Veritas Volume Manager
Administrator’s Guide

Solaris

5.0

symantec.
N18518F a

Veritas Volume Manager
Administrator’s Guide

Copyright © 2006 Symantec Corporation. All rights reserved.
Veritas Volume Manager 5.0

Symantec, the Symantec Logo, Veritas, Veritas Storage Foundation and Veritas FlashSnap
are trademarks or registered trademarks of Symantec Corporation or its affiliates in the
U.S. and other countries. Other names may be trademarks of their respective owners.

The product described in this document is distributed under licenses restricting its use,
copying, distribution, and decompilation/reverse engineering. No part of this document
may be reproduced in any form by any means without prior written authorization of
Symantec Corporation and its licensors, if any.

THIS DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID, SYMANTEC CORPORATION SHALL
NOT BE LIABLE FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION
WITH THE FURNISHING PERFORMANCE, OR USE OF THIS DOCUMENTATION. THE
INFORMATION CONTAINED IN THIS DOCUMENTATION IS SUBJECT TO CHANGE
WITHOUT NOTICE.

The Licensed Software and Documentation are deemed to be “commercial computer
software” and “commercial computer software documentation” as defined in FAR
Sections 12.212 and DFARS Section 227.7202.

Symantec Corporation
20330 Stevens Creek Blvd.
Cupertino, CA 95014
www.symantec.com

http://www.symantec.com

Third-party legal notices

Third-party software may be recommended, distributed, embedded, or bundled
with this Symantec product. Such third-party software is licensed separately by
its copyright holder. All third-party copyrights associated with this product are
listed in the accompanying release notes.

Solaris is a trademark of Sun Microsystems, Inc.

Licensing and registration

Veritas Volume Manager is a licensed product. See the Veritas Storage
Foundation Installation Guide for license installation instructions.

Technical support

For technical assistance, visit http://support.veritas.com and select phone or
email support. Use the Knowledge Base search feature to access resources such
as TechNotes, product alerts, software downloads, hardware compatibility lists,
and our customer email notification service.

http://support.veritas.com

Chapter 1

Understanding Veritas Volume Manager

VXVM and the operating SYStemccoeeueeineerenierereeeeieesseeeseseeesssesens
HOW data is STOTEAovevevieiiieieiieieieiceccete ettt senenes
How VxVM handles storage managementcoceceeecerererrreeeererereesesesnsnnnenes
Physical objects—physical diSKSc.ccceceeereeririninieieieeeeeiireee e
VArtual ODJECES .oveveeieieiiieieieieiecice ettt sens
Volume 1ayouts in VXVIMccoooiiiiiiieiieeeeteeeeeeteeeee et
Implementation of non-layered VOIUMESccocoeveirieriiereriiceierenne,
Implementation of layered VOIUMEScceeveviieiciiiecicieieeceeeieaean
Layout MEtROASc.coouivieiieiiceeeeee ettt
Concatenation and SPANNINGcceceeeeereerrrerrererererererersrennenns
Striping (RAID-0)
Mirroring (RAID-1)
Striping plus mirroring (mirrored-stripe or RAID-0+1)
Mirroring plus striping (striped-mirror, RAID-1+0 or RAID 10) 45
RAID-5 (striping With parity)ccccceceeeeenerieeeeeerereeee e 47
Layered VOIUIMESc.coooveuiieieiiieieeeeeteteteeete ettt s vt 53
ONINE TEIAYOUL ...ovieeveeieietceeteeee ettt ettt et aeseas 56
How online relayout WOTKScccoevieieieieieieieeeeeeeeeeeie et 56
Limitations of online relayoutcccoocoveeiiicicicieieeeeeeeeeeeeee 59
Transformation characteristicscceoeviricererrereeeierireereeeeeeeeenens 59
Transformations and volume lengthccoeiiiiiiiiiicie 60
Volume reSynchronizationccccoeieviieieieieerieeeeceee e 61
DATLY FlAZS 1veveviiiiieieiieieieteieerie ettt ettt et b e s s se e se s s snenen 61
Resynchronization ProCeSSccoeeeeieiereieieeieeeee et 61
Dirty region 10ZZING ..cccevveveeuiiirieieieteeeeeeet ettt ese e ss s sesenen
DIrty region 10ZS ..oceeveueeeeiiirieieiieieieteieeeste ettt eest st sesse e seesessesesesenen
Log subdisks and plexes ..
Sequential DRLc.cccoooiiiiieieieieeeee et
SmartSync recovery acceleratorccococeeeeeeeeereeerenenenens
Volume SNapShotscoooveuieieiiieieieeeteeeeeeetee e
Comparison of snapshot featurescccoeeevveiereeeenenennne
FASTRESYIIC ittt ettt ettt sa e s a e e basbaens
FastResync enhancementsccccccecueeeveueeieieeieriieeeeeree et
Non-persistent FAStRESYNCccceeiviiieieiiiicceeeeeeeeee e
Persistent FAStRESYIICcocvcuivieeieiieicicieceeeeeee et

6 | Contents

DCO vOIUME VETSIONING .vcviveeiieieieiereieieieeieieieieieteieeessssesesesesesesesssssesesns
FastResync HMitationscccccceeeverinirnieeeceeiieeeieeee e
HOt-TElOCAtION ..ottt ees
Volume Setscocoeveeeeueueveveerenecieierereeeireneaes
Configuring volumes on SAN storage

Chapter 2 Administering disks

DiSK AEVICES .ueviiiiririieeieiess sttt ettt s 81
Disk device Nnaming in VXVIMcccccceveerininieieeeeeeeneniseeeeseeseeessssesesens 82
Private and public disK regionsccceeeeeeeeerereninieeeeeeeseseeeesenens 84

Discovering and configuring newly added disk devicescceceevrerurrrrnnenee. 86
Partial device diSCOVETY ...cccivirrrieeieieieiiirieieieieieeeese sttt eaesne 86
Discovering disks and dynamically adding disk arraysc.cee.eue.... 87
Third-party driver coexistencec.coceceereernee.

Administering the Device Discovery Layer
Placing disks under VxVM control
Changing the disk-naming scheme

Regenerating persistent device NAMESccoceeecererrrirreereeeerenerienenans
Changing device naming for TPD-controlled enclosures 97
Discovering the association between enclosure-based disk names and OS-
based diSK NAMEScccoviririnieieiee s 98
Issues regarding simple or nopriv disks with enclosure-based naming 98
Installing and formatting diSKScccceeveeierinineeieeeeereneeee e 99
Displaying and changing default disk layout attributesc.ccceceeueueeee. 100
Adding a disK t0 VXVIMcoiiirinieieieecieeeeesteieesie et eessesesesns 100
Reinitializing @ diskcoeveeiirininiireeeccee s 106
Using vxdiskadd to place a disk under control of VXVM 106
Using RAM disks With VXVIMcccovnrirnieeeiiiniireereieeeeseeseesesesesesens

Encapsulating @ diSKccocveiieieiiieiiieieeeeee e
Failure of disk encapsulation
Using nopriv disks for encapsulation ...

RoOtability ...cccoeieveiieieceee e
Booting root volumes
Boot-time volume restrictions

Mirroring an encapsulated 100t diSKccceuviririerereeeiereniririeieieieeenenes
Defining alternate boot diSKScccceieveiiieeicieieeececeee e
Mirroring other file systems on the root diskccccooeveveiierinnnee. 118
Encapsulating SAN diSKSccccoovviereiiierieieeeeeeeeieeeeee e 118
Unencapsulating the 100t diSKcccoocveeieieicieiieeeceeeeeeeeeee e 119

Dynamic LUN eXPanSiONccccveeeeieinierieieeeistesreeereeressesseseeesessesseseessessess 120

Extended COPY SEIVICEc.oiveuieereeieectiecteteeeteee ettt 121
Enabling a disk for Extended Copy Service operation 122

REMOVING AISKS ...vcviviviiieiiiiieieeeteee ettt ettt eaeas 123

Chapter 3

Contents

Removing a disk with SUbAiSKScccceveeeieeiriniieeccsce e
Removing a disk with no subdisks
Removing a disk from VXVM CONtIOlccccovievieieereeininieieieeeeieeeeneseeines
Removing and replacing diSKSccceceeecererrnenieieeeeinirsieeeeeeeeesensssenenes
Replacing a failed or removed disk
Removing and replacing a disk in a Sun StorEdge A5x00 disk array 131
Enabling a diskccceuuuee.
Taking a disk offline
Renaming a disk
Reserving diskscccccoceeuenenee
Displaying disk information
Displaying disk information with vxdiskadmcceceeevecivernrriennns 135

Administering dynamic multipathing (DMP)

HOW DMP WOTKS ...eeiiiiiicicieieieteieirccieieieie e teestseseiebebe ettt eeae bbbt sseenencaenes
How DMP monitors I/O on paths
L0ad balanCingcceceveveeereiririeieieieieeeeeestee e eseeesaesesenesenas
Dynamic Reconfigurationccccceceeeeeeieeecininneeeieeeeeeeeseveseenas
Using MPXIO With DMPc.coviiieieiriririniceeeisseseseeeieiseseseseeseseienenes
Booting from DMP deVICESccoeceuerrirreieieiereieiesenieteseieseeesseessesesesenenas
DMP in a clustered environment
Disabling and enabling multipathing for specific devicescccceerrruennece 144
Disabling multipathing and making devices invisible to VxVM 144
Enabling multipathing and making devices visible to VXVM 145
Enabling and disabling I/O for controllers and storage processors 147
Displaying DMP database informationccececeeeeeenneeeeeeienenennienenes 148
Displaying the paths to a diSKc.ceceueeeecirininierieieeccereeeeeee e 148
Administering DMP using vXdmpadmccccccoeeereiriereeneinieerenesiereeesenenes 150
Retrieving information about a DMP nodecoceeuevcvcereniririererereenenns 150
Displaying the members of @ LUN roupccceeeveveeirereereerernneniennnns 151

Displaying paths controlled by a DMP node, controller or array port 151
Displaying information about controllers
Displaying information about enclosures
Displaying information about array ports

Displaying information about TPD-controlled devicesccceue.... 154
Gathering and displaying I/O statisticsccccceveerreercerereresisessnens 155
Setting the attributes of the paths to an enclosurecccovene..... 157
Displaying the I/O POLICY ...ceeveveverererieiieeeeeeteeeeteeee ettt 158
Specifying the I/O POLICYccoevveirieieeieieieieeeece et 159
Disabling I/O for paths, controllers or array portscceceeevevevennnes 164
Enabling I/O for paths, controllers or array portscceeeeevevevevennes 165
Upgrading disk controller firmwareccoceceecereninnieeeeeeserenisienes 166

Renaming an enclOSUTEccccveveiiievieieieieeeeeeteee et 166

7

8 | Contents

Chapter 4

Configuring the response to I/O failurescccceeeveeeereeeneeeseenennas
Configuring the I/O throttling mechanism
Displaying recoveryoption Valuesc.coceeerereeeirirenieresseieeeensenenns
Configuring DMP path restoration policies
Stopping the DMP path restoration thread

Displaying the status of the DMP path restoration thread 172
Displaying information about the DMP error-handling thread 173
Configuring array policy modulescccoceceeeeenininineeeereeeeeneenenens 173

Creating and administering disk groups

Specifying a disk group to COMMANASccoceuereereiririerereeeeeeeseereereeeenes
System-wide reserved diSK roupscccceeeeeeeererinieieeeseeeereseseeenas
Rules for determining the default disk group

Displaying disk group informationcccceuevereneee.
Displaying free space in a disk group

Creating a disk groupcceeveeecerennerenreenenas

Adding a disk to a disk groupccceueu.

Removing a disk from a diSK Zroupccceceeeeeeeeniniriniereeeceeeeeeeveeveenenns

Deporting @ diSK SrOUDcovvveveveueeeiiririirieteeieeeteeste st sesesesasans

IMPOorting @ diSK STOUD ..eovovvieeeieeieeeeeete ettt sens

Handling disks with duplicated identifierscccocevevevrvernnrniereeeenne.
Writing a new UDID t0 @ diSK ...ccccceoverinieieieecceeeeeeeeeieeee s
Importing a disk group containing cloned disks
Sample cases of operations on cloned diskscccccceveieiereinrericrenne.

Renaming a diSK STOUDccoveveveveueiirinieiieieeieeeeteeete et es

Moving disks between diSK SroupSccceeeeeeirinerireerereieeeeneeeseeseeeesenens

Moving disk groups between SYSteMScccvcereererierereeeierenieirisseseeeeeeennnns
Handling errors when importing diskscccoceceeeecerenniriererereeennnes
Reserving minor numbers for disk groupsccececeeeeereerrereeeerereeennne
Compatibility of disk groups between platforms

Handling conflicting configuration copiesc.cocoveeeeeverenrerneereeeenene
Example of a serial split brain condition in a clustercccccc......... 200
Correcting conflicting configuration informationcccecevurenenee. 204

Reorganizing the contents of disSk roupsc.coceeeveeeeecerenrenseereeeenenes 205
Limitations of disk group split and joinccceceeeveeverernereereeeenenes 209
Listing objects potentially affected by a moveccccoeveveiverennnnnee. 210
Moving objects between disk roupsccoceeevvereeeeierennrerieeerereeennnes 213
SPLtting diSK STrOUDS ..eceririeveieeereiieiiririeieeieeee sttt sens 215
JoINIing diSK SrOUPS ..ocvovevieieviieieietcteee ettt 216

Disabling a diSK roupcccveuiieieieiciieceteeee et 217

Destroying a diSK STrOUDcccvcuieveueieieiieeeiceieeeeeeteeeeetee ettt eaens 218
Recovering a destroyed diSK groupccccceeeeeereicicieeeieeeceeereeeene 218

Upgrading a disK SroUDcococviieveieiciiececteeeeeeeeee et 218

Chapter 5

Chapter 6

Chapter 7

Contents

Managing the configuration daemon in VXVMcccccoeeerreeeecerennnnniennnns 222
Backing up and restoring disk group configuration datacccecevereunenee 223
Using vxnotify to monitor configuration changesccoceceeeceeerurrriennes 223

Creating and administering subdisks

Creating SUDAISKSccoeeieieeeiriiieteceeetccee ettt
Displaying subdisk informationccccceeeeieieeeeceninneeeeeeeeseensieenes
MOVING SUDAISKScueuiieieiieieieiciiirieieteieie ettt ettt ettt sesesesasasnesesesenes
SPLLEING SUDAISKS .vvvviieiieiiieieieeceectetee ettt es et eannens
JOINING SUDAISKS ..voviiieiieicicieeteeee ettt eaee
Associating subdisks with plexes
Ass0ciating 10g SUDAISKSceuviirieiririeieieeeeeeete et
Dissociating subdisks from plexes
Removing subdisks
Changing subdisk attributes

Creating and administering plexes

Creating PIEXES ..c.cueiieieeeieiereieieieerietetsteteseteee st sttt sesesasssesesesesesasessnssssseseses
Creating a StriPed PIEX ...c.ceeeeireririeirieieietceetete ettt ee et eessesesnes
Displaying plex information ..
Plex statesc.cccceeeenene
Plex condition flags
Plex kernel Statescccceernreeeieieieirrreceeieees s
Attaching and associating plexes
Taking plexes offline
Detaching plexes
ReattacChing PIEXEScceeveveueeriiieieieieieeicieeneet ettt sese e sssesessesesesesnsas
MOVINZ PLEXES ...veieirieieieieieteieiiiiete et te et sae st se e s st sesssesessassesesesasannnn
COPYINE PIEXES ..ttt ettt e ettt s s e e s s sssesesesesanasssesesnes
Dissociating and removVing PIEXEScceecererrrreiriererereeererteeeresesereseesessssssenes 243
Changing pleX attribULEScoeveveereeiirireeeceee e eenas 244

Creating volumes

Types of VOIUME JAYOULSc.evevereiririiieieieieeeieeeeee ettt be e eennees 246
Supported volume 10gS and MAPScceerereeriririerereeereeireereseereenens 247
Creating @ VOIUIMEcoeveveueieiinieieieieieteeeetee ettt et et esesesesesesesssssesnes 248
Advanced approach ... 248
AsSisted aPPTOACHc.ovcviiiiicieeee et 249
USINEZ VEXASSISE wuvevenieieiieieeieieestet ettt ettt ettt ettt ee 249
Setting default values fOr VXasSiStcccevvveveriririnreeeeeeeieeeeeeeeeens 251
Discovering the maximum size of @ VOIUMEccocerevrierereerereerceinieieines 252

Disk group alignment constraints on VOIUMEScccceerereverereeerernnrrienenns 252

9

10 | Contents

Chapter 8

Creating a volume on any disKccccevevveeeeiiieniniineeeeeeeeeeee s 253
Creating a volume on specific diSKScocevevrrerininninieeeeeineseee e 254
Specifying ordered allocation of storage to volumesc.ccceceueuenee. 255
Creating a mirrored VOIUIMEccceeeveiereiininieieieieiee ettt esesenens
Creating a mirrored-concatenated volUMEcccoereererrririrrerererenennne
Creating a concatenated-mirror VOIUMEcccoeueueecerenrrerienererenenenenes
Creating a volume with a version 0 DCO volumecccccoeevuerrerereerererennne.
Creating a volume with a version 20 DCO voIuUmMEccoeeveveerereeirirennnens
Creating a volume with dirty region logging enabled
Creating a striped VOIUMEcccceeereririnierereeeeeneeiennes .
Creating a mirrored-stripe VOIUMEccoceeveveeeninininieeeiceeeeeeeees
Creating a striped-mirror VOIUMEcccoeerereennineninieieeieeeeeeenenens
Mirroring across targets, controllers or enclosuresccococeeeevererereennne.
Creating @ RAID-5 VOIUINIEc.ccoeiirieieirieieieieieeeeteesesetesessseessessesesesessssssnens
Creating tagged VOIUMESccoeeiiririririeieieieccte ettt senens
Creating a volume using VXMAKeccceceueeeieninirinieiereeieeeiesessesesesesesenns
Creating a volume using a vxmake description fileccccceereueunee. 269
Initializing and starting a VOIUMEc.cceceeeiinineniniereeeceee e 270
Initializing and starting a volume created using vxmake 271
ACCESSING @ VOIUIME ..ottt ettt s e senns 272

Administering volumes

Displaying volume informationcccececeeeeeennniniereeeeeeneeeeseeeenenes
VOIUIME STALEScvvviiieicicieieieir ettt
Volume Kernel Statescccoceeueurniccueieieiririnineeieeieesseecie e

Monitoring and controlling tasksc.cccececeevereriniririereeeeeerieeeeeseseseenens
SPECIfYING tasK taZS ...ceeeiririeieeeeeieee et
Managing tasks With VXtaskc.cccceeeeeiiiininnnnieeecee s

STOPPING & VOIUITIE ...ttt et se s ssesesenas
Putting a volume in maintenance modeccoceceeeeerenrereererereeenenes

Starting a volumeccccceeevevevivereeecenenene

Adding a mirror to a volumecccueeve.
Mirroring all volumes
Mirroring volumes on a VM disk
Additional mirroring considerationsc.cceceeereererereeenereierennerenenenens

ReMOVING @ MUITTOT ..ottt

Adding logs and maps t0 VOIUIMEScccccereurrerereerereerineneseeseesieseeessesesenens

Preparing a volume for DRL and instant snapshots
Specifying storage for version 20 DCO plexes

Using a DCO and DCO volume with a RAID-5 volumecccceeuenee. 289
Determining the DCO version NUMbETccceevereeeierenrririeeererenenenenes 289
Determining if DRL is enabled on a volumeccccceeeeeervirineerereenenne. 289

Determining if DRL logging is active on a volumeccccceceveveuennene. 290

Chapter 9

Contents

Disabling and re-enabling DRLcccocoveeieerininininieeereeeeeeseereeeenas 290
Removing support for DRL and instant snapshots from a volume291
Upgrading existing volumes to use version 20 DCOScccoceceecererurrruennns 291
Adding traditional DRL logging to a mirrored volumecccccoceeeeunenene. 293
Removing a traditional DRL1I0Zcccceeeeeeeeririninieieeseeeeeeeseeveseenas
Adding a RAID-5108 ..ccccoovveerenrrrrrerenriereennenes
Adding a RAID-5 log using vxplex
Removing a RAID-510gcccccevrruruenenee
Resizing a volume
Resizing volumes using vxresize
Resizing volumes USiNG VXASSISt ..c.ccccvveereierieuerereerenieisieseseseeeesersseenenes
Resizing volumes USING VXVOLccccviieieieinieieieeeenietsieeeseieeeesessesesenes
Setting tags 0N VOIUIMESc.ooiviriiiueirirrneceesr et
Changing the read policy for mirrored vOIUMESccecerrrererirerrerererernnnns 302
REMOVING @ VOIUIMEoveviieieiiiiiieieeeiee ettt seae et sesasesesesennas 303
Moving volumes from a VIM disKccccecveeririnienieeeiininieieeieeeeeseeeeseneeenas 303
Enabling FastResync on @ VOIUIMEcccoeeeereieieiereeeenieiereeieeessensesesesennnns 305
Checking whether FastResync is enabled on a volume 306
Disabling FAStRESYIICc.ccvieirieirieieieieiiiiisiieieieteseeessstseesese e seeesesesnes
Performing online relayoutcocoeeeeeininieieieeieeceeneee e seseaeeas
Permitted relayout transformations
Specifying a non-default 1ayoutcccceevvveeeerriereeecerineenne
Specifying a plex for relayoutcccoceeeeeeerenirieeereeenenens
Tagging a relayout operationccceceeeereeerererierereneenenens
Viewing the status of a relayoutccccoeeerereeeecernrenrnnens
Controlling the progress of a relayoutccccoveveveveuennnee
Converting between layered and non-layered volumes

Administering volume snapshots

Traditional third-mirror break-off snapshotscccooeoeeveieieicrieciecnne,
Full-sized instant snapshots
Space-optimized instant snapshots
Emulation of third-mirror break-off snapshots
Linked break-off snapshot volumesc.ccocouue..
Cascaded SNAPSNOLScceveuiieieeiiceeecteteeetee ettt aees
Creating a snapshot of @ SNaPShotcccceceeeeeciceninieccieeccceeeeeas
Creating multiple SNAPSHOLSccoeeveieieiiiiiieeeeeceee e
Restoring the original volume from a snapshotccceoeeecevevrrierereeennes
Creating instant SNAPSOLSccovvevieieeieiiiieereee e
Preparing to create instant and break-off snapshots
Creating and managing space-optimized instant snapshots 336
Creating and managing full-sized instant snapshotsc.c.cecoceueuene. 339
Creating and managing third-mirror break-off snapshots 341

11

12 | Contents

Chapter 10

Creating and managing linked break-off snapshot volumes 343
Creating multiple instant snapshotscccceceveeeeeierennereereeeeenes 345
Creating instant snapshots of volume Setsccccceevrerrevirreeeecennnn. 346
Adding snapshot mirrors to a volume

Removing a snapsShot MITTOTccceeeeviiierineieeee s
Removing a linked break-off snapshot volumecccccocvvvvererrennnnne. 349
Adding a snapshot to a cascaded snapshot hierarchycccccoceueuenene 349

Refreshing an instant snapshot
Reattaching an instant snapshot

Reattaching a linked break-off snapshot volumecccceuererereuennee. 351
Restoring a volume from an instant snapshotc.cccececeeevevririnnnnen. 352
Dissociating an instant SNapshotccceverieieeeeeienenrereeeeeeenes 352
Removing an instant SNapShotccccceceeeeeeerieeeeecerenereee e 353
Splitting an instant snapshot hierarchyccoceceveevevenvrnneeeennne. 353
Displaying instant snapshot informationcececeeeeeveerreereeeennne. 354
Controlling instant snapshot synchronizationcccececeevveveveeennnene. 356
Listing the snapshots created on a cachec.cococeeevevenririeerereenennne. 357
Tuning the autogrow attributes of a cachecccoceeevvvennirrierereeennne. 358
Growing and shrinking a cacheccocevceeernvineieeeeceeeee e 359
REMOVING @ CACKE ..ttt 359
Creating traditional third-mirror break-off snapshotscccceceerennee. 360
Converting a plex into a sSnapshot PIEXcccccvveereeeienenrririeeeieeeenenes
Creating multiple snapshotscccccccerervererennnen.
Reattaching a snapshot volumecceuneuen.
Adding plexes to a snapshot volume
Dissociating a snapshot volumecceueveueee.
Displaying snapshot information
Adding a version 0 DCO and DCO VOIUMEc.cooeeveuiveriiereieeereeeieveeeienas
Specifying storage for version 0 DCO pIEXEScccecveveeevereerererererennnes
Removing a version 0 DCO and DCO volumeccccceeevveveeverenrenenee.

Reattaching a version 0 DCO and DCO volume

Creating and administering volume sets

Creating @ VOIUIME SELcovvveveieueieeiiniiieteeeieeee et ese e st sens 374
Adding a volume to @ VOIUME Stcccvurireerereiereeieieeineeeeieiee e e 374
Listing details of VOIUME SELSccceoveverrerrereieeiieietieteeteieees e eeeenes 375
Stopping and starting volume SEtscccoceeeecereeririeeeeeeeeeeeesereeeenenes 375
Removing a volume from a vOIume Setccoeveererereeeriririeresereeeeennens 376
Raw device node access to component VOIUMESccccoevevverererereneerenennnn. 376

Enabling raw device access when creating a volume set 377

Displaying the raw device access settings for a volume set 378

Controlling raw device access for an existing volume set 378

Chapter 11

Chapter 12

Chapter 13

Contents

Configuring off-host processing

Implementing off-host processing SOIULIONScccceeveereererreereeeeiereniriennes 382
Implementing off-host online backup
Implementing deciSion SUPPOTTccevereeeeeeeriririeieieerieeeeeer e eeeas

Administering hot-relocation

How hot-1elocation WOTKScccceueriinincieieieieininiccitieeieietseeeeieie et 390
Partial disk failure mail MeSSAZESccceevererrereeerrererieieieieieiereeeseeesaeienes 393
Complete disk failure mail MesSAZEScocvvevevereerererrririeierereeerieerieines 394

How space is chosen for relocation
Configuring a system for hot-relocation

Displaying spare disk informationcccceceveveereeeecnrenerennnnes

Marking a disk as a hot-relocation spare

Removing a disk from use as a hot-relocation sparecececeeeererurrrrennes 398

Excluding a disk from hot-relocation Usecoceceeceeernneereeeiecerineniennes 398

Making a disk available for hot-relocation Usec.ccceceeveeeecerenreeererennas 399

Configuring hot-relocation to use only spare disKsccccecevevcerernnrriennes 400

Moving and unrelocating SUDAISKScccceverrrrerriereiereererininieeeieeeeeesieines 400
Moving and unrelocating subdisks using vxdiskadmc.cccoeueev.. 401
Moving and unrelocating subdisks using vXassistcccceeerrerrrennes 402
Moving and unrelocating subdisks using vxunrelocccccecevevevenenee 402
Restarting vXunreloc after TT0TSccoceeeveveeeererenisieeeseieeeesereseenenes 404

Modifying the behavior of hot-relocationcccceceeeeernrreeeeccccrinnenes 405

Administering cluster functionality

Overview of cluster volume managementccceceecererrerererereeeeseresssnenenns 408
Private and shared diSk roupscccececeeceeerinininieieeseeieeeseeveeenas 411
Activation modes of shared disk roupscccececeerireeernrrineeeerinenes 412
Connectivity policy of shared disk roupsc.cceceeeeeereeecerernirienenns 414
Effect of disk connectivity on cluster reconfigurationcccccue.... 419
Limitations of shared disK Sroupsccceceeeecerennieeeeeeereneeereeenas

Cluster initialization and configurationcececeeeeerereieeeeeecesereneeieenes
Cluster reconfiguration
Volume reconfiguration
Node shutdown
Node abortcccceeueeene
Cluster ShUtdOWINccceueieiiieiririiccce e

Dirty region logging in cluster environments
How DRL works in a cluster environment

Multiple host failover configurationscocececeeeeeceeernineeeeeeerensenes
TMPOTTLOCK oottt ettt
FalOVET .ouiniiiiieieiireceiee ettt

13

14 | Contents

Chapter 14

Corruption of disk group configurationcceceeeeeverenririererereeennne 431

Administering VXVM in cluster environmentscccoceeveveereeererernsrenenens 433
Requesting node status and discovering the master node 433
Determining if a disk is shareablec.cccoceereeecrninininieesceeeeene 434
Listing shared disk groups

Creating a shared disk group

Forcibly adding a disk to a disk group
Importing disk groups as sharedccccceevrurirvrennnnee
Converting a disk group from shared to private
Moving objects between disk groupscccceeevunueee
SPLtting diSK STrOUDS .veveviieieieieieiieiiiriete ettt s et seas
JOINING AiSK ZrOUDS ..veveveveveieiiiiieieieieieteeet ettt
Changing the activation mode on a shared disk groupcceceueueee. 438
Setting the disk detach policy on a shared disk groupccceueuuveve. 439
Setting the disk group failure policy on a shared disk group 439
Creating volumes with exclusive open access by a node 439
Setting exclusive open access to a volume by a nodec.ceceeueeenene. 440
Displaying the cluster protocol VErsionceececeeecereerereeierereeennes 440
Displaying the supported cluster protocol version range 440
Upgrading the cluster protocol Versioncccececeeevererenereeeerereeenenes 441
Recovering volumes in shared disk groupscccececeeerereereererereeennne 441
Obtaining cluster performance statisticscccccevevivieiveveeicrerennene. 442
Administering
sites and remote mirrors
Configuring sites for hosts and disKSccccceeereierireeencereninreee e 446
Configuring site-based allocation on a disk groupccceceeeereeveirerennnen 446
Configuring site consistency on a disk roupc.ccceceeeecerernrereseereeeennne 447
Configuring site consistency on a volumecocceeeverereeerernrereneererereenenes 447
Setting the siteread policy on a VOIUMEcccccevveeecenininieieeeceeeeeeieieeenas 448
Site-based allocation of storage to VOIUMEScccoovvveverereeereriririerereieenenes 448
Examples of storage allocation using sitescceceeeceverrerrerereeennnes 450
Making an existing disk group site consistentcccoceceeveererrrrereeeenne. 451
Fire drill — testing the configurationcccoo........
Simulating site failureccccceevvrevenene
Recovery from simulated site failure
Failure scenarios and recovery procedures
Recovery from a loss of site connectivity
Recovery from host failure ..o
Recovery from storage failureccccceeeeeeeereeeeecieneneneeee s

Recovery from site failurecococoeeeeceieneneneeeeceee e

Chapter 15

Chapter 16

Appendix A

Contents

Using Storage Expert

How Storage EXPert WOTKScoevvieieieueeiiinieieieieieeieessesetesese e ssssssssesesessnnnas
Before using Storage Expert
Running Storage EXpertccccovvevevvenneieneeneeene
Discovering what a rule does
Displaying rule attributes and their default valuescccccoeurururnnnnse 457
RUNNING @ TULE ittt sa et anas 458
Identifying configuration problems using Storage Expertcccccoceeueuenee 459
RECOVETY TIME ..ottt 460
DISK ZIOUDS .evrerniieieiriereieteiientetesstesesesesesessesesssesesesesessssesssesesesesesssssseseseseses 461
DiSK SEIADINE eovvveveveieieieieieiieieietetee ettt et sttt e es s b sennas 464
Disk sparing and relocation managementccocececeeereeeerernereienenns 465
Hardware failures ..o 465
ROOLADIIILY vttt aenas 465
SYSTEIM NAIME ..ottt ettt et e sae et et e e s et este s e esbessseaesseeseas 465
Rule definitions and attributesc.oocoeeeernncieeenrnrceeeeeeeccnen 466

Performance monitoring and tuning

Performance gUIdEliNescccccevieieirieieeiininieereiee ettt eesesesesnes 471
Data asSiZNMENTc.cceeueieieieieieieeeeee ettt 471
SEEPINE ettt 472
MITTOTINIE .ttt et ettt ettt stnan 472
Combining mirroring and Stripingc.ccceceeeeecererinieieeeeeerereeeeenes 473
RAID-5 oo

Volume read policies
Performance monitoring
Setting performance priorities
Obtaining performance data

Using performance data

Tuning VXVM ..o
General tuning guidelinescccoceeeeeeririrrieieeeeereseeee e
Tuning guidelines for 1arge SYStEMSccccceeriririerereeeeeeiieeeeeenens 480
Changing the values of tunablescccoceceeerinnenieieereeeeeeeenns 482
Tunable PATAMELETrSc.ccveveieuireieieieeeeeecteee ettt s 483

Commands summary

Online ManUAl PAZES ...cveveveveeerrrririeiririeierereeesteseistesesesesesessssesssesesesesesasssssseseses 515
Section 1M — administrative commandscccocevvereevveieieeiierenns 515
Section 4 — file fOrmMatScoovvvevveieiieeeiceceeeceeeeecee et 518

Section 7 — device driver interfacesccoveveeveeeeceeeeeeeeeeeereens 518

15

16 | Contents

Appendix B

Appendix C

Configuring Veritas Volume Manager

Setup tasks after installationccccceeeeeieeciiicciiiceeeeeeee e
Adding unsupported disk arrays as JBODs
Adding foreign devicesccccoveeeveririeeennne.
Adding disks to diSK roUDScceceeereririririeieieieeeiiireete ettt sesenens
Guidelines for configuring StOrageccoceveeeeeerririreerereeeeereeeeeeeveeenes
Mirroring gUIdElinesSccccecerieieiriereereeerineeeteereeeeese et senens
Dirty region 1logging guidelinesccccevevereeririneeeeierenereee e
Striping GUIAEIINESccceiiiieieieieieieeeeetete et seeas
RAID-5 GUIAEINES ..covoviiereieieieiieieiieieieieeeeet ettt es
Hot-relocation guidelinesc.cococveueeerienenieenieieieeceeneeneee s
Accessing VOIUME AEVICEScveeeeererieieieieieeieeeeeseeeseseeeesesessesesesesens
Controlling VxXVM’s view of multipathed devicesccoceeevreeeririrennnnen 526
Configuring ClUStEr SUPPOTL c.c.cviieieveieieieteeitiet ettt esens 526
Configuring shared diSK SroUDSccoceeveereriniriririeieieeieeeeeeeese e 527
Converting existing VxVM disk groups to shared disk groups 527
Reconfiguration tasksccceceeeeeririnninieieeeeeneeeset et eees 528
Changing the name of the default disk groupcccoceeeereevecerirennnnn. 528
Enabling or disabling enclosure-based namingc.cococevvveeerennene. 528

Migrating from Solaris Volume Manager to VxVM

How Solaris Volume Manager objects are mapped to VXVM objects 531
Conversion of soft partitionsccccceeeeevieeeciciceeeeeceeeeeee e
Overview of the conversion process

Planning and preparation
SELUD ot
Conversion
Post conversionccceceveeceriecennnnne
Planning the conversion
Scheduling considerations

Schedule dOWNTIMEccoceiirieieieieeieieiieeete et senas
Check MetadeViCeSovuvveveueeiiiieiireieie ettt se e ees
Identify references by applications

Preparing a Solaris Volume Manager configuration for conversion 541
INSLAIlING VXVIM ..ottt eaese s esess s se s sesssennns 541

Setting up a Solaris Volume Manager configuration for conversion 542
RUN PrECONVETT .ottt et 542
RUN SNOWCONVETT ..ottt s e nenes 543
Run convertname ...t 543
MakKe DACKUPSvovieeiiiecteetee ettt 545

Converting from the Solaris Volume Manager software to VXVM 545

RUN AOCOMVETT .ottt eas v eae e 545

Contents | 17

REDOOt the SYSTEIMccvveeiiiiiieiieieiece ettt anes 546

Change volume referenCesocoveeoirerieieieeeeeeeeieie et sesesenenas 546

POSt CONVETSION tASKSvuvuiuiuiiiieiieieiiccecieieie ettt bbbttt 546

IMprove volume [aYOULScccceeveverereiiririsirieieieeieeese st eesesesennes 546

Remove the Solaris Volume Manager softwareccoceceeeeverunirrennes 547

Converting a ro0t AiSKccceeiirieieieieieeceeeeieee et aaas 547

Glossary 549

Index 559

18 | Contents

Understanding Veritas
Volume Manager

Veritas™ Volume Manager (VXVM) by Symantec is a storage management
subsystem that allows you to manage physical disks as logical devices called
volumes. A VxVM volume appears to applications and the operating system as a
physical disk partition device on which file systems, databases and other
managed data objects can be configured.

VxVM provides easy-to-use online disk storage management for computing
environments and Storage Area Network (SAN) environments. By supporting
the Redundant Array of Independent Disks (RAID) model, VxVM can be
configured to protect against disk and hardware failure, and to increase I/0
throughput. Additionally, VxVM provides features that enhance fault tolerance
and fast recovery from disk failure.

VxVM overcomes physical restrictions imposed by hardware disk devices by
providing a logical volume management layer. This allows volumes to span
multiple disks.

VxVM provides the tools to improve performance and ensure data availability
and integrity. You can also use VxVM to dynamically configure disk storage
while the system is active.

The following sections of this chapter explain fundamental concepts of VXVM:
m VxVM and the operating system
m How VxVM handles storage management

m Volume layouts in VxVM

The following sections introduce you to advanced features of VxVM:
m Online relayout
m Volume resynchronization

m Dirty region logging

20

Understanding Veritas Volume Manager

Volume snapshots
FastResync
Hot-relocation
Volume sets

Configuring volumes on SAN storage

Further information on administering Veritas Volume Manager may be found in
the following documents:

Veritas Storage Foundation Cross-Platform Data Sharing Administrator’s
Guide

Provides more information on using the Cross-platform Data Sharing (CDS)
feature of Veritas Volume Manager, which allows you to move VxVM disks
and objects between machines that are running under different operating
systems.

Note: CDS requires a Veritas Storage Foundation license.

Veritas Storage Foundation Intelligent Storage Provisioning Administrator’s
Guide

Describes the command-line interface to the Veritas Intelligent Storage
Provisioning (ISP) feature, which uses a rule-based engine to create VxVM
objects and make optimal usage of the available storage.

Veritas FlashSnap Point-In-Time Copy Solutions Administrator’s Guide
Provides guidelines on using the features of the FlashSnap software to
implement various point-in-time copy solutions for backup, and database
replication.

Note: Veritas FlashSnap requires a separate license.

Veritas Volume Manager Troubleshooting Guide

Describes recovery from hardware failure, disk group configuration and
restoration, command and transaction logging, and common error
messages together with suggested solutions.

Veritas Enterprise Administrator User’s Guide

Describes how to use the Veritas Enterprise Administrator — the graphical
user interface to Veritas Volume Manager. More detailed information is
available in the VEA online help.

Understanding Veritas Volume Manager | 21
VxVM and the operating system

VxVM and the operating system

VxXVM operates as a subsystem between your operating system and your data
management systems, such as file systems and database management systems.
VxXVM is tightly coupled with the operating system. Before a disk can be brought
under VxVM control, the disk must be accessible through the operating system
device interface. VXVM is layered on top of the operating system interface
services, and is dependent upon how the operating system accesses physical
disks.

VxVM is dependent upon the operating system for the following functionality:
m operating system (disk) devices
m device handles

m VxVM dynamic multipathing (DMP) metadevice

This guide introduces you to the VxVM commands which are used to carry out
the tasks associated with VxVM objects. These commands are described on the
relevant manual pages and in the chapters of this guide where VxVM tasks are
described.

VxXVM relies on the following constantly-running daemons and kernel threads
for its operation:

B vxconfigd—The VXVM configuration daemon maintains disk and group
configurations and communicates configuration changes to the kernel, and
modifies configuration information stored on disks.

B vxiod—VXVM I/O kernel threads provide extended I/O operations without
blocking calling processes. By default, 16 I/O threads are started at boot
time, and at least one I/O thread must continue to run at all times.

B vxrelocd—The hot-relocation daemon monitors VxVM for events that affect
redundancy, and performs hot-relocation to restore redundancy.

How data is stored

There are several methods used to store data on physical disks. These methods
organize data on the disk so the data can be stored and retrieved efficiently. The
basic method of disk organization is called formatting. Formatting prepares the
hard disk so that files can be written to and retrieved from the disk by using a
prearranged storage pattern.

Hard disks are formatted, and information stored, using two methods: physical-
storage layout and logical-storage layout. VxVM uses the logical-storage layout
method. The types of storage layout supported by VXVM are introduced in this
chapter.

22 | Understanding Veritas Volume Manager
How VxVM handles storage management

How VXVM handles storage management

VxXVM uses two types of objects to handle storage management: physical objects
and virtual objects.

m Physical objects—physical disks or other hardware with block and raw
operating system device interfaces that are used to store data.

m Virtual objects—When one or more physical disks are brought under the
control of VxVM, it creates virtual objects called volumes on those physical
disks. Each volume records and retrieves data from one or more physical
disks. Volumes are accessed by file systems, databases, or other applications
in the same way that physical disks are accessed. Volumes are also
composed of other virtual objects (plexes and subdisks) that are used in
changing the volume configuration. Volumes and their virtual components
are called virtual objects or VxVM objects.

Physical objects—physical disks

A physical disk is the basic storage device (media) where the data is ultimately
stored. You can access the data on a physical disk by using a device name to
locate the disk. The physical disk device name varies with the computer system
you use. Not all parameters are used on all systems. Typical device names are of
the form c#t#d#s#, where:

m c# specifies the controller
m t# specifies the target ID
m d# specifies the disk

m s# specifies the partition or slice

Figure 1-1 shows how a physical disk and device name (devname) are illustrated
in this document. For example, device name c0t0d0s?2 is the entire hard disk
connected to controller number 0 in the system, with a target ID of 0, and
physical disk number 0.

Figure 1-1 Physical disk example

devname

VxVM writes identification information on physical disks under VxVM control
(VM disks). VxVM disks can be identified even after physical disk disconnection

Understanding Veritas Volume Manager
How VxVM handles storage management

or system outages. VXVM can then re-form disk groups and logical objects to
provide failure detection and to speed system recovery.

Partitions

A physical disk can be divided into one or more partitions, also known as slices
as shown in Figure 1-2. The partition number is added at the end of the
devname, and is denoted by s#. Note that partition s2 refers to an entire
physical disk for non-EFI disks.

Figure 1-2 Partition example

Physical disk with several partitions Partition

devhamesQ devnamesQ

devnamesl

devnames?2

Disk arrays

Performing I/0 to disks is a relatively slow process because disks are physical
devices that require time to move the heads to the correct position on the disk
before reading or writing. If all of the read or write operations are done to
individual disks, one at a time, the read-write time can become unmanageable.
Performing these operations on multiple disks can help to reduce this problem.

A disk array is a collection of physical disks that VXVM can represent to the

operating system as one or more virtual disks or volumes. The volumes created
by VxVM look and act to the operating system like physical disks. Applications
that interact with volumes should work in the same way as with physical disks.

Figure 1-3 illustrates how VxVM represents the disks in a disk array as several
volumes to the operating system.

Data can be spread across several disks within an array to distribute or balance
I/0 operations across the disks. Using parallel I/O across multiple disks in this
way improves I/O performance by increasing data transfer speed and overall
throughput for the array.

23

24 | Understanding Veritas Volume Manager
How VxVM handles storage management

Figure 1-3 How VXVM presents the disks in a disk array as volumes to the
operating system

(Operating system)

r
Veritas Volume Manager

I
I
I
| Volumes
I
I
I

Physical disks

Multipathed disk arrays

Some disk arrays provide multiple ports to access their disk devices. These
ports, coupled with the host bus adaptor (HBA) controller and any data bus or I/
O processor local to the array, make up multiple hardware paths to access the
disk devices. Such disk arrays are called multipathed disk arrays. This type of
disk array can be connected to host systems in many different configurations,
(such as multiple ports connected to different controllers on a single host,
chaining of the ports through a single controller on a host, or ports connected to
different hosts simultaneously).For more detailed information, see
“Administering dynamic multipathing (DMP)” on page 137.

Device discovery

Device discovery is the term used to describe the process of discovering the
disks that are attached to a host. This feature is important for DMP because it
needs to support a growing number of disk arrays from a number of vendors. In
conjunction with the ability to discover the devices attached to a host, the
Device Discovery service enables you to add support dynamically for new disk
arrays. This operation, which uses a facility called the Device Discovery Layer
(DDL), is achieved without the need for a reboot.

Understanding Veritas Volume Manager
How VxVM handles storage management

This means that you can dynamically add a new disk array to a host, and run a
command which scans the operating system’s device tree for all the attached
disk devices, and reconfigures DMP with the new device database. For more
information, see “Administering the Device Discovery Layer” on page 90.

Enclosure-based naming

Enclosure-based naming provides an alternative to the disk device naming
described in “Physical objects—physical disks” on page 22. This allows disk
devices to be named for enclosures rather than for the controllers through
which they are accessed. In a Storage Area Network (SAN) that uses Fibre
Channel hubs or fabric switches, information about disk location provided by
the operating system may not correctly indicate the physical location of the
disks. For example, c#t#d#s# naming assigns controller-based device names to
disks in separate enclosures that are connected to the same host controller.
Enclosure-based naming allows VxVM to access enclosures as separate physical
entities. By configuring redundant copies of your data on separate enclosures,
you can safeguard against failure of one or more enclosures.

In a typical SAN environment, host controllers are connected to multiple
enclosures in a daisy chain or through a Fibre Channel hub or fabric switch as
illustrated in Figure 1-4.

Figure 1-4 Example configuration for disk enclosures connected via a fibre
channel hub or switch

‘ ‘

e | Host

Fibre Channel hub
|EpEEEEEE| o switch

DUD D] DDD] DDD] Disk enclosures

encO encl enc2

In such a configuration, enclosure-based naming can be used to refer to each
disk within an enclosure. For example, the device names for the disks in

25

26

Understanding Veritas Volume Manager
How VxVM handles storage management

enclosure enc0 are named enc0_0, enc0_1, and so on. The main benefit of this
scheme is that it allows you to quickly determine where a disk is physically
located in a large SAN configuration.

Note: In many advanced disk arrays, you can use hardware-based storage
management to represent several physical disks as one logical disk device to the
operating system. In such cases, VxVM also sees a single logical disk device
rather than its component disks. For this reason, when reference is made to a
disk within an enclosure, this disk may be either a physical or a logical device.

Another important benefit of enclosure-based naming is that it enables VxVM to
avoid placing redundant copies of data in the same enclosure. This is a good
thing to avoid as each enclosure can be considered to be a separate fault domain.
For example, if a mirrored volume were configured only on the disks in
enclosure encl, the failure of the cable between the hub and the enclosure
would make the entire volume unavailable.

If required, you can replace the default name that VxVM assigns to an enclosure
with one that is more meaningful to your configuration. See “Renaming an
enclosure” on page 166 for details.

In High Availability (HA) configurations, redundant-loop access to storage can
be implemented by connecting independent controllers on the host to separate
hubs with independent paths to the enclosures as shown in Figure 1-5. Such a
configuration protects against the failure of one of the host controllers (c1 and
c2), or of the cable between the host and one of the hubs. In this example, each
disk is known by the same name to VxVM for all of the paths over which it can be
accessed. For example, the disk device enc0_0 represents a single disk for
which two different paths are known to the operating system, such as c1t99d0
and c2t994d0.

To take account of fault domains when configuring data redundancy, you can
control how mirrored volumes are laid out across enclosures as described in
“Mirroring across targets, controllers or enclosures” on page 265.

Understanding Veritas Volume Manager | 27
How VxVM handles storage management

Figure 1-5 Example HA configuration using multiple hubs or switches to
provide redundant loop access

‘ ‘

cl [lc2 | Host

i Fibre Channel
|IFIHIIII| | FQIIIII| hubs or switches

N
0

encO encl enc2

See “Disk device naming in VxVM” on page 82 and “Changing the disk-naming
scheme” on page 95 for details of the standard and the enclosure-based naming
schemes, and how to switch between them.

Virtual objects
Virtual objects in VxVM include the following:

m Disk groups

m VMdisks
m Subdisks
m Plexes

m Volumes

The connection between physical objects and VxVM objects is made when you
place a physical disk under VxVM control.

After installing VXVM on a host system, you must bring the contents of physical
disks under VxVM control by collecting the VM disks into disk groups and
allocating the disk group space to create logical volumes.

Bringing the contents of physical disks under VxVM control is accomplished

only if VXVM takes control of the physical disks and the disk is not under control
of another storage manager such as Sun Microsystems Solaris Volume Manager

28

Understanding Veritas Volume Manager
How VxVM handles storage management

software. For information on how to convert Solaris Volume Manager disks to
VM disks, see “Migrating from Solaris Volume Manager to VXVM” on page 529.

VxVM creates virtual objects and makes logical connections between the objects.
The virtual objects are then used by VxVM to do storage management tasks.

Note: The vxprint command displays detailed information on existing VxVM
objects. For additional information on the vxprint command, see “Displaying
volume information” on page 274 and the vxprint(1M) manual page.

Combining virtual objects in VxVM

VxVM virtual objects are combined to build volumes. The virtual objects
contained in volumes are VM disks, disk groups, subdisks, and plexes. Veritas
Volume Manager objects are organized as follows:

m VM disks are grouped into disk groups

m Subdisks (each representing a specific region of a disk) are combined to form
plexes

m Volumes are composed of one or more plexes

Figure 1-6 shows the connections between Veritas Volume Manager virtual
objects and how they relate to physical disks. The disk group contains three VM
disks which are used to create two volumes. Volume vo101 is simple and has a
single plex. Volume vo102 is a mirrored volume with two plexes.

Understanding Veritas Volume Manager | 29
How VxVM handles storage management

Figure 1-6 Connection between objects in VxVM
vol01 vol02
Volumes
vol01-01 vol02-01 vol02-02
vol01-01 vol02-01 vol02-02

disk01-01 | disk02-01 ||| | disk03-01 | Plexes

[[disko1-01 [disko2-01 | | disk3-01 | Subdisks

disk01-01 disk02-01 | | disk03-01 VM disks

disk01 disk02 disk03

Disk group

W ‘ devname2 H devname3 Physical disks

The various types of virtual objects (disk groups, VM disks, subdisks, plexes and
volumes) are described in the following sections. Other types of objects exist in
Veritas Volume Manager, such as data change objects (DCOs), and cache objects,
to provide extended functionality. These objects are discussed later in this
chapter.

Disk groups
A disk group is a collection of disks that share a common configuration, and

which are managed by VxVM (see “VM disks” on page 30). A disk group
configuration is a set of records with detailed information about related VxVM

30

Understanding Veritas Volume Manager
How VxVM handles storage management

objects, their attributes, and their connections. A disk group name can be up to
31 characters long.

In releases prior to VXVM 4.0, the default disk group was rootdg (the root disk
group). For VxVM to function, the rootdg disk group had to exist and it had to
contain at least one disk. This requirement no longer exists, and VxVM can work
without any disk groups configured (although you must set up at least one disk
group before you can create any volumes of otherVxVM objects). For more
information about changes to disk group configuration, see “Creating and
administering disk groups” on page 175.

You can create additional disk groups when you need them. Disk groups allow
you to group disks into logical collections. A disk group and its components can
be moved as a unit from one host machine to another. The ability to move whole
volumes and disks between disk groups, to split whole volumes and disks
between disk groups, and to join disk groups is described in “Reorganizing the
contents of disk groups” on page 205.

Volumes are created within a disk group. A given volume and its plexes and
subdisks must be configured from disks in the same disk group.

VM disks

When you place a physical disk under VxVM control, a VM disk is assigned to
the physical disk. A VM disk is under VxVM control and is usually in a disk
group. Each VM disk corresponds to at least one physical disk or disk partition.
VxVM allocates storage from a contiguous area of VxVM disk space.

A VM disk typically includes a public region (allocated storage) and a small
private region where VxVM internal configuration information is stored.

Each VM disk has a unique disk media name (a virtual disk name). You can either
define a disk name of up to 31 characters, or allow VXVM to assign a default
name that takes the form diskgroup##, where diskgroup is the name of the
disk group to which the disk belongs (see “Disk groups” on page 29).

Figure 1-7 shows a VM disk with a media name of disk01 that is assigned to the
physical disk devname.

Understanding Veritas Volume Manager | 31
How VxVM handles storage management

Figure 1-7 VM disk example
disk01 VM disk
devname Physical disk
Subdisks

A subdisk is a set of contiguous disk blocks. A block is a unit of space on the disk.
VxVM allocates disk space using subdisks. A VM disk can be divided into one or
more subdisks. Each subdisk represents a specific portion of a VM disk, which is
mapped to a specific region of a physical disk.

The default name for a VM disk is diskgroup## and the default name for a
subdisk is di skgroup##-##, where diskgroup is the name of the disk group to
which the disk belongs (see “Disk groups” on page 29).

In Figure 1-8,disk01-01 is the name of the first subdisk on the VM disk named
diskO1.

Figure 1-8 Subdisk example

| disk01-01| Subdisk

disk01-01 VM disk with one subdisk

diskO1

A VM disk can contain multiple subdisks, but subdisks cannot overlap or share
the same portions of a VM disk. Figure 1-9 shows a VM disk with three subdisks.
(The VM disk is assigned to one physical disk.)

32

Understanding Veritas Volume Manager
How VxVM handles storage management

Figure 1-9 Example of three subdisks assigned to one VM Disk
disk01-01 disk01-02 disk01-03 Subdisks
disk01-01
disk01-02 VM disk with three subdisks
disk01-03
diskO1

Any VM disk space that is not part of a subdisk is free space. You can use free
space to create new subdisks.

VxVM release 3.0 or higher supports the concept of layered volumes in which
subdisks can contain volumes. For more information, see “Layered volumes” on
page 53.

Plexes

VxVM uses subdisks to build virtual objects called plexes. A plex consists of one
or more subdisks located on one or more physical disks. For example, see the
plex vol101-01 shown in Figure 1-10.

Figure 1-10 Example of a plex with two subdisks
| disk01-01 | disk01-02 | Plex with two subdisks
vol01-01

[disko1-01 | | disk01-02 | Subdisks

Understanding Veritas Volume Manager | 33
How VxVM handles storage management

You can organize data on subdisks to form a plex by using the following
methods:

m concatenation

m striping (RAID-0)

m mirroring (RAID-1)

m striping with parity (RAID-5)

Concatenation, striping (RAID-0), mirroring (RAID-1) and RAID-5 are described
in “Volume layouts in VxVM” on page 36.

Volumes

A volume is a virtual disk device that appears to applications, databases, and file
systems like a physical disk device, but does not have the physical limitations of
a physical disk device. A volume consists of one or more plexes, each holding a
copy of the selected data in the volume. Due to its virtual nature, a volume is not
restricted to a particular disk or a specific area of a disk. The configuration of a
volume can be changed by using VxVM user interfaces. Configuration changes
can be accomplished without causing disruption to applications or file systems
that are using the volume. For example, a volume can be mirrored on separate
disks or moved to use different disk storage.

Note: VXVM uses the default naming conventions of vol## for volumes and
vol##-## for plexes in a volume. For ease of administration, you can choose to
select more meaningful names for the volumes that you create.

A volume may be created under the following constraints:
m Its name can contain up to 31 characters.

m It can consist of up to 32 plexes, each of which contains one or more
subdisks.

m It must have at least one associated plex that has a complete copy of the
data in the volume with at least one associated subdisk.

m All subdisks within a volume must belong to the same disk group.

34 | Understanding Veritas Volume Manager
How VxVM handles storage management

Note: You can use the Veritas Intelligent Storage Provisioning (ISP) feature to
create and administer application volumes. These volumes are very similar to
the traditional VxVM volumes that are described in this chapter. However, there
are significant differences between the functionality of the two types of volume
that prevent them from being used interchangeably. Refer to the Veritas Storage
Foundation Intelligent Storage Provisioning Administrator’s Guide for more
information about creating and administering ISP application volumes.

In Figure 1-11, volume vo101 has the following characteristics:
m It contains one plex named vo101-01.
m The plex contains one subdisk named disk01-01.

m The subdisk disk01-01 is allocated from VM disk disk01.

Figure 1-11 Example of a volume with one plex
volO1
Volume with one plex
vol01-01
disk01-01

Plex with one subdisk
vol01-01

Understanding Veritas Volume Manager | 35
How VxVM handles storage management

In Figure 1-12 a volume, vo106, with two data plexes is mirrored. Each plex of
the mirror contains a complete copy of the volume data.

Figure 1-12 Example of a volume with two plexes

vol06

v0l06-01

vol06-02

|disk01-01|| [[disk02-01

vol06-01

vol06-02

Volume with two plexes

Plexes

Volume vo106 has the following characteristics:

m [t contains two plexes named vo106-01 and vol06-02.

m Each plex contains one subdisk.

m Each subdisk is allocated from a different VM disk (disk01 and disk02).
For more information, see “Mirroring (RAID-1)” on page 44.

36

Understanding Veritas Volume Manager

Volume layouts in VXVM

Volume layouts in VxXVM

A VXVM virtual device is defined by a volume. A volume has a layout defined by
the association of a volume to one or more plexes, each of which map to
subdisks. The volume presents a virtual device interface that is exposed to other
applications for data access. These logical building blocks re-map the volume
address space through which I/0 is re-directed at run-time.

Different volume layouts each provide different levels of storage service. A
volume layout can be configured and reconfigured to match particular levels of
desired storage service.

Implementation of non-layered volumes

In a non-layered volume, a subdisk is restricted to mapping directly to a VM disk.
This allows the subdisk to define a contiguous extent of storage space backed by
the public region of a VM disk. When active, the VM disk is directly associated
with an underlying physical disk. The combination of a volume layout and the
physical disks therefore determines the storage service available from a given
virtual device.

Implementation of layered volumes

A layered volume is constructed by mapping its subdisks to underlying volumes.
The subdisks in the underlying volumes must map to VM disks, and hence to
attached physical storage.

Layered volumes allow for more combinations of logical compositions, some of
which may be desirable for configuring a virtual device. Because permitting free
use of layered volumes throughout the command level would have resulted in
unwieldy administration, some ready-made layered volume configurations are
designed into VxVM.

See “Layered volumes” on page 53.

These ready-made configurations operate with built-in rules to automatically
match desired levels of service within specified constraints. The automatic
configuration is done on a “best-effort” basis for the current command
invocation working against the current configuration.

To achieve the desired storage service from a set of virtual devices, it may be
necessary to include an appropriate set of VM disks into a disk group, and to
execute multiple configuration commands.

To the extent that it can, VXVM handles initial configuration and on-line re-
configuration with its set of layouts and administration interface to make this
job easier and more deterministic.

Understanding Veritas Volume Manager | 37
Volume layouts in VXVM

Layout methods

Data in virtual objects is organized to create volumes by using the following
layout methods:

m Concatenation and spanning

m Striping (RAID-0)

m Mirroring (RAID-1)

m Striping plus mirroring (mirrored-stripe or RAID-0+1)

m Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)
m RAID-5 (striping with parity)

The following sections describe each layout method.

Concatenation and spanning

Concatenation maps data in a linear manner onto one or more subdisks in a plex.
To access all of the data in a concatenated plex sequentially, data is first
accessed in the first subdisk from beginning to end. Data is then accessed in the
remaining subdisks sequentially from beginning to end, until the end of the last
subdisk.

The subdisks in a concatenated plex do not have to be physically contiguous and
can belong to more than one VM disk. Concatenation using subdisks that reside
on more than one VM disk is called spanning.

Figure 1-13 shows the concatenation of two subdisks from the same VM disk.
The blocks n, n+1, n+2 and n+3 (numbered relative to the start of the plex) are
contiguous on the plex, but actually come from two distinct subdisks on the
same physical disk.

The remaining free space in the subdisk, disk01-02, on VM disk, disk01, can
be put to other uses.

38 | Understanding Veritas Volume Manager
Volume layouts in VXVM

Figure 1-13 Example of concatenation

Data in Data in
disk01-01 disk01-03

-~

’ n | |n+1| |n+2| |n+3 ‘ Data blocks
- - Plex with
|d'3k01'01 |d'3k01'03‘ concatenated subdisks

|disk01-01| |disk01-03| Subdisks
\disko1-o1| |disko1-02\ ‘disk01-03‘ VM disk
diskO1

Physical disk

You can use concatenation with multiple subdisks when there is insufficient
contiguous space for the plex on any one disk. This form of concatenation can be
used for load balancing between disks, and for head movement optimization on
a particular disk.

Figure 1-14 shows data spread over two subdisks in a spanned plex. The blocks
n,n+1,n+2 and n+3 (numbered relative to the start of the plex) are contiguous
on the plex, but actually come from two distinct subdisks from two distinct
physical disks.

The remaining free space in the subdisk disk02-02 on VM disk disk02 can be
put to other uses.

Figure 1-14

Example of spanning

Data in

disk01-01

~ =

Data in
disk02-01

Understanding Veritas Volume Manager
Volume layouts in VXVM

n

n+1

n+2

‘ n | [n+1] [n+2| |n+3 ‘ Data blocks
- - Plex with
‘dlsk01-01 |d'3k02'01 ‘ concatenated subdisks
|disk01-01 | |disk02-01 Subdisks
|disk01-01 \ \diskoz-m \ |disk02-02‘ VM disks
disk01 disk02
devnamel devnameZ2

n+3

Physical disks

Caution: Spanning a plex across multiple disks increases the chance that a disk
failure results in failure of the assigned volume. Use mirroring or RAID-5 (both
described later) to reduce the risk that a single disk failure results in a volume

failure.

See “Creating a volume on any disk” on page 253 for information on how to
create a concatenated volume that may span several disks.

Striping (RAID-0)

Striping (RAID-0) is useful if you need large amounts of data written to or read
from physical disks, and performance is important. Striping is also helpful in

39

40

Understanding Veritas Volume Manager

Volume layouts in VXVM

balancing the I/0 load from multi-user applications across multiple disks. By
using parallel data transfer to and from multiple disks, striping significantly
improves data-access performance.

Striping maps data so that the data is interleaved among two or more physical
disks. A striped plex contains two or more subdisks, spread out over two or more
physical disks. Data is allocated alternately and evenly to the subdisks of a
striped plex.

The subdisks are grouped into “columns,” with each physical disk limited to one
column. Each column contains one or more subdisks and can be derived from
one or more physical disks. The number and sizes of subdisks per column can
vary. Additional subdisks can be added to columns, as necessary.

Caution: Striping a volume, or splitting a volume across multiple disks, increases
the chance that a disk failure will result in failure of that volume.

If five volumes are striped across the same five disks, then failure of any one of
the five disks will require that all five volumes be restored from a backup. If each
volume is on a separate disk, only one volume has to be restored. (As an
alternative to striping, use mirroring or RAID-5 to substantially reduce the
chance that a single disk failure results in failure of a large number of volumes.)

Data is allocated in equal-sized units (stripe units) that are interleaved between
the columns. Each stripe unit is a set of contiguous blocks on a disk. The default
stripe unit size (or width) is 64 kilobytes.

For example, if there are three columns in a striped plex and six stripe units,
data is striped over the three columns, as illustrated in Figure 1-15.

Understanding Veritas Volume Manager | 41
Volume layouts in VXVM

Figure 1-15 Striping across three columns
Column Column Column
0 1 2
Stripe 1 ——| sut su2 su3
Stripe 2 ——| su4 sub5 su6

1

Subdisk Subdisk Subdisk
2 3

Plex

SU = stripe unit

A stripe consists of the set of stripe units at the same positions across all
columns. In the figure, stripe units 1, 2, and 3 constitute a single stripe.

Viewed in sequence, the first stripe consists of:

m stripe unit 1in column O
m stripe unit 2 in column 1

m stripe unit 3 in column 2

The second stripe consists of:

m stripe unit 4 in column 0
m stripe unit 5 in column 1

m stripe unit 6 in column 2

Striping continues for the length of the columns (if all columns are the same
length), or until the end of the shortest column is reached. Any space remaining
at the end of subdisks in longer columns becomes unused space.

42 | Understanding Veritas Volume Manager

Volume layouts in VXVM

Figure 1-16 shows a striped plex with three equal sized, single-subdisk columns.
There is one column per physical disk. This example shows three subdisks that
occupy all of the space on the VM disks. It is also possible for each subdisk in a
striped plex to occupy only a portion of the VM disk, which leaves free space for
other disk management tasks.

Figure 1-16 Example of a striped plex with one subdisk per column
sul su2 su3 su4 sub su6| - - - Stripe units
\ /
Column 0 Column 1 Column 2

:

disk01-01 |disk02-01 | |disk03-o1 | Striped plex

A

disk01-01 |disk02-01 | disk03-01 | Subdisks

J

disk01-01 disk02-01 disk03-01 VM disks

disk01 disk02 disk03

|

devname1 devname2 devname3

Physical disks

sul|su4| - - - su2|sus| - - - su3|su6| - ° -

Figure 1-17 illustrates a striped plex with three columns containing subdisks of
different sizes. Each column contains a different number of subdisks. There is
one column per physical disk. Striped plexes can be created by using a single
subdisk from each of the VM disks being striped across. It is also possible to
allocate space from different regions of the same disk or from another disk (for
example, if the size of the plex is increased). Columns can also contain subdisks
from different VM disks.

Understanding Veritas Volume Manager | 43
Volume layouts in VXVM

Figure 1-17 Example of a striped plex with concatenated subdisks per column
suil su2 su3 su4 sub su6| - - - Stripe units
\ /
Column 0 Column 1 Column 2
. disk03-01
. disk02-01 - Striped plex
disk01-01 disk03-02
disk02-02 disk03-03

. disk03-01
disk02-01 .
disk01-01 disk03-02 Subdisks
[disko2-02] disk03-03
_ disk03-01
_ disk02-01
disk01-01 disk03-02 VM disks
disk02-02 disk03-03

disk01 disk02 disk03

1

devnamed3

devname1l devname2

Physical disks

suljsu4| - - - su2|sus| - - -

su3|su6| - ° -

See “Creating a striped volume” on page 263 for information on how to create a
striped volume.

44 | Understanding Veritas Volume Manager

Volume layouts in VXVM

Mirroring (RAID-1)

Mirroring uses multiple mirrors (plexes) to duplicate the information contained
in a volume. In the event of a physical disk failure, the plex on the failed disk
becomes unavailable, but the system continues to operate using the unaffected
mirrors.

Note: Although a volume can have a single plex, at least two plexes are required
to provide redundancy of data. Each of these plexes must contain disk space
from different disks to achieve redundancy.

When striping or spanning across a large number of disks, failure of any one of
those disks can make the entire plex unusable. Because the likelihood of one out
of several disks failing is reasonably high, you should consider mirroring to
improve the reliability (and availability) of a striped or spanned volume.

See “Creating a mirrored volume” on page 259 for information on how to create
a mirrored volume.

Disk duplexing, in which each mirror exists on a separate controller, is also
supported. See “Mirroring across targets, controllers or enclosures” on page 265
for details.

Striping plus mirroring (mirrored-stripe or RAID-0+1)

VxXVM supports the combination of mirroring above striping. The combined
layout is called a mirrored-stripe layout. A mirrored-stripe layout offers the dual
benefits of striping to spread data across multiple disks, while mirroring
provides redundancy of data.

For mirroring above striping to be effective, the striped plex and its mirrors
must be allocated from separate disks.

Figure 1-18 shows an example where two plexes, each striped across three disks,
are attached as mirrors to the same volume to create a mirrored-stripe volume.

Understanding Veritas Volume Manager | 45
Volume layouts in VXVM

Figure 1-18 Mirrored-stripe volume laid out on six disks

}Mirror
__Strlped plex

Mirrored-stripe
volume

See “Creating a mirrored-stripe volume” on page 264 for information on how to
create a mirrored-stripe volume.

The layout type of the data plexes in a mirror can be concatenated or striped.
Even if only one is striped, the volume is still termed a mirrored-stripe volume.
If they are all concatenated, the volume is termed a mirrored-concatenated
volume.

Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)

VxXVM supports the combination of striping above mirroring. This combined
layout is called a striped-mirrorlayout. Putting mirroring below striping mirrors
each column of the stripe. If there are multiple subdisks per column, each
subdisk can be mirrored individually instead of each column.

Note: A striped-mirror volume is an example of a layered volume. See “Layered
volumes” on page 53 for more information.

As for a mirrored-stripe volume, a striped-mirror volume offers the dual
benefits of striping to spread data across multiple disks, while mirroring
provides redundancy of data. In addition, it enhances redundancy, and reduces
recovery time after disk failure.

Figure 1-19 shows an example where a striped-mirror volume is created by

using each of three existing 2-disk mirrored volumes to form a separate column
within a striped plex.

46 | Understanding Veritas Volume Manager
Volume layouts in VXVM

Figure 1-19 Striped-mirror volume laid out on six disks

Underlying mirrored volumes

I> Mirror

— Striped plex

Striped-mirror
volume

See “Creating a striped-mirror volume” on page 264 for information on how to
create a striped-mirrored volume.

As shown in Figure 1-20, the failure of a disk in a mirrored- stripe layout
detaches an entire data plex, thereby losing redundancy on the entire volume.
When the disk is replaced, the entire plex must be brought up to date.
Recovering the entire plex can take a substantial amount of time. If a disk fails
in a striped-mirror layout, only the failing subdisk must be detached, and only
that portion of the volume loses redundancy. When the disk is replaced, only a
portion of the volume needs to be recovered. Additionally, a mirrored-stripe
volume is more vulnerable to being put out of use altogether should a second
disk fail before the first failed disk has been replaced, either manually or by hot-
relocation.

Understanding Veritas Volume Manager | 47
Volume layouts in VXVM

Figure 1-20 How the failure of a single disk affects mirrored-stripe and striped-
mirror volumes

H—Striped plex

| Detached
striped plex

ull
U L

Mirrored-stripe
volume with

Failure of disk no redundancy

detaches plex

H— Striped plex

U UL

T Striped-mirror

(10

Failure of disk removes ;V,‘;'HEF with
redundancy from a mirror redundancy

Compared to mirrored-stripe volumes, striped-mirror volumes are more
tolerant of disk failure, and recovery time is shorter.

If the layered volume concatenates instead of striping the underlying mirrored
volumes, the volume is termed a concatenated-mirror volume.

RAID-5 (striping with parity)

Note: VXVM supports RAID-5 for private disk groups, but not for shareable disk
groups in a cluster environment. In addition, VxVM does not support the
mirroring of RAID-5 volumes that are configured using Veritas Volume
Manager software. Disk devices that support RAID-5 in hardware may be
mirrored.

Although both mirroring (RAID-1) and RAID-5 provide redundancy of data, they
use different methods. Mirroring provides data redundancy by maintaining

48

Understanding Veritas Volume Manager

Volume layouts in VXVM

multiple complete copies of the data in a volume. Data being written to a
mirrored volume is reflected in all copies. If a portion of a mirrored volume fails,
the system continues to use the other copies of the data.

RAID-5 provides data redundancy by using parity. Parity is a calculated value
used to reconstruct data after a failure. While data is being written to a RAID-5
volume, parity is calculated by doing an exclusive OR (XOR) procedure on the
data. The resulting parity is then written to the volume. The data and calculated
parity are contained in a plex that is “striped” across multiple disks. If a portion
of a RAID-5 volume fails, the data that was on that portion of the failed volume
can be recreated from the remaining data and parity information. It is also
possible to mix concatenation and striping in the layout.

Figure 1-21 shows parity locations in a RAID-5 array configuration. Every stripe
has a column containing a parity stripe unit and columns containing data. The
parity is spread over all of the disks in the array, reducing the write time for
large independent writes because the writes do not have to wait until a single
parity disk can accept the data.

Figure 1-21 Parity locations in a RAID-5 mode

T
e < <
' = | ata | | Data | | Ppariy
Stripe2 —
Stripe 3 —
Stripe 4

i ~_Parity

RAID-5 volumes can additionally perform logging to minimize recovery time.
RAID-5 volumes use RAID-5 logs to keep a copy of the data and parity currently
being written. RAID-5 logging is optional and can be created along with RAID-5
volumes or added later.

The implementation of RAID-5 in VxVM is described in “Veritas Volume
Manager RAID-5 arrays” on page 49.

Traditional RAID-5 arrays

A traditional RAID-5 array is several disks organized in rows and columns. A
column is a number of disks located in the same ordinal position in the array. A
row is the minimal number of disks necessary to support the full width of a
parity stripe. Figure 1-22 shows the row and column arrangement of a
traditional RAID-5 array.

Understanding Veritas Volume Manager | 49
Volume layouts in VXVM

Figure 1-22 Traditional RAID-5 array
Stripe 1
Row 0 Stripe 3
Stripe 2
Row 1
Column0 | Column1 { Column2 | Column 3

This traditional array structure supports growth by adding more rows per
column. Striping is accomplished by applying the first stripe across the disks in
Row 0, then the second stripe across the disks in Row 1, then the third stripe
across the Row 0 disks, and so on. This type of array requires all disks columns,
and rows to be of equal size.

Veritas Volume Manager RAID-5 arrays

The RAID-5 array structure in Veritas Volume Manager differs from the
traditional structure. Due to the virtual nature of its disks and other objects,
VxVM does not use rows. Instead, VXVM uses columns consisting of variable
length subdisks as shown in Figure 1-23. Each subdisk represents a specific area
of a disk.

VxVM allows each column of a RAID-5 plex to consist of a different number of
subdisks. The subdisks in a given column can be derived from different physical
disks. Additional subdisks can be added to the columns as necessary. Striping is
implemented by applying the first stripe across each subdisk at the top of each
column, then applying another stripe below that, and so on for the length of the
columns. Equal-sized stripe units are used for each column. For RAID-5, the
default stripe unit size is 16 kilobytes. See “Striping (RAID-0)” on page 39 for
further information about stripe units.

50 | Understanding Veritas Volume Manager
Volume layouts in VXVM

Figure 1-23 Veritas Volume Manager RAID-5 array
Stripe 1
Stripe 2
SD SD
SD
SD
SD SD SD SD

Column0 Column 1 Column2 Column 3

SD = subdisk

Note: Mirroring of RAID-5 volumes is not supported.

See “Creating a RAID-5 volume” on page 266 for information on how to create a
RAID-5 volume.

Left-symmetric layout

There are several layouts for data and parity that can be used in the setup of a
RAID-5 array. The implementation of RAID-5 in VxVM uses a left-symmetric
layout. This provides optimal performance for both random I/O operations and
large sequential I/O operations. However, the layout selection is not as critical
for performance as are the number of columns and the stripe unit size.

Left-symmetric layout stripes both data and parity across columns, placing the
parity in a different column for every stripe of data. The first parity stripe unit is
located in the rightmost column of the first stripe. Each successive parity stripe
unit is located in the next stripe, shifted left one column from the previous
parity stripe unit location. If there are more stripes than columns, the parity
stripe unit placement begins in the rightmost column again.

Figure 1-24 shows a left-symmetric parity layout with five disks (one per
column).

Understanding Veritas Volume Manager | 51
Volume layouts in VXVM

Figure 1-24 Left-symmetric layout
Column Parity stripe unit
-~
N\
f
ol 1 2 3 PO
|

Stripe ':

I
I
b
| 15 P3 12 13 14 (Data)
l | stripe unit
' I
l P4 | 16 17 18 19
.
1
\\ /

For each stripe, data is organized starting to the right of the parity stripe unit. In
the figure, data organization for the first stripe begins at PO and continues to
stripe units 0-3. Data organization for the second stripe begins at P1, then
continues to stripe unit 4, and on to stripe units 5-7. Data organization proceeds
in this manner for the remaining stripes.

Each parity stripe unit contains the result of an exclusive OR (XOR) operation
performed on the data in the data stripe units within the same stripe. If one
column’s data is inaccessible due to hardware or software failure, the data for
each stripe can be restored by XORing the contents of the remaining columns
data stripe units against their respective parity stripe units.

For example, if a disk corresponding to the whole or part of the far left column
fails, the volume is placed in a degraded mode. While in degraded mode, the data
from the failed column can be recreated by XORing stripe units 1-3 against
parity stripe unit PO to recreate stripe unit 0, then XORing stripe units 4, 6, and
7 against parity stripe unit P1 to recreate stripe unit 5, and so on.

52

Understanding Veritas Volume Manager

Volume layouts in VXVM

Note: Failure of more than one column in a RAID-5 plex detaches the volume.
The volume is no longer allowed to satisfy read or write requests. Once the failed
columns have been recovered, it may be necessary to recover user data from
backups.

RAID-5 logging

Logging is used to prevent corruption of data during recovery by immediately
recording changes to data and parity to a log area on a persistent device such as
a volume on disk or in non-volatile RAM. The new data and parity are then
written to the disks.

Without logging, it is possible for data not involved in any active writes to be
lost or silently corrupted if both a disk in a RAID-5 volume and the system fail. If
this double-failure occurs, there is no way of knowing if the data being written to
the data portions of the disks or the parity being written to the parity portions
have actually been written. Therefore, the recovery of the corrupted disk may be
corrupted itself.

Figure 1-25 illustrates a RAID-5 volume configured across three disks (A, B and
C). In this volume, recovery of disk B’s corrupted data depends on disk A’s data
and disk C’s parity both being complete. However, only the data write to disk A is
complete. The parity write to disk C is incomplete, which would cause the data
on disk B to be reconstructed incorrectly.

Figure 1-25 Incomplete write to a RAID-5 volume
Completed Corrupted data Incomplete
data write parity write

— —

This failure can be avoided by logging all data and parity writes before
committing them to the array. In this way, the log can be replayed, causing the
data and parity updates to be completed before the reconstruction of the failed
drive takes place.

Understanding Veritas Volume Manager | 53
Volume layouts in VXVM

Logs are associated with a RAID-5 volume by being attached as log plexes. More
than one log plex can exist for each RAID-5 volume, in which case the log areas
are mirrored.

See “Adding a RAID-5 log” on page 295 for information on how to add a RAID-5
log to a RAID-5 volume.

Layered volumes

A layered volume is a virtual Veritas Volume Manager object that is built on top
of other volumes. The layered volume structure tolerates failure better and has
greater redundancy than the standard volume structure. For example, in a
striped-mirror layered volume, each mirror (plex) covers a smaller area of
storage space, so recovery is quicker than with a standard mirrored volume.

54 | Understanding Veritas Volume Manager
Volume layouts in VXVM

Figure 1-26 Example of a striped-mirror layered volume
volO1
Striped-mirror
vol01-01 volume
]
|
vol01-01
Column 0| |Column 1
Striped plex
Managed
by User
Managed 01 02
by VxVM ¢ vop vop ;
Subdisks
vop01 vop02 Underlying
mirrored
volumes
[diskoa-01]| | [diskos-01 | | | [ciskos-01]| | [disko7-01] C°”gf‘;fgsated
[aiskoa-01] | |[aiskos-01] | | [diskos-01]| |[aiskor-01]| ~ Subdisks on

Figure 1-26 illustrates the structure of a typical layered volume. It shows
subdisks with two columns, built on underlying volumes with each volume
internally mirrored. The volume and striped plex in the “Managed by User” area
allow you to perform normal tasks in VxVM. User tasks can be performed only
on the top-level volume of a layered volume.

Underlying volumes in the “Managed by VxXVM” area are used exclusively by
VxVM and are not designed for user manipulation. You cannot detach a layered
volume or perform any other operation on the underlying volumes by
manipulating the internal structure. You can perform all necessary operations
in the “Managed by User” area that includes the top-level volume and striped

Understanding Veritas Volume Manager | 55
Volume layouts in VXVM

plex (for example, resizing the volume, changing the column width, or adding a
column).

System administrators can manipulate the layered volume structure for
troubleshooting or other operations (for example, to place data on specific
disks). Layered volumes are used by VxVM to perform the following tasks and
operations:

Creating striped-mirrors. (See “Creating a striped-mirror volume” on
page 264, and the vxassist(1M) manual page.)

Creating concatenated-mirrors. (See “Creating a concatenated-mirror
volume” on page 259, and the vxassist(1M) manual page.)

Online Relayout. (See “Online relayout” on page 56, and the
vxrelayout(1M) and vxassist(1M) manual pages.)

RAID-5 subdisk moves. (See the vxsd(1M) manual page.)

Snapshots. (See “Administering volume snapshots” on page 315, and the
vxsnap(1M) and vxassist(1M) manual pages.)

56

Understanding Veritas Volume Manager

Online relayout

Online relayout

Online relayout allows you to convert between storage layouts in VxVM, with
uninterrupted data access. Typically, you would do this to change the
redundancy or performance characteristics of a volume. VxVM adds
redundancy to storage either by duplicating the data (mirroring) or by adding
parity (RAID-5). Performance characteristics of storage in VxVM can be changed
by changing the striping parameters, which are the number of columns and the
stripe width.

See “Performing online relayout” on page 307 for details of how to perform
online relayout of volumes in VxVM. Also see “Converting between layered and
non-layered volumes” on page 313 for information about the additional volume
conversion operations that are possible.

How online relayout works

Online relayout allows you to change the storage layouts that you have already
created in place without disturbing data access. You can change the
performance characteristics of a particular layout to suit your changed
requirements. You can transform one layout to another by invoking a single
command.

For example, if a striped layout with a 128KB stripe unit size is not providing
optimal performance, you can use relayout to change the stripe unit size.

File systems mounted on the volumes do not need to be unmounted to achieve
this transformation provided that the file system (such as Veritas File System)
supports online shrink and grow operations.

Online relayout reuses the existing storage space and has space allocation
policies to address the needs of the new layout. The layout transformation
process converts a given volume to the destination layout by using minimal
temporary space that is available in the disk group.

The transformation is done by moving one portion of data at a time in the source
layout to the destination layout. Data is copied from the source volume to the
temporary area, and data is removed from the source volume storage area in
portions. The source volume storage area is then transformed to the new layout,
and the data saved in the temporary area is written back to the new layout. This
operation is repeated until all the storage and data in the source volume has
been transformed to the new layout.

The default size of the temporary area used during the relayout depends on the
size of the volume and the type of relayout. For volumes larger than 50MB, the
amount of temporary space that is required is usually 10% of the size of the
volume, from a minimum of 50MB up to a maximum of 1GB. For volumes

Understanding Veritas Volume Manager
Online relayout

smaller than 50MB, the temporary space required is the same as the size of the
volume.

The following error message displays the number of blocks required if there is

insufficient free space available in the disk group for the temporary area:
tmpsize too small to perform this relayout (nblks minimum
required)

You can override the default size used for the temporary area by using the

tmpsize attribute to vxassist. See the vxassist(1M) manual page for more

information.

As well as the temporary area, space is required for a temporary intermediate
volume when increasing the column length of a striped volume. The amount of
space required is the difference between the column lengths of the target and
source volumes. For example, 20GB of temporary additional space is required to
relayout a 150GB striped volume with 5 columns of length 30GB as 3 columns of
length 50GB. In some cases, the amount of temporary space that is required is
relatively large. For example, a relayout of a 150GB striped volume with 5
columns as a concatenated volume (with effectively one column) requires 120GB
of space for the intermediate volume.

Additional permanent disk space may be required for the destination volumes,
depending on the type of relayout that you are performing. This may happen,
for example, if you change the number of columns in a striped volume. Figure 1-
27 shows how decreasing the number of columns can require disks to be added
to a volume. The size of the volume remains the same but an extra disk is needed
to extend one of the columns.

Figure 1-27 Example of decreasing the number of columns in a volume

sssss -S55
Five columns of length L Three columns of length 5L/3

The following are examples of operations that you can perform using online
relayout:

m Change a RAID-5 volume to a concatenated, striped, or layered volume
(remove parity). See Figure 1-28 for an example. Note that removing parity
(shown by the shaded area) decreases the overall storage space that the
volume requires.

57

58 | Understanding Veritas Volume Manager
Online relayout

Figure 1-28 Example of relayout of a RAID-5 volume to a striped volume

JEE 000

RAID-5 volume Striped volume

m Change a volume to a RAID-5 volume (add parity). See Figure 1-29 for an
example. Note that adding parity (shown by the shaded area) increases the
overall storage space that the volume requires.

Figure 1-29 Example of relayout of a concatenated volume to a RAID-5 volume
Concatenated)
RAID-5 volume

m Change the number of columns in a volume. See Figure 1-30 for an example.
Note that the length of the columns is reduced to conserve the size of the

volume.
Figure 1-30 Example of increasing the number of columns in a volume
Two columns Three columns

m Change the column stripe width in a volume. See Figure 1-31 for an
example.

Figure 1-31 Example of increasing the stripe width for the columns in a volume

™ — B

Understanding Veritas Volume Manager | 59
Online relayout

For details of how to perform online relayout operations, see “Performing online
relayout” on page 307. For information about the relayout transformations that
are possible, see “Permitted relayout transformations” on page 308.

Limitations of online relayout

Note the following limitations of online relayout:

Log plexes cannot be transformed.

Volume snapshots cannot be taken when there is an online relayout
operation running on the volume.

Online relayout cannot create a non-layered mirrored volume in a single
step. It always creates a layered mirrored volume even if you specify a non-
layered mirrored layout, such asmirror-stripe ormirror-concat. Use
the vxassist convert command to turn the layered mirrored volume that
results from a relayout into a non-layered volume. See “Converting between
layered and non-layered volumes” on page 313 for more information.

Online relayout can be used only with volumes that have been created using
the vxassist command or the Veritas Enterprise Administrator (VEA).

The usual restrictions apply for the minimum number of physical disks that
are required to create the destination layout. For example, mirrored volumes
require at least as many disks as mirrors, striped and RAID-5 volumes
require at least as many disks as columns, and striped-mirror volumes
require at least as many disks as columns multiplied by mirrors.

To be eligible for layout transformation, the plexes in a mirrored volume
must have identical stripe widths and numbers of columns. Relayout is not
possible unless you make the layouts of the individual plexes identical.

Online relayout involving RAID-5 volumes is not supported for shareable
disk groups in a cluster environment.

Online relayout cannot transform sparse plexes, nor can it make any plex
sparse. (A sparse plex is not the same size as the volume, or has regions that
are not mapped to any subdisk.)

The number of mirrors in a mirrored volume cannot be changed using
relayout.

Only one relayout may be applied to a volume at a time.

Transformation characteristics

Transformation of data from one layout to another involves rearrangement of
data in the existing layout to the new layout. During the transformation, online

60

Understanding Veritas Volume Manager

Online relayout

relayout retains data redundancy by mirroring any temporary space used. Read
and write access to data is not interrupted during the transformation.

Data is not corrupted if the system fails during a transformation. The
transformation continues after the system is restored and both read and write
access are maintained.

You can reverse the layout transformation process at any time, but the data may
not be returned to the exact previous storage location. Any existing
transformation in the volume must be stopped before doing a reversal.

You can determine the transformation direction by using the vxrelayout
status volume command.

These transformations are protected against I/O failures if there is sufficient
redundancy and space to move the data.

Transformations and volume length

Some layout transformations can cause the volume length to increase or
decrease. If either of these conditions occurs, online relayout uses the
vxresize (1M) command to shrink or grow a file system as described in
“Resizing a volume” on page 296.

Understanding Veritas Volume Manager
Volume resynchronization

Volume resynchronization

Dirty flags

When storing data redundantly and using mirrored or RAID-5 volumes, VXVM
ensures that all copies of the data match exactly. However, under certain
conditions (usually due to complete system failures), some redundant data on a
volume can become inconsistent or unsynchronized. The mirrored data is not
exactly the same as the original data. Except for normal configuration changes
(such as detaching and reattaching a plex), this can only occur when a system
crashes while data is being written to a volume.

Data is written to the mirrors of a volume in parallel, as is the data and parity in
a RAID-5 volume. If a system crash occurs before all the individual writes
complete, it is possible for some writes to complete while others do not. This can
result in the data becoming unsynchronized. For mirrored volumes, it can cause
two reads from the same region of the volume to return different results, if
different mirrors are used to satisfy the read request. In the case of RAID-5
volumes, it can lead to parity corruption and incorrect data reconstruction.

VxVM needs to ensure that all mirrors contain exactly the same data and that
the data and parity in RAID-5 volumes agree. This process is called volume
resynchronization. For volumes that are part of the disk group that is
automatically imported at boot time (usually aliased as the reserved system-
wide disk group, bootdg), the resynchronization process takes place when the
system reboots.

Not all volumes require resynchronization after a system failure. Volumes that
were never written or that were quiescent (that is, had no active I/O) when the
system failure occurred could not have had outstanding writes and do not
require resynchronization.

VxVM records when a volume is first written to and marks it as dirty. When a
volume is closed by all processes or stopped cleanly by the administrator, and all
writes have been completed, VxVM removes the dirty flag for the volume. Only
volumes that are marked dirty when the system reboots require
resynchronization.

Resynchronization process

The process of resynchronization depends on the type of volume. RAID-5
volumes that contain RAID-5 logs can “replay” those logs. If no logs are
available, the volume is placed in reconstruct-recovery mode and all parity is
regenerated. For mirrored volumes, resynchronization is done by placing the
volume in recovery mode (also called read-writeback recovery mode).

61

62

Understanding Veritas Volume Manager

Dirty region logging

Resynchronization of data in the volume is done in the background. This allows
the volume to be available for use while recovery is taking place.

The process of resynchronization can impact system performance. The recovery
process reduces some of this impact by spreading the recoveries to avoid
stressing a specific disk or controller.

For large volumes or for a large number of volumes, the resynchronization
process can take time. These effects can be addressed by using dirty region
logging (DRL) and FastResync (fast mirror resynchronization) for mirrored
volumes, or by ensuring that RAID-5 volumes have valid RAID-5 logs. See the
sections “Dirty region logging” on page 62 and “FastResync” on page 68 for
more information.

For raw volumes used by database applications, the SmartSync feature can be
used if this is supported by the database vendor (see “SmartSync recovery
accelerator” on page 63).

Dirty region logging

Note: If a version 20 DCO volume is associated with a volume, a portion of the
DCO volume can be used to store the DRL log. There is no need to create a
separate DRL log for a volume which has a version 20 DCO volume. For more
information, see “DCO volume versioning” on page 70.

Dirty region logging (DRL), if enabled, speeds recovery of mirrored volumes
after a system crash. DRL keeps track of the regions that have changed due to I/
O writes to a mirrored volume. DRL uses this information to recover only those
portions of the volume that need to be recovered.

If DRL is not used and a system failure occurs, all mirrors of the volumes must
be restored to a consistent state. Restoration is done by copying the full contents
of the volume between its mirrors. This process can be lengthy and I/0
intensive. It may also be necessary to recover the areas of volumes that are
already consistent.

Dirty region logs

DRL logically divides a volume into a set of consecutive regions, and maintains a
log on disk where each region is represented by a status bit. This log records
regions of a volume for which writes are pending. Before data is written to a
region, DRL synchronously marks the corresponding status bit in the log as
dirty. To enhance performance, the log bit remains set to dirty until the region
becomes the least recently accessed for writes. This allows writes to the same
region to be written immediately to disk if the region’s log bit is set to dirty.

Understanding Veritas Volume Manager | 63
Dirty region logging

On restarting a system after a crash, VxVM recovers only those regions of the
volume that are marked as dirty in the dirty region log.

Log subdisks and plexes

DRL log subdisks store the dirty region log of a mirrored volume that has DRL
enabled. A volume with DRL has at least one log subdisk; multiple log subdisks
can be used to mirror the dirty region log. Each log subdisk is associated with
one plex of the volume. Only one log subdisk can exist per plex. If the plex
contains only a log subdisk and no data subdisks, that plex is referred to as a log
plex.

The log subdisk can also be associated with a regular plex that contains data
subdisks. In that case, the log subdisk risks becoming unavailable if the plex
must be detached due to the failure of one of its data subdisks.

If the vxassist command is used to create a dirty region log, it creates a log plex
containing a single log subdisk by default. A dirty region log can also be set up
manually by creating a log subdisk and associating it with a plex. The plex then
contains both a log and data subdisks.

Sequential DRL

Some volumes, such as those that are used for database replay logs, are written
sequentially and do not benefit from delayed cleaning of the DRL bits. For these
volumes, sequential DRL can be used to limit the number of dirty regions. This
allows for faster recovery should a crash occur. However, if applied to volumes
that are written to randomly, sequential DRL can be a performance bottleneck
as it limits the number of parallel writes that can be carried out.

The maximum number of dirty regions allowed for sequential DRL is controlled
by a tunable as detailed in the description of voldrl_max_seg _dirtyin
“Tunable parameters” on page 483.

Note: DRL adds a small I/O overhead for most write access patterns.

For details of how to configure DRL and sequential DRL, see “Adding traditional
DRL logging to a mirrored volume” on page 293, and “Preparing a volume for
DRL and instant snapshots” on page 286.

SmartSync recovery accelerator

The SmartSync feature of Veritas Volume Manager increases the availability of
mirrored volumes by only resynchronizing changed data. (The process of
resynchronizing mirrored databases is also sometimes referred to as

64 | Understanding Veritas Volume Manager

Dirty region logging

resilvering.) SmartSync reduces the time required to restore consistency, freeing
more I/0 bandwidth for business-critical applications. If supported by the
database vendor, the SmartSync feature uses an extended interface between
VxVM volumes and the database software to avoid unnecessary work during
mirror resynchronization. For example, Oracle” automatically takes advantage
of SmartSync to perform database resynchronization when it is available.

Note: The SmartSync feature of Veritas Volume Manager is only applicable to
databases that are configured on raw volumes. You cannot use it with volumes
that contain file systems. Use an alternative solution such as the Oracle
Resilvering feature of Veritas File System (VXFS).

You must configure volumes correctly to use SmartSync. For VXVM, there are
two types of volumes used by the database, as follows:

m Data volumes are all other volumes used by the database (control files and
tablespace files).

m Redo log volumes contain redo logs of the database.

SmartSync works with these two types of volumes differently, so they must be
configured as described in the following sections.

To enable the use of SmartSync with database volumes in shared disk groups,
set the value of the volcvm_smartsync tunable to 1. For a description of
volcvm_smartsync, see “Tunable parameters” on page 483.

Data volume configuration

The recovery takes place when the database software is started, not at system
startup. This reduces the overall impact of recovery when the system reboots.
Because the recovery is controlled by the database, the recovery time for the
volume is the resilvering time for the database (that is, the time required to
replay the redo logs).

Because the database keeps its own logs, it is not necessary for VxVM to do
logging. Data volumes should be configured as mirrored volumes without dirty
region logs. In addition to improving recovery time, this avoids any run-time I/0
overhead due to DRL, and improves normal database write access.

Redo log volume configuration

A redo logis alog of changes to the database data. Because the database does not
maintain changes to the redo logs, it cannot provide information about which
sections require resilvering. Redo logs are also written sequentially, and since
traditional dirty region logs are most useful with randomly-written data, they
are of minimal use for reducing recovery time for redo logs. However, VxVM can

Understanding Veritas Volume Manager | 65
Volume snapshots

reduce the number of dirty regions by modifying the behavior of its dirty region
logging feature to take advantage of sequential access patterns. Sequential DRL
decreases the amount of data needing recovery and reduces recovery time
impact on the system.

The enhanced interfaces for redo logs allow the database software to inform
VxVM when a volume is to be used as a redo log. This allows VxVM to modify the
DRL behavior of the volume to take advantage of the access patterns. Since the
improved recovery time depends on dirty region logs, redo log volumes should
be configured as mirrored volumes with sequential DRL.

For additional information, see “Sequential DRL” on page 63.

Volume snapshots

Veritas Volume Manager provides the capability for taking an image of a volume
at a given point in time. Such an image is referred to as a volume snapshot. Such
snapshots should not be confused with file system snapshots, which are point-
in-time images of a Veritas File System.

Figure 1-32 illustrates how a snapshot volume represents a copy of an original
volume at a given point in time. Even though the contents of the original volume
can change, the snapshot volume can be used to preserve the contents of the
original volume as they existed at an earlier time.

The snapshot volume provides a stable and independent base for making
backups of the contents of the original volume, or for other applications such as
decision support. In the figure, the contents of the snapshot volume are
eventually resynchronized with the original volume at a later point in time.

Another possibility is to use the snapshot volume to restore the contents of the
original volume. This may be useful if the contents of the original volume have
become corrupted in some way.

Note: If you choose to write to the snapshot volume, it may no longer be suitable
for use in restoring the contents of the original volume.

66 | Understanding Veritas Volume Manager
Volume snapshots

Figure 1-32 Volume snapshot as a point-in-time image of a volume
Original
i volume
Original Snapshot Snapshot volume is
T2 volume volume created at time T2

Oriai Snapshot volume retains
T3 riginal Snapshot image taken at time T2
volume volume

Snapshot volume is

Snapshot _
™ volume updated at time T4
Time Resynchronize

snapshot volume
from original volume

The traditional type of volume snapshot in VxVM is of the third-mirror break-off
type. This name comes from its implementation where a snapshot plex (or third
mirror) is added to a mirrored volume. The contents of the snapshot plex are
then synchronized from the original plexes of the volume. When this
synchronization is complete, the snapshot plex can be detached as a snapshot
volume for use in backup or decision support applications. At a later time, the
snapshot plex can be reattached to the original volume, requiring a full
resynchronization of the snapshot plex’s contents. For more information about
this type of snapshot, see “Traditional third-mirror break-off snapshots” on
page 317.

The FastResync feature was introduced to track writes to the original volume.
This tracking means that only a partial, and therefore much faster,
resynchronization is required on reattaching the snapshot plex. In later
releases, the snapshot model was enhanced to allow snapshot volumes to
contain more than a single plex, reattachment of a subset of a snapshot
volume’s plexes, and persistence of FastResync across system reboots or cluster
restarts.

For more information about FastResync, see “FastResync” on page 68.

Release 4.0 of VxVM introduced full-sized instant snapshots and space-
optimized instant snapshots, which offer advantages over traditional third-

Understanding Veritas Volume Manager | 67
Volume snapshots

mirror snapshots such as immediate availability and easier configuration and
administration. You can also use the third-mirror break-off usage model with
full-sized snapshots, where this is necessary for write-intensive applications.

For more information, see the following sections:
“Full-sized instant snapshots” on page 319.
“Space-optimized instant snapshots” on page 321.

“Emulation of third-mirror break-off snapshots” on page 322.

“Linked break-off snapshot volumes” on page 323.

“Comparison of snapshot features” on page 67 compares the features that are
supported by the different types of snapshot.

For more information about taking snapshots of a volume, see “Administering
volume snapshots” on page 315, and the vxsnap(1M) and vxassist(1M) manual

pages.

Comparison of snapshot features

The table, “Comparison of snapshot features for supported snapshot types” on
page 67, compares the features of the various types of snapshots that are
supported in VxVM.

Full-sized instant snapshots are easier to configure and offer more flexibility of
use than do traditional third-mirror break-off snapshots. For preference, new
volumes should be configured to use snapshots that have been created using the
vxsnap command rather than using the vxassist command. Legacy volumes
can also be reconfigured to use vxsnap snapshots, but this requires rewriting of
administration scripts that assume the vxassist snapshot model.

If storage space is at a premium, space-optimized instant snapshots can be
configured with some reduction of supported functionality. For example, space-
optimized snapshots cannot be turned into independent volumes, nor can they
be moved into a separate disk group for off-host processing.

Table 1-1 Comparison of snapshot features for supported snapshot types
Snapshot feature Full-sized Space- Break-off
instant (vxsnap) optimized (vxassist or

instant (vxsnap) vxsnap)

Immediately available for Yes Yes No
use on creation

Requires less storage No Yes No
space than original
volume

68

Understanding Veritas Vo
FastResync

lume Manager

Table 1-1 Comparison of snapshot features for supported snapshot types
Snapshot feature Full-sized Space- Break-off
instant (vxsnap) optimized (vxassist or

instant (vxsnap) vxsnap)

Can be reattached to Yes No Yes
original volume

Can be used to restore Yes Yes Yes
contents of original

volume

Can quickly be refreshed Yes Yes No
without being reattached

Snapshot hierarchy can Yes No No
be split

Can be moved into Yes No Yes

separate disk group from
original volume

Can be turned into an Yes No Yes
independent volume

FastResync

FastResync ability Yes Yes Yes
persists across system

reboots or cluster

restarts

Synchronization can be Yes No No
controlled

Note: You need a Veritas FlashSnap or FastResync license to use this feature.

The FastResync feature (previously called Fast Mirror Resynchronization or
FMR) performs quick and efficient resynchronization of stale mirrors (a mirror
that is not synchronized). This increases the efficiency of the VxVM snapshot
mechanism, and improves the performance of operations such as backup and
decision support applications. Typically, these operations require that the
volume is quiescent, and that they are not impeded by updates to the volume by
other activities on the system. To achieve these goals, the snapshot mechanism
in VXVM creates an exact copy of a primary volume at an instant in time. After a

Understanding Veritas Volume Manager | 69
FastResync

snapshot is taken, it can be accessed independently of the volume from which it
was taken. In a clustered VxVM environment with shared access to storage, it is
possible to eliminate the resource contention and performance overhead of
using a snapshot simply by accessing it from a different node.

For details of how to enable FastResync on a per-volume basis, see “Enabling
FastResync on a volume” on page 305.

FastResync enhancements
FastResync provides two fundamental enhancements to VxVM:

m FastResync optimizes mirror resynchronization by keeping track of updates
to stored data that have been missed by a mirror. (A mirror may be
unavailable because it has been detached from its volume, either
automatically by VXVM as the result of an error, or directly by an
administrator using a utility such as vxplex or vxassist. A returning
mirror is a mirror that was previously detached and is in the process of
being re-attached to its original volume as the result of the vxrecover or
vxplex att operation.) When a mirror returns to service, only the updates
that it has missed need to be re-applied to resynchronize it. This requires
much less effort than the traditional method of copying all the stored data
to the returning mirror.

Once FastResync has been enabled on a volume, it does not alter how you
administer mirrors. The only visible effect is that repair operations
conclude more quickly.

m FastResync allows you to refresh and re-use snapshots rather than discard
them. You can quickly re-associate (snapback) snapshot plexes with their
original volumes. This reduces the system overhead required to perform
cyclical operations such as backups that rely on the snapshot functionality
of VxVM.

Non-persistent FastResync

Non-persistent FastResync allocates its change maps in memory. If non-
persistent FastResync is enabled, a separate FastResync map is kept for the
original volume and for each snapshot volume. Unlike a dirty region log (DRL),
they do not reside on disk nor in persistent store. This has the advantage that
updates to the FastResync map have little impact on I/O performance, as no disk
updates needed to be performed. However, if a system is rebooted, the
information in the map is lost, so a full resynchronization is required on
snapback. This limitation can be overcome for volumes in cluster-shareable disk
groups, provided that at least one of the nodes in the cluster remained running
to preserve the FastResync map in its memory. However, a node crash in a High

70

Understanding Veritas Volume Manager

FastResync

Availability (HA) environment requires the full resynchronization of a mirror
when it is reattached to its parent volume.

How non-persistent FastResync works with snapshots

The snapshot feature of VxVM takes advantage of FastResync change tracking
to record updates to the original volume after a snapshot plex is created. After a
snapshot is taken, the snapback option is used to reattach the snapshot plex.
Provided that FastResync is enabled on a volume before the snapshot is taken,
and that it is not disabled at any time before the snapshot is reattached, the
changes that FastResync records are used to resynchronize the volume during
the snapback. This considerably reduces the time needed to resynchronize the
volume.

Non-Persistent FastResync uses a map in memory to implement change
tracking. Each bit in the map represents a contiguous number of blocks in a
volume’s address space. The default size of the map is 4 blocks. The kernel
tunable vol_fmr_logsz can be used to limit the maximum size in blocks of the
map as described on “Tunable parameters” on page 483.

Persistent FastResync

Unlike non-persistent FastResync, persistent FastResync keeps the FastResync
maps on disk so that they can survive system reboots, system crashes and
cluster crashes. Persistent FastResync can also track the association between
volumes and their snapshot volumes after they are moved into different disk
groups. When the disk groups are rejoined, this allows the snapshot plexes to be
quickly resynchronized. This ability is not supported by non-persistent
FastResync. See “Reorganizing the contents of disk groups” on page 205 for
details.

If persistent FastResync is enabled on a volume or on a snapshot volume, a data
change object (DCO) and a DCO volume are associated with the volume.

DCO volume versioning

The internal layout of the DCO volume changed in VxVM 4.0 to support new
features such as full-sized and space-optimized instant snapshots. Because the
DCO volume layout is versioned, VxVM software continues to support the
version 0 layout for legacy volumes. However, you must configure a volume to
have a version 20 DCO volume if you want to take instant snapshots of the
volume. Future releases of Veritas Volume Manager may introduce new versions
of the DCO volume layout.

See “Determining the DCO version number” on page 289 for a description of
how to find out the version number of a DCO that is associated with a volume.

Understanding Veritas Volume Manager
FastResync

Version 0 DCO volume layout

In VXVM releases 3.2 and 3.5, the DCO object only managed information about
the FastResync maps. These maps track writes to the original volume and to
each of up to 32 snapshot volumes since the last snapshot operation. Each plex
of the DCO volume on disk holds 33 maps, each of which is 4 blocks in size by
default.

Persistent FastResync uses the maps in a version 0 DCO volume on disk to
implement change tracking. As for non-persistent FastResync, each bit in the
map represents a region (a contiguous number of blocks) in a volume’s address
space. The size of each map can be changed by specifying the dcolen attribute
to the vxassist command when the volume is created. The default value of
dcolen is 132 512-byte blocks (the plex contains 33 maps, each of length 4
blocks). To use a larger map size, multiply the desired map size by 33 to calculate
the value of dcolen that you need to specify. For example, to use an 8-block
map, you would specify dcolen=264. The maximum possible map size is 64
blocks, which corresponds to a dcolen value of 2112 blocks.

Note: The size of a DCO plex is rounded up to the nearest integer multiple of the
disk group alignment value. The alignment value is 8KB for disk groups that
support the Cross-platform Data Sharing (CDS) feature. Otherwise, the
alignment value is 1 block.

Only traditional (third-mirror) volume snapshots that are administered using
the vxassist command are supported for the version 0 DCO volume layout.
Full-sized and space-optimized instant snapshots are not supported.

Version 20 DCO volume layout

In VXVM 4.0 and later releases, the DCO object is used not only to manage the
FastResync maps, but also to manage DRL recovery maps (see “Dirty region
logging” on page 62) and special maps called copymaps that allow instant
snapshot operations to resume correctly following a system crash.

Each bit in a map represents a region (a contiguous number of blocks) in a
volume’s address space. A region represents the smallest portion of a volume for
which changes are recorded in a map. A write to a single byte of storage
anywhere within a region is treated in the same way as a write to the entire
region.

The layout of a version 20 DCO volume includes an accumulator that stores the
DRL map and a per-region state map for the volume, plus 32 per-volume maps
(by default) including a DRL recovery map, and a map for tracking detaches that
are initiated by the kernel due to I/O error. The remaining 30 per-volume maps

71

72 | Understanding Veritas Volume Manager

FastResync

(by default) are used either for tracking writes to snapshots, or as copymaps.
The size of the DCO volume is determined by the size of the regions that are
tracked, and by the number of per-volume maps. Both the region size and the
number of per-volume maps in a DCO volume may be configured when a volume
is prepared for use with snapshots. The region size must be a power of 2 and be
greater than or equal to 16KB.

As the accumulator is approximately 3 times the size of a per-volume mabp, the
size of each plex in the DCO volume can be estimated from this formula:
DCO_plex size = (3 + number_ of per-volume maps) * map_size
where the size of each map in bytes is:
map_size = 512 + (volume _size / (region_size * 8))
rounded up to the nearest multiple of 8KB. Note that each map includes a 512-
byte header.

For the default number of 32 per-volume maps and region size of 64KB, a 10GB
volume requires a map size of 24KB, and so each plex in the DCO volume
requires 840KB of storage.

Note: Full-sized and space-optimized instant snapshots, which are administered
using the vxsnap command, are supported for a version 20 DCO volume layout.
The use of the vxassist command to administer traditional (third-mirror break-
off) snapshots is not supported for a version 20 DCO volume layout.

How persistent FastResync works with snapshots

Persistent FastResync uses a map in a DCO volume on disk to implement change
tracking. As for non-persistent FastResync, each bit in the map represents a
contiguous number of blocks in a volume’s address space.

Figure 1-33 shows an example of a mirrored volume with two plexes on which
Persistent FastResync is enabled. Associated with the volume are a DCO object
and a DCO volume with two plexes.

Figure 1-33 Mirrored volume with persistent FastResync enabled

Mirrored volume

Data plex | |Data plex

Understanding Veritas Volume Manager

Data change object

DCO DCO
plex plex
DCO volume

FastResync

To create a traditional third-mirror snapshot or an instant (copy-on-write)
snapshot, the vxassist snapstart Or vxsnap make operation respectively is
performed on the volume. This sets up a snapshot plex in the volume and
associates a disabled DCO plex with it, as shown in Figure 1-34.

Figure 1-34 Mirrored volume after completion of a snapstart operation

Mirrored volume

Data plex | |Data plex Sn%?:)? ot Data change object
Disabled DCO DCO
plex plex plex
DCO volume

Multiple snapshot plexes and associated DCO plexes may be created in the
volume by re-running the vxassist snapstart command for traditional
snapshots, or the vxsnap make command for space-optimized snapshots. You

can create up to a total of 32 plexes (data and log) in a volume.

73

74 | Understanding Veritas Volume Manager

FastResync

Note: Space-optimized instant snapshots do not require additional full-sized
plexes to be created. Instead, they use a storage cache that typically requires
only 10% of the storage that is required by full-sized snapshots. There is a trade-
off in functionality in using space-optimized snapshots as described in
“Comparison of snapshot features” on page 67. The storage cache is formed
within a cache volume, and this volume is associated with a cache object. For
convenience of operation, this cache can be shared by all the instant space-
optimized snapshots within a disk group.

A traditional snapshot volume is created from a snapshot plex by running the
vxassist snapshot operation on the volume. For instant snapshots, however,
the vxsnap make command makes an instant snapshot volume immediately
available for use. There is no need to run an additional command.

As illustrated in Figure 1-35, creation of the snapshot volume also sets up a DCO
object and a DCO volume for the snapshot volume. This DCO volume contains
the single DCO plex that was associated with the snapshot plex. If two snapshot
plexes were taken to form the snapshot volume, the DCO volume would contain
two plexes. For instant space-optimized snapshots, the DCO object and DCO
volume are associated with a snapshot volume that is created on a cache object
and not on a VM disk.

Associated with both the original volume and the snapshot volume are snap
objects. The snap object for the original volume points to the snapshot volume,
and the snap object for the snapshot volume points to the original volume. This
allows VxVM to track the relationship between volumes and their snapshots
even if they are moved into different disk groups.

The snap objects in the original volume and snapshot volume are automatically
deleted in the following circumstances:

m For traditional snapshots, the vxassist snapback operation is run to return
all of the plexes of the snapshot volume to the original volume.

m For traditional snapshots, the vxassist snapclear operation is run on a
volume to break the association between the original volume and the
snapshot volume. If the volumes are in different disk groups, the command
must be run separately on each volume.

m For full-sized instant snapshots, the vxsnap reattach operation is run to
return all of the plexes of the snapshot volume to the original volume.

m For full-sized instant snapshots, the vxsnap dis Or vxsnap split operations
are run on a volume to break the association between the original volume
and the snapshot volume. If the volumes are in different disk groups, the
command must be run separately on each volume.

Understanding Veritas Volume Manager
FastResync

Note: The vxsnap reattach, dis and split operations are not supported for
instant space-optimized snapshots.

See “Administering volume snapshots” on page 315, and the vxsnap(1M) and
vxassist(1M) manual pages for more information.

Figure 1-35 Mirrored volume and snapshot volume after completion of a
snapshot operation

Mirrored volume

Data plex| |Data plex Data change object Snap object

\ DCO DCO ;
\ log plex log plex)
AN
~ L7
- DCO volume I
~ —_ e
Snapshot volume T T TN

Data plex Data change object Snap object

DCO
log plex

DCO volume

Effect of growing a volume on the FastResync map

It is possible to grow the replica volume, or the original volume, and still use
FastResync. According to the DCO volume layout, growing the volume has

75

76

Understanding Veritas Volume Manager

FastResync

different effects on the map that FastResync uses to track changes to the
original volume:

m For aversion 20 DCO volume, the size of the map is increased and the size of
the region that is tracked by each bit in the map stays the same.

m For a version 0 DCO volume, the size of the map remains the same and the
region size is increased.

In either case, the part of the map that corresponds to the grown area of the
volume is marked as “dirty” so that this area is resynchronized. The snapback
operation fails if it attempts to create an incomplete snapshot plex. In such
cases, you must grow the replica volume, or the original volume, before invoking
any of the commands vxsnap reattach, vxsnap restore, Of vxassist snapback.
Growing the two volumes separately can lead to a snapshot that shares physical
disks with another mirror in the volume. To prevent this, grow the volume after
the snapback command is complete.

FastResync limitations

The following limitations apply to FastResync:

m Persistent FastResync is supported for RAID-5 volumes, but this prevents
the use of the relayout or resize operations on the volume while a DCO is
associated with it.

m Neither non-persistent nor persistent FastResync can be used to
resynchronize mirrors after a system crash. Dirty region logging (DRL),
which can coexist with FastResync, should be used for this purpose. In
VxVM 4.0 and later releases, DRL logs may be stored in a version 20 DCO
volume.

m When a subdisk is relocated, the entire plex is marked “dirty” and a full
resynchronization becomes necessary.

m If a snapshot volume is split off into another disk group, non-persistent
FastResync cannot be used to resynchronize the snapshot plexes with the
original volume when the disk group is rejoined with the original volume’s
disk group. Persistent FastResync must be used for this purpose.

m If you move or split an original volume (on which persistent FastResync is
enabled) into another disk group, and then move or join it to a snapshot
volume’s disk group, you cannot use vxassist snapback to resynchronize
traditional snapshot plexes with the original volume. This restriction arises
because a snapshot volume references the original volume by its record ID at
the time that the snapshot volume was created. Moving the original volume
to a different disk group changes the volume’s record ID, and so breaks the

Understanding Veritas Volume Manager | 77
Hot-relocation

association. However, in such a case, you can use the vxplex snapback
command with the - (force) option to perform the snapback.

Note: This restriction only applies to traditional snapshots. It does not apply to
instant snapshots.

m Any operation that changes the layout of a replica volume can mark the
FastResync change map for that snapshot “dirty” and require a full
resynchronization during snapback. Operations that cause this include
subdisk split, subdisk move, and online relayout of the replica. It is safe to
perform these operations after the snapshot is completed. For more
information, see the vxvol (IM), vxassist (1M), and vxplex (1M) manual
pages.

Hot-relocation

Note: You need a full license to use this feature.

Hot-relocation is a feature that allows a system to react automatically to I/O
failures on redundant objects (mirrored or RAID-5 volumes) in VxVM and
restore redundancy and access to those objects. VxXVM detects I/0 failures on
objects and relocates the affected subdisks. The subdisks are relocated to disks
designated as spare disks and/or free space within the disk group. VxVM then
reconstructs the objects that existed before the failure and makes them
accessible again.

When a partial disk failure occurs (that is, a failure affecting only some subdisks
on a disk), redundant data on the failed portion of the disk is relocated. Existing
volumes on the unaffected portions of the disk remain accessible. For further
details, see “Administering hot-relocation” on page 389.

Volume sets

Note: You need a full license to use this feature.

Volume sets are an enhancement to VxVM that allow several volumes to be
represented by a single logical object. All I/O from and to the underlying
volumes is directed via the I/O interfaces of the volume set. The volume set
feature supports the multi-volume enhancement to Veritas File System (VXFS).
This feature allows file systems to make best use of the different performance

78

Understanding Veritas Volume Manager
Configuring volumes on SAN storage

and availability characteristics of the underlying volumes. For example, file
system metadata could be stored on volumes with higher redundancy, and user
data on volumes with better performance.

For more information about creating and administering volume sets, see
“Creating and administering volume sets” on page 373.

Configuring volumes on SAN storage

Storage Area Networks (SANs) provide a networking paradigm that provides
easily reconfigurable connectivity between any subset of computers, disk
storage and interconnecting hardware such as switches, hubs and bridges. A
SAN can contain a huge number of devices connected using either arbitrated or
switched fabric. A SAN that has thousands or tens of thousands of connected
devices is difficult to administer using a simple disk group model. Veritas
CommandCentral Storage software allows you to configure storage groups and
storage accounts. Using the CommandCentral Storage software, you can allocate
SAN storage more prudently and administer your complex SAN environments
more effectively.

Figure 1-36, illustrates how you might choose to set up storage groups within a
SAN. In this example, the boundaries of the storage groups are based on the
performance characteristics of different makes of disk array and on geographic
location.

Figure 1-36 Dividing a Storage Area Network into storage groups

Storage Area Network Storage groups

|]

Location 1

-

Low

m performance

storage

High
performance
storage

Location 2

N

V

Storage groups

Understanding Veritas Volume Manager | 79
Configuring volumes on SAN storage

The vxassist utility in Veritas Volume Manager understands storage groups
that you have defined using the CommandCentral Storage software. vxassist
supports a simple language that you can use to specify how disks are to be
allocated from pre-defined storage groups. This specification language defines
the confinement and separation criteria that vxassist applies to the available
storage to choose disks for creating, resizing or moving a volume.

To use the CommandCentral Storage storage groups with vxassist

1 Use the CommandCentral Storage software to define one or more storage
groups. Note that zoning is not an issue as it is completely independent of
storage group creation.

2 Use the CommandCentral Storage software to attach attribute-value pairs to
each storage group’s property sheet. Typically, you would assign values for
the following attributes: location, storage group, and protection.

3 Use the vxspcshow command to discover the device names of disks that
have a specified set of attributes, or to list the attributes of specified disks.
For more information, see the vxspcshow(1M) manual page.

4 Use the vxdiskadm command or the VEA to configure the disks that you
found in the previous step into VxVM disk groups.

5 Usevxassist to create volumes on disks that are selected by matching
specified criteria for the values of storage group attributes. The usual
restriction applies that a volume may only be created using disks from a
single disk group. For more information about specifying the selection
criteria for storage group attributes, see the vxassist(1M) manual page.

Note: This feature of vxassist is designed to work in conjunction with SAL (SAN
Access Layer) in Veritas CommandCentral Storage 4.0. When VxVM with SAN-
aware vxassist is installed on a host where SAL is also installed, it is
recommended that you create a user named root under SAL. This allows
vxassist to use the root login to contact the SAL daemon (sa1d) on the
primary SAL server without needing to specify the sal_username attribute to
vxassist. For more information, see the vxassist(1M) manual page.

80 | Understanding Veritas Volume Manager
Configuring volumes on SAN storage

Administering disks

This chapter describes the operations for managing disks used by the Veritas
Volume Manager (VxVM). This includes placing disks under VxVM control,
initializing disks, encapsulating disks, mirroring the root disk, and removing
and replacing disks.

Note: Most VxVM commands require superuser or equivalent privileges.

For information about configuring and administering the dynamic multipathing
(DMP) feature of VxVM that is used with multiported disk arrays, see
“Administering dynamic multipathing (DMP)” on page 137.

Disk devices

When performing disk administration, it is important to understand the
difference between a disk name and a device name.

When a disk is placed under VxVM control, a VM disk is assigned to it. You can
define a symbolic disk name (also known as a disk media name) to refer to a VM
disk for the purposes of administration. A disk name can be up to 31 characters
long. If you do not assign a disk name, it defaults to di skgroup## where
diskgroup is the name of the disk group to which the disk is being added, and ##
is a sequence number. Your system may use device names that differ from those
given in the examples.

The device name (sometimes referred to as devname or disk access name) defines
the name of a disk device as it is known to the operating system. Such devices
are usually, but not always, located in the /dev/ [r]dsk directories. Devices
that are specific to hardware from certain vendors may use their own path name
conventions.

VxVM recreates disk devices, including those from the /dev/ [r]1dsk
directories, as metadevices in the /dev/vx/ [r]dmp directories. The dynamic

82

Administering disks
Disk devices

multipathing (DMP) feature of VXVM uses these metadevices (or DMP nodes) to
represent disks that can be accessed by more than one physical path, usually via
different controllers. The number of access paths that are available depends on
whether the disk is a single disk, or is part of a multiported disk array that is
connected to a system.

You can use the vxdisk utility to display the paths subsumed by a metadevice,
and to display the status of each path (for example, whether it is enabled or
disabled). For more information, see “Administering dynamic multipathing
(DMP)” on page 137.

Device names may also be remapped as enclosure-based names as described in
the following section.

Disk device naming in VxVM

Prior to VXVM 3.2, all disks were named according to the c#t#d#s# naming
format used by the operating system. Fabric mode disks were not supported by
VXVM. From VxVM 3.2 onward, there are two different methods of naming disk
devices:

m ci#t#d#s# based naming

m Enclosure based naming

Note: Disk devices controlled by MPXIO are always in fabric mode (irrespective
of their hardware configuration), and are therefore named in the enclosure
name format. This is true for both naming schemes.

c#t#d#s# based naming

In this naming scheme, all disk devices except fabric mode disks are named
using the c#t#d#s# format.

The syntax of a device name is c#t #d#s#, where c# represents a controller on a
host bus adapter, t# is the target controller ID, d# identifies a disk on the target
controller, and s# represents a partition (or slice) on the disk.

Note: For non-EFI disks, the slice s2 represents the entire disk. For both EFT and
non-EFI disks, the entire disk is implied if the slice is omitted from the device
name.

The boot disk (which contains the root file system and is used when booting the
system) is often identified to VxVM by the device name c0t04d0.

Fabric mode disk devices are named as follows:

Administering disks
Disk devices

Disk in supported disk arrays are named using the enclosure name_#
format. For example, disks in the supported disk array name FirstFloor
are named FirstFloor 0,FirstFloor_ 1,FirstFloor_2 and so on.
(You can use the vxdmpadm command to administer enclosure names.)

Disks in the DISKS category (JBOD disks) are named using the Disk_#
format.

Disks in the OTHER_DISKS category (disks that are not multipathed by
DMP) are named using the fabric_#format.

Enclosure based naming

Enclosure-based naming operates as follows:

Devices with very long device names (for example, Fibre Channel devices
that include worldwide name (WWN) identifiers) are always represented by
enclosure-based names.

All fabric or non-fabric disks in supported disk arrays are named using the
enclosure_name_# format. For example, disks in the supported disk array,
enggdept are named enggdept_0, enggdept_1, enggdept_2 and so on.
(You can use the vxdmpadm command to administer enclosure names. See
“Administering DMP using vxdmpadm” on page 150 and the vxdmpadm(1M)
manual page for more information.)

Disks in the DISKS category (JBOD disks) are named using the Disk_#
format.

Disks in the OTHER_DISKS category (disks that are not multipathed by
DMP) are named as follows:
m Non-fabric disks are named using the c#t#d#s# format.

m Fabric disks are named using the fabric_# format.

See “Changing the disk-naming scheme” on page 95 for details of how to switch
between the two naming schemes.

To display the native OS device names of a VM disk (such as mydg01), use the
following command:

vxdisk path | egrep diskname

For information on how to rename an enclosure, see “Renaming an enclosure”
on page 166.

For a description of disk categories, see “Disk categories” on page 87.

83

84

Administering disks
Disk devices

Private and public disk regions
Most VM disks have two regions:

private region

public region

A small area where configuration information is stored. A disk
header label, configuration records for VxVM objects (such as
volumes, plexes and subdisks), and an intent log for the
configuration database are stored here. The default private
region size is 32 megabytes, which is large enough to record
the details of several thousand VxVM objects in a disk group.

Under most circumstances, the default private region size
should be sufficient. For administrative purposes, it is usually
much simpler to create more disk groups that contain fewer
volumes, or to split large disk groups into several smaller ones
(as described in “Splitting disk groups” on page 215). If
required, the value for the private region size may be
overridden when you add or replace a disk using the
vxdiskadm command.

Each disk that has a private region holds an entire copy of the
configuration database for the disk group. The size of the
configuration database for a disk group is limited by the size of
the smallest copy of the configuration database on any of its
member disks.

An area that covers the remainder of the disk, and which is
used for the allocation of storage space to subdisks.

A disk’s type identifies how VxVM accesses a disk, and how it manages the disk’s
private and public regions. The following disk access types are used by VxVM:

simple

sliced

nopriv

The public and private regions are on the same disk area (with
the public area following the private area).

The public and private regions are on different disk partitions.

There is no private region (only a public region for allocating
subdisks). This is the simplest disk type consisting only of
space for allocating subdisks. Such disks are most useful for
defining special devices (such as RAM disks, if supported) on
which private region data would not persist between reboots.
They can also be used to encapsulate disks where there is
insufficient room for a private region. The disks cannot store
configuration and log copies, and they do not support the use
of the vxdisk addregion command to define reserved regions.
VXVM cannot track the movement of nopriv disks on a SCSI
chain or between controllers.

Administering disks
Disk devices

auto When the vxconfigd daemon is started, VxVM obtains a list of
known disk device addresses from the operating system and
configures disk access records for them automatically.

Auto-configured disks (with disk access type auto) support the following disk
formats:

cdsdisk The disk is formatted as a Cross-platform Data Sharing (CDS)
disk that is suitable for moving between different operating
systems. This is the default format for disks that are not used
to boot the system.Typically, most disks on a system are
configured as this disk type. However, it is not a suitable
format for boot, root or swap disks, for mirrors or hot-
relocation spares of such disks, or for Extensible Firmware

Interface (EFI) disks.

simple The disk is formatted as a simple disk that can be converted to
a CDS disk.

sliced The disk is formatted as a sliced disk. This format can be

applied to disks that are used to boot the system. The disk can
be converted to a CDS disk if it was not initialized for use as a
boot disk.

See the vxcdsconvert(1M) manual page for information about the utility that
you can use to convert disks to the cdsdisk format.

Caution: The CDS disk format is incompatible with EFI disks. If a disk is
initialized by VxVM as a CDS disk, the CDS header occupies the portion of the
disk where the VTOC would usually be located. If you subsequently use a
command such as £disk or format to create a partition table on a CDS disk,
this erases the CDS information and could cause data corruption.

By default, auto-configured non-EFI disks are formatted as cdsdisk disks
when they are initialized for use with VxVM. You can change the default format
by using the vxdiskadm(1M) command to update the /etc/default/vxdisk
defaults file as described in “Displaying and changing default disk layout
attributes” on page 100. See the vxdisk(1M) manual page for details of the usage
of this file, and for more information about disk types and their configuration.

Auto-configured EFI disks are formatted as s1iced disks by default.

VxVM initializes each new disk with the smallest possible number of partitions.
For non-EFI disks of type s1iced, VXVM usually configures partition s3 as the
private region, s4 as the public region, and s2 as the entire physical disk. An
exception is an encapsulated root disk, on which s3 is usually configured as the
public region and s4 as the private region.

86 | Administering disks
Discovering and configuring newly added disk devices

Discovering and configuring newly added disk
devices

The vxdiskconfig utility scans and configures new disk devices attached to the
host, disk devices that become online, or fibre channel devices that are zoned to
host bus adapters connected to this host. The command calls platform specific
interfaces to configure new disk devices and brings them under control of the
operating system. It scans for disks that were added since VxVM’s configuration
daemon was last started. These disks are then dynamically configured and
recognized by VxVM.

vxdiskconfig should be used whenever disks are physically connected to the
host or when fibre channel devices are zoned to the host.

vxdiskconfig calls vxdctl enable to rebuild volume device node directories
and update the DMP internal database to reflect the new state of the system.

You can also use the vxdisk scandisks command to scan devices in the
operating system device tree, and to initiate dynamic reconfiguration of
multipathed disks.

If you want VxVM to scan only for new devices that have been added to the
system, and for devices that have been enabled or disabled, specify the -f option
to either of the commands, as shown here:

vxdctl -f enable

vxdisk -f scandisks
However, a complete scan is initiated if the system configuration has been
modified by changes to:

m Installed array support libraries.
m The devices that are listed as being excluded from use by VxVM.

m DISKS (JBOD), SCSI3, or foreign device definitions.

See the vxdct1(1M) and vxdisk(1M) manual pages for more information.

Partial device discovery

The Dynamic Multipathing (DMP) feature of VXVM supports partial device
discovery where you can include or exclude sets of disks or disks attached to
controllers from the discovery process.

The vxdisk scandisks command rescans the devices in the OS device tree and
triggers a DMP reconfiguration. You can specify parameters to vxdisk
scandisks to implement partial device discovery. For example, this command
makes VxVM discover newly added devices that were unknown to it earlier:

vxdisk scandisks new

Administering disks
Discovering and configuring newly added disk devices

The next example discovers fabric devices (that is, devices with the
characteristic DDI_NT_FABRIC property set on them):

vxdisk scandisks fabric
The following command scans for the devices c1t1d0 and c2t2d0:

vxdisk scandisks device=clt1d0,c2t2d40
Alternatively, you can specify a ! prefix character to indicate that you want to
scan for all devices except those that are listed:

vxdisk scandisks !device=clt1d0,c2t2d0
You can also scan for devices that are connected (or not connected) to a list of
logical or physical controllers. For example, this command discovers and
configures all devices except those that are connected to the specified logical
controllers:

wvxdisk scandisks !ctlr=cl,c2
The next command discovers devices that are connected to the specified
physical controller:

vxdisk scandisks pctlr=/pci@lf,4000/scsi@3/

Note: The items in a list of physical controllers are separated by + characters.

You can use the command vxdmpadm getctlr all to obtain a list of physical
controllers.

You can specify only one selection argument to the vxdisk scandisks
command. Specifying multiple options results in an error.

For more information, see the vxdisk(1M) manual page.

Discovering disks and dynamically adding disk arrays

You can dynamically add support for a new type of disk array which has been
developed by a third-party vendor. The support comes in the form of vendor-
supplied libraries, and is added toa Solarissystem by using the pkgadd
command.

Disk categories

Disk arrays that have been certified for use with Veritas Volume Manager are
supported by an array support library (ASL), and are categorized by the vendor
ID string that is returned by the disks (for example, “HITACHI").

Disks in JBODs for which DMP (see “Administering dynamic multipathing

(DMP)” on page 137) can be supported in Active/Active mode, and which are
capable of being multipathed, are placed in the DISKS category. Disks in

87

88

Administering disks

Discovering and configuring newly added disk devices

unsupported arrays can be placed in this category by following the steps given
in “Adding unsupported disk arrays to the DISKS category” on page 92.

Disks in JBODs that do not fall into any supported category, and which are not
capable of being multipathed by DMP are placed in the OTHER_DISKS category.

Adding support for a new disk array

The following example illustrates how to add support for a new disk array
named vrtsda to a Solarissystem using a vendor-supplied package on a
mounted CD-ROM:

pkgadd -d /cdrom/pkgdir vrtsda
The new disk array does not need to be already connected to the system when
the package is installed. If any of the disks in the new disk array are
subsequently connected, and if vxconfigd is running, vxconfigd immediately
invokes the Device Discovery function and includes the new disks in the VxVM
device list.

Enabling discovery of new devices
To have VxVM discover a new disk array, use the following command:

vxdctl enable
This command scans all of the disk devices and their attributes, updates the
VxVM device list, and reconfigures DMP with the new device database. There is
no need to reboot the host.

Note: This command ensures that dynamic multipathing is set up correctly on
the array. Otherwise, VxXVM treats the independent paths to the disks as
separate devices, which can result in data corruption.

Removing support for a disk array

To remove support for the vrtsda disk array, use the following command:

pkgrm vrtsda
If the arrays remain physically connected to the host after support has been
removed, they are listed in the OTHER _DISKS category, and the volumes remain
available.

Third-party driver coexistence

The third-party driver (TPD) coexistence feature of VxVM 4.1 allows I/O that is
controlled by third-party multipathing drivers to bypass DMP while retaining
the monitoring capabilities of DMP. Provided that a suitable ASL is available,
devices that use TPDs can be discovered without requiring you to set up a

Administering disks | 89

Discovering and configuring newly added disk devices

specification file, or to run a special command. In previous releases, VxVM only
supported TPD coexistence if the code of the third-party driver was intrusively
modified. The new TPD coexistence feature maintains backward compatibility
with such methods, but it also permits coexistence without require any change
in a third-party multipathing driver.

See “Changing device naming for TPD-controlled enclosures” on page 97 for
information on how to change the form of TPD device names that are displayed

by VxVM.

See “Displaying information about TPD-controlled devices” on page 154 for
details of how to find out the TPD configuration information that is known to

DMP.

Autodiscovery of EMC Symmetrix arrays

In VXVM 4.0, there were two possible ways to configure EMC Symmetrix arrays:

m With EMC PowerPath installed, such devices could be configured as foreign
devices as described in “Adding foreign devices” on page 94.

m Without EMC PowerPath installed, DMP could be used to perform

multipathing.

On upgrading a system to VxVM 4.1 or later release, existing EMC PowerPath
devices can be discovered by DDL, and configured into DMP as autoconfigured
disks with DMP nodes, even if PowerPath is being used to perform multipathing.
There is no need to configure such arrays as foreign devices.

To use DMP with PowerPath, you should be aware of the following scenarios:

PowerPath

DMP

Array mode

Installed

The 1ibvxemc ASL handles
EMC arrays and DGC claiming
internally. PowerPath
handles failover.

There is n o need to install the

Explicit failover.

Cx600 ASL or APM.
Not installed; the array is | DMP handles multipathing. | Any.
not Cx600 The 1ibvxemc ASL handles

the EMC Symmetrix array.
Not installed; the array is | DMP handles multipathing. | Any.

Cx600

The Cx600 ASL and APM
must be installed.

90

Administering disks

Discovering and configuring newly added disk devices

Note: If any EMCpower discs are configured as foreign discs, use the vxddladm
rmforeign command to remove the foreign definitions, as shown in this
example:

#vxddladm rmforeign blockpath=/dev/dsk/emcpowerl0 \
charpath=/dev/rdsk/emcpowerl0

To allow DMP to receive correct enquiry data, the Common Serial Number (C
bit) Symmetrix Director parameter must be set to enabled.

Administering the Device Discovery Layer

Dynamic addition of disk arrays is possible because of the existence of the
Device Discovery Layer (DDL) which is a facility for discovering disks and their
attributes that are required for VxVM and DMP operations. The DDL is
administered using the vxddladm utility, which can be used to perform the
following tasks:

m List the types of arrays that are supported.

m Add support for an array to DDL.

Remove support for an array from DDL.

List information about excluded disk arrays.

List disks that are supported in the DISKS (JBOD) category.

Add disks from different vendors to the DISKS category.

Remove disks from the DISKS category.

m Add disks as foreign devices.

The following sections explain these tasks in more detail. For further
information, see the vxddlaam(1M) manual page.

Listing details of supported disk arrays

To list all currently supported disk arrays, use the following command:
wvxddladm listsupport all

Note: Use this command to obtain values for the vid and pid attributes that are
used with other forms of the vxddladm command.

Administering disks | 91
Discovering and configuring newly added disk devices

To display more detailed information about a particular array library, use this
form of the command:

vxddladm listsupport libname=library name.so
This command displays the vendor ID (vID), product IDs (PIDs) for the arrays,
array types (for example, A/A or A/P), and array names. The following is sample

Output.
vxddladm listsupport libname=libvxfujitsu.so
ATTR_NAME ATTR_VALUE
LIBNAME libvxfujitsu.so
VID vendor
PID GR710, GR720, GR730
GR740, GR820, GR840
ARRAY_TYPE A/A, A/P
ARRAY_NAME FJ_GR710, FJ_GR720, FJ_GR730

FJ_GR740, FJ_GR820, FJ_GR840

Excluding support for a disk array library

To exclude all arrays that depend on a particular array library from
participating in device discovery, use the following command:

vxddladm excludearray libname=1libvxenc.so
This example excludes support for disk arrays that depends on the library
libvxenc.so. You can also exclude support for disk arrays from a particular
vendor, as shown in this example:

vxddladm excludearray vid=ACME pid=X1
For more information about excluding disk array support, see the vxddladm (1M)
manual page.

Re-including support for an excluded disk array library

If you have excluded support for all arrays that depend on a particular disk
array library, you can use the includearray keyword to remove the entry
from the exclude list, as shown in the following example:

vxddladm includearray libname=libvxenc.so
This command adds the array library to the database so that the library can once
again be used in device discovery. If vxconfigd is running, you can use the
vxdisk scandisks command to discover the arrays and add their details to the
database.

Listing excluded disk arrays

To list all disk arrays that are currently excluded from use by VxVM, use the
following command:
vxddladm listexclude

92

Administering disks

Discovering and configuring newly added disk devices

Listing supported disks in the DISKS category

To list disks that are supported in the DISKS (JBOD) category, use the following
command:

vxddladm listjbod

Adding unsupported disk arrays to the DISKS category

Caution: The procedure in this section ensures that Dynamic Multipathing
(DMP) is set up correctly on an array that is not supported by Veritas Volume
Manager. Otherwise, Veritas Volume Manager treats the independent paths to
the disks as separate devices, which can result in data corruption.

To add an unsupported disk array

1

Use the following command to identify the vendor ID and product ID of the
disks in the array:

/etc/vx/diag.d/vxdmping device_name
where device_name is the device name of one of the disks in the array (for
example, /dev/rdsk/c1t20d0s2). Note the values of the vendor ID (VID)
and product ID (PID) in the output from this command. For Fujitsu disks,
also note the number of characters in the serial number that is displayed.
The following is sample output:

/etc/vx/diag.d/vxdmping /dev/rdsk/clt20d0s2

Vendor id (VID) : SEAGATE
Product id (PID): ST318404LSUN18G
Revision : 8507

Serial Number : 0025TOLA3H

In this example, the vendor ID is SEAGATE and the product ID is
ST318404LSUN18G.

Enter the following command to add a new JBOD category:

vxddladm addjbod vid=vendorid pid=productid |
[1length=serialno_length]

where vendorid and productid are the VID and PID values that you found
from the previous step. For example, vendorid might be FUTITSU, IBM, or
SEAGATE. For Fujitsu devices, you must also specify the number of
characters in the serial number as the argument to the 1ength argument
(for example, 10).

Note: In VXVM 4.0 and later releases, a SEAGATE disk is added as a JBOD
device by default.

Continuing the previous example, the command to define an array of disks
of this type as a JBOD would be:

Administering disks | 93
Discovering and configuring newly added disk devices

vxddladm addjbod vid=SEAGATE pid=ST318404LSUN18G

3 Usethe vxdctl enable command to bring the array under VxVM control as
described in “Enabling discovery of new devices” on page 88:
wvxdctl enable

4 To verify that the array is now supported, enter the following command:
vxddladm listjbod
The following is sample output from this command for the example array:
VID PID Opcode Page Code Page Offset SNO length

SEAGATE ALL PIDs 18 -1 36 12

5 To verify that the array is recognized, use the vxdmpadm 1istenclosure
command as shown in the following sample output for the example array:
vxdmpadm listenclosure all

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS
OTHER_DISKS OTHER_DISKS OTHER_DISKS CONNECTED
Disk Disk DISKS CONNECTED

The enclosure name and type for the array are both shown as being set to
Disk. You can use the vxdisk 1ist command to display the disks in the

array:
vxdisk list
DEVICE TYPE DISK GROUP STATUS
Disk_0 auto:none - - online invalid
Disk_1 auto:none - - online invalid

6 To verify that the DMP paths are recognized, use the vxdmpadm getdmpnode
command as shown in the following sample output for the example array:
vxdmpadm getdmpnode enclosure=Disk

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME
Disk_0 ENABLED Disk 2 2 0 Disk
Disk_1 ENABLED Disk 2 2 0 Disk

This shows that there are two paths to the disks in the array.

For more information, enter the command vxddladm help addjbod, Or see the
vxddladm(1M) and vxdmpadm(1M) manual pages.

Removing disks from the DISKS category

To remove disks from the DISKS (JBOD) category, use the vxddladm command
with the rmjbod keyword. The following example illustrates the command for
removing disks supplied by the vendor, Seagate:

vxddladm rmjbod vid=SEAGATE

94

Administering disks

Placing disks under VxVM control

Adding foreign devices

DDL may not be able to discover some devices that are controlled by third-party
drivers, such as those that provide multipathing or RAM disk capabilities. For
these devices it may be preferable to use the multipathing capability that is
provided by the third-party drivers for some arrays rather than using the
Dynamic Multipathing (DMP) feature. Such foreign devices can be made
available as simple disks to VXVM by using the vxddladm addforeign command.
This also has the effect of bypassing DMP for handling I/0. The following
example shows how to add entries for block and character devices in the
specified directories:

vxddladm addforeign blockdir=/dev/foo/dsk \

chardir=/dev/foo/rdsk

By default, this command suppresses any entries for matching devices in the
OS-maintained device tree that are found by the autodiscovery mechanism. You
can override this behavior by using the -f and -n options as described on the
vxddladm(1M) manual page.

After adding entries for the foreign devices, use either the vxdisk scandisks or
the vxdct1 enable command to discover the devices as simple disks. These disks
then behave in the same way as autoconfigured disks.

The foreign device mechanism was introduced in VxVM 4.0 to support non-
standard devices such as RAM disks, some solid state disks, and pseudo-devices
such as EMC PowerPath. This mechanism has a number of limitations:

m A foreign device is always considered as simple disk with a single path.
Unlike an autodiscovered disk, it does not have a DMP node.

m Itisnot supported for shared disk groups in a clustered environment. Only
standalone host systems are supported.

m Itisnot supported for Persistent Group Reservation (PGR) operations.

m [Itisnot under the control of DMP, so enabling of a failed disk cannot be
automatic, and DMP administrative commands are not applicable.

m Enclosure information is not available to VxVM. This can reduce the
availability of any disk groups that are created using such devices.

If a suitable ASL is available for an array, these limitations are removed, as
described in “Third-party driver coexistence” on page 88.

Placing disks under VxVM control

When you add a disk to a system that is running VxVM, you need to put the disk
under VxVM control so that VxVM can control the space allocation on the disk.
Unless you specify a disk group, VXVM places new disks in a default disk group

Administering disks | 95
Changing the disk-naming scheme

according to the rules given in “Rules for determining the default disk group” on
page 178.

The method by which you place a disk under VxVM control depends on the
circumstances:

m If the disk is new, it must be initialized and placed under VxVM control. You
can use the menu-based vxdiskadm utility to do this.

Caution: Initialization destroys existing data on disks.

m Ifthe diskis not needed immediately, it can be initialized (but not added to a
disk group) and reserved for future use. To do this, enter none when asked
to name a disk group. Do not confuse this type of “spare disk” with a hot-
relocation spare disk.

m If the disk was previously initialized for future use by VxVM, it can be
reinitialized and placed under VxVM control.

m If the disk was previously in use, but not under VxVM control, you may wish
to preserve existing data on the disk while still letting VxVM take control of
the disk. This can be accomplished using encapsulation.

Note: Encapsulation preserves existing data on disks.

m Multiple disks on one or more controllers can be placed under VxVM control
simultaneously. Depending on the circumstances, all of the disks may not be
processed the same way.

It is possible to configure the vxdiskadm utility not to list certain disks or

controllers as being available. For example, this may be useful in a SAN

environment where disk enclosures are visible to a number of separate systems.

To exclude a device from the view of VXVM, select item 16 (Prevent

multipathing/Suppress devices from VXVM's view) from the vxdiskadm

main menu. See “Disabling and enabling multipathing for specific devices” on
page 144 for details.

Changing the disk-naming scheme

Note: Devices with very long device names (for example, Fibre Channel devices
that include worldwide name (WWN) identifiers) are always represented by
enclosure-based names. The operation in this section has no effect on such
devices.

96

Administering disks

Changing the disk-naming scheme

You can either use enclosure-based naming for disks or the operating system’s
naming scheme (such as c#t#d#s#). Select menu item 20 from the vxdiskadm
main menu to change the disk-naming scheme that you want VxVM to use.
When prompted, enter y to change the naming scheme. This restarts the
vxconfigd daemon to bring the new disk naming scheme into effect.

Alternatively, you can change the naming scheme from the command line. The
following commands select enclosure-based and operating system-based
naming respectively:

vxddladm set namingscheme=ebn [persistence={yes\no}]

vxddladm set namingscheme=osn [persistence={yes\no}]
The change is immediate whichever method you use. The optional persistence
argument allows you to select whether the names of disk devices that are
displayed by VxVM remain unchanged after disk hardware has been
reconfigured and the system rebooted. By default, both enclosure-based naming
and operating system-based naming are persistent.

The effect of enabling persistent device names in conjunction with operating
system-based naming is discussed in “Regenerating persistent device names” on
page 96.

Regenerating persistent device names

The persistent device naming feature makes the names of disk devices
persistent across system reboots. If operating system-based naming is selected,
each disk name is usually set to the name of one of the paths to the disk. After
hardware reconfiguration and a subsequent reboot, the operating system may
generate different names for the paths to the disks. As DDL assigns persistent
disk names using the persistent device name database that was generated
during a previous boot session, the disk names may no longer correspond to the
actual paths. This does not prevent the disks from being used, but the
association between the disk name and one of its paths is lost.

To find the relationship between a disk and its paths, run one of the following
commands:

vxdmpadm getsubpaths dmpnodename=disk access_name
vxdisk list disk access_name

To update the disk names so that they correspond to the new path names

1 Remove the file that contains the existing persistent device name database:
rm /etc/vx/disk.info
2 Restart the VxVM configuration demon:

vxconfigd -k
This regenerates the persistent name database.

Administering disks
Changing the disk-naming scheme

Changing device naming for TPD-controlled enclosures

Note: This feature is available only if the default disk-naming scheme is set to

use operating system-based naming, and the TPD-controlled enclosure does not

contain fabric disks.

For disk enclosures that are controlled by third-party drivers (TPD) whose

coexistence is supported by an appropriate ASL, the default behavior is to assign
device names that are based on the TPD-assigned node names. You can use the

vxdmpadm command to switch between these names and the device names that

are known to the operating system:

vxdmpadm setattr enclosure enclosure tpdmode=native|pseudo

The argument to the tpdamode attribute selects names that are based on those

used by the operating system (native), or TPD-assigned node names (pseudo).

The use of this command to change between TPD and operating system-based
naming is illustrated in the following example for the enclosure named EMCO:

vxdisk list

DEVICE TYPE

emcpowerl0s2 auto:sliced
emcpowerlls?2 auto:sliced
emcpowerl2s?2 auto:sliced
emcpowerl3s2 auto:sliced
emcpowerlds?2 auto:sliced
emcpowerl5s2 auto:sliced
emcpowerl6s2 auto:sliced
emcpowerl7s2 auto:sliced
emcpowerl8s2 auto:sliced
emcpowerl9s2 auto:sliced

vxdmpadm setattr enclosure EMCO

vxdisk list

DEVICE TYPE

c6t0d10s2 auto:sliced
c6t0dlls2 auto:sliced
c6t0dl2s2 auto:sliced
c6t0d1l3s2 auto:sliced
c6t0dlds2 auto:sliced
c6t0dl5s2 auto:sliced
c6t0dles2 auto:sliced
c6t0dl7s2 auto:sliced
c6t0d18s2 auto:sliced
c6t0d19s2 auto:sliced

DISK
diskl
disk2
disk3
disk4
disk5
disk6
disk7
disk8
disk9
disk1l0

GROUP
mydg
mydg
mydg
mydg
mydg
mydg
mydg
mydg
mydg
mydg

tpdmode=native

DISK
diskl
disk2
disk3
disk4
disk5
disk6
disk7
disk8
disk9
diskl0

GROUP
mydg
mydg
mydg
mydg
mydg
mydg
mydg
mydg
mydg
mydg

STATUS
online
online
online
online
online
online
online
online
online
online

STATUS
online
online
online
online
online
online
online
online
online
online

If tpdmode is set to native, the path with the smallest device number is

displayed.

97

98 | Administering disks
Changing the disk-naming scheme

Discovering the association between enclosure-based disk names
and OS-based disk names

If you enable enclosure-based naming, and use the vxprint command to display
the structure of a volume, it shows enclosure-based disk device names (disk
access names) rather than c#t#d#s# names. To discover the c#t#d#s# names
that are associated with a given enclosure-based disk name, use either of the
following commands:

vxdisk -e list enclosure-based_name

vxdmpadm getsubpaths dmpnodename=enclosure-based_name
For example, to find the physical device that is associated with disk ENC0O_21,
the appropriate commands would be:

wvxdisk -e list ENCO_21

vxdmpadm getsubpaths dmpnodename=ENCO0_21
To obtain the full pathname for the block and character disk device from these
commands, append the displayed device name to /dev/vx/dmp or
/dev/vx/rdmp.

Issues regarding simple or nopriv disks with enclosure-based naming

If you change from c#t#d#s# based naming to enclosure-based naming, simple
or nopriv disks may be put in the “error” state and cause VxVM objects on
those disks to fail. If this happens, use the following procedures to correct the
problem:

m Simple or nopriv disks in the boot disk group

m Simple or nopriv disks in non-boot disk groups

These procedures use the vxdarestore utility to handle simple/nopriv disk
failures that arise from changing to the enclosure-based naming scheme. You do
not need to perform either procedure if your system does not have any simple or
nopriv disks, or if the devices on which any simple or nopriv disks are present
are not automatically configured by VxVM (for example, non-standard disk
devices such as ramdisks).

Note: You cannot run vxdarestore if c#t#d#s# naming is in use. Additionally,
vxdarestore does not handle failures on simple/nopriv disks that are caused by
renaming enclosures, by hardware reconfiguration that changes device names,
or by changing the naming scheme on a system that includes persistent sliced
disk records.

For more information about the vxdarestore command, see the
vxdarestore(1M) manual page.

Administering disks | 99
Installing and formatting disks

Simple or nopriv disks in the boot disk group
If the boot disk group (usually aliased as bootdg) is comprised of only simple

and/or nopriv disks, the vxconfigd daemon goes into the disabled state after the
naming scheme change.

To remove the error state for simple or nopriv disks in the boot disk group
1 Use vxdiskadm to change back to c#t#d#s# naming.

2 Enter the following command to restart the VxVM configuration daemon:

vxconfigd -kr reset

3 If you want to use enclosure-based naming, use vxdiskadm to add a sliced
disk to the bootdg disk group, change back to the enclosure-based naming
scheme, and then run the following command:

/etc/vx/bin/vxdarestore

Simple or nopriv disks in non-boot disk groups

If an imported disk group, other than bootdg, is comprised of only simple
and/or nopriv disks, the disk group is in the “online dgdisabled” state after
the change to the enclosure-based naming scheme.

To remove the error state for simple or nopriv disks in non-boot disk groups

1 Deport the disk group using the following command:
vxdg deport diskgroup

2 Usethe vxdarestore command to restore the failed disks, and to recover the
objects on those disks:

/etc/vx/bin/vxdarestore

3 Re-import the disk group using the following command:
vxdg import diskgroup

Installing and formatting disks

Depending on the hardware capabilities of your disks and of your system, you
may either need to shut down and power off your system before installing the
disks, or you may be able to hot-insert the disks into the live system. Many
operating systems can detect the presence of the new disks on being rebooted. If
the disks are inserted while the system is live, you may need to enter an
operating system-specific command to notify the system.

If the disks require low or intermediate-level formatting before use, use the
operating system-specific formatting command to do this.

100

Administering disks

Displaying and changing default disk layout attributes

Note: SCSI disks are usually preformatted. Reformatting is needed only if the
existing formatting has become damaged.

The following sections provide detailed examples of how to use the vxdiskadm
utility to place disks under VxVM control in various ways and circumstances.

Displaying and changing default disk layout

attributes

To display or change the default values for initializing or encapsulating disks,
select menuitem 22 (Change/display the default disk layouts) from
the vxdiskadm main menu. For disk initialization, you can change the default
format and the default length of the private region. For disk encapsulation, you
can additionally change the offset values for both the private and public regions.

The attribute settings for initializing disks are stored in the file,
/etc/default/vxdisk, and those for encapsulating disks in
/etc/default/vxencap.

See the vxdisk(1M) and vxencap(1M) manual pages for more information.

Adding a disk to VxVM

Formatted disks being placed under VxVM control may be new or previously
used outside VxVM. The set of disks can consist of all disks on the system, all
disks on a controller, selected disks, or a combination of these.

Depending on the circumstances, all of the disks may not be processed in the
same way. For example, some may be initialized, while others may be
encapsulated.

Caution: Initialization does not preserve data on disks.

When initializing or encapsulating multiple disks at one time, it is possible to
exclude certain disks or certain controllers. To exclude disks, list the names of
the disks to be excluded in the file /etc/vx/disks.exclude before the
initialization or encapsulation. You can exclude all disks on specific controllers
from initialization or encapsulation by listing those controllers in the file
/etc/vx/cntrls.exclude.

Administering disks
Adding a disk to VxVM

To initialize disks for VxXVM use

1

Select menuitem 1 (Add or initialize one or more disks) from
the vxdiskadm main menu.

At the following prompt, enter the disk device name of the disk to be added
to VxVM control (or enter 1ist for a list of disks):

Add or initialize disks
Menu: VolumeManager/Disk/AddDisks

Use this operation to add one or more disks to a disk group.
You can add the selected disks to an existing disk group or to
a new disk group that will be created as a part of the
operation. The selected disks may also be added to a disk group
as spares. The selected disks may also be

initialized without adding them to a disk group leaving the
disks available for use as replacement disks.

More than one disk or pattern may be entered at the prompt.
Here are some disk selection examples:

all: all disks

c3 c4t2: all disks on both controller 3 and controller
4,target 2

c3td4d2: a single disk (in the c#t#d# naming scheme)

xyz_0 : a single disk (in the enclosure based naming

scheme)

XYZ_ all disks on the enclosure whose name is Xyz

Select disk devices to add:

[<pattern-list>,all,list,q, ?]
<pattern-list> can be a single disk, or a series of disks and/or controllers
(with optional targets). If <pattern-list> consists of multiple items, separate
them using white space, for example:

c3t0d0 c3t1d0 c3t2d0 c3t3d0

specifies fours disks at separate target IDs on controller 3.-
If you enter 1ist at the prompt, the vxdiskadm program displays a list of -
the disks available to the system:

DEVICE DISK GROUP STATUS
c0t0do mydg01 mydg online
c0t1do mydg02 mydg online
c0t2d0 mydg03 mydg online
c0t3d0 - - online
c1t0do mydgl0 nmydg online
cltodl - - online invalid

c3t0d0 - - online invalid
senal_0 mydg33 mydg online
senal_1 mydg34 mydg online

101

102

Administering disks
Adding a disk to VxVM

senal_2 mydg35 mydg online

Select disk devices to add:
[<pattern-1list>,all,list,q, ?]

The phrase online invalid in the STATUS line indicates that a disk has
yet to be added or initialized for VxVM control. Disks that are listed as
online with a disk name and disk group are already under VxVM control.
Enter the device name or pattern of the disks that you want to initialize at
the prompt and press Return.

To continue with the operation, enter y (or press Return) at the following
prompt:

Here are the disks selected. Output format: [Devicel
list of device names

Continue operation? [y,n,q,?] (default: vy) ¥y

At the following prompt, specify the disk group to which the disk should be
added, or none to reserve the disks for future use:

You can choose to add these disks to an existing disk group, a
new disk group, or you can leave these disks available for use
by future add or replacement operations. To create a new disk
group, select a disk group name that does not yet exist. To
leave the disks available for future use, specify a disk group
name of “none”.

Which disk group [<group>,none,list,q,?]

If you specified the name of a disk group that does not already exist,
vxdiskadm prompts for confirmation that you really want to create this
new disk group:

There is no active disk group named disk group name.

Create a new group named disk group name? [y,n,q,?]

(default: y)y
You are then prompted to confirm whether the disk group should support
the Cross-platform Data Sharing (CDS) feature:

Create the disk group as a CDS disk group? [vy,n,q,?]
(default: n)
If the new disk group may be moved between different operating system
platforms, enter y. Otherwise, enter n.

At the following prompt, either press Return to accept the default disk name
or enter n to allow you to define your own disk names:
Use default disk names for the disks? [y,n,q,?] (default: vy)

When prompted whether the disks should become hot-relocation spares,
enter n (or press Return):

Administering disks | 103
Adding a disk to VxVM

Add disks as spare disks for disk group name? [y,n,q,?]
(default: n) n

8 When prompted whether to exclude the disks from hot-relocation use, enter
n (or press Return).
Exclude disks from hot-relocation use? [y,n,q,?}
(default: n) n

9 You are next prompted to choose whether you want to add a site tag to the
disks:

Add site tag to disks? [y,n,q,?] (default: n)
A site tag is usually applied to disk arrays or enclosures, and is not required
unless you want to use the Remote Mirror feature. If you enter y to choose
to add a site tag, you are prompted to the site name at step 11.

10 To continue with the operation, enter y (or press Return) at the following
prompt:
The selected disks will be added to the disk group
disk group name with default disk names.
list of device names
Continue with operation? [y,n,q,?] (default: y) ¥y
11 If you chose to tag the disks with a site in step 9, you are now prompted to
enter the site name that should be applied to the disks in each enclosure:
The following disk(s):

list of device names
belong to enclosure(s):
list of enclosure names

Enter site tag for disks on enclosure enclosure name
[<name>,qg,?] site name
12 If you see the following prompt, it lists any disks that have already been
initialized for use by VxVM; enter y to indicate that all of these disks should
now be used:

The following disk devices appear to have been initialized
already.

The disks are currently available as replacement disks.
Output format: [Device]

list of device names

Use these devices? [Y,N,S(elect),q,?] (default: Y) Y
Note that this prompt allows you to indicate “yes” or “no” for all of these
disks (Y or N) or to select how to process each of these disks on an individual
basis (8).

104 | Administering disks
Adding a disk to VxVM

If you are sure that you want to re-initialize all of these disks, enter ¥ at the
following prompt:
VXVM NOTICE V-5-2-366 The following disks you selected for use
appear to already have been initialized for the Volume
Manager. If you are certain the disks already have been
initialized for the Volume Manager, then you do not need to
reinitialize these disk devices.
Output format: [Device]

list of device names

Are you sure you want to re-initialize these disks?
[Y,N,S(elect),q,?] (default: N) Y
13 vxdiskadm may now indicate that one or more disks is a candidate for
encapsulation. Encapsulation allows you to add an active disk to VxVM
control and preserve the data on that disk. If you want to preserve the data
on the disk, enter y. If you are sure that there is no data on the disk that you
want to preserve, enter n to avoid encapsulation.
VxVM NOTICE V-5-2-355 The following disk device has a valid
VTOC, but does not appear to have been initialized for the
Volume Manager. If there is data on the disk that should NOT be
destroyed you should encapsulate the existing disk partitions

as volumes instead of adding the disk as a new disk.
Output format: [Devicel

device name

Encapsulate this device? [y,n,q,?] (default: vy)

& If you choose to encapsulate the disk:
vxdiskadm confirms its device name and prompts you for permission to
proceed. Enter y (or press Return) to continue encapsulation:

VxVM NOTICE V-5-2-311 The following disk device has been
selected for encapsulation.

Output format: [Devicel

device name

Continue with encapsulation? [y,n,q,?] (default: y) ¥
vxdiskadm now displays an encapsulation status, and informs you that
you must perform a shutdown and reboot as soon as possible:

The disk device device name will be encapsulated and added
to the disk group dgname with the disk name disk name.

You can now choose whether the disk is to be formatted as a CDS disk that is
portable between different operating systems, or as a non-portable sliced
disk:

Enter the desired format [cdsdisk,sliced,q, ?]
(default:cdsdisk)

Administering disks | 105
Adding a disk to VxVM

Enter the format that is appropriate for your needs. In most cases, this is
the default format, cdsdisk.

At the following prompt, vxdiskadm asks if you want to use the default
private region size of 65536 blocks (32MB). Press Return to confirm that
you want to use the default value, or enter a different value. (The maximum
value that you can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q, ?]
(default: 65536)

If you entered cdsdisk as the format, you are prompted for the action to be
taken if the disk cannot be converted this format:
Do you want to use 'sliced' as the format should 'cdsdisk'
fail? [y,n,q,?] (default: y)
If you enter y, and it is not possible to encapsulate the disk as a CDS disk, it
is encapsulated as a sliced disk. Otherwise, the encapsulation fails.
vxdiskadm then proceeds to encapsulate the disks.

VxVM INFO V-5-2-340 The first stage of encapsulation has
completed successfully. You should now reboot your system at
the earliest possible opportunity.

The encapsulation will require two or three reboots which will
happen automatically after the next reboot. To reboot execute
the command:

shutdown -g0 -y -i6

This will update the /etc/vistab file so that volume devices
are used to mount the file systems on this disk device. You
will need to update any other references such as backup
scripts, databases, or manually created swap devices.

If you choose not to encapsulate the disk:
vxdiskadm asks if you want to initialize the disk instead of encapsulating
it. Enter y to confirm this:

Instead of encapsulating, initialize? [y,n,q,?] (default: n) y
vxdiskadm now confirms those disks that are being initialized and added
to VXVM control with messages similar to the following. In addition, you
may be prompted to perform surface analysis.

VxVM INFO V-5-2-205 Initializing device device name.

You can now choose whether the disk is to be formatted as a CDS disk that is
portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q, ?]

(default: cdsdisk)

Enter the format that is appropriate for your needs. In most cases, this is
the default format, cdsdisk.

106

Administering disks
Adding a disk to VxVM

At the following prompt, vxdiskadm asks if you want to use the default
private region size of 65536 blocks (32MB). Press Return to confirm that
you want to use the default value, or enter a different value. (The maximum
value that you can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q, ?]
(default: 65536)
vxdiskadm then proceeds to add the disks.
VxVM INFO V-5-2-88 Adding disk device device name to disk group
disk group name with disk name disk name.

14 At the following prompt, indicate whether you want to continue to initialize
more disks (y) or return to the vxdiskadm main menu (n):
Add or initialize other disks? [y,n,q,?] (default: n)

See “Displaying and changing default disk layout attributes” on page 100 for
details of how to change the default layout that is used to initialize or
encapsulate disks.

Reinitializing a disk

You can reinitialize a disk that has previously been initialized for use by VxVM
by putting it under VxVM control as you would a new disk. See “Adding a disk to
VxVM” on page 100 for details.

Caution: Reinitialization does not preserve data on the disk. If you want to
reinitialize the disk, make sure that it does not contain data that should be
preserved.

If the disk you want to add has been used before, but not with VxVM, you can
encapsulate the disk to preserve its information.

Using vxdiskadd to place a disk under control of VXVM

As an alternative to vxdiskadm, you can use the vxdiskadd command to put a
disk under VxVM control. For example, to initialize the second disk on the first
controller, use the following command:

vxdiskadd c0t1do
The vxdiskadd command examines your disk to determine whether it has been
initialized and also checks for disks that can be encapsulated (see “Using nopriv
disks for encapsulation” on page 112), disks that have been added to VxVM, and
for other conditions.

Using RAM

Administering disks
Using RAM disks with VxVM

Note: If you are adding an uninitialized disk, warning and error messages are
displayed on the console during the vxdiskadd command. Ignore these
messages. These messages should not appear after the disk has been fully
initialized; the vxdiskadd command displays a success message when the
initialization completes.

The interactive dialog for adding a disk using vxdiskadd is similar to that for
vxdiskadm, described in “Adding a disk to VxVM” on page 100.

disks with VxVM

Note: This section only applies to systems which support RAM disks.

Some systems support creation of RAM disks. A RAM disk is a device made from
system RAM that looks like a small disk device. Often, the contents of a RAM
disk are erased when the system is rebooted. RAM disks that are erased on
reboot prevent VxVM from identifying physical disks. This is because
information stored on the physical disks (now erased on reboot) is used to
identify the disk.

nopriv devices have a special feature to support RAM disks: a volatile option
which indicates to VxVM that the device contents do not survive reboots.
Volatile devices receive special treatment on system startup. If a volume is
mirrored, plexes made from volatile devices are always recovered by copying
data from nonvolatile plexes.

Note: To use a RAM disk with VxVM, block and character device nodes must
exist for the RAM disk, for example, /dev/dsk/ramd0 and /dev/rdsk/ramdo0.

To define the RAM disk device to VxVM, use the following command:

vxdisk define ramd0 type=nopriv volatile

Normally, VXVM does not start volumes that are formed entirely from plexes
with volatile subdisks. That is because there is no plex that is guaranteed to
contain the most recent volume contents.

Some RAM disks are used in situations where all volume contents are recreated
after reboot. In these situations, you can force volumes formed from RAM disks
to be started at reboot by using the following command:

vxvol set startopts=norecov volume

107

108 | Administering disks
Encapsulating a disk

This option can be used only with volumes of type gen. See the vxvol(1M)
manual page for more information on the vxvol set operation and the
norecov option.

Encapsulating a disk

This section describes how to encapsulate a disk for use in VxVM. Encapsulation
preserves any existing data on the disk when the disk is placed under VxVM
control.

Caution: Encapsulating a disk requires that the system be rebooted several
times. Schedule performance of this procedure for a time when this does not
inconvenience users.

To prevent the encapsulation failing, make sure that:
m The disk has two free partitions for the public and private regions.
m The disk has an s2 slice.

m The disk has a small amount of free space (at least 1 megabyte at the
beginning or end of the disk) that does not belong to any partition. If the
disk being encapsulated is the root disk, and this does not have sufficient
free space available, a similar sized portion of the swap partition is used
instead.

Note: Only encapsulate a root disk if you also intend to mirror it. There is no-
benefit in root-disk encapsulation for its own sake. See “Rootability” on -
page 114 and following sections for more information.-

Use the format or £disk commands to obtain a printout of the root disk -
partition table before you encapsulate a root disk. For more information, see the -
appropriate manual pages. You may need this information should you-
subsequently need to recreate the original root disk. See, for example, the -
section “Repairing root or /usr File Systems on Mirrored Volumes” in the -
chapter “Recovery from Boot Disk Failure” in the Veritas Volume Manager
Troubleshooting Guide. -

You cannot grow or shrink any volume (rootvol, usrvol, varvol, optvol, -
swapvol, and so on) that is associated with an encapsulated root disk. This is-
because these volumes map to physical partitions on the disk, and these -
partitions must be contiguous..

Administering disks
Encapsulating a disk

Caution: If the root disk is encapsulated and the dump device is covered by the
swap volume, it is not safe to use the savecore -1 operation because this
overwrites the swap area. Configure a dedicated dump device on a partition
other than the swap area.

To encapsulate a disk for use in VxXVM

1 Select menuitem 2 (Encapsulate one or more disks) from the
vxdiskadm main menu.

Note: Your system may use device names that differ from the examples
shown here.

At the following prompt, enter the disk device name for the disks to be
encapsulated:

Encapsulate one or more disks
Menu: VolumeManager/Disk/Encapsulate

Use this operation to convert one or more disks to use the
Volume Manager. This adds the disks to a disk group and
replaces existing partitions with volumes. Disk encapsulation
requires a reboot for the changes to take effect.

More than one disk or pattern may be entered at the prompt.
Here are some disk selection examples:

all: all disks

c3 cdt2: all disks on both controller 3 and controller
4,target 2

c3td4d2: a single disk (in the c#t#d# naming scheme)

xyz_0 : a single disk (in the enclosure based naming

scheme)

XYZ_ all disks on the enclosure whose name is Xyz

Select disk devices to encapsulate:
[<pattern-list>,all,list,q,?] device name
Where <pattern-list> can be a single disk, or a series of disks and/or
controllers (with optional targets). If <pattern-list> consists of multiple
items, those items must be separated by white space.
If you do not know the address (device name) of the disk to be encapsulated,
enter 1 or list at the prompt for a complete listing of available disks.

2 To continue the operation, enter y (or press Return) at the following prompt:

Here is the disk selected. Output format: [Device]
device name

Continue operation? [y,n,q,?] (default: vy) ¥

109

110

Administering disks
Encapsulating a disk

To add the disk to a disk group, enter the name of the disk group (this disk
group need not already exist):

You can choose to add this disk to an existing disk group or to
a new disk group. To create a new disk group, select a disk
group name that does not yet exist.

Which disk group [<group>,list,q, ?]

At the following prompt, either press Return to accept the default disk name
or enter a disk name:
Use a default disk name for the disk? [y,n,q,?] (default: y)

To continue with the operation, enter y (or press Return) at the following
prompt:
The selected disks will be encapsulated and added to the
dgname disk group with default disk names.

device name

Continue with operation? [y,n,q,?] (default: y) y

To confirm that encapsulation should proceed, enter y (or press Return) at
the following prompt:
The following disk has been selected for encapsulation.
Output format: [Device]

device name

Continue with encapsulation? [y,n,q,?] (default: y) ¥
A message similar to the following confirms that the disk is being
encapsulated for use in VxVM and tells you that a reboot is needed:

The disk device device name will be encapsulated and added to
the disk group diskgroup with the disk name diskgroupOl.

For non-root disks, you can now choose whether the disk is to be formatted
as a CDS disk that is portable between different operating systems, or as a
non-portable sliced disk:

Enter the desired format [cdsdisk,sliced,q, ?]

(default: cdsdisk)
Enter the format that is appropriate for your needs. In most cases, this is
the default format, cdsdisk. Note that only the s1iced format is suitable
for use with root, boot or swap disks.

At the following prompt, vxdiskadm asks if you want to use the default
private region size of 65536 blocks (32MB). Press Return to confirm that you
want to use the default value, or enter a different value. (The maximum
value that you can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q, ?]
(default: 65536)

Administering disks | 111
Encapsulating a disk

9 Ifyou entered cdsdisk as the format in step 7, you are prompted for the
action to be taken if the disk cannot be converted this format:
Do you want to use 'sliced' as the format should 'cdsdisk'
fail? [y,n,q,?] (default: y)
If you enter y, and it is not possible to encapsulate the disk as a CDS disk, it
is encapsulated as a sliced disk. Otherwise, the encapsulation fails.

10 vxdiskadm then proceeds to encapsulate the disks.

VXVM NOTICE V-5-2-311 The device name disk has been configured
for encapsulation.

VxVM INFO V-5-2-340 The first stage of encapsulation has
completed successfully. You should now reboot your system at
the earliest possible opportunity.

The encapsulation will require two or three reboots which
will happen automatically after the next reboot. To reboot
execute the command:

shutdown -g0 -y -i6

This will update the /etc/vistab file so that volume devices
are used to mount the file systems on this disk device. You
will need to update any other references such as backup
scripts, databases, or manually created swap devices.

Note: The original /etc/vEfstab fileis saved as /etc/vEstab.prevm.

At the following prompt, indicate whether you want to encapsulate more
disks (y) or return to the vxdiskadm main menu (n):
Encapsulate other disks? [y,n,q,?] (default: n) n
See “Displaying and changing default disk layout attributes” on page 100 for
details of how to change the default layout that is used to encapsulate disks.

Failure of disk encapsulation

Under some circumstances, encapsulation of a disk can fail. Usually this is
because there is not enough free space available on the disk to accommodate the
private region. If this happens, the procedure outlined above ends abruptly with
an error message similar to the following:
VxVM ERROR V-5-2-338 The encapsulation operation failed with the
following error:
It is not possible to encapsulate device, for the following
reason:
<VxVM vxslicer ERROR V-5-1-1108 Unsupported disk layout.>
See the section, “Using nopriv disks for encapsulation” on page 112 for advice
about what you can do if this occurs.

112

Administering disks
Encapsulating a disk

Using nopriv disks for encapsulation

Caution: Do not use the procedure in this section to encapsulate a root disk. Part
of the swap area on a root disk can be used to form the private region.

Encapsulation converts existing partitions on a specified disk to volumes. If any
partitions contain file systems, their /etc/vEstab entries are modified so the
file systems are mounted on volumes instead.

Disk encapsulation requires that enough free space be available on the disk (by
default, 1 megabyte) for storing the private region that VxVM uses for disk
identification and configuration information. This free space cannot be included
in any other partitions. (See the vxencap(1M) manual page for more
information.)

You can encapsulate a disk that does not have space available for the VxVM
private region partition by using the vxdi sk utility. This is done by configuring
the disk as a nopriv devices that does not have a private region.

To create a nopriv device

1 Ifitdoes not exist already, set up a partition on the disk for the area that you
want to access using VxVM.

2 Use the following command to map a VM disk to the partition:
vxdisk define partition-device type=nopriv

where partition-device is the basename of the device in the /dev/dsk
directory. For example, to map partition 3 of disk device c0t4d0, use the
following command:

vxdisk define c0t4d0s3 type=nopriv

To create volumes for other partitions on the disk
1 Add the partition to a disk group.
2 Determine where the partition resides within the encapsulated partition.

3 Usevxassist to create a volume with that length.

Note: By default, vxassist re-initializes the data area of a volume that it
creates. If there is data to be preserved on the partition, do not use vxassist.
Instead, create the volume with vxmake and start the volume with the command
vxvol init active.

Administering disks | 113
Encapsulating a disk

The drawback with using nopriv devices is that VxVM cannot track changes in
the address or controller of the disk. Normally, VXVM uses identifying
information stored in the private region on the physical disk to track changes in
the location of a physical disk. Because nopriv devices do not have private
regions and have no identifying information stored on the physical disk,
tracking cannot occur.

One use of nopriv devices is to encapsulate a disk so that you can use VxVM to
move data off the disk. When space has been made available on the disk, remove
the nopriv device, and encapsulate the disk as a standard disk device.

Note: A disk group cannot be formed entirely from nopriv devices. This is
because nopriv devices do not provide space for storing disk group
configuration information. Configuration information must be stored on at least
one disk in the disk group.

114 ‘

Administering disks
Rootability

Rootability

VxXVM can place various files from the root file system, swap device, and other
file systems on the root disk under VxVM control. This is called rootability. The
root disk (that is, the disk containing the root file system) can be put under
VXVM control through the process of encapsulation.

The root disk can be encapsulated using the vxdiskadm command as described
in “Encapsulating a disk” on page 108. Once encapsulated, the root disk can also
be mirrored by using the vxdiskadm. command as described in “Mirroring an
encapsulated root disk” on page 117.

Encapsulation converts existing partitions on that disk to volumes. Once under
VxVM control, the root and swap devices appear as volumes and provide the
same characteristics as other VXVM volumes. A volume that is configured for
use as a swap area is referred to as a swap volume, and a volume that contains
the root file system is referred to as a root volume.

Caution: Only encapsulate your root disk if you also intend to mirror it. There is
no benefit in root-disk encapsulation for its own sake.

It is possible to mirror the rootvol, and swapvol volumes, as well as other
parts of the root disk that are required for a successful boot of the system (for
example, /usr). This provides complete redundancy and recovery capability in
the event of disk failure. Without VxVM rootability, the loss of the root, swap,
or usr partition prevents the system from being booted from surviving disks.

Mirroring disk drives that are critical to booting ensures that no single disk
failure renders the system unusable. A suggested configuration is to mirror the
critical disk onto another available disk (using the vxdiskadm command). If the
disk containing root and swap partitions fails, the system can be rebooted from
a disk containing mirrors of these partitions.

Administering disks | 115
Rootability

Figure 2-1 Suggested rootability configuration
bootdg disk group
Y
N
Encapsulated root disk
~
Y
M A
Root disk mirror
N~
Y
M .
Spare disk
N~

Figure 2-1 shows one possible assignment of disks in the bootdg disk group.
This arrangement consists of the encapsulated root disk, the root disk mirror,
and at least one spare disk. If hot-relocation is enabled and either the root disk
or its mirror fails during use, VxVM automatically recreates the failed plexes on
the spare disk by copying from the plexes on remaining disk. If the spare disk is
suitable, it may then be configured to be booted from, or you can use it to
recover the contents of the failed disk when it is replaced.

Note: Ensure that any hot-relocation spares or root disk mirrors are configured
with the s1iced format. Disks with the cdsdisk format cannot be used for
these purposes.

For more information on system recovery procedures for the boot disk, see the
chapter “Recovery from Boot Disk Failure” in the Veritas Volume Manager
Troubleshooting Guide.

Booting root volumes

When the operating system is booted, the root file system and swap area must
be available for use before the vxconfigd daemon can load the VxVM
configuration or start any volumes. During system startup, the operating
system must see the rootvol and swapvol volumes as regular partitions so
that it can access them as ordinary disk partitions.

Due to this restriction, each of the rootvol and swapvol plexes must be
created from contiguous space on a disk that is mapped to a single partition. It is

116 | Administering disks
Rootability

not possible to stripe, concatenate or span the plex of a rootvol or swapvol
volume that is used for booting. Any mirrors of these plexes that are potentially
bootable also cannot be striped, concatenated or spanned.

Boot-time volume restrictions

Volumes on the root disk differ from other volumes in that they have very
specific restrictions on their configuration:

The root volume (rootvol) must exist in the disk group that is chosen to be
the boot disk group, bootdg. Although other volumes named rootvol can
be created in other disk groups, only the rootvol in bootdg can be used to
boot the system.

If the volumes that are required to boot the system span multiple disks, all
these disks must be in the boot disk group.

The rootvol and swapvol volumes always have minor device numbers 0
and 1 respectively. Other volumes on the root disk do not have specific
minor device numbers.

Restricted mirrors of volumes on the root disk have overlay partitions
created for them. An overlay partition is one that exactly includes the disk
space occupied by the restricted mirror. During boot, before the rootvol,
varvol, usrvol and swapvol volumes are fully configured, the default
volume configuration uses the overlay partition to access the data on the
disk.

Although it is possible to add a striped mirror to a rootvol device for
performance reasons, you cannot stripe the primary plex or any mirrors of
rootvol that may be needed for system recovery or booting purposes if the
primary plex fails.

rootvol and swapvol cannot be spanned or contain a primary plex with
multiple noncontiguous subdisks. You cannot grow or shrink any volume
associated with an encapsulated boot disk (rootvol, usrvol, varvol,
optvol, swapvol, and so on) because these map to a physical underlying
partition on the disk and must be contiguous. A workaround is to
unencapsulate the boot disk, repartition the boot disk as desired (growing or
shrinking partitions as needed), and then re-encapsulating.

When mirroring parts of the boot disk, the disk being mirrored to must be
large enough to hold the data on the original plex, or mirroring may not
work.

The volumes on the root disk cannot use dirty region logging (DRL).

In addition to these requirements, it is a good idea to have at least one
contiguous, (cylinder-aligned if appropriate) mirror for each of the volumes for

Administering disks
Rootability

root, usr, var, opt and swap. This makes it easier to convert these from
volumes back to regular disk partitions (during an operating system upgrade,
for example).

Mirroring an encapsulated root disk

VxVM allows you to mirror the root volume and other areas needed for booting
onto another disk. This makes it possible to recover from failure of your root
disk by replacing it with one of its mirrors.

To mirror your root disk onto another disk

1
2

Choose a disk that is at least as large as the existing root disk.

If the selected disk is not already under VxVM control, use the vxdiskadd
or vxdiskadm command, or the Veritas Enterprise Administrator (VEA) to
add it to the bootdg disk group. Ensure that you specify the s1iced format
for the disk.

Select menu item 6 (Mirror Volumes on a Disk) from the vxdiskadm
main menu, or use the VEA to create a mirror of the root disk. (These
automatically invoke the vxrootmir command if the mirroring operation is
performed on the root disk.)

Alternatively, to mirror only those file systems on the root disk that are
required to boot the system, run the following command:

/etc/vx/bin/vxrootmir altboot disk

where altboot_disk is the disk media name of the mirror for the root disk.
vxrootmir creates a mirror for rootvol (the volume for the root file
system on an alternate disk). The alternate root disk is configured to
enable booting from it if the primary root disk fails.

Set the value of the EEPROM variable use-nvramrc? to true. This enables
the use of VxVM boot disk aliases, which identify mirrors of the root disk
from which the system can be booted. If the system is up and running, set
use-nvramrc? to true using the following command:

eeprom use-nvramrc?=true

You can also set use-nvramrc? at the ok boot prompt:

ok setenv use-nvramrc? true

After following these steps, you should be able to boot the system from an
alternate boot disk, vx-altboot_disk, by entering the following command at the
ok boot prompt:

ok boot vx-altboot_disk

You can use the devalias command at the boot prompt to discover the alternate
disks from which the system may be booted:

ok devalias

117

118

Administering disks
Rootability

Defining alternate boot disks

If required, you can define an alternate boot disk by entering the following
command at the ok boot prompt:

ok nvramrc=devalias vx-altboot disk
where altboot_disk is the device name of an alternate disk from which the
system can be booted.

Alternatively, if the system is already up and running, enter the following
command to define an alternate boot disk:
eeprom nvramrc=devalias vx-altboot disk

Mirroring other file systems on the root disk

There may be other volumes on the root disk, such as volumes for /home or
/tmp file systems. If necessary, these can be mirrored separately using the
vxassist utility. For example, if you have a /home file system on a volume
homevol, you can mirror it to alternate_disk using the command:

vxassist mirror homevol alternate_disk
If you do not have space for a copy of some of these file systems on your
alternate boot disk, you can mirror them to other disks. You can also span or
stripe these other volumes across other disks attached to your system.

To list all volumes on your primary boot disk, use the command:
vxprint -t -v -e’aslist.aslist.sd_disk="boot disk"’

Encapsulating SAN disks

A Solaris system may be booted from a SAN disk under the following conditions:

m For Solaris 9, the operating system must first be installed on an internal
boot disk. The ufsdump and ufsrestore commands can then be used to

create a bootable SAN disk. For more information, refer to the Sun document

Automating the Installation of an FC-Fabric SAN-Booted System at
http://www.sun.com/bigadmin/features/articles/fc_fabric_san.html.

m For Solaris 10, the operating system can also be installed directly onto a
fabric disk in a SAN environment.

Veritas Volume Manager can encapsulate a bootable SAN disk provided that the
disk is listed as being supported for this purpose in the Hardware Compatibility

List (HCL) on the support site at http://support.veritas.com.

For some disk arrays, special hardware configuration may be required to allow a

system to be booted from one of the LUNs in the array. Refer to the
documentation supplied by the array vendor for more information. Having
configured the disk array so that you can boot your system from it, you can
proceed to encapsulate it using VxVM.

http://www.sun.com/bigadmin/features/articles/fc_fabric_san.html
http://support.veritas.com

Administering disks | 119
Unencapsulating the root disk

To migrate from an internal boot disk to a SAN boot disk:

1 Verify that the HCL lists the target SAN disk as being supported for SAN
booting.

2 Usemenuitem1 (Add or initialize one or more disks) from the
vxdiskadm main menu, or the VEA to add the target SAN disk to the boot
disk group (aliased as bootdg).

3 Usemenuitem 6 (Mirror Volumes on a Disk)from the vxdiskadm
main menu, or the VEA to create a mirror of the root disk on the target disk.

4 Boot from the mirror disk to verify that the system is still bootable.

Once you have booted the system from the SAN disk, you can mirror it to
another SAN disk that has been added to the boot disk group.

If required, you can remove the plexes of the original boot disk by using the

vxplex command. For example, the following command removes the plexes

rootvol-01, swapvol-01, and home-01 that are configured on the boot disk:
vxplex -o rm dis rootvol-01 swapvol-01 home-01

Unencapsulating the root disk

You can use the vxunroot utility to remove rootability support from a system.
This makes root, swap, home and other file systems on the root disk directly
accessible through disk partitions, instead of through volume devices.

The vxunroot utility also makes the necessary configuration changes to allow
the system to boot without any dependency on VxVM.

Caution: Only the volumes that were present on the root disk when it was
encapsulated can be unencapsulated using vxunroot. Before running vxunroot,
evacuate all other volumes that were created on the root disk after it was
encapsulated.

To remove rootability from a system

1 Use the vxplex command to remove all the plexes of the volumes rootvol,
swapvol, usr, var, opt and home on the disks other than the root disk. For
example, the following command removes the plexes rootvol-02,
swapvol-02, and home-02 that are configured on the boot disk mirror:

vxplex -o rm dis rootvol-02 swapvol-02 home-02

Caution: Do not remove the plexes on the root disk that correspond to the
original disk partitions.

120

Administering disks
Dynamic LUN expansion

2 Run the vxunroot utility:
/etc/vx/bin/vxunroot
vxunroot does not perform any conversion to disk partitions if any plexes -
remain on other disks.-

Note: This operation requires a reboot of the system.

Dynamic LUN expansion

Note: A Storage Foundation license is required to use the dynamic LUN
expansion feature.

The following form of the vxdisk command can be used to make VxVM aware of
the new size of a virtual disk device that has been resized:

vxdisk [-f] [-g diskgroup] resize {accessname|medianame} \

[length=value]

The device must have a SCSI interface that is presented by a smart switch, smart
array or RAID controller. Following a resize operation to increase the length
that is defined for a device, additional disk space on the device is available for
allocation. You can optionally specify the new size by using the 1ength attribute.

If a disk media name rather than a disk access name is specified, the disk group
must either be specified using the -g option or the default disk group will be
used. If the default disk group has not been set up, an error message will be
generated.

This facility is provided to support dynamic LUN expansion by updating disk
headers and other VXVM structures to match a new LUN size. It does not resize
the LUN itself.

Any volumes on the device should only be grown after the device itself has first
been grown. Otherwise, storage other than the device may be used to grow the
volumes, or the volume resize may fail if no free storage is available.

Resizing should only be performed on devices that preserve data. Consult the
array documentation to verify that data preservation is supported and has been
qualified. The operation also requires that only storage at the end of the LUN is
affected. Data at the beginning of the LUN must not be altered. No attempt is
made to verify the validity of pre-existing data on the LUN. The operation
should be performed on the host where the disk group is imported (or on the
master node for a cluster-shared disk group).

Resizing of LUNs that are not part of a disk group is not supported.It is not
possible to resize LUNs that are in the boot disk group (aliased as bootdg), in a

Administering disks | 121
Extended Copy Service

deported disk group, or that are offline, uninitialized, being reinitialized, or in
an error state.

Caution: Do not perform this operation when replacing a physical disk with a
disk of a different size as data is not preserved.

Before reducing the size of a device, any volumes on the device should first be
reduced in size or moved off the device. By default, the resize fails if any
subdisks would be disabled as a result of their being removed in whole or in part
during a shrink operation.

If the device that is being resized has the only valid configuration copy for a disk
group, the - £ option may be specified to forcibly resize the device.

Resizing a device that contains the only valid configuration copy for a disk
group can result in data loss if a system crash occurs during the resize.

Resizing a virtual disk device is a non-transactional operation outside the
control of VxXVM. This means that the resize command may have to be re-issued
following a system crash. In addition, a system crash may leave the private
region on the device in an unusable state. If this occurs, the disk must be
reinitialized, reattached to the disk group, and its data resynchronized or
recovered from a backup.

Extended Copy Service

The Extended Copy Service feature of VxVM works in tandem with the extended
copy engines from array vendors. When VxVM detects that the source and
destination devices are enabled for extended copy, VxVM automatically off
loads copy requests to the array’s copy manager.

The benefits of the Extended Copy Service are:

m Non-disruptive copy operations from disk to disk. The host server remains
online during the copy and the data being copied remains accessible to the
server.

m Server-free copy operation. The copy operation is done between the array
subsystem and the target disk. The data copy operation does not use any
CPU or I/0O resources on the host server.

To see whether the Extended Copy Service feature is enabled on a disk, use the
vxprint command as shown in the following example. The feature is enabled if
an ecopy_enabled entry appears in the f1ags line.

vxprint -1 disk03
Disk group: rootdg

Disk: disk03

122

Administering disks
Extended Copy Service

info: diskid=1234567890.59.vm250el.veritas.com
assoc: device=c2t2d0s2 type=auto

flags: autoconfig ecopy_enabled

device: path=/dev/vx/dmp/c2t2d0s4

devinfo: publen=35354136 privlen=9167

Note: If required, you can use the -o noecopy option to turn off Extended Copy
Service for each invocation of the vxplex att, cp, mv and snapstart commands,
and the vxsdmv command.

Enabling a disk for Extended Copy Service operation

To enable a disk for Extended Copy Service operation
1 Install the Hardware Assisted copy license.
2 Enable the Ecopy features in the array. This procedure is vendor-specific.

3 Install the vendor ASL that supports the Ecopy feature. contact
VITA@veritas.com for vendor ASL information.

Enabling Extended Copy Service for Hitachi arrays

To implement extended copy for the Hitachi 9900 and 9900V arrays, use the
following command to create the two files, /etc/vx/user_pwwn_file and
/etc/vx/user_luid_file, that contain identification information for the
disks.

/etc/vx/diag.d/vxwwnluid

This command must be executed as root.

The user_pwwn_file file contains the disk access name and the port world-
wide-name (pwwn) for each disk in the array. For the Hitachi arrays, both the
source and the destination devices must have entries in the this file. The
information for each disk in the array is defined on a single line. The disk access
name and PWWN are separated by a single tab character.

The following are sample entries from the user_pwwn_file file:

clt22d0 50060e800404040b
clt23d0 50060e800404040b
clt24d0 50060e800404040b

The user_1luid_file file contains the disk access names and their
corresponding LUN numbers in the array. The information for each disk in the
array is defined on a single line. The disk access name and the LUN are
separated by a single tab character.

Administering disks | 123
Removing disks

The following are sample entries from the user_luid_file file:

clt22d0 1
clt23d0 2
clt24d0 1

Removing disks

Note: You must disable a disk group as described in “Disabling a disk group” on
page 217 before you can remove the last disk in that group. Alternatively, you
can destroy the disk group as described in “Destroying a disk group” on

page 218.

You can remove a disk from a system and move it to another system if the disk is
failing or has failed.

To prepare your system for the removal of the disk

1 Stop all activity by applications to volumes that are configured on the disk
that is to be removed. Unmount file systems and shut down databases that
are configured on the volumes.

2 Use the following command to stop the volumes:
vxvol [-g diskgroup] stop volumel volume2 ...

3 Move the volumes to other disks or back up the volumes. To move a volume,
use vxdiskadm to mirror the volume on one or more disks, then remove the
original copy of the volume. If the volumes are no longer needed, they can
be removed instead of moved.

4 Checkthat any data on the disk has either been moved to other disks or is no
longer needed.

To remove the disk from its disk group
1 Select menuitem 3 (Remove a disk) from the vxdiskadm main menu.-

2 At the following prompt, enter the disk name of the disk to be removed:

Remove a disk
Menu: VolumeManager/Disk/RemoveDisk

Use this operation to remove a disk from a disk group. This
operation takes a disk name as input. This is the same name
that you gave to the disk when you added the disk to the disk
group.

Enter disk name [<disk>,list,q,?] mydg01l

124

Administering disks
Removing disks

If there are any volumes on the disk, VxVM asks you whether they should be
evacuated from the disk. If you wish to keep the volumes, answer y.
Otherwise, answer n.

At the following verification prompt, press Return to continue:

VxVM NOTICE V-5-2-284 Requested operation is to remove disk
mydg0l from group mydg.

Continue with operation? [y,n,dq,?] (default: y)
The vxdiskadm utility removes the disk from the disk group and displays
the following success message:

VxVM INFO V-5-2-268 Removal of disk mydg0l is complete.
You can now remove the disk or leave it on your system as a replacement.

At the following prompt, indicate whether you want to remove other disks
(¥) or return to the vxdiskadm main menu (n):

Remove another disk? [y,n,q,?] (default: n)

Removing a disk with subdisks

You can remove a disk on which some subdisks are defined. For example, you
can consolidate all the volumes onto one disk. If you use the vxdiskadm
program to remove a disk, you can choose to move volumes off that disk. To do
this, run the vxdiskadm program and select item 3 (Remove a disk) from
the main menu.

If the disk is used by some subdisks, the following message is displayed:

VxVM ERROR V-5-2-369 The following volumes currently use part of
disk mydg02:

home usrvol
Volumes must be moved from mydg02 before it can be removed.

Move volumes to other disks? [y,n,q,?] (default: n)

If you choose y, then all subdisks are moved off the disk, if possible. Some
subdisks are not movable. A subdisk may not be movable for one of the following
reasons:

There is not enough space on the remaining disks in the subdisk’s disk
group.

Plexes or striped subdisks cannot be allocated on different disks from
existing plexes or striped subdisks in the volume.

If the vxdiskadm program cannot move some subdisks, remove some plexes
from some disks to free more space before proceeding with the disk removal
operation. See “Removing a volume” on page 303 and “Taking plexes offline” on
page 240 for information on how to remove volumes and plexes.

Administering disks | 125
Removing a disk from VxVM control

Removing a disk with no subdisks

To remove a disk that contains no subdisks from its disk group, run the

vxdiskadm program and select item 3 (Remove a disk) from the main

menu, and respond to the prompts as shown in this example to remove mydg02:
Enter disk name [<disk>,list,q,?] mydg02

VxVM NOTICE V-5-2-284 Requested operation is to remove disk
mydg02 from group mydg.

Continue with operation? [y,n,q,?] (default: vy) y

VxVM INFO V-5-2-268 Removal of disk mydg02 is complete.

Clobber disk headers? [y,n,q,?] (default: n) ¥y
Enter y to remove the disk completely from VxVM control. If you do not want to
remove the disk completely from VxVM control, enter n.

Removing a disk from VxVM control

After removing a disk from a disk group, you can permanently remove it from
Veritas Volume Manager control by running the vxdiskunsetup command:
/usr/lib/vxvm/bin/vxdiskunsetup c#t#d#

Caution: The vxdiskunsetup command removes a disk from Veritas Volume
Manager control by erasing the VxVM metadata on the disk. To prevent data
loss, any data on the disk should first be evacuated from the disk. The
vxdiskunsetup command should only be used by a system administrator who is
trained and knowledgeable about Veritas Volume Manager.

Removing and replacing disks

Note: A replacement disk should have the same disk geometry as the disk that
failed. That is, the replacement disk should have the same bytes per sector,
sectors per track, tracks per cylinder and sectors per cylinder, same number of
cylinders, and the same number of accessible cylinders. (You can use the
prtvtoc command to obtain disk information.)

Caution: To remove and replace a disk in a Sun StorEdge™ A5x00 or similar type
of array, follow the procedure given in “Removing and replacing a disk in a Sun
StorEdge A5x00 disk array” on page 131.

126

Administering disks
Removing and replacing disks

If failures are starting to occur on a disk, but the disk has not yet failed
completely, you can replace the disk. This involves detaching the failed or
failing disk from its disk group, followed by replacing the failed or failing disk
with a new one. Replacing the disk can be postponed until a later date if
necessary.

To replace a disk

1

3

Select menu item 4 (Remove a disk for replacement) from the

vxdiskadm main menu.

At the following prompt, enter the name of the disk to be replaced (or enter

1list for alist of disks):

Remove a disk for replacement
Menu: VolumeManager/Disk/RemoveForReplace

Use this menu operation to remove a physical disk from a disk
group, while retaining the disk name. This changes the state
for the disk name to a removed disk. If there are any
initialized disks that are not part of a disk group, you will
be given the option of using one of these disks as a
replacement.

Enter disk name [<disk>,list,q,?] mydg02

When you select a disk to remove for replacement, all volumes that are

affected by the operation are displayed, for example:
VxVM NOTICE V-5-2-371 The following volumes will lose mirrors
as a result of this operation:
home src

No data on these volumes will be lost.

The following volumes are in use, and will be disabled as a
result of this operation:

mkting

Any applications using these volumes will fail future
accesses. These volumes will require restoration from backup.

Are you sure you want do this? [y,n,q,?] (default: n)

To remove the disk, causing the named volumes to be disabled and data to
be lost when the disk is replaced, enter y or press Return.

To abandon removal of the disk, and back up or move the data associated
with the volumes that would otherwise be disabled, enter n or q and press
Return.

For example, to move the volume mkting to a disk other than mydg02, use
this command:

Administering disks | 127
Removing and replacing disks

vxassist move mkting !mydg02
After backing up or moving the data in the volumes, start again from step 1
above.

At the following prompt, either select the device name of the replacement
disk (from the list provided), press Return to choose the default disk, or
enter none if you are going to replace the physical disk:

The following devices are available as replacements:
c0t1do

You can choose one of these disks now, to replace mydg02.
Select “none” if you do not wish to select a replacement disk.

Choose a device, or select “none”
[<device>,none,q,?] (default: c0tl1do)

Note: Do not choose the old disk drive as a replacement even though it
appears in the selection list. If necessary, you can choose to initialize a new
disk.

If you enter none because you intend to replace the physical disk, see the
section “Replacing a failed or removed disk” on page 129.

If you chose to replace the disk in step 4, press Return at the following
prompt to confirm this:
VxVM NOTICE V-5-2-285 Requested operation is to remove mydg02

from group mydg. The removed disk will be replaced with disk
device c0tl1do0.

Continue with operation? [y,n,dq,?] (default: y)
vxdiskadm displays the following messages to indicate that the original
disk is being removed:

VxVM NOTICE V-5-2-265 Removal of disk mydg02 completed
successfully.
VxVM NOTICE V-5-2-260 Proceeding to replace mydg02 with device
c0t1do.
If the disk was previously an encapsulated root disk, vxdiskadm displays the
following message. Enter y to confirm that you want to reinitialize the disk:

The disk cl1lt0d0 was a previously encapsulated root disk. Due
to the disk layout that results from root disk encapsulation,
the preferred action is to reinitialize and reorganize this
disk. However, if you have any non-redundant data on this disk
you should not reorganize this disk, as the data will be lost.
Reorganize the disk? [y,n,q,?] (default: vy) ¥y

128

Administering disks

Removing and replacing disks

Caution: It is recommended that you do not enter n at this prompt. This
results in an invalid vToc that makes the disk unbootable.

Entering y at the prompt destroys any data that is on the disk. Ensure that
you have at least one valid copy of the data on other disks before
proceeding.

6 You can now choose whether the disk is to be formatted as a CDS disk that is
portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q, ?]
(default: cdsdisk)
Enter the format that is appropriate for your needs. In most cases, this is
the default format, cdsdisk.

7 At the following prompt, vxdiskadm asks if you want to use the default
private region size of 65536 blocks (32 MB). Press Return to confirm that you
want to use the default value, or enter a different value. (The maximum
value that you can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q, ?]
(default: 65536)

8 If one of more mirror plexes were moved from the disk, you are now

prompted whether FastResync should be used to resynchronize the plexes:
Use FMR for plex resync? [y,n,q,?] (default: n) vy
vxdiskadm displays the following success message:
VxVM NOTICE V-5-2-158 Disk replacement completed successfully.

9 At the following prompt, indicate whether you want to remove another disk
(y) or return to the vxdiskadm main menu (n):

Remove another disk? [y,n,q,?] (default: n)

Note: If removing a disk causes one or more volumes to be disabled, see the
section, “Restarting a Disabled Volume” in the chapter “Recovery from
Hardware Failure” in the Veritas Volume Manager Troubleshooting Guide, for
information on how to restart a disabled volume so that you can restore its data
from a backup.

If you wish to move hot-relocate subdisks back to a replacement disk, see
“Configuring hot-relocation to use only spare disks” on page 400.

Administering disks | 129
Removing and replacing disks

Replacing a failed or removed disk

Caution: To remove and replace a disk in a Sun StorEdge A5x00 or similar type
of array, follow the procedure given in “Removing and replacing a disk in a Sun
StorEdge A5x00 disk array” on page 131.

Note: You may need to run commands that are specific to the operating system
or disk array when replacing a physical disk.

To specify a disk that has replaced a failed or removed disk

1 Select menuitem 5 (Replace a failed or removed disk) from the
vxdiskadm main menu.

2 At the following prompt, enter the name of the disk to be replaced (or enter
list for alist of disks):

Replace a failed or removed disk
Menu: VolumeManager/Disk/ReplaceDisk

VxVM INFO V-5-2-479 Use this menu operation to specify a
replacement disk for a disk that you removed with the “Remove
a disk for replacement” menu operation, or that failed during
use. You will be prompted for a disk name to replace and a disk
device to use as a replacement.

You can choose an uninitialized disk, in which case the disk
will be initialized, or you can choose a disk that you have
already initialized using the Add or initialize a disk menu
operation.

Select a removed or failed disk [<disk>,list,q,?] mydg02

3 The vxdiskadm program displays the device names of the disk devices
available for use as replacement disks. Your system may use a device name
that differs from the examples. Enter the device name of the disk or press
Return to select the default device:

The following devices are available as replacements:
c0t1ld0 cltl1ldo

You can choose one of these disks to replace mydg02.
Choose "none" to initialize another disk to replace mydg02.

Choose a device, or select "none"
[<device>,none,q,?] (default: c0tl1do0)

4 Depending on whether the replacement disk was previously initialized,
perform the appropriate step from the following:

130

Administering disks
Removing and replacing disks

4

If the disk has not previously been initialized, press Return at the following
prompt to replace the disk:
VxVM INFO V-5-2-378 The requested operation is to initialize
disk device c0tld0 and to then use that device to
replace the removed or failed disk mydg02 in disk group mydg.
Continue with operation? [y,n,q,?] (default: vy)

If the disk has already been initialized, press Return at the following prompt
to replace the disk:
VxVM INFO V-5-2-382 The requested operation is to use the
initialized device c0tld0 to replace the removed or
failed disk mydg02 in disk group mydg.
Continue with operation? [y,n,dq,?] (default: y)

If the disk was previously an encapsulated root disk, vxdiskadm displays the

following message. Enter y to confirm that you want to reinitialize the disk:
VxVM INFO V-5-2-876 The disk c0tld0 was a previously
encapsulated root disk. Due to the disk layout that results
from root disk encapsulation, the preferred action is to
reinitialize and reorganize this disk. However, if you have
any non-redundant data on this disk you should not reorganize
this disk, as the data will be lost.
Reorganize the disk? [y,n,q,?] (default: vy) ¥y

Caution: It is recommended that you do not enter n at this prompt. This can
result in an invalid vroc that makes the disk unbootable.

Entering y at the prompt destroys any data that is on the disk. Ensure that
you have at least one valid copy of the data on other disks before
proceeding.

You can now choose whether the disk is to be formatted as a CDS disk that is
portable between different operating systems, or as a non-portable sliced or
simple disk:

Enter the desired format [cdsdisk,sliced,simple,q, ?]

(default: cdsdisk)
Enter the format that is appropriate for your needs. In most cases, this is
the default format, cdsdisk.

At the following prompt, vxdiskadm asks if you want to use the default
private region size of 65536 blocks (32 MB). Press Return to confirm that you
want to use the default value, or enter a different value. (The maximum
value that you can specify is 524288 blocks.)

Enter desired private region length [<privlen>,q, ?]

(default: 65536)
The vxdiskadm program then proceeds to replace the disk, and returns the
following message on success:

Administering disks
Enabling a disk

VxVM NOTICE V-5-2-158 Disk replacement completed successfully.
At the following prompt, indicate whether you want to replace another disk
(y) or return to the vxdiskadm main menu (n):

Replace another disk? [y,n,q,?] (default: n)

Removing and replacing a disk in a Sun StorEdge A5x00 disk array

To replace a disk in a Sun StorEdge A5x00 disk array (or any similar array that
is administered using the Solaris luxadm command)

1

Run the vxdiskadm command, and select menu item 4 (Remove a disk
for replacement) from the main menu as described in “Removing and
replacing disks” on page 125. Enter none when prompted to name a
replacement disk.

Use the following command to remove the disk from VxVM:

vxdisk rm daname

where daname is the disk access name of the device (for example,
cl1t5d0s2).

Use the Solaris 1uxadm command to obtain the array name and slot number
of the disk, and then use these values with 1uxadm to remove the disk:

luxadm disp /dev/rdsk/daname
luxadm remove_device array name, slot_number

Follow the 1uxadm prompts, and pull out the disk when instructed.

Run the following 1uxadm command when you are ready to insert the
replacement disk:

luxadm insert_device array name, slot_number

Follow the 1uxadam prompts, and insert the replacement disk when
instructed.

Run the following command to scan for the new disk and update the system:

vxdiskconfig

Run the vxdiskadm command, select menu item 5 (Replace a failed
or removed disk) from the main menu, and follow the instructions
described in “Replacing a failed or removed disk” on page 129.

Enabling a disk

If you move a disk from one system to another during normal system operation,
VxVM does not recognize the disk automatically. The enable disk task enables
VxXVM to identify the disk and to determine if this disk is part of a disk group.
Also, this task re-enables access to a disk that was disabled by either the disk
group deport task or the disk device disable (offline) task.

131

132

Administering disks
Taking a disk offline

To enable a disk

1 Selectmenuitem 10 (Enable (online) a disk device) from the
vxdiskadm main menu.

2 At the following prompt, enter the device name of the disk to be enabled (or
enter list for alist of devices):

Enable (online) a disk device
Menu: VolumeManager/Disk/OnlineDisk

VxVM INFO V-5-2-998 Use this operation to enable access to a
disk that was disabled with the “Disable (offline) a disk
device” operation.

You can also use this operation to re-scan a disk that may have
been changed outside of the Volume Manager. For example, if a
disk is shared between two systems, the Volume Manager running
on the other system may have changed the disk. If so, you can
use this operation to re-scan the disk.

NOTE: Many vxdiskadm operations re-scan disks without user
intervention. This will eliminate most needs to online a
disk directly, except when the disk is directly offlined.

Select a disk device to enable [<address>,list,q,?]
c0t2d0s2

vxdiskadm enables the specified device.

3 Atthe following prompt, indicate whether you want to enable another
device (y) or return to the vxdiskadm main menu (n):
Enable another device? [y,n,q,?] (default: n)
You can also issue the command vxdctl enable after a hot disk swap. This
enables VxVM to recognize the new disk and any paths to it that are available
through Dynamic Multipathing (DMP).

Taking a disk offline

There are instances when you must take a disk offline. If a disk is corrupted, you
must disable the disk before removing it. You must also disable a disk before
moving the physical disk device to another location to be connected to another
system.

Note: Taking a disk offline is only useful on systems that support Aot-swap
removal and insertion of disks without needing to shut down and reboot the
system.

Administering disks | 133
Renaming a disk

To take a disk offline

1 Selectmenuitem 11 (Disable (offline) a disk device) from the
vxdiskadm main menu.

2 At the following prompt, enter the address of the disk you want to disable:

Disable (offline) a disk device
Menu: VolumeManager/Disk/OfflineDisk

VxVM INFO V-5-2-474 Use this menu operation to disable all
access to a disk device by the Volume Manager. This operation
can be applied only to disks that are not currently in a disk
group. Use this operation if you intend to remove a disk from
a system without rebooting.

NOTE: Many systems do not support disks that can be removed
from a system during normal operation. On such systems, the
offline operation is seldom useful.

Select a disk device to disable [<address>,list,q, ?]
c0t2d0s2

The vxdiskadm program disables the specified disk.

3 At the following prompt, indicate whether you want to disable another
device (y) or return to the vxdiskadm main menu (n):

Disable another device? [y,n,q,?] (default: n)

Renaming a disk

If you do not specify a VM disk name, VxVM gives the disk a default name when
you add the disk to VXVM control. The VM disk name is used by VxVM to
identify the location of the disk or the disk type. To change the disk name to
reflect a change of use or ownership, use the following command:

vxedit [-g diskgroup] rename old_diskname new_ diskname
For example, you might want to rename disk mydg03, as shown in the following
output from vxdisk list, tomydg02: #

vxdisk list

DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:sliced mydg01 mydg online
clt0d0s2 auto:sliced mydg03 mydg online
cltld0s2 auto:sliced - - online

You would use the following command to rename the disk.
vxedit -g mydg rename mydg03 mydg02

To confirm that the name change took place, use the vxdisk 1ist command

again:
vxdisk list
DEVICE TYPE DISK GROUP STATUS

c0t0d0s2 auto:sliced mydg01 mydg online

134

Administering disks
Reserving disks

clt0d0s2 auto:sliced mydg02 mydg online
cltld0s2 auto:sliced - - online

Note: By default, VxVM names subdisk objects after the VM disk on which they
are located. Renaming a VM disk does not automatically rename the subdisks on
that disk.

Reserving disks

By default, the vxassist command allocates space from any disk that has free
space. You can reserve a set of disks for special purposes, such as to avoid
general use of a particularly slow or a particularly fast disk.
To reserve a disk for special purposes, use the following command:
vxedit [-g diskgroup] set reserve=on diskname
After you enter this command, the vxassist program does not allocate space
from the selected disk unless that disk is specifically mentioned on the vxassist
command line. For example, if mydgO03 is reserved, use the following command:
wvxassist [-g diskgroup] make vol03 20m mydg03
The vxassist command overrides the reservation and creates a 20 megabyte
volume on mydg03. However, the command:
vxassist -g mydg make vol04 20m
does not use mydg03, even if there is no free space on any other disk.
To turn off reservation of a disk, use the following command:
vxedit [-g diskgroup] set reserve=off diskname

See the vxedit(1M) manual page for more information.

Displaying disk information

Before you use a disk, you need to know if it has been initialized and placed
under VxVM control. You also need to know if the disk is part of a disk group,
because you cannot create volumes on a disk that is not part of a disk group. The
vxdisk list command displays device names for all recognized disks, the disk
names, the disk group names associated with each disk, and the status of each
disk.

To display information on all disks that are known to VxVM, use the following
command:

vxdisk list
VxVM returns a display similar to the following:

DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:sliced mydg04 mydg online

Administering disks
Displaying disk information

clt0d0s2 auto:sliced mydg03 mydg online
cltld0s2 auto:sliced - - online invalid
enc0_2 auto:sliced mydg02 mydg online
enc0_3 auto:sliced mydg05 mydg online
senal_0 auto:sliced - - online
senal_1 auto:sliced - - online

Note: The phrase online invalidinthe STATUS line indicates that a disk has
not yet been added to VxVM control. These disks may or may not have been
initialized by VXVM previously. Disks that are listed as online are already
under VxVM control.

To display details on a particular disk that is defined to VxVM, use the following
command:

vxdisk [-v] list diskname

The -v option causes the command to additionally list all tags and tag values
that are defined for the disk. Without this option, no tags are displayed.

Displaying disk information with vxdiskadm

Displaying disk information shows you which disks are initialized, to which disk
groups they belong, and the disk status. The 1ist command displays device
names for all recognized disks, the disk names, the disk group names associated
with each disk, and the status of each disk.

To display disk information

1

Start the vxdiskadm program, and select 1ist (List disk information)
from the main menu.

At the following display, enter the address of the disk you want to see, or
enter all for a list of all disks:

List disk information
Menu: VolumeManager/Disk/ListDisk

VxXVM INFO V-5-2-475 Use this menu operation to display a list of
disks. You can also choose to list detailed information about
the disk at a specific disk device address.

Enter disk device or "all" [<address>,all,q,?] (default: all)

m Ifyouenter all, VxVM displays the device name, disk name, group,
and status.

m If you enter the address of the device for which you want information,
complete disk information (including the device name, the type of disk,
and information about the public and private areas of the disk) is
displayed.

135

136 | Administering disks
Displaying disk information

Once you have examined this information, press Return to return to the
main menu.

Administering dynamic
multipathing (DMP)

The dynamic multipathing (DMP) feature of Veritas Volume Manager (VxVM)
provides greater reliability and performance by using path failover and load
balancing. This feature is available for multiported disk arrays from various
vendors.

How DMP works

Multiported disk arrays can be connected to host systems through multiple
paths. To detect the various paths to a disk, DMP uses a mechanism that is
specific to each supported array type. DMP can also differentiate between
different enclosures of a supported array type that are connected to the same
host system.

See “Discovering and configuring newly added disk devices” on page 86 for a
description of how to make newly added disk hardware known to a host system.

The multipathing policy used by DMP depends on the characteristics of the disk
array:

m An Active/Passive array (A/P array) allows access to its LUNs (logical units;
real disks or virtual disks created using hardware) via the primary (active)
path on a single controller (also known as an access port or a storage
processor) during normal operation.

In implicit failover mode (or autotrespass mode), an A/P array automatically
fails over by scheduling I/0 to the secondary (passive) path on a separate
controller if the primary path fails. This passive port is not used for I/0
until the active port fails. In A/P arrays, path failover can occur for a single
LUN if I/O fails on the primary path.

For Active/Passive arrays with LUN group failover (A/PG arrays), a group of
LUNs that are connected through a controller is treated as a single failover

138

Administering dynamic multipathing (DMP)

How DMP works

entity. Unlike A/P arrays, failover occurs at the controller level, and not for
individual LUNs. The primary and secondary controller are each connected
to a separate group of LUNs. If a single LUN in the primary controller’s LUN
group fails, all LUNs in that group fail over to the secondary controller.
Active/Passive arrays in explicit failover mode (or non-autotrespass mode)
are termed A/PF arrays. DMP issues the appropriate low-level command to
make the LUNs fail over to the secondary path.

A/P-C, A/PF-C and A/PG-C arrays are variants of the A/P, AP/F and A/PG
array types that support concurrent I/O and load balancing by having
multiple primary paths into a controller. This functionality is provided by a
controller with multiple ports, or by the insertion of a SAN hub or switch
between an array and a controller. Failover to the secondary (passive) path
occurs only if all the active primary paths fail.

B An Active/Active disk array (A/A arrays) permits several paths to be used
concurrently for I/O. Such arrays allow DMP to provide greater I/0
throughput by balancing the I/O load uniformly across the multiple paths to
the LUNs. In the event that one path fails, DMP automatically routes I/0
over the other available paths.

A/A-A or Asymmetric Active/Active arrays can be accessed through
secondary storage paths with little performance degradation. Usually an
A/A-A array behaves like an A/P array rather than an A/A array. However,
during failover, an A/A-A array behaves like an A/A array.

Note: An array support library (ASL) may define additional array types for the
arrays that it supports.

VXVM uses DMP metanodes (DMP nodes) to access disk devices connected to the
system. For each disk in a supported array, DMP maps one node to the set of
paths that are connected to the disk. Additionally, DMP associates the
appropriate multipathing policy for the disk array with the node. For disks in an
unsupported array, DMP maps a separate node to each path that is connected to
a disk. The raw and block devices for the nodes are created in the directories
/dev/vx/rdmp and /dev/vx/dmp respectively.

Figure 3-1 illustrates how DMP sets up a node for a disk in a supported disk
array.

Administering dynamic multipathing (DMP) | 139
How DMP works

Figure 3-1 How DMP represents multiple physical paths to a disk as one node
—
VxVM
Host
cl c2
k f Single DMP node
Multiple paths Mapped by DMP

— DMP

ultiple paths

As described in “Enclosure-based naming” on page 25, VXVM implements a disk
device naming scheme that allows you to recognize to which array a disk
belongs. Figure 3-2, shows an example where two paths, c1£99d0 and c2t£994d0,
exist to a single disk in the enclosure, but VxXVM uses the single DMP node,
enc0_0, to access it.

Figure 3-2 Example of multipathing for a disk enclosure in a SAN environment
| VxVM
|_|C1 5] Host
enc0_0

Mapped by DMP

ipuEEEnn| (unesnman| — DMP
Fibre Channel hubs
or switches

c1t99d0 €2t99d0

[) D) Disk enclosure encO

I—Disk is ¢1t99d0 or c2t99d0
depending on the path

140

Administering dynamic multipathing (DMP)

How DMP works

See “Changing the disk-naming scheme” on page 95 for details of how to change
the naming scheme that VxVM uses for disk devices.

See “Discovering and configuring newly added disk devices” on page 86 for a
description of how to make newly added disk hardware known to a host system.

How DMP monitors I/O on paths

In older releases of VxVM, DMP had one kernel daemon (errord) that performed
error processing, and another (restored) that performed path restoration
activities.

From release 5.0, DMP maintains a pool of kernel threads that are used to
perform such tasks as error processing, path restoration, statistics collection,
and SCSIrequest callbacks. The vxdmpadm stat command can be used to provide
information about the threads. The names errord and restored have been
retained for backward compatibility.

One kernel thread responds to I/O failures on a path by initiating a probe of the
host bus adapter (HBA) that corresponds to the path. Another thread then takes
the appropriate action according to the response from the HBA. The action
taken can be to retry the I/O request on the path, or to fail the path and
reschedule the I/O on an alternate path.

The restore kernel thread is woken periodically (typically every 5 minutes) to
check the health of the paths, and to resume I/O on paths that have been
restored. As some paths may suffer from intermittent failure, I/0 is only
resumed on a path if has remained healthy for a given period of time (by default,
5 minutes). DMP can be configured with different policies for checking the paths
as described in “Configuring DMP path restoration policies” on page 171.

The statistics-gathering thread records the start and end time of each I/O
request, and the number of I/O failures and retries on each path. DMP can be
configured to use this information to prevent the SCSI driver being flooded by
I/0 requests. This feature is known as I/O throttling.

If an I/O request relates to a mirrored volume, VxVM specifies the FAILFAST
flag. In such cases, DMP does not retry failed I/O requests on the path, and
instead marks the disks on that path as having failed.

See “Path failover mechanism” on page 140 and “I/O throttling” on page 141 for
more information about these features of DMP.

Path failover mechanism

The DMP feature of VXVM enhances system reliability when used with
multiported disk arrays. In the event of the loss of a path to a disk array, DMP
automatically selects the next available path for I/O requests without
intervention from the administrator.

Administering dynamic multipathing (DMP) | 141
How DMP works

DMP is also informed when a connection is repaired or restored, and when you
add or remove devices after the system has been fully booted (provided that the
operating system recognizes the devices correctly).

If required, the response of DMP to I/O failure on a path can be tuned for the
paths to individual arrays. DMP can be configured to time out an I/O request
either after a given period of time has elapsed without the request succeeding,
or after a given number of retries on a path have failed.

For information about how to configure the behavior of DMP in response to I/O
failure on a path, see “Configuring the response to I/O failures” on page 167.

1/0 throttling

If I/0 throttling is enabled, and the number of outstanding I/O requests builds
up on a path that has become less responsive, DMP can be configured to prevent
new I/O requests being sent on the path either when the number of outstanding
I/0 requests has reached a given value, or a given time has elapsed since the last
successful I/O request on the path. While throttling is applied to a path, the
outstanding I/O requests on that path are scheduled on other available paths.
The throttling is removed from the path if the HBA reports no error on the path,
or if an outstanding I/O request on the path succeeds.

For information about how to configure I/O throttling on a path, see
“Configuring the I/O throttling mechanism” on page 168.

Load balancing

By default, DMP uses the balanced path mechanism to provide load balancing
across paths for Active/Active, A/P-C, A/PF-C and A/PG-C disk arrays. Load
balancing maximizes I/O throughput by using the total bandwidth of all
available paths. Sequential I/O starting within a certain range is sent down the
same path in order to benefit from disk track caching. Large sequential I/O that
does not fall within the range is distributed across the available paths to reduce
the overhead on any one path.

For Active/Passive disk arrays, I/O is sent down the primary path. If the primary
path fails, I/O is switched over to the other available primary paths or secondary
paths. As the continuous transfer of ownership of LUNs from one controller to
another results in severe I/O slowdown, load balancing across paths is not
performed for Active/Passive disk arrays unless they support concurrent I/O.

Note: Both paths of an Active/Passive array are not considered to be on different
controllers when mirroring across controllers (for example, when creating a
volume using vxassist make specified with the mirror=ctir attribute).

142

Administering dynamic multipathing (DMP)

How DMP works

For A/P-C, A/PF-C and A/PG-C arrays, load balancing is performed across all the
currently active paths as is done for Active/Active arrays.

You can use the vxdmpadm command to change the I/O policy for the paths to an
enclosure or disk array as described in “Specifying the I/O policy” on page 159.

Dynamic Reconfiguration

Dynamic Reconfiguration (DR) is a feature that is available on some high-end
SUN Enterprise systems. The system board to be reconfigured contains disks
controlled by VxVM (in addition to CPUs, memory, and other controllers or I/0
boards) that can be taken offline while the system is still running.

See “Enabling and disabling I/O for controllers and storage processors” on
page 147.

Using MPxIO with DMP

Either the Sun StorEdge Traffic Manager (SSTM) driver or DMP can be used to
handle multipathing for a single host in a non-clustered environment.

In multihost configurations, the Sun StorEdge T3 must be configured to MPxIO
mode (explicit failover or nonauto_trespass). In this mode, the STMS
driver on the host handles multipathing. VxVM will not see multiple paths to
any device on the array.

You must upgrade the Sun StorEdge T3 firmware to 1.17B. The patch for this
upgrade is 109115-09. The latest firmware for StorEdge T3 and T3+ Arrays is
available in patches 109115-xx and 112276-xx.

MPxIO mode is enabled by setting mpxio-disable="no" inthe
/kernel/drv/scsi_vhci.conf file on Solaris 8 or 9, or in the
/kernel/drv/fp.conf file on Solaris 10.

Use the command sys mp_support=mpxio to enable the MPxIO mode on the Sun
StorEdge T3 array.

Note: All hosts in a clustered environment must use the MPxIO mode.

Booting from DMP devices

When the root disk is placed under VxVM control, it is automatically accessed as
a DMP device with one path if it is a single disk, or with multiple paths if the disk
is part of a multiported disk array. By encapsulating and mirroring the root disk,
system reliability is enhanced against loss of one or more of the existing
physical paths to a disk.

Administering dynamic multipathing (DMP) | 143
How DMP works

DMP in a clustered environment

Note: You need an additional license to use the cluster feature of VxVM.

In a clustered environment where Active/Passive type disk arrays are shared by
multiple hosts, all nodes in the cluster must access the disk via the same
physical path. Accessing a disk via multiple paths simultaneously can severely
degrade I/O performance (sometimes referred to as the ping-pong effect). Path
failover on a single cluster node is also coordinated across the cluster so that all
the nodes continue to share the same physical path.

Prior to release 4.1 of VxVM, the clustering and DMP features could not handle
automatic failback in A/P arrays when a path was restored, and did not support
failback for explicit failover mode arrays. Failback could only be implemented
manually by running the vxdct1 enable command on each cluster node after
the path failure had been corrected. In release 4.1, failback is now an automatic
cluster-wide operation that is coordinated by the master node. Automatic
failback in explicit failover mode arrays is also handled by issuing the
appropriate low-level command. If required, this feature can be disabled by
selecting the “no failback” option that is defined in the array policy module
(APM) for an array.

Note: Support for automatic failback of an A/P array requires that an
appropriate ASL (and APM, if required) is available for the array, and has been
installed on the system. See “Administering the Device Discovery Layer” on
page 90 and “Configuring array policy modules” on page 173.

For Active/Active type disk arrays, any disk can be simultaneously accessed
through all available physical paths to it. In a clustered environment, the nodes
do not all need to access a disk via the same physical path.

Enabling or disabling controllers with shared disk groups

Prior to release 5.0, VxVM did not allow enabling or disabling of paths or
controllers connected to a disk that is part of a shared Veritas Volume Manager
disk group. From VxVM 5.0 onward, such operations are supported on shared
DMP nodes in a cluster.

144 | Administering dynamic multipathing (DMP)
Disabling and enabling multipathing for specific devices

Disabling and enabling multipathing for specific
devices

You can use vxdiskadm menu options 17 and 18 to disable or enable
multipathing. These menu options also allow you to exclude or exclude devices
from the view of VxXVM.

See “Disabling multipathing and making devices invisible to VxXVM” on
page 144.

See “Enabling multipathing and making devices visible to VxVM” on page 145.

Disabling multipathing and making devices invisible to VxVM

Note: Some of the operations described in this section require a reboot of the
system.

1 Select menu task 17 (Prevent multipathing/Suppress devices from
VxVM's view)from the vxdiskadm main menu to prevent a device from
being multipathed by the VxVM DMP driver (vxdmp), or to exclude a device
from the view of VxVM. You are prompted to confirm whether you want to
continue.

2 Select the operation you want to perform from the displayed list:

1 Suppress all paths through a controller from VxVM’'s view
2 Suppress a path from VxVM’'s view

3 Suppress disks from VxVM’'s view by specifying a VID:PID
combination

Suppress all but one paths to a disk

Prevent multipathing of all disks on a controller by VxVM
Prevent multipathing of a disk by VxVM

Prevent multipathing of disks by specifying a VID:PID
combination

8 List currently suppressed/non-multipathed devices

~N O U

? Display help about menu
?? Display help about the menuing system
a Exit from menus

Help text and examples are provided onscreen for all the menu items.

& Select option 1 to exclude all paths through the specified controller from the
view of VxVM. These paths remain in the disabled state until the next
reboot, or until the paths are re-included.

¢ Select option 2 to exclude specified paths from the view of VxVM.

Administering dynamic multipathing (DMP) | 145
Disabling and enabling multipathing for specific devices

¢ Select option 3 to exclude disks from the view of VXVM that match a
specified Vendor ID and Product ID.

¢ Select option 4 to define a pathgroup for disks that are not multipathed by
VxXVM. (A pathgroup explicitly defines alternate paths to the same disk.)
Only one path is made visible to VxVM.

Select option 5 to disable multipathing for all disks on a specified controller.

Select option 6 to disable multipathing for specified paths. The disks that
correspond to a specified path are claimed in the OTHER_DISKS category
and are not multipathed.

& Select option 7 to disable multipathing for disks that match a specified
Vendor ID and Product ID. The disks that correspond to a specified Vendor
ID and Product ID combination are claimed in the OTHER_DISKS category
and are not multipathed.

¢ Select option 8 to list the devices that are currently suppressed or not
multipathed.

Enabling multipathing and making devices visible to VxVM

Note: Some of the operations described in this section require a reboot of the
system.

1 Select menuitem 18 (Allow multipathing/Unsuppress devices from
VxVM's view) from the vxdiskadm main menu to re-enable multipathing for
a device, or to make a device visible to VxVM again. You are prompted to
confirm whether you want to continue.

2 Select the operation you want to perform from the displayed list:

1 Unsuppress all paths through a controller from VxVM’'s view

2 Unsuppress a path from VxVM’'s view

3 Unsuppress disks from VxVM’'s view by specifying a VID:PID
combination

4 Remove a pathgroup definition

5 Allow multipathing of all disks on a controller by VxVM

6 Allow multipathing of a disk by VxVM

7 Allow multipathing of disks by specifying a VID:PID
combination

8 List currently suppressed/non-multipathed devices

? Display help about menu
?? Display help about the menuing system
a Exit from menus

146

Administering dynamic multipathing (DMP)
Disabling and enabling multipathing for specific devices

Select option 1 to make all paths through a specified controller visible to
VxVM.

Select option 2 to make specified paths visible to VxVM.

Select option 3 to make disks visible to VxVM that match a specified Vendor
ID and Product ID.

Select option 4 to remove a pathgroup definition. (A pathgroup explicitly
defines alternate paths to the same disk.) Once a pathgroup has been
removed, all paths that were defined in that pathgroup become visible again.

Select option 5 to enable multipathing for all disks that have paths through
the specified controller.

Select option 6 to enable multipathing for specified paths.

Select option 7 to enable multipathing for disks that match a specified
Vendor ID and Product ID.

Select option 8 to list the devices that are currently suppressed or not
multipathed.

Administering dynamic multipathing (DMP) | 147

Enabling and disabling I/0 for controllers and storage processors

Enabling and disabling 1/0 for controllers and
storage processors

DMP allows you to turn off I/O for a controller or the array port of a storage
processor so that you can perform administrative operations. This feature can
be used for maintenance of HBA controllers on the host, or array ports that are
attached to disk arrays supported by VxVM. I/O operations to the controller or
array port can be turned back on after the maintenance task is completed. You
can accomplish these operations using the vxdmpadm command provided with
VxVM.

In Active/Active type disk arrays, VxXVM uses a balanced path mechanism to
schedule I/O to multipathed disks. As a result, I/O may go through any available
path at any given point in time. For example, if a system has an Active/Active
storage array (such as a StorEdge A5000™ array), and you need to change an
interface board that is connected to this disk array (if supported by the
hardware), you can use the vxdmpadm command to list the controllers that are
connected to the interface board. Disable the controllers to stop further I/O to
the disks that are accessed through the interface board. You can then replace
the board without causing disruption to any ongoing I/O to disks in the disk
array.

In Active/Passive type disk arrays, VxVM schedules I/O to use the primary path
until a failure is encountered. To change the interface card for an array port or
an HBA controller card on the host (if supported by the hardware) that is
connected to the disk array, disable I/O operations to the array port or to the
HBA controller. This shifts all I/O over to an active secondary path or to an
active primary path on another controller so that you can change the hardware.

After the operation is over, you can use vxdmpadm to re-enable the paths through
the controllers.

See “Disabling I/0 for paths, controllers or array ports” on page 164.
See “Enabling I/O for paths, controllers or array ports” on page 165.
See “Upgrading disk controller firmware” on page 166.

Note: From release 5.0 of VxVM, these operations are supported for controllers
that are used to access disk arrays on which cluster-shareable disk groups are
configured.

148 ‘

Administering dynamic multipathing (DMP)
Displaying DMP database information

Displaying DMP database information

You can use the vxdmpadm command to list DMP database information and
perform other administrative tasks. This command allows you to list all
controllers that are connected to disks, and other related information that is
stored in the DMP database. You can use this information to locate system
hardware, and to help you decide which controllers need to be enabled or
disabled.

The vxdmpaam command also provides useful information such as disk array
serial numbers, which DMP devices (disks) are connected to the disk array, and
which paths are connected to a particular controller, enclosure or array port.

For more information, see “Administering DMP using vxdmpadm” on page 150.

Displaying the paths to a disk

The vxdisk command is used to display the multipathing information for a
particular metadevice. The metadevice is a device representation of a particular
physical disk having multiple physical paths from one of the system’s HBA
controllers. In VxVM, all the physical disks in the system are represented as
metadevices with one or more physical paths.

You can use the vxdisk path command to display the relationships between the
device paths, disk access names, disk media names and disk groups on a system
as shown here:

wvxdisk path

SUBPATH DANAME DMNAME GROUP STATE

clt0d0s2 clt0d0s2 mydg01 mydg ENABLED
c4t0d0s2 clt0d0s2 mydg01 mydg ENABLED
cltld0s2 cltld0s2 mydg02 mydg ENABLED
c4tld0s2 cltld0s2 mydg02 mydg ENABLED

This shows that two paths exist to each of the two disks, mydg01 and mydg02,
and also indicates that each disk is in the ENABLED state.

To view multipathing information for a particular metadevice, use the following
command:

vxdisk list devicename
For example, to view multipathing information for c2t0d0s2, use the following
command:

vxdisk list c2t0d0s2

Administering dynamic multipathing (DMP)
Displaying the paths to a disk

Typical output from the vxdisk 1ist command is as follows:

Device c2t0d0

devicetag c¢2t0d0

type sliced

hostid aparajita

disk name=mydg0l i1id=861086917.1052.aparajita
group name=mydg 1d=861086912.1025.aparajita

flags online ready autoconfig autoimport imported

pubpaths block=/dev/vx/dmp/c2t0d0s4
char=/dev/vx/rdmp/c2t0d0s4
privpaths block=/dev/vx/dmp/c2t0d0s3
char=/dev/vx/rdmp/c2t0d0s3

version 2.1

iosize min=512 (bytes) max=2048 (blocks)

public slice=4 offset=0 1en=1043840

private slice=3 offset=1 len=1119

update time=861801175 segno=0.48

headers 0 248

configs count=1 len=795

logs count=1 len=120

Defined regions

config priv 000017-000247[000231] :copy=01 offset=000000
enabled

config priv 000249-000812[000564] :copy=01 offset=000231
enabled

log priv 000813-000932[000120]:copy=01 offset=000000
enabled

Multipathing information:

numpaths: 2

c2t0d0s2 state=enabled type=primary

clt0d0s2 state=disabled type=secondary

IntheMultipathing information section of this output, the numpaths line
shows that there are 2 paths to the device, and the following two lines show that
the path to c2t0d0s2 is active (state=enabled) and that the other path
c1t0d0s?2 has failed (state=disabled).

The type field is shown for disks on Active/Passive type disk arrays such as the
EMC CLARIiiON, Hitachi HDS 9200 and 9500, Sun StorEdge 6xxx, and Sun
StorEdge T3 array. This field indicates the primary and secondary paths to the
disk.

The type field is not displayed for disks on Active/Active type disk arrays such
as the EMC Symmetrix, Hitachi HDS 99xx and Sun StorEdge 99xx Series, and
IBM ESS Series. Such arrays have no concept of primary and secondary paths.

149

150 | Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

Administering DMP using vxdmpadm

The vxdmpadm utility is a command line administrative interface to the DMP
feature of VXVM. You can use the vxdmpadm utility to perform the following
tasks.

m Retrieve the name of the DMP device corresponding to a particular path.
m Display the members of a LUN group.

m List all paths under a DMP device node, HBA controller or array port.

m Display information about the HBA controllers on the host.

m Display information about enclosures.

m Display information about array ports that are connected to the storage
processors of enclosures.

m Display information about devices that are controlled by third-party
multipathing drivers.

m Gather I/O statistics for a DMP node, enclosure, path or controller.

Configure the attributes of the paths to an enclosure.

Set the I/O policy that is used for the paths to an enclosure.

Enable or disable I/O for a path, HBA controller or array port on the system.
Upgrade disk controller firmware.

Rename an enclosure.

Configure how DMP responds to I/O request failures.

Configure the I/0O throttling mechanism.
m Control the operation of the DMP path restoration thread.

The following sections cover these tasks in detail along with sample output.

The vxdmpadm command can also be used to change the value of various DMP
tunables. See “Changing the values of tunables” on page 482.

For more information about the vxdmpadm command, see the vxdmpadm(1M)
manual page.

Retrieving information about a DMP node
The following command displays the DMP node that controls a particular
physical path:
vxdmpadm getdmpnode nodename=c3t2dls2

Administering dynamic multipathing (DMP) | 151
Administering DMP using vxdmpadm

The physical path is specified by argument to the nodename attribute, which
must be a valid path listed in the /dev/rdsk directory.

The above command displays output such as the following:

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME

c3t2dls2 ENABLED T300 2 2 0 enc0

Use the enclosure attribute with getdmpnode to obtain a list of all DMP nodes
for the specified enclosure.
vxdmpadm getdmpnode enclosure=enc0

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME
c2t1ld0s2 ENABLED T300 2 2 0 enc0
c2tldls2 ENABLED T300 2 2 0 encO
c2tld2s2 ENABLED T300 2 2 0 enc0
c2tld3s2 ENABLED T300 2 2 0 enc0

Displaying the members of a LUN group

The following command displays the DMP nodes that are in the same LUN group
as a specified DMP node:
vxdmpadm getlungroup dmpnodename=cllt0d1l0s2

The above command displays output such as the following:

NAME STATE ENCLR-TYPE PATHS ENBL DSBL ENCLR-NAME
cl11t0d8s2 ENABLED ACME 2 2 0 encl
cl11t0d9s2 ENABLED ACME 2 2 0 encl
cl11t0d10s2 ENABLED ACME 2 2 0 encl
cl11t0d1l1ls2 ENABLED ACME 2 2 0 encl

Displaying paths controlled by a DMP node, controller or array port

The vxdmpadm getsubpaths command combined with the dmpnodename
attribute displays all the paths to a LUN that are controlled by the specified DMP
node name from the /dev/vx/rdmp directory:

vxdmpadm getsubpaths dmpnodename=c2t66d0s2

NAME STATE[A] PATH-TYPE [M] CTLR-NAMEENCLR-TYPE ENCLR-NAME ATTRS
c2t66d0s2 ENABLED (A) PRIMARY c2 ACME encO -
clt66d0s2 ENABLED PRIMARY cl ACME encO -

For A/A arrays, all enabled paths that are available for I/O are shown as
ENABLED (A).

152 | Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

For A/P arrays in which the I/O policy is set to singleactive, only one path is
shown as ENABLED (A) . The other paths are enabled but not available for I/O. If
the I/O policy is not set to singleactive, DMP can use a group of paths (all
primary or all secondary) for I/0, which are shown as ENABLED (A) . See
“Specifying the I/0 policy” on page 159 for more information.

Paths that are in the DISABLED state are not available for I/O operations.

You can use getsubpaths to obtain information about all the paths that are
connected to a particular HBA controller:

vxdmpadm getsubpaths ctlr=c2

NAME STATE[-] PATH-TYPE[-] CTLR-NAME ENCLR-TYPE ENCLR-NAMEATTRS
c2t1d0s2ENABLED PRIMARY c2t1ld0s2 ACME enc0 -
c2t2d0s2ENABLED PRIMARY c2t2d0s2 ACME enc0 -
c2t3d0s2ENABLED SECONDARY c2t3d0s2 ACME enc0 -
c2t4d0s2ENABLED SECONDARY c2t4d0s2 ACME encO -

You can also use getsubpaths to obtain information about all the paths that are
connected to a port on an array. The array port can be specified by the name of
the enclosure and the array port ID, or by the worldwide name (WWN) identifier
of the array port:

wvxdmpadm getsubpaths enclr=HDS9500V0 portid=1A
vxdmpadm getsubpaths pwwn=20:00:00:E0:8B:06:5F:19

Displaying information about controllers

The following command lists attributes of all HBA controllers on the system:
vxdmpadm listctlr all

CTLR-NAME ENCLR-TYPE STATE ENCLR-NAME
cl OTHER ENABLED other0

c2 X1 ENABLED jbod0

c3 ACME ENABLED enc0

cd ACME ENABLED enc0

This output shows that the controller c1 is connected to disks that are not in
any recognized DMP category as the enclosure type is OTHER.

The other controllers are connected to disks that are in recognized DMP
categories.

All the controllers are in the ENABLED state which indicates that they are
available for I/O operations.

The state DISABLED is used to indicate that controllers are unavailable for I/O
operations. The unavailability can be due to a hardware failure or due to I/O

Administering dynamic multipathing (DMP) | 153
Administering DMP using vxdmpadm

operations being disabled on that controller by using the vxdmpadm disable
command.

This form of the command lists controllers belonging to a specified enclosure
and enclosure type:
vxdmpadm listctlr enclosure=enc0O0 type=ACME

CTLR-NAME ENCLR-TYPE STATE ENCLR-NAME
c2 ACME ENABLED encO
c3 ACME ENABLED encO

Displaying information about enclosures

To display the attributes of a specified enclosure, including its enclosure type,
enclosure serial number, status and array type, use the following command:

vxdmpadm listenclosure encO
ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS ARRAY_TYPE

enc0 T3 60020£20000001a90000 CONNECTED A/P

The following command lists attributes for all enclosures in a system:
vxdmpadm listenclosure all

The following is example output from this command:

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS ARRAY_TYPE
Disk Disk DISKS CONNECTED Disk
SENAQ SENA 508002000001d660 CONNECTED A/A
encO T3 60020£20000001a90000 CONNECTED A/P

Displaying information about array ports

To display the attributes of an array port that is accessible via a path, DMP node
or HBA controller, use one of the following commands:

vxdmpadm getportids path=path-name

vxdmpadm getportids dmpnodename=dmpnode-name

vxdmpadm getportids ctlr=ctlr-name
The information displayed for an array port includes the name of its enclosure,
and its ID and worldwide name (WWN) identifier.

The following form of the command displays information about all of the array
ports within the specified enclosure:

vxdmpadm getportids enclr=enclr-name
The following example shows information about the array port that is accessible
via DMP node c2t66d0s2:

vxdmpadm getportids dmpnodename=c2t66d0s2

154 | Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

NAME ENCLR-NAME ARRAY-PORT-ID pWWN

c2t66d0s2 HDS9500V0 1A 20:00:00:E0:8B:06:5F:19

Displaying information about TPD-controlled devices

The third-party driver (TPD) coexistence feature allows I/O that is controlled by
third-party multipathing drivers to bypass DMP while retaining the monitoring
capabilities of DMP. The following commands allow you to display the paths
that DMP has discovered for a given TPD device, and the TPD device that
corresponds to a given TPD-controlled node discovered by DMP:

vxdmpadm getsubpaths tpdnodename=TPD node_name

vxdmpadm gettpdnode nodename=DMP_node_name
See “Changing device naming for TPD-controlled enclosures” on page 97 for
information on how to select whether OS or TPD-based device names are
displayed.
For example, consider the following disks in an EMC Symmetrix array controlled
by PowerPath, which are known to DMP:

vxdisk list

DEVICE TYPE DISK GROUP STATUS
emcpowerl0s2 auto:sliced diskl ppdg online
emcpowerlls?2 auto:sliced disk2 ppdg online
emcpowerl2s2 auto:sliced disk3 ppdg online
emcpowerl3s2 auto:sliced disk4 ppdg online
emcpowerl4ds?2 auto:sliced disk5 ppdg online
emcpowerl5s2 auto:sliced disk6 ppdg online
emcpowerl6s2 auto:sliced disk7 ppdg online
emcpowerl7s2 auto:sliced disk8 ppdg online
emcpowerl8s2 auto:sliced disk9 ppdg online
emcpowerl9s2 auto:sliced diskl0 ppdg online

The following command displays the paths that DMP has discovered, and which -
correspond to the PowerPath-controlled node, emcpower10s2:-
vxdmpadm getsubpaths tpdnodename=emcpowerl0s2

NAME TPDNODENAME PATH-TYPE[-]DMP-NODENAME ENCLR-TYPE ENCLR-NAME

c7t0d1l0s2emcpowerl0s2- emcpowerl0s2 EMC EMCO
c6t0dl0s2emcpowerl0s2- emcpowerl10s2 EMC EMCO

Conversely, the next command displays information about the PowerPath node -
that corresponds to the path, c7t0d410s2, discovered by DMP:-
vxdmpadm gettpdnode nodename=c7t0d10s2

NAME STATE PATHS ENCLR-TYPE ENCLR-NAME

emcpowerl0s2 ENABLED 2 EMC EMCO

Administering dynamic multipathing (DMP) | 155
Administering DMP using vxdmpadm

Gathering and displaying I/0 statistics

You can use the vxdmpadm iostat command to gather and display I/O statistics
for a specified DMP node, enclosure, path or controller.

To enable the gathering of statistics, enter this command:

vxdmpadm iostat start [memory=size]
To reset the I/O counters to zero, use this command:

vxdmpadm iostat reset
The memory attribute can be used to limit the maximum amount of memory that
is used to record I/O statistics for each CPU. The default limit is 32k (32
kilobytes) per CPU.

To display the accumulated statistics at regular intervals, use the following
command:

vxdmpadm iostat show {all | dmpnodename=dmp-node | \
enclosure=enclr-name \ pathname=path-name | ctlr=ctlr-name} \
[interval=seconds [count=N]]

This command displays I/O statistics for all controllers (a11), or for a specified
DMP node, enclosure, path or controller. The statistics displayed are the CPU
usage and amount of memory per CPU used to accumulate statistics, the number
of read and write operations, the number of kilobytes read and written, and the
average time in milliseconds per kilobyte that is read or written.

The interval and count attributes may be used to specify the interval in
seconds between displaying the I/O statistics, and the number of lines to be
displayed. The actual interval may be smaller than the value specified if
insufficient memory is available to record the statistics.

To disable the gathering of statistics, enter this command:
vxdmpadm iostat stop

Examples of using the vxdmpadm iostat command

The follow is an example session using the vxdmpadm iostat command. The first
command enables the gathering of I/O statistics:

vxdmpadm iostat start
The next command displays the current statistics including the accumulated
total numbers of read and write operations and kilobytes read and written, on all

paths:-
vxdmpadm iostat show all
cpu usage = 7952us per cpu memory = 8192b

OPERATIONS KBYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
c0t0do 1088 0 557056 0 0.009542 0.000000
c2t118d0 87 0 44544 0 0.001194 0.000000
c3t118d0 0 0 0 0 0.000000 0.000000
c2t122d0 87 0 44544 0 0.007265 0.000000
c3t122d0 0 0 0 0 0.000000 0.000000

156

Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

c2t1154d0 87 0 44544 0 0.001200 0.000000
c3t115d0 0 0 0 0 0.000000 0.000000
c2t103d0 87 0 44544 0 0.007315 0.000000
c3t103d0 0 0 0 0 0.000000 0.000000
c2t102d0 87 0 44544 0 0.001132 0.000000
c3t102d0 0 0 0 0 0.000000 0.000000
c2t121d0 87 0 44544 0 0.000997 0.000000
c3t121d0 0 0 0 0 0.000000 0.000000
c2t112d0 87 0 44544 0 0.001559 0.000000
c3t1124d0 0 0 0 0 0.000000 0.000000
c2t96d0 87 0 44544 0 0.007057 0.000000
c3t96d0 0 0 0 0 0.000000 0.000000
c2t106d0 87 0 44544 0 0.007247 0.000000
c3t106d0 0 0 0 0 0.000000 0.000000
c2t113d0 87 0 44544 0 0.007235 0.000000
c3t113d0 0 0 0 0 0.000000 0.000000
c2t119d0 87 0 44544 0 0.001390 0.000000
c3t119d0 0 0 0 0 0.000000 0.000000

The following command changes the amount of memory that vkdmpadm can
use to accumulate the statistics:

vxdmpadm iostat start memory=4096
The displayed statistics can be filtered by path name, DMP node name, and
enclosure name (note that the per-CPU memory has changed following the
previous command):-
vxdmpadm iostat show pathname=c3t115d0s2

cpu usage = 8132us per cpu memory = 4096b
OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
c3t115d0s2 0 0 0 0 0.000000 0.000000

vxdmpadm iostat show dmpnodename=c0t0d0s2

cpu usage = 8501us per cpu memory = 4096b
OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
c0t0d0 s2 1088 0 557056 0 0.009542 0.000000

vxdmpadm iostat show enclosure=Disk

cpu usage = 8626us per cpu memory = 4096b
OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
c0t0d0 s2 1088 0 557056 0 0.009542 0.000000

You can also specify the number of times to display the statistics and the time
interval. Here the incremental statistics for a path are displayed twice with a 2-
second interval:

vxdmpadm iostat show pathname=c3t115d0s2 interval=2 count=2
cpu usage = 8195us per cpu memory = 4096b
OPERATIONS BYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES

Administering dynamic multipathing (DMP) | 157
Administering DMP using vxdmpadm

c3t115d0s2 0 0 0 0 0.000000 0.000000
cpu usage = 59us per cpu memory = 4096b

OPERATIONS BYTES AVG TIME (ms)

PATHNAME READS WRITES READS WRITES READS WRITES

c3t115d0s2 0 0 0 0 0.000000 0.000000

Setting the attributes of the paths to an enclosure

You can use the vxdmpadm setattr command to set the following attributes of
the paths to an enclosure or disk array:

B active
Changes a standby (failover) path to an active path. The example below
specifies an active path for an A/P-C disk array:

vxdmpadm setattr path c2t10d40s2 pathtype=active

B nomanual
Restores the original primary or secondary attributes of a path. This
example restores the attributes for a path to an A/P disk array:

vxdmpadm setattr path c¢3t1040s2 pathtype=nomanual

| nopreferred
Restores the normal priority of a path. The following example restores the
default priority to a path:

vxdmpadm setattr path clt2040s2 pathtype=nopreferred

B preferred [priority=N]
Specifies a path as preferred, and optionally assigns a priority number to it.
If specified, the priority number must be an integer that is greater than or
equal to one. Higher priority numbers indicate that a path is able to carry a
greater I/0 load.

Note: Setting a priority for path does not change the I/O policy. The I/O
policy must be set independently as described in “Specifying the I/O policy”
on page 159.

This example first sets the I/O policy to priority for an Active/Active disk
array, and then specifies a preferred path with an assigned priority of 2:

vxdmpadm setattr enclosure encO0 iopolicy=priority

vxdmpadm setattr path clt20d40s2 pathtype=preferred \
priority=2

158

Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

B primary
Defines a path as being the primary path for an Active/Passive disk array.
The following example specifies a primary path for an A/P disk array:

wvxdmpadm setattr path c3t1040s2 pathtype=primary

| secondary

Defines a path as being the secondary path for an Active/Passive disk array.
This example specifies a secondary path for an A/P disk array:

vxdmpadm setattr path c4t10d0s2 pathtype=secondary

| standby

Marks a standby (failover) path that it is not used for normal I/0
scheduling. This path is used if there are no active paths available for I/O.
The next example specifies a standby path for an A/P-C disk array:

vxdmpadm setattr path c2t1040s2 pathtype=standby

Displaying the 1/0 policy

To display the current and default settings of the I/O policy for an enclosure,
array or array type, use the vxdmpadm getattr command.

The following example displays the default and current setting of iopolicy for
JBOD disks:
wvxdmpadm getattr enclosure Disk iopolicy

ENCLR_NAME DEFAULT CURRENT

Disk MinimumQ Balanced

The next example displays the setting of partitionsize for the enclosure
enc0, on which the balanced I/O policy with a partition size of 2MB has been
set:

vxdmpadm getattr enclosure enc0 partitionsize

ENCLR_NAME DEFAULT CURRENT

Administering dynamic multipathing (DMP) | 159
Administering DMP using vxdmpadm

Specifying the I/0 policy
You can use the vxdmpadm setattr command to change the I/0 policy for
distributing I/0 load across multiple paths to a disk array or enclosure. You can
set policies for an enclosure (for example, HDS01), for all enclosures of a
particular type (such as HDS), or for all enclosures of a particular array type
(such as A/2a for Active/Active, or A/ P for Active/Passive).

Note: Starting with release 4.1 of VxVM, I/O policies are recorded in the file
/etc/vx/dmppolicy.info, and are persistent across reboots of the system.
Do not edit this file yourself.

The following policies may be set:

adaptive

This policy attempts to maximize overall I/O throughput from/to the disks
by dynamically scheduling I/O on the paths. It is suggested for use where
I/0 loads can vary over time. For example, I/O from/to a database may
exhibit both long transfers (table scans) and short transfers (random look
ups). The policy is also useful for a SAN environment where different paths
may have different number of hops. No further configuration is possible as
this policy is automatically managed by DMP.

In this example, the adaptive I/O policy is set for the enclosure enc1:

vxdmpadm setattr enclosure encl iopolicy=adaptive

balanced [partitionsize=size]

This policy is designed to optimize the use of caching in disk drives and
RAID controllers. The size of the cache typically ranges from 120KB to
500KB or more, depending on the characteristics of the particular
hardware. During normal operation, the disks (or LUNs) are logically
divided into a number of regions (or partitions), and I/O from/to a given
region is sent on only one of the active paths. Should that path fail, the
workload is automatically redistributed across the remaining paths.

160

Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

You can use the size argument to the partitionsize attribute to specify the
partition size. The partition size in blocks is adjustable in powers of 2 from
2 up to 2>31 as illustrated in the table below:

Partition size in blocks Equivalent size in bytes
2 1,024

4 2,048

8 4,096

16 8,192

32 16,384
64 32,768
128 65,536
256 131,072
512 262,144
1024 524,288
2048 (default) 1,048,576
4096 2,097,152

The default value for the partition size is 2048 blocks (1MB). A value that is
not a power of 2 is silently rounded down to the nearest acceptable value.
Specifying a partition size of 0 is equivalent to the default partition size of
2048 blocks (1MB). For example, the suggested partition size for an Hitachi
HDS 9960 A/A array is from 32,768 to 131,072 blocks (16MB to 64MB) for an
I/0 activity pattern that consists mostly of sequential reads or writes.

Note: The benefit of this policy is lost if the value is set larger than the cache
size.

The default value can be changed by adjusting the value of a tunable
parameter (see “dmp_pathswitch_blks_shift” on page 484).

The next example sets the balanced /O policy with a partition size of 4096
blocks (2MB) on the enclosure enc0:

vxdmpadm setattr enclosure encO0 iopolicy=balanced \
partitionsize=4096

Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

minimumg

This policy sends I/O on paths that have the minimum number of
outstanding I/O requests in the queue for a LUN. This is suitable for low-
end disks or JBODs where a significant track cache does not exist. No
further configuration is possible as DMP automatically determines the path -
with the shortest queue.-

The following example sets the I/O policy to minimumg for a JBOD:-

vxdmpadm setattr enclosure Disk iopolicy=minimumg

This is the default I/O policy for A/A arrays.

priority

This policy is useful when the paths in a SAN have unequal performance,
and you want to enforce load balancing manually. You can assign priorities
to each path based on your knowledge of the configuration and
performance characteristics of the available paths, and of other aspects of
your system. See “Setting the attributes of the paths to an enclosure” on
page 157 for details of how to assign priority values to individual paths.

In this example, the I/O policy is set to priority for all SENA arrays:

vxdmpadm setattr arrayname SENA iopolicy=priority

round-robin

This policy shares I/O equally between the paths in a round-robin sequence.
For example, if there are three paths, the first I/O request would use one
path, the second would use a different path, the third would be sent down
the remaining path, the fourth would go down the first path, and so on. No
further configuration is possible as this policy is automatically managed by-
DMP.-

The next example sets the I/O policy to round-robin for all Active/Active -
arrays:-

vxdmpadm setattr arraytype A/A iopolicy=round-robin

This is the default I/O policy for A/P and Asymmetric Active/Active (A/A-A)
arrays.

singleactive

This policy routes I/O down the single active path. This policy can be
configured for A/P arrays with one active path per controller, where the
other paths are used in case of failover. If configured for A/A arrays, there
is no load balancing across the paths, and the alternate paths are only used
to provide high availability (HA). If the currently active path fails, I/O is
switched to an alternate active path. No further configuration is possible as
the single active path is selected by DMP.

161

162

Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

The following example sets the I/O policy to singleactive for JBOD disks:

vxdmpadm setattr arrayname DISK iopolicy=singleactive

Scheduling I/0 on the paths of an Asymmetric Active/Active
array

You can specify the use_all_paths attribute in conjunction with the adaptive,
balanced, minimumg, priority and round-robin I/O policies to specify whether
I/0 requests are to be scheduled on the secondary paths in addition to the
primary paths of an Asymmetric Active/Active (A/A-A) array. Depending on the
characteristics of the array, the consequent improved load balancing can
increase the total I/O throughput. However, this feature should only be enabled
if recommended by the array vendor. It has no effect for array types other than
A/A-A.

For example, the following command sets the balanced I/O policy with a
partition size of 4096 blocks (2MB) on the enclosure enc0, and allows
scheduling of I/O requests on the secondary paths:

vxdmpadm setattr enclosure encO iopolicy=balanced \
partitionsize=4096 use_all_paths=no

The default setting for this attribute is use_all_paths=no.

Example of applying load balancing in a SAN

This example describes how to configure load balancing in a SAN environment
where there are multiple primary paths to an Active/Passive device through
several SAN switches. As can be seen in this sample output from the vxdisk
1list command, the device c3t2d15s2 has eight primary paths:

vxdisk list c3t2d15s2

Device: c¢3t2dl15s2

numpaths: 8

c2t0d15s2
c2tl1dl5s2
c3tldl5s2
c3t2d15s2
cd4t2dl5s2
c4t3dl5s2
c5t3d15s2
c5t4d15s2

state=enabled
state=enabled
state=enabled
state=enabled
state=enabled
state=enabled
state=enabled
state=enabled

type=primary
type=primary
type=primary
type=primary
type=primary
type=primary
type=primary
type=primary

In addition, the device is in the enclosure ENCO, belongs to the disk group mydg,
and contains a simple concatenated volume myvoll.

The first step is to enable the gathering of DMP statistics:
vxdmpadm iostat start

Administering dynamic multipathing (DMP) | 163
Administering DMP using vxdmpadm

Next the da command is used to apply an input workload from the volume:
dd if=/dev/vx/rdsk/mydg/myvoll of=/dev/null &
By running the vxdmpadm iostat command to display the DMP statistics for the
device, it can be seen that all I/O is being directed to one path, c5t4d15s2:
vxdmpadm iostat show dmpnodename=c3t2dl15s2 interval=5 count=2

cpu usage = 11294us per cpu memory = 32768b

OPERATIONS KBYTES AVG TIME (ms)

PATHNAME READS WRITES READS WRITES READS WRITES

c2t0d15s2 0 0 0.000000 0.000000
c2tldl5s2 0 0 0 0 0.000000 0.000000
c3tldlss2 0 0 0 0 0.000000 0.000000
c3t2dl5s2 0 0 0 0 0.000000 0.000000
c4t2dl5s2 0 0 0 0 0.000000 0.000000
c4t3dlss2 0 0 0 0 0.000000 0.000000
c5t3d15s2 0 0 0 0 0.000000 0.000000
c5t4dl5s2 10986 0 5493 0 0.411069 0.000000

The vxdmpadm command is used to display the I/O policy for the enclosure that
contains the device:
vxdmpadm getattr enclosure ENCO iopolicy

ENCLR_NAME DEFAULT CURRENT

ENCO Round-Robin Single-Active

This shows that the policy for the enclosure is set to singleactive, which
explains why all the I/0 is taking place on one path.

To balance the I/0 load across the multiple primary paths, the policy is set to
round-robin as shown here:

wvxdmpadm setattr enclosure ENCO iopolicy=round-robin
wvxdmpadm getattr enclosure ENCO iopolicy

ENCLR_NAME DEFAULT CURRENT

ENCO Round-Robin Round-Robin

The DMP statistics are now reset:

vxdmpadm iostat reset
With the workload still running, the effect of changing the I/O policy to balance
the load across the primary paths can now be seen.

vxdmpadm iostat show dmpnodename=sdgc3t2dl5s2 interval=5 \
count=2

cpu usage = 14403us per cpu memory = 32768b

OPERATIONS KBYTES AVG TIME (ms)
PATHNAME READS WRITES READS WRITES READS WRITES
c2t0dl5s2 2041 0 1021 0 0.396670 0.000000

c2tldl5s2 1894 0 947 0 0.391763 0.000000

164

Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

c3tldl5s2 2008 0 1004 0 0.393426 0.000000
c3t2dl5s2 2054 0 1027 0 0.402142 0.000000
c4t2dl5s2 2171 0 1086 0 0.390424 0.000000
c4t3dl5s2 2095 0 1048 0 0.391221 0.000000
c5t3dl5s2 2073 0 1036 0 0.390927 0.000000
c5t4dl5s2 2042 0 1021 0 0.392752 0.000000

The enclosure can be returned to the single active I/O policy by entering the
following command:
vxdmpadm setattr enclosure ENCO iopolicy=singleactive

Disabling I/0 for paths, controllers or array ports

Note: From release 5.0 of VXVM, this operation is supported for controllers that
are used to access disk arrays on which cluster-shareable disk groups are
configured.

Disabling I/0 through a path, HBA controller or array port prevents DMP from
issuing I/0O requests through the specified path, or the paths that are connected
to the specified controller or array port. The command blocks until all pending
1/0 requests issued through the paths are completed.

Before detaching a system board, stop all I/O to the HBA controllers that are
located on the board. To do this, execute the vxdmpadm disable command, and
then run the Dynamic Reconfiguration (DR) facility provided by Sun.

To disable I/O for a path, use the following command:

vxdmpadm [-c | -f] disable path=path_name
To disable I/0 for the paths connected to an HBA controller, use the following
command:

vxdmpadm [—c|—f] disable ctlr=ctlr name

To disable I/0 for the paths connected to an array port, use one of the following
commands:

vxdmpadm [-c|-f] disable enclr=enclr name portid=array port_ID
vxdmpadm [-c|-f] disable pwwn=array port_ WWN
where the array port is specified either by the enclosure name and the array port
ID, or by the array port’s worldwide name (WWN) identifier.
The following are examples of using the command to disable I/O on an array
port:

vxdmpadm disable enclr=HDS9500V0 portid=1A
vxdmpadm disable pwwn=20:00:00:E0:8B:06:5F:19

Administering dynamic multipathing (DMP) | 165
Administering DMP using vxdmpadm

You can use the -c option to check if there is only a single active path to the disk.
If so, the disable command fails with an error message unless you use the - £
option to forcibly disable the path.

The disable operation fails if it is issued to a controller that is connected to the
root disk through a single path, and there are no root disk mirrors configured on
alternate paths. If such mirrors exist, the command succeeds.

Enabling I/O for paths, controllers or array ports

Note: This operation is not supported for controllers that are used to access disk
arrays on which cluster-shareable disk groups are configured.

Enabling a controller allows a previously disabled path, HBA controller or array
port to accept I/O again. This operation succeeds only if the path, controller or
array port is accessible to the host, and I/O can be performed on it. When
connecting Active/Passive disk arrays, the enable operation results in failback
of I/O to the primary path. The enable operation can also be used to allow I/O to
the controllers on a system board that was previously detached.

To enable I/0 for a path, use the following command:

vxdmpadm enable path=path_name

To enable I/0 for the paths connected to an HBA controller, use the following
command:

vxdmpadm enable ctlr=ctlr_ name

To enable I/0O for the paths connected to an array port, use one of the following
commands:

vxdmpadm enable enclr=enclr name portid=array port_ID

vxdmpadm [-f] disable pwwn=array port_ WWN
where the array port is specified either by the enclosure name and the array port
ID, or by the array port’s worldwide name (WWN) identifier.
The following are examples of using the command to enable I/O on an array
port:

vxdmpadm enable enclr=HDS9500V0 portid=1A
vxdmpadm enable pwwn=20:00:00:E0:8B:06:5F:19

166 | Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

Upgrading disk controller firmware

You can upgrade disk controller firmware without performing a system reboot
or unloading the VxVM drivers.

First obtain the appropriate firmware upgrades from your disk drive vendor.
You can usually download the appropriate files and documentation from the
vendor’s support website.

For a system with a volume mirrored across 2 controllers on one HBA, set up the
configuration as follows:

1 Disable the plex that is associated with the disk device:
/opt/VRTS/bin/vxplex -g diskgroup det plex

2 StopI/O to all disks through one controller of the HBA:
/opt/VRTS/bin/vxdmpadm disable ctlr=first cntlr
For the other controller on the HBA, enter:
/opt/VRTS/bin/vxdmpadm -f disable ctlr=second cntlr

3 Upgrade the firmware on those disks for which the controllers have been
disabled using the procedures that you obtained from the disk drive vendor.

4 After doing the upgrade, re-enable all the controllers:
/opt/VRTS/bin/vxdmpadm enable ctlr=first_cntlr
/opt/VRTS/bin/vxdmpadm enable ctlr=second cntlr
5 Re-enable the plex associated with the device:
/opt/VRTS/bin/vxplex -g diskgroup att volume plex
This command takes some time depending upon the size of the mirror set.

Renaming an enclosure

The vxdmpadm setattr command can be used to assign a meaningful name to an
existing enclosure, for example:
vxdmpadm setattr enclosure enc0 name=GRP1

This example changes the name of an enclosure from enc0 to GRP1.

Note: The maximum length of the enclosure name prefix is 25 characters. The
name must not contain an underbar character ().

The following command shows the changed name:

vxdmpadm listenclosure all

ENCLR_NAME ENCLR_TYPE ENCLR_SNO STATUS
other0 OTHER OTHER_DISKS CONNECTED
jbodo X1 X1_DISKS CONNECTED

GRP1 ACME 60020£20000001a90000 CONNECTED

Administering dynamic multipathing (DMP) | 167
Administering DMP using vxdmpadm

Configuring the response to I/0 failures

By default, DMP is configured to retry a failed I/O request up to 5 times for a
single path. To display the current settings for handling I/O request failures that
are applied to the paths to an enclosure, array name or array type, use the
vxdmpa@ngetattrconnnand:

vxdmpadm getattr \
{enclosure enc-name|arrayname name|arraytype type} \
recoveryoption

See “Displaying recoveryoption values” on page 170 for more information.

The following example displays the I/O request failure setting for the paths to
the enclosure enc0:

vxdmpadm getattr enclosure enc0 recoveryoption
The vxdmpadm setattr command can be used to configure how DMP responds
to failed I/O requests on the paths to a specified enclosure, disk array name, or
type of array.

The following form of the command sets a limit for the number of times that
DMP will attempt to retry sending an I/O request on a path:

vxdmpadm setattr \
{enclosure enc-name|arrayname name|arraytype type} \
recoveryoption=fixedretry retrycount==n
The value of the argument to retrycount specifies the number of retries to be
attempted before DMP reschedules the I/O request on another available path, or
fails the request altogether.

As an alternative to specifying a fixed number of retries, the following version of
the command specifies how long DMP should allow an I/O request to be retried
on a path:

vxdmpadm setattr \

{enclosure enc-name | arrayname name \ arraytype type} \

recoveryoption=timebound iotimeout==seconds
The value of the argument to iotimeout specifies the time in seconds that DMP
waits for an outstanding I/O request to succeed before it reschedules the request
on another available path, or fails the I/O request altogether. The effective
number of retries is the value of iotimeout divided by the sum of the times
taken for each retry attempt. DMP abandons retrying to send the I/O request
before the specified time limit has expired if it predicts that the next retry will
take the total elapsed time over this limit.

The default value of iotimeout is 10 seconds. For some applications, such as
Oracle, it may be desirable to set iotimeout to a larger value, such as 60 seconds.

Note: The fixedretry and timebound settings are mutually exclusive.

168

Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

The following example configures time-bound recovery for the enclosure enco,
and sets the value of iotimeout to 60 seconds:
vxdmpadm setattr enclosure encO recoveryoption=timebound \
iotimeout=60
The next example sets a fixed-retry limit of 10 for the paths to all Active/Active
arrays:
vxdmpadm setattr arraytype A/A recoveryoption=fixedretry \
retrycount=10
Specifying recoveryoption=default resets DMP to the default settings
corresponding to recoveryoption=fixedretry retrycount=>5, for example:
vxdmpadm setattr arraytype A/A recoveryoption=default
This command also has the effect of configuring I/O throttling with a queue
depth of 20 on the paths. See “Configuring the I/O throttling mechanism” on
page 168 for details.

Note: The response to I/0 failure settings is persistent across reboots of the
system.

Configuring the I/0O throttling mechanism

By default, I/O throttling is turned on for all paths with a maximum of 20
outstanding I/O requests on each path. To display the current settings for I/O
throttling that are applied to the paths to an enclosure, array name or array
type, use the vxdmpadm getattr command:

vxdmpadm getattr \
{enclosure enc-name|arrayname name|arraytype type}\
recoveryoption

See “Displaying recoveryoption values” on page 170 for more information.

The following example displays the I/O throttling setting for the paths to the
enclosure enc0:

vxdmpadm getattr enclosure enc0 recoveryoption
If enabled, I/O throttling imposes a small overhead on CPU and memory usage
because of the activity of the statistics-gathering daemon. If I/O throttling is
disabled, the daemon no longer collects statistics, and remains inactive until I/0
throttling is re-enabled.

To turn off I/0 throttling, use the following form of the vxdmpadm setattr
command:

vxdmpadm setattr \
{enclosure enc—name|arrayname name\arraytype typel}\
recoveryoption=nothrottle

Administering dynamic multipathing (DMP) | 169
Administering DMP using vxdmpadm

The following example shows how to disable I/O throttling for the paths to the
enclosure enc0:

vxdmpadm setattr enclosure enc0 recoveryoption=nothrottle
The vxdmpadm setattr command can be used to enable I/O throttling on the
paths to a specified enclosure, disk array name, or type of array:

vxdmpadm setattr \

{enclosure enc-name|arrayname name|arraytype type}\
recoveryoption=throttle {iotimeout=seconds|queuedepth=n}

If the iotimeout attribute is specified, its argument specifies the time in
seconds that DMP waits for an outstanding I/O request to succeed before
invoking I/0O throttling on the path. The default value of iotimeout is 10
seconds. Setting iotimeout to a larger value potentially causes more I/O
requests to become queued up in the SCSI driver before I/0 throttling is invoked.

If the queuedepth attribute is specified, its argument specifies the number of I/O
requests that can be outstanding on a path before DMP invokes I/O throttling.
The default value of queuedepth is 20. Setting queuedepth to a larger value
allows more I/O requests to become queued up in the SCSI driver before I/O
throttling is invoked.

Note: The iotimeout and queuedepth attributes are mutually exclusive.

The following example sets the value of iotimeout to 60 seconds for the
enclosure encO:
vxdmpadm setattr enclosure enc0 recoveryoption=throttle \
iotimeout=60
The next example sets the value of queuedepth to 30 for the paths to all
Active/Active arrays:
vxdmpadm setattr arraytype A/A recoveryoption=throttle \
queuedepth=30
Specifying recoveryoption=default resets I/O throttling to the default settings
corresponding to recoveryoption=throttle queuedepth=20, for example:
vxdmpadm setattr arraytype A/A recoveryoption=default
This command also has the effect of configuring a fixed-retry limit of 5 on the
paths. See “Configuring the response to I/O failures” on page 167 for details.

Note: The I/0 throttling settings are persistent across reboots of the system.

Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

Displaying recoveryoption values

The following example shows the vxdmpadm getattr command being used to
display the recoveryoption option values that are set on an enclosure.
vxdmpadm getattr enclosure HDS9500-ALUAO recoveryoption

ENCLR-NAME

RECOVERY-OPTION DEFAULT [VAL]

CURRENT [VAL]

HDS9500-ALUAQ
HDS9500-ALUAQ

Throttle
Error-Retry

Timebound[10]
Fixed-Retry[5] Timebound[20]

Queuedepth[60]

This shows the default and current policy options and their values. The possible

option settings are summarized in the following table.

Recovery option Possible settings Description
Error-Retry settings:
recoveryoption=fixedretry Fixed-Retry (retrycount) DMP retries a failed I/0

recoveryoption=timebound

Timebound (iotimeout)

request for the specified
number of times if I/O fails.

DMP retries a failed I/0
request after the specified
time in seconds if I/0 fails.

Throttle settings:
recoveryoption=nothrottle

recoveryoption=throttle

None

Queuedepth (queuedepth)

Timebound (iotimeout)

Not applicable

DMP throttles the path if
the specified number of
queued I/0O requests is
exceeded.

DMP throttles the path if an
I/0 request does not return

within the specified time in

seconds.

Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

Configuring DMP path restoration policies

DMP maintains a kernel thread that re-examines the condition of paths at a
specified interval. The type of analysis that is performed on the paths depends
on the checking policy that is configured.

Note: The DMP path restoration thread does not change the disabled state of the
path through a controller that you have disabled using vxdmpadm disable.

Use the start restore command to configure one of the following policies:

B check all
The path restoration thread analyzes all paths in the system and revives the
paths that are back online, as well as disabling the paths that are
inaccessible. The command to configure this policy is:

vxdmpadm start restore policy=check_all [interval=seconds]

B check_alternate
The path restoration thread checks that at least one alternate path is
healthy. It generates a notification if this condition is not met. This policy
avoids inquiry commands on all healthy paths, and is less costly than
check_all in cases where a large number of paths are available. This
policy is the same as check_all if there are only two paths per DMP node.
The command to configure this policy is:

vxdmpadm start restore policy=check_alternate \
[interval=seconds]

B check _disabled
This is the default path restoration policy. The path restoration thread
checks the condition of paths that were previously disabled due to hardware
failures, and revives them if they are back online. The command to
configure this policy is:
vxdmpadm start restore policy=check_disabled \
[interval=seconds]

B check_periodic
The path restoration thread performs check_all once in a given number
of cycles, and check_disabled in the remainder of the cycles. This policy
may lead to periodic slowing down (due to check_a1l1) if there is a large
number of paths available. The command to configure this policy is:

vxdmpadm start restore policy=check_periodic \
interval=seconds [period=number]

171

172

Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

The interval attribute must be specified for this policy. The default
number of cycles between running the check_al1l policy is 10.

The interval attribute specifies how often the path restoration thread examines
the paths. For example, after stopping the path restoration thread, the polling
interval can be set to 400 seconds using the following command:

vxdmpadm start restore interval=400

Note: The default interval is 300 seconds. Decreasing this interval can adversely
affect system performance.

To change the interval or policy, first stop the path restoration thread as
described in “Stopping the DMP path restoration thread” on page 172, and then
restart it with new attributes.

See the vxdmpadm(1M) manual page for more information about DMP restore
policies.

Stopping the DMP path restoration thread

Use the following command to stop the DMP path restoration thread:

vxdmpadm stop restore

Note: Automatic path failback stops if the path restoration thread is stopped.

Displaying the status of the DMP path restoration thread

Use the following command to display the status of the automatic path
restoration kernel thread, its polling interval, and the policy that it uses to check
the condition of paths:

vxdmpadm stat restored
This produces output such as the following:

The number of daemons running : 1

The interval of daemon: 300
The policy of daemon: check_disabled

Administering dynamic multipathing (DMP) | 173
Administering DMP using vxdmpadm

Displaying information about the DMP error-handling thread

To display information about the kernel thread that handles DMP errors, use the
following command:

vxdmpadm stat errord
One daemon should be shown as running.

Configuring array policy modules

An array policy module (APM) is a dynamically loadable kernel module that may
be provided by some vendors for use in conjunction with an array. An APM
defines procedures to:

m Select an I/O path when multiple paths to a disk within the array are
available.

m Select the path failover mechanism.
m Select the alternate path in the case of a path failure.
m Put a path change into effect.

m Respond to SCSI reservation or release requests.

DMP supplies default procedures for these functions when an array is
registered. An APM may modify some or all of the existing procedures that are
provided by DMP or by another version of the APM.

You can use the following command to display all the APMs that are configured
for a system:

vxdmpadm listapm all

The output from this command includes the file name of each module, the
supported array type, the APM name, the APM version, and whether the module
is currently in use (loaded). To see detailed information for an individual
module, specify the module name as the argument to the command:

vxdmpadm listapm module name
To add and configure an APM, use the following command:

vxdmpadm -a cfgapm module_name [attrl=valuel \
[attr2=value2 ...]]

The optional configuration attributes and their values are specific to the APM
for an array. Consult the documentation that is provided by the array vendor for
details.

174 | Administering dynamic multipathing (DMP)
Administering DMP using vxdmpadm

Note: By default, DMP uses the most recent APM that is available. Specify the -u
option instead of the -a option if you want to force DMP to use an earlier
version of the APM. The current version of an APM is replaced only if it is not in
use.

Specifying the -r option allows you to remove an APM that is not currently
loaded:

vxdmpadm -r cfgapm module name
For more information about configuring APMs, see the vxdmpadm(1M) manual
page.

Creating and
administering disk groups

This chapter describes how to create and manage disk groups. Disk groups are
named collections of disks that share a common configuration. Volumes are
created within a disk group and are restricted to using disks within that disk

group.

Note: In releases of Veritas Volume Manager (VxXVM) prior to 4.0, a system
installed with VxVM was configured with a default disk group, rootdg, that had
to contain at least one disk. By default, operations were directed to the rootdg
disk group. From release 4.0 onward, VxVM can function without any disk group
having been configured. Only when the first disk is placed under VxVM control
must a disk group be configured. There is no longer a requirement that you
name any disk group rootdg, and any disk group that is named rootdg has no
special properties because of this name. See “Specifying a disk group to
commands” on page 177 for more information about using disk group names

that are reserved for special purposes.

Additionally, prior to VXVM 4.0, some commands such as vxdisk were able to
deduce the disk group if the name of an object was uniquely defined in one disk
group among all the imported disk groups. Resolution of a disk group in this way

is no longer supported for any command.

For a discussion of disk groups that are compatible with the Cross-platform Data
Sharing (CDS) feature of Veritas Volume Manager, see the Veritas Storage
Foundation Cross-Platform Data Sharing Administrator’s Guide. The CDS
feature allows you to move VxVM disks and objects between machines that are

running under different operating systems.

176

Creating and administering disk groups

As system administrator, you can create additional disk groups to arrange your
system’s disks for different purposes. Many systems do not use more than one
disk group, unless they have a large number of disks. Disks can be initialized,
reserved, and added to disk groups at any time. Disks need not be added to disk
groups until the disks are needed to create VxVM objects.

When a disk is added to a disk group, it is given a name (for example, mydg02).
This name identifies a disk for operations such as volume creation or mirroring.
The name also relates directly to the underlying physical disk. If a physical disk
is moved to a different target address or to a different controller, the name
mydg02 continues to refer to it. Disks can be replaced by first associating a
different physical disk with the name of the disk to be replaced and then
recovering any volume data that was stored on the original disk (from mirrors or
backup copies).

Having disk groups that contain many disks and VxVM objects causes the
private region to fill. In the case of large disk groups that are expected to contain
more than several hundred disks and VxVM objects, disks should be set up with
larger private areas. A major portion of a private region provides space for a disk
group configuration database that contains records for each VxVM object in that
disk group. Because each configuration record takes up approximately 256
bytes, the number of records that can be created in a disk group can be
estimated from the configuration database copy size. The copy size in blocks can
be obtained from the output of the command vxdg 1ist diskgroup as the value of
the permlen parameter on the line starting with the string “config:”. This
value is the smallest of the 1en values for all copies of the configuration
database in the disk group. The amount of remaining free space in the
configuration database is shown as the value of the free parameter. An
example is shown in “Displaying disk group information” on page 179. One way
to overcome the problem of running out of free space is to split the affected disk
group into two separate disk groups. See “Reorganizing the contents of disk
groups” on page 205 for details.

For information on backing up and restoring disk group configurations, see
“Backing up and restoring disk group configuration data” on page 223.

Creating and administering disk groups | 177
Specifying a disk group to commands

Specifying a disk group to commands

Note: Most VXVM commands require superuser or equivalent privileges.

Many VxVM commands allow you to specify a disk group using the -g option.
For example, the following command creates a volume in the disk group, mktdg:

vxassist -g mktdg make mktvol 5g

The block special device corresponding to this volume is:
/dev/vx/dsk/mktdg/mktvol

System-wide reserved disk groups

The following disk group names are reserved, and cannot be used to name any
disk groups that you create:

bootdg Specifes the boot disk group. This is an alias for the disk group that
contains the volumes that are used to boot the system. VxVM sets
bootdg to the appropriate disk group if it takes control of the root
disk. Otherwise, bootdg is set to nodg (no disk group; see below).

Caution: Do not attempt to change the assigned value of bootdg. Doing so may
render your system unbootable.

defaultdg Specifies the default disk group. This is an alias for the disk group
name that should be assumed if the -g option is not specified to a
command, or if the VXVM_DEFAULTDG environment variable is
undefined. By default, defaultdg is set to nodg (no disk group;
see below).

nodg Specifies to an operation that no disk group has been defined. For
example, if the root disk is not under VxVM control, bootdg is set
to nodg.

Note: If you have upgraded your system, you may find it convenient to continue
to configure a disk group named rootdg as the default disk group (defaultdg).
There is no requirement that both defaultdg and bootdg refer to the same
disk group, nor that either the default disk group or the boot disk group be
named rootdg.

178 | Creating and administering disk groups
Specifying a disk group to commands

Rules for determining the default disk group

It is recommended that you use the -g option to specify a disk group to VxVM
commands that accept this option. If you do not specify the disk group, VxVM
applies the following rules in order until it determines a disk group name:

m Use the default disk group name that is specified by the environment
variable VXVM_DEFAULTDG. This variable can also be set to one of the
reserved system-wide disk group names: bootdg, defaultdg, or nodg. If
the variable is undefined, the following rule is applied.

m Use the disk group that has been assigned to the system-wide default disk
group alias, defaultdg. See “Displaying and specifying the system-wide
default disk group” on page 178. If this alias is undefined, the following rule
is applied.

m If the operation can be performed without requiring a disk group name (for
example, an edit operation on disk access records), do so.

If none of these rules succeeds, the requested operation fails.

Caution: In releases of VXVM prior to 4.0, a subset of commands attempted to
deduce the disk group by searching for the object name that was being operated
upon by a command. This functionality is no longer supported. Scripts that rely
on deducing the disk group from an object name may fail.

Displaying the system-wide boot disk group

To display the currently defined system-wide boot disk group, use the following
command:
wvxdg bootdg

See the vxag(1M) manual page for more information.

Displaying and specifying the system-wide default disk group
To display the currently defined system-wide default disk group, use the
following command:

vxdg defaultdg
If a default disk group has not been defined, nodg is displayed. Alternatively,
you can use the following command to display the default disk group:

vxprint -Gng defaultdg 2>/dev/null
In this case, if there is no default disk group, nothing is displayed.
Use the following command to specify the name of the disk group that is aliased

by defaultdg:
vxdctl defaultdg diskgroup

Creating and administering disk groups | 179
Displaying disk group information

If bootdg is specified as the argument to this command, the default disk group
is set to be the same as the currently defined system-wide boot disk group.

If nodg is specified as the argument to the vxdct1 defaultdg command, the
default disk group is undefined.

Note: The specified diskgroup need not currently exist on the system.

See the vxdct1(1M) and vxdg(1M) manual pages for more information.

Displaying disk group information

To display information on existing disk groups, enter the following command:
vxdg list
NAME STATE D
rootdg enabled 730344554.1025. tweety
newdg enabled 731118794.1213. tweety

To display more detailed information on a specific disk group, use the following
command:
vxdg list diskgroup

The output from this command is similar to the following:
Group: mydg
dgid: 962910960.1025.bass
import-id: 0.1
flags:
version: 140
local-activation: read-write
alignment : 512 (bytes)
ssb: on
detach-policy: local
copies: nconfig=default nlog=default
config: segno=0.1183 permlen=3448 free=3428 templen=12
loglen=522
config disk c0tl10d0 copy 1 len=3448 state=clean online
config disk c0t11d0 copy 1 len=3448 state=clean online
log disk c0t10d0 copy 1 len=522
log disk c0tl11d0 copy 1 len=522

Note: In this example, the administrator has chosen to name the boot disk group
as rootdg.

To verify the disk group ID and name associated with a specific disk (for
example, to import the disk group), use the following command:
vxdisk -s list devicename

180 | Creating and administering disk groups
Displaying disk group information

This command provides output that includes the following information for the
specified disk. For example, output for disk c0t12d0 as follows:

Disk: c0t12d0

type: simple

flags: online ready private autoconfig autoimport imported

diskid: 963504891.1070.bass

dgname: newdg

dgid: 963504895.1075.bass

hostid: bass

info: privoffset=128

Displaying free space in a disk group
Before you add volumes and file systems to your system, make sure you have
enough free disk space to meet your needs.

To display free space in the system, use the following command:
vxdg free

The following is example output:

GROUP DISK DEVICE TAG OFFSET LENGTH FLAGS
mydg mydgO0l c0t10d0 c0t10d0 0 4444228 -
mydg mydg02 c0t11d0 c0t11d0 0 4443310 -
newdg newdg01 c0tl12d0 c0tl12d0 0 4443310 -
newdg newdg02 c0t13d0 c0t13d0 0 4443310 -
oradg oradg01l c0t14d0 c0t14d0 0 4443310 -

To display free space for a disk group, use the following command:

vxdg -g diskgroup free
where -g diskgroup optionally specifies a disk group.
For example, to display the free space in the disk group, mydg, use the following
command:
vxdg -g mydg free
The following example output shows the amount of free space in sectors:
DISK DEVICE TAG OFFSET LENGTH FLAGS

mydg01l c0t10d0 c0t10d0 0 4444228 -
mydg02 c0tl11d0 c0t11d0 0 4443310 -

Creating and administering disk groups | 181
Creating a disk group

Creating a disk group

Datarelated to a particular set of applications or a particular group of users may
need to be made accessible on another system. Examples of this are:

m A system has failed and its data needs to be moved to other systems.

m The work load must be balanced across a number of systems.

Disks must be placed in one or more disk groups before VxVM can use the disks
for volumes. It is important that you locate data related to particular
applications or users on an identifiable set of disks. When you need to move
these disks, this allows you to move only the application or user data that should
be moved.

A disk group must have at least one disk associated with it. A new disk group can
be created when you use menuitem 1 (Add or initialize one or more
disks) of the vxdiskadm command to add disks to VxVM control, as described
in “Adding a disk to VxVM” on page 100. The disks to be added to a disk group
must not belong to an existing disk group.

You can also use the vxdiskadd command to create a new disk group:

vxdiskadd c1t0d0
where c1t0d0 in this example is the device name of a disk that is not currently
assigned to a disk group. The command dialog is similar to that described for the
vxdiskadm command in “Adding a disk to VxVM” on page 100.

Disk groups can also be created by using the vxdg init command:

vxdg init diskgroup [cds=on|off] diskname=devicename
For example, to create a disk group named mktdg on device c1t0d0s2:

vxdg init mktdg mktdg0l=clt0d40s2
The disk specified by the device name, c1t0d0s2, must have been previously
initialized with vxdiskadd or vxdiskadm, and must not currently belong to a
disk group.
You can use the cds attribute with the vxdg init command to specify whether a
new disk group is compatible with the Cross-platform Data Sharing (CDS)
feature. In Veritas Volume Manager 4.0 and later releases, newly created disk
groups are compatible with CDS by default (equivalent to specifying cds=on). If
you want to change this behavior, edit the file /etc/default/vxdg, and set
the attribute-value pair cds=off in this file before creating a new disk group.

Alternatively, you can use the following command to set this attribute for a disk
group:
vxdg -g diskgroup set cds=on|off

182 ‘

Creating and administering disk groups
Adding a disk to a disk group

Adding a disk to a disk group

To add a disk to an existing disk group, use menu item 1 (Add or
initialize one or more disks) of the vxdiskadm command. For details
of this procedure, see “Adding a disk to VxVM” on page 100.

You can also use the vxdiskadd command to add a disk to a disk group, for
example:

vxdiskadd c1tl1d0
where c1t1d0 is the device name of a disk that is not currently assigned to a
disk group. The command dialog is similar to that described for the vxdiskadm
command in “Adding a disk to VxVM” on page 100.

Removing a disk from a disk group

Note: Before you can remove the last disk from a disk group, you must disable
the disk group as described in “Disabling a disk group” on page 217.
Alternatively, you can destroy the disk group as described in “Destroying a disk
group” on page 218.

A disk that contains no subdisks can be removed from its disk group with this
command:
vxdg [-g diskgroup]l rmdisk diskname
For example, to remove mydg02 from the disk group, mydg, use this command:
vxdg -g mydg rmdisk mydg02
If the disk has subdisks on it when you try to remove it, the following error
message is displayed:
VxVM vxdg ERROR V-5-1-552 Disk diskname is used by one or more
subdisks
Use -k to remove device assignment.
Using the -k option allows you to remove the disk even if subdisks are present.
For more information, see the vxdg(1M) manual page.

Caution: Use of the -k option to vxdg can result in data loss.

Once the disk has been removed from its disk group, you can (optionally) remove
it from VxVM control completely, as follows:

vxdiskunsetup devicename
For example, to remove c1t0d0s2 from VXVM control, use these commands:

wvxdiskunsetup clt0d0s2
You can remove a disk on which some subdisks of volumes are defined. For
example, you can consolidate all the volumes onto one disk. If you use

Creating and administering disk groups | 183
Deporting a disk group

vxdiskadm to remove a disk, you can choose to move volumes off that disk. To
do this, run vxdiskadm and select item 3 (Remove a disk)from the main
menu.

If the disk is used by some volumes, this message is displayed:
VxVM ERROR V-5-2-369 The following volumes currently use part of
disk mydg02:

home usrvol
Volumes must be moved from mydg02 before it can be removed.

Move volumes to other disks? [y,n,q,?] (default: n)

If you choose y, then all volumes are moved off the disk, if possible. Some
volumes may not be movable. The most common reasons why a volume may not
be movable are as follows:

There is not enough space on the remaining disks.

Plexes or striped subdisks cannot be allocated on different disks from
existing plexes or striped subdisks in the volume.

If vxdiskadm cannot move some volumes, you may need to remove some plexes
from some disks to free more space before proceeding with the disk removal
operation.

Deporting a disk group

Deporting a disk group disables access to a disk group that is currently enabled

(imported) by the system. Deport a disk group if you intend to move the disks in
adisk group to another system. Also, deport a disk group if you want to use all of
the disks remaining in a disk group for a new purpose.

To deport a disk group

1

Stop all activity by applications to volumes that are configured in the disk
group that is to be deported. Unmount file systems and shut down databases
that are configured on the volumes.

Note: Deportation fails if the disk group contains volumes that are in use
(for example, by mounted file systems or databases).

Use the following command to stop the volumes in the disk group:
vxvol -g diskgroup stopall

Select menu item 9 (Remove access to (deport) a disk group)
from the vxdiskadm main menu.

184

Creating and administering disk groups

Deporting a disk group

4 At the following prompt, enter the name of the disk group to be deported (in
this example, newdg):

Remove access to (deport) a disk group
Menu: VolumeManager/Disk/DeportDiskGroup

Use this menu operation to remove access to

a disk group that is currently enabled (imported) by this
system.

Deport a disk group if you intend to move the disks in a disk
group to another system. Also, deport a disk group if you
want to use all of the disks remaining in a disk group for some
new purpose.

You will be prompted for the name of a disk group. You will
also be asked if the disks should be disabled (offlined). For
removable disk devices on some systems, it is important to

disable all access to the disk before removing the disk.

Enter name of disk group [<group>,list,q,?] (default: list)

newdg

5 At the following prompt, enter v if you intend to remove the disks in this

disk group:
VxVM INFO V-5-2-377 The requested operation is to disable
access to the removable disk group named newdg. This disk
group is stored on the following disks:
newdg0l on device cl1tl1d0

You can choose to disable access to (also known as “offline”)
these disks. This may be necessary to prevent errors if you

actually remove any of the disks from the system.

Disable (offline) the indicated disks? [y,n,q,?]
(default: n) ¥y
6 At the following prompt, press Return to continue with the operation:

Continue with operation? [y,n,q,?] (default: vy)

Once the disk group is deported, the vxdiskadm utility displays the
following message:

VxVM INFO V-5-2-269 Removal of disk group newdg was
successful.

7 At the following prompt, indicate whether you want to disable another disk

group (y) or return to the vxdiskadm main menu (n):
Disable another disk group? [y,n,q,?] (default: n)

Alternatively, you can use the vxdg command to deport a disk group:
vxdg deport diskgroup

Creating and administering disk groups | 185
Importing a disk group

Importing a disk group

Importing a disk group enables access by the system to a disk group. To move a
disk group from one system to another, first disable (deport) the disk group on
the original system, and then move the disk between systems and enable
(import) the disk group.

To import a disk group

1 Use the following command to ensure that the disks in the deported disk
group are online:

vxdisk -s list

2 Select menuitem 8 (Enable access to (import) a disk group)
from the vxdiskadm main menu.

3 At the following prompt, enter the name of the disk group to import (in this
example, newdg):

Enable access to (import) a disk group
Menu: VolumeManager/Disk/EnableDiskGroup

Use this operation to enable access to a

disk group. This can be used as the final part of moving a disk
group from one system to another. The first part of moving a
disk group is to use the “Remove access to (deport) a disk
group” operation on the original host.

A disk group can be imported from another host that failed
without first deporting the disk group. Be sure that all disks
in the disk group are moved between hosts.

If two hosts share a SCSI bus, be very careful to ensure that
the other host really has failed or has deported the disk
group.

If two active hosts import a disk group at the same time, the
disk group will be corrupted and will become unusable.

Select disk group to import [<group>,list,q,?] (default: 1list)
newdg

Once the import is complete, the vxdiskadm utility displays the following
Success message:
VxVM INFO V-5-2-374 The import of newdg was successful.

4 At the following prompt, indicate whether you want to import another disk
group (y) or return to the vxdiskadm main menu (n):
Select another disk group? [vy,n,q,?] (default: n)
Alternatively, you can use the vxdg command to import a disk group:
vxdg import diskgroup

186 ‘

Creating and administering disk groups
Handling disks with duplicated identifiers

Handling disks with duplicated identifiers

Advanced disk arrays provide hardware tools that you can use to create clones
of existing disks outside the control of VxVM. For example, these disks may have
been created as hardware snapshots or mirrors of existing disks in a disk
group.As aresult, the VXVM private region is also duplicated on the cloned disk.
When the disk group containing the original disk is subsequently imported,
VxVM detects multiple disks that have the same disk identifier that is defined in
the private region. In releases prior to 5.0, if VXVM could not determine which
disk was the original, it would not import such disks into the disk group. The
duplicated disks would have to be re-initialized before they could be imported.

From release 5.0, a unique disk identifier (UDID) is added to the disk’s private
region when the disk is initialized or when the disk is imported into a disk group
(if this identifier does not already exist). Whenever a disk is brought online, the
current UDID value that is known to the Device Discovery Layer (DDL) is
compared with the UDID that is set in the disk’s private region. If the UDID
values do not match, the udid_mismatchflagis set on the disk. This flag can be
viewed with the vxdisk 1ist command.

A new set of vxdisk and vxdg operations are provided to handle such disks;
either by either writing the DDL value of the UDID to a disk’s private region, or
by tagging a disk and specifying that it is a cloned disk to the vxdg import
operation.

The following is sample output from the vxdisk 1ist command showing that
disks c2t6640s2, c2t67d0s2 and c2t68d0s2 are marked with the
udid_mismatch flag:

vxdisk list

DEVICE TYPE DISK GROUP STATUS
c0t0d0s2 auto:cdsdisk - - online
c0t1d0s2 auto:cdsdisk - - online
c2t64d0s2 auto:cdsdisk - - online
c2t65d0s2 auto:cdsdisk - - online
c2t66d0s2 auto:cdsdisk - - online udid_mismatch
c2t67d0s2 auto:cdsdisk - - online udid_mismatch
c2t68d0s2 auto:cdsdisk - - online udid_mismatch

Writing a new UDID to a disk

You can use the following command to update the unique disk identifier (UDID)
for one or more disks:

vxdisk [-f] [-g diskgroup] updateudid disk ...

This command uses the current value of the UDID that is stored in the Device
Discovery Layer (DDL) database to correct the value in the private region. The - £

Creating and administering disk groups | 187
Handling disks with duplicated identifiers

option must be specified if VXVM has not raised the udid_mismatch flag for a
disk.

For example, the following command updates the UDIDs for the disks
c2t66d0s2 and c2t67d0s2:

wvxdisk updateudid c2t66d0s2 c2t67d0s2

Importing a disk group containing cloned disks

By default, disks on which the udid_mismatch flag or the clone_disk flag
has been set are not imported by the vxdg import command unless all disks in
the disk group have at least one of these flags set, and no two of the disks have
the same UDID. You can then import the cloned disks by specifying the

-0 useclonedev=on option to the vxdg import command, as shown in this
example:

vxdg -o useclonedev=on [-o updateid] import mydg

Note: This form of the command allows only cloned disks to be imported. All
non-cloned disks remain unimported.

If the clone_disk flag is set on a disk, this indicates the disk was previously
imported into a disk group with the udid_mismatch flag set.

The -0 updateid option can be specified to write new identification attributes
to the disks, and to set the clone_disk flag on the disks. (The vxdisk set
clone=on command can also be used to set the flag.) However, the import fails if
multiple copies of one or more cloned disks exist. In this case, you can either
update the UDIDs of the cloned disks as described in “Writing a new UDID to a
disk” on page 186, or you can use the following command to tag all the disks in
the disk group that are to be imported:

vxdisk [-g diskgroup] settag tagname disk ...

where tagname is a string of up to 128 characters, not including spaces or tabs.
For example, the following command sets the tag, my_tagged_disks, on
several disks that are to be imported together:

vxdisk settag my tagged disks c2t66d40s2 c2t67d0s2
To check which disks are tagged, use the vxdisk 1isttag command:

vxdisk listtag

DANAME DMNAME NAME VALUE
c0t0d0s2 mydg01l - -
c0tld0s2 mydg02 - -
c2t64d0s2 mydg05 my_tagged_disks -

c2t65d0s2 mydg06 my_tagged_disks -

188

Creating and administering disk groups
Handling disks with duplicated identifiers

c2t66d0s2 mydg07 my_tagged_disks -
c2t67d0s2 mydg08 my_tagged_disks -
c2t68d0s2 mydg09 - -

The configuration database in a VM disk’s private region contains persistent
configuration data (or metadata) about the objects in a disk group. This database
is consulted by VxVM when the disk group is imported. At least one of the
cloned disks that are being imported must contain a copy of the current
configuration database in its private region.

You can use the following command to ensure that a copy of the metadata is
placed on a disk, regardless of the placement policy for the disk group:

vxdisk [-g diskgroup] set disk keepmeta=always
Alternatively, use the following command to place a copy of the configuration
database and kernel log on all disks in a disk group that share a given tag:

vxdg [-g diskgroup] set tagmeta=on tag=tagname nconfig=all \

nlog=all

To check which disks in a disk group contain copies of this configuration
information, use the vxdg 1istmeta command:

vxdg [-q] listmeta diskgroup
The -q option can be specified to suppress detailed configuration information
from being displayed.
The tagged disks in the disk group may be imported by specifying the tag to the
vxdg import command in addition to the -o useclonedev=on option:

vxdg -o useclonedev=on -o tag=my tagged_disks import mydg
If you have already imported the non-cloned disks in a disk group, you can use
the -n and -t option to specify a temporary name for the disk group containing
the cloned disks:

vxdg -t -n clonedg -o useclonedev=on -o tag=my tagged_disks \

import mydg

See “Renaming a disk group” on page 193 for more information.

To remove a tag from a disk, use the vxdisk rmtag command, as shown in the
following example:

vxdisk rmtag tag=my tagged disks c2t67d0s2
For further information about the use of the vxdisk and vxdg commands to tag
disks, and handle duplicate UDIDs, see the vxdisk(1M) and vxdg(1M) manual
pages.

Creating and administering disk groups | 189
Handling disks with duplicated identifiers

Sample cases of operations on cloned disks

The following sections contain examples of operations that can be used with
cloned disks:

m Enabling configuration database copies on tagged disks
m Importing cloned disks without tags

m Importing cloned disks with tags

Enabling configuration database copies on tagged disks

In this example, the following commands have been used to tag some of the
disks in an Hitachi TagmaStore array:

vxdisk settag TagmaStore-USP0_28 tl=vl
vxdisk settag TagmaStore-USP0_28 t2=v2
wvxdisk settag TagmaStore-USP0_24 t2=v2
vxdisk settag TagmaStore-USP0_25 tl=vl

These tags can be viewed by using the vxdisk 1isttag command:
vxdisk listtag

DEVICE NAME VALUE
TagmaStore-USP0_24 t2 v2
TagmaStore-USP0_25 tl1 v1
TagmaStore-USP0_28 tl1 vl
TagmaStore-USP0_28 t2 v2

The following command ensures that configuration database copies and kernel
log copies are maintained for all disks in the disk group mydg that are tagged as
tl:

vxdg -g mydg set tagmeta=on tag=tl nconfig=all nlog=all

The disks for which such metadata is maintained can be seen by using this

command:
vxdisk -o alldgs list
DEVICE TYPE DISK GROUP STATUS

TagmaStore-USP0_10 auto:cdsdisk - - online
TagmaStore-USP0_24 auto:cdsdisk mydg02 mydg online
TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online tagmeta
TagmaStore-USP0_26 auto:cdsdisk - - online
TagmaStore-USP0_27 auto:cdsdisk - - online
TagmaStore-USP0_28 auto:cdsdisk mydg0l mydg online tagmeta

190

Creating and administering disk groups
Handling disks with duplicated identifiers

Alternatively, the following command can be used to ensure that a copy of the
metadata is kept with a disk:

vxdisk set TagmaStore-USP0_25 keepmeta=always
vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS
TagmaStore-USP0_10 auto:cdsdisk - - online
TagmaStore-USP0_22 auto:cdsdisk - - online
TagmaStore-USP0_23 auto:cdsdisk - - online

TagmaStore-USP0_24 auto:cdsdisk mydg02 mydg online
TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online keepmeta
TagmaStore-USP0_28 auto:cdsdisk mydg0l mydg online

Importing cloned disks without tags

In this example, cloned disks (shadow image devices) from an Hitachi
TagmaStore array are to be imported. The primary (non-cloned) disks, mydg01,
mydg03 and mydg03, are already imported, and the cloned disks are not tagged.
wvxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS
TagmaStore-USP0_3 auto:cdsdisk - (mydg) online udid_mismatch
TagmaStore-USP0_23 auto:cdsdisk mydg02 mydg online
TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online
TagmaStore-USP0_30 auto:cdsdisk - (mydg) online udid_mismatch
TagmaStore-USP0_31 auto:cdsdisk - (mydg) online udid_mismatch
TagmaStore-USP0_32 auto:cdsdisk mydg01l mydg online

To import the cloned disks, they must be assigned a new disk group name, and
their UDIDs must be updated:

vxdg -n newdg -o useclonedev=on -o updateid import mydg

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS
TagmaStore-USP0_3 auto:cdsdisk mydg03 newdg online clone_disk
TagmaStore-USP0_23 auto:cdsdisk mydg02 mydg online
TagmaStore-USP0_25 auto:cdsdisk mydg03 mydg online
TagmaStore-USP0_30 auto:cdsdisk mydg02 newdg online clone_disk
TagmaStore-USP0_31 auto:cdsdisk mydg0l newdg online clone_disk
TagmaStore-USP0_32 auto:cdsdisk mydg0l mydg online

Note that the state of the imported cloned disks has changed from online
udid_mismatchtoonline clone_disk.

In the next example, none of the disks (neither cloned nor non-cloned) have

been imported:
wvxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS
TagmaStore-USP0_3 auto:cdsdisk - (mydg) online udid_mismatch
TagmaStore-USP0_23 auto:cdsdisk - (mydg) online
TagmaStore-USP0_25 auto:cdsdisk - (mydg) online
TagmaStore-USP0_30 auto:cdsdisk - (mydg) online udid_mismatch
TagmaStore-USP0_31 auto:cdsdisk - (mydg) online udid_mismatch

TagmaStore-USP0_32 auto:cdsdisk - (mydg) online

Creating and administering disk groups | 191
Handling disks with duplicated identifiers

To import only the cloned disks into the mydg disk group:
vxdg -o useclonedev=on -o updateid import mydg
vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS
TagmaStore-USP0_3 auto:cdsdisk mydg03 mydg online clone_disk
TagmaStore-USP0_23 auto:cdsdisk - (mydg) online
TagmaStore-USP0_25 auto:cdsdisk - (mydg) online

TagmaStore-USP0_30 auto:cdsdisk mydg02 mydg online clone_disk
TagmaStore-USP0_31 auto:cdsdisk mydg0l mydg online clone_disk
TagmaStore-USP0_32 auto:cdsdisk - (mydg) online

Importing cloned disks with tags

In this example, cloned disks (BCV devices) from an EMC Symmetrix DMX array
are to be imported. The primary (non-cloned) disks, mydg01, mydg03 and
mydg03, are already imported, and the cloned disks with the tag t1 are to be

imported.

wvxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMCO_4 auto:cdsdisk mydg0l mydg online

EMCO0_6 auto:cdsdisk mydg02 mydg online

EMCO_S8 auto:cdsdisk - (mydg) online udid_mismatch
EMCO_15 auto:cdsdisk - (mydg) online udid_mismatch
EMCO_18 auto:cdsdisk mydg03 mydg online

EMCO0_24 auto:cdsdisk - (mydg) online udid_mismatch

The disks are tagged as follows:
vxdisk listtag

DEVICE NAME VALUE
EMCO0_4 t2 v2
EMCO_4 tl vl
EMCO_6 t2 v2
EMCO0_8 tl vl
EMCO_15 t2 v2
EMCO_18 tl vl
EMCO0_24 tl vl
EMCO0_24 t2 v2

To import the cloned disks that are tagged as t1, they must be assigned a new
disk group name, and their UDIDs must be updated:

vxdg -n newdg -o useclonedev=on -o tag=tl -o updateid import mydg
vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMCO_4 auto:cdsdisk mydg0l mydg online

EMCO_6 auto:cdsdisk mydg02 mydg online

EMCO0_8 auto:cdsdisk mydg03 newdg online clone_disk
EMCO_15 auto:cdsdisk - (mydg) online udid_mismatch
EMCO_18 auto:cdsdisk mydg03 mydg online

EMCO0_24 auto:cdsdisk mydg0l newdg online clone_disk

192

Creating and administering disk groups
Handling disks with duplicated identifiers

As the cloned disk EMCO0_15 is not tagged as t1, it is not imported. Note that the
state of the imported cloned disks has changed from online udid_mismatch
toonline clone_disk

By default, the state of imported cloned disks is shown as online clone_disk.
This can be removed by using the vxdisk set command as shown here:

vxdisk set EMCO_8 clone=off

vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMCO_4 auto:cdsdisk mydg0l mydg online

EMCO_6 auto:cdsdisk mydg02 mydg online

EMCO0_8 auto:cdsdisk mydg03 newdg online

EMCO_15 auto:cdsdisk - (mydg) online udid_mismatch
EMCO_18 auto:cdsdisk mydg03 mydg online

EMCO0_24 auto:cdsdisk mydg0l newdg online clone_disk

In the next example, none of the disks (neither cloned nor non-cloned) have
been imported:
vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMCO_4 auto:cdsdisk - (mydg) online

EMCO0_6 auto:cdsdisk - (mydg) online

EMCO_S8 auto:cdsdisk - (mydg) online udid_mismatch
EMCO_15 auto:cdsdisk - (mydg) online udid_mismatch
EMCO_18 auto:cdsdisk - (mydg) online

EMCO0_24 auto:cdsdisk - (mydg) online udid_mismatch
To import only the cloned disks that have been tagged as t1 into the mydg disk
group:

vxdg -o useclonedev=on -o tag=tl -o updateid import mydg
vxdisk -o alldgs list

DEVICE TYPE DISK GROUP STATUS

EMCO_4 auto:cdsdisk - (mydg) online

EMCO0_6 auto:cdsdisk - (mydg) online

EMCO0_S8 auto:cdsdisk mydg03 mydg online clone_disk
EMCO_15 auto:cdsdisk - (mydg) online udid_mismatch
EMCO0_18 auto:cdsdisk - (mydg) online

EMCO0_24 auto:cdsdisk mydg0l mydg online clone_disk

As in the previous example, the cloned disk EMCO_15 is not tagged as t1, and so
it is not imported.

Creating and administering disk groups | 193
Renaming a disk group

Renaming a disk group

Only one disk group of a given name can exist per system. It is not possible to
import or deport a disk group when the target system already has a disk group of
the same name. To avoid this problem, VxVM allows you to rename a disk group
during import or deport.

To rename a disk group during import, use the following command:

vxdg [-t] -n newdg import diskgroup

If the -t option is included, the import is temporary and does not persist across
reboots. In this case, the stored name of the disk group remains unchanged on

its original host, but the disk group is known by the name specified by newdg to
the importing host. If the -t option is not used, the name change is permanent.

For example, this command temporarily renames the disk group, mydg, as
mytempdg on import:
vxdg -t -n mytempdg import mydg

To rename a disk group during deport, use the following command:
vxdg [-h hostname]l -n newdg deport diskgroup

When renaming on deport, you can specify the -h hostname option to assign a
lock to an alternate host. This ensures that the disk group is automatically
imported when the alternate host reboots.

For example, this command renames the disk group, mydg, as myexdg, and
deports it to the host, jingo:

vxdg -h jingo -n myexdg deport mydg

Note: You cannot use this method to rename the boot disk group because it
contains volumes that are in use by mounted file systems (such as /). To rename
the boot disk group, you must first unmirror and unencapsulate the root disk,
and then re-encapsulate and remirror the root disk in a different disk group.
This disk group becomes the new boot disk group. See the sections under
“Rootability” on page 114 for more information about encapsulating and
unencapsulating the root disk.

To temporarily move the boot disk group, bootdg, from one host to another
(for repair work on the root volume, for example) and then move it back
1 On the original host, identify the disk group ID of the bootdg disk group to
be imported with the following command:
vxdisk -g bootdg -s list

194

Creating and administering disk groups
Moving disks between disk groups

This command results in output such as the following:

dgname: rootdg
dgid: 774226267 .1025. tweety

Note: In this example, the administrator has chosen to name the boot disk
group as rootdg. The ID of this disk group is 774226267.1025. tweety.

This procedure assumes that all the disks in the boot disk group are
accessible by both hosts.

Shut down the original host.

On the importing host, import and rename the rootdg disk group with this
command:

vxdg -tC -n newdg import diskgroup

The -t option indicates a temporary import name, and the -c option clears
import locks. The -n option specifies an alternate name for the rootdg
being imported so that it does not conflict with the existing rootdg.
diskgroup is the disk group ID of the disk group being imported (for
example, 774226267 .1025. tweety).

If a reboot or crash occurs at this point, the temporarily imported disk
group becomes unimported and requires a reimport.

After the necessary work has been done on the imported disk group, deport
it back to its original host with this command:

vxdg -h hostname deport diskgroup

Here hostname is the name of the system whose rootdg is being returned
(the system name can be confirmed with the command uname -n).

This command removes the imported disk group from the importing host
and returns locks to its original host. The original host can then
automatically import its boot disk group at the next reboot.

Moving disks between disk groups

To move a disk between disk groups, remove the disk from one disk group and
add it to the other. For example, to move the physical disk c0t3d0 (attached
with the disk name salesdg04) from disk group salesdg and add it to disk
group mktdg, use the following commands:

vxdg -g salesdg rmdisk salesdg04
vxdg -g mktdg adddisk mktdg02=c0t340

Creating and administering disk groups | 195
Moving disk groups between systems

Caution: This procedure does not save the configurations nor data on the disks.

You can also move a disk by using the vxdiskadm command. Select item 3
(Remove a disk) from the main menu, and then selectitem 1 (Add or
initialize a disk).

See “Moving objects between disk groups” on page 213 for an alternative and

preferred method of moving disks between disk groups. This method preserves
VxXVM objects, such as volumes, that are configured on the disks.

Moving disk groups between systems

An important feature of disk groups is that they can be moved between systems.
If all disks in a disk group are moved from one system to another, then the disk
group can be used by the second system. You do not have to re-specify the
configuration.

To move a disk group between systems

1 On the first system, stop all volumes in the disk group, then deport (disable
local access to) the disk group with the following command:

vxdg deport diskgroup

2 Move all the disks to the second system and perform the steps necessary
(system-dependent) for the second system and VxVM to recognize the new
disks.

This can require a reboot, in which case the vxconfigd daemon is
restarted and recognizes the new disks. If you do not reboot, use the
command vxdctl enable to restart the vxconfigd program so VxVM also
recognizes the disks.

3 Import (enable local access to) the disk group on the second system with this
command:
vxdg import diskgroup

Caution: All disks in the disk group must be moved to the other system. If
they are not moved, the import fails.

4 After the disk group is imported, start all volumes in the disk group with
this command:
vxrecover -g diskgroup -sb
You can also move disks from a system that has crashed. In this case, you cannot
deport the disk group from the first system. When a disk group is created or
imported on a system, that system writes a lock on all disks in the disk group.

196

Creating and administering disk groups
Moving disk groups between systems

Caution: The purpose of the lock is to ensure that dual-ported disks (disks that
can be accessed simultaneously by two systems) are not used by both systems at
the same time. If two systems try to access the same disks at the same time, this
must be managed using software such as the clustering functionality of VxVM.
Otherwise, configuration information stored on the disk may be corrupted, and
the data on the disk may become unusable.

Handling errors when importing disks

When you move disks from a system that has crashed or that failed to detect the
group before the disk was moved, the locks stored on the disks remain and must
be cleared. The system returns the following error message:
VxVM vxdg ERROR V-5-1-587 disk group groupname: import failed:
Disk is in use by another host
The next message indicates that the disk group does not contains any valid disks
(not that it does not contains any disks):
VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed:
No valid disk found containing disk group
The disks may be considered invalid due to a mismatch between the host ID in
their configuration copies and that stored in the /etc/vx/volboot file.
To clear locks on a specific set of devices, use the following command:
vxdisk clearimport devicename ...

To clear the locks during import, use the following command:
vxdg -C import diskgroup

Caution: Be careful when using the vxdisk clearimport Or vxdg -C import
command on systems that have dual-ported disks. Clearing the locks allows
those disks to be accessed at the same time from multiple hosts and can result in
corrupted data.

A disk group can be imported successfully if all the disks are accessible that
were visible when the disk group was last imported successfully. However,
sometimes you may need to specify the - £ option to forcibly import a disk group
if some disks are not available. If the import operation fails, an error message is
displayed.

The following error message indicates a fatal error that requires hardware
repair or the creation of a new disk group, and recovery of the disk group
configuration and data:

VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed:
Disk group has no valid configuration copies

Creating and administering disk groups | 197
Moving disk groups between systems

The following error message indicates a recoverable error.
VxVM vxdg ERROR V-5-1-587 Disk group groupname: import failed:
Disk for disk group not found
If some of the disks in the disk group have failed, you can force the disk group to
be imported by specifying the -f option to the vxdg import command:
vxdg -f import diskgroup

Caution: Be careful when using the - f option. It can cause the same disk group
to be imported twice from different sets of disks. This can cause the disk group
configuration to become inconsistent.

See “Handling conflicting configuration copies” on page 200.

As using the - £ option to force the import of an incomplete disk group counts as
a successful import, an incomplete disk group may be imported subsequently
without this option being specified. This may not be what you expect.

These operations can also be performed using the vxdiskadm utility. To deport
a disk group using vxdiskadm, select menu item 9 (Remove access to
(deport) a disk group).Toimport a disk group, select item 8 (Enable
access to (import) a disk group).The vxdiskadmimport operation
checks for host import locks and prompts to see if you want to clear any that are
found. It also starts volumes in the disk group.

Reserving minor numbers for disk groups

A device minor number uniquely identifies some characteristic of a device to the
device driver that controls that device. It is often used to identify some
characteristic mode of an individual device, or to identify separate devices that
are all under the control of a single controller. VxVM assigns unique device
minor numbers to each object (volume, plex, subdisk, disk, or disk group) that it
controls.

When you move a disk group between systems, it is possible for the minor
numbers that it used on its previous system to coincide (or collide) with those of
objects known to VxVM on the new system. To get around this potential
problem, you can allocate separate ranges of minor numbers for each disk
group. VXVM uses the specified range of minor numbers when it creates volume
objects from the disks in the disk group. This guarantees that each volume has
the same minor number across reboots or reconfigurations. Disk groups may
then be moved between machines without causing device number collisions.

VXVM chooses minor device numbers for objects created from this disk group
starting at the base minor number base_minor. Minor numbers can range from
this value up to 131,071. Try to leave a reasonable number of unallocated minor

198

Creating and administering disk groups
Moving disk groups between systems

numbers near the top of this range to allow for temporary device number
remapping in the event that a device minor number collision may still occur.

VxVM reserves the range of minor numbers from 0 to 999 for use with volumes
in the boot disk group. For example, the rootvol volume is always assigned
minor number 0.

If you do not specify the base of the minor number range for a disk group, VxVM
chooses one at random. The number chosen is at least 1000, is a multiple of
1000, and yields a usable range of 1000 device numbers. The chosen number
also does not overlap within a range of 1000 of any currently imported disk
groups, and it does not overlap any currently allocated volume device numbers.

Note: The default policy ensures that a small number of disk groups can be
merged successfully between a set of machines. However, where disk groups are
merged automatically using failover mechanisms, select ranges that avoid
overlap.

To view the base minor number for an existing disk group, use the vxprint
command as shown in the following examples for the disk group, mydg:

vxprint -1 mydg | egrep minors

minors: >=45000

vxprint -g mydg -m | egrep base_minor

base_minor=45000
To set a base volume device minor number for a disk group that is being created,
use the following command:

vxdg init diskgroup minor=base_minor disk_access_name ...
For example, the following command creates the disk group, newdg, that
includes the specified disks, and has a base minor number of 30000:

vxdg init newdg minor=30000 c1d0t0s2 clt1d0s2
If a disk group already exists, you can use the vxdg reminor command to change
its base minor number:

vxdg -g diskgroup reminor new base minor
For example, the following command changes the base minor number to 30000
for the disk group, mydg:

vxprint -g mydg reminor 30000
If a volume is open, its old device number remains in effect until the system is
rebooted or until the disk group is deported and re-imported. If you close the
open volume, you can run vxdg reminor again to allow the renumbering to take
effect without rebooting or re-importing.

An example of where it is necessary to change the base minor number is for a
cluster-shareable disk group. The volumes in a shared disk group must have the
same minor number on all the nodes. If there is a conflict between the minor
numbers when a node attempts to join the cluster, the join fails. You can use the

Creating and administering disk groups | 199
Moving disk groups between systems

reminor operation on the nodes that are in the cluster to resolve the conflict. In
a cluster where more than one node is joined, use a base minor number which
does not conflict on any node.

For further information on minor number reservation, see the vxdg(1M)
manual page.

Compatibility of disk groups between platforms

For disk groups that support the Cross-platform Data Sharing (CDS) feature, the
upper limit on the minor number range is restricted on AIX, HP-UX, Linux (with
a 2.6 or later kernel) and Solaris to 65,535 to ensure portability between these
operating systems.

On a Linux platform with a pre-2.6 kernel, the number of minor numbers per
major number is limited to 256 with a base of 0. This has the effect of limiting
the number of volumes and disks that can be supported system-wide to a smaller
value than is allowed on other operating system platforms. The number of disks
that are supported by a pre-2.6 Linux kernel is typically limited to a few
hundred. With the extended major numbering scheme that was implemented in
VXVM 4.0 on Linux, a maximum of 4079 volumes could be configured, provided
that a contiguous block of 15 extended major numbers was available.

VXVM 4.1 runs on a 2.6 version Linux kernel, which increases the number of
minor devices that are configurable from 256 to 65,536 per major device
number. This allows a large number of volumes and disk devices to be
configured on a system. The theoretical limit on the number of DMP and volume
devices that can be configured on such a system are 65,536 and 1,048,576
respectively. However, in practice, the number of VxXVM devices that can be
configured in a single disk group is limited by the size of the private region.

When a CDS-compatible disk group is imported on a Linux system with a pre-2.6
kernel, VXVM attempts to reassign the minor numbers of the volumes, and fails
if this is not possible.

To help ensure that a CDS-compatible disk group is portable between operating
systems, including Linux with a pre-2.6 kernel, use the following command to
set the maxdev attribute on the disk group:

vxdg -g diskgroup set maxdev=4079

Note: Such a disk group may still not be importable by VxVM 4.0 on Linux with a
pre-2.6 kernel if it would increase the number of minor numbers on the system
that are assigned to volumes to more than 4079, or if the number of available
extended major numbers is smaller than 15.

200

Creating and administering disk groups
Handling conflicting configuration copies

You can use the following command to discover the maximum number of
volumes that are supported by VxVM on a Linux host:

cat /proc/sys/vxvm/vxio/vol_max_volumes

4079

See the vxdg(1M) manual page for more information.

Handling conflicting configuration copies

If an incomplete disk group is imported on several different systems, this can
create inconsistencies in the disk group configuration copies that you may need
to resolve manually. This section and following sections describe how such a
condition can occur, and how to correct it. (When the condition occurs in a
cluster that has been split, it is usually referred to as a serial split brain
condition).

Note: The procedures given here require that the version number of the disk
group is at least 110.

Example of a serial split brain condition in a cluster

Note: This section presents an example of how a serial split brain condition
might occur for a shared disk group in a cluster. For more information about
shared disk groups in clusters, see “Administering cluster functionality” on
page 407. Conflicts between configuration copies can also occur for private disk
groups in clustered and non-clustered configurations where the disk groups
have been partially imported on different systems. The procedure in “Correcting
conflicting configuration information” on page 204 describes how to correct
such problems.

A campus cluster (also known as a stretch cluster or remote mirror
configuration) typically consists of a 2-node cluster where each component
(server, switch and storage) of the cluster exists in a separate building. Figure 4-
1illustrates a 2-node cluster with node 0, a fibre channel switch and disk
enclosure enc0 in building A, and node 1, another switch and enclosure enc1 in
building B. The fibre channel connectivity is multiply redundant to implement
redundant-loop access between each node and each enclosure. As usual, the two
nodes are also linked by a redundant private network.

Creating and administering disk groups
Handling conflicting configuration copies

Figure 4-1 Typical arrangement of a 2-node campus cluster
Node O Redundant private Node 1
network

L

——

Fibre Channel

FEEEEE switches -1 ﬁl’llll
<
—
0 D — Disk enclosures 4 0 D)
encO encl
Building A Building B

A serial split brain condition typically arises in a cluster when a private (non-
shared) disk group is imported on Node 0 with Node 1 configured as the failover
node.

If the network connections between the nodes are severed, both nodes think that
the other node has died. (This is the usual cause of the split brain condition in
clusters). If a disk group is spread across both enclosure enc0 and enc1, each
portion loses connectivity to the other portion of the disk group. Node 0
continues to update to the disks in the portion of the disk group that it can
access. Node 1, operating as the failover node, imports the other portion of the
disk group (with the -£ option set), and starts updating the disks that it can see.

When the network links are restored, attempting to reattach the missing disks
to the disk group on Node O, or to re-import the entire disk group on either node,
fails. This serial split brain condition arises because VXVM increments the serial
ID in the disk media record of each imported disk in all the disk group
configuration databases on those disks, and also in the private region of each
imported disk. The value that is stored in the configuration database represents
the serial ID that the disk group expects a disk to have. The serial ID that is
stored in a disk’s private region is considered to be its actual value.

If some disks went missing from the disk group (due to physical disconnection
or power failure) and those disks were imported by another host, the serial IDs

201

202

Creating and administering disk groups
Handling conflicting configuration copies

for the disks in their copies of the configuration database, and also in each disk’s
private region, are updated separately on that host. When the disks are
subsequently re-imported into the original shared disk group, the actual serial
IDs on the disks do not agree with the expected values from the configuration
copies on other disks in the disk group.

Depending on what happened to the different portions of the split disk group,
there are two possibilities for resolving inconsistencies between the
configuration databases:

m If the other disks in the disk group were not imported on another host,
VxVM resolves the conflicting values of the serial IDs by using the version
of the configuration database from the disk with the greatest value for the
updated ID (shown as update_tid in the output from the vxdg 1ist
diskgroup command). This case is illustrated below.

Figure 4-2 Example of a serial split brain condition that can be resolved

automatically

Partial disk group Disk B not imported
imported on host X
Disk A Disk B
Actual A =1 Actual B=0 1.Disk Ais imported on a separate
- - - - host. Disk B is not imported. The
Configuration Configuration actual and expected serial IDs are
database database updated only on disk A.
Expected A =1 Expected A=0
Expected B=0 ExpectedB =0
v v
Imported shared disk group 2.The disk group is re- imported on
_ - the cluster. The configuration copy
Disk A Disk B on disk A is used to correct the
_ _ configuration copy on disk B as the
Actual A = 1 ActualB=0 actual value of the updated ID on
Configuration Configuration disk A'is greatest.
database database
Expected A = 1 Expected A = 1
Expected B =0 Expected B =0
— I

m If the other disks were also imported on another host, no disk can be
considered to have a definitive copy of the configuration database. The
figure below illustrates how this condition can arise for two disks.

Creating and administering disk groups | 203
Handling conflicting configuration copies

Figure 4-3 Example of atrue serial split brain condition that cannot be resolved
automatically

Partial disk group Partial disk group
imported on host X imported on host Y
Disk A Disk B 1.Disks A and B are imported
independently on separate hosts.
Actual A =1 Actual B =1 The actual and expected serial IDs
Configuration Configuration ggskepdated independently on each
database database
Expected A =1 Expected A=0
Expected B=0 Expected B = 1
N~ N~

Shared disk group fails to import
2.The disk group cannot be

Disk A Disk B reimported on the cluster. This is
because the databases do not agree
Actual A =1 Actual B =1 on the actual and expected serial
- - - - IDs. You must choose which
C%rgt'gg;ast'eon C%r;ftlgg;astleon configuration database to use.
Expected A = 1 Expected A=0
ExpectedB =0 Expected B = 1

Ne— N~

This is a true serial split brain condition, which VXVM cannot correct
automatically. In this case, the disk group import fails, and the vxdg utility
outputs error messages similar to the following before exiting:

VxVM vxconfigd NOTICE V-5-0-33 Split Brain. da id is 0.1, while
dm id is 0.0 for DM mydg0l

VxVM vxdg ERROR V-5-1-587 Disk group newdg: import failed:
Serial Split Brain detected. Run vxsplitlines

The import does not succeed even if you specify the - £ flag to vxdg.
Although it is usually possible to resolve this conflict by choosing the
version of the configuration database with the highest valued configuration
ID (shown as config_tid in the output from the vxdag 1ist diskgroup
command), this may not be the correct thing to do in all circumstances.
The following section, “Correcting conflicting configuration information,”
describes how to fix this condition.

For more information on how to set up and maintain a remote mirror
configuration, see “Administering sites and remote mirrors” on page 443.

204 | Creating and administering disk groups
Handling conflicting configuration copies

Correcting conflicting configuration information

Note: This procedure requires that the disk group has a version number of at
least 110. See “Upgrading a disk group” on page 218 for more information about
disk group version numbers.

To resolve conflicting configuration information, you must decide which disk
contains the correct version of the disk group configuration database. To assist
you in doing this, you can run the vxsplitlines command to show the actual
serial ID on each disk in the disk group and the serial ID that was expected from
the configuration database. For each disk, the command also shows the vxdg
command that you must run to select the configuration database copy on that
disk as being the definitive copy to use for importing the disk group.

The following is sample output from running vxsplitlines on the disk group
newdg:

vxsplitlines -g newdg

The following splits were found in disk group newdg

They are listed in da(dm) name pairs.

Pool 0.
c2t5d0s2 (c2t5d0s2), c2t6d0s2 (c2ted0s2),

The configuration from any of the disks in this split should appear

to be be the same.

To see the configuration from any of the disks in this split, run:
/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c2t5d0s2

To import the dg with the configuration from this split, run:
/usr/sbin/vxdg -o selectcp=1045852127.32.0lancha import newdg

To get more information about this particular configuration, run:
/usr/sbin/vxsplitlines -g newdg -c¢ c2t5d0s2

Split 1.

c2t7d0s2 (c2t7d0s2), c2t8d0s2 (c2t8d0s2),

The configuration from any of the disks in this split should appear

to be be the same.

To see the configuration from any of the disks in this split, run:
/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c2t7d0s2

To import the dg with the configuration from this split, run:
/usr/sbin/vxdg -o selectcp=1045852127.33.0lancha import newdg

To get more information about this particular configuration, run:
/usr/sbin/vxsplitlines -g newdg -c c2t7d0s2

In this example, the disk group has four disks, and is split so that two disks
appear to be on each side of the split.

Creating and administering disk groups | 205
Reorganizing the contents of disk groups

You can specify the -c option to vxsplitlines to print detailed information
about each of the disk IDs from the configuration copy on a disk specified by its
disk access name:

vxsplitlines -g newdg -c c2t6d0s2

DANAME (DMNAME) || Actual SSB || Expected SSB

c2t5d0s2 (c2t5d0s2) || 0.1 || 0.0 ssb ids don’t match
c2t6d0s2(c2t6d0s2) || 0.1 || 0.1 ssb ids match
c2t7d0s2(c2t7d0s2) || 0.1 || 0.1 ssb ids match
c2t8d0s2(c2t8d0s2) || 0.1 || 0.0 ssb ids don’t match

Please note that even though some disks ssb ids might match
that does not necessarily mean that those disks’ config copies
have all the changes. From some other configuration copies,
those disks’ ssb ids might not match.

To see the configuration from this disk, run
/etc/vx/diag.d/vxprivutil dumpconfig /dev/vx/dmp/c2t6d0s2

Based on your knowledge of how the serial split brain condition came about, you
must choose one disk’s configuration to be used to import the disk group. For
example, the following command imports the disk group using the
configuration copy that is on side 0 of the split:

/usr/sbin/vxdg -o selectcp=1045852127.32.0lancha import newdg

When you have selected a preferred configuration copy, and the disk group has
been imported, VxXVM resets the serial IDs to O for the imported disks. The
actual and expected serial IDs for any disks in the disk group that are not
imported at this time remain unaltered.

Reorganizing the contents of disk groups

Note: You need a Veritas FlashSnap™ license to use this feature.

There are several circumstances under which you might want to reorganize the
contents of your existing disk groups:

To group volumes or disks differently as the needs of your organization
change. For example, you might want to split disk groups to match the
boundaries of separate departments, or to join disk groups when
departments are merged.

To reduce the size of a disk group’s configuration database in the event that
its private region is nearly full. This is a much simpler solution than the
alternative of trying to grow the private region.

To perform online maintenance and upgrading of fault-tolerant systems
(such as the Sun Netra™ ft 1800) that can be split into separate hosts for this
purpose, and then rejoined.

206

Creating and administering disk groups
Reorganizing the contents of disk groups

To isolate volumes or disks from a disk group, and process them
independently on the same host or on a different host. This allows you to
implement off-host processing solutions for the purposes of backup or
decision support. This is discussed further in “Configuring off-host
processing” on page 381.

You can use either the Veritas Enterprise Administrator (VEA) or the vxdg
command to reorganize your disk groups. For more information about using the
graphical user interface, see the Veritas Enterprise Administrator User’s Guide
and VEA online help. This section describes how to use the vxdg command.

The vxdg command provides the following operations for reorganizing disk
groups:

Figure 4-4

move—moves a self-contained set of VxVM objects between imported disk
groups. This operation fails if it would remove all the disks from the source
disk group. Volume states are preserved across the move. The move
operation is illustrated in Figure 4-4.

Disk group move operation

Source disk group
r— —— "

Target disk group

@ | | move
o
I |
I |
L —— 4
Source disk group After Target disk group
move

00

]
.

00

split—removes a self-contained set of VXVM objects from an imported disk
group, and moves them to a newly created target disk group. This operation
fails if it would remove all the disks from the source disk group, or if an
imported disk group exists with the same name as the target disk group. An
existing deported disk group is destroyed if it has the same name as the

Creating and administering disk groups
Reorganizing the contents of disk groups

target disk group (as is the case for the vxdg init command). The split
operation is illustrated in Figure 4-5.

Figure 4-5 Disk group split operation

Source disk group
r— —— "

(-

00
gl

—— Disks to be split into new disk group

Source disk group

00

L

After
split

New target disk group

]
]

m join—removes all VXVM objects from an imported disk group and moves
them to an imported target disk group. The source disk group is removed
when the join is complete. The join operation is illustrated in Figure 4-6.

207

208

Creating and administering disk groups
Reorganizing the contents of disk groups

Figure 4-6 Disk group join operation

Source disk group Target disk group

s I s I]
0 O -
<

After Target disk group

S | s
e

These operations are performed on VxVM objects such as disks or top-level
volumes, and include all component objects such as sub-volumes, plexes and
subdisks. The objects to be moved must be self-contained, meaning that the disks
that are moved must not contain any other objects that are not intended for the
move.

If you specify one or more disks to be moved, all VxVM objects on the disks are
moved. You can use the -o expand option to ensure that vxdg moves all disks on
which the specified objects are configured. Take care when doing this as the
result may not always be what you expect. You can use the 1istmove operation
with vxdg to help you establish what is the self-contained set of objects that
corresponds to a specified set of objects.

Caution: Before moving volumes between disk groups, stop all applications that
are accessing the volumes, and unmount all file systems that are configured on
these volumes.

If the system crashes or a hardware subsystem fails, VXVM attempts to complete
or reverse an incomplete disk group reconfiguration when the system is
restarted or the hardware subsystem is repaired, depending on how far the
reconfiguration had progressed. If one of the disk groups is no longer available
because it has been imported by another host or because it no longer exists, you

Creating and administering disk groups
Reorganizing the contents of disk groups

must recover the disk group manually as described in the section “Recovery
from Incomplete Disk Group Moves” in the chapter “Recovery from Hardware
Failure” of the Veritas Volume Manager Troubleshooting Guide.

Limitations of disk group split and join

The disk group split and join feature has the following limitations:

Disk groups involved in a move, split or join must be version 90 or greater.
See “Upgrading a disk group” on page 218 for more information on disk
group versions.

The reconfiguration must involve an integral number of physical disks.
Objects to be moved must not contain open volumes.
Disks cannot be moved between CDS and non-CDS compatible disk groups.

Moved volumes are initially disabled following a disk group move, split or
join. Use the vxrecover -m and vxvol startall commands to recover and
restart the volumes.

Data change objects (DCOs) and snap objects that have been dissociated by
Persistent FastResync cannot be moved between disk groups.

Veritas Volume Replicator (VVR) objects cannot be moved between disk
groups.

For a disk group move to succeed, the source disk group must contain at
least one disk that can store copies of the configuration database after the
move.

For a disk group split to succeed, both the source and target disk groups
must contain at least one disk that can store copies of the configuration
database after the split.

For a disk group move or join to succeed, the configuration database in the
target disk group must be able to accommodate information about all the
objects in the enlarged disk group.

Splitting or moving a volume into a different disk group changes the
volume’s record ID.

The operation can only be performed on the master node of a cluster if
either the source disk group or the target disk group is shared.

In a cluster environment, disk groups involved in a move or join must both
be private or must both be shared.

When used with objects that have been created using the Veritas Intelligent
Storage Provisioning (ISP) feature, only complete storage pools may be split
or moved from a disk group. Individual objects such as application volumes

209

210

Creating and administering disk groups
Reorganizing the contents of disk groups

within storage pools may not be split or moved. See the Veritas Storage
Foundation Intelligent Storage Provisioning Administrator’s Guide for a
description of ISP and storage pools.

m If acache object or volume set that is to be split or moved uses ISP volumes,
the storage pool that contains these volumes must also be specified.

The following sections describe how to use the vxdg command to reorganize disk
groups. For more information about the vxdg command, see the vxdg(1M)
manual page.

Listing objects potentially affected by a move

To display the VXVM objects that would be moved for a specified list of objects,
use the following command:

vxdg [-o expand] listmove sourcedg targetdg object ...
The following example lists the objects that would be affected by moving volume
voll from disk group mydg to newdg:

vxdg listmove mydg newdg voll

mydg0l c0tld0s2 mydg05 cl1lt96d0s2 voll voll-01 voll-02 mydg01-01

mydg05-01
However, the following command produces an error because only a part of the
volume vol1 is configured on the disk mydg01:

vxdg listmove mydg newdg mydg01l

VxVM vxdg ERROR V-5-2-4597 vxdg listmove mydg newdg failed

VxVM vxdg ERROR V-5-2-3091 mydg05 : Disk not moving, but

subdisks on it are
Specifying the -o expand option, as shown below, ensures that the list of objects
to be moved includes the other disks (in this case, mydg05) that are configured
involl:

vxdg -o expand listmove mydg newdg mydg01l
mydg0l c0tld0s2 mydg05 c1lt96d0s2 voll voll-01 voll-02 mydg01-01
mydg05-01

Moving DCO volumes between disk groups

When you move the parent volume (such as a snapshot volume) to a different
disk group, its DCO volume must accompany it. If you use the vxassist addlog,
vxmake OF vxdco commands to set up a DCO for a volume, you must ensure that
the disks that contain the plexes of the DCO volume accompany their parent
volume during the move. You can use the vxprint command on a volume to
examine the configuration of its associated DCO volume.

If you use the vxassist command or the Veritas Enterprise Administrator (VEA)
to create both a volume and its DCO, or the vxsnap prepare command to add a
DCO to a volume, the DCO plexes are automatically placed on different disks
from the data plexes of the parent volume. In previous releases, version 0 DCO

Creating and administering disk groups
Reorganizing the contents of disk groups

plexes were placed on the same disks as the data plexes for convenience when
performing disk group split and move operations. As version 20 DCOs support
dirty region logging (DRL) in addition to Persistent FastResync, it is preferable
for the DCO plexes to be separated from the data plexes. This improves the
performance of I/O from/to the volume, and provides resilience for the DRL
logs.

Figure 4-7 illustrates some instances in which it is not be possible to split a disk
group because of the location of the DCO plexes on the disks of the disk group.
For more information about relocating DCO plexes, see “Specifying storage for
version 0 DCO plexes” on page 369 and “Specifying storage for version 20 DCO
plexes” on page 288.

For more information about the layout of DCO volumes and their use with
volume snapshots, see and “FastResync” on page 68. For more information
about the administration of volume snapshots, see “Volume snapshots” on
page 65 and “Administering volume snapshots” on page 315.

211

212 | Creating and administering disk groups

Reorganizing the contents of disk groups

Figure 4-7 Examples of disk groups that can and cannot be split
The disk group can be split as the DCO
d \t/olulme Snalpshot plexes are on dedicated disks, and can
ata plexes) plex therefore accompany the disks that contain
X @ the volume data.
Split @
Volume DCO Snapshot
plexes DCO plex
volume Snapshot | sccompany el volumes.
data plexes . plex One solution is to relocate the DCO plexes.
' In this example, use an additional disk in the
X disk group as an intermediary to swap the
' misplaced DCO plexes. Alternatively, to
X improve DRL performance and resilience,
: allocate the DCO plexes to dedicated disks.
Volume DCO - Volume DCO
plex plex
Snapshot
DCO plex
The disk group can be split as the
d \{Olulme Snal%ihm DCO plexes can accompany their
ata plexes P volumes. However, you may not
. wish the data in the portions of
! the disks marked “?” to be moved
! as well.
Split
: Snapshot
Volume DCO DCO plex
plexes
Volume 1 Volume 2 Snapshot EZid;iStkagsrfh“iE \ff:)r:ﬂgt
data plexes data plexes plex P '
separate the disks
' containing Volume 2’s
data plexes. Possible
solutions are to
relocate the snapshot
' DCO plex to the
. snapshot plex disk, or
© Snapshot 29 inohther swtt)able
DCO plex isk that can be
Volume 1 DCO moved.
plexes

Creating and administering disk groups | 213
Reorganizing the contents of disk groups

Moving objects between disk groups

To move a self-contained set of VXVM objects from an imported source disk
group to an imported target disk group, use the following command:
vxdg [-o expand] [-o override|verify] move sourcedg targetdg |
object ...
The -0 expand option ensures that the objects that are actually moved include
all other disks containing subdisks that are associated with the specified objects
or with objects that they contain.

The default behavior of vxdg when moving licensed disks in an EMC array is to
perform an EMC disk compatibility check for each disk involved in the move. If
the compatibility checks succeed, the move takes place. vxdg then checks again
to ensure that the configuration has not changed since it performed the
compatibility check. If the configuration has changed, vxdg attempts to perform
the entire move again.

The -0 override option enables the move to take place without any EMC
checking.

The -o verify option returns the access names of the disks that would be moved
but does not perform the move.

Note: The -0 override and -o verify options require a valid EMC license.

See “Moving objects between disk groups” on page 437 for information on how
to move objects between disk groups in a cluster.

214 | Creating and administering disk groups
Reorganizing the contents of disk groups

For example, the following output from vxprint shows the contents of disk
groups rootdg and mydg:

vxprint

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg rootdg rootdg - - - - - -
dm rootdg02 clt97d0s2 - 17678493 - - - -
dm rootdg03 cltl12d0s2 - 1767849 3 - - - -
dm rootdg04 cltl14d0s2 - 17678493 - - - -
dm rootdg06 clt98d0s2 - 17678493 - - - -

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg mydg mydg - - - - - -
dm mydg01l c0tld0s2 - 17678493 - - - -
dm mydg05 clt96d0s2 - 17678493 - - - -
dm mydg07 clt99d0s2 - 17678493 - - - -
dm mydg08 clt100d0s2 - 17678493 - - - -
v voll fsgen ENABLED 2048 - ACTIVE - -
pl voll-01 voll ENABLED 3591 - ACTIVE - -
sd mydg01-01 voll-01 ENABLED 3591 0 - - -
pl voll-02 voll ENABLED 3591 - ACTIVE - -
sd mydg05-01 voll-02 ENABLED 3591 0 - - -

The following command moves the self-contained set of objects implied by
specifying disk mydg01 from disk group mydg to rootdg:
vxdg -o expand move mydg rootdg mydg0l
The moved volumes are initially disabled following the move. Use the following
commands to recover and restart the volumes in the target disk group:
vxrecover -g fargetdg -m [volume ...]
vxvol -g largetdg startall
The output from vxprint after the move shows that not only mydg01 but also
volume vol1l and mydg05 have moved to rootdg, leaving only mydg07 and
mydg08 in disk group mydg:
vxprint
Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg rootdg rootdg - - - - - -
dm mydg01 c0tld0s2 - 17678493 - - - -
dm rootdg02 clt97d0s2 - 17678493 - - - -
dm rootdg03 cltl12d0s2 - 1767849 3 - - - -
dm rootdg04 cltl14d0s2 - 17678493 - - - -
dm mydg05 clt96d0s2 - 17678493 - - - -
dm rootdg06 clt98d0s2 - 17678493 - - - -
v voll fsgen ENABLED 2048 - ACTIVE - -
pl voll-01 voll ENABLED 3591 - ACTIVE - -
sd mydg01-01 voll-01 ENABLED 3591 0 - - -
pl voll-02 voll ENABLED 3591 - ACTIVE - -
sd mydg05-01 voll-02 ENABLED 3591 0 - - -

Disk group: mydg

Creating and administering disk groups
Reorganizing the contents of disk groups

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg mydg mydg - - - - - -
dm mydg07 c1t99d0s2 - 17678493 - - - -
dm mydg08 c1t100d0s2 - 17678493 - - - -

The following commands would also achieve the same result:
vxdg move mydg rootdg mydg0l mydg05
vxdg move mydg rootdg voll

Splitting disk groups

vxprint

Disk group: rootdg

To remove a self-contained set of VXVM objects from an imported source disk
group to a new target disk group, use the following command:
vxdg [-o expand] [-o override|verify] split sourcedg targetdg |
object ...
For a description of the -o expand, -o override, and -o veri fy options, see
“Moving objects between disk groups” on page 213.

See “Splitting disk groups” on page 438 for more information on splitting
shared disk groups in clusters.

For example, the following output from vxprint shows the contents of disk
group rootdg:

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg rootdg rootdg - - - - - -
dm rootdg0l c0tl1ld0s2 - 17678493 - - - -
dm rootdg02 clt97d0s2 - 17678493 - - - -
dm rootdg03 cltl112d0s2 - 1767849 3 - - - -
dm rootdg04 cltl14d0s2 - 17678493 - - - -
dm rootdg05 clt96d0s2 - 17678493 - - - -
dm rootdg06 clt98d0s2 - 17678493 - - - -
dm rootdg07 clt99d0s2 - 17678493 - - - -
dm rootdg08 clt100d0s2 - 17678493 - - - -
v voll fsgen ENABLED 20438 - ACTIVE - -
pl voll-01 voll ENABLED 3591 - ACTIVE - -
sd rootdg01-01 voll-01 ENABLED 3591 0 - - -
pl voll-02 voll ENABLED 3591 - ACTIVE - -
sd rootdg05-01 voll-02 ENABLED 3591 0 - - -

The following command removes disks rootdg07 and rootdg08 from rootdg
to form a new disk group, mydg:

vxdg -o expand split rootdg mydg rootdg07 rootdg08
The moved volumes are initially disabled following the split. Use the following
commands to recover and restart the volumes in the new target disk group:

vxrecover -g fargetdg -m [volume ...]
vxvol -g targetdg startall

215

216

Creating and administering disk groups
Reorganizing the contents of disk groups

vxprint

The output from vxprint after the split shows the new disk group, mydag:

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg rootdg rootdg - - - - - -

dm rootdg0l c0tld0s2 - 17678493 - - - -

dm rootdg02 clt97d0s2 - 17678493 - - - -

dm rootdg03 cltl112d0s2 - 1767849 3 - - - -

dm rootdg04 cltl114d0s2 - 17678493 - - - -

dm rootdg05 clt96d0s2 - 17678493 - - - -

dm rootdg06 clt98d0s2 - 17678493 - - - -

v voll fsgen ENABLED 20438 - ACTIVE - -

pl voll-01 voll ENABLED 3591 - ACTIVE - -

sd rootdg01-01 voll-01 ENABLED 3591 0 - - -

pl voll-02 voll ENABLED 3591 - ACTIVE - -

sd rootdg05-01 voll-02 ENABLED 3591 0 - - -

Disk group: mydg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg mydg mydg - - - - - -

dm rootdg07 clt99d0s2 - 17678493 - - - -

dm rootdg08 clt100d0s2 - 17678493 - - - -

Joining disk groups

vxprint

To remove all VXVM objects from an imported source disk group to an imported
target disk group, use the following command:
vxdg [-o override|verifyl join sourcedg targetdg

Note: You cannot specify rootdg as the source disk group for a join operation.

For a description of the -o override and -o verify options, see “Moving objects
between disk groups” on page 213.

See “Joining disk groups” on page 438 for information on joining disk groups in
a cluster.

For example, the following output from vxprint shows the contents of the disk
group rootdg and mydg:

Disk group: rootdg

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE TUTILO PUTILO
dg rootdg rootdg - - - - - -

dm rootdg0l c0tl1ld0s2 - 17678493 - - - -

dm rootdg02 clt97d0s2 - 17678493 - - - -

dm rootdg03 cltl12d0s2 - 1767849 3 - - - -

dm rootdg04 cltl14d0s2 - 17678493 - - - -

dm rootdg07 c1t99d0s2 - 17678493 - - - -

dm rootdg08 clt100d0s2 - 17678493 - - - -

Disk group: mydg

TY
dg

dm
dm
v

pl
sd
pl
sd

NAME

mydg
mydg05
mydg06
voll
voll-01
mydg01-01
voll-02
mydg05-01

vxprint
Disk group:

5885888882

n s un g
Q- Q

Disabling a disk group

To disable a disk group, unmount and stop any volumes in the disk group, and
then use the following command to deport it:

NAME
rootdg
mydg01
rootdg02
rootdg03
rootdg04
mydg05
rootdg06
rootdg07
rootdg08
voll
voll-01
mydg01-01
voll-02
mydg05-01

ASSOC
mydg
clt96d0s2
clt98d0s2
fsgen
voll
voll-01
voll
voll-02

KSTATE

ENABLED
ENABLED
ENABLED
ENABLED
ENABLED

LENGTH
17678493
17678493
2048
3591
3591
3591
3591

PLOFFS

Creating and administering disk groups
Disabling a disk group

STATE

ACTIVE
ACTIVE

ACTIVE

TUTILO

The following command joins disk group mydg to rootdg:
vxdg join mydg rootdg

The moved volumes are initially disabled following the join. Use the following

PUTILO

commands to recover and restart the volumes in the target disk group:
vxrecover -g targetdg -m [volume ...]
vxvol -g targetdg startall

The output from vxprint after the join shows that disk group mydg has been
removed:

rootdg

ASSOC
rootdg
c0tld0s2
clt97d0s2
cltl112d0s2
cltl114d0s2
clt96d0s2
clt98d0s2
clt99d0s2
clt100d0s2
fsgen
voll
voll-01
voll
voll-02

KSTATE

ENABLED
ENABLED
ENABLED
ENABLED
ENABLED

LENGTH

17678493
17678493
1767849 3
17678493
17678493
17678493
17678493
17678493
2048
3591
3591
3591
3591

vxdg deport diskgroup

Deporting a disk group does not actually remove the disk group. It disables use
of the disk group by the system. Disks in a deported disk group can be reused,
reinitialized, added to other disk groups, or imported for use on other systems.

PLOFFS

STATE

ACTIVE
ACTIVE

ACTIVE

TUTILO

PUTILO

Use the vxdg import command to re-enable access to the disk group.

217

218 ‘

Creating and administering disk groups

Destroying a disk group

Destroying a disk group

The vxdg command provides a destroy option that removes a disk group from
the system and frees the disks in that disk group for reinitialization:
vxdg destroy diskgroup

Caution: This command destroys all data on the disks.

When a disk group is destroyed, the disks that are released can be re-used in
other disk groups.

Recovering a destroyed disk group

If a disk group has been accidentally destroyed, you can recover it, provided that
the disks that were in the disk group have not been modified or reused
elsewhere.

To recover a destroyed disk group

1 Enter the following command to find out the disk group ID (dgid) of one of
the disks that was in the disk group:
vxdisk -s list disk access_name
The disk must be specified by its disk access name, such as c0t12d0.
Examine the output from the command for a line similar to the following
that specifies the disk group ID.
dgid: 963504895.1075.bass

2 Use the disk group ID to import the disk group:
vxdg import dgid

Upgrading a disk group

Note: On some platforms, the first release of Veritas Volume Manager was 3.0 or
3.2.

Prior to the release of Veritas Volume Manager 3.0, the disk group version was
automatically upgraded (if needed) when the disk group was imported.
From release 3.0 of Veritas Volume Manager, the two operations of importing a

disk group and upgrading its version are separate. You can import a disk group
from a previous version and use it without upgrading it.

When you want to use new features, the disk group can be upgraded. The
upgrade is an explicit operation. Once the upgrade occurs, the disk group

Creating and administering disk groups | 219
Upgrading a disk group

becomes incompatible with earlier releases of VxVM that do not support the
new version.

Before the imported disk group is upgraded, no changes are made to the disk
group to prevent its use on the release from which it was imported until you
explicitly upgrade it to the current release.

Until completion of the upgrade, the disk group can be used “as is” provided
there is no attempt to use the features of the current version. Attempts to use a
feature of the current version that is not a feature of the version from which the
disk group was imported results in an error message similar to this:

VxVM vxedit ERROR V-5-1-2829 Disk group version doesn’t support

feature

To use any of the new features, you must run the vxdg upgrade command to
explicitly upgrade the disk group to a version that supports those features.

All disk groups have a version number associated with them. Veritas Volume
Manager releases support a specific set of disk group versions. VxVM can import
and perform operations on a disk group of that version. The operations are
limited by what features and operations the disk group version supports.

The table, “Disk group version assignments,” summarizes the Veritas Volume
Manager releases that introduce and support specific disk group versions:

Table 4-1 Disk group version assignments

VXVM release Introduces disk group version | Supports disk group versions
1.2 10 10

1.3 15 15

2.0 20 20

2.2 30 30

2.3 40 40

2.5 50 50

3.0 60 20-40, 60
3.1 70 20-70
3.1.1 80 20-80
3.2,3.5 90 20-90
4.0 110 20-110
4.1 120 20-120
5.0 140 20-140

220

Creating and administering disk groups

Upgrading a disk group

Importing the disk group of a previous version on a Veritas Volume Manager
system prevents the use of features introduced since that version was released.

The table, “Features supported by disk group versions,”

3

summarizes the

features that are supported by disk group versions 20 through 140:

Table 4-2

Features supported by disk group versions

Disk
group
version

New features supported

Previous version
features supported

140

Data Migration Features

DMP Enhancements

Import of Cloned Disks

Intelligent Storage Provisioning (ISP)
Enhancements

Remote Mirror (Campus Cluster)

20, 30, 40, 50, 60, 70,
80,90, 110, 120, 130

130

Veritas Volume Replicator (VVR)
Enhancements

20, 30, 40, 50, 60, 70,
80, 90, 110, 120

120

Automatic Cluster-wide Failback for A/P arrays
DMP Co-existence with Third-Party Drivers
EFI Disks

Migration of Volumes to ISP

Persistent DMP Policies

Shared Disk Group Failure Policy

20, 30, 40, 50, 60, 70,
80,90, 110

110

Cross-platform Data Sharing (CDS)

Device Discovery Layer (DDL) 2.0

Disk Group Configuration Backup and Restore
Elimination of rootdg as a Special Disk Group
Full-Sized and Space-Optimized Instant
Snapshots

Intelligent Storage Provisioning (ISP)

Serial Split Brain Detection

Volume Sets (Multiple Device Support for VXFS)

20, 30, 40, 50, 60, 70,
80, 90

90

Cluster Support for Oracle Resilvering
Disk Group Move, Split and Join
Device Discovery Layer (DDL) 1.0
Layered Volume Support in Clusters
Ordered Allocation

OS Independent Naming Support
Persistent FastResync

20, 30, 40, 50, 60, 70,
80

Creating and administering disk groups
Upgrading a disk group

Table 4-2 Features supported by disk group versions
Disk New features supported Previous version
group features supported
version
80 m Veritas Volume Replicator (VVR) 20, 30, 40, 50, 60, 70
Enhancements
70 m Non-Persistent FastResync 20, 30, 40, 50, 60
m Sequential DRL
m Unrelocate
m Veritas Volume Replicator (VVR)
Enhancements
60 m Online Relayout 20, 30, 40
m Safe RAID-5 Subdisk Moves
50 m SRVM (now known as Veritas Volume 20, 30, 40
Replicator or VVR)
40 m Hot-Relocation 20, 30
30 m VxSmartSync Recovery Accelerator 20
20 m Dirty Region Logging (DRL)
m Disk Group Configuration Copy Limiting
m Mirrored Volumes Logging
m New-Style Stripes
m RAID-5 Volumes
m Recovery Checkpointing

To list the version of a disk group, use this command:

vxdg list dgname
You can also determine the disk group version by using the vxprint command
with the -1 format option.

To upgrade a disk group to the highest version supported by the release of
VxVM that is currently running, use this command:

vxdg upgrade dgname
By default, VXVM creates a disk group of the highest version supported by the
release. For example, Veritas Volume Manager 5.0 creates disk groups with
version 140.

It may sometimes be necessary to create a disk group for an older version. The
default disk group version for a disk group created on a system running Veritas
Volume Manager 5.0 is 140. Such a disk group cannot be imported on a system
running Veritas Volume Manager 2.3, as that release only supports up to version
40. Therefore, to create a disk group on a system running Veritas Volume

221

222

Creating and administering disk groups
Managing the configuration daemon in VxVM

Manager 5.0 that can be imported by a system running Veritas Volume Manager
2.3, the disk group must be created with a version of 40 or less.

To create a disk group with a previous version, specify the -T version option to
the vxdg init command.

For example, to create a disk group with version 40 that can be imported by a
system running VxVM 2.3, use the following command:

vkdg -T 40 init newdg newdg0l=c0t3d0s2
This creates a disk group, newdg, which can be imported by Veritas Volume
Manager 2.3. Note that while this disk group can be imported on the VxVM 2.3
system, attempts to use features from Veritas Volume Manager 3.0 and later
releases will fail.

Managing the configuration daemon in VxVM

The VxVM configuration daemon (vxconfigd) provides the interface between
VxVM commands and the kernel device drivers. vxconfigd handles
configuration change requests from VxVM utilities, communicates the change
requests to the VxVM kernel, and modifies configuration information stored on
disk. vxconfigd also initializes VXVM when the system is booted.

The vxdctl command is the command-line interface to the vxconfigd daemon.

You can use vxdctl to:
m Control the operation of the vxconfigd daemon.

m Change the system-wide definition of the default disk group.

Note: In VXVM 4.0 and later releases, disk access records are no longer stored in
the /etc/vx/volboot file. Non-persistent disk access records are created by
scanning the disks at system startup. Persistent disk access records for simple
and nopriv disks are permanently stored in the /etc/vx/darecs file in the
root file system. The vxconfigd daemon reads the contents of this file to locate
the disks and the configuration databases for their disk groups. (The /etc/vx/
darecs file is also used to store definitions of foreign devices that are not
autoconfigurable. Such entries may be added by using the vxddladm addforeign
command. See the vxddladm(1M) manual page for more information.)

If your system is configured to use Dynamic Multipathing (DMP), you can also
use vxdctl to:

m Reconfigure the DMP database to include disk devices newly attached to, or
removed from the system.

m Create DMP device nodes in the directories /dev/vx/dmp and /dev/vx/
rdmp.

Creating and administering disk groups
Backing up and restoring disk group configuration data

m Update the DMP database with changes in path type for active/passive disk
arrays. Use the utilities provided by the disk-array vendor to change the
path type between primary and secondary.

For more information about how to use vxdct1, refer to the vxdct1(1M) manual

page.

Backing up and restoring disk group configuration

data

The disk group configuration backup and restoration feature allows you to back
up and restore all configuration data for disk groups, and for VxVM objects such
as volumes that are configured within the disk groups. The vxconfigbackupd
daemon monitors changes to the VxVM configuration and automatically records
any configuration changes that occur. Two utilities, vxconfigbackup and
vxconfigrestore, are provided for backing up and restoring a VxVM
configuration for a disk group.

For information on backing up and restoring disk group configurations, see the
“Backing Up and Restoring Disk Group Configurations” chapter in the Veritas
Volume Manager Troubleshooting Guide, and the vxconfigbackup(1M) and
vxconfigrestore(1M) manual pages.

Using vxnotify to monitor configuration changes

You can use the vxnotify utility to display events relating to disk and
configuration changes that are managed by the vxconfigd configuration
daemon. If vxnotify is running on a system where the VxVM clustering feature
is active, it displays events that are related to changes in the cluster state of the
system on which it is running. The vxnoti £y utility displays the requested event
types until you kill it, until it has received a specified number of events, or until
a specified period of time has elapsed.

Examples of configuration events that can be detected include disabling and
enabling of controllers, paths and DMP nodes, RAID-5 volumes entering
degraded mode, detachment of disks, plexes and volumes, and nodes joining and
leaving a cluster.

For example, the following vxnotify command displays information about all
disk, plex, and volume detachments as they occur:

vxnotify -f
The following command provides information about cluster configuration
changes, including the import and deport of shared disk groups:

vxnotify -s -i

223

224 | Creating and administering disk groups
Using vxnotify to monitor configuration changes

For more information about the vxnotify utility, and the types of configuration
events that it can report, see the vxnotify(1M) manual page.

Creating and
administering subdisks

This chapter describes how to create and maintain subdisks. Subdisks are the
low-level building blocks in a Veritas Volume Mananger (VxXVM) configuration
that are required to create plexes and volumes.

Note: Most VXVM commands require superuser or equivalent privileges.

Creating subdisks

Note: Subdisks are created automatically if you use the vxassist command or
the Veritas Enterprise Administrator (VEA) to create volumes. For more
information, see “Creating a volume” on page 248.

Use the vxmake command to create VxVM objects, such as subdisks:

vxmake [-g diskgroupl sd subdisk diskname, offset, length
where: subdisk is the name of the subdisk, diskname is the disk name, offsetis
the starting point (offset) of the subdisk within the disk, and lengthis the length
of the subdisk.

For example, to create a subdisk named mydg02-01 in the disk group, mydg,
that starts at the beginning of disk mydg02 and has a length of 8000 sectors, use
the following command:

vxmake -g mydg sd mydg02-01 mydg02,0,8000

226

Creating and administering subdisks
Displaying subdisk information

Note: As for all VxVM commands, the default size unit is s, representing a
sector. Add a suffix, such as k for kilobyte, m for megabyte or g for gigabyte, to
change the unit of size. For example, 500m would represent 500 megabytes.

If you intend to use the new subdisk to build a volume, you must associate the
subdisk with a plex (see “Associating subdisks with plexes” on page 228).
Subdisks for all plex layouts (concatenated, striped, RAID-5) are created the
same way.

Displaying subdisk information

The vxprint command displays information about VxVM objects. To display
general information for all subdisks, use this command:

vxprint -st
The -s option specifies information about subdisks. The -t option prints a
single-line output record that depends on the type of object being listed.

The following is example output:

SD NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE
SV NAME PLEX VOLNAME NVOLLAYR LENGTH [COL/]OFF AM/NM MODE
sd mydg01-01 voll-01 mydg0l O 102400 0 c0t10d0 ENA
sd mydg02-01 vol2-01 mydg02 O 102400 0O c0t11d0 ENA

You can display complete information about a particular subdisk by using this
command:

vxprint [-g diskgroup] -1 subdisk
For example, the following command displays all information for subdisk
mydg02-01 in the disk group, mydg:

vxprint -g mydg -1 mydg02-01
This command provides the following output:

Disk group: mydg

Subdisk: mydg02-01

info: disk=mydg02 offset=0 len=205632
assoc: vol=mvol plex=mvol-02 (offset=0)
flags: enabled

device: device=c0t11d0s2 path=/dev/vx/dmp/c0t11d0s2
diskdev=32/68

Creating and administering subdisks | 227
Moving subdisks

Moving subdisks

Moving a subdisk copies the disk space contents of a subdisk onto one or more
other subdisks. If the subdisk being moved is associated with a plex, then the
data stored on the original subdisk is copied to the new subdisks. The old
subdisk is dissociated from the plex, and the new subdisks are associated with
the plex. The association is at the same offset within the plex as the source
subdisk. To move a subdisk, use the following command:

vxsd [-g diskgroup] mv old_subdisk new_subdisk [new_subdisk ...]
For example, if mydg03 in the disk group, mydg, is to be evacuated, and mydg12
has enough room on two of its subdisks, use the following command:

vxsd -g mydg mv mydg03-01 mydgl2-01 mydgl2-02
For the subdisk move to work correctly, the following conditions must be met:

m The subdisks involved must be the same size.

m The subdisk being moved must be part of an active plex on an active
(ENABLED) volume.

m The new subdisk must not be associated with any other plex.

See “Configuring hot-relocation to use only spare disks” on page 400 for
information about manually relocating subdisks after hot-relocation.

Splitting subdisks

Splitting a subdisk divides an existing subdisk into two separate subdisks. To
split a subdisk, use the following command:

vxsd [-g diskgroup] -s size split subdisk newsd1 newsd2
where subdiskis the name of the original subdisk, newsd1 is the name of the
first of the two subdisks to be created and newsd2is the name of the second
subdisk to be created.

The -s option is required to specify the size of the first of the two subdisks to be
created. The second subdisk occupies the remaining space used by the original
subdisk.

If the original subdisk is associated with a plex before the task, upon completion
of the split, both of the resulting subdisks are associated with the same plex.

To split the original subdisk into more than two subdisks, repeat the previous
command as many times as necessary on the resulting subdisks.

228

Creating and administering subdisks

Joining subdisks

For example, to split subdisk mydg03-02, with size 2000 megabytes into
subdisks mydg03-02, mydg03-03, mydg03-04 and mydg03-05, each with size
500 megabytes, all in the disk group, mydg, use the following commands:

vxksd -g mydg -s 1000m split mydg03-02 mydg03-02 mydg03-04

vxksd -g mydg -s 500m split mydg03-02 mydg03-02 mydg03-03

vxsd -g mydg -s 500m split mydg03-04 mydg03-04 mydg03-05

Joining subdisks

Joining subdisks combines two or more existing subdisks into one subdisk. To
join subdisks, the subdisks must be contiguous on the same disk. If the selected
subdisks are associated, they must be associated with the same plex, and be
contiguous in that plex. To join several subdisks, use the following command:

vxsd [-g diskgroup] join subdisk1 subdisk2 ... new_subdisk
For example, to join the contiguous subdisks mydg03-02, mydg03-03, mydg03 -
04 and mydg03-05 as subdisk mydg03-02 in the disk group, mydg, use the
following command:

vxsd -g mydg join mydg03-02 mydg03-03 mydg03-04 mydg03-05 \

mydg03-02

Associating subdisks with plexes

Associating a subdisk with a plex places the amount of disk space defined by the
subdisk at a specific offset within the plex. The entire area that the subdisk fills
must not be occupied by any portion of another subdisk. There are several ways
that subdisks can be associated with plexes, depending on the overall state of
the configuration.

If you have already created all the subdisks needed for a particular plex, to
associate subdisks at plex creation, use the following command:

vxmake [-g diskgroup] plex plex sd=subdisk, ...

For example, to create the plex home-1 and associate subdisks mydg02-01,
mydg02-00, and mydg02-02 with plex home-1, all in the disk group, mydg, use
the following command:

vxmake -g mydg plex home-1 sd=mydg02-01,mydg02-00,mydg02-02
Subdisks are associated in order starting at offset 0. If you use this type of
command, you do not have to specify the multiple commands needed to create
the plex and then associate each of the subdisks with that plex. In this example,
the subdisks are associated to the plex in the order they are listed (after sd=).
The disk space defined as mydg02-01 is first, mydg02-00 is second, and
mydg02-02 is third. This method of associating subdisks is convenient during
initial configuration.

Creating and administering subdisks | 229
Associating subdisks with plexes

Subdisks can also be associated with a plex that already exists. To associate one
or more subdisks with an existing plex, use the following command:

vxsd [-g diskgroup] assoc plex subdisk1 [subdisk2 subdisk3 .. .]
For example, to associate subdisks named mydg02-01, mydg02-00, and
mydg02-02 with a plex named home-1, use the following command:

vxsd -g mydg assoc home-1 mydg02-01 mydg02-00 mydg02-01
If the plex is not empty, the new subdisks are added after any subdisks that are
already associated with the plex, unless the -1 option is specified with the
command. The -1 option associates subdisks at a specific offset within the plex.

The -1 option is required if you previously created a sparse plex (that is, a plex
with portions of its address space that do not map to subdisks) for a particular
volume, and subsequently want to make the plex complete. To complete the
plex, create a subdisk of a size that fits the hole in the sparse plex exactly. Then,
associate the subdisk with the plex by specifying the offset of the beginning of
the hole in the plex, using the following command:

vxsd [-g diskgroup] -1 offset assoc sparse_plex exact _size_subdisk

Note: The subdisk must be exactly the right size. VxVM does not allow the space
defined for two subdisks to overlap within a plex.

For striped or RAID-5 plexes, use the following command to specify a column
number and column offset for the subdisk to be added:

vxsd [-g diskgroup] -1 column_#/offset assoc plex subdisk ...
If only one number is specified with the -1 option for striped plexes, the number
is interpreted as a column number and the subdisk is associated at the end of the
column.

Alternatively, to add M subdisks at the end of each of the N columns in a striped
or RAID-5 volume, you can use the following form of the vxsd command:

vxsd [-g diskgroup] assoc plex subdisk1:0 ... subdiskM:N-1
The following example shows how to append three subdisk to the ends of the
three columns in a striped plex, vol-01, in the disk group, mydg:

vxsd -g mydg assoc vol01-01 mydgl0-01:0 mydgll-01:1 \
mydgl2-01:2

If a subdisk is filling a “hole” in the plex (that is, some portion of the volume
logical address space is mapped by the subdisk), the subdisk is considered stale.
If the volume is enabled, the association operation regenerates data that belongs
on the subdisk. Otherwise, it is marked as stale and is recovered when the
volume is started.

230

Creating and administering subdisks

Associating log subdisks

Associating log subdisks

Note: The version 20 DCO volume layout includes space for a DRL. Do not apply
the procedure described in this section to a volume that has a version 20 DCO
volume associated with it. See “Preparing a volume for DRL and instant
snapshots” on page 286 for more information.

Log subdisks are defined and added to a plex that is to become part of a volume
on which dirty region logging (DRL) is enabled. DRL is enabled for a volume
when the volume is mirrored and has at least one log subdisk.

For a description of DRL, see “Dirty region logging” on page 62, and “Dirty
region logging in cluster environments” on page 428. Log subdisks are ignored
as far as the usual plex policies are concerned, and are only used to hold the
dirty region log.

Note: Only one log subdisk can be associated with a plex. Because this log
subdisk is frequently written, care should be taken to position it on a disk that is
not heavily used. Placing a log subdisk on a heavily-used disk can degrade
system performance.

To add a log subdisk to an existing plex, use the following command:

vxsd [-g diskgroup] aslog plex subdisk
where subdiskis the name to be used for the log subdisk. The plex must be
associated with a mirrored volume before dirty region logging takes effect.

For example, to associate a subdisk named mydg02-01 with a plex named
vol01-02, which is already associated with volume vo101 in the disk group,
mydg, use the following command:

vxsd -g mydg aslog vol01-02 mydg02-01
You can also add a log subdisk to an existing volume with the following
command:

vxassist [-g diskgroup] addlog volume disk
This command automatically creates a log subdisk within a log plex on the
specified disk for the specified volume.

Dissociating subdisks from plexes

To break an established connection between a subdisk and the plex to which it
belongs, the subdisk is dissociated from the plex. A subdisk is dissociated when
the subdisk is removed or used in another plex. To dissociate a subdisk, use the
following command:

vxsd [-g diskgroup] [-o forcel dis subdisk

Creating and administering subdisks | 231
Removing subdisks

For example, to dissociate a subdisk named mydg02-01 from the plex with
which it is currently associated in the disk group, mydg, use the following
command:

vxsd -g mydg dis mydg02-01
You can additionally remove the dissociated subdisks from VxVM control using
the following form of the command:

vxsd [-g diskgroup] -o rm dis subdisk

Caution: If the subdisk maps a portion of a volume’s address space, dissociating
it places the volume in DEGRADED mode. In this case, the dis operation prints a
warning and must be forced using the -o force option to succeed. Also, if
removing the subdisk makes the volume unusable, because another subdisk in
the same stripe is unusable or missing and the volume is not DISABLED and
empty, the operation is not allowed.

Removing subdisks

To remove a subdisk, use the following command:

vxedit [-g diskgroup] rm subdisk
For example, to remove a subdisk named mydg02-01 from the disk group, mydg,
use the following command:

vxedit -g mydg rm mydg02-01

Changing subdisk attributes

Caution: Change subdisk attributes with extreme care.

The vxedit command changes attributes of subdisks and other VxVM objects.
To change subdisk attributes, use the following command:
vxedit [-g diskgroup] set attribute=value ... subdisk . ..

Subdisk fields that can be changed using the vxedit command include:
name
putiln

|

]

B tutiln
B len
|

comment

The putilnfield attributes are maintained on reboot; tutilnfields are
temporary and are not retained on reboot. VxVM sets the puti10 and tutil0

232

Creating and administering subdisks
Changing subdisk attributes

utility fields. Other Symantec products, such as the Veritas Enterprise
Administrator (VEA), set the putill and tutill fields. The putil2 and
tutil2 are available for you to use for site-specific purposes. The length field,
len, can only be changed if the subdisk is dissociated.

For example, to change the comment field of a subdisk named mydg02-01 in the
disk group, mydg, use the following command:

vxedit -g mydg set comment=“subdisk comment” mydg02-01
To prevent a particular subdisk from being associated with a plex, set the
putilo field to a non-null string, as shown in the following command:

vxedit -g mydg set putil0=”"DO-NOT-USE” mydg02-01
See the vxedit(1M) manual page for more information about using the vxedit
command to change the attribute fields of VXVM objects.

Creating and
administering plexes

This chapter describes how to create and maintain plexes. Plexes are logical
groupings of subdisks that create an area of disk space independent of physical
disk size or other restrictions. Replication (mirroring) of disk data is set up by
creating multiple data plexes for a single volume. Each data plex in a mirrored
volume contains an identical copy of the volume data. Because each data plex
must reside on different disks from the other plexes, the replication provided by
mirroring prevents data loss in the event of a single-point disk-subsystem
failure. Multiple data plexes also provide increased data integrity and reliability.

Note: Most VXVM commands require superuser or equivalent privileges.

Creating plexes

Note: Plexes are created automatically if you use the vxassist command or the
Veritas Enterprise Administrator (VEA) to create volumes. For more
information, see “Creating a volume” on page 248.

Use the vxmake command to create VXVM objects, such as plexes. When creating
a plex, identify the subdisks that are to be associated with it:
To create a plex from existing subdisks, use the following command:

vxmake [-g diskgroup]l plex plex sd=subdisk1[,subdisk2, .. .]
For example, to create a concatenated plex named vo101-02 from two existing
subdisks named mydg02-01 and mydg02-02 in the disk group, mydg, use the

following command:
vxmake -g mydg plex vol01-02 sd=mydg02-01,mydg02-02

234

Creating and administering plexes

Creating a striped plex

Creating a striped plex

To create a striped plex, you must specify additional attributes. For example, to
create a striped plex named p1-01 in the disk group, mydg, with a stripe width
of 32 sectors and 2 columns, use the following command:

vxmake -g mydg plex pl-01 layout=stripe stwidth=32 ncolumn=2 \

sd=mydg01-01,mydg02-01

To use a plex to build a volume, you must associate the plex with the volume. For
more information, see the section, “Attaching and associating plexes” on
page 239.

Displaying plex information

Plex states

Listing plexes helps identify free plexes for building volumes. Use the plex (-p)
option to the vxprint command to list information about all plexes.

To display detailed information about all plexes in the system, use the following
command:

vxprint -1lp
To display detailed information about a specific plex, use the following
command:

vxprint [-g diskgroup] -1 plex
The -t option prints a single line of information about the plex. To list free
plexes, use the following command:

vxprint -pt
The following section describes the meaning of the various plex states that may
be displayed in the STATE field of vxprint output.

Plex states reflect whether or not plexes are complete and are consistent copies
(mirrors) of the volume contents. VxVM utilities automatically maintain the
plex state. However, if a volume should not be written to because there are
changes to that volume and if a plex is associated with that volume, you can
modify the state of the plex. For example, if a disk with a particular plex located
on it begins to fail, you can temporarily disable that plex.

Note: A plex does not have to be associated with a volume. A plex can be created
with the vxmake plex command and be attached to a volume later.

Creating and administering plexes | 235
Displaying plex information

VxVM utilities use plex states to:

m indicate whether volume contents have been initialized to a known state
m determine if a plex contains a valid copy (mirror) of the volume contents
m track whether a plex was in active use at the time of a system failure

m monitor operations on plexes

This section explains the individual plex states in detail. For more information
about the possible transitions between plex states and how these are applied
during volume recovery, see the chapter “Understanding the Plex State Cycle”
in the section “Recovery from Hardware Failure” in the Veritas Volume Manager
Troubleshooting Guide.

Plexes that are associated with a volume have one of the following states:

ACTIVE plex state
A plex can be in the ACTIVE state in two ways:

m when the volume is started and the plex fully participates in normal volume
1/0 (the plex contents change as the contents of the volume change)

m when the volume is stopped as a result of a system crash and the plex is
ACTIVE at the moment of the crash

In the latter case, a system failure can leave plex contents in an inconsistent
state. When a volume is started, VxVM does the recovery action to guarantee
that the contents of the plexes marked as ACTIVE are made identical.

Note: On a system running well, ACTIVE should be the most common state you
see for any volume plexes.

CLEAN plex state

A plexisin a CLEAN state when it is known to contain a consistent copy (mirror)
of the volume contents and an operation has disabled the volume. As a result,
when all plexes of a volume are clean, no action is required to guarantee that the
plexes are identical when that volume is started.

DCOSNP plex state

This state indicates that a data change object (DCO) plex attached to a volume
can be used by a snapshot plex to create a DCO volume during a snapshot
operation.

236

Creating and administering plexes
Displaying plex information

EMPTY plex state

Volume creation sets all plexes associated with the volume to the EMPTY state
to indicate that the plex is not yet initialized.

IOFAIL plex state

The IOFAIL plex state is associated with persistent state logging. When the
vxconfigd daemon detects an uncorrectable I/O failure on an ACTIVE plex, it
places the plex in the IOFAIL state to exclude it from the recovery selection
process at volume start time.

This state indicates that the plex is out-of-date with respect to the volume, and
that it requires complete recovery. It is likely that one or more of the disks
associated with the plex should be replaced.

LOG plex state
The state of a dirty region logging (DRL) or RAID-5 log plex is always set to LOG.

OFFLINE plex state

The vxmend of f task indefinitely detaches a plex from a volume by setting the
plex state to OFFLINE. Although the detached plex maintains its association
with the volume, changes to the volume do not update the OFFLINE plex. The
plex is not updated until the plex is put online and reattached with the vxplex
att task. When this occurs, the plex is placed in the STALE state, which causes
its contents to be recovered at the next vxvol start operation.

SNAPATT plex state

This state indicates a snapshot plex that is being attached by the snapstart
operation. When the attach is complete, the state for the plex is changed to
SNAPDONE. If the system fails before the attach completes, the plex and all of
its subdisks are removed.

SNAPDIS plex state

This state indicates a snapshot plex that is fully attached. A plex in this state can
be turned into a snapshot volume with the vxplex snapshot command. If the
system fails before the attach completes, the plex is dissociated from the
volume. See the vxplex(1M) manual page for more information.

SNAPDONE plex state

The SNAPDONE plex state indicates that a snapshot plex is ready for a snapshot
to be taken using vxassist snapshot.

Creating and administering plexes
Displaying plex information

SNAPTMP plex state

The SNAPTMP plex state is used during a vxassist snapstart operation when a
snapshot is being prepared on a volume.

STALE plex state

If there is a possibility that a plex does not have the complete and current
volume contents, that plex is placed in the STALE state. Also, if an I/O error
occurs on a plex, the kernel stops using and updating the contents of that plex,
and the plex state is set to STALE.

A vxplex att operation recovers the contents of a STALE plex from an ACTIVE
plex. Atomic copy operations copy the contents of the volume to the STALE
plexes. The system administrator can force a plex to the STALE state with a
vxplex det operation.

TEMP plex state

Setting a plex to the TEMP state eases some plex operations that cannot occur in
a truly atomic fashion. For example, attaching a plex to an enabled volume
requires copying volume contents to the plex before it can be considered fully
attached.

A utility sets the plex state to TEMP at the start of such an operation and to an
appropriate state at the end of the operation. If the system fails for any reason, a
TEMP plex state indicates that the operation is incomplete. A later vxvol
start dissociates plexes in the TEMP state.

TEMPRM plex state

A TEMPRM plex state is similar to a TEMP state except that at the completion of
the operation, the TEMPRM plex is removed. Some subdisk operations require a
temporary plex. Associating a subdisk with a plex, for example, requires
updating the subdisk with the volume contents before actually associating the
subdisk. This update requires associating the subdisk with a temporary plex,
marked TEMPRM, until the operation completes and removes the TEMPRM
plex.

If the system fails for any reason, the TEMPRM state indicates that the

operation did not complete successfully. A later operation dissociates and
removes TEMPRM plexes.

237

238

Creating and administering plexes
Displaying plex information

TEMPRMSD plex state

The TEMPRMSD plex state is used by vxassist when attaching new data
plexes to a volume. If the synchronization operation does not complete, the plex
and its subdisks are removed.

Plex condition flags

vxprint may also display one of the following condition flags in the STATE
field:

IOFAIL plex condition

The plex was detached as a result of an I/O failure detected during normal
volume I/0. The plex is out-of-date with respect to the volume, and in need of
complete recovery. However, this condition also indicates a likelihood that one
of the disks in the system should be replaced.

NODAREC plex condition

No physical disk was found for one of the subdisks in the plex. This implies
either that the physical disk failed, making it unrecognizable, or that the
physical disk is no longer attached through a known access path. The plex
cannot be used until this condition is fixed, or the affected subdisk is
dissociated.

NODEVICE plex condition

A physical device could not be found corresponding to the disk ID in the disk
media record for one of the subdisks associated with the plex. The plex cannot
be used until this condition is fixed, or the affected subdisk is dissociated.

RECOVER plex condition

A disk corresponding to one of the disk media records was replaced, or was
reattached too late to prevent the plex from becoming out-of-date with respect
to the volume. The plex required complete recovery from another plex in the
volume to synchronize its contents.

REMOVED plex condition

Set in the disk media record when one of the subdisks associated with the plex is
removed. The plex cannot be used until this condition is fixed, or the affected
subdisk is dissociated.

Creating and administering plexes | 239
Attaching and associating plexes

Plex kernel states

The plex kernel state indicates the accessibility of the plex to the volume driver
which monitors it.

Note: No user intervention is required to set these states; they are maintained
internally. On a system that is operating properly, all plexes are enabled.

The following plex kernel states are defined:

DETACHED plex kernel state

Maintenance is being performed on the plex. Any write request to the volume is
not reflected in the plex. A read request from the volume is not satisfied from
the plex. Plex operations and ioct1 function calls are accepted.

DISABLED plex kernel state

The plex is offline and cannot be accessed.

ENABLED plex kernel state

The plex is online. A write request to the volume is reflected in the plex. A read
request from the volume is satisfied from the plex. If a plex is sparse, this is
indicated by the SPARSE modifier being displayed in the output from the
vxprint -t command.

Attaching and associating plexes

A plex becomes a participating plex for a volume by attaching it to a volume.
(Attaching a plex associates it with the volume and enables the plex for use.) To
attach a plex to an existing volume, use the following command:

vxplex [-g diskgroup]l att volume plex
For example, to attach a plex named vo101-02 to a volume named vol01 in the
disk group, mydg, use the following command:

vxplex -g mydg att vol0l vol01-02
If the volume does not already exist, a plex (or multiple plexes) can be associated
with the volume when it is created using the following command:

vxmake [-g diskgroup]l -U usetype vol volume plex=plex1[,plex2...]
For example, to create a mirrored, fsgen-type volume named home, and to
associate two existing plexes named home-1 and home-2 with home, use the
following command:

vxmake -g mydg -U fsgen vol home plex=home-1,home-2

240 | Creating and administering plexes
Taking plexes offline

Note: You can also use the command vxassist mirror volume to add a data
plex as a mirror to an existing volume.

Taking plexes offline

Once a volume has been created and placed online (ENABLED), VXVM can
temporarily disconnect plexes from the volume. This is useful, for example,
when the hardware on which the plex resides needs repair or when a volume has
been left unstartable and a source plex for the volume revive must be chosen
manually.

Resolving a disk or system failure includes taking a volume offline and attaching
and detaching its plexes. The two commands used to accomplish disk failure
resolution are vxmend and vxplex.

To take a plex OFFLINE so that repair or maintenance can be performed on the
physical disk containing subdisks of that plex, use the following command:

vxmend [-g diskgroup] off plex
If a disk has a head crash, put all plexes that have associated subdisks on the
affected disk OFFLINE. For example, if plexes vo101-02 and vo102-02 in the
disk group, mydg, had subdisks on a drive to be repaired, use the following
command to take these plexes offline:

vxmend -g mydg off vol01-02 vol02-02
This command places vo101-02 and vo102-02 in the OFFLINE state, and they
remain in that state until it is changed. The plexes are not automatically
recovered on rebooting the system.

Creating and administering plexes | 241
Detaching plexes

Detaching plexes

To temporarily detach one data plex in a mirrored volume, use the following
command:

vxplex [-g diskgroup] det plex
For example, to temporarily detach a plex named vo101-02 in the disk group,
mydg, and place it in maintenance mode, use the following command:

vxplex -g mydg det vol01-02
This command temporarily detaches the plex, but maintains the association
between the plex and its volume. However, the plex is not used for I/O. A plex
detached with the preceding command is recovered at system reboot. The plex
state is set to STALE, so that if a vxvol start command is run on the appropriate
volume (for example, on system reboot), the contents of the plex is recovered
and made ACTIVE.

When the plex is ready to return as an active part of its volume, follow the
procedures in the following section, “Reattaching plexes.”

Reattaching plexes

When a disk has been repaired or replaced and is again ready for use, the plexes
must be put back online (plex state set to ACTIVE). To set the plexes to ACTIVE,
use one of the following procedures depending on the state of the volume.

m If the volume is currently ENABLED, use the following command to reattach

the plex:

vxplex [-g diskgroup] att volume plex ...
For example, for a plex named vo101-02 on a volume named vo101 in the
disk group, mydg, use the following command:

vxplex -g mydg att vol0l vol01-02
As when returning an OFFLINE plex to ACTIVE, this command starts to
recover the contents of the plex and, after the revive is complete, sets the
plex utility state to ACTIVE.

m If the volume is not in use (not ENABLED), use the following command to re-

enable the plex for use:

vxmend [-g diskgroup] on plex
For example, to re-enable a plex named vo101-02 in the disk group, mydg,
enter:

vxmend -g mydg on vol01-02
In this case, the state of vo101-02 is set to STALE. When the volume is next
started, the data on the plex is revived from another plex, and incorporated
into the volume with its state set to ACTIVE.

242

Creating and administering plexes
Moving plexes

If the vxinfo command shows that the volume is unstartable (see “Listing
Unstartable Volumes” in the section “Recovery from Hardware Failure” in
the Veritas Volume Manager Troubleshooting Guide), set one of the plexes
to CLEAN using the following command:

vxmend [-g diskgroup] fix clean plex
Start the volume using the following command:

vxvol [-g diskgroup] start volume

Moving plexes

Moving a plex copies the data content from the original plex onto a new plex. To
move a plex, use the following command:
vxplex [-g diskgroup]l mv original_plex new_plex

For a move task to be successful, the following criteria must be met:
m The old plex must be an active part of an active (ENABLED) volume.
m The new plex must be at least the same size or larger than the old plex.

m The new plex must not be associated with another volume.

The size of the plex has several implications:

m If the new plex is smaller or more sparse than the original plex, an
incomplete copy is made of the data on the original plex. If an incomplete
copy is desired, use the -o force option to vxplex.

m If the new plex is longer or less sparse than the original plex, the data that
exists on the original plex is copied onto the new plex. Any area that is not
on the original plex, but is represented on the new plex, is filled from other
complete plexes associated with the same volume.

m If the new plex is longer than the volume itself, then the remaining area of
the new plex above the size of the volume is not initialized and remains
unused.

Creating and administering plexes | 243
Copying plexes

Copying plexes

This task copies the contents of a volume onto a specified plex. The volume to be
copied must not be enabled. The plex cannot be associated with any other
volume. To copy a plex, use the following command:

vxplex [-g diskgroup] cp volume new_plex
After the copy task is complete, new_plexis not associated with the specified
volume volume. The plex contains a complete copy of the volume data. The plex
that is being copied should be the same size or larger than the volume. If the
plex being copied is larger than the volume, an incomplete copy of the data
results. For the same reason, new_plex should not be sparse.

Dissociating and removing plexes

When a plex is no longer needed, you can dissociate it from its volume and
remove it as an object from VxVM. You might want to remove a plex for the
following reasons:

m to provide free disk space

m toreduce the number of mirrors in a volume so you can increase the length
of another mirror and its associated volume. When the plexes and subdisks
are removed, the resulting space can be added to other volumes

m toremove a temporary mirror that was created to back up a volume and is no
longer needed

m to change the layout of a plex

Caution: To save the data on a plex to be removed, the configuration of that plex
must be known. Parameters from that configuration (stripe unit size and
subdisk ordering) are critical to the creation of a new plex to contain the same
data. Before a plex is removed, you must record its configuration. See
“Displaying plex information” on page 234” for more information.

To dissociate a plex from the associated volume and remove it as an object from
VxVM, use the following command:

vxplex [-g diskgroup] -o rm dis plex
For example, to dissociate and remove a plex named vo101-02 in the disk
group, mydg, use the following command:

vxplex -g mydg -o rm dis vol01-02
This command removes the plex vol01-02 and all associated subdisks.

244

Creating and administering plexes

Changing plex attributes

Alternatively, you can first dissociate the plex and subdisks, and then remove
them with the following commands:

vxplex [-g diskgroup] dis plex

vxedit [-g diskgroup] -r rm plex
When used together, these commands produce the same result as the vxplex -o
rm dis command. The -r option to vxedit rmrecursively removes all objects
from the specified object downward. In this way, a plex and its associated
subdisks can be removed by a single vxedit command.

Changing plex attributes

Caution: Change plex attributes with extreme care.

The vxedit command changes the attributes of plexes and other volume
Manager objects. To change plex attributes, use the following command:
vxedit [-g diskgroup] set attribute=value ... plex

Plex fields that can be changed using the vxedit command include:

B name
B putiln
| tutiln

| comment

The putilnfield attributes are maintained on reboot; tutiln fields are
temporary and are not retained on reboot. VxVM sets the putil0 and tutil0
utility fields. Other Symantec products, such as the Veritas Enterprise
Administrator (VEA), set the putill and tutill fields. The putil2 and
tutil2 are available for you to use for site-specific purposes.

The following example command sets the comment field, and also sets tutil2
to indicate that the subdisk is in use:

vxedit -g mydg set comment=”plex comment” tutil2="u” vol01-02
To prevent a particular plex from being associated with a volume, set the
putilo field to a non-null string, as shown in the following command:

vxedit -g mydg set putil0=”"DO-NOT-USE” vol01-02
See the vxedit(1M) manual page for more information about using the vxedit
command to change the attribute fields of VxVM objects.

Creating volumes

This chapter describes how to create volumes in Veritas Volume Manager
(VxVM). Volumes are logical devices that appear as physical disk partition
devices to data management systems. Volumes enhance recovery from
hardware failure, data availability, performance, and storage configuration.

Note: You can also use the Veritas Intelligent Storage Provisioning (ISP) feature
to create and administer application volumes. These volumes are very similar to
the traditional VxVM volumes that are described in this chapter. However, there
are significant differences between the functionality of the two types of volume
that prevents them from being used interchangeably. Refer to the Veritas
Storage Foundation Intelligent Storage Provisioning Administrator’s Guide for
more information about creating and administering ISP application volumes.

Volumes are created to take advantage of the VxVM concept of virtual disks. A
file system can be placed on the volume to organize the disk space with files and
directories. In addition, you can configure applications such as databases to
organize data on volumes.

Note: Disks and disk groups must be initialized and defined to VxVM before
volumes can be created from them. See “Administering disks” on page 81 and
“Creating and administering disk groups” on page 175 for more information.

246 ‘

Creating volumes
Types of volume layouts

Types of volume layouts

VxVM allows you to create volumes with the following layout types:

Concatenated

Striped

Mirrored

RAID-5

Mirrored-stripe

A volume whose subdisks are arranged both sequentially and
contiguously within a plex. Concatenation allows a volume to be
created from multiple regions of one or more disks if there is not
enough space for an entire volume on a single region of a disk. For
more information, see “Concatenation and spanning” on page 37.

A volume with data spread evenly across multiple disks. Stripes are
equal-sized fragments that are allocated alternately and evenly to the
subdisks of a single plex. There must be at least two subdisks in a
striped plex, each of which must exist on a different disk. Throughput
increases with the number of disks across which a plex is striped.
Striping helps to balance I/0 load in cases where high traffic areas
exist on certain subdisks. For more information, see “Striping (RAID-
0)” on page 39.

A volume with multiple data plexes that duplicate the information
contained in a volume. Although a volume can have a single data plex,
at least two are required for true mirroring to provide redundancy of
data. For the redundancy to be useful, each of these data plexes
should contain disk space from different disks. For more information,
see “Mirroring (RAID-1)” on page 44.

A volume that uses striping to spread data and parity evenly across
multiple disks in an array. Each stripe contains a parity stripe unit
and data stripe units. Parity can be used to reconstruct data if one of
the disks fails. In comparison to the performance of striped volumes,
write throughput of RAID-5 volumes decreases since parity
information needs to be updated each time data is accessed. However,
in comparison to mirroring, the use of parity to implement data
redundancy reduces the amount of space required. For more
information, see “RAID-5 (striping with parity)” on page 47.

A volume that is configured as a striped plex and another plex that
mirrors the striped one. This requires at least two disks for striping
and one or more other disks for mirroring (depending on whether the
plex is simple or striped). The advantages of this layout are increased
performance by spreading data across multiple disks and redundancy
of data. “Striping plus mirroring (mirrored-stripe or RAID-0+1)” on
page 44.

Layered Volume

Creating volumes | 247
Types of volume layouts

A volume constructed from other volumes. Non-layered volumes are
constructed by mapping their subdisks to VM disks. Layered volumes
are constructed by mapping their subdisks to underlying volumes
(known as storage volumes), and allow the creation of more complex
forms of logical layout. Examples of layered volumes are striped-
mirror and concatenated-mirror volumes.

See “Layered volumes” on page 53.

A striped-mirror volume is created by configuring several mirrored
volumes as the columns of a striped volume. This layout offers the
same benefits as a non-layered mirrored-stripe volume. In addition it
provides faster recovery as the failure of single disk does not force an
entire striped plex offline.

See “Mirroring plus striping (striped-mirror, RAID-1+0 or RAID-10)”
on page 45.

A concatenated-mirror volume is created by concatenating several
mirrored volumes. This provides faster recovery as the failure of a
single disk does not force the entire mirror offline.

Supported volume logs and maps

Veritas Volume Manager supports the use of several types of logs and maps with

volumes:

FastResync Maps are used to perform quick and efficient resynchronization
of mirrors (see “FastResync” on page 68 for details). These maps are
supported either in memory (Non-Persistent FastResync), or on disk as part
of a DCO volume (Persistent FastResync). Two types of DCO volume are

supported:

Version 0 DCO volumes only support Persistent FastResync for the
traditional third-mirror break-off type of volume snapshot. See
“Version 0 DCO volume layout” on page 71, and “Creating a volume
with a version 0 DCO volume” on page 260 for more information.

Version 20 DCO volumes, introduced in VxVM 4.0, support DRL logging
(see below) and Persistent FastResync for full-sized and space-
optimized instant volume snapshots. See “Version 20 DCO volume
layout” on page 71, and “Creating a volume with a version 20 DCO
volume” on page 262 for more information.

See “Enabling FastResync on a volume” on page 305 for information on how
to enable Persistent or Non-Persistent FastResync on a volume.

Dirty region logs allow the fast recovery of mirrored volumes after a system
crash (see “Dirty region logging” on page 62 for details). These logs are
supported either as DRL log plexes, or as part of a version 20 DCO volume.

248 | Creating volumes
Creating a volume

Refer to the following sections for information on creating a volume on
which DRL is enabled:

m “Creating a volume with dirty region logging enabled” on page 262 for
creating a volume with DRL log plexes.

m “Creating a volume with a version 20 DCO volume” on page 262 for
creating a volume with DRL configured within a version 20 DCO
volume.

m RAID-5 logs are used to prevent corruption of data during recovery of RAID-
5 volumes (see “RAID-5 logging” on page 52 for details). These logs are
configured as plexes on disks other than those that are used for the columns
of the RAID-5 volume.

See “Creating a RAID-5 volume” on page 266 for information on creating a
RAID-5 volume together with RAID-5 logs.

Creating a volume

You can create volumes using an advanced approach, an assisted approach, or
the rule-based storage allocation approach that is provided by the Intelligent
Storage Provisioning (ISP) feature. Each method uses different tools. You may
switch between the advanced and the assisted approaches at will. For more
information about ISP, see the Veritas Storage Foundation Intelligent Storage
Provisioning Administrator’s Guide.

Note: Most VXVM commands require superuser or equivalent privileges.

Advanced approach

The advanced approach consists of a number of commands that typically
require you to specify detailed input. These commands use a “building block”
approach that requires you to have a detailed knowledge of the underlying
structure and components to manually perform the commands necessary to
accomplish a certain task. Advanced operations are performed using several
different VxVM commands.

To create a volume using the advanced approach

1 Create subdisks using vxmake sd; see “Creating subdisks” on page 225.

2 Create plexes using vxmake plex, and associate subdisks with them; see
“Creating plexes” on page 233, “Associating subdisks with plexes” on
page 228 and “Creating a volume using vxmake” on page 268.

Creating volumes | 249
Using vxassist

3 Associate plexes with the volume using vxmake vol; see “Creating a volume
using vxmake” on page 268.

4 Initialize the volume using vxvol start Or vxvol init zero; see “Initializing
and starting a volume created using vxmake” on page 271.

See “Creating a volume using a vxmake description file” on page 269 for an
example of how you can combine steps 1 through 3 using a volume description
file with vxmake.

See “Creating a volume using vxmake” on page 268 for an example of how to
perform steps 2 and 3 to create a RAID-5 volume.

Assisted approach

The assisted approach takes information about what you want to accomplish
and then performs the necessary underlying tasks. This approach requires only
minimal input from you, but also permits more detailed specifications.

Assisted operations are performed primarily through the vxassist command or
the Veritas Enterprise Administrator (VEA). vxassist and the VEA create the
required plexes and subdisks using only the basic attributes of the desired
volume as input. Additionally, they can modify existing volumes while
automatically modifying any underlying or associated objects.

Both vxassist and the VEA use default values for many volume attributes,
unless you provide specific values. They do not require you to have a thorough
understanding of low-level VXVM concepts, vxassist and the VEA do not
conflict with other VxVM commands or preclude their use. Objects created by
vxassist and the VEA are compatible and inter-operable with objects created
by other VXVM commands and interfaces.

For more information about the VEA, see the Veritas Enterprise Administrator
User’s Guide and VEA online help.

Using vxassist

You can use the vxassist utility to create and modify volumes. Specify the basic
requirements for volume creation or modification, and vxassist performs the
necessary tasks.

The advantages of using vxassist rather than the advanced approach include:
m Most actions require that you enter only one command rather than several.

m You are required to specify only minimal information to vxassist. If
necessary, you can specify additional parameters to modify or control its
actions.

250

Creating volumes
Using vxassist

m Operations result in a set of configuration changes that either succeed or
fail as a group, rather than individually. System crashes or other
interruptions do not leave intermediate states that you have to clean up. If
vxassist finds an error or an exceptional condition, it exits after leaving
the system in the same state as it was prior to the attempted operation.

The vxassist utility helps you perform the following tasks:
Creating volumes.

Creating mirrors for existing volumes.

Growing or shrinking existing volumes.

Backing up volumes online.

Reconfiguring a volume’s layout online.

vxassist obtains most of the information it needs from sources other than
your input. vxassist obtains information about the existing objects and their
layouts from the objects themselves.

For tasks requiring new disk space, vxassist seeks out available disk space and
allocates it in the configuration that conforms to the layout specifications and
that offers the best use of free space.

The vxassist command takes this form:

vxassist [options] keyword volume [attributes...]
where keyword selects the task to perform. The first argument after a vxassist
keyword, volume, is a volume name, which is followed by a set of desired volume
attributes. For example, the keyword make allows you to create a new volume:

vxassist [options] make volume length [attributes]
The length of the volume can be specified in sectors, kilobytes, megabytes, or
gigabytes using a suffix character of s, k, m, or g. If no suffix is specified, the size
is assumed to be in sectors. See the vxintro(1M) manual page for more
information on specifying units.

Additional attributes can be specified as appropriate, depending on the
characteristics that you wish the volume to have. Examples are stripe unit
width, number of columns in a RAID-5 or stripe volume, number of mirrors,
number of logs, and log type.

Note: By default, the vxassist command creates volumes in a default disk group
according to the rules given in “Rules for determining the default disk group” on
page 178. To use a different disk group, specify the -g diskgroup option to

vxassist.

For details of available vxassist keywords and attributes, refer to the
vxassist(1M) manual page.

Creating volumes
Using vxassist

The section, “Creating a volume on any disk” on page 253 describes the simplest
way to create a volume with default attributes. Later sections describe how to
create volumes with specific attributes. For example, “Creating a volume on
specific disks” on page 254 describes how to control how vxassist uses the
available storage space.

Setting default values for vxassist

The default values that the vxassist command uses may be specified in the file
/etc/default/vxassist. The defaults listed in this file take effect if you do
not override them on the command line, or in an alternate defaults file that you
specify using the -d option. A default value specified on the command line
always takes precedence. vxassist also has a set of built-in defaults that it uses
if it cannot find a value defined elsewhere.

Note: You must create the /etc/default directory and the vxassist default
file if these do not already exist on your system.

The format of entries in a defaults file is a list of attribute-value pairs separated
by new lines. These attribute-value pairs are the same as those specified as
options on the vxassist command line. Refer to the vxassist(1M) manual page
for details.

To display the default attributes held in the file /etc/default/vxassist, use
the following form of the vxassist command:

vxassist help showattrs

The following is a sample vxassist defaults file:

By default:

create unmirrored, unstriped volumes

allow allocations to span drives

with RAID-5 create a log, with mirroring don’t create a log
align allocations on cylinder boundaries
layout=nomirror,nostripe, span,nocontig, raid5log,noregionlog,
diskalign

HH H H o H

use the fsgen usage type, except when creating RAID-5 volumes
usetype=fsgen

allow only root access to a volume
mode=u=rw, g=, 0=
user=root
group=root

when mirroring, create two mirrors
nmirror=2

for regular striping, by default create between 2 and 8 stripe
columns

252 | Creating volumes
Discovering the maximum size of a volume

max_nstripe=8
min_nstripe=2
for RAID-5, by default create between 3 and 8 stripe columns

max_nraidbstripe=8
min_nraid5stripe=3

Dby default, create 1 log copy for both mirroring and RAID-5
volumes
nregionlog=1
nraid5log=1
Dby default, limit mirroring log lengths to 32Kbytes
max_regionloglen=32k

use 64K as the default stripe unit size for regular volumes
stripe_stwid=64k

use 16K as the default stripe unit size for RAID-5 volumes
raid5_stwid=16k

Discovering the maximum size of a volume

To find out how large a volume you can create within a disk group, use the
following form of the vxassist command:

vxassist [-g diskgroup] maxsize layout=layout [attributes]
For example, to discover the maximum size RAID-5 volume with 5 columns and
2 logs that you can create within the disk group, dgrp, enter the following
command:

vxassist -g dgrp maxsize layout=raid5 nlog=2
You can use storage attributes if you want to restrict the disks that vxassist
uses when creating volumes. See “Creating a volume on specific disks” on
page 254 for more information.

Note: The maximum size of a VXVM volume that you can create is 256TB.

Disk group alighment constraints on volumes

Certain constraints apply to the length of volumes and to the numeric values of
size attributes that apply to volumes. If a volume is created in a disk group that
is compatible with the Cross-platform Data Sharing (CDS) feature, the volume’s
length and the values of volume attributes that define the sizes of objects such
as logs or stripe units, must be an integer multiple of the alignment value of 16
blocks (8 kilobytes). If the disk group is not compatible with the CDS feature, the
volume’s length and attribute size values must be multiples of 1 block (512
bytes).

Creating volumes | 253
Creating a volume on any disk

To discover the value in blocks of the alignment that is set on a disk group, use
this command:

vxprint -g diskgroup -G -F %align
By default, vxassist automatically rounds up the volume size and attribute size
values to a multiple of the alignment value. (This is equivalent to specifying the
attribute dgalign_checking=round as an additional argument to the
vxassist command.)

If you specify the attribute dgalign_checking=strict to vxassist, the
command fails with an error if you specify a volume length or attribute size
value that is not a multiple of the alignment value for the disk group.

Creating a volume on any disk

By default, the vxassist make command creates a concatenated volume that
uses one or more sections of disk space. On a fragmented disk, this allows you to
put together a volume larger than any individual section of free disk space
available.

Note: To change the default layout, edit the definition of the 1ayout attribute
defined in the /etc/default/vxassist file.

If there is not enough space on a single disk, vxassist creates a spanned
volume. A spanned volume is a concatenated volume with sections of disk space
spread across more than one disk. A spanned volume can be larger than any disk
on a system, since it takes space from more than one disk.

To create a concatenated, default volume, use the following form of the
vxassist command:
vxassist [-b] [-g diskgroup] make volume length

Note: Specify the -b option if you want to make the volume immediately
available for use. See “Initializing and starting a volume” on page 270 for
details.

For example, to create the concatenated volume voldefault with a length of
10 gigabytes in the default disk group:

vxassist -b make voldefault 10g

254 | Creating volumes
Creating a volume on specific disks

Creating a volume on specific disks

VxVM automatically selects the disks on which each volume resides, unless you
specify otherwise. If you want a volume to be created on specific disks, you must
designate those disks to VxVM. More than one disk can be specified.

To create a volume on a specific disk or disks, use the following command:

vxassist [-b] [-g diskgroup] make volume length \

[layout=layout] diskname ...

For example, to create the volume volspec with length 5 gigabytes on disks
mydg03 and mydg04, use the following command:

vxassist -b -g mydg make volspec 5g mydg03 mydg04
The vxassist command allows you to specify storage attributes. These give you
control over the devices, including disks, controllers and targets, which
vxassist uses to configure a volume. For example, you can specifically exclude
disk mydg05:

vxassist -b -g mydg make volspec 5g \!mydg05
or exclude all disks that are on controller c2:

vxassist -b -g mydg make volspec 5g \!ctlr:c2
or include only disks on controller c1 except for target t5:

vxassist -b -g mydg make volspec 5g ctlr:cl !target:clt5
If you want a volume to be created using only disks from a specific disk group,
use the -g option to vxassist, for example:

vxassist -g bigone -b make volmega 20g bigonel0 bigonell
or alternatively, use the diskgroup attribute:

vxassist -b make volmega 20g diskgroup=bigone bigonell \
bigonell

Note: Any storage attributes that you specify for use must belong to the disk
group. Otherwise, vxassist will not use them to create a volume.

You can also use storage attributes to control how vxassist uses available
storage, for example, when calculating the maximum size of a volume, when
growing a volume or when removing mirrors or logs from a volume. The
following example excludes disks dgrp07 and dgrp08 when calculating the
maximum size of RAID-5 volume that vxassist can create using the disks in the
disk group dg:

vxassist -b -g dgrp maxsize layout=raid5 nlog=2 \!dgrp07 \

\ 1dgrp08

See the vxassist(1M) manual page for more information about using storage
attributes. It is also possible to control how volumes are laid out on the specified
storage as described in the next section “Specifying ordered allocation of
storage to volumes.”

Creating volumes | 255
Creating a volume on specific disks

If you are using VxVM in conjunction with Veritas SANPoint Control 2.0, you
can specify how vxassist should use the available storage groups when creating
volumes. See “Configuring volumes on SAN storage” on page 78 and the
vxassist(1M) manual page for more information.

Specifying ordered allocation of storage to volumes

Ordered allocation gives you complete control of space allocation. It requires
that the number of disks that you specify to the vxassist command must match
the number of disks that are required to create a volume. The order in which you
specify the disks to vxassist is also significant.

If you specify the -o ordered option to vxassist when creating a volume, any
storage that you also specify is allocated in the following order:

1 Concatenate disks.
2 Form columns.

3 Form mirrors.

For example, the following command creates a mirrored-stripe volume with 3
columns and 2 mirrors on 6 disks in the disk group, mydg:
vxassist -b -g mydg -o ordered make mirstrvol 10g \

layout=mirror-stripe ncol=3 \

mydg0l1l mydg02 mydg03 mydg04 mydg05 mydg06
This command places columns 1, 2 and 3 of the first mirror on disks mydg01,
mydg02 and mydg03 respectively, and columns 1, 2 and 3 of the second mirror
on disks mydg04, mydg05 and mydg06 respectively. This arrangement is
illustrated in Figure 7-1.

Figure 7-1 Example of using ordered allocation to create a mirrored-stripe
volume

CComn 1 3 (Tcomz Y (T coumns 3|
mydg01-01 mydg02-01 mydg03-01
)Mirror
Coumn 1 (" Coumz 3 (T Coum3 Jf]
mydg04-01 mydg05-01 mydg06-01

Mirrored-stripe
volume

256 | Creating volumes
Creating a volume on specific disks

For layered volumes, vxassist applies the same rules to allocate storage as for

non-layered volumes. For example, the following command creates a striped-
mirror volume with 2 columns:

vxassist -b -g mydg -o ordered make strmirvol 10g \
layout=stripe-mirror ncol=2 mydg0l mydg02 mydg03 mydg04

This command mirrors column 1 across disks mydg01 and mydg03, and column
2 across disks mydg02 and mydg04, as illustrated in Figure 7-2.

Figure 7-2 Example of using ordered allocation to create a striped-mirror
volume

Underlying mirrored volumes

mydg02-01
mydg04-01

mydg01-01

| > Mirror

)

mydg03-01

— Striped plex

L Striped-mirror volume

Additionally, you can use the col_switch attribute to specify how to
concatenate space on the disks into columns. For example, the following
command creates a mirrored-stripe volume with 2 columns:
vxassist -b -g mydg -o ordered make strmir2vol 10g \

layout=mirror-stripe ncol=2 col_switch=3g,2g \

mydg0l mydg02 mydg03 mydg04 mydg05 mydg06 mydg07 mydg08
This command allocates 3 gigabytes from mydg01 and 2 gigabytes from mydg02
to column 1, and 3 gigabytes from mydg03 and 2 gigabytes from mydg04 to
column 2. The mirrors of these columns are then similarly formed from disks
mydg05 through mydg08. This arrangement is illustrated in Figure 7-3.

Creating volumes
Creating a volume on specific disks

Figure 7-3 Example of using concatenated disk space to create a mirrored-
stripe volume

Al

Column 1 \Colu_mrb

mydg01-01 mydg03-01 —— Striped plex
v

mydg02-01 mydg04-01 -/

/C_\)’
N Lolumnz

> Mirror

Column 1 olumn 2

mydg05-01 mydg07-01 —— Striped plex
mydg06-01 mydg08-01

L Mirrored-stripe volume

Other storage specification classes for controllers, enclosures, targets and trays
can be used with ordered allocation. For example, the following command
creates a 3-column mirrored-stripe volume between specified controllers:
vxassist -b -g mydg -o ordered make mirstr2vol 80g \

layout=mirror-stripe ncol=3 \

ctlr:cl ctlr:c2 ctlr:c3 ctlr:c4 ctlr:c5 ctlr:cé
This command allocates space for column 1 from disks on controllers c1, for
column 2 from disks on controller c2, and so on as illustrated in Figure 7-4.

257

258 | Creating volumes
Creating a volume on specific disks

Figure 7-4 Example of storage allocation used to create a mirrored-stripe
volume across controllers

cl c2 c3 — Controllers
mmﬁ Colum Colunm
|- Striped plex
)Mirror
Column 1 Column 2 Column 3
——Striped plex
— | _Mirrored-stripe
volume

o o C —— Controllers

il
K|
B

For other ways in which you can control how vxassist lays out mirrored
volumes across controllers, see “Mirroring across targets, controllers or
enclosures” on page 265.

Creating volumes | 259
Creating a mirrored volume

Creating a mirrored volume

A mirrored volume provides data redundancy by containing more than one copy
of its data. Each copy (or mirror) is stored on different disks from the original
copy of the volume and from other mirrors. Mirroring a volume ensures that its
data is not lost if a disk in one of its component mirrors fails.

Note: A mirrored volume requires space to be available on at least as many disks
in the disk group as the number of mirrors in the volume.

To create a new mirrored volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length \

layout=mirror [nmirror=number] [init=active]

For example, to create the mirrored volume, volmir, in the disk group, mydg,
use the following command:

vxassist -b -g mydg make volmir 5g layout=mirror
To create a volume with 3 instead of the default of 2 mirrors, modify the
command to read:

vxassist -b -g mydg make volmir 5g layout=mirror nmirror=3

Creating a mirrored-concatenated volume

A mirrored-concatenated volume mirrors several concatenated plexes. To create
a concatenated-mirror volume, use the following command:
vxassist [-b] [-g diskgroup] make volume length \
layout=mirror-concat [nmirror=number]
Alternatively, first create a concatenated volume, and then mirror it as
described in “Adding a mirror to a volume” on page 281.

Creating a concatenated-mirror volume

A concatenated-mirror volume is an example of a layered volume which
concatenates several underlying mirror volumes. To create a concatenated-
mirror volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length \
layout=concat-mirror [nmirror=number]

260

Creating volumes

Creating a volume with a version 0 DCO volume

Creating a volume with a version 0 DCO volume

If a data change object (DCO) and DCO volume are associated with a volume, this
allows Persistent FastResync to be used with the volume. (See “How persistent
FastResync works with snapshots” on page 72 for details of how Persistent
FastResync performs fast resynchronization of snapshot mirrors when they are
returned to their original volume.)

Note: The procedure described in this section creates a volume with a data
change object (DCO) and DCO volume that has a version 0 layout as introduced
in VxVM 3.2. The version 0 layout supports traditional (third-mirror) snapshots,
but not full-sized instant snapshots, space-optimized instant snapshots nor DRL
configured within the DCO volume. See “Version 0 DCO volume layout” on

page 71 and “Version 20 DCO volume layout” on page 71 for a description of the
differences between the old and new DCO volume layouts.

For details of how to configure a volume with a version 20 DCO and DCO volume,
see “Creating a volume with a version 20 DCO volume” on page 262. This is the
preferred and recommended method.

See “Determining the DCO version number” on page 289 for details of how to
determine the version number of a volume’s DCO.

To perform fast resynchronization of mirrors after a system crash or reboot,
you must also enable dirty region logging (DRL) on a mirrored volume. To add a
DCO object and DCO volume to a volume on which DRL logging is enabled, follow
the procedure described in “Adding a version 0 DCO and DCO volume” on

page 368.

Note: You need a Veritas FlashSnap™ or FastResync license to use the Persistent
FastResync feature. Even if you do not have a license, you can configure a DCO
object and DCO volume so that snap objects are associated with the original and
snapshot volumes. For more information about snap objects, see “How
persistent FastResync works with snapshots” on page 72.

To create a volume with an attached version 0 DCO object and volume

1 Ensure that the disk group has been upgraded to version 90. Use the
following command to check the version of a disk group:
vxdg list diskgroup
To upgrade a disk group to version 90, use the following command:
vxdg -T 90 upgrade diskgroup

Creating volumes | 261
Creating a volume with a version 0 DCO volume

For more information, see “Upgrading a disk group” on page 218.

2 Use the following command to create the volume (you may need to specify
additional attributes to create a volume with the desired characteristics):

vxassist [-g diskgroup] make volume length layout=layout \
logtype=dco [ndcomirror=number] [dcolen=size] \
[fastresync=on] [other attributes]

For non-layered volumes, the default number of plexes in the mirrored DCO
volume is equal to the lesser of the number of plexes in the data volume or
2. For layered volumes, the default number of DCO plexes is always 2. If
required, use the ndcomirror attribute to specify a different number. 1t is
recommended that you configure as many DCO plexes as there are data
plexes in the volume. For example, specify ndcomirror=3 when creating a 3-
way mirrored volume.

The default size of each plex is 132 blocks unless you use the dcolen
attribute to specify a different size. If specified, the size of the plex must be
a multiple of 33 blocks from 33 up to a maximum of 2112 blocks.

By default, FastResync is not enabled on newly created volumes. Specify the
fastresync=on attribute if you want to enable FastResync on the volume. If
a DCO object and DCO volume are associated with the volume, Persistent
FastResync is enabled; otherwise, Non-Persistent FastResync is enabled.

3 Toenable DRL or sequential DRL logging on the newly created volume, use
the following command:
wvxvol [-g diskgroup] set 1ogtype=dr1|drlseq volume
For more information, see the vxassist(1M) and vxvo1(1M) manual pages.

If you use ordered allocation when creating a mirrored volume on specified
storage, you can use the optional 10gdisk attribute to specify on which disks
dedicated log plexes should be created. Use the following form of the vxassist
command to specify the disks from which space for the logs is to be allocated:

vxassist [-g diskgroup] -o ordered make volume length \
layout=mirror logtype=log type logdisk=disk[,disk,...] \
storage attributes

If you do not specify the 10gdisk attribute, vxassist locates the logs in the data
plexes of the volume.

For more information about ordered allocation, see “Specifying ordered
allocation of storage to volumes” on page 255 and the vxassist(1M) manual
page.

262 | Creating volumes

Creating a volume with a version 20 DCO volume

Creating a volume with a version 20 DCO volume

To create a volume with an attached version 20 DCO object and volume

1

Ensure that the disk group has been upgraded to the latest version. Use the
following command to check the version of a disk group:

vxdg list diskgroup
To upgrade a disk group to the most recent version, use the following
command:

vxdg upgrade diskgroup
For more information, see “Upgrading a disk group” on page 218.

Use the following command to create the volume (you may need to specify
additional attributes to create a volume with the desired characteristics):

vxassist [-g diskgroup] make volume length layout=layout \
logtype=dco dcoversion=20 [drl=on|sequential|off] \
[ndcomirror=number] [fastresync=on] [other attributes]

Set the value of the dr1 attribute to on if dirty region logging (DRL) is to be
used with the volume (this is the default setting). For a volume that will be
written to sequentially, such as a database log volume, set the value to
sequential to enable sequential DRL. The DRL logs are created in the DCO
volume. The redundancy of the logs is determined by the number of mirrors
that you specify using the ndcomirror attribute.

By default, Persistent FastResync is not enabled on newly created volumes.
Specify the fastresync=on attribute if you want to enable Persistent
FastResync on the volume.

For more information, see the vxassist(1M) manual page.

Note: See “Determining the DCO version number” on page 289 for details of how
to determine the version number of a volume’s DCO.

Creating a volume with dirty region logging enabled

Note: The procedure in this section is applicable to volumes that are created in
disk groups with a version number of less than 110. To enable DRL or sequential
DRL on a volume that is created within a disk group with a version number of
110 or greater, follow the procedure described in “Creating a volume with a
version 20 DCO volume” on page 262, which creates the DRL logs within the
plexes of a version 20 DCO volume.

Creating volumes | 263
Creating a striped volume

Dirty region logging (DRL), if enabled, speeds recovery of mirrored volumes
after a system crash. To enable DRL on a volume that is created within a disk
group with a version number between 20 and 100, specify the 1ogtype=drl
attribute to the vxassist make command as shown in this example usage:

vxassist [-g diskgroup] make volume length layout=layout \

logtype=drl [nlog=n] [loglen=size] [other attributes]

The nlog attribute can be used to specify the number of log plexes to add. By
default, one log plex is added. The 1oglen attribute specifies the size of the log,
where each bit represents one region in the volume. For example, the size of the
log would need to be 20K for a 10GB volume with a region size of 64 kilobytes.

For example, to create a mirrored 10GB volume, vo102, with two log plexes in
the disk group, mydg, use the following command:

wvxassist -g mydg make vol02 10g layout=mirror logtype=drl \

nlog=2 nmirror=2

Sequential DRL limits the number of dirty regions for volumes that are written
to sequentially, such as database replay logs. To enable sequential DRL on a
volume that is created within a disk group with a version number between 70
and 100, specify the 1ogtype=driseq attribute to the vxassist make command.

vxassist [-g diskgroup] make volume length layout=layout \
logtype=drlseq [nlog=n] [other attributes]

Note: If you also want to allow the use of Persistent FastResync with the volume,
use the procedure described in “Creating a volume with a version 0 DCO volume”
on page 260.

Creating a striped volume

A striped volume contains at least one plex that consists of two or more subdisks
located on two or more physical disks. For more information on striping, see
“Striping (RAID-0)” on page 39.

Note: A striped volume requires space to be available on at least as many disks in
the disk group as the number of columns in the volume.

To create a striped volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length layout=stripe
For example, to create the 10-gigabyte striped volume volzebra, in the disk
group, mydg, use the following command:

vxassist -b -g mydg make volzebra 10g layout=stripe
This creates a striped volume with the default stripe unit size (64 kilobytes) and
the default number of stripes (2).

264

Creating volumes

Creating a striped volume

You can specify the disks on which the volumes are to be created by including
the disk names on the command line. For example, to create a 30-gigabyte
striped volume on three specific disks, mydg03, mydg04, and mydg05, use the
following command:

vxassist -b -g mydg make stripevol 30g layout=stripe \

mydg03 mydg04 mydg05

To change the number of columns or the stripe width, use the ncolumn and
stripeunit modifiers with vxassist. For example, the following command
creates a striped volume with 5 columns and a 32-kilobyte stripe size:

vxassist -b -g mydg make stripevol 30g layout=stripe \
stripeunit=32k ncol=5

Creating a mirrored-stripe volume

A mirrored-stripe volume mirrors several striped data plexes.

Note: A mirrored-stripe volume requires space to be available on at least as
many disks in the disk group as the number of mirrors multiplied by the number
of columns in the volume.

To create a striped-mirror volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length \
layout=mirror-stripe [nmirror=number mirrors] \
[ncol=number of columns] [stripewidth=size]

Alternatively, first create a striped volume, and then mirror it as described in
“Adding a mirror to a volume” on page 281. In this case, the additional data
plexes may be either striped or concatenated.

Creating a striped-mirror volume

A striped-mirror volume is an example of a layered volume which stripes several
underlying mirror volumes.

Note: A striped-mirror volume requires space to be available on at least as many
disks in the disk group as the number of columns multiplied by the number of
stripes in the volume.

To create a striped-mirror volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length \
layout=stripe-mirror [nmirror=number mirrors] \
[ncol=number of columns] [stripewidth=size]

By default, VxVM attempts to create the underlying volumes by mirroring
subdisks rather than columns if the size of each column is greater than the value

Creating volumes | 265
Mirroring across targets, controllers or enclosures

for the attribute stripe-mirror-col-split-trigger-pt that is defined in
the vxassist defaults file.

If there are multiple subdisks per column, you can choose to mirror each subdisk
individually instead of each column. To mirror at the subdisk level, specify the
layout as stripe-mirror-sdrather than stripe-mirror. To mirror at the
column level, specify the layout as stripe-mirror-col rather than stripe-
mirror.

Mirroring across targets, controllers or enclosures

To create a volume whose mirrored data plexes lie on different controllers (also
known as disk duplexing) or in different enclosures, use the vxassist command
as described in this section.

In the following command, the attribute mirror=target specifies that volumes
should be mirrored between identical target IDs on different controllers.
vxassist [-b] [-g diskgroup] make volume length \
layout=layout mirror=target [attributes]
The attribute mirror=ctlr specifies that disks in one mirror should not be on
the same controller as disks in other mirrors within the same volume:

vxassist [-b] [-g diskgroup] make volume length \
layout=layout mirror=ctlr [attributes]

Note: Both paths of an active/passive array are not considered to be on different
controllers when mirroring across controllers.

The following command creates a mirrored volume with two data plexes in the
disk group, mydg:
vxassist -b -g mydg make volspec 10g layout=mirror nmirror=2 \
mirror=ctlr ctlr:c2 ctlr:c3
The disks in one data plex are all attached to controller c2, and the disks in the
other data plex are all attached to controller c3. This arrangement ensures
continued availability of the volume should either controller fail.

The attribute mirror=encir specifies that disks in one mirror should not be in
the same enclosure as disks in other mirrors within the same volume.

The following command creates a mirrored volume with two data plexes:
vxassist -b make -g mydg volspec 10g layout=mirror nmirror=2 \
mirror=enclr enclr:encl enclr:enc2
The disks in one data plex are all taken from enclosure enc1, and the disks in
the other data plex are all taken from enclosure enc2. This arrangement
ensures continued availability of the volume should either enclosure become
unavailable.

266 | Creating volumes
Creating a RAID-5 volume

See “Specifying ordered allocation of storage to volumes” on page 255 for a
description of other ways in which you can control how volumes are laid out on
the specified storage.

Creating a RAID-5 volume

Note: VXVM supports this feature for private disk groups, but not for shareable
disk groups in a cluster environment.

A RAID-5 volume requires space to be available on at least as many disks in the
disk group as the number of columns in the volume. Additional disks may be
required for any RAID-5 logs that are created.

You can create RAID-5 volumes by using either the vxassist command
(recommended) or the vxmake command. Both approaches are described below.

A RAID-5 volume contains a RAID-5 data plex that consists of three or more
subdisks located on three or more physical disks. Only one RAID-5 data plex can
exist per volume. A RAID-5 volume can also contain one or more RAID-5 log
plexes, which are used to log information about data and parity being written to
the volume. For more information on RAID-5 volumes, see “RAID-5 (striping
with parity)” on page 47.

Caution: Do not create a RAID-5 volume with more than 8 columns because the
volume will be unrecoverable in the event of the failure of more than one disk.

To create a RAID-5 volume, use the following command:

vxassist [-b] [-g diskgroup] make volume length layout=raid5 \
[ncol=number of columns] [stripewidth=size] [nlog=number] \
[loglen=log length]

For example, to create the RAID-5 volume volraid together with 2 RAID-5 logs
in the disk group, mydg, use the following command:

vxassist -b -g mydg make volraid 10g layout=raid5 nlog=2

This creates a RAID-5 volume with the default stripe unit size on the default
number of disks. It also creates two RAID-5 logs rather than the default of one
log.

Note: If you require RAID-5 logs, you must use the 1ogdisk attribute to specify
the disks to be used for the log plexes.

RAID-5 logs can be concatenated or striped plexes, and each RAID-5 log
associated with a RAID-5 volume has a complete copy of the logging information

Creating volumes | 267
Creating tagged volumes

for the volume. To support concurrent access to the RAID-5 array, the log
should be several times the stripe size of the RAID-5 plex.

It is suggested that you configure a minimum of two RAID-5 log plexes for each
RAID-5 volume. These log plexes should be located on different disks. Having
two RAID-5 log plexes for each RAID-5 volume protects against the loss of
logging information due to the failure of a single disk.

If you use ordered allocation when creating a RAID-5 volume on specified
storage, you must use the 1ogdisk attribute to specify on which disks the RAID-
5log plexes should be created. Use the following form of the vxassist command
to specify the disks from which space for the logs is to be allocated:

vxassist [-b] [-g diskgroup]l -o ordered make volume length \
layout=raid5 [ncol=number columns] [nlog=number] \
[loglen=1log_length] logdisk=disk[, disk,...] storage_attributes

For example, the following command creates a 3-column RAID-5 volume with
the default stripe unit size on disks mydg04, mydg05 and mydg06. It also creates
two RAID-5 logs on disks mydg07 and mydg08.

vxassist -b -g mydg -o ordered make volraid 10g layout=raid5 \
ncol=3 nlog=2 logdisk=mydg07,mydg08 mydg04 mydg05 mydg06

Note: The number of logs must equal the number of disks specified to 10gdisk.

For more information about ordered allocation, see “Specifying ordered
allocation of storage to volumes” on page 255 and the vxassist(1M) manual
page.

If you need to add more logs to a RAID-5 volume at a later date, follow the
procedure described in “Adding a RAID-5 log” on page 295.

Creating tagged volumes

Volume tags are used to implement the Dynamic Storage Tiering feature of the
Storage Foundation software. For more information about this feature, see the
Veritas File System Administrator’s Guide.

You can use the tag attribute with the vxassist make command to set a named
tag and optional tag value on a volume, for example:

vxassist -b -g mydg make volmir 5g layout=mirror tag=mirvol=5g
To list the tags that are associated with a volume, use this command:

vxassist [-g diskgroup] listtag volume
To list the volumes that have a specified tag name, use this command:

vxassist [-g diskgroup] list tag=tagname volume
Tag names and tag values are case-sensitive character strings of up to 256
characters. Tag names can consist of letters (A through Z and a through z),
numbers (0 through 9), dashes (-), underscores () or periods (.) from the ASCII

268

Creating volumes

Creating a volume using vxmake

character set. A tag name must start with either a letter or an underscore. Tag
values can consist of any character from the ASCII character set with a decimal
value from 32 through 127. If a tag value includes any spaces, use the vxassist
settag command to set the tag on the newly created volume.

Dotted tag hierarchies are understood by the 1ist operation. For example, the
listing for tag=a.b includes all volumes that have tag names that start with a.b.

The tag names site, udid and vdid are reserved and should not be used. To
avoid possible clashes with future product features, it is recommended that tag
names do not start with any of the following strings: as1, be, isp, nbu, sf,
symc Or vX.

See “Setting tags on volumes” on page 301.

Creating a volume using vxmake

As an alternative to using vxassist, you can create a volume using the vxmake
command to arrange existing subdisks into plexes, and then to form these
plexes into a volume. Subdisks can be created using the method described in
“Creating subdisks” on page 225. The example given in this section is to create a
RAID-5 volume using vxmake.

Creating a RAID-5 plex for a RAID-5 volume is similar to creating striped plexes,
except that the 1ayout attribute is set to raid5. Subdisks can be implicitly
associated in the same way as with striped plexes. For example, to create a four-
column RAID-5 plex with a stripe unit size of 32 sectors, use the following
command:

vxmake -g mydg plex raidplex layout=raid5 stwidth=32 \
sd=mydg00-01,mydg01-00,mydg02-00,mydg03-00

Note that because four subdisks are specified, but the number of columns is not
specified, the vxmake command assumes a four-column RAID-5 plex and places
one subdisk in each column. Striped plexes are created using the same method
except that the layout is specified as stripe. If the subdisks are to be created
and added later, use the following command to create the plex:

vxmake -g mydg plex raidplex layout=raid5 ncolumn=4 stwidth=32

Note: If no subdisks are specified, the ncolumn attribute must be specified.
Subdisks can be added to the plex later using the vxsd assoc command (see
“Associating subdisks with plexes” on page 228).

Creating volumes | 269
Creating a volume using vxmake

If each column in a RAID-5 plex is to be created from multiple subdisks which
may span several physical disks, you can specify to which column each subdisk
should be added. For example, to create a three-column RAID-5 plex using six
subdisks, use the following form of the vxmake command:

vxmake -g mydg plex raidplex layout=raid5 stwidth=32 \
sd=mydg00-00:0,mydg01-00:1,mydg02-00:2,mydg03-00:0, \
mydg04-00:1,mydg05-00:2

This command stacks subdisks mydg00-00 and mydg03-00 consecutively in
column 0, subdisks mydg01-00 and mydg04-00 consecutively in column 1, and
subdisks mydg02-00 and mydg05-00 in column 2. Offsets can also be specified
to create sparse RAID-5 plexes, as for striped plexes.

Log plexes may be created as default concatenated plexes by not specifying a
layout, for example:

vxmake -g mydg plex raidlogl sd=mydg06-00

vxmake -g mydg plex raidlog2 sd=mydg07-00

The following command creates a RAID-5 volume, and associates the prepared
RAID-5 plex and RAID-5 log plexes with it:

vxmake -g mydg -Uraid5 vol raidvol \
plex=raidplex,raidlogl, raidlog2

Note: Each RAID-5 volume has one RAID-5 plex where the data and parity are
stored. Any other plexes associated with the volume are used as RAID-5 log
plexes to log information about data and parity being written to the volume.

After creating a volume using vxmake, you must initialize it before it can be used.
The procedure is described in “Initializing and starting a volume” on page 270.

Creating a volume using a vxmake description file

You can use the vxmake command to add a new volume, plex or subdisk to the set
of objects managed by VxVM. vxmake adds a record for each new object to the
VxVM configuration database. You can create records either by specifying
parameters to vxmake on the command line, or by using a file which contains
plain-text descriptions of the objects. The file can also contain commands for
performing a list of tasks. Use the following form of the command to have
vxmake read the file from the standard input:

vxmake [-g diskgroup] < description_file
Alternatively, you can specify the file to vxmake using the -d option:

vxmake [-g diskgroup] -4 description_file

270 | Creating volumes
Initializing and starting a volume

The following sample description file defines a volume, db, with two plexes, db-
01 and db-02:
#rty #name #options
sd mydg03-01 disk=mydg03 offset=0 1len=10000
sd mydg03-02 disk=mydg03 offset=25000 len=10480
sd mydg04-01 disk=mydg04 offset=0 1en=8000
sd mydg04-02 disk=mydg04 offset=15000 1len=8000
sd mydg04-03 disk=mydg04 offset=30000 len=4480
plex db-01 layout=STRIPE ncolumn=2 stwidth=16k
sd=mydg03-01:0/0,mydg03-02:0/10000, mydg04-01:1/0,
mydg04-02:1/8000, mydg04-03:1/16000
sd ramdl-01 disk=ramdl len=640
comment="Hot spot for dbvol
plex db-02 sd=ramd1-01:40320
vol db usetype=gen plex=db-01,db-02
readpol=prefer prefname=db-02
comment="Uses meml for hot spot in last 5m

Note: The subdisk definition for plex, db-01, must be specified on a single line.
It is shown here split across two lines because of space constraints.

The first plex, db-01, is striped and has five subdisks on two physical disks,
mydg03 and mydg04. The second plex, db-02, is the preferred plex in the
mirror, and has one subdisk, ramd1-01, on a volatile memory disk.

For detailed information about how to use vxmake, refer to the vxmake(1M)
manual page.

After creating a volume using vxmake, you must initialize it before it can be used.
The procedure is described in “Initializing and starting a volume created using
vxmake” on page 271.

Initializing and starting a volume

If you create a volume using the vxassist command, vxassist initializes and
starts the volume automatically unless you specify the attribute init=none.

When creating a volume, you can make it immediately available for use by
specifying the -b option to the vxassist command, as shown here:

vxassist -b [-g diskgroup] make volume length layout=mirror
The -b option makes VxVM carry out any required initialization as a
background task. It also greatly speeds up the creation of striped volumes by
initializing the columns in parallel.

Creating volumes | 271
Initializing and starting a volume

As an alternative to the -b option, you can specify the init=active attribute to
make a new volume immediately available for use. In this example, init=active
is specified to prevent VxVM from synchronizing the empty data plexes of a new
mirrored volume:

vxassist [-g diskgroup] make volume length layout=mirror \
init=active

Caution: There is a very small risk of errors occurring when the init=active
attribute is used. Although written blocks are guaranteed to be consistent, read
errors can arise in the unlikely event that fsck attempts to verify uninitialized
space in the file system, or if a file remains uninitialized following a system
crash. If in doubt, use the -b option to vxassist instead.

This command writes zeroes to the entire length of the volume and to any log
plexes. It then makes the volume active. You can also zero out a volume by
specifying the attribute init=zero to vxassist, as shown in this example:

vxassist [-g diskgroup] make volume length layout=raid5 \
init=zero

Note: You cannot use the -b option to make this operation a background task.

Initializing and starting a volume created using vxmake

A volume may be initialized by running the vxvol command if the volume was
created by the vxmake command and has not yet been initialized, or if the
volume has been set to an uninitialized state.
To initialize and start a volume, use the following command:
wvxvol [-g diskgroup] start volume
The following command can be used to enable a volume without initializing it:
vxvol [-g diskgroup] init enable volume
This allows you to restore data on the volume from a backup before using the
following command to make the volume fully active:
vxvol [-g diskgroup] init active volume
If you want to zero out the contents of an entire volume, use this command to
initialize it:
vxvol [-g diskgroup] init zero volume

272

Creating volumes
Accessing a volume

Accessing a volume

As soon as a volume has been created and initialized, it is available for use as a
virtual disk partition by the operating system for the creation of a file system, or
by application programs such as relational databases and other data
management software.

Creating a volume in a disk group sets up block and character (raw) device files
that can be used to access the volume:
/dev/vx/dsk/ diskgroup/volume block device file for volume
/dev/vx/rdsk/diskgroup/volume character device file for volume
The pathnames include a directory named for the disk group. Use the

appropriate device node to create, mount and repair file systems, and to lay out
databases that require raw partitions.

Note: As the rootdg disk group no longer has special significance, VxVM only
creates volume device nodes for this disk group in the /dev/vx/dsk/rootdg
and /dev/vx/rdsk/rootdg directories. VxVM does not create device nodes in
the /dev/vx/dsk or /dev/vx/rdsk directories for the rootdg disk group.

Administering volumes

This chapter describes how to perform common maintenance tasks on volumes
in Veritas Volume Manager (VxVM). This includes displaying volume
information, monitoring tasks, adding and removing logs, resizing volumes,
removing mirrors, removing volumes, and changing the layout of volumes
without taking them offline.

Note: You can also use the Veritas Intelligent Storage Provisioning (ISP) feature
to create and administer application volumes. These volumes are very similar to
the traditional VxVM volumes that are described in this chapter. However, there
are significant differences between the functionality of the two types of volumes
that prevents them from being used interchangeably. Refer to the Veritas
Storage Foundation Intelligent Storage Provisioning Administrator’s Guide for
more information about creating and administering ISP application volumes.

Most VxVM commands require superuser or equivalent privileges.

274 | Administering volumes
Displaying volume information

Displaying volume information

PL
SD
SV
sC
DC
SP

pl
sd

pl
sd

\Y%

v

You can use the vxprint command to display information about how a volume
is configured.
To display the volume, plex, and subdisk record information for all volumes in
the system, use the following command:

vxprint -hvt
The vxprint command can also be applied to a single disk group:

vxprint -g mydg -hvt
This is example output from this command:

NAME RVG/VSET/COKSTATE STATE LENGTH READPOL PREFPLEX UTYPE
NAME VOLUME KSTATE STATE LENGTH LAYOUT NCOL/WID MODE
NAME PLEX DISK DISKOFFS LENGTH [COL/]OFF DEVICE MODE
NAME PLEX VOLNAME NVOLLAYR LENGTH [COL/]OFF AM/NM MODE
NAME PLEX CACHE DISKOFFS LENGTH [COL/]OFF DEVICE MODE
NAME PARENTVOL LOGVOL
NAME SNAPVOL DCO
pubs - ENABLED ACTIVE 22880 SELECT - fsgen
pubs-01 pubs ENABLED ACTIVE 22880 CONCAT - RW
mydgll-01pubs-01 mydgll 0 22880 0 clt0do ENA
voldef - ENABLED ACTIVE 20480 SELECT - fsgen
voldef-01voldef ENABLED ACTIVE 20480 CONCAT - RW
mydgl12-02 voldef-0 mydgl2 0 20480 0 c1t1d0 ENA
Here v is a volume, p1 is a plex, and sd is a subdisk. The top few lines indicate
the headers that match each type of output line that follows. Each volume is
listed along with its associated plexes and subdisks.
Note: The headings for sub-volumes (sv), storage caches (sSC), data change
objects (DC0O) and snappoints (SP) can be ignored here. No such objects are
associated with these volumes.
To display volume-related information for a specific volume, use the following
command:
vxprint [-g diskgroup] -t volume
For example, to display information about the volume, voldef, in the disk
group, mydg, use the following command:
vxprint -g mydg -t voldef
This is example output from this command:
NAME RVG/VSET/COKSTATE STATE LENGTH READPOL PREFPLEX UTYPE
voldef - ENABLED ACTIVE 20480 SELECT - fsgen

Administering volumes | 275
Displaying volume information

Note: If you enable enclosure-based naming, and use the vxprint command to
display the structure of a volume, it shows enclosure-based disk device names
(disk access names) rather than c#t#d#s# names. See “Discovering the
association between enclosure-based disk names and OS-based disk names” on
page 98 for information on how to obtain the true device names.

The following section describes the meaning of the various volume states that
may be displayed.

Volume states

The following volume states may be displayed by VxVM commands such as

vxprint:

ACTIVE volume state

The volume has been started (kernel state is currently ENABLED) or was in use
(kernel state was ENABLED) when the machine was rebooted. If the volume is
currently ENABLED, the state of its plexes at any moment is not certain (since
the volume is in use).

If the volume is currently DISABLED, this means that the plexes cannot be
guaranteed to be consistent, but are made consistent when the volume is
started.

For a RAID-5 volume, if the volume is currently DISABLED, parity cannot be
guaranteed to be synchronized.

CLEAN volume state

The volume is not started (kernel state is DISABLED) and its plexes are
synchronized. For a RAID-5 volume, its plex stripes are consistent and its parity
is good.

EMPTY volume state

The volume contents are not initialized. The kernel state is always DISABLED
when the volume is EMPTY.

INVALID volume state

The contents of an instant snapshot volume no longer represent a true point-in-
time image of the original volume.

276

Administering volumes

Displaying volume information

NEEDSYNC volume state

The volume requires a resynchronization operation the next time it is started.
For a RAID-5 volume, a parity resynchronization operation is required.

REPLAY volume state

The volume is in a transient state as part of a log replay. A log replay occurs
when it becomes necessary to use logged parity and data. This state is only
applied to RAID-5 volumes.

SYNC volume state

The volume is either in read-writeback recovery mode (kernel state is currently
ENABLED) or was in read-writeback mode when the machine was rebooted
(kernel state is DISABLED). With read-writeback recovery, plex consistency is
recovered by reading data from blocks of one plex and writing the data to all
other writable plexes. If the volume is ENABLED, this means that the plexes are
being resynchronized through the read-writeback recovery. If the volume is
DISABLED, it means that the plexes were being resynchronized through read-
writeback when the machine rebooted and therefore still need to be
synchronized.

For a RAID-5 volume, the volume is either undergoing a parity

resynchronization (kernel state is currently ENABLED) or was having its parity
resynchronized when the machine was rebooted (kernel state is DISABLED).

Note: The interpretation of these flags during volume startup is modified by the
persistent state log for the volume (for example, the DIRTY/CLEAN flag). If the
clean flag is set, an ACTIVE volume was not written to by any processes or was
not even open at the time of the reboot; therefore, it can be considered CLEAN.
The clean flag is always set in any case where the volume is marked CLEAN.

Volume kernel states

The volume kernel state indicates the accessibility of the volume. The volume
kernel state allows a volume to have an offline (DISABLED), maintenance
(DETACHED), or online (ENABLED) mode of operation.

Note: No user intervention is required to set these states; they are maintained
internally. On a system that is operating properly, all volumes are ENABLED.

Administering volumes | 277
Monitoring and controlling tasks

The following volume kernel states are defined:

DETACHED volume kernel state

Maintenance is being performed on the volume. The volume cannot be read
from or written to, but certain plex operations and ioct1 function calls are
accepted.

DISABLED volume kernel state

The volume is offline and cannot be accessed.

ENABLED volume kernel state

The volume is online and can be read from or written to.

Monitoring and controlling tasks

Note: VXVM supports this feature for private disk groups, but not for shareable
disk groups in a cluster environment.

The VxVM task monitor tracks the progress of system recovery by monitoring
task creation, maintenance, and completion. The task monitor allows you to
monitor task progress and to modify characteristics of tasks, such as pausing
and recovery rate (for example, to reduce the impact on system performance).

Specifying task tags

Every task is given a unique task identifier. This is a numeric identifier for the
task that can be specified to the vxtask utility to specifically identify a single
task. Several VxVM utilities also provide a -t option to specify an alphanumeric
tag of up to 16 characters in length. This allows you to group several tasks by
associating them with the same tag.

The vxassist, vxevac, vxplex, vxmirror, vXxrecover, vxrelayout, vxresize,
vxsd, and vxvol utilities allow you to specify a tag using the -t option. For
example, to execute a vxrecover command and track all the resulting tasks as a
group with the task tag myrecovery, use the following command:

vxrecover -g mydg -t myrecovery -b mydg05
Any tasks started by the utilities invoked by vxrecover also inherit its task ID
and task tag, so establishing a parent-child task relationship.

For more information about the utilities that support task tagging, see their
respective manual pages.

278

Administering volumes

Monitoring and controlling tasks

Managing tasks with vxtask

Note: New tasks take time to be set up, and so may not be immediately available
for use after a command is invoked. Any script that operates on tasks may need
to poll for the existence of a new task.

You can use the vxtask command to administer operations on VxVM tasks that
are running on the system. Operations include listing tasks, modifying the state
of a task (pausing, resuming, aborting) and modifying the rate of progress of a
task. For detailed information about how to use vxtask, refer to the vxtask(1M)
manual page.

VxXVM tasks represent long-term operations in progress on the system. Every
task gives information on the time the operation started, the size and progress
of the operation, and the state and rate of progress of the operation. The
administrator can change the state of a task, giving coarse-grained control over
the progress of the operation. For those operations that support it, the rate of
progress of the task can be changed, giving more fine-grained control over the
task.

vxtask operations

The vxtask command supports the following operations:

abort Causes the specified task to cease operation. In most cases, the
operations “back out” as if an I/O error occurred, reversing what
has been done so far to the largest extent possible.

list Lists tasks running on the system in one-line summaries. The -1
option prints tasks in long format. The -h option prints tasks
hierarchically, with child tasks following the parent tasks. By
default, all tasks running on the system are printed. If a taskid
argument is supplied, the output is limited to those tasks whose
taskid or task tag match taskid. The remaining arguments are
used to filter tasks and limit the tasks actually listed.

monitor Printsinformation continuously about a task or group of tasks as
task information changes. This allows you to track the progression
of tasks. Specifying -1 causes a long listing to be printed. By
default, short one-line listings are printed. In addition to printing
task information when a task state changes, output is also
generated when the task completes. When this occurs, the state of
the task is printed as EXITED.

pause Puts a running task in the paused state, causing it to suspend
operation.

resume Causes a paused task to continue operation.

Administering volumes | 279
Monitoring and controlling tasks

set Changes modifiable parameters of a task. Currently, there is only
one modifiable parameter, s1ow[=iodelay], which can be used to
reduce the impact that copy operations have on system
performance. If s1ow is specified, this introduces a delay between
such operations with a default value for iodelay of 250
milliseconds. The larger the value of iodelay that is specified, the
slower is the progress of the task and the fewer system resources
that it consumes in a given time. (The s1ow attribute is also
accepted by the vxplex, vxvol and vxrecover commands.)

Using the vxtask command
To list all tasks currently running on the system, use the following command:

vxtask list
To print tasks hierarchically, with child tasks following the parent tasks, specify
the -h option, as follows:

vxtask -h list

To trace all tasks in the disk group, foodg, that are currently paused, as well as
any tasks with the tag sysstart, use the following command:

vxtask -g foodg -p -i sysstart list
Use the vxtask -p 1ist command lists all paused tasks, and use vxtask resume
to continue execution (the task may be specified by its ID or by its tag):

vxtask -p list
wvxtask resume 167

To monitor all tasks with the tag myoperation, use the following command:

wvxtask monitor myoperation
To cause all tasks tagged with recovall to exit, use the following command:

vxtask abort recovall
This command causes VxVM to attempt to reverse the progress of the operation
so far. For an example of how to use vxtask to monitor and modify the progress
of the Online Relayout feature, see “Controlling the progress of a relayout” on
page 312.

280

Administering volumes
Stopping a volume

Stopping a volume

Stopping a volume renders it unavailable to the user, and changes the volume
kernel state from ENABLED or DETACHED to DISABLED. If the volume cannot
be disabled, it remains in its current state. To stop a volume, use the following
command:

vxvol [-g diskgroup] [-f] stop volume ...
To stop all volumes in a specified disk group, use the following command:

vxvol [-g diskgroup] [-f] stopall

Caution: If you use the -f option to forcibly disable a volume that is currently
open to an application, the volume remains open, but its contents are
inaccessible. I/O operations on the volume fail, and this may cause data loss. It is
not possible to deport a disk group until all of its volumes are closed.

If you need to prevent a closed volume from being opened, it is recommended
that you use the vxvol maint command, as described in the following section.

Putting a volume in maintenance mode

If all mirrors of a volume become STALE, you can place the volume in
maintenance mode. Then you can view the plexes while the volume is DETACHED
and determine which plex to use for reviving the others. To place a volume in
maintenance mode, use the following command:

vxvol [-g diskgroup] maint volume

To assist in choosing the revival source plex, use vxprint to list the stopped
volume and its plexes.

To take a plex (in this example, vo101-02 in the disk group, mydg) offline, use
the following command:

vxmend -g mydg off vol01-02
The vxmend on command can change the state of an OFFLINE plex of a
DISABLED volume to STALE. For example, to put a plex named vo101-02 in the
STALE state, use the following command:

vxmend -g mydg on vol01-02
Running the vxvol start command on the volume then revives the plex as
described in the next section.

Administering volumes | 281
Starting a volume

Starting a volume

Starting a volume makes it available for use, and changes the volume state from
DISABLED or DETACHED to ENABLED. To start a DISABLED or DETACHED
volume, use the following command:

vxvol [-g diskgroup] start volume ...

If a volume cannot be enabled, it remains in its current state.
To start all DISABLED or DETACHED volumes in a disk group, enter:
vxvol -g diskgroup startall

Alternatively, to start a DISABLED volume, use the following command:
vxrecover -g diskgroup -s volume ...

To start all DISABLED volumes, enter:

vxrecover -s

To prevent any recovery operations from being performed on the volumes,
additionally specify the -n option to vxrecover.

Adding a mirror to a volume

A mirror can be added to an existing volume with the vxassist command, as
follows:

wvxassist [-b] [-g diskgroup] mirror volume

Note: If specified, the -b option makes synchronizing the new mirror a
background task.

For example, to create a mirror of the volume voltest in the disk group, mydg,
use the following command:

vxassist -b -g mydg mirror voltest

Another way to mirror an existing volume is by first creating a plex, and then
attaching it to a volume, using the following commands:

vxmake [-g diskgroup] plex plex sd=subdisk ...
vxplex [-g diskgroup] att volume plex

282

Administering volumes

Adding a mirror to a volume

Mirroring all volumes

To mirror all volumes in a disk group to available disk space, use the following
command:

/etc/vx/bin/vmirror -g diskgroup -a
To configure VxVM to create mirrored volumes by default, use the following
command:

/etc/vx/bin/vmirror -4 yes
If you make this change, you can still make unmirrored volumes by specifying
nmirror=1 as an attribute to the vxassist command. For example, to create an
unmirrored 20-gigabyte volume named nomirror in the disk group, mydg, use
the following command:

vxassist -g mydg make nomirror 20g nmirror=1

Mirroring volumes on a VM disk

Mirroring volumes on a VM disk gives you one or more copies of your volumes in
another disk location. By creating mirror copies of your volumes, you protect
your system against loss of data in case of a disk failure. You can use this task on
your root disk to make a second copy of the boot information available on an
alternate disk. This allows you to boot your system even if your root disk is
corrupted.

Note: This task only mirrors concatenated volumes. Volumes that are already
mirrored or that contain subdisks that reside on multiple disks are ignored.

To mirror volumes on a disk

1 Make sure that the target disk has an equal or greater amount of space as
the originating disk.

2 Select menuitem 6 (Mirror volumes on a disk) from the
vxdiskadm main menu.

3 At the following prompt, enter the disk name of the disk that you wish to
mirror:

Mirror volumes on a disk
Menu: VolumeManager/Disk/Mirror

This operation can be used to mirror volumes on a disk. These
volumes can be mirrored onto another disk or onto any
available disk space. Volumes will not be mirrored if they are
already mirrored. Also, volumes that are comprised of more
than one subdisk will not be mirrored.

Enter disk name [<disk>,list,q,?] mydg02

Administering volumes
Adding a mirror to a volume

4 At the following prompt, enter the target disk name (this disk must be the
same size or larger than the originating disk):

You can choose to mirror volumes from disk mydg02 onto any
available disk space, or you can choose to mirror onto a
specific disk. To mirror to a specific disk, select the name of
that disk. To mirror to any available disk space, select
"any" .
Enter destination disk [<disk>,list,q,?] (default: any) mydg01l

5 At the following prompt, press Return to make the mirror:

The requested operation is to mirror all volumes on disk
mydg02 in disk group mydg onto available disk space on disk
mydg01.

VxVM NOTICE V-5-2-229 This operation can take a long time to

complete.

Continue with operation? [y,n,dq,?] (default: y)
The vxdiskadm program displays the status of the mirroring operation, as
follows:

VXVM vxmirror INFO V-5-2-22 Mirror volume voltest-bk00

VxVM INFO V-5-2-674 Mirroring of disk mydg0l is complete.

6 At the following prompt, indicate whether you want to mirror volumes on
another disk (y) or return to the vxdi skadm main menu (n):

Mirror volumes on another disk? [y,n,q,?] (default: n)

Additional mirroring considerations

The larger private region size that was introduced in VxVM 3.2 (1MB) and VxVM
5.0 (32MB) may create one of the following mirroring scenarios under which
vxdiskadmn fails:

m Mirroring a full root disk to a target disk which is exactly the same size as
the source disk. A full disk means a disk that has no free cylinders.

m Mirroring a disk created using an earlier version of Veritas Volume Manager
to a target disk which is exactly the same size as the source disk. You only
need to use this step if mirroring using vxdiskadm fails.

m Mirroring a full Veritas Volume Manager disk (not a root disk) that was
encapsulated in VXVM 3.5 to a target disk that is the same size as the source
disk. You only need to use this step if mirroring using vxdiskadm fails. For
details, see vxdiskadm(1M).

283

284 | Administering volumes
Adding a mirror to a volume

To create a mirror under any of these scenarios

1 Determine the size of the source disk’s private region, using either of the
following methods:

m If the source disk is a root disk, obtain its private region length by
running this command:
vxprint -1 rootdisk
The disk media name of the root disk is typically rootdisk.
In the output, find the privlen value. In this example, the value is
3071:
devinfo: publen=39846240 privlen=3071
m If the source disk is not a root disk, obtain its private region length by
running this command:
vxdisk list diskname
where diskname is the disk media name of the source disk.
In the displayed output, note the 1en value for the private field. In
this example, the value of this field is 3071:
private: slice=4 offset=1 len=3071

2 Usethe vxdisksetup program to initialize the target disk:

/usr/lib/vxvm/bin/vxdisksetup -i c#t#d# privoffset=0 \
privlen=XXXX publen=YYYY

where XXXX is the size of the source disk’s private region, and YYYY is the
size of its public region.

Note: If your system is configured to use enclosure-based naming instead of
OS-based naming, replace the c#t#d# name with the enclosure-based name
for the disk.

3 Add the newly initialized target disk to the source disk group:
‘# vxdg -g diskgroup adddisk medianame=c#t#d#
4 Use the vxdiskadm command and choose item 6 (Mirror volumes on a disk)

to create the mirror. Specify the disk media names of the source disk
(rootdisk) and the target disk (medianame).

Administering volumes | 285
Removing a mirror

Removing a mirror

When a mirror is no longer needed, you can remove it to free up disk space.

Note: The last valid plex associated with a volume cannot be removed.

To remove a mirror from a volume, use the following command:

vxassist [-g diskgroup] remove mirror volume
Additionally, you can use storage attributes to specify the storage to be
removed. For example, to remove a mirror on disk mydg01 from volume vol01,
enter:

vxassist -g mydg remove mirror volOl \!mydg01l
For more information about storage attributes, see “Creating a volume on
specific disks” on page 254.
Alternatively, use the following command to dissociate and remove a mirror
from a volume:

vxplex [-g diskgroup] -o rm dis plex
For example, to dissociate and remove a mirror named vol01-02 from the disk
group, mydg, use the following command:

vxplex -g mydg -o rm dis vol01-02
This command removes the mirror vo101-02 and all associated subdisks. This
is equivalent to entering the following separate commands:

vxplex -g mydg dis vol01-02
vxedit -g mydg -r rm vol01-02

Adding logs and maps to volumes

In Veritas Volume Manager, several types of volume logs and maps are
supported:

m FastResync Maps are used to perform quick and efficient resynchronization
of mirrors (see “FastResync” on page 68 for details). These maps are
supported either in memory (Non-Persistent FastResync), or on disk as part
of a DCO volume (Persistent FastResync). Two types of DCO volumes are
supported:

m Version 0 DCO volumes only support Persistent FastResync for the
traditional third-mirror break-off type of volume snapshot. See
“Version 0 DCO volume layout” on page 71, and “Adding a version 0
DCO and DCO volume” on page 368 for more information.

m Version 20 DCO volumes, introduced in VxVM 4.0, support DRL logging
(see below) and Persistent FastResync for full-sized and space-
optimized instant volume snapshots. See “Version 20 DCO volume

286

Administering volumes

Preparing a volume for DRL and instant snapshots

layout” on page 71, and “Preparing a volume for DRL and instant
snapshots” on page 286 for more information.
See “Enabling FastResync on a volume” on page 305 for information on how
to enable Persistent or Non-Persistent FastResync on a volume.

m Dirty Region Logs allow the fast recovery of mirrored volumes after a system

crash (see “Dirty region logging” on page 62 for details). These logs are
supported either as DRL log plexes, or as part of a version 20 DCO volume.
Refer to the following sections for information on enabling DRL on a
volume:

m “Adding traditional DRL logging to a mirrored volume” on page 293
describes how to add DRL log plexes to a volume.

m “Preparing a volume for DRL and instant snapshots” on page 286
describes how to configure DRL for a volume using a version 20 DCO
volume.

m RAID-5 logs are used to prevent corruption of data during recovery of RAID-
5 volumes (see “RAID-5 logging” on page 52 for details). These logs are
configured as plexes on disks other than those that are used for the columns
of the RAID-5 volume.

See “Adding a RAID-5 log” on page 295 for information on adding RAID-5
logs to a RAID-5 volume.

Preparing a volume for DRL and instant snapshots

Note: This procedure describes how to add a version 20 data change object (DCO)
and DCO volume to a volume that you previously created in a disk group with a
version number of 110 or greater. If you are creating a new volume in a disk
group with a version number of 110 or greater, you can specify the co-creation
of a DCO and DCO volume and enable DRL as described in “Creating a volume
with a version 20 DCO volume” on page 262. If the volume was created in a
release prior to VXVM 4.0, use the procedure in “Upgrading existing volumes to
use version 20 DCOs” on page 291.

You need a full VxVM license and a Veritas FlashSnap™ or FastResync license to
use the DRL and FastResync features. Even if you do not have a license, you can
configure a DCO object and DCO volume so that snap objects are associated with
the original and snapshot volumes. For more information about snap objects,
see “How persistent FastResync works with snapshots” on page 72. See
“Determining the DCO version number” on page 289 for details of how to
determine the version number of a volume’s DCO.

Administering volumes | 287
Preparing a volume for DRL and instant snapshots

Use the following command to add a version 20 DCO and DCO volume to a
volume:
vxsnap [-g diskgroup] prepare volume [ndcomirs=number] \

[regionsize=size] [drl=on|sequential|off] \

[storage attribute ...]
The ndcomirs attribute specifies the number of DCO plexes that are created in
the DCO volume. It is recommended that you configure as many DCO plexes as
there are data and snapshot plexes in the volume. The DCO plexes are used to set
up a DCO volume for any snapshot volume that you subsequently create from
the snapshot plexes. For example, specify ndcomirs=5 for a volume with 3 data
plexes and 2 snapshot plexes.

The value of the regionsize attribute specifies the size of the tracked regions
in the volume. A write to a region is tracked by setting a bit in the change map.
The default value is 64k (64KB). A smaller value requires more disk space for the
change maps, but the finer granularity provides faster resynchronization.

To enable DRL logging on the volume, specify dr1=on (this is the default setting).
If sequential DRL is required, specify dri=sequential. If DRL is not required,
specify drl=off.

You can also specify vxassist-style storage attributes to define the disks that
can and/or cannot be used for the plexes of the DCO volume. See “Specifying
storage for version 20 DCO plexes” on page 288 for details.

Note: The vxsnap prepare command automatically enables Persistent
FastResync on the volume. Persistent FastResync is also set automatically on
any snapshots that are generated from a volume on which this feature is
enabled.

If the volume is a RAID-5 volume, it is converted to a layered volume that can be
used with instant snapshots and Persistent FastResync. See “Using a DCO and
DCO volume with a RAID-5 volume” on page 289 for details.

By default, a version 20 DCO volume contains 32 per-volume maps. If you
require more maps than this, you can use the vxsnap addmap command to add
more maps. See the vxsnap(1M) manual page for details of this command.

288 | Administering volumes
Preparing a volume for DRL and instant snapshots

Specifying storage for version 20 DCO plexes

If the disks that contain volumes and their snapshots are to be moved into
different disk groups, you must ensure that the disks that contain their DCO
plexes can accompany them. You can use storage attributes to specify which
disks to use for the DCO plexes. (If you do not want to use dirty region logging
(DRL) with a volume, you can specify the same disks as those on which the
volume is configured, assuming that space is available on the disks). For
example, to add a DCO object and mirrored DCO volume with plexes on disk05
and disk06 to the volume, myvol, use the following command:

vxsnap -g mydg prepare myvol ndcomirs=2 disk05 disk06
To view the details of the DCO object and DCO volume that are associated with a
volume, use the vxprint command. The following is example vxprint -vh
output for the volume named vol1 (the TUTILO and PUTILO columns are
omitted for clarity):

TY NAME ASSOC KSTATE LENGTH PLOFFS STATE
v voll fsgen ENABLED 1024 - ACTIVE
pl voll-01 voll ENABLED 1024 - ACTIVE
sd disk01-01 voll-01 ENABLED 1024 0 -

pl foo-02 voll ENABLED 1024 - ACTIVE
sd disk02-01 voll-02 ENABLED 1024 0 -

dc voll_dco voll - - - -

v voll_dcl gen ENABLED 132 - ACTIVE
pl voll dcl-01 wvoll_dcl ENABLED 132 - ACTIVE
sd disk03-01 voll_dcl-01ENABLED 132 0 -

pl voll dcl-02 wvoll_dcl ENABLED 132 - ACTIVE
sd disk04-01 voll_dcl-02 ENABLED 132 0 -

In this output, the DCO object is shown as vol1l_dco, and the DCO volume as
voll_dcl with 2 plexes, voll_dcl-01 and voll_dcl-02.

If required, you can use the vxassist move command to relocate DCO plexes to
different disks. For example, the following command moves the plexes of the
DCO volume, vol1l_dcl, for volume voll from disk03 and disk04 to disk07
and disk08:

vxassist -g mydg move voll _dcl \!disk03 \!disk04 disk07 disk08
For more information, see “Moving DCO volumes between disk groups” on
page 210, and the vxassist(1M) and vxsnap(1M) manual pages.

Administering volumes | 289
Preparing a volume for DRL and instant snapshots

Using a DCO and DCO volume with a RAID-5 volume

The procedure in the previous section can be used to add a DCO and DCO volume
to a RAID-5 volume. This allows you to use Persistent FastResync on the volume
for fast resynchronization of snapshots on returning them to their original
volume. However, the procedure has the side effect of converting the RAID-5
volume into a special type of layered volume. You can create space-optimized
instant snapshots of such a volume, and you can add mirrors that may be broken
off as full-sized instant snapshots. You cannot relayout or resize such a volume
unless y