes the group owner of an object that is
created. This group should be a valid groupname on the client.

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv(). It can be modified within a
transaction and each object created within one transaction could have a
different group.
Chapter 4, Using the NetBackup XBSA Interface 27

NetBackup XBSA Environment
Extended Environment Variables (continued)

Variable Name Extended Description

NBBSA_OBJECT_OWNER	 NBBSA_OBJECT_OWNER can be used in conjunction with variable
NBBSA_USE_OBJECT_OWNER to define the ownership of an object.
When NBBSA_USE_OBJECT_OWNER = VxENV_OWNER, the name
defined in this string becomes the owner of an object that is created.
This owner should be a valid username on the client.

This value may be set by the VxBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv(). It can be modified within a
transaction and each object created within one transaction could have a
different owner.

NBBSA_OBJINFO_LEN	 NBBSA_OBJINFO_LEN is used by BSACreateObject() to allow the
objectInfo field of the object descriptor to contain non-ASCII values. If
this variable is not specified, the objectInfo field will be treated as a
NULL terminated character string. It is not required to specify this
variable for a query or restore transaction.

This value may be modified by the XBSA Application at any time
during a backup transaction using BSAInit(), NBBSASetEnv(), or
NBBSAUpdateEnv(). If the length of the objectInfo field is different for
each object, it can be changed before each BSACreateObject() call.

NBBSA_POLICY	 NBBSA_POLICY identifies a specific NetBackup policy to be used for
the transaction. If this variable is not provided, the NetBackup
configuration will be used to find the default policy to use. For backups,
if a policy is configured in NetBackup on the client, that policy is used
for the backup. For queries, restores, and deletes, the configured policy
is not used.

See the NetBackup System Administrator's Guide for UNIX, Volume
I, or NetBackup System Administrator's Guide for Windows, Volume
I, for information on how to create and configure a NetBackup policy.

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified
after a transaction has begun.
28 NetBackup XBSA Programmer’s Guide

NetBackup XBSA Environment
Extended Environment Variables (continued)

Variable Name Extended Description

NBBSA_SCHEDULE	 NBBSA_SCHEDULE identifies a specific NetBackup schedule to be
used. If this variable is not provided, the NetBackup configuration will
be used to find the default schedule to use. For backups, if a schedule is
configured in NetBackup on the client, that schedule is used for the
backup. For queries, restores, and deletes, the configured schedule is
not used.

See the NetBackup System Administrator's Guide for UNIX, Volume
I, or NetBackup System Administrator's Guide for Windows, Volume
I, for information on how to create and configure a NetBackup
Schedule.

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified
after a transaction has begun.

NBBSA_SERVER_BUFFSIZE NBBSA_SERVER_BUFFSIZE the NetBackup configured size of the

NET_BUFFER_SZ. This can be used by XBSA application to help
improve performance.

The NetBackup XBSA Interface creates this XBSA environment variable
in the function BSACreateObject() or BSAGetObject().
NBBSA_SERVER_BUFFSIZE may not be modified by the XBSA
Application.

See the NetBackup System Administrator's Guide for UNIX, Volume
I, or NetBackup System Administrator's Guide for Windows, Volume
I, for more information about setting the buffer size.
Chapter 4, Using the NetBackup XBSA Interface 29

NetBackup XBSA Environment
Extended Environment Variables (continued)

Variable Name Extended Description

NBBSA_USE_OBJECT_GROUP	 NBBSA_USE_OBJECT_GROUP allows the agent to define the group
owner of objects created with VxBSACreateObject(). The default group
of an object is the login user of the process creating the object (not the
primary group of the login user, but the actual login user). This variable
allows the agent to specify the ownership as follows.

VxLOGIN_USER 0 - Default, group field is set to the login user

VxLOGIN_GROUP 1 - Group field is set to the primary group of the
login user

VxBSA_OWNER 2 - Group field is set to
objectDescriptor->objectOwner.bsa_ObjectOwner

VxAPP_OWNER 3 - Group field is set to
objectDescriptor->objectOwner.app_ObjectOwner

VxENV_OWNER 4 - Group field is set to value of
NBBSA_GROUP_OWNER variable

This value may be set by the BSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified
after a transaction has begun.

NBBSA_USE_OBJECT_OWNER	 NBBSA_USE_OBJECT_OWNER allows the agent to define the owner of
objects created with BSACreateObject(). The default ownership of an
object is the login user of the process creating the object. This variable
allows the agent to specify the ownership as:

VxLOGIN_USER 0 - Default, owner field is set to the login user

VxBSA_OWNER 2 - Owner field is set to
objectDescriptor->objectOwner.bsa_ObjectOwner

VxAPP_OWNER 3 - Owner field is set to
objectDescriptor->objectOwner.app_ObjectOwner

VxENV_OWNER 4 - Owner field is set to value of
NBBSA_OBJECT_OWNER variable

This value may be set by the XBSA Application via BSAInit(),
NBBSASetEnv(), or NBBSAUpdateEnv() but may not be set or modified
after a transaction has begun.
30 NetBackup XBSA Programmer’s Guide

NetBackup XBSA Environment
Extended Environment Variables (continued)

Variable Name Extended Description

NBBSA_VERBOSE_LEVEL	 NBBSA_VERBOSE_LEVEL is the verbose level of the NetBackup debug
logs. The verbose level can be configured through both the Backup,
Archive, and Restore interface or the NetBackup Administration
Console.

This value may be useful if the XBSA Application, using
NBBSALogMsg(), wants to log different levels of messages to the
NetBackup XBSA logs based on the verbose level that is configured in
NetBackup.

The NetBackup XBSA Interface will originally set this value in
BSAInit(). The XBSA Application may reset this environment variable,
using NBBSASetEnv() or NBBSAUpdateEnv(), if it wants to change the
level of logging.
Chapter 4, Using the NetBackup XBSA Interface 31

XBSA Sessions and Transactions
XBSA Sessions and Transactions
All operations for NetBackup must be in an XBSA session. Each session can contain one or
more transactions. This section defines how XBSA sessions are defined and what can be in
each transaction.

Sessions
In order to use most of the NetBackup XBSA API calls, it is necessary for a XBSA
Application to set up a session with the NetBackup XBSA Interface by invoking the
BSAInit() call. The functions BSAQueryApiVersion() and BSAQueryServiceProvider()
may be invoked prior to calling BSAInit(). These functions are used to determine the
current version of the API used by the NetBackup XBSA Interface and a string describing
the provider of the NetBackup XBSA Interface, respectively, and are not dependent on
being within a session.

Initialization and Termination

A session is initiated by a BSAInit() call. This call sets up a session with the NetBackup
XBSA Interface and creates a context, defined by handle, for the caller to be used in
subsequent calls. The XBSA environment is set up within that context and remains in
place until the session is terminated. Nested sessions are not permitted.

A session is terminated by a BSATerminate() call, which will release any resources
acquired during the NetBackup XBSA session. If BSATerminate() is called within a
transaction, the transaction is aborted.

Authentication

In NetBackup XBSA Version 1.1.0, all authentication and security is handled by
NetBackup based on the login user. Object ownership is determined by the login user of
the session that created the object. In order to query or restore an object, the login user
doing the request must be the same user who created the object or a root administrator.

Note	 NetBackup XBSA Version 1.1.0 does not validate the objectOwner and
SecurityToken parameters of BSAInit(). The objectOwner fields, bsa_objectOwner
and app_objectOwner, can be specified and will be stored with an object, but the
login user who created the object determines the official ownership of an object.
This user, or a root admin, are the only users who can query or restore this object.
32 NetBackup XBSA Programmer’s Guide

XBSA Sessions and Transactions
Transactions
Within each session, a XBSA Application can make a sequence of calls (for example, to
backup some objects, to query the set of objects it has backed up, or to restore objects).
These calls must be grouped into a transaction by invoking BSABeginTxn() at the
beginning of the group of calls and invoking BSAEndTxn() at the end. The latter either
commits the transaction or aborts it.

If a transaction is aborted either by a BSAEndTxn() or BSATerminate() call, then the effect
of all the calls made within the transaction is nullified. If a transaction is committed, then
the effect of all the calls within the transaction is made permanent.

Within a single session, transactions cannot be nested and cannot overlap. Transactions
are categorized into the following types:

◆	 NetBackup XBSA Object modification transactions - in which NetBackup XBSA
Objects may be created or deleted.

◆	 NetBackup XBSA Object retrieval transactions - in which NetBackup XBSA Objects
may only be queried and/or retrieved. This type of transaction provides no functional
benefit for the calling XBSA Application, and is only included for completeness.

The type of a transaction is established by the first create/delete/retrieve operation
performed. Attempts to mix operations in a transaction will result in a
BSA_RC_INVALID_CALL_SEQUENCE error. The permissible call sequences are defined
later in this chapter.

Once a transaction starts, many of the XBSA Environment variables can no longer be reset.
BSA_SERVICE_HOST, NBBSA_CLIENT_HOST, NBBSA_POLICY, and
NBBSA_SCHEDULE cannot be modified within a transaction. If these need to be
modified, the XBSA Application must exit the transaction, make the variable changes, and
start a new transaction.

Backup Transaction

A XBSA Application can create a NetBackup XBSA Object in a backup transaction. The
backup transaction is defined by the first BSACreateObject() call. The BSACreateObject()
function takes as input an object descriptor that has all of the XBSA attributes of the object.
After the BSACreateObject() call, the object's data is passed to NetBackup in buffers using
a sequence of BSASendData() calls. When all data has been sent, the object is completed
with a BSAEndData() call. Multiple objects may be created in one transaction, although
BSAEndData() must be called before the next BSACreateObject() is called.

The NetBackup XBSA Interface treats backup and archive transactions the same. It is up to
the XBSA Application to do any extra operations that may be associated with an archival.
The XBSA Application is also responsible for any other backup types such as an
Chapter 4, Using the NetBackup XBSA Interface 33

XBSA Sessions and Transactions
incremental backup. The NetBackup archive and incremental backups do not apply to the
NetBackup XBSA Interface. It is also important to note that all information required to
restore an object needs to be contained in the object descriptor or object data.

Within a backup transaction, query, delete, and restore operations are not allowed.

Restore Transaction

The Restore transaction is similar to Backup transaction, except that the data flow is
reversed. The restore transaction is defined by a call to BSAGetObject().

In order to restore an XBSA object, the NetBackup XBSA Interface needs to know the
copyId of that object. The copyId can be obtained from a catalogue maintained by the
XBSA Application or from a prior BSAQueryObject() call. Query operations can be mixed
in with restore operations to get this data.

The BSAGetObject() call is used to initiate the restore of an object. It takes as input an
object descriptor that contains the copyId of the object to be restored. Then a series of
BSAGetData() calls are used to get data for the object in buffers, and the BSAEndData()
call is to signal the end of getting data for the object. It is up to the XBSA Application to
recreate the object being restored using the object descriptor and data. When restoring
multiple objects, the XBSA Application must get all data for an object and call
BSAEndData() before calling BSAGetObject() to start restoring the next object.

Within a restore transaction, it is permissible to have BSAQueryObject() and
BSAGetNextQueryObject() calls. This allows the XBSA Application to intermix restore
operations with BSAQueryObject() and BSAGetNextQueryObject() calls in order to
restore multiple objects within one transaction. Backup and delete operations are not
allowed within a restore transaction.

It should be noted that the use of transactions for restore operations does not provide any
functional benefit to the XBSA Application but is required for completeness. If a restore is
aborted via a call to BSAEndTxn() or BSATerminate() before the restore has completed,
the NetBackup XBSA Interface will free up the NetBackup resources but it is up to the
XBSA Application to leave the object being restored in a consistent state.

Delete Transaction

A XBSA Application may delete a NetBackup XBSA Object using the BSADeleteObject()
call. BSADeleteObject() takes a copyId as a parameter and marks that object to be deleted.
The actual delete of an object does not take place until the BSAEndTxn() call commits the
transaction, so a query within a delete transaction could return an object to be deleted. If
an object was backed up to a tape device, the data will not be deleted as part of this
transaction. When all images on a tape have been deleted or expired, NetBackup will free
the tape to be reused.
34 NetBackup XBSA Programmer’s Guide

XBSA Sessions and Transactions
Within a delete transaction, it is permissible to embed BSAQueryObject() and
BSAGetNextQueryObject() calls. This allows the XBSA Application to intermix delete
operations with BSAQueryObject() and BSAGetNextQueryObject() calls in order to delete
multiple objects within one transaction. Backup and restore operations are not allowed
within a delete transaction.

Note	 For NetBackup XBSA Version 1.1.0, BSADeleteObject() has a limitation that there
can only be one object in a NetBackup image for the delete to work. This means that
when the object was created, it was the only object created in the transaction. If
there are multiple objects, BSADeleteObject() will return a BSA_RC_SUCCESS
status, but the object will still exist.

NetBackup takes care of deleting objects via the retention period setting which is part of
the configuration of a NetBackup schedule. In general, due to the way the data is stored
on tape and other media, deleting individual objects has limited value.

Query Transaction

A XBSA Application may query for NetBackup XBSA Objects that have been created in a
query transaction. The BSAQueryObject() call is used to query the NetBackup catalogue
for NetBackup XBSA Objects. Since retention of NetBackup XBSA Objects is a function of
NetBackup there is no guarantee that the call to BSAQueryObject() will return any objects.

The query is based on a subset of the object descriptor attributes, contained in a query
descriptor. All fields in the query descriptor must be populated and the query will search
for objects that match all fields. Each of the fields does have a wildcard or 'ANY' value
that can be used. But leaving a field blank will only match objects that also have blanks in
that field.

The result of a query can return Object Descriptors, but never XBSA Object Data. If a
query finds multiple object descriptors, BSAQueryObject() will return the first object
descriptor and the remaining objects can be retrieved one at a time by using a succession
of BSAGetNextQueryObject() calls.

It should be noted that the use of transactions for query operations does not provide any
functional benefit to the XBSA Application but is required for completeness. And as noted
in the other transaction types, queries can be embedded in restore and delete transactions.
Chapter 4, Using the NetBackup XBSA Interface 35

Creating a NetBackup XBSA Application
Creating a NetBackup XBSA Application
This section contains information on initiating an XBSA session, using XBSA objects,
logging, running an XBSA application in a clustered environment, and hints for getting
the best performance out of the NetBackup XBSA Interface.

Initiating a Session
A session is initiated with a call to BSAInit(). One of the parameters of BSAInit() is the list
of environment variables that is used to set up the XBSA environment between the XBSA
Application and the NetBackup XBSA Interface. The only variable that is required by the
NetBackup XBSA Interface is BSA_API_VERSION. BSAInit() will validate that the XBSA
Application is using a supported version. Other environmental variables can be included
to increase flexibility of the application or to override values from the NetBackup
configuration. But if these variables are not set, there are defaults from the configuration
that will be used.

Be aware that using these environment variables does not allow the XBSA Application to
bypass the NetBackup configuration, only to change from the default. All hosts, policies,
schedules, etc. that are used must still be defined in the NetBackup configuration in order
for the transactions to work. See the NetBackup System Administrator's Guide for UNIX,
Volume I, or NetBackup System Administrator's Guide for Windows, Volume I, for more
information on how to configure NetBackup.

The XBSA Application should allow the XBSA environment variables to be set from run
time values. These values can be obtained from parameters or from system environment
variables. This will allow the maximum flexibility for the application. See “How to Run a
NetBackup XBSA Application” on page 67.

Some of the XBSA environment variables must be specified in the call to BSAInit() and
cannot be changed within the session. Others can be set or modified within the session.
See “NetBackup XBSA Environment” on page 21 for individual variables. This gives the
XBSA Application maximum flexibility.

Modifying XBSA Environment within a session

The XBSA environment is created when the session is initiated. A couple of the variables,
like BSA_API_VERSION and NBBSA_LOG_DIRECTORY, cannot be changed once the
session has started. Many of the other variables can still be modified. If the XBSA
Application is going to set BSA_SERVICE_HOST, NBBSA_CLIENT_HOST,
NBBSA_POLICY, or NBBSA_SCHEDULE, this needs to be done outside of a transaction,
either before the first transaction or between transactions.
36 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
Once within a session, the XBSA Environment can be updated with either NBBSASetEnv()
or NBBSAUpdateEnv(). These are extensions to the XBSA specification. NBBSASetEnv() is
used to set an individual XBSA environment variable and NBBSAUpdateEnv() updates
the entire XBSA environment.

Session Example

The following example sets up a session and begins a transaction. It sets up the XBSA
environment, a BSA_ObjectOwner structure, and a BSA_SecurityToken. The security
token is NULL because the NetBackup XBSA Interface does not use this security method.
The session is initiated by a BSAInit() call that returns a BSA_Handle. This handle is then
used when beginning a transaction and for all XBSA function calls within the session.
Within the session, the XBSA environment is modified to change the
NBBSA_CLIENT_HOST. Lastly a transaction is started.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_UInt32 Size;

char *envx[3];

char ErrorString[512];

char msg[1024];

int status;

/ * Allocate memory for the XBSA environment variable array. */

envx[0] = malloc(40);

envx[1] = malloc(40);

/ * Populate the XBSA environment variables for this session.

* Normally the BSA_SERVICE_HOST would not be hard coded like this but

* would be retrieved via a parameter or environment variable.

*/

strcpy(envx[0], "BSA_API_VERSION=1.1.0");

strcpy(envx[1], "BSA_SERVICE_HOST=server_host");

envx[2] = NULL;

/ * The NetBackup XBSA Interface does not use the security token. */

security_tokenPtr = NULL;

Chapter 4, Using the NetBackup XBSA Interface 37

Creating a NetBackup XBSA Application
/ * Populate the object owner structure. */

strcpy(BsaObjectOwner.bsa_ObjectOwner,"XBSA Client");

strcpy(BsaObjectOwner.app_ObjectOwner,"XBSA App");

/ * Initialize an XBSA session. */

status = BSAInit(&BsaHandle,NULL,&BsaObjectOwner,envx);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrString);

printf("ERROR: BSAInit failed with error: %s\n", ErrString);

exit(status);

}

/ * Set the hostname of the client for the next transaction. */

NBBSASetEnv(BsaHandle, "NBBSA_CLIENT_HOST", "client_host");

/ * Begin a transaction. If it fails, terminate the session. */

status = BSABeginTxn(BsaHandle);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSABeginTxn failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSATerminate(BsaHandle);

exit(status);

}

Backup - Creating an object
Once the application has started a transaction, it can start a backup. A backup transaction
is identified by the first BSACreateObject() call. BSACreateObject() will start the process of
backing up an object. Once the object has been created, multiple BSASendData() calls are
be used to send the data associated with an object. This object is then completed with a
BSAEndData() call.

The ability to pass data in buffers allows an XBSA Application to use any buffering
technique that is appropriate to ensure consistency or to improve performance. When
data is passed in buffers, all the data for one object must be passed, in the proper
sequence, before any other operation is started.
38 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
Creating an Object

An object descriptor defines an XBSA object. It is up to the XBSA Application to define the
attributes of the object such that the application will know how to restore the object. For
example, if the XBSA Application wants to implement an incremental type of backup,
enough information will need to be kept in the object descriptor to identify if the object is
a full or incremental and any other information that will be required to restore the object.

The following fields of an object descriptor are user-defined and need to be defined by the
XBSA Application before the descriptor is passed to BSACreateObject(). See “Object
Descriptors” on page 14 for more definition of the BSA_ObjectDescriptor. The fields that
are defined as strings can be empty strings, except for the pathName, which must have a
valid path. The fields that are enumerations cannot have the ANY value. The
estimatedSize field must have a value greater than zero if the object will have data and
zero if there will be no data. While it is good practice to have the estimated size field be as
accurate as possible, it does not affect how NetBackup will store the object.

Required BSA.ObjectDescriptor Fields

objectOwner

bsa_objectOwner

app_objectOwner

objectName

pathName

objectSpaceName

copyType

resourceType

objectType

objectDescription

estimatedSize

objectInfo

The NetBackup XBSA Interface will populate the other fields in the object descriptor.

The other structure that is required before creating an object is the BSA_DataBlock32
structure. The structure does not need to be populated because BSACreateObject() will
populate select fields with values that define how the data needs to be passed in buffers.
See “Buffers” on page 17 for more information on this.
Chapter 4, Using the NetBackup XBSA Interface 39

Creating a NetBackup XBSA Application
Those are the two parameters to BSACreateObject(). The BSACreateObject() function will
create the object and prepare the NetBackup to be able to accept data. This includes
mounting a tape if that is required. When BSACreateObject() has successfully created the
object and returns, the object descriptor will have the copyId field populated. This is the
unique identifier that is associated with this object. If the XBSA Application is going to
keep any information about an object in an application catalog, this copyId should be a
key value. It can be used to restore or delete this object.

There are four environmental variables that are created during BSACreateObject(). These
are NBBSA_CLIENT_READ_TIMEOUT, NBBSA_MEDIA_MOUNT_TIMEOUT,
NBBSA_MULTIPLEXING, and NBBSA_SERVER_BUFFSIZE. These variables are part of
the NetBackup configuration and can be used to determine if the XBSA application will be
successful. The NBBSA_CLIENT_READ_TIMEOUT and
NBBSA_MEDIA_MOUNT_TIMEOUT values can be reset by the XBSA application if it
knows it needs to override the default NetBackup configuration.

NBBSA_CLIENT_READ_TIMEOUT is the amount of time, in seconds, the NetBackup
server will wait for data to be received. If the time between when the NetBackup server
starts the backup and the time the transmission of data starts exceeds this timeout value,
the backup job will fail. This is to ensure that a hung or failed process on the client does
not cause the job to wait, and take up resources, indefinitely. If the XBSA Application
knows it will take longer than this to prepare the data to be sent, this value should be reset
to a higher value.

NBBSA_MEDIA_MOUNT_TIMEOUT is the amount of time the NetBackup client will
wait for the media to be mounted. If the time between when the NetBackup server starts
the backup and the time the media is mounted exceeds this timeout value, the XBSA
Interface will return a fail condition.

NBBSA_MULTIPLEXING is the number of streams that can be accepted by NetBackup.
This value cannot be changed but if the XBSA Application is processing multiple streams,
it should be evaluated to make sure that NetBackup will accept all streams that are being
sent.

NBBSA_SERVER_BUFFSIZE is the size configured for NET_BUFF_SZ. This value cannot
be changed but, if the XBSA Application has the ability to modify the size of the buffers it
uses, these could be modified to enhance performance of the transfer of data.

If everything is OK so far, data can be sent to the NetBackup XBSA Interface via buffers by
BSASendData(). The buffers are defined by the BSA_DataBlock32 structure. The key fields
to set are the numBytes, which contains the number of bytes being sent, bufferLen, which
contains the length of the buffer in bytes, and bufferPtr, which is a pointer to the buffer.
The number of bytes must equal the buffer length except for the last buffer, which can be
only partially full. BSASendData() can be called any number of times to pass all the data
from an object.

Once all data has been sent, BSAEndData() must be called to signal to the NetBackup
XBSA Interface that the object is complete.
40 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
If multiple objects are to be created, this whole process can be repeated multiple times.
The most efficient way to create multiple objects is to repeat this within one transaction. It
is also possible to create multiple objects by creating one object per transaction and doing
multiple transactions.

Once all objects for a transaction have been created, the transaction is completed with
BSAEndTxn(). BSAEndTxn() can either commit or abort the transaction. If the transaction
is aborted, all objects that were created in the transaction are not saved. If the transaction
is committed, the object(s) are saved in the NetBackup catalog and can at a future point be
restored. The BSATerminate() function also acts as an abort to the transaction.

NetBackup Object Ownership

Default behavior

When the NetBackup XBSA interface is used to create an object, by default the owner of
the object will be the login user of the process that created the object. The default group of
the object will also be the login user, not the primary group of the login user, but the exact
same name as the login user name. The permissions of the file will be set to 600, or
‘rw- - - - - - -’, which is read/write for owner and no access permissions for anyone else.
This requires that the user restoring an object be an administrator or the same user that
created the object. The XBSA objectOwner fields are saved in the NetBackup catalog with
the object, but they are kept as attributes of the object and are not used for security
purposes.

Ownership options

Using the XBSA environmental variables NBBSA_USE_OBJECT_OWNER,
NBBSA_USE_OBJECT_GROUP, NBBSA_OBJECT_OWNER, and
NBBSA_GROUP_OWNER, an agent can change the default owner. These variables allow
the XBSA agent to be able to specify who owns the objects.

Note	 Specifying object ownership only works when creating objects using
BSACreateObject(). Accessing the objects via BSAQueryObject() and
BSAGetObject() is dependent on the login process having permissions to access the
objects. So if user_Y creates an object with an object owner of user_X, then user_X or
an administrator (root) can access and restore the object, but user_Y cannot.

Object Owner

To specify the owner of an object, the XBSA environment variable
NBBSA_USE_OBJECT_OWNER needs to be set. There are 4 values that this variable can
be set to. These values are defined in nbbsa.h.
Chapter 4, Using the NetBackup XBSA Interface 41

Creating a NetBackup XBSA Application
/*

* XBSA values to use to define how to specify NetBackup object ownership

*/

#define VxLOGIN_USER 0 /* Default, owner/group field is set to the login user */

#define VxLOGIN_GROUP 1 /* group field is set to the primary group of the login user */

#define VxBSA_OWNER 2 /* owner/group field is set to

objectDesctiptor->objectOwner.bsa_ObjectOwner */

#define VxAPP_OWNER 3 /* owner/group field is set to

objectDesctiptor->objectOwner.app_ObjectOwner */

#define VxENV_OWNER 4 /* owner/group field is set to value of

NBBSA_OBJECT_OWNER/NBBSA_OBJECT_GROUP */

VxLOGIN_USER is the default behavior that you would get if the
NBBSA_USE_OBJECT_OWNER variable wasn’t set.

VxLOGIN_GROUP does not apply to object ownership.

VxBSA_OWNER will set the object owner to the value stored in the objectDescriptor field
objectOwner.bsa_ObjectOwner. The value in the bsa_ObjectOwner field will need to be a
valid username without any spaces in the name. The value in
objectOwner.bsa_ObjectOwner will still be stored as an attribute of the object and a query
will need to correctly specify this field in the query descriptor to successfully find the
object.

VxAPP_OWNER will set the object owner to the value stored in the objectDescriptor field
objectOwner.app_ObjectOwner. The value in the app_ObjectOwner field will need to be a
valid username without any spaces in the name. The value in
objectOwner.app_ObjectOwner will still be stored as an attribute of the object and a query
will need to correctly specify this field in the query descriptor to successfully find the
object.

VxENV_OWNER will set the object owner to the value of the XBSA environmental
variable NBBSA_OBJECT_OWNER. The value stored in the NBBSA_OBJECT_OWNER
will need to be a valid username without any spaces in the name.

The variables NBBSA_USE_OBJECT_OWNER and NBBSA_OBJECT_OWNER can be
changed within a transaction so that an XBSA agent can set different ownership of each
object in a transaction if it so desires.

Object Group

An XBSA agent can also change the group ownership of an object. When the group
ownership is set via one of these options, other than the default, the permissions on the
object are set to 660, or 'rw - rw- - - -', which is read/write for owner and group. This
allows any user in the specified group to access and restore the object.

To specify the group of an object, the XBSA environment variable
NBBSA_USE_OBJECT_GROUP needs to be set. There are 5 values that this variable can
be set to. These values are defined in nbbsa.h.
42 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
/*

* XBSA values to use to define how to specify NetBackup object ownership

*/

#define VxLOGIN_USER 0 /* Default, owner/group field is set to the login user */

#define VxLOGIN_GROUP 1 /* group field is set to the primary group of the login user */

#define VxBSA_OWNER 2 /* owner/group field is set to

objectDesctiptor->objectOwner.bsa_ObjectOwner */

#define VxAPP_OWNER 3 /* owner/group field is set to

objectDesctiptor->objectOwner.app_ObjectOwner */

#define VxENV_OWNER 4 /* owner/group field is set to value of

NBBSA_OBJECT_OWNER/NBBSA_OBJECT_GROUP */

VxLOGIN_USER is the default behavior that you would get if the
NBBSA_USE_OBJECT_GROUP variable wasn't set. The group name will be the same
name as the owner field, whether that is the login user or a user name defined by one of
the other options, and the permissions of the object will be 600, owner read/write only.

VxLOGIN_GROUP will set the group field to the primary group of the login user.

VxBSA_OWNER will set the object group to the value stored in the objectDescriptor field
objectOwner.bsa_ObjectOwner. The value in the bsa_ObjectOwner field will need to be a
valid username without any spaces in the name. The value in
objectOwner.bsa_ObjectOwner will still be stored as an attribute of the object and a query
will need to correctly specify this field in the query descriptor to successfully find the
object.

VxAPP_OWNER will set the object group to the value stored in the objectDescriptor field
objectOwner.app_ObjectOwner. The value in the app_ObjectOwner field will need to be a
valid username without any spaces in the name. The value in
objectOwner.app_ObjectOwner will still be stored as an attribute of the object and a query
will need to correctly specify this field in the query descriptor to successfully find the
object.

VxENV_OWNER will set the object group to the value of the XBSA environmental
variable NBBSA_OBJECT_GROUP. The value stored in the NBBSA_OBJECT_GROUP
will need to be a valid username without any spaces in the name.

The variables NBBSA_USE_OBJECT_GROUP and NBBSA_OBJECT_GROUP can be
changed within a transaction so that an XBSA agent can set different group ownership of
each object in a transaction if it so desires.

Creating an Empty Object

It is acceptable to create an XBSA object without any associated data. This is created in
much the same way as an object with data with two differences. The estimatedSize.left
and estimatedSize.right fields need to be zero so the NetBackup XBSA Interface knows
that the object is going to be empty. After the BSACreateObject() call, the XBSA
Application calls BSAEndData() to end the object. If estimatedSize is set to zero and
BSASendData() is called, this will result in an error.
Chapter 4, Using the NetBackup XBSA Interface 43

Creating a NetBackup XBSA Application
Backup Example

The following example goes through the process of creating an object. It is assumed the
transaction has already been started (see “Initiating a Session” on page 36). The
BSA_ObjectDescriptor is populated with the values that are associated with the object.
Then the DataBlock32 structure is created to receive any restrictions put on the data by the
NetBackup Interface. BSACreateObject() is then called to create the object and start the
backup process. Once the object is created, this example sends one buffer of data with the
BSASendData() call. After the last BSASendData() call, the object is completed with a
BSAEndTxn(), which commits the object.

This highly simplistic example only creates one object and only sends one buffer of data.
In general, objects will take multiple buffers and a transaction can create multiple objects.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_DataBlock32 *data_block;

BSA_ObjectDescriptor *object_desc;

BSA_UInt32 DataBuffSz;

BSA_UInt32 Size;

char *envx[5];

char DataBuff[512];

char ErrorString[512];

char msg[1024];

int status;

.

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

.

BSABeginTxn(BsaHandle);

/ * Populate the object descriptor of the first object to be backed up. */

object_desc = (BSA_ObjectDescriptor *)malloc(sizeof(BSA_ObjectDescriptor));

strcpy(object_desc->objectOwner.bsa_ObjectOwner, "XBSA Client");

strcpy(object_desc->objectOwner.app_ObjectOwner, "XBSA App");

strcpy(object_desc->objectName.pathName, "/xbsa/sample/object1");

strcpy(object_desc->objectName.objectSpaceName, "");

strcpy(object_desc->resourceType, "Sample");

strcpy(object_desc->objectDescription,"Sample description of Object 1.");

strcpy(object_desc->objectInfo,"Object 1");

object_desc->copyType = BSA_CopyType_BACKUP;

object_desc->estimatedSize.left = 0;

object_desc->estimatedSize.right = 100;

object_desc->objectType = BSA_ObjectType_FILE;

44 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
/ * Initialize the BSA_DataBlock32 structure. */

data_block = (BSA_DataBlock32 *)malloc(sizeof(BSA_DataBlock32));

memset(data_block, 0x00, sizeof(BSA_DataBlock32));

/ * Create the sample object. If the object cannot be created, terminate the session. */

status = BSACreateObject(BsaHandle, object_desc, data_block);

if (status == BSA_RC_SUCCESS) {

printf("copyId: %d - %d\n", object_desc->copyId.left, object_desc->copyId.right);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSACreateObject failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * For the purposes of this sample, we will assume that the data in the DataBuff *

* buffer has been populated from reading the data from the object being backed up. */

strcpy(DataBuff, "This is the sample data that is contained in the sample object that is being

backed up for the purposes of showing how data can be backed up and restored.");

DataBuffSz = strlen(DataBuff);

/ * BSACreateObject sets values in the BSA_DataBlock32 to indicate *

* header and trailer requirements. The NetBackup implementation has *

* no such requirements and are not checked here. Set the other *

* fields of the data_block for the BSASendData call. */

data_block->bufferLen = 512;

data_block->bufferPtr = DataBuff;

data_block->numBytes = DataBuffSz;

/ * Send the data to be backed up. In normal implementations, BSASendData *

* would be in a loop reading the data into the buffer and then sending it *

* until all the data of the object has been sent. */

status = BSASendData(BsaHandle, data_block);

if (status == BSA_RC_SUCCESS) {

printf("Bytes backed up: %d\n", data_block->numBytes);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSASendData failed with error: %s\n", ErrorString);

Chapter 4, Using the NetBackup XBSA Interface 45

Creating a NetBackup XBSA Application
NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * All data has been sent for the object. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndData failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * End the backup transaction and commit the object. */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Backup");

BSATerminate(BsaHandle);

exit(status);

}

Query - Finding an object descriptor
An XBSA Application may query the NetBackup XBSA Interface for XBSA objects that
have been created. The BSAQueryObject() call is used to query the NetBackup catalog for
these objects. The query is based on a subset of the object descriptor attributes, contained
in a query descriptor. If the result of the query is multiple object descriptors,
BSAQueryObject() will return the first (most recent) object and the rest can be retrieved
one object descriptor at a time by using a succession of BSAGetNextQueryObject() calls.

Querying for an object

When querying for an object, the object attributes that the XBSA Application is querying
for are contained in a query descriptor. This query descriptor is made up of strings and
enumerations. They will be evaluated against the objects stored in the NetBackup catalog
for objects that match all fields. Each field of the query descriptor must be populated. If a
46 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
string field is populated with an empty string or NULL, it will only match objects that also
have an empty string for that field. Wildcards and 'ANY' enumerations allow the XBSA
application to search for objects that have some fields that are unknown.

There are two fields that are not part of the XBSA specifications but can be very useful.
The createTime_from and createTime_to fields limit the search to the time period between
these dates. These are optional fields, the default is to search all objects, but can greatly
speed up the search when the NetBackup catalog is very large.

When doing the query, the XBSA application will only return objects that are owned by
login user running the query, unless that user is a root admin. NetBackup XBSA Version
1.1.0 uses the login user as the object owner. The objectOwner field is considered an
attribute and is not used for security.

The query, by default, will also only return objects that were created on the hostname
from which the query is being run. If the XBSA Application needs to find an object that
was created from a different host, the NBBSA_CLIENT_HOST environment variable must
be set to the hostname from which the object was created. This variable can only be set
before a transaction begins. If the application is looking for objects from multiple hosts,
the application will need to do queries in separate transactions.

Query Example

Here is a simple example of a query. It starts with populating a query descriptor, which
identifies what objects are being searched for. Then it makes the initial query

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_QueryDescriptor *query_desc;

BSA_ObjectDescriptor *object_desc;

BSA_UInt32 Size;

char *envx[3];

char ErrorString[512];

char msg[1024];

int status;

.

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

.

BSABeginTxn(BsaHandle);

/ * Populate the query descriptor of the object to be searched for. */

query_desc = (BSA_QueryDescriptor *)malloc(sizeof(BSA_QueryDescriptor));

Chapter 4, Using the NetBackup XBSA Interface 47

Creating a NetBackup XBSA Application
query_desc->copyType = BSA_CopyType_BACKUP;

query_desc->objectType = BSA_ObjectType_FILE;

query_desc->objectStatus = BSA_ObjectStatus_ANY;

strcpy(query_desc->objectOwner.bsa_ObjectOwner, "XBSA Client");

strcpy(query_desc->objectOwner.app_ObjectOwner, "XBSA App");

strcpy(query_desc->objectName.pathName, "/xbsa/sample/object1");

strcpy(query_desc->objectName.objectSpaceName, "");

object_desc = (BSA_ObjectDescriptor *)malloc(sizeof(BSA_ObjectDescriptor));

/ * Begin searching for objects matching the query criteria. BSAQueryObject() *

* returns the first (most recent) object found. */

status = BSAQueryObject(BsaHandle, query_desc, object_desc);

if (status == BSA_RC_SUCCESS) {

printf("copyId: %d - %d\n", object_desc->copyId.left, object_desc->copyId.right);

} else if (status == BSA_RC_NO_MATCH) {

sprintf(msg, "WARNING: BSAQueryObject() did not find an object matching the query");

NBBSALogMsg(BsaHandle, MSWARNING, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAQueryObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

}

/ * Continue searching for other objects which match the query criteria. *

* BSAGetNextQueryObject() should return BSA_RC_NO_MORE_DATA when there *

* are not more objects. */

while ((status = BSAGetNextQueryObject(BsaHandle, object_desc)) == BSA_RC_SUCCESS) {

printf("CopyId: %d.%d\n", object_desc->copyId.left, object_desc->copyId.right);

}

if (status != BSA_RC_NO_MORE_DATA) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAGetNextQueryObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

}

/ * End the query transaction. BSA_Vote_COMMIT and BSA_Vote_ABORT are equivalent as *

* there is nothing to commit or abort.
 */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

48 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Query");

BSATerminate(BsaHandle);

exit(status);

}

Restore - Retrieving an object’s data
Another type of transaction is a restore transaction. A restore transaction is identified by
the first BSAGetObject() call. A difference from a backup transaction is that there can also
be BSAQueryObject() calls within a restore transaction, which is useful to get the object
descriptor of the object the XBSA Application is restoring. BSAGetObject() will start the
process of retrieving an object. Once the object has been retrieved, multiple BSAGetData()
calls are be used to retrieve the data associated with an object. The last BSAGetData() call
will return BSA_NO_MORE_DATA that will signal that the NetBackup XBSA Interface
has completed sending the data. The BSAEndData() call will then release all resources.

Restoring an object

When restoring an XBSA object, the login user must be the owner of the XBSA object or a
root admin. (The owner of an object is the login user of the process that created the object.)
If a different user tries to restore the object, the NetBackup XBSA Interface will return a
BSA_RC_OBJECT_NOT_FOUND error. This error could also be returned if the host on
which the restore is being done is different from the host which backed up the object. See
“Redirected Restore to a Different Client” on page 50 on how to restore to a different
computer.

The XBSA Application is responsible for recreating the object. The NetBackup XBSA
Interface sends a stream of data to the XBSA Application. It is up to the XBSA Application
to ensure the correct permissions exist for restoring the object, recreating all attributes, etc.
If any of these attributes are stored in the object descriptor of the XBSA object, the object
descriptor needs to be retrieved with a BSAQueryObject() call. The call to BSAGetObject()
does not populate the object attributes.

To restore an XBSA object, the NetBackup XBSA Interface needs to have an object
descriptor that contains the copyId of the object being restored. This copyId can be
obtained from either a query process or from information stored by the XBSA
Application. It is permissible to mix query operations in a restore transaction.

The other structure that is required before restoring an object is the BSA_DataBlock32
structure. The structure does not need to be populated as BSAGetObject() will populate
select fields with values that define how the data buffers will be used. See “Buffers” on
page 17 for more information on this.
Chapter 4, Using the NetBackup XBSA Interface 49

Creating a NetBackup XBSA Application
The restore is initiated with a call to BSAGetObject() with this object descriptor and data
block as parameters. This function starts the process of retrieving the object. If
BSAGetObject() returns with good status, BSAGetData() can retrieve the object data from
the NetBackup XBSA Interface via buffers. The buffers are defined by the
BSA_DataBlock32 structure. It is the responsibility of the XBSA Application to allocate the
buffers. BSAGetObject() will fill the buffers with data and set the numBytes field of the
BSA_DataBlock32 with the number of bytes in the buffer. When the last buffer of data for
the object has been passed, BSAGetObject() will return BSA_NO_MORE_DATA.
BSAEndData() should then be called to signal to the NetBackup XBSA Interface that the
object is restored and that it can free up the resources. The NetBackup XBSA Interface
requires that all data for an object is retrieved or the return status of the NetBackup server
would be an error status. This will not affect the XBSA Application, but may impact how a
user of the application interprets the results of the restore.

After the object(s) have been restored, the transaction should be closed. From the
NetBackup XBSA Interface point of view, a committed or aborted transactions are
handled the same, as there is nothing for NetBackup to commit.

Redirected Restore to a Different Client

One specific type of restore that deserves special notice is what is considered a redirected
restore to a different client. An XBSA object is stored within NetBackup with a specific
client from which it was backed up. The default is to assume that the object is being
restored to the same client. If the hostname that is initiating the restore is different from
the hostname on which the object was backed up, the NBBSA_CLIENT_HOST
environment variable needs to be set.

The NBBSA_CLIENT_HOST must be set, before entering the transaction, to the hostname
on which the object was backed up. If this variable has not been specified, the NetBackup
XBSA Interface will not be able to find the object.

Restore Example

Here is an example of a restore. It assumes that the object descriptor has been populated
with the copyId of the object either from a query or the XBSA application having stored
this information.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_DataBlock32 *data_block;

BSA_UInt32 EnvBufSz = 512;

BSA_ObjectDescriptor *object_desc;

BSA_QueryDescriptor *query_desc;

BSA_UInt32 Size;

char *envx[3];

char EnvBuf[512];

50 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
char ErrorString[512];

char msg[1024];

char *restore_location;

int total_bytes = 0;

int status;

.

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

.

BSABeginTxn(BsaHandle);

/ * Get the object. */

data_block = (BSA_DataBlock32 *)malloc(sizeof(BSA_DataBlock32));

status = BSAGetObject(BsaHandle, object_desc, data_block);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAQueryObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * The application is responsible for recreating the file or other object *

/ * type that is being restored using the information that is stored in the *

/ * object_descriptor. This sample prints the results to the screen. */

restore_location = (char *)malloc((EnvBufSz + 1) * sizeof(char));

memset(restore_location, 0x00, EnvBufSz + 1);

/ * Initialize the data_block structure. */

data_block->bufferLen = EnvBufSz;

data_block->bufferPtr = EnvBuf;

memset(data_block->bufferPtr, 0x00, EnvBufSz);

/* Read data until the end of data. */

while ((status = BSAGetData(BsaHandle, data_block)) == BSA_RC_SUCCESS) {

/ * Move the retrieved data to where it is to be restored to and *

* reset the data_block buffer. */

Chapter 4, Using the NetBackup XBSA Interface 51

Creating a NetBackup XBSA Application
memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("%s", restore_location);

memset(restore_location, 0x00, EnvBufSz + 1);

memset(data_block->bufferPtr, 0x00, EnvBufSz);

}

if (status == BSA_RC_NO_MORE_DATA) {

/ * The last BSAGetData() that returns BSA_RC_NO_MORE_DATA may have data *

* in the buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("%s\n", restore_location);

printf("Total bytes retrieved: %d\n", total_bytes);

} else {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAGetData() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * Done retrieving data. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndData() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * End the restore transaction. BSA_Vote_COMMIT and BSA_Vote_ABORT are equivalent as *

/ * there is nothing to commit or abort for a restore transaction. */

52 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Restore");

BSATerminate(BsaHandle);

exit(status);

}

Multiple Object Restore

If multiple objects are going to be restored in one session or transaction, the XBSA agent
should consider using the NBBSAGetMultipleObjects function call. This is a NetBackup
extension to the XBSA interface to optimize the retrieval of objects in a NetBackup
environment. This is especially useful when retrieving many small objects.

The reason this provides a performance improvement is that each NetBackup restore
operation creates a NetBackup job, which acquires resources and then frees them up when
the job is complete. Each BSAGetObject call translates into one NetBackup job. The initial
time required to start a NetBackup job and establish communication are minimal,
especially when compared to the time to transfer large amounts of data. But if the objects
are small and numerous, this overhead per object will be noticeable. It is also possible on
heavily loaded NetBackup systems that successive BSAGetObject calls may get queued
up behind other NetBackup jobs and resource requests. Any of these could cause
performance issues if the separate objects are really all part of one restore.

To address this behavior of NetBackup, we have added a multiple object restore interface
to the XBSA interface. This is an extension of the XBSA specification to enhance
performance for NetBackup XBSA Applications. The use of this interface is not required
and does not provide functionality on objects that is not available through the interfaces
defined by XBSA.

Requirements

◆	 In order to do a multiple object restore, the XBSA Application needs to have created
the objects in ways that will allow this and there are restrictions on how the objects
can be retrieved.

◆	 All the objects to be restored within a multiple object restore must be part of the same
NetBackup image, which means that the objects were created in one transaction. This
can be verified by checking that each object being restored has the same copyId.left.

◆	 The objects must be retrieved in the same order that they were created. Some objects
in the image can be skipped, but the objects being retrieved must be ordered in a way
that will not cause the media to have to position backwards. The ordering of objects
can be determined by verifying that the copyId.right for each object is in ascending
order.
Chapter 4, Using the NetBackup XBSA Interface 53

Creating a NetBackup XBSA Application
◆	 While not all objects in an image need to be retrieved, all objects in the list created by
NBBSAAddToMultiObjectRestoreList must be retrieved in the order in which they are
on the list. Objects cannot be skipped or added.

◆	 Each object in the list will be retrieved with BSAGetObject followed by successive
BSAGetData calls to retrieve all the data. All data for an object must be retrieved
before moving on to the next object.

Functions and use

There are three new functions provided as part of the XBSA interface that can be used to
do multiple object restores.

◆	 NBBSAAddToMultiObjectRestoreList takes an object descriptor and it to a descriptor
list. This function is called for each object that is to be retrieved as part of one restore
job. It is highly recommended to use this function to create the list because it allows
the XBSA interface to be in charge of memory allocation and deletion.

◆	 NBBSAGetMultipleObjects starts the multiple object restore job. It takes the list of
descriptors built by NBBSAAddToMultiObjectRestoreList and submits a request to
restore all objects.

◆	 NBBSAEndGetMultipleObjects ends the multiple object restore job. This function
cleans up the memory from the object list and allows the application to COMMIT or
ABORT the restore, which has no real effect on the data.

The process is very similar to the single object restores. First, all objectDescriptors to be
retrieved are added to a list using the NBBSAAddToMultiObjectRestoreList. The
objectDescriptors can be generated from BSAQueryObject or populated by the
application. Once the list is ready, a call to NBBSAGetMultipleObjects will initiate the
restore process. Then, each object is retrieved using the standard BSAGetObject,
BSAGetData, and BSAEndData function calls. The difference is that BSAGetObject knows
it is part of a larger restore job. After all objects have been retrieved,
NBBSAEndGetMultipleObjects is called to end the restore process. The transaction can
then be ended. If an object is skipped or not all data is retrieved, the entire job will fail.

Multiple Object Restore Example

Here is an example of a multiple object restore. Examples of BSAQueryObject and
BSAGetObject are included elsewhere in this document, so this example bypasses some of
the error handling associated with those calls.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_DataBlock32 *data_block;

BSA_QueryDescriptor *query_desc;

BSA_ObjectDescriptor *object_desc;

54 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
BSA_ObjectDescriptor *object_desc_current;

NBBSA_DESCRIPT_LIST *object_list = NULL;

NBBSA_DESCRIPT_LIST *object_list_current;

BSA_UInt32 EnvBufSz = 512;

BSA_UInt32 Size;

char *envx[3];

char EnvBuf[512];

char ErrorString[512];

char msg[1024];

char *restore_location;

int total_bytes = 0;

int status;

.

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

.

BSABeginTxn(BsaHandle);

/* Populate the query descriptor of the object to be searched for. */

query_desc = (BSA_QueryDescriptor *)malloc(sizeof(BSA_QueryDescriptor));

object_desc = (BSA_ObjectDescriptor *)malloc(sizeof(BSA_ObjectDescriptor));

data_block = (BSA_DataBlock32 *)malloc(sizeof(BSA_DataBlock32));

query_desc->copyType = BSA_CopyType_BACKUP;

query_desc->objectType = BSA_ObjectType_FILE;

query_desc->objectStatus = BSA_ObjectStatus_MOST_RECENT;

strcpy(query_desc->objectOwner.bsa_ObjectOwner, "BSA Client");

strcpy(query_desc->objectOwner.app_ObjectOwner, "BSA App");

strcpy(query_desc->objectName.pathName, "/xbsa/sample/object1");

strcpy(query_desc->objectName.objectSpaceName, "");

/* Search for an object matching the query criteria. */

status = BSAQueryObject(BsaHandle, query_desc, object_desc);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

/* Start building the objectList by adding the object descriptor to the list. */

status = NBBSAAddToMultiObjectRestoreList(BsaHandle, &object_list, object_desc);

Chapter 4, Using the NetBackup XBSA Interface 55

Creating a NetBackup XBSA Application
if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAAddToMultiObjectRestoreList() failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, " Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

/* Search for a second object. */

strcpy(query_desc->objectName.pathName, "/xbsa/sample/object2");

status = BSAQueryObject(BsaHandle, query_desc, object_desc);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

/* Add the second object descriptor to the objectList. */

status = NBBSAAddToMultiObjectRestoreList(BsaHandle, &object_list, object_desc);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAAddToMultiObjectRestoreList() failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, " Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

/* Start the multiple object restore by passing in the object list. The object list

* will be evaluated and the restore job will be started.

*/

status = NBBSAGetMultipleObjects(BsaHandle, object_list);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAGetMultipleObjects () failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, "Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

/* Create a pointer to the object list in order to keep track of the current object

* being restored. A list created by the application could also be used.

* Point the object descriptor at the first object

*/

56 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
object_list_current = object_list;

object_desc_current = object_list_current->Descriptor;

/* Get the first object. */

status = BSAGetObject(BsaHandle, object_desc_current, data_block);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

restore_location = (char *)malloc((EnvBufSz + 1) * sizeof(char));

memset(restore_location, 0x00, EnvBufSz + 1);

data_block->bufferLen = EnvBufSz;

data_block->bufferPtr = EnvBuf;

memset(data_block->bufferPtr, 0x00, EnvBufSz);

/* Read data until the end of data. */

while ((status = BSAGetData(BsaHandle, data_block)) == BSA_RC_SUCCESS) {

/* Move the retrieved data to where it is to be restored to and *

* reset the data_block buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

memset(restore_location, 0x00, EnvBufSz + 1);

memset(data_block->bufferPtr, 0x00, EnvBufSz);

}

if (status == BSA_RC_NO_MORE_DATA) {

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("Total bytes retrieved: %d\n", total_bytes);

} else {

/* handle error condition */

}

/* Done retrieving data for the first object. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

/* Set the object descriptor to the next object in the list. */

object_list_current = object_list_current->next;

object_desc_current = object_list_current->Descriptor;

Chapter 4, Using the NetBackup XBSA Interface 57

Creating a NetBackup XBSA Application
if (object_desc_current == NULL) {

/* handle error condition */

}

/* Get the next object. */

status = BSAGetObject(BsaHandle, object_desc_current, data_block);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

restore_location = (char *)malloc((EnvBufSz + 1) * sizeof(char));

memset(restore_location, 0x00, EnvBufSz + 1);

data_block->bufferLen = EnvBufSz;

data_block->bufferPtr = EnvBuf;

memset(data_block->bufferPtr, 0x00, EnvBufSz);

/* Read data until the end of data. */

while ((status = BSAGetData(BsaHandle, data_block)) == BSA_RC_SUCCESS) {

/* Move the retrieved data to where it is to be restored to and *

* reset the data_block buffer. */

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

memset(restore_location, 0x00, EnvBufSz + 1);

memset(data_block->bufferPtr, 0x00, EnvBufSz);

}

if (status == BSA_RC_NO_MORE_DATA) {

memcpy(restore_location, data_block->bufferPtr, data_block->numBytes);

total_bytes += data_block->numBytes;

printf("Total bytes retrieved: %d\n", total_bytes);

} else {

/* handle error condition */

}

/* Done retrieving data for the second object. */

status = BSAEndData(BsaHandle);

if (status != BSA_RC_SUCCESS) {

/* handle error condition */

}

/* End the multiple object restore transaction. Set any references to objects

* in the object list to NULL as the memory associated to the list has been freed.

*/

58 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
status = NBBSAEndGetMultipleObjects(BsaHandle, BSA_Vote_COMMIT, object_list);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: NBBSAEndGetMultipleObjects() failed with error: %s",

ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, "Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

object_list_current = NULL;

object_desc_current = NULL;

/* End the restore transaction. BSA_Vote_COMMIT and BSA_Vote_ABORT are

* equivalent as there is nothing to commit or abort for a restore transaction.

*/

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, ERROR, msg, " Multiple Object Restore");

BSATerminate(BsaHandle);

exit(status);

}

Delete - Deleting an Object
Deleting a NetBackup XBSA Object is done with the BSADeleteObject() function.
BSADeleteObject() will not always delete the object specified, even if it return a success
status. The only objects that can be deleted are objects in which there was only one object
created per transaction. Also note that it is possible for a deleted object to show up again
as delete only removes the entry from the NetBackup catalog and the objects are not
deleted from the tape media they are on. NetBackup allows media to be imported to
recreate all images from that media, which could recreate an object that was deleted.

Based on those limitations, the BSADeleteObject() function is pretty straightforward. It
takes a copyId as its parameter and deletes this object. Multiple objects can be deleted in
one transaction and it is permissible to have query operations within a delete transaction.
The object is not deleted until the transaction is committed so these query operations in a
delete transaction could return a deleted object.
Chapter 4, Using the NetBackup XBSA Interface 59

Creating a NetBackup XBSA Application
Delete Example

This delete example is very simple. It assumes that the copyId has been populated from a
previous query or from information stored by the XBSA Application. It then deletes one
object and commits the transaction that does the delete of the object.

BSA_Handle BsaHandle;

BSA_ObjectOwner BsaObjectOwner;

BSA_SecurityToken *security_tokenPtr;

BSA_ObjectDescriptor *object_desc;

BSA_QueryDescriptor *query_desc;

BSA_UInt32 Size;

char *envx[3];

char ErrorString[512];

char msg[1024];

int status;

.

.

.

BSAInit(&BsaHandle, security_tokenPtr, &BsaObjectOwner, envx);

.

.

.

BSABeginTxn(BsaHandle);

/ * Delete the object from NetBackup. */

status = BSADeleteObject(BsaHandle, object_desc->copyId);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSADeleteObject() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Delete");

BSAEndTxn(BsaHandle, BSA_Vote_ABORT);

BSATerminate(BsaHandle);

exit(status);

}

/ * End the delete transaction, commit will delete the object */

status = BSAEndTxn(BsaHandle, BSA_Vote_COMMIT);

if (status != BSA_RC_SUCCESS) {

Size = 512;

NBBSAGetErrorString(status, &Size, ErrorString);

sprintf(msg, "ERROR: BSAEndTxn() failed with error: %s", ErrorString);

NBBSALogMsg(BsaHandle, MSERROR, msg, "Delete");

BSATerminate(BsaHandle);

exit(status);

}

60 NetBackup XBSA Programmer’s Guide

Creating a NetBackup XBSA Application
Logging and NetBackup
NetBackup has a log directory that contains the debug logs for the various processes that
make up the NetBackup server and/or client. There is a configurable verbose level that
controls how much information is logged to these debug logs. This verbose level is a value
from 0 to 5, with 0 indicating minimal logging and 5 being debug. These logs are used by
NetBackup support to help solve customer problems. The log directory is located at
/usr/openv/netbackup/logs on UNIX systems and install
directory/Veritas/NetBackup/logs on Windows. Within this directory are
directories for the different processes such as bpsched, bprd, bpbrm, etc. One log file gets
created for each day, and NetBackup automatically cleans up old files from this directory.
The NetBackup XBSA Interface by default logs to the directory exten_client.

The NetBackup XBSA Interface allows the XBSA Application to log in a manner consistent
with other NetBackup processes. By using the NBBSALogMsg() function, the XBSA
Application will log messages to the same file as the NetBackup XBSA Interface. This may
cause some confusion for the developer at first, especially at high debug levels, but allows
the application to see what is causing errors and could help NetBackup support see what
the XBSA Application is doing. The log messages contain a timestamp along with the
process id, which is useful when there are multiple processes going at once.

The log message also contains a debug level. The different error levels used by NetBackup
are defined in nbbsa.h. One of these values should be used in the msgType parameter of
NBBSALogMsg(). While there are no hard definitions of when to use each of these values,
using these values may help if NetBackup support or engineering is ever involved in
looking at a debug log.

#define MSINFO 4

#define MSWARNING 8

#define MSERROR 16

#define MSCRITICAL 32

The XBSA Application is not required to log information to the NetBackup logs. If the
XBSA Application is the backup portion of another application or database, it may make
more sense to log information to a place consistent with the rest of the application.

Client in a Cluster
Running an XBSA Application in a clustered environment is a valid mode of operation.
The key thing about running in a cluster is to ensure that the client name used when an
object is created is the same as the client name used when the object is being queried or
retrieved. To ensure that the same client name is used, the XBSA Application should use
the virtual name of the clients in the cluster. The best way to do this would be to use the
NBBSA_CLIENT_HOST variable and set it to the virtual name for both creating and
retrieving an object. The virtual name needs to be the client name that is configured in the
NetBackup policy. Another option is to configure the virtual name as the default
Chapter 4, Using the NetBackup XBSA Interface 61

Creating a NetBackup XBSA Application
NetBackup client name. Configuring this way will then cause other NetBackup jobs, such
as the file system backups, to use this virtual name also, which may not be desired. If
neither of these options is used by the XBSA Application, the XBSA Interface will use the
default client name, which will be the physical address of the client. What will happen
then is that the objects will be created successfully, but if the query or retrieval is done
from a different node in the cluster, the object will not be found.

Performance Considerations
For the most part, the performance of the NetBackup XBSA Interface in conjunction with
the XBSA Application is dependent on how NetBackup is configured and how fast the
XBSA Application can send or receive data. It is important that the developers of an XBSA
Application have some understanding of NetBackup to get the most out of it. But much of
that is determined by any individual implementation. But there are areas that the
application can make a difference in performance.

Here are some hints to help you get the most out of the NetBackup XBSA Interface.

◆	 Use copyId if you know it. If the XBSA Application has the ability to know or keep the
copyId for further reference, this is the most efficient method of getting the object for
restore.

◆	 Specify dates when doing a query. If start and end dates are not specified when doing
a query, the NetBackup XBSA Interface may need to search through the entire
NetBackup catalog to find the object. Specifying dates allows it to narrow its search.

◆	 Limit use of wildcards when doing a query. Wildcards, including the “ANY” value of
the enumeration types, cause more overhead searching and can also cause large
portions of the NetBackup catalog to be searched. This is especially true of the
pathName. Wildcards can be very useful, but from a performance perspective they
are harmful.

◆	 Use OBJECT_STATUS_MOST_RECENT. If the XBSA application knows that a
pathName is unique, or that it is searching for only the most recent copy of that object,
set the objectStatus of the query descriptor to OBJECT_STATUS_MOST_RECENT.
This will let NetBackup stop searching once one copy has been found.

◆	 Unless the images are very large, create multiple objects per transaction rather than
one object per transaction when there are multiple objects being created. Every
transaction creates a NetBackup job that must be scheduled, open sockets, mount
tapes, etc. For large objects, this overhead is dwarfed by the time it takes to backup the
data. On the other hand if there are many small objects, this overhead becomes
significant. Of course, creating multiple objects within one transaction limits the
ability of the NetBackup XBSA Interface to delete an object.
62 NetBackup XBSA Programmer’s Guide

How to Build an XBSA Application
5

This chapter explains how to build an XBSA Application.

Getting Help
Included in the NetBackup DataStore SDK are XBSA sample files that can be used as a
basis for creating an application. Included are both source files and Makefiles. See the
chapter “How to Use the Sample Files” on page 135 for information on building and using
the sample programs. The Makefiles included in the sample directory can be used as a
basis for setting up an environment for creating an XBSA application.

Flags and Defines
There are no specific flags or defines that need to be used in order to compile using the
NetBackup XBSA Interface. You should be able to use any values to make your
application compile efficiently.

How to Build in Debug Mode
There is no compile level debug mode built into the XBSA libraries or header files. The
NetBackup Verbose level controls debug messages.

How to Debug the Application
Debugging an XBSA application is best done through the log files generated by
NetBackup. This assumes that the XBSA application itself compiles and does not have any
known runtime errors. See “Logging and NetBackup” on page 61 for more information on
this topic. You should also see the 'Logging' sections in the NetBackup System
Administrator's Guide for UNIX, Volume I, or NetBackup System Administrator's Guide for
Windows, Volume I,. The NetBackup Verbose level controls the amount of debug messages
that are sent to the logs.
63

Static Libraries
One of the advantages of debugging in this way is that it ties in with the NetBackup
logging that is going on for the other NetBackup processes. In many cases, it could be a
configuration issue that is causing a failure rather than a problem in the NetBackup XBSA
interface or the XBSA application.

Static Libraries
The example Makefiles have example entries for using static libraries for your XBSA
application. These entries include the path to the static archive library, libxbsa.a, along
with the system libraries that are also required to be included. For the platforms on which
we support 64-bit binaries (see “Supported Systems” on page 1) there is also a
libxbsa64.a that can be used to link to a 64-bit XBSA application.

For the UNIX platforms, (from Makefile.unix):

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris7/libxbsa.a -lintl -lsocket -lnsl -ldl -ladm

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris7/libxbsa64.a -lintl -lsocket -lnsl -ldl -ladm

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.00/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.00/libxbsa64.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.11/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.11/libxbsa64.a

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX4.3.3/libxbsa.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX4.3.3/libxbsa64.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX5/libxbsa.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX5/libxbsa64.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/SGI/IRIX65/libxbsa.a -lc

#LIBS = $(XBSA_SDK_DIR)/lib/SGI/IRIX65/libxbsa64.a -lc

#LIBS = $(XBSA_SDK_DIR)/lib/ALPHA/OSF1_V5/libxbsa.a -lc

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/RedHat2.4/libxbsa.a -lc -ldl

For the Windows platforms, use:

LIBS = $(XBSA_SDK_DIR)\lib\PC\WindowsNT\xbsas.lib

Dynamic Libraries
The example Makefiles have example entries for using dynamic libraries for your XBSA
application.

For the UNIX platforms, (from Makefile.unix), choose the 32- or 64-bit dynamic
library:

Use one of these LIBS to bind dynamically

LIBS = -L/usr/openv/lib -lxbsa -lVcvcomb

#LIBS = -L/usr/openv/lib -lxbsa64 -lVcvcomb64

64 NetBackup XBSA Programmer’s Guide

End-user Configuration
For the Windows platforms, (from Makefile.nt):

LIBS = $(XBSA_SDK_DIR)\lib\PC\WindowsNT\xbsa.lib

The dynamic shared object libraries will be installed with the NetBackup 5.1 Client on any
supported client platform. Similar to the static libraries, on platforms that NetBackup
supports both 32- and 64-bit applications, there will be a libxbsa.so(sl) and a
libxbsa64.so(sl). On UNIX platforms, the libraries are installed to /usr/openv/lib.
On Windows platforms, the libraries are installed to
install_directory\netbackup\bin.

End-user Configuration
Once an XBSA application has been created and installed on a NetBackup Client, a
NetBackup Policy and schedule must be configured through the NetBackup GUI or
command line. See the chapter “How to Run a NetBackup XBSA Application” on page 67.
Chapter 5, How to Build an XBSA Application 65

End-user Configuration
66 NetBackup XBSA Programmer’s Guide

How to Run a NetBackup XBSA Application
6

Once an XBSA Application has been created, it can be used in a NetBackup environment
to store and retrieve data. To use an XBSA application, at least one “DataStore” policy
with the appropriate schedules needs to be defined. A configuration can have a single
policy that includes all clients or there can be many policies, some of which include only
one client.

This manual only contains a brief description of configuring a DataStore policy. More
information on creating policies and configuring NetBackup can be found in the
NetBackup System Administrator's Guide for UNIX, Volume I, or NetBackup System
Administrator's Guide for Windows, Volume I.

Creating a NetBackup Policy
A NetBackup policy defines the backup criteria for a specific group of one or more clients.
These criteria include:

◆ storage unit and media to use

◆ backup schedules

◆ script files to be executed on the clients

◆ clients to be backed up

Selecting a Storage Unit

Each policy sends the data to a defined storage unit. The storage units must have already
been defined and one needs to be selected for the DataStore policy.

Adding New Schedules

Each policy has its own set of schedules. These schedules control initiation of automatic
backups and also specify when user operations can be initiated.
67

A XBSA application requires each policy to have at least an Application Backup schedule.
To help satisfy this requirement, an Application Backup schedule named
Default-Application-Backup is automatically created when you configure a new DataStore
policy. The backup window for an Application Backup schedule must encompass the
time period during which all NetBackup DataStore jobs, scheduled and unscheduled, will
occur. This is necessary because the Application Backup schedule starts processes that are
required for all XBSA application backups, including those started automatically.

If the user wants NetBackup to initiate the XBSA application, an Automatic Backup
schedule will also be required. An Automatic Backup schedule specifies the dates and
times when NetBackup will automatically start backups by running the XBSA scripts in
the order that they appear in the Files list. If there is more than one client in the DataStore
policy, the XBSA scripts are executed on each client.

Adding Script Files to the Files List

Each policy has a Files list. When a DataStore policy is configured, the Files list is actually
a list of script(s) that are to be executed when the backup is initiated. That script that will
be executed as a user-directed backup. Within the script should be any commands that are
required to prepare the application for a backup, including setting up an environment,
halting processes, etc., along with calling the XBSA Application with whatever
parameters are required to execute the backup operations.

Adding New Clients

Each policy also has a list of NetBackup clients. This list should contain all clients on
which the XBSA application is going to run.

Running a NetBackup XBSA Application
Once configured, backups and restores can be run either from the XBSA application or
through jobs scheduled through NetBackup. NetBackup can run backups and restores
indirectly through the XBSA Application by executing scripts that contain XBSA
Application backup or restore commands.

Backups and Restores Initiated by NetBackup (via a script)
The XBSA Application can be initiated through NetBackup. This allows the XBSA
Application to be treated like the rest of the system environment when creating and
scheduling backup windows and other resource considerations. Backup and restore
operations through NetBackup are done via scripts. When a DataStore policy is
configured, the Files list is actually a script that is to be executed when the backup or
restore is initiated. That script that will be executed as a user-directed backup. Within
68 NetBackup XBSA Programmer’s Guide

these scripts should be any commands that are required to prepare the application for a
backup or restore, including setting up an environment, halting processes, etc., along with
calling the XBSA Application with whatever parameter are required to execute the
backup or restore operations.

What is not available is the ability to browse for backups. The Files list is a script to be
executed, not a list of objects that can be restored. It is up to these scripts to determine
what needs to be backed up or conversely what XBSA objects need to be restored. In this
regard, the XBSA Application needs to be fairly intelligent or allow options that can be
specified to give the script the ability to be intelligent.

Backups and Restores from the Command Line
The NetBackup XBSA Application can also be initiated from the command line to run a
backup or restore. Commands included in the backup or restore scripts can also be run
directly from the command line. The XBSA application will connect to NetBackup
through the XBSA interface and a NetBackup job will be started. For backups, a backup
window must be open in the Application Backup schedule.
Chapter 6, How to Run a NetBackup XBSA Application 69

70 NetBackup XBSA Programmer’s Guide

API Reference
7

This chapter describes the type definitions and data structures used by the NetBackup
XBSA Interface. They are defined in a C Language Header File xbsa.h that is released with
the SDK.

Error Messages
The following table lists the possible return codes for the NetBackup XBSA functions. The
descriptions of each individual function will list the valid return codes are valid for that
function.

The return code BSA_RC_SUCCESS is returned on successful completion by all
NetBackup XBSA function calls.

Error Messages for NetBackup XBSA Functions

Value Return Code Name Meaning

0x00 BSA_RC_SUCCESS The function succeeded.

0x03 BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

0x04 BSA_RC_AUTHENTICATION_FAILURE There was an authentication failure.

0x05 BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

0x06 BSA_RC_INVALID_HANDLE The handle used to associate this call with
a previous BSAInit() call is invalid.

0x0B BSA_RC_INVALID_VOTE The value specified for vote is invalid.

0x0E NBBSA_RC_MORE_DATA There are more objects to restore in a
multiple object restore operation.

0x0D NBBSA_RC_FEATURE_NOT_LICENSED The license for the requested feature is not
available.
71

Error Messages
Error Messages for NetBackup XBSA Functions (continued)

Value Return Code Name Meaning

0x11 BSA_RC_NO_MATCH

0x12 BSA_RC_NO_MORE_DATA

0x15 NBBSA_RC_INVALID_PARAMETER

0x1A BSA_RC_OBJECT_NOT_FOUND

0x20 BSA_RC_TRANSACTION_ABORTED

0x34 BSA_RC_INVALID_DATABLOCK

0x4B BSA_RC_VERSION_NOT_SUPPORTED

0x4D BSA_RC_ACCESS_FAILURE

0x4E BSA_RC_BUFFER_TOO_SMALL

0x4F BSA_RC_INVALID_COPYID

0x50 BSA_RC_INVALID_ENV

No XBSA Object matched the specified
predicate.

No more data is available.

A parameter passed to this function has
an invalid value.

There is no copy of the requested XBSA
Object.

The transaction was aborted.

The BSA_DataBlock32 parameter
contained an inconsistent value.

The NetBackup implementation does not
support the specified version of the
interface.

Access to the requested XBSA Object is
not possible.

The supplied buffer is too small to contain
the data, as specified by the
accompanying size parameter.

The copyId field contained an
unrecognized value.

An entry in the environment structure is
invalid or missing.

0x51 BSA_RC_INVALID_OBJECTDESCRIPTOR The BSA_ObjectDescriptor was invalid.

0x53 BSA_RC_INVALID_QUERYDESCRIPTOR The BSA_QueryDescriptor was invalid.

0x55 BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one
of the arguments.
72 NetBackup XBSA Programmer’s Guide

Function Calls
Function Calls
This section contains the C language definitions for the NetBackup XBSA API functions.
The NetBackup XBSA Interface includes functions defined by the XBSA specifications and
some NetBackup extended functions. Both of these function sets use the type definitions
and data structures defined in the next chapter.

The following table lists the XBSA function specifications defined in the remainder of this
chapter.

XBSA Function Specifications

Function Call Operation

BSAInit Initialize the environment and set up a session

BSATerminate Terminate a session

BSABeginTxn Begin a transaction

BSAEndTxn End a transaction

BSACreateObject Create a XBSA Object

BSASendData Send a byte stream of data in a buffer

BSAGetObject Get an XBSA Object

BSAGetData Get a byte stream of data using buffers

BSAEndData End a BSAGetData() or BSASendData() sequence

BSADeleteObject Delete a XBSA Object

BSAQueryObject Query about XBSA Object copies

BSAGetNextQueryObject Get the next XBSA Object relating to a previous query

Chapter 7, API Reference 73

Function Calls
XBSA Function Specifications (continued)

Function Call Operation

BSAGetEnvironment Retrieve the current environment for the session

BSAGetLastError Retrieve the error code for the last system error

BSAQueryApiVersion Query for the current version of the API

BSAQueryServiceProvider Query the name of NetBackup implementation

The following table lists the NetBackup XBSA function extensions defined later in this
chapter. These functions are provided by the NetBackup XBSA Interface to enhance the
usability and performance of an XBSA Application used in conjunction with NetBackup.
The use of these functions is not required. An application using strictly XBSA functions is
supported.

NetBackup XBSA Function Extensions

Function Call Operation

NBBSAAddToMultiObjectRestoreList

NBBSAEndGetMultipleObjects

NBBSAGetEnv

NBBSAGetErrorString

NBBSAGetMultipleObjects

NBBSAGetServerError

NBBSALogMsg

NBBSASetEnv

NBBSAUpdateEnv

NBBSAValidateFeatureId

Add objects to a list of objects to be restored in one job

End the restore of multiple objects

Get the value of a single XBSA environment value

Get the string error message of an XBSA error code

Initiate a restore of a list of objects

Get the NetBackup error code and text from the
NetBackup server.

Log a message to the XBSA logs

Set the value of a single XBSA environment value

Update the current environment for the session

Validate the license key for the specified feature id
74 NetBackup XBSA Programmer’s Guide

Function Calls
Conventions
The following conventions are used to indicate input or output for parameters:

(I) indicates input

(O) indicates output

(I/O) indicates input and output

In many cases, the actual input parameter is a pointer to a data structure. In these cases
the terms “I”, “O” and “I/O” refer to changes in the value of the data structure rather than
to changes in the value of the pointer itself.
Chapter 7, API Reference 75

Function Specifications
Function Specifications
The following is a list of the function specifications for XBSA.

BSABeginTxn
Begin a transaction.

SYNOPSIS

#include <xbsa.h>

int BSABeginTxn(BSA_Handle bsaHandle)

DESCRIPTION

The BSABeginTxn() call indicates to the NetBackup XBSA Interface the beginning of one
or more actions that will be executed as an atomic unit, that is, all the actions will succeed
or none will succeed. An action can be assumed to be either a single function call or a
series of function calls that are made for a particular purpose.

For example, a BSACreateObject() call followed by a number of BSASendData() calls and
terminated by a BSAEndData() call can be considered to be a single action.

In normal use, a BSABeginTxn() call is always coupled with a subsequent BSAEndTxn()
call. If BSATerminate() is called during a transaction, the transaction will be aborted.

If BSA_SERVICE_HOST has not been specified prior to calling BSABeginTxn(), the
default NetBackup server will be determined and the feature will be checked for a valid
license key. The feature_ID will be the default DataStore feature_ID unless a specific
NetBackup feature_ID has been specified using NBBSA_FEATURE_ID. If a valid license
is not found, the transaction will return a NBBSA_RC_FEATURE_NOT_LICENSED error
and not open the transaction.

Nested transactions are not supported.
76 NetBackup XBSA Programmer’s Guide

Function Specifications
PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates this call
with a previous BSAInit() call.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect. Nested
transactions are not supported.

NBBSA_RC_FEATURE_NOT_LICENSED The license for the requested feature is not available.

BSA_RC_INVALID_HANDLE The handle used to associate this call with a
previous BSAInit() call is invalid.

BSA_RC_SUCCESS The function succeeded.
Chapter 7, API Reference 77

Function Specifications
BSACreateObject
Create an XBSA Object.

SYNOPSIS

#include <xbsa.h>

int BSACreateObject(BSA_Handle bsaHandle, BSA_ObjectDescriptor
*objectDescriptorPtr, BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION

The BSACreateObject() call creates an XBSA Object within NetBackup. Duplicate
BSA_ObjectNames are allowed.

The BSACreateObject() call is used to create an XBSA Object based on the information in
the objectDescriptor. This call initiates the communication between the NetBackup XBSA
Interface and the NetBackup server. The XBSA Object's data can then passed in memory
buffers. The dataBlockPtr parameter in the BSACreateObject() call allows the caller to
obtain information about the buffer structure required by the NetBackup XBSA Interface.

The XBSA Object’s data is passed through one or more BSASendData() calls. If there is no
data to be sent, then a BSAEndData() call must be used to indicate completion of the XBSA
Object. The BSASendData() and BSAEndData() calls must follow the BSACreateObject()
call and must be in the same transaction.

PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates
this call with a previous BSAInit() call.

BSA_ObjectDescriptor *objectDescriptorPtr (I/O) This parameter is used to pass XBSA Object
attributes, including its name, copy type, and
so on.

BSA_DataBlock32 *dataBlockPtr (O) This parameter is a pointer to a structure that
is used to obtain the details of the required
buffer structure.

EXTENDED DESCRIPTION

Within the XBSA Object descriptor, all fields must contain valid values. Enumerations
must contain one of their enumerated values. Strings must be null-terminated. All other
fields must be in the range of valid values for that field.
78 NetBackup XBSA Programmer’s Guide

Function Specifications
The following fields in the XBSA Object descriptor are optional: objectOwner,
objectDescription, and objectInfo. The optional value for either field of objectOwner and
the field objectDescription is the empty string. The optional value for objectInfo is all
zeros. If the bsa_ObjectOwner is empty it will default to the value specified in BSAInit().

Note
 For NetBackup XBSA Version 1.1.0, the NetBackup XBSA Interface and NetBackup
determine XBSA Object ownership. If the bsa_ObjectOwner field is specified if will
be saved with the object but will not define ownership.

The following fields in the XBSA Object descriptor are mandatory: objectName,
copyType, estimatedSize, resourceType, and objectType. For objectName this means that
the pathName must contain a non-empty string. For copyType and objectType the
enumeration value “ANY” is not allowed.

The estimatedSize must contain a non-zero estimate if the XBSA Application intends to
create a non-empty XBSA Object (that is, there will be XBSA Object Data). This size is in
bytes. If the estimatedSize is zero, this call must be followed by a BSAEndData() without
calling BSASendData() in between. There are no resource allocations based on this
estimate, only whether the object will have data or not. So the estimate does not need to be
accurate.

The NetBackup XBSA Interface may return several values to the XBSA Application
through the objectDescriptorPtr for a newly created XBSA Object. The interface returns
either all or none of these values.

The copyId attribute is a persistent, fixed-length Object Identifier that remains unchanged
throughout the life of the XBSA Object.

Note
 For NetBackup XBSA Version 1.1.0 the copyId is only guaranteed unique on a given
NetBackup Master Server.

If the copyId field is non-zero, the NetBackup XBSA Interface returned values for the
copyId, createTime, restoreOrder, and objectStatus fields.

The createTime field is in UTC. The restoreOrder field can have the value zero, which
means that the NetBackup XBSA Interface did not specify a restore order.

The dataBlockPtr structure does not point to an actual data buffer. All values in the
dataBlockPtr should be zero, and will be overwritten. The structure is used by the
NetBackup XBSA Interface to provide the XBSA application with the interface's
preference for the structure of the data blocks that will be used to pass the NetBackup
Chapter 7, API Reference 79

Function Specifications
XBSA Object's data. The XBSA Application should examine the values returned in order
to determine the buffer structure that it should create. The significance of the returned
values is as follows:

bufferLen == 0 NetBackup has no restrictions on the buffer length. No trailer portion is
required.

bufferLen != 0 NetBackup accepts buffers that are at least bufferLen bytes in length
(minimum length). The length of the trailer portion of buffers is:
trailerBytes >= (bufferLen - numBytes - headerBytes)

numBytes == 0 NetBackup has no restrictions on the length of the data portion of the
buffer.

numBytes != 0 The maximum length of the data portion of buffers accepted by
NetBackup must not exceed numBytes bytes.

headerBytes == 0 NetBackup only accepts buffers with no header portion.

headerBytes != 0 The length of the header portion of buffers accepted by NetBackup is
headerBytes bytes.

bufferPtr Not used

The values returned by the call to BSACreateObject() remain in effect for the duration of
the data transfer of the XBSA Object being created, that is, until the next BSAEndData()
call. The NetBackup XBSA Interface currently does not have any header or trailer
requirements, so the full buffer specified can be used by the XBSA Application. This is
documented for completeness with the XBSA specification and to allow for future use of
these fields as specified by the XBSA specifications.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_ACCESS_FAILURE Cannot create XBSA Object with given descriptor.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

BSA_RC_INVALID_DATABLOCK The BSA_DataBlock32 parameter contained an
inconsistent value.

BSA_RC_INVALID_HANDLE The handle used to associate this call with a
previous BSAInit() call is invalid.
80 NetBackup XBSA Programmer’s Guide

Function Specifications
BSA_RC_INVALID_OBJECTDESCRIPTOR The BSA_ObjectDescriptor was invalid.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments

BSA_RC_SUCCESS The function succeeded.
Chapter 7, API Reference 81

Function Specifications
BSADeleteObject
Delete a NetBackup XBSA Object.

SYNOPSIS

#include <xbsa.h>

int BSADeleteObject(BSA_Handle bsaHandle, BSA_UInt64 copyId)

DESCRIPTION

The BSADeleteObject() call only deletes an XBSA Object from NetBackup. The value for
copyId can be obtained from a previous BSAQueryObject() call. The copyId value is
unique on a given NetBackup Master Server. A XBSA Application can only delete
NetBackup XBSA Objects that it owns.

BSADeleteObject() only works when there is only one object in an image, i.e., one object
created per transaction. If there are multiple objects, BSADeleteObject() will return a
BSA_RC_SUCCESS status, but the object will still exist.

The actual delete of the object from NetBackup occurs when the transaction is closed with
a commit. A query in the same transaction may still return the object. If the transaction is
aborted, the object is not deleted.

If the object data is stored in a NetBackup disk storage unit, the data will be deleted with
the object. If the object is on a tape storage unit, the data is considered expired but will not
be deleted until all objects on the media are expired.It is not possible to create and then
delete the same NetBackup XBSA Object within a single transaction.

PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates this call with a previous
BSAInit() call.

BSA_UInt64 copyId (I) This parameter is the unique id of the XBSA Object to be deleted.
The value(s) for a specific XBSA Object can be obtained through a
BSAQueryObject() call.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.
82 NetBackup XBSA Programmer’s Guide

Function Specifications
BSA_RC_ACCESS_FAILURE Cannot delete XBSA Object with given copyId.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

BSA_RC_INVALID_COPYID The copyId field cannot be zero.

BSA_RC_INVALID_HANDLE The handle used to associate this call with a
previous BSAInit() call is invalid.

BSA_RC_OBJECT_NOT_FOUND The given copyId does not exist.

BSA_RC_SUCCESS The function succeeded.
Chapter 7, API Reference 83

Function Specifications
BSAEndData
End a BSAGetData() or BSASendData() sequence.

SYNOPSIS

#include <xbsa.h>

int BSAEndData(BSA_Handle bsaHandle)

DESCRIPTION

The caller issues BSAEndData() after a call to BSACreateObject() followed by zero or more
BSASendData() calls, or after a call to BSAGetObject() followed by zero or more
BSAGetData() calls to signify the end of data. When used with BSAGetObject() or
BSAGetData() calls, BSAEndData() will not transfer any more data for the NetBackup
XBSA Object to the caller. When used with BSACreateObject() or BSASendData() calls,
BSAEndData() tells the NetBackup XBSA Interface that the caller has finished sending
data for a particular NetBackup XBSA Object. BSAEndData() signifies the end of data for
the immediately preceding BSACreateObject(), BSAGetObject(), BSAGetData(), or
BSASendData().

It is also required after a call to BSAGetObject() or BSACreateObject() if the object is
empty.

PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates this call
with a previous BSAInit() call.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

BSA_RC_INVALID_HANDLE The handle used to associate this call with a previous
BSAInit() call is invalid.

BSA_RC_SUCCESS The function succeeded.
84 NetBackup XBSA Programmer’s Guide

Function Specifications
BSAEndTxn
End a transaction.

SYNOPSIS

#include <xbsa.h>

int BSAEndTxn(BSA_Handle bsaHandle, BSA_Vote vote)

DESCRIPTION

BSAEndTxn() is coupled with BSABeginTxn() to identify the API call or set of API calls
that are to be treated as a transaction. The caller must specify as a parameter to the
BSAEndTxn() call whether or not the transaction is to be committed.

The BSA_RC_TRANSACTION_ABORTED error is only returned when a vote of
BSA_Vote_COMMIT has been specified but an error has occurred which causes the
transaction to be aborted. A BSAEndTxn() specifying a vote of BSA_Vote_ABORT will
return a success status.

PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_Vote vote (I) This parameter indicates whether or not the caller wants to
commit all the actions done between the previous BSABeginTxn()
call and this call.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_INVALID_CALL_SEQUENCE There is no corresponding BSABeginTxn().

BSA_RC_INVALID_HANDLE The handle used to associate this call with a
previous BSAInit() call is invalid.

BSA_RC_INVALID_VOTE The value specified for vote is invalid.
Chapter 7, API Reference 85

Function Specifications
BSA_RC_SUCCESS The function succeeded.

BSA_RC_TRANSACTION_ABORTED The transaction was aborted.
86 NetBackup XBSA Programmer’s Guide

Function Specifications
BSAGetData
Get a byte stream of data using buffers.

SYNOPSIS

#include <xbsa.h>

int BSAGetData(BSA_Handle bsaHandle, BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION

BSAGetData() allows the caller to request a buffer full of XBSA Object Data from the
NetBackup XBSA Interface. This call is used after a BSAGetObject() call or after other
BSAGetData() calls.

PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates this call
with a previous BSAInit() call.

BSA_DataBlock32 *dataBlockPtr (I/O) This parameter is a pointer to a structure that includes
both a pointer to the buffer for the data that is to be
received and the size of the buffer. Further, the API
will return, in this structure, the number of bytes of
data that have been sent to the caller for this call.

EXTENDED DESCRIPTION

The NetBackup XBSA Interface overwrites the numBytes field to provide the actual
values used. The NetBackup XBSA Interface will not modify any other fields. The XBSA
Application may only use the data portion of the buffer, in which the XBSA Object data is
contained.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

BSA_RC_INVALID_DATABLOCK The BSA_DataBlock32 parameter contained an
inconsistent value.
Chapter 7, API Reference 87

Function Specifications
BSA_RC_INVALID_HANDLE The handle used to associate this call with a
previous BSAInit() call is invalid.

BSA_RC_NO_MORE_DATA There is no more data.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments.

BSA_RC_SUCCESS The function succeeded.
88 NetBackup XBSA Programmer’s Guide

Function Specifications
BSAGetEnvironment
Retrieve the current NetBackup XBSA Environment variables for the session.

SYNOPSIS

#include <xbsa.h>

int BSAGetEnvironment(BSA_Handle bsaHandle, BSA_UInt32 *sizePtr, char
**environmentPtr)

DESCRIPTION

The BSAGetEnvironment() call returns the (keyword, value) pairs that are currently
defined in the NetBackup XBSA Environment for the session

PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_UInt32 *sizePtr (I/O) This parameter contains the size of the environment buffer in
bytes.

char **environmentPtr (O) This parameter is a pointer to an array of character pointers to the
environment variables strings for the session. Each string consists
of a keyword followed by an “=” followed by a null-terminated
value. A NULL pointer terminates the array of pointers.

EXTENDED DESCRIPTION

If a buffer too small error is encountered, the required size is returned in the sizePtr
parameter. If the sizePtr parameter is set to zero, this will force a buffer too small error,
thus providing a mechanism to query the required size.

See “Environment Variable Definitions” on page 22 for the list of XBSA environment
variable defined for this specification.
Chapter 7, API Reference 89

Function Specifications
RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_BUFFER_TOO_SMALL The size of the data buffer is invalid.

BSA_RC_INVALID_HANDLE The handle used to associate this call with a previous
BSAInit() call is invalid.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments.

BSA_RC_SUCCESS The function succeeded.
90 NetBackup XBSA Programmer’s Guide

Function Specifications
BSAGetLastError
Return the last system error code.

SYNOPSIS

#include <xbsa.h>

int BSAGetLastError(BSA_UInt32 *sizePtr, char *errorCodePtr)

DESCRIPTION

The BSAGetLastError() call returns a textual description of the last error encountered by
the NetBackup XBSA Interface. It is used to return NetBackup-specific information
describing the underlying cause of the failure of the most recent XBSA call, for example, a
network failure.

PARAMETERS

BSA_UInt32 sizePtr (I/O) This parameter contains the size of the error buffer in bytes.

char *errorPtr (O) This parameter is a pointer to a data area that contains a text
string describing the last error encountered.

EXTENDED DESCRIPTION

If the NetBackup XBSA Interface sets the sizePtr parameter to zero, it is unable to return a
string describing the last error. This indicates that the NetBackup XBSA Interface has no
record of what error occurred.

If a BSA_RC_BUFFER_TOO_SMALL error is encountered, the required size is returned in
the sizePtr parameter. If the XBSA Application sets the sizePtr parameter to zero, this will
force a BSA_RC_BUFFER_TOO_SMALL error, thus providing a mechanism to query the
required size.
Chapter 7, API Reference 91

Function Specifications
RETURN VALUE

The following return codes are returned by this function:

BSA_RC_BUFFER_TOO_SMALL The size of the data buffer is invalid.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

BSA_RC_INVALID_HANDLE The handle used to associate this call with a previous
BSAInit() call is invalid.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments.

BSA_RC_SUCCESS The function succeeded.
92 NetBackup XBSA Programmer’s Guide

Function Specifications
BSAGetNextQueryObject
Get the next NetBackup XBSA Object found from a previous query.

SYNOPSIS

#include <xbsa.h>

int BSAGetNextQueryObject(BSA_Handle bsaHandle, BSA_ObjectDescriptor
*objectDescriptorPtr)

DESCRIPTION

The BSAGetNextQueryObject() call returns the next NetBackup XBSA Object descriptor
that is a member of a previous query. Successive calls to BSAGetNextQueryObject() will
return all NetBackup XBSA Object descriptors from a query one object at a time. When the
last object descriptor from a query has been found, the function will return a status of
BSA_RC_NO_MORE_DATA.

PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates this
call with a previous BSAInit() call.

BSA_ObjectDescriptor *objectDescriptorPtr (O) This parameter is a pointer to an XBSA Object
descriptor structure that will be populated with
the values from the next XBSA Object in the list
generated by the query.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

BSA_RC_INVALID_HANDLE The handle used to associate this call with a previous
BSAInit() call is invalid.

BSA_RC_NO_MORE_DATA There is no more data.
Chapter 7, API Reference 93

Function Specifications
BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments

BSA_RC_SUCCESS The function succeeded.
94 NetBackup XBSA Programmer’s Guide

Function Specifications
BSAGetObject
Get an object.

SYNOPSIS

#include <xbsa.h>

int BSAGetObject(BSA_Handle bsaHandle, BSA_ObjectDescriptor *objectDescriptorPtr,
BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION

BSAGetObject() retrieves the NetBackup XBSA Object identified by the copyId and
prepares the NetBackup XBSA Interface to retrieve the XBSA Object Data. It initiates the
communication with the NetBackup server to retrieve the object.

The dataBlockPtr parameter in the BSAGetObject() call allows the caller to obtain
information about the buffer structure required by the NetBackup XBSA Interface. The
caller obtains the NetBackup XBSA Object's data through subsequent BSAGetData() calls.
The caller must terminate receipt of the data by using the BSAEndData() call.

PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates this call with
a previous BSAInit() call.

BSA_ObjectDescriptor
*objectDescriptorPtr (I)

This parameter is a pointer to a data area used to pass the
NetBackup XBSA Object's copyId to the NetBackup
XBSA Interface.

BSA_DataBlock32 *dataBlockPtr (O) This parameter is a pointer to a structure that is used to
obtain the details of the required buffer structure.

EXTENDED DESCRIPTION

It is mandatory that the copyId field in the BSA_ObjectDescriptor structure is set as this is
the only field that is checked. A copyId value of zero cannot identify a valid XBSA Object.
BSAGetObject() matches the copyId field for equality.

The dataBlockPtr structure does not point to an actual buffer. All values in the
dataBlockPtr should be zero, and will be overwritten. The structure is used by the
NetBackup XBSA Interface to provide the XBSA Application with the interface's
preference for the structure of the data blocks that will be used to pass the NetBackup
Chapter 7, API Reference 95

Function Specifications
XBSA Object's data. The XBSA Application should examine the values returned in order
to determine the buffer structure that it should create. The significance of the returned
values is as follows:

bufferLen == 0 NetBackup has no restrictions on the buffer length. No trailer portion is
required.

bufferLen != 0 NetBackup accepts buffers that are at least bufferLen bytes in length
(minimum length). The length of the trailer portion of buffers is:
trailerBytes >= (bufferLen - numBytes - headerBytes).

numBytes == 0 NetBackup has no restrictions on the length of the data portion of the
buffer.

numBytes != 0 The minimum length of the data portion of buffers accepted by NetBackup
must be numBytes bytes. If the interface provides a larger data portion,
NetBackup may take advantage of it.

headerBytes == 0 NetBackup only accepts buffers with no header portion.

headerBytes != 0 The length of the header portion of buffers accepted by NetBackup is
headerBytes bytes.

bufferPtr Not used.

The values returned by the call to BSAGetObject() remain in effect for the duration of the
data transfer of the NetBackup XBSA Object being retrieved, that is, until the next
BSAEndData() call. The NetBackup XBSA Interface currently does not have any header or
trailer requirements, so the full buffer specified can be used by the XBSA Application.
This is documented for completeness with the XBSA specification and to allow for future
use of these fields as specified by the XBSA specifications.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_ACCESS_FAILURE Access to the requested XBSA Object is not possible.
Cannot retrieve XBSA Object with given copyId.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

BSA_RC_INVALID_COPYID The copyId cannot be zero.
96 NetBackup XBSA Programmer’s Guide

Function Specifications
BSA_RC_INVALID_HANDLE The handle used to associate this call with a previous
BSAInit() call is invalid.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments.

BSA_RC_OBJECT_NOT_FOUND The given copyId does not exist.

BSA_RC_SUCCESS The function succeeded.
Chapter 7, API Reference 97

Function Specifications
BSAInit
Initialize the environment and set up a session.

SYNOPSIS

#include <xbsa.h>

int BSAInit(BSA_Handle *bsaHandlePtr, BSA_SecurityToken *tokenPtr,
BSA_ObjectOwner *objectOwnerPtr,

char **environmentPtr)

DESCRIPTION

The BSAInit() call authenticates the XBSA Application, sets up a session with the
NetBackup XBSA Interface and an environment for subsequent API calls for the caller.
Nested sessions are not supported.
98 NetBackup XBSA Programmer’s Guide

Function Specifications
PARAMETERS

BSA_Handle
*bsaHandlePtr (O)

This parameter is used to return the handle that identifies this session
and must be used for subsequent API calls using this session.

BSA_SecurityToken
*tokenPtr (I)

For NetBackup XBSA Version 1.1.0 this parameter is ignored. Client
authentication is part of NetBackup functionality and is performed
between the NetBackup XBSA Interface and the NetBackup Server.

BSA_ObjectOwner
*objectOwnerPtr (I)

This parameter is a pointer to a structure used to specify both the
bsa_ObjectOwner and the app_ObjectOwner. For NetBackup XBSA
Version 1.1.0, the NetBackup XBSA Interface and NetBackup determine
object ownership. If the bsa_ObjectOwner field is specified if will be
ignored. The app_ObjectOwner is optional and can be the empty string.
The BSA_ObjectOwner established when the session is created is used in
subsequent authorization checking.

char **environmentPtr
(I)

This parameter is a pointer to a structure that contains the new
NetBackup XBSA Environment variables (keyword, value) pairs, for the
session. The new NetBackup XBSA Environment consists of a pointer to
an array of strings. Each string consists of a keyword followed by an ‘=’
and followed by a null-terminated value. No spaces are allowed around
the ‘=’. A NULL pointer terminates the array of pointers.

EXTENDED DESCRIPTION

See “Environment Variable Definitions” on page 22 for the list of supported XBSA
environment variables, their descriptions, and their format.

Variables defined by the XBSA Application but not interpreted by the NetBackup XBSA
Interface are silently ignored and not added to the NetBackup XBSA Environment.
Variables required by the NetBackup XBSA Interface and not specified by the application
may result in a BSA_RC_INVALID_ENV error during a BSAInit() call. The
BSAGetEnvironment() call only returns NetBackup XBSA Environment variables that are
meaningful to the NetBackup XBSA Interface. This allows the XBSA Application to
discover which variables specified in the call to BSAInit() the NetBackup XBSA Interface
interpreted.

When a XBSA Application connects to a NetBackup XBSA Interface, it can make an initial
call to BSAQueryApiVersion() to determine the highest version of the specification
supported. If the application supports that version, it should specify it when calling
BSAInit(). If the application does not support that version, or did not call
BSAQueryApiVersion(), the XBSA Application should specify the version it requires. If a
“version not supported” error is encountered, and the XBSA Application supports other
versions, the XBSA Application may retry the call to BSAInit() specifying a different
version.
Chapter 7, API Reference 99

Function Specifications
BSAInit() will also determine the verbose level and open the log file if the log directory
exists. Thus the XBSA Application can start logging after BSAInit().

If BSA_SERVICE_HOST and NBBSA_FEATURE_ID are specified in the list of XBSA
environment variables, the feature will be checked for a valid license key. If a valid license
is not found, the transaction will return a NBBSA_RC_FEATURE_NOT_LICENSED error
and not open the session.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_AUTHENTICATION_FAILURE There was an authentication failure.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect. Nested
sessions are not supported.

BSA_RC_INVALID_ENV An entry in the environment structure is invalid
or missing.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments.

NBBSA_RC_FEATURE_NOT_LICENSED The license for the requested feature is not
available.

BSA_RC_SUCCESS The function succeeded.

BSA_RC_VERSION_NOT_SUPPORTED The NetBackup XBSA Interface does not support
the specified version of the interface.
100 NetBackup XBSA Programmer’s Guide

Function Specifications
BSAQueryApiVersion
Query for the current version of the API.

SYNOPSIS

#include <xbsa.h>

int BSAQueryApiVersion(BSA_ApiVersion *apiVersionPtr)

DESCRIPTION

The BSAQueryApiVersion() call is used to determine the current version of the
NetBackup XBSA Interface. The version information consists of the issue, version within
the issue, and level within the version. If the NetBackup XBSA Interface supports more
than one version, the latest version information will be returned.

PARAMETERS

BSA_ApiVersion *apiVersionPtr (O) This parameter is a pointer to a structure that is to be
used to return the current issue, version, and level, of the
API.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_NULL_ARGUMENT A NULL apiVersionPtr was encountered.

BSA_RC_SUCCESS The function succeeded.
Chapter 7, API Reference 101

Function Specifications
BSAQueryObject
Query about XBSA Object copies.

SYNOPSIS

#include <xbsa.h>

int BSAQueryObject(BSA_Handle bsaHandle, BSA_QueryDescriptor
*queryDescriptorPtr,

BSA_ObjectDescriptor *objectDescriptorPtr)

DESCRIPTION

The BSAQueryObject() call initiates a request for information on NetBackup XBSA Object
copies from the NetBackup XBSA Interface. The results of the query will be determined by
the search conditions specified in the query descriptor. The XBSA Object descriptor for the
first XBSA Object satisfying the query search conditions is returned in the
BSA_ObjectDescriptor (referenced by the objectDescriptorPtr parameter). The application
can obtain the other XBSA Object descriptors found by the query by successive calls to
BSAGetNextQueryObject().

PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates this
call with a previous BSAInit() call.

BSA_QueryDescriptor *queryDescriptorPtr (I) This parameter is a pointer to a structure that
contains the search conditions for the query.

BSA_ObjectDescriptor *objectDescriptorPtr (O) This parameter is a pointer to a structure that is
used to return the XBSA Object descriptor for
the first XBSA Object that satisfies the search
condition specified in the query.
102 NetBackup XBSA Programmer’s Guide

Function Specifications
EXTENDED DESCRIPTION

This function may only be used as part of a retrieval transaction.

A limited wild-card capability is available as follows:

Data Type Wild-card Options

string “*” matches 0 or more characters “?” matches exactly one
character “*” matches a literal “*” “\?” matches a literal “?”
“\\” matches a literal “\”

String matching is performed without any interpretation of
the string contents. There is no implied knowledge of the
structure of the string contents.

time zero value = any time

enumerations ANY value matches any value

BSA_ObjectOwner defaults to value specified at session initialization

The following examples illustrate wild-card string matching:

BSA_ObjectName.pathName = /server/* would match all NetBackup XBSA Objects for
this server

BSA_ObjectName.pathName =
/server/rootdbs/*

would match all levels of rootdbs

BSA_ObjectName.pathName = /server/???? would match all levels whose name is exactly
4 characters long

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_ACCESS_FAILURE Access to the requested NetBackup XBSA Object
descriptor is not permitted.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

BSA_RC_INVALID_HANDLE The handle used to associate this call with a
previous BSAInit() call is invalid.
Chapter 7, API Reference 103

Function Specifications
BSA_RC_INVALID_QUERYDESCRIPTOR The BSA_QueryDescriptor was invalid.

BSA_RC_NO_MATCH No NetBackup XBSA Objects matched the given
query.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments.

BSA_RC_SUCCESS The function succeeded.
104 NetBackup XBSA Programmer’s Guide

Function Specifications
BSAQueryServiceProvider
Retrieve a string identifying NetBackup provider.

SYNOPSIS

#include <xbsa.h>

int BSAQueryServiceProvider(BSA_UInt32 *sizePtr, char *delimiter, char *providerPtr)

DESCRIPTION

The BSAQueryServiceProvider() call returns a hierarchical string identifying NetBackup
provider.

PARAMETERS

BSA_UInt32 *sizePtr (I/O) This parameter contains the size of the provider buffer in bytes.

char *delimiter (O) This parameter is a pointer to the character that is used to delimit
fields in the provider hierarchical string.

char *providerPtr (O) This parameter is a pointer to a data area that contains hierarchical
string which conveys information identifying NetBackup provider.

EXTENDED DESCRIPTION

The format of the provider string is the same as that of the NetBackup XBSA Environment
variable BSA_SERVICE_PROVIDER (see “BSAGetEnvironment” on page 89). The
delimiter character is returned in the delimiter parameter.

If a BSA_RC_BUFFER_TOO_SMALL error is encountered, the required size is returned in
the sizePtr parameter. If the XBSA Application sets the sizePtr parameter to zero, this will
force a BSA_RC_BUFFER_TOO_SMALL error, thus providing a mechanism to query the
required size.
Chapter 7, API Reference 105

Function Specifications
RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_BUFFER_TOO_SMALL The size of the data buffer is invalid.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments.

BSA_RC_SUCCESS The function succeeded.
106 NetBackup XBSA Programmer’s Guide

Function Specifications
BSASendData
Send a byte stream of data in a buffer.

SYNOPSIS

#include <xbsa.h>

int BSASendData(BSA_Handle bsaHandle, BSA_DataBlock32 *dataBlockPtr)

DESCRIPTION

BSASendData() sends a byte stream of data to the NetBackup XBSA Interface in a buffer.
BSASendData() can be called multiple times, in case the byte stream of data to be sent is
large. This call may be used only after a BSACreateObject() or another BSASendData()
call.

PARAMETERS

BSA_Handle bsaHandle (I) This parameter is the handle that associates this call with a
previous BSAInit() call.

BSA_DataBlock32 *dataBlockPtr (I) This parameter is a pointer to a structure that includes a
pointer to the buffer from which the data is to be sent, as
well as the size of the buffer.

EXTENDED DESCRIPTION

The NetBackup XBSA Interface will not overwrite any of the fields in the
BSA_DataBlock32 structure. The NetBackup XBSA Interface may write into the header
and trailer portions of the buffer. See the “Use of BSA_DataBlock32 in BSASendData()” on
page 19 for a more complete list of requirements for sending data in the BSA_DataBlock32
structure.
Chapter 7, API Reference 107

Function Specifications
RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

BSA_RC_INVALID_DATABLOCK The BSA_DataBlock32 parameter contained an
inconsistent value.

BSA_RC_INVALID_HANDLE The handle used to associate this call with a previous
BSAInit() call is invalid.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments.

BSA_RC_SUCCESS The function succeeded.
108 NetBackup XBSA Programmer’s Guide

Function Specifications
BSATerminate
Terminate a session.

SYNOPSIS

#include <xbsa.h>

int BSATerminate(BSA_Handle bsaHandle)

DESCRIPTION

The BSATerminate() call terminates the session with the NetBackup XBSA Interface that
was set up by a previous BSAInit() call and is associated with the bsaHandle. It also
releases any resources acquired for the session, including closing any log files. If
BSATerminate() is called within a transaction, the transaction will be aborted.

PARAMETERS

BSA_Handle
bsaHandle (I)

This parameter is the handle that associates this call with a previous BSAInit()
call.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_INVALID_HANDLE The handle used to associate this call with a previous
BSAInit() call is invalid.

BSA_RC_SUCCESS The function succeeded.
Chapter 7, API Reference 109

Function Specifications
NBBSAAddToMultiObjectRestoreList
Add objects to a list of objects to be restored in one job.

SYNOPSIS

#include <nbbsa.h>

int NBBSAAddToMultiObjectRestoreList(BSA_Handle bsaHandle,
NBBSA_DESCRIPT_LIST ** DescriptList, BSA_ObjectDescriptor * ObjectDescriptorPtr)

DESCRIPTION

NBBSAAddToMultiObjectRestoreList() adds the objectDescriptor passed in to a linked
list of objectDescriptors. This list is used when restoring multiple objects. The memory
allocated in this function for the list is freed in NBBSAEndGetMultipleObjects().

PARAMETERS

BSA_Handle bsaHandle (I) The handle that associates this call with a previous BSAInit() call.

NBBSA_DESCRIPT_LIST
**DescriptList (I)

The address of a pointer to a list of BSA_ObjectDescriptor's.

BSA_ObjectDescriptor
*ObjectDescriptorPtr (I)

Pointer to an BSA_ObjectDescriptor to be added to the list.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_SUCCESS The object descriptor has been added to the list.
110 NetBackup XBSA Programmer’s Guide

Function Specifications
NBBSAEndGetMultipleObjects
End the restore of multiple objects

SYNOPSIS

#include <nbbsa.h>

int NBBSAEndGetMultipleObjects(BSA_Handle bsaHandle, BSA_Vote vote,
NBBSA_DESCRIPT_LIST * descriptList)

DESCRIPTION

NBBSAEndGetMultipleObjects() closes the communications to the NetBackup server to
end a multiple object restore. The objectDescriptor list is freed and a check is made to see
if all the objects requested were actually restored. If not all of the objects were restored,
NBBSAEndGetMultipleObjects() will return an error. A vote parameter is provided to
allow the multiple object restore to be aborted. As with a single object restore, commit or
abort provides no functional difference to NetBackup.

PARAMETERS

BSA_Handle bsaHandle (I) The handle that associates this call with a
previous BSAInit() call.

BSA_Vote vote (I) Allow the multiple object restore to be committed
or aborted.

NBBSA_DESCRIPT_LIST * descriptList (I) List of objects which were restored as part of the
multiple object restore.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_INVALID_HANDLE The handle used to associate this call with a previous
BSAInit()() call is invalid.

BSA_RC_MORE_DATA Not all of the requested objects were restored.

BSA_RC_SUCCESS The end of the restore has been successfully completed.
Chapter 7, API Reference 111

Function Specifications
NBBSAGetEnv
Set the value of a single XBSA environment value.

SYNOPSIS

#include <nbbsa.h>

int NBBSAGetEnv(BSA_Handle bsaHandle, char *EnvVar, char *EnvVal, int *ValSize)

DESCRIPTION

NBBSAGetEnv() gives the XBSA Application the ability to retrieve the value of a specific
XBSA environment variable. The same results can be achieved by calling
BSAGetEnvironment() and evaluating for the specific variable being sought.

PARAMETERS

BSA_Handle bsaHandle (I) The handle that associates this call with a previous BSAInit()
call.

char *EnvVar (I) Pointer to a null-terminated string that specifies the
environment variable.

char *EnvVal (O) Pointer to a buffer to receive the value of the specified
environment variable.

int *ValSize (I/O) Pointer to the size, in characters, of the buffer pointed to by
the EnvVal parameter. Returns the size of EnvVal.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_BUFFER_TOO_SMALL The buffer pointed to by EnvVal is not large enough, The
buffer size, in characters, required to hold the value string
and its terminating null character is stored in the location
pointed to by ValSize.

BSA_RC_INVALID_ENV The specified environment variable name was not found in
the XBSA environment block for the current session.

BSA_RC_SUCCESS The function succeeded.
112 NetBackup XBSA Programmer’s Guide

Function Specifications
NBBSAGetErrorString
Get the textual error message of an XBSA error code.

SYNOPSIS

#include <nbbsa.h>

int NBBSAGetErrorString(int ErrCode, BSA_UInt32 *sizePtr, char *errorCodePtr)

DESCRIPTION

The NBBSAGetErrorString() call returns a textual description of the XBSA error code
passed in.

PARAMETERS

int ErrCode (I) The XBSA error code.

BSA_UInt32 *sizePtr (I/O) Pointer to the size, in characters, of the buffer pointed to by the
errorCodePtr parameter. Returns the size of errorCodePtr.

char *errorCodePtr (O) Pointer to a buffer to receive the text of the error code.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_BUFFER_TOO_SMALL The size of the data buffer is invalid.

BSA_RC_NO_MATCH No description for error code passed in.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the arguments.

BSA_RC_SUCCESS The function succeeded.
Chapter 7, API Reference 113

Function Specifications
NBBSAGetMultipleObjects
Initiate a restore of a list of objects

SYNOPSIS

#include <nbbsa.h>

int NBBSAGetMultipleObjects(BSA_Handle bsaHandle, NBBSA_DESCRIPT_LIST *
descriptList)

DESCRIPTION

NBBSAGetMultipleObjects() prepares the NetBackup XBSA Interface for retrieving the
data of multiple XBSA Objects that are from the same backup image. It validates the
descriptor list, checking that all copyId's are valid, that all objects are part of the same
image, and that the object descriptors are in the correct order. It will then initiate a
connection with the NetBackup server to start the retrieval process for the objects. If any
of the objects don't exist, the operation will be aborted at this time. Once the multiple
object restore has been started, the objects now can be retrieved in order using
BSAGetObject() - BSAGetData() - BSAEndData() calls.

PARAMETERS

BSA_Handle bsaHandle (I) The handle that associates this call with a previous
BSAInit() call.

NBBSA_DESCRIPT_LIST *descriptList Pointer to a list of objectDescriptors which are to be
retrieved.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_ABORT_SYSTEM_ERROR System detected error, operation aborted.

BSA_RC_ACCESS_FAILURE Access to the requested object is not possible.
Cannot retrieve object with given copyId.

BSA_RC_INVALID_CALL_SEQUENCE The sequence of API calls is incorrect.

BSA_RC_INVALID_COPYID A value in the copyId is invalid.
114 NetBackup XBSA Programmer’s Guide

Function Specifications
BSA_RC_INVALID_HANDLE The handle used to associate this call with a
previous BSAInit() call is invalid.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the
arguments.

BSA_RC_OBJECT_NOT_FOUND The given copyId does not exist.

BSA_RC_SUCCESS The multiple object restore has successfully been
initiated.
Chapter 7, API Reference 115

Function Specifications
NBBSAGetServerError
Get the error code and text from the NetBackup server.

SYNOPSIS

#include <XBSA.h>

#include <nbbsa.h>

int NBBSAGetServerError(BSA_Handle bsaHandle, int *ServerStatus, BSA_UInt32
sizePtr, char *ServerStatusStr)

DESCRIPTION

NBBSAGetServerError returns the error code and corresponding text message generated
from the NetBackup processes. This can be useful in logging a more accurate cause of a
failure as compared to the NBBSA error code, which tends to be very generic when the
error occurred on the NetBackup server.

PARAMETERS

BSA_Handle bsaHandle (I) The handle that associates this call with a previous call to BSAInit.

int *ServerStatus (O) Pointer to the NetBackup error code which has been returned from
the NetBackup server.

BSA_UInt32 sizePtr (I/O) Pointer to the size of the ServerStatusStr in bytes.

char *ServerStatusStr (O) Pointer to the text string of the server status.

EXTENDED DESCRIPTION

NBBSAGetServerError requires the ServerStatusStr string to be allocated and the size of
this string to be entered in the sizePtr parameter. This will ensure that the NetBackup
error text can fit in the string. The function will reset the sizePtr to the actual size of the
error text that is returned.
116 NetBackup XBSA Programmer’s Guide

Function Specifications
RETURN VALUE

The following return codes are returned by this function:

BSA_RC_BUFFER_TOO_SMALL The size of the data buffer is too small for the error text.

BSA_RC_NULL_ARGUMENT A NULL pointer was encountered in one of the arguments.

BSA_RC_SUCCESS The function successfully returned the error.
Chapter 7, API Reference 117

Function Specifications
NBBSALogMsg
Log a message to the XBSA logs.

SYNOPSIS

#include <nbbsa.h>

int NBBSALogMsg(BSA_Handle bsaHandle, int msgType, char *msgBuf, char
*callingFunc)

DESCRIPTION

NBBSALogMsg() gives the XBSA Application the ability to log messages to the same debug
log file that is being used by the NetBackup XBSA Interface with the log messages being
the same format. If used correctly, this may make debugging easier because you can
follow the complete flow of the combined XBSA Application and XBSA Interface.

The log file is opened in BSAInit(), so logging cannot occur until the session has been
initiated. The log file is closed in BSATerminate().

PARAMETERS

BSA_Handle bsaHandle (I) The handle that associates this call with a previous BSAInit()
call.

int msgType (I) The level of error that will be displayed with the timestamp and
message.

char *msgBuf (I) The text of the error message.

char *callingFunc (I) The function name that is calling this function. It will be
displayed in the log file.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_SUCCESS The function succeeded.
118 NetBackup XBSA Programmer’s Guide

Function Specifications
NBBSASetEnv
Set the value of a single XBSA environment value.

SYNOPSIS

#include <nbbsa.h>

int NBBSASetEnv(BSA_Handle bsaHandle, char *EnvVar, char *EnvVal)

DESCRIPTION

NBBSASetEnv() gives the XBSA Application the ability to set the value of a specific XBSA
environment variable after the beginning of a session. If the variable does not exist in the
environment, it will be added. If the variable does exist in the environment, the value will
be replaced. Some of the XBSA environment variables can only be set or updated at
certain points in the session. These restrictions are specified in the Environment Variable
Definitions section. If the variable cannot be set/updated, the original value will be left.

The XBSA specifications do not provide a way for these XBSA environment variables to
be reset after the session has been initiated with BSAInit().

PARAMETERS

BSA_Handle bsaHandle (I) The handle that associates this call with a previous
BSAInit() call.

char *EnvVar (I) Pointer to a null-terminated string that specifies the
XBSA environment variable whose value is being set.

char *EnvVal (I) Pointer to a null-terminated string containing the new
value of the specified XBSA environment variable. If this
parameter is NULL, the variable is deleted from the
current sessions XBSA environment.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_SUCCESS The specified XBSA environment variable has been set.

BSA_RC_NULL_ARGUMENT A required argument was passed as a NULL pointer.
Chapter 7, API Reference 119

Function Specifications
BSA_RC_ABORT_SYSTEM_ERROR We were unable to increase the size of the session's XBSA
environment block.

BSA_RC_INVALID_ENV Variable not a supported environment variable.
120 NetBackup XBSA Programmer’s Guide

Function Specifications
NBBSAUpdateEnv
Update the current environment for the session.

SYNOPSIS

#include <nbbsa.h>

int NBBSAUpdateEnv(BSA_Handle *bsaHandle, char **envPtr)

DESCRIPTION

NBBSAUpdateEnv() resets the environment pairs in the current environment. It performs
the same functionality as NBBSASetEnv() except it takes a string of multiple (keyword,
value) pairs. The same restrictions apply to updating some of the restricted variables. If a
variable exists in the environment but is not included in the list being updated, it will
remain in the environment.

The XBSA specifications do not provide a way for these XBSA environment variables to
be reset after the session has been initiated with BSAInit().

PARAMETERS

BSA_Handle bsaHandle (I) The handle that associates this call with a previous BSAInit()
call.

char **envPtr (I) Pointer to a structure that contains the new environment
variables (keyword, value) pairs, for the session. The
environment consists of a pointer to an array of strings.

RETURN VALUE

The following return codes are returned by this function:

BSA_RC_SUCCESS The specified XBSA environment variable has been set.
Chapter 7, API Reference 121

Function Specifications
NBBSAValidateFeatureId
Validate the license key for the specified feature id.

SYNOPSIS

#include <nbbsa.h>

int NBBSAValidateFeatureId(BSA_Handle bsaHandle, char * featureIdList, int
validationOption)

DESCRIPTION

NBBSAValidateFeatureId() parses the featureIdList string for the list of Feature Ids which
need to be validated. If MATCH_ANY_FEATURE_ID is specified as the
validationOption, BSA_RC_SUCCESS will be returned if a license key exists for any of the
feature ids in the list. If MATCH_ALL_FEATURE_ID is specified as the validationOption,
BSA_RC_SUCCESS will be returned if a license key exists for all of the feature ids in the
list.

PARAMETERS

BSA_Handle bsaHandle (I) The handle that associates this call with a previous BSAInit() call.

char *featureIdList (I) This parameter is space delimited list of the license feature id(s)
which are to be validated.

int validationOption (I) Specifies which combination of features needs to exist in order to be
valid. Currently supports MATCH_ANY_FEATURE_ID or
MATCH_ALL_FEATURE_ID.

RETURN VALUE

The following return codes are returned by this function:

NBBSA_RC_FEATURE_NOT_LICENSED The feature does not have a valid license.

BSA_RC_SUCCESS The specified feature id(s) have a valid license.
122 NetBackup XBSA Programmer’s Guide

Type Definitions
Type Definitions
The following type definitions are provided for use within the NetBackup XBSA
interfaces.

XBSA Type Definitions

Data Type Type Name Example Type Definition

16-bit Integer BSA_Int16 typedef short BSA_Int16;

32-bit Integer BSA_Int32 typedef int BSA_Int32;

64-bit Integer BSA_Int64 typedef struct {

BSA_Int32 left;

BSA_Int32 right;

} BSA_Int64;

16-bit Unsigned Integer BSA_UInt16 typedef unsigned short BSA_UInt16;

32-bit Unsigned Integer BSA_UInt32 typedef unsigned int BSA_UInt32;

64-bit Unsigned Integer BSA_UInt 64 typedef struct {

BSA_UInt32 left;

BSA_UInt32 right;

} BSA_UInt64;

Shared Memory Buffer reference BSA_ShareId <Not_Used>
Chapter 7, API Reference 123

Type Definitions
Enumerated Types
The following enumerated type definitions are provided for use within the NetBackup
XBSA interfaces. For enumerations used in queries, the value 1 is reserved for use as a
wild card (ANY) value.

BSA_CopyType

The BSA_CopyType enumeration describes the type of the operation used to create a
NetBackup XBSA Object. It is defined as follows:

typedef enum {
BSA_CopyType_ANY = 1,
BSA_CopyType_ARCHIVE = 2,
BSA_CopyType_BACKUP = 3

} BSA_CopyType;

The meaning of the enumeration values is as follows:

BSA_CopyType Enumeration Values

Constant Definition Value

ANY 1 Used for matching any copy type (for example, “backup” or
“archive” in the copy type field of structures for selecting query
results).

ARCHIVE 2 Specifies that the copy type should be “archive.”

BACKUP 3 Specifies that the copy type should be “backup.”

BSA_ObjectStatus

The BSA_ObjectStatus enumeration describes the current status of the NetBackup XBSA
Object. It is defined as follows:

typedef enum {
BSA_ObjectStatus_ANY = 1,
BSA_ObjectStatus_MOST_RECENT = 2,
BSA_ObjectStatus_NOT_MOST_RECENT = 3

} BSA_ObjectStatus;
124 NetBackup XBSA Programmer’s Guide

Type Definitions
The meaning of the enumeration values is as follows:

BSA_ObjectStatus Enumeration Values

Constant Value Definition

ANY 1 Provides a wild card function. Can only be used in queries.

MOST_RECENT 2 Indicates that this is the most recent backup copy of an object.

NOT_MOST_RECENT 3 Indicates that this is not the most recent backup copy, or that
the object itself no longer exists.

BSA_ObjectType

The BSA_ObjectType enumeration describes the original data type of the object. It is
defined as follows:

typedef enum {
BSA_ObjectType_ANY = 1,
BSA_ObjectType_FILE = 2,
BSA_ObjectType_DIRECTORY = 3,
BSA_ObjectType_OTHER = 4

} BSA_ObjectType;

The meaning of the enumeration values is as follows:

BSA_ObjectType Enumeration Values

Constant Value Definition

ANY 1 Used for matching any object type (for example, “file” or directory”)
value in the object type field of structures for selecting query results.

FILE 2 Used by the application to indicate that the type of application object is
a “file” or single object.

DIRECTORY 3 Used by the application to indicate that the type of application object is
a “directory” or container of objects.

OTHER 4 Used by the application to indicate that the type of application object is
neither a “file” nor a “directory”.
Chapter 7, API Reference 125

Type Definitions
BSA_Vote

The BSA_Vote enumeration describes whether or not the transaction is to be committed. It
is defined as follows:

typedef enum {
BSA_Vote_COMMIT = 1,
BSA_Vote_ABORT = 2
NBBSA_Vote_CONDITIONAL = 99

} BSA_Vote;

The meaning of the enumeration values is as follows:

BSA_Vote Enumeration Values

Constant Value Definition

COMMIT 1 The transaction is to be committed.

ABORT 2 The transaction is to be aborted.

CONDITIONAL 99 The transaction is to be committed, report only conditional success.

Constant Values

The following constants are defined for use in the NetBackup XBSA interfaces:

XBSA Constant Values

Constant Value Definition

BSA_ANY 1 General-purpose enumeration wild-card value

BSA_MAX_APPOBJECT_OWNER 64 Max end-user object owner length

BSA_MAX_BSAOBJECT_OWNER 64 Max BSA object owner length

BSA_MAX_DESCRIPTION 100 Description field

BSA_MAX_OBJECTSPACENAME 1024 Max ObjectSpace name length

BSA_MAX_OBJECTINFO 256 Max object info size

BSA_MAX_PATHNAME 1024 Max path name length

BSA_MAX_RESOURCETYPE 31 Max resourceType name length
126 NetBackup XBSA Programmer’s Guide

Type Definitions
XBSA Constant Values (continued)

Constant Value Definition

BSA_MAX_TOKEN_SIZE 64 Max size of a security token

Data Structures
The following data structures are provided for use within the NetBackup XBSA interfaces.

BSA_ApiVersion

The BSA_ApiVersion structure describes the version of the API that is implemented. It is
defined as follows:

typedef struct {
BSA_UInt16 issue;
BSA_UInt16 version;
BSA_UInt16 level;

} BSA_ApiVersion;

The usage of the structure fields is defined as follows:

BSA_ApiVersion Structure Fields

Field Description

issue Issue Number of the XBSA Specification

version Version Number of the XBSA Specification

level NetBackup XBSA-defined version number

The NetBackup XBSA Interface is an implementation of the XBSA Technical Standard
(document - C425), the values should be 1,1,0.

BSA_DataBlock32

The BSA_DataBlock32 structure is used to pass data between a XBSA Application and the
NetBackup XBSA Interface. It is defined as follows:

typedef struct {
BSA_UInt32 bufferLen;
BSA_UInt32 numBytes;
BSA_UInt32 headerBytes;
Chapter 7, API Reference 127

Type Definitions
BSA_ShareId shareId;
BSA_UInt32 shareOffset;
void *bufferPtr

} BSA_DataBlock32;

The usage of the structure fields is defined as follows:

BSA_DataBlock32 Structure Fields

Field Name Definition

bufferLen Length of the allocated buffer

numBytes	 Actual number of bytes read from or written to the buffer, or the minimum
number of bytes needed

headerBytes	 Number of bytes used at start of buffer for header information (offset to data
portion of buffer)

shareId Value used to identify a shared memory block.

shareOffset Specifies the offset of the buffer in the shared memory block.

bufferPtr Pointer to the buffer

The values assigned to the various structure fields would always obey the following
relationships:

bufferLen >= headerBytes + numBytes

trailerBytes == (bufferLen - numBytes - headerBytes)

The header and trailer portions of the buffer are reserved for the use of the NetBackup
XBSA Interface, and should not be modified by the XBSA Application. The XBSA
Application should only write to the data portion of the buffer, which is the only portion
used for transferring application data.

The sizes for the header and trailer portions of the buffer that are required by the
NetBackup XBSA Interface are obtained by calling BSACreateObject() or BSAGetObject().
128 NetBackup XBSA Programmer’s Guide

Type Definitions
BSA_ObjectDescriptor

The BSA_ObjectDescriptor structure is used to describe an object. It is defined as follows:

#include <time.h>

typedef struct {
BSA_UInt32 rsv1;
BSA_ObjectOwner objectOwner;
BSA_ObjectName objectName;
struct tm createTime;
BSA_CopyType copyType;
BSA_UInt64 copyId;
BSA_UInt64 restoreOrder;
char rsv2[31];
char rsv3[31];
BSA_UInt64 estimatedSize;
char resourceType[BSA_MAX_RESOURCETYPE];
BSA_ObjectType objectType;
BSA_ObjectStatus objectStatus;
char rsv4[31];
char objectDescription[MAX_RC_OBJECTDESCRIPTION];
unsigned char objectInfo[BSA_MAX_OBJECTINFO];

} BSA_ObjectDescriptor;

Some of the fields in this structure are supplied by the XBSA Application (Direction = in),
and some by the NetBackup XBSA Interface (Direction = out). Some fields are optional.

The usage of the structure fields is defined as follows:

BSA_ObjectDescriptor Structure Fields

Field Name Definition Supplied By Status

rsv1 reserved field - -

objectOwner Owner of the object Application optional

objectName Object name Application mandatory

createTime Create time Interface mandatory

copyType Copy type: archive or backup Application mandatory

copyId Unique object identifier Interface mandatory
Chapter 7, API Reference 129

Type Definitions
BSA_ObjectDescriptor Structure Fields (continued)

Field Name Definition Supplied By Status

restoreOrder Provides hints to the XBSA Application that Interface optional
allow it to optimize the order of object
retrieval requests

rsv2 reserved field - -

rsv3 reserved field - -

estimatedSize Estimated object size in bytes, may be up to Application mandatory
(2^64 - 1) bits

resourceType for example, UNIX file system Application mandatory

objectType for example, file, directory, database Application mandatory

objectStatus Most recent / Not most recent Interface mandatory

rsv4 reserved field - -

objectDescription Descriptive label for the object Application optional

objectInfo Application-specific information Application optional

All values in a BSA_ObjectDescriptor must be valid before the BSA_ObjectDescriptor as a
whole is valid. For enumerations valid values exclude the enumeration “ANY”. For
strings valid values are null-terminated.

The optional string value is the empty string. The optional restoreOrder value is zero. The
optional objectInfo value is an empty string.

The mandatory objectName must have a non-empty string in the pathName field. The
mandatory createTime must be a valid time in UTC. The mandatory copyId must be
non-zero. The mandatory resourceType must have a non-empty string value.

All string values cannot contain any new line, carriage return, or line feed characters.
Although this may not cause an error when the object is being created, the object will not
be able to be restored.
130 NetBackup XBSA Programmer’s Guide

Type Definitions
BSA_ObjectName

The BSA_ObjectName structure is the name assigned by a XBSA Application to a
NetBackup XBSA Object. It is defined as follows:

typedef struct {

char objectSpaceName[BSA_MAX_OBJECTSPACENAME];

char pathName[BSA_MAX_PATHNAME];

} BSA_ObjectName;

The usage of the structure fields is defined as follows:

BSA_ObjectName Structure Fields

Field Name Definition

objectSpaceName Highest-level name qualifier

pathName Object name within objectSpaceName

An objectSpaceName is an optionally defined, fixed-length character string. It identifies a
logical space, called an Object space, to which the object belongs. For example, an Object
space may be used to identify a storage volume (for example, a disk partition, or a floppy
disk), or a database in the XBSA Application's domain.

The NetBackup XBSA Interface uses the concept of an object space to provide a primary
grouping of NetBackup XBSA Objects that may be used for object search by a user and/or
for object management. Additional groupings are provided by object attributes. Examples
of an objectSpaceName are C: Drive and VolumeLabel=XYZ.

A pathName is a hierarchical character string that identifies a NetBackup XBSA Object
within an ObjectSpace. While the pathName does not need to correspond to an actual file
path, NetBackup requires that the first character is a ‘/’. This is true of both UNIX and
Windows.

An example of a pathName for the backup copy of a UNIX file may be its original path
name and file name, for example, /x/y/z/xyx.c.

The value of the delimiter used to separate name components can be obtained by calling
BSAGetEnvironment().
Chapter 7, API Reference 131

Type Definitions
BSA_ObjectOwner

The BSA_ObjectOwner structure is the name of the owner of an object. It is defined as
follows:

typedef struct {

char bsa_ObjectOwner[BSA_MAX_BSAOBJECT_OWNER];

char app_ObjectOwner[BSA_MAX_APPOBJECT_OWNER];

} BSA_ObjectOwner;

The usage of the structure fields is defined as follows:

BSA_ObjectOwner Structure Fields

Field Name Definition

bsa_ObjectOwner this is the name that the NetBackup XBSA Interface authenticates

app_ObjectOwner this is the name defined by the application

For NetBackup XBSA Version 1.1.0 the actual object owner is determined between the
NetBackup XBSA Interface and NetBackup. If the XBSA Application specifies the
bsa_ObjectOwner, the value will be stored with the object or validated against it, but it
will not define the object ownership. Thus if the object was created by a different user,
unless you are a root administrator, you will not be able to restore the object even if you
specify the correct bsa_ObjectOwner.

An app_ObjectOwner is an optional name, such as an actual end-user name, provided by
the respective XBSA Application, so that the NetBackup XBSA Interface can provide
assistance to support application-specific access control by optimizing access for the given
app_ObjectOwner.

The app_ObjectOwner may have multiple components defined in the application, such as
a group name and a user id. In general, it is a hierarchical character string. An
app_ObjectOwner is not registered with the NetBackup XBSA Interface. Its registration
and authentication is the XBSA Application's responsibility. Examples of a typical
app_ObjectOwner are Smith, AccountingDept.Clerk1 and * (unspecified).

BSA_QueryDescriptor

The BSA_QueryDescriptor structure is used to query the repository in order to locate
objects. It is defined as follows:

#include <time.h>;

typedef struct {

BSA_ObjectOwner objectOwner;

BSA_ObjectName objectName;

132 NetBackup XBSA Programmer’s Guide

Type Definitions
struct tm

struct tm

struct tm

struct tm

BSA_CopyType

char

char

char

BSA_ObjectType

BSA_ObjectStatus

char

createTime_from;

createTime_to;

rsv1;

rsv2;

copyType;

rsv3[31];

rsv4[31];

rsv5[31];

objectType;

objectStatus;

rsv6[100];

} BSA_QueryDescriptor;

The usage of the structure fields is defined as follows:

BSA_QueryDescriptor Structure Fields

Field Name Definition

objectOwner Owner of the object

objectName Object name

createTime_from Date time to start looking for the object

createTime_to Date time to stop looking for the object

rsv1 reserved field

rsv2 reserved field

copyType Copy type: archive or backup

rsv4 reserved field

rsv5 reserved field

rsv5 reserved field

objectType for example, file, directory, database

objectStatus most recent / not most recent

rsv8 reserved field

Chapter 7, API Reference 133

Type Definitions
BSA_SecurityToken

The BSA_SecurityToken structure contains an application-specific security token. It is
defined as follows:

typedef char BSA_SecurityToken[BSA_MAX_TOKEN_SIZE];
134 NetBackup XBSA Programmer’s Guide

How to Use the Sample Files
8

This chapter explains how to use the XBSA sample files included in the SDK.

What the Sample Files Do
Included in the SDK are some simple sample programs and scripts. The sample programs
can be used as examples of how to use the XBSA functions to create an XBSA application.
The sample scripts are examples of how an XBSA application can be executed from a
NetBackup schedule.

Sample Programs
The SDK includes some simple sample programs that can be used as an example of the
sequence of function calls that are required to create new objects, query the NetBackup
database for existing objects, retrieve the objects, and delete objects. There is a separate
program for each of these functions, although this is for the convenience of the samples
and not necessarily a recommended way of building an XBSA application.

These programs as installed will not run. First, they need to be modified to set the correct
hostname of the NetBackup server. Then they can be compiled and each can be
individually run. Below is the description of the programs and what to expect from them
if they have not been modified other than setting the hostname.

The following section of the sample programs needs to be modified. The entries
‘server_host’, ‘sample_policy’, and ‘sample_schedule’ need to be replaced with actual
values from your environment. Or these three entries can be eliminated so that the sample
program uses default values from the NetBackup configuration.

/* Populate the XBSA environment variables for this session. */

strcpy(envx[0], "BSA_API_VERSION=1.1.0");

strcpy(envx[1], "BSA_SERVICE_HOST=server_host");

strcpy(envx[2], "NBBSA_POLICY=sample_policy");

strcpy(envx[3], "NBBSA_SCHEDULE=sample_schedule");

envx[4] = NULL;

135

What the Sample Files Do
Backup

This program will create one small object. The unique identifier, copyId, will be printed
out along with the number of bytes backed up.

copyId: 1 - 1018898698

Bytes backed up: 154

Restore

This program will retrieve the last object created. The copyId will be printed out along
with the text of the object data and the number of bytes that were retrieved.

Retrieving copyId: 1 - 1018898698

This is the sample data that is contained in the sample object that is

being backed up for the purposes of showing how data can be backed up

and restored.

Total bytes retrieved: 154

Query

This program will search for all objects created by the Backup program. The copyId of
each of these objects will be printed out.

copyId: 1 - 1018898698

copyId: 1 - 1018898638

Delete

This program will delete the last object created. The copyId of the object being deleted will
be printed out.

Deleting copyId: 1 - 1018898698

Sample Scripts
Also included are some examples of scripts that can be used to initiate an XBSA
Application as a scheduled NetBackup job. Again these are very simple scripts based on
the sample programs. There are sample scripts for UNIX platforms (*.sh) and for
Windows platforms (*.cmd).

In general use, the XBSA Application would have parameters or use system environment
variables to communicate the parameters about the backup or restore operations. See the
Running an XBSA application chapter for a better explanation of how these scripts work.
136 NetBackup XBSA Programmer’s Guide

Description of Sample Files
Description of Sample Files
This section includes a description of the sample files provided with the SDK. All sample
files are located in ~sdk/DataStore/XBSA/samples.

Description of Sample Files

Filename Description

Backup.c This is an example of the functions needed to create an XBSA object.

Query.c This is an example of the functions needed to search for an XBSA object.

Restore.c This is an example of the functions needed to retrieve an XBSA object.

Delete.c This is an example of the functions needed to delete an XBSA object.

Makefile.unix	 This is an example Makefile which can be used to compile the sample
programs on the UNIX platforms.

Makefile.nt	 This is an example Makefile which can be used to compile the sample
programs on Windows platforms.

backup_script.cmd	 This is an example of the script needed to run an XBSA application from a
NetBackup schedule on a Windows platform.

restore_script.cmd	 This is an example of the script needed to run an XBSA application from a
NetBackup schedule on a Windows platform.

backup_script.sh	 This is an example of the script needed to run an XBSA application from a
NetBackup schedule on a UNIX platform.

restore_script.sh	 This is an example of the script needed to run an XBSA application from a
NetBackup schedule on a UNIX platform.

How to Build the Sample Programs
Also included with the samples are a Makefile for UNIX platforms, Makefile.unix, and
one for Windows, Makefile.nt. The Makefiles will compile the four sample programs
using basic compiler options.

The UNIX Makefile needs to be modified to select which library to use. Library paths for
all supported platforms are in the Makefile but commented out. The library for the
required operating system needs to be chosen along with whether to use an archive
library or a shared library.
Chapter 8, How to Use the Sample Files 137

How to Build the Sample Programs
The following lines are from Makefile.unix. One of the CFLAGS and one of the LIBS
definitions need to be uncommented. The default is to compile 32 bit using the dynamic
shared libraries.

The CFLAGS definitions are compile options. Select a CFLAGS definition for the system
that is being compiled on. Note that this is a very minimal set of options and you may
want to add other compile options based on your environment.

Uncomment the CFLAGS for the environment that is being compiled

General 32 bit

CFLAGS =

Solaris 64 bit

#CFLAGS = -xarch=v9

HP 64 bit

#CFLAGS = +DA2.0W +DS2.0

AIX 64 bit

#CFLAGS = -q64

SGI 64 bit

#CFLAGS = -64

Tru64

#CFLAGS = -taso

DEFINES =

INCLUDES= -I$(XBSA_SDK_DIR)/include

The LIBS definitions define which XBSA library to link with. A shared object library is
installed in /usr/openv/lib on all NetBackup clients and can be used for dynamic
linking. An archive library for each platform is included in the SDK and can be used to
statically link the application. Select a LIBS definition for the system that is being
compiled. Be sure to use the 64-bit libraries if you are using 64-bit compile options.

Use one of these LIBS to bind dynamically

LIBS = -L/usr/openv/lib -lxbsa -lVcvcomb

#LIBS = -L/usr/openv/lib -lxbsa64 -lVcvcomb64

Or choose the correct LIBS for your system to bind statically

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris7/libxbsa.a -lintl -lsocket -lnsl -ldl -ladm

#LIBS = $(XBSA_SDK_DIR)/lib/Solaris/Solaris7/libxbsa64.a -lintl -lsocket -lnsl -ldl -ladm

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.00/libxbsa.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.00/libxbsa64.a

#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.11/libxbsa.a

138 NetBackup XBSA Programmer’s Guide

How to Build the Sample Programs
#LIBS = $(XBSA_SDK_DIR)/lib/HP9000-800/HP-UX11.11/libxbsa64.a

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX4.3.3/libxbsa.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX4.3.3/libxbsa64.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX5/libxbsa.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/RS6000/AIX5/libxbsa64.a -ldl -lc

#LIBS = $(XBSA_SDK_DIR)/lib/SGI/IRIX65/libxbsa.a -lc

#LIBS = $(XBSA_SDK_DIR)/lib/SGI/IRIX65/libxbsa64.a -lc

#LIBS = $(XBSA_SDK_DIR)/lib/ALPHA/OSF1_V5/libxbsa.a -lc

#LIBS = $(XBSA_SDK_DIR)/lib/Linux/RedHat2.4/libxbsa.a -lc -ldl

The Windows Makefile does not need modification unless the SDK was installed into a
directory other than the default c:\Program Files.
Chapter 8, How to Use the Sample Files 139

How to Build the Sample Programs
140 NetBackup XBSA Programmer’s Guide

Support and Updates
9

The NetBackup SDK for DataStore is sold and distributed under specific licensing
agreements. These licensing agreements will define how the SDK is supported, who to
contact for support, and how upgrades will be supported. The agreements should also
define how an XBSA application is sold and supported in conjunction with NetBackup.
Please review your licensing agreement for details on product support.
141

142 NetBackup XBSA Programmer’s Guide

Index

A
authentication 32

B
backup transactions 33, 38
buffers

overview 17
private buffer space 18
size 17

building an XBSA application 63

C
clients 68
cluster, running an XBSA application in 61
command line, initiating backups and

restores 69
configuration 10

end-user 65
constant values 126
conventions 75

D
data structures 127–134

debug logs 61

debug mode 63

debugging an XBSA application 63

defines 63

delete transaction 34

deleting objects 59

example 60
dynamic libraries 64

E
environment variables 22

extended 24–31
NetBackup XBSA 22–23
XBSA 22

error messages 71–72
example

of a backup 44

of a query 47

F
flags 63

function extensions 74

function specifications 73–74, 76–111

G
Glossary. See NetBackup Help.

H
header files 11, 12

I
installation

on UNIX 9
on Windows 10

L
library files 11
logging 61

N
NetBackup object ownership

changing the group ownership 42
default behavior 41
options 41
specifying the owner 41

NetBackup XBSA
environment, defined 6
interface, defined 6
object, defined 6
session, defined 6

O
object

attributes 14
creating an empty 43
deleting 59

example 60
descriptors 14

operating systems supported 1
143

P
performance considerations 62

policies, creating 67

private buffer space 18

Q
query

descriptors 16

for an object 46

transaction 35

R
requirements

for compiling 3

for developing an application 3

for running an application 3

installation 9

restore transaction 34

restores

of an object 49

of multiple objects 53

example 54

requirements 53

to a different client 50

example 50

running a NetBackup XBSA application 68

S
samples

programs 135

scripts 136

schedules 67

script

files 68

scripts

to initiate backups and restores 68

sessions

described 32

initiating 32, 36

example 37

modifying XBSA environment in 36

termination 32

shared memory 20

static libraries 64

storage units 67

support 141

T
terminology 6

transactions 33

backup 33, 38

delete 34

query 35

restore 34

type definitions 123–134
data structures 127–134
enumerated 124–127

X

XBSA

application, defined 6

described 5

environment 21

modifying with a session 36

environment variables 22

for NetBackup configuration

values 24

function specifications 73–74, 76–111

libraries 11

object data 13

type definitions 123–134

144 NetBackup XBSA Programmer’s Guide

	Programmer’s Guide for XBSA™ 1.1.0
	Contents
	Tables
	Preface
	What Is In This Manual?
	Getting Help
	Accessing the VERITAS Technical Support Web Site
	Subscribing to VERITAS Email Notification Service
	Accessing VERITAS Telephone Support
	Accessing VERITAS E-mail Support
	Contacting VERITAS Licensing

	Glossary
	Conventions
	Product-Specific Conventions
	Typographical Conventions
	Command Usage
	Navigating Multiple Menu Levels

	Requirements
	Supported Systems
	Requirements for Compiling
	Dependencies
	Developing an Application
	Running an Application

	Introduction to NetBackup XBSA
	What is NetBackup XBSA?
	What Does NetBackup XBSA Do?
	Terminology
	Important Concepts
	Resources

	How to Set Up the SDK
	How to Install the SDK
	Installation Requirements
	Installation Instructions for UNIX Platforms
	Installation Instructions for Windows Platforms

	Configuration
	Description of XBSA SDK Package
	Library Files
	Header Files

	Using the NetBackup XBSA Interface
	Getting Help with the API
	NetBackup XBSA Data Structures
	Object Data
	Object Descriptors
	Query Descriptors
	Buffers
	Buffer Size
	Private Buffer Space
	Use of BSA_DataBlock32 in BSASendData()
	Use of BSA_DataBlock32 in BSAGetData()
	Shared Memory

	NetBackup XBSA Environment
	Environment Variable Definitions
	Extended Environment Variable Definitions

	XBSA Sessions and Transactions
	Sessions
	Initialization and Termination
	Authentication

	Transactions
	Backup Transaction
	Restore Transaction
	Delete Transaction
	Query Transaction

	Creating a NetBackup XBSA Application
	Initiating a Session
	Modifying XBSA Environment within a session
	Session Example

	Backup - Creating an object
	Creating an Object
	NetBackup Object Ownership
	Default behavior
	Ownership options
	Object Owner
	Object Group

	Creating an Empty Object
	Backup Example

	Query - Finding an object descriptor
	Querying for an object
	Query Example

	Restore - Retrieving an object’s data
	Restoring an object
	Redirected Restore to a Different Client
	Restore Example
	Multiple Object Restore
	Requirements
	Functions and use

	Multiple Object Restore Example

	Delete - Deleting an Object
	Delete Example

	Logging and NetBackup
	Client in a Cluster
	Performance Considerations

	How to Build an XBSA Application
	Getting Help
	Flags and Defines
	How to Build in Debug Mode
	How to Debug the Application
	Static Libraries
	Dynamic Libraries
	End-user Configuration

	How to Run a NetBackup XBSA Application
	Creating a NetBackup Policy
	Selecting a Storage Unit
	Adding New Schedules
	Adding Script Files to the Files List
	Adding New Clients

	Running a NetBackup XBSA Application
	Backups and Restores Initiated by NetBackup (via a script)
	Backups and Restores from the Command Line

	API Reference
	Error Messages
	Function Calls
	Conventions

	Function Specifications
	BSABeginTxn
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	BSACreateObject
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	EXTENDED DESCRIPTION
	RETURN VALUE

	BSADeleteObject
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	BSAEndData
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	BSAEndTxn
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	BSAGetData
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	EXTENDED DESCRIPTION
	RETURN VALUE

	BSAGetEnvironment
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	EXTENDED DESCRIPTION
	RETURN VALUE

	BSAGetLastError
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	EXTENDED DESCRIPTION
	RETURN VALUE

	BSAGetNextQueryObject
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	BSAGetObject
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	EXTENDED DESCRIPTION
	RETURN VALUE

	BSAInit
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	EXTENDED DESCRIPTION
	RETURN VALUE

	BSAQueryApiVersion
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	BSAQueryObject
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	EXTENDED DESCRIPTION
	RETURN VALUE

	BSAQueryServiceProvider
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	EXTENDED DESCRIPTION
	RETURN VALUE

	BSASendData
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	EXTENDED DESCRIPTION
	RETURN VALUE

	BSATerminate
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	NBBSAAddToMultiObjectRestoreList
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	NBBSAEndGetMultipleObjects
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	NBBSAGetEnv
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	NBBSAGetErrorString
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	NBBSAGetMultipleObjects
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	NBBSAGetServerError
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	EXTENDED DESCRIPTION
	RETURN VALUE

	NBBSALogMsg
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	NBBSASetEnv
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	NBBSAUpdateEnv
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	NBBSAValidateFeatureId
	SYNOPSIS
	DESCRIPTION
	PARAMETERS
	RETURN VALUE

	Type Definitions
	Enumerated Types
	BSA_CopyType
	BSA_ObjectStatus
	BSA_ObjectType
	BSA_Vote
	Constant Values

	Data Structures
	BSA_ApiVersion
	BSA_DataBlock32
	BSA_ObjectDescriptor
	BSA_ObjectName
	BSA_ObjectOwner
	BSA_QueryDescriptor
	BSA_SecurityToken

	How to Use the Sample Files
	What the Sample Files Do
	Sample Programs
	Backup
	Restore
	Query
	Delete

	Sample Scripts

	Description of Sample Files
	How to Build the Sample Programs

	Support and Updates
	Index

