»
2 Sun

microsystems

man pages section 3: Networking
Library Functions

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816-5170-10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights — Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 1'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systeme Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l'industrie
de I'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

a &

Adobe PostScript

©

050105@ 10536

Contents

Preface 13

Networking Library Functions 19
accept(3SOCKET) 20
accept(3XNET) 22
ber_decode(3LDAP) 24
ber_encode(3LDAP) 29
bind(3SOCKET) 33
bind(3XNET) 35
byteorder(3SOCKET) 38
cldap_close(SLDAP) 39
cldap_open(3LDAP) 40
cldap_search_s(3LDAP) 41
cldap_setretryinfo(3LDAP) 43
connect(3SOCKET) 44
connect(3XNET) 46
dial(3NSL) 50
doconfig(3NSL) 53
endhostent(3XNET) 55
endnetent(3XNET) 57
endprotoent(3XNET) 59
endservent(3XNET) 61
ethers(3SOCKET) 63
freeaddrinfo(3XNET) 65
gai_strerror(3XNET) 69
getaddrinfo(3SOCKET) 70

gethostbyname(3NSL) 76
gethostname(B3XNET) 82
getipnodebyname(3SOCKET) 83
getipsecalgbyname(3NSL) 89
getipsecprotobyname(3NSL) 92
getnameinfo(3XNET) 94
getnetbyname(3SOCKET) 96
getnetconfig(3NSL) 100
getnetpath(3NSL) 102
getpeername(3SOCKET) 104
getpeername(3XNET) 105
getprotobyname(3SOCKET) 106
getpublickey(3NSL) 109
getrpcbyname(3NSL) 110
getservbyname(3SOCKET) 113
getsockname(3SOCKET) 117
getsockname(3XNET) 118
getsockopt(3SOCKET) 119
getsockopt(3XNET) 123
gss_accept_sec_context(3GSS) 126
gss_acquire_cred(3GSS) 132
gss_add_cred(3GSS) 135
gss_add_oid_set_member(3GSS) 139
gss_canonicalize_name(3GSS) 140
gss_compare_name(3GSS) 142
gss_context_time(3GSS) 143
gss_create_empty_oid_set(3GSS) 144
gss_delete_sec_context(3GSS) 145
gss_display_name(3GSS) 147
gss_display_status(3GSS) 149
gss_duplicate_name(3GSS) 151
gss_export_name(3GSS) 152
gss_export_sec_context(3GSS) 153
gss_get_mic(3GSS) 155
gss_import_name(3GSS) 157
gss_import_sec_context(3GSS) 159
gss_indicate_mechs(3GSS) 161
gss_init_sec_context(3GSS) 162

4 man pages section 3: Networking Library Functions ¢ January 2005

gss_inquire_context(3GSS) 169
gss_inquire_cred(3GSS) 172
gss_inquire_cred_by_mech(3GSS) 174
gss_inquire_mechs_for_name(3GSS) 176
gss_inquire_names_for_mech(3GSS) 178
gss_oid_to_str(3GSS) 179
gss_process_context_token(3GSS) 181
gss_release_buffer(3GSS) 183
gss_release_cred(3GSS) 184
gss_release_name(3GSS) 185
gss_release_0id(3GSS) 186
gss_release_oid_set(3GSS) 187
gss_store_cred(3GSS) 188
gss_str_to_oid(3GSS) 191
gss_test_oid_set_member(3GSS) 193
gss_unwrap(3GSS) 194
gss_verify_mic(3GSS) 196
gss_wrap(3GSS) 198
gss_wrap_size_limit(3GSS) 200
htonl(3XNET) 202
icmp6_filter(3SOCKET) 203
if_nametoindex(3SOCKET) 204
if_nametoindex(3XNET) 206
inet(3SOCKET) 208
inet6_opt(3SOCKET) 212
inet6_rth(3SOCKET) 215
inet_addr(3XNET) 218
inet_ntop(3XNET) 220
ldap(3LDAP) 222
Idap_abandon(3LDAP) 233
ldap_add(3LDAP) 234
Idap_ber_free(3LDAP) 236
ldap_bind(3LDAP) 237
Idap_charset(3LDAP) 240
Idap_compare(3LDAP) 242
ldap_control_free(3LDAP) 244
Idap_delete(3LDAP) 245
ldap_disptmpl(3LDAP) 246

Idap_entry2text(3LDAP) 252
ldap_error(3LDAP) 255
Idap_first_attribute(3LDAP) 259
Idap_first_entry(3LDAP) 260
Idap_first_message(3LDAP) 262
ldap_friendly(3LDAP) 263
Idap_get_dn(3LDAP) 264
ldap_get_entry_controls(3LDAP) 266
Idap_getfilter(B3LDAP) 267
Idap_get_lang_values(3LDAP) 269
ldap_get_option(3LDAP) 271
Idap_get_values(3LDAP) 276
Idap_memcache(3LDAP) 278
Idap_memfree(3LDAP) 281
Idap_modify(SLDAP) 282
ldap_modrdn(BLDAP) 284
Idap_open(3LDAP) 286
Idap_parse_result(3LDAP) 288
Idap_result(3LDAP) 289
Idap_search(3LDAP) 291
ldap_searchprefs(3LDAP) 294
Idap_sort(3LDAP) 296
Idap_ufn(3LDAP) 298
Idap_url(3LDAP) 300
Idap_version(3LDAP) 303
listen(3SOCKET) 304
listen(3XNET) 305
netdir(3NSL) 307
nis_error(3NSL) 311
nis_groups(3NSL) 313
nis_local_names(3NSL) 316
nis_names(3NSL) 318
nis_objects(3NSL) 325
nis_ping(3NSL) 333
nis_server(3NSL) 334
nis_subr(3NSL) 336
nis_tables(3NSL) 339
nlsgetcall(BNSL) 348

6 man pages section 3: Networking Library Functions ¢ January 2005

nlsprovider(3NSL) 349
nlsrequest(3NSL) 350
remd(3SOCKET) 352
recv(3SOCKET) 354
recv(3XNET) 357
recvirom(3XNET) 360
recvmsg(3XNET) 363
resolver(3RESOLV) 366
rexec(3SOCKET) 373
rpc(3NSL) 375

rpcbind(3NSL) 384
rpc_cint_auth(3NSL) 386
rpc_clnt_calls(3NSL) 388
rpc_cint_create(3NSL) 392
rpc_control(3NSL) 399
rpc_gss_getcred(3NSL) 401
rpc_gss_get_error(3NSL) 403
rpc_gss_get_mechanisms(3NSL) 404
rpc_gss_get_principal_name(3NSL) 406
rpc_gss_max_data_length(3NSL) 408
rpc_gss_mech_to_oid(3NSL) 409
rpc_gss_seccreate(3NSL) 411
rpc_gss_set_callback(3NSL) 413
rpc_gss_set_defaults(3NSL) 415
rpc_gss_set_svc_name(3NSL) 416
rpc_rac(3RAC) 418
rpcsec_gss(3NSL) 422
rpc_soc(3NSL) 427
rpc_svc_calls(3NSL) 437
rpc_svc_create(3NSL) 441
rpc_svc_err(3NSL) 446
rpc_svc_input(3NSL) 448
rpc_svc_reg(3NSL) 450
rpc_xdr(3NSL) 452
rstat(BRPC) 454

rusers(3RPC) 455

rwall(BRPC) 456
sasl_authorize_t(3SASL) 457

sasl_auxprop(3SASL) 458

sasl_auxprop_add_plugin(3SASL)
462
463
sasl_canonuser_add_plugin(3SASL)
465
467

sasl_auxprop_getctx(3SASL)
sasl_auxprop_request(3SASL)

sasl_canon_user_t(3SASL)
sasl_chalprompt_t(3SASL)
sasl_checkapop(3SASL) 468
sasl_checkpass(3SASL) 469
sasl_client_add_plugin(3SASL)
sasl_client_init(3SASL) 472
sasl_client_new(3SASL) 473
sasl_client_plug_init_t(3SASL)
sasl_client_start(3SASL) 476
sasl_client_step(3SASL) 478
sasl_decode(3SASL) 480

sasl_decode64(3SASL) 481
sasl_dispose(3SASL) 482

sasl_done(3SASL) 483

sasl_encode(3SASL) 484

sasl_encode64(3SASL) 485
sasl_erasebuffer(3SASL) 486
sasl_errdetail(3SASL) 487
sasl_errors(3SASL) 488

sasl_errstring(3SASL) 490
sasl_getcallback_t(3SASL)
sasl_getopt_t(3SASL) 492
sasl_getpath_t(3SASL) 493
sasl_getprop(3SASL) 494
sasl_getrealm_t(3SASL) 496
sasl_getsecret_t(3SASL) 497
sasl_getsimple_t(3SASL)
sasl_global_listmech(3SASL)
sasl_idle(3SASL) 500

sasl_listmech(3SASL)
sasl_log_t(3SASL)

501
502

sasl_server_add_plugin(3SASL)

sasl_server_init(3SASL) 504

491

498

461

464

471

475

499

503

man pages section 3: Networking Library Functions ¢ January 2005

sasl_server_new(3SASL) 505
sasl_server_plug_init_t(3SASL) 507
sasl_server_start(3SASL) 508
sasl_server_step(3SASL) 510
sasl_server_userdb_checkpass_t(3SASL) 511
sasl_server_userdb_setpass_t(3SASL) 512
sasl_set_alloc(3SASL) 513
sasl_seterror(3SASL) 514
sasl_set_mutex(3SASL) 515
sasl_setpass(3SASL) 516
sasl_setprop(3SASL) 517
sasl_utf8verify(3SASL) 519
sasl_verifyfile_t(3SASL) 520
sasl_version(3SASL) 521
sctp_bindx(3SOCKET) 522
sctp_getladdrs(3SOCKET) 524
sctp_getpaddrs(3SOCKET) 526
sctp_opt_info(3SOCKET) 528
sctp_peeloff(3SOCKET) 533
sctp_recvmsg(3SOCKET) 534
sctp_send(3SOCKET) 536
sctp_sendmsg(3SOCKET) 538
secure_rpc(3NSL) 540
send(3SOCKET) 544
send(3XNET) 547
sendmsg(3XNET) 550
sendto(3XNET) 554
setsockopt(3XNET) 558
shutdown(3SOCKET) 561
shutdown(3XNET) 562
slp_api(3SLP) 563
SLPClose(3SLP) 573
SLPDelAttrs(3SLP) 574
SLPDereg(3SLP) 576
SLPEscape(3SLP) 577
SLPFindAttrs(3SLP) 578
SLPFindScopes(3SLP) 580
SLPFindSrvs(3SLP) 582

SLPFindSrvTypes(3SLP) 584
SLPFree(3SLP) 586
SLPGetProperty(3SLP) 587
SLPGetRefreshInterval(3SLP) 588
SLPOpen(3SLP) 589
SLPParseSrvURL(3SLP) 591
SLPReg(3SLP) 593
SLPSetProperty(3SLP) 595
slp_strerror(3SLP) 596
SLPUnescape(3SLP) 597
sockatmark(3XNET) 598
socket(3SOCKET) 599
socket(3XNET) 602
socketpair(3SOCKET) 604
socketpair(3XNET) 605
spray(3SOCKET) 607
t_accept(3NSL) 609
t_alloc(3NSL) 613
t_bind(3NSL) 616
t_close(3NSL) 620
t_connect(3NSL) 622
t_errno(B3NSL) 626
t_error(3NSL) 628
t_free(3NSL) 630
t_getinfo(3NSL) 632
t_getprotaddr(3NSL) 636
t_getstate(3NSL) 638
t_listen(3NSL) 640
t_look(3NSL) 643
t_open(3NSL) 645
t_optmgmt(3NSL) 649
t_rcv(3NSL) 657
t_rcvconnect(3NSL) 660
t_rcvdis(3NSL) 662
t_rcvrel(BNSL) 664
t_rcvreldata(3NSL) 666
t_rcvudata(3NSL) 668
t_rcvuderr(3NSL) 671

10 man pages section 3: Networking Library Functions ¢ January 2005

t_rcvv(3NSL) 673
t_rcvvudata(BNSL) 676
t_snd(3NSL) 678
t_snddis(BNSL) 682
t_sndrel(3NSL) 684
t_sndreldata(3NSL) 686
t_sndudata(3NSL) 688
t_sndv(BNSL) 691
t_sndvudata(3NSL) 695
t_strerror(3NSL) 698
t_sync(3NSL) 699
t_sysconf(3NSL) 701
t_unbind(3NSL) 702
xdr(3NSL) 704
xdr_admin(3NSL) 706
xdr_complex(3NSL) 708
xdr_create(3NSL) 711
xdr_simple(3NSL) 713
ypcInt(3NSL) 717
yp_update(3NSL) 722

Index 723

1

12 man pages section 3: Networking Library Functions ¢ January 2005

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the
information it references:

Section 1 describes, in alphabetical order, commands available with the operating
system.

Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

Section 5 contains miscellaneous documentation such as character-set tables.
Section 6 contains available games and demos.

Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

13

14

m Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

m Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

® Section 9F describes the kernel functions available for use by device drivers.

m Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename

Separator. Only one of the arguments
separated by this character can be
specified at a time.

{} Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

man pages section 3: Networking Library Functions ¢ January 2005

PROTOCOL

DESCRIPTION

IOCTL

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

This section occurs only in subsection 3R to
indicate the protocol description file.

This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioct1(2) system call is called
ioctl and generates its own heading. ioct1 calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioct1 calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

This section lists the command operands and
describes how they affect the actions of the
command.

This section describes the output — standard output,
standard error, or output files — generated by the
command.

If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or -1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the

15

USAGE

EXAMPLES

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example$%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(b) for more information.

This section lists references to other man pages,
in-house documentation, and outside publications.

16 man pages section 3: Networking Library Functions ¢ January 2005

DIAGNOSTICS

WARNINGS

NOTES

BUGS

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

This section describes known bugs and, wherever
possible, suggests workarounds.

17

18 man pages section 3: Networking Library Functions ¢ January 2005

Networking Library Functions

19

accept(3SOCKET)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

accept — accept a connection on a socket

ce [flag ... 1 file ... -lsocket -1lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int accept (int s, struct sockaddr *addr, socklen t *addrlen) ;

The argument s is a socket that has been created with socket(3SOCKET) and bound
to an address with bind(3SOCKET), and that is listening for connections after a call to
1isten(3SOCKET). The accept () function extracts the first connection on the queue
of pending connections, creates a new socket with the properties of s, and allocates a
new file descriptor, 1s, for the socket. If no pending connections are present on the
queue and the socket is not marked as non-blocking, accept () blocks the caller until
a connection is present. If the socket is marked as non-blocking and no pending
connections are present on the queue, accept () returns an error as described below.
The accept () function uses the netconfig(4) file to determine the STREAMS
device file name associated with s. This is the device on which the connect indication
will be accepted. The accepted socket, s, is used to read and write data to and from
the socket that connected to #s. It is not used to accept more connections. The original
socket (s) remains open for accepting further connections.

The argument addr is a result parameter that is filled in with the address of the
connecting entity as it is known to the communications layer. The exact format of the
addr parameter is determined by the domain in which the communication occurs.

The argument addrlen is a value-result parameter. Initially, it contains the amount of
space pointed to by addr; on return it contains the length in bytes of the address
returned.

The accept () function is used with connection-based socket types, currently with
SOCK_STREAM.

It is possible to select(3C) or poll(2) a socket for the purpose of an accept () by
selecting or polling it for a read. However, this will only indicate when a connect
indication is pending; it is still necessary to call accept ().

The accept () function returns —1 on error. If it succeeds, it returns a non-negative
integer that is a descriptor for the accepted socket.

accept () will fail if:

EBADF The descriptor is invalid.

ECONNABORTED The remote side aborted the connection before the
accept () operation completed.

EFAULT The addr parameter or the addrlen parameter is invalid.

EINTR The accept () attempt was interrupted by the

delivery of a signal.

EMFILE The per-process descriptor table is full.

20 man pages section 3: Networking Library Functions ¢ Last Revised 24 Jan 2002

ATTRIBUTES

SEE ALSO

ENODEV

ENOMEM

ENOSR

ENOTSOCK

EOPNOTSUPP

EPROTO

EWOULDBLOCK

accept(3SOCKET)

The protocol family and type corresponding to s could
not be found in the netconfig file.

There was insufficient user memory available to
complete the operation.

There were insufficient STREAMS resources available
to complete the operation.

The descriptor does not reference a socket.
The referenced socket is not of type SOCK_STREAM.

A protocol error has occurred; for example, the
STREAMS protocol stack has not been initialized or the
connection has already been released.

The socket is marked as non-blocking and no
connections are present to be accepted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe

poll(2), bind(3SOCKET), connect(3SOCKET), 1isten(3SOCKET), select(3C),
socket .h(BHEAD), socket(3SOCKET), netconfig(4), attributes(b)

Networking Library Functions 21

accept(3XNET)
NAME | accept —accept a new connection on a socket

SYNOPSIS | cc [flag ... 1 file ... -lxnet [library ...]

#include <sys/socket.h>

int accept (int socket, struct sockaddr *restrict address, socklen t
*restrict address_len) ;

DESCRIPTION | The accept () function extracts the first connection on the queue of pending
connections, creates a new socket with the same socket type protocol and address
family as the specified socket, and allocates a new file descriptor for that socket.

The function takes the following arguments:

socket Specifies a socket that was created with socket(3XNET), has been
bound to an address with bind(3XNET), and has issued a
successful call to 1isten(3XNET).

address Either a null pointer, or a pointer to a sockaddr structure where
the address of the connecting socket will be returned.

address_len Points to a socklen_t which on input specifies the length of the
supplied sockaddr structure, and on output specifies the length
of the stored address.

If address is not a null pointer, the address of the peer for the accepted connection is
stored in the sockaddr structure pointed to by address, and the length of this address
is stored in the object pointed to by address_len.

If the actual length of the address is greater than the length of the supplied sockaddr
structure, the stored address will be truncated.

If the protocol permits connections by unbound clients, and the peer is not bound,
then the value stored in the object pointed to by address is unspecified.

If the listen queue is empty of connection requests and O_NONBLOCK is not set on
the file descriptor for the socket, accept () will block until a connection is present. If
the 1isten(3XNET) queue is empty of connection requests and O_NONBLOCK is set
on the file descriptor for the socket, accept () will fail and set errno to EAGAIN or
EWOULDBLOCK

The accepted socket cannot itself accept more connections. The original socket remains
open and can accept more connections.

USAGE | When a connection is available, select(3C) will indicate that the file descriptor for
the socket is ready for reading.

RETURN VALUES | Upon successful completion, accept () returns the nonnegative file descriptor of the
accepted socket. Otherwise, —1 is returned and errno is set to indicate the error.

ERRORS | The accept () function will fail if:

22 man pages section 3: Networking Library Functions ¢ Last Revised 1 Nov 2003

ATTRIBUTES

SEE ALSO

EAGAIN
EWOULDBLOCK

EBADF

ECONNABORTED

EFAULT

EINTR

EINVAL

EMFILE

ENFILE

ENOTSOCK

EOPNOTSUPP

accept(3XNET)

O_NONBLOCK is set for the socket file descriptor and
no connections are present to be accepted.

The socket argument is not a valid file descriptor.
A connection has been aborted.

The address or address_len parameter can not be
accessed or written.

The accept () function was interrupted by a signal
that was caught before a valid connection arrived.

The socket is not accepting connections.

OPEN_MAX file descriptors are currently open in the
calling process.

The maximum number of file descriptors in the system
are already open.

The socket argument does not refer to a socket.

The socket type of the specified socket does not
support accepting connections.

The accept () function may fail if:

ENOBUFS

ENOMEM

ENOSR

EPROTO

No buffer space is available.

There was insufficient memory available to complete
the operation.

There was insufficient STREAMS resources available to
complete the operation.

A protocol error has occurred; for example, the
STREAMS protocol stack has not been initialized.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard

MT-Level

MT-Safe

bind(3XNET), connect(3XNET), 1isten(3XNET), socket(3XNET),
attributes(b), standards(5)

Networking Library Functions 23

ber_decode(3LDAP)

NAME | ber_decode, ber_alloc_t, ber_free, ber_bvdup, ber_init, ber_flatten, ber_get_next,
ber_skip_tag, ber_peek_tag, ber_scanf, ber_get_int, ber_get_stringa, ber_get_stringal,
ber_get_stringb, ber_get_null, ber_get_boolean, ber_get_bitstring, ber_first_element,
ber_next_element, ber_bvfree, ber_bvecfree — Basic Encoding Rules library decoding
functions

SYNOPSIS | ccl flag... 1 file... -11ldapl library...]

#include <lber.h>

BerElement *ber alloc_t (int options) ;

struct berval *ber bvdup (struct berval *bv) ;

void ber free (BerElement *ber, int freebuf) ;

BerElement *ber init (struct berval *bv);

int ber flatten (BerElement *ber, struct berval *buPtr) ;
ber get next (Sockbuf *sb, unsigned long *len, char *bv_val) ;
ber skip tag(BerElement **ber, unsigned long **len) ;

ber peek tag(BerElement **ber, unsigned long **len) ;

ber get int (BerElement **ber, long **num) ;

ber get stringb (BerElement **ber, char **buf, unsigned long **len) ;
ber get stringa(BerElement **ber, char ***buf);

ber get stringal (BerElement **ber, struct berval ***bv) ;
ber get null (BerElement **ber) ;

ber get boolean (BerElement **ber, int **bool) ;

ber get bitstringa (BerElement **ber, char ***buf, unsigned long
**blen) ;

ber first element (BerElement **ber, unsigned long **len, char
***cookie) ;

ber next element (BerElement **ber, unsigned long **len, char **cookie) ;
ber scanf (BerElement **ber, char *fmt [, arg..]1);
ber bvfree (struct berval *bv) ;

ber bvecfree (struct berval ***bvec) ;

DESCRIPTION | These functions provide a subfunction interface to a simplified implementation of the
Basic Encoding Rules of ASN.1. The version of BER these functions support is the one
defined for the LDAP protocol. The encoding rules are the same as BER, except that
only definite form lengths are used, and bitstrings and octet strings are always
encoded in primitive form. In addition, these lightweight BER functions restrict tags
and class to fit in a single octet (this means the actual tag must be less than 31). When

24 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

ber_decode(3LDAP)

a "tag" is specified in the descriptions below, it refers to the tag, class, and primitive or
constructed bit in the first octet of the encoding. This man page describes the decoding
functions in the lber library. See ber encode(3LDAP) for details on the
corresponding encoding functions.

Normally, the only functions that need be called by an application are

ber get next () to get the next BER element and ber scanf () to do the actual
decoding. In some cases, ber_peek_tag () may also need to be called in normal
usage. The other functions are provided for those applications that need more control
than ber_scanf () provides. In general, these functions return the tag of the element
decoded, or —1 if an error occurred.

The ber_get_next () function is used to read the next BER element from the given
Sockbuf, sb. A Sockbuf consists of the descriptor (usually socket, but a file descriptor
works just as well) from which to read, and a BerElement structure used to maintain a
buffer. On the first call, the sb_ber struct should be zeroed. It strips off and returns the
leading tag byte, strips off and returns the length of the entire element in len, and sets
up ber for subsequent calls to ber_scanf (), and all to decode the element.

The ber_scanf () function is used to decode a BER element in much the same way
that scanf(3C) works. It reads from ber, a pointer to a BerElement such as returned by
ber_get_next(), interprets the bytes according to the format string fmt, and stores the
results in its additional arguments. The format string contains conversion
specifications which are used to direct the interpretation of the BER element. The
format string can contain the following characters.

-a Octet string. A char ** should be supplied. Memory is allocated,
filled with the contents of the octet string, null-terminated, and
returned in the parameter.

-s Octet string. A char * buffer should be supplied, followed by a
pointer to an integer initialized to the size of the buffer. Upon
return, the null-terminated octet string is put into the buffer, and
the integer is set to the actual size of the octet string.

-0 Octet string. A struct ber_val ** should be supplied, which upon
return points to a memory allocated struct berval containing the
octet string and its length. ber_bvfree () can be called to free the
allocated memory.

-b Boolean. A pointer to an integer should be supplied.
-1 Integer. A pointer to an integer should be supplied.
-B Bitstring. A char ** should be supplied which will point to the

memory allocated bits, followed by an unsigned long *, which will
point to the length (in bits) of the bitstring returned.

-n Null. No parameter is required. The element is simply skipped if it
is recognized.

Networking Library Functions 25

ber_decode(3LDAP)

-v Sequence of octet strings. A char *** should be supplied, which
upon return points to a memory allocated null-terminated array of
char *’s containing the octet strings. NULL is returned if the
sequence is empty.

-V Sequence of octet strings with lengths. A struct berval *** should
be supplied, which upon return points to a memory allocated,
null-terminated array of struct berval *’s containing the octet
strings and their lengths. NULL is returned if the sequence is
empty. ber bvecfree () can be called to free the allocated

memory.
-x Skip element. The next element is skipped.
-{ Begin sequence. No parameter is required. The initial sequence tag
and length are skipped.
-} End sequence. No parameter is required and no action is taken.
-l Begin set. No parameter is required. The initial set tag and length
are skipped.
-1 End set. No parameter is required and no action is taken.

The ber_get_int () function tries to interpret the next element as an integer,
returning the result in num. The tag of whatever it finds is returned on success, -1 on
failure.

The ber get stringb () function is used to read an octet string into a preallocated
buffer. The len parameter should be initialized to the size of the buffer, and will contain
the length of the octet string read upon return. The buffer should be big enough to
take the octet string value plus a terminating NULL byte.

The ber get stringa () function is used to allocate memory space into which an
octet string is read.

The ber get stringal () function is used to allocate memory space into which an
octet string and its length are read. It takes a struct berval **, and returns the result in
this parameter.

The ber get null () function is used to read a NULL element. It returns the tag of
the element it skips over.

The ber get boolean () function is used to read a boolean value. It is called the
same way that ber_get_int() is called.

The ber get bitstringa () function is used to read a bitstring value. It takes a
char ** which will hold the allocated memory bits, followed by an unsigned long *,
which will point to the length (in bits) of the bitstring returned.

26 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

EXAMPLES

ber_decode(3LDAP)

The ber first element () function is used to return the tag and length of the first
element in a set or sequence. It also returns in cookie a magic cookie parameter that
should be passed to subsequent calls to ber next element (), which returns
similar information.

ber alloc t () constructs and returns BerElement. A null pointer is returned on
error. The options field contains a bitwise-or of options which are to be used when
generating the encoding of this BerElement. One option is defined and must always
be supplied:

#define LBER_USE_DER 0x01

When this option is present, lengths will always be encoded in the minimum number
of octets. Note that this option does not cause values of sets and sequences to be
rearranged in tag and byte order, so these functions are not suitable for generating
DER output as defined in X.509 and X.680

The ber init function constructs a BerElement and returns a new BerElement
containing a copy of the data in the bv argument. ber _init returns the null pointer
on error.

ber free () frees a BerElement which is returned from the API calls

ber alloc t() orber init ().Each BerElement must be freed by the caller. The
second argument freebuf should always be set to 1 to ensure that the internal buffer
used by the BER functions is freed as well as the BerElement container itself.

ber bvdup () returns a copy of a berval. The bv_val field in the returned berval points
to a different area of memory as the bv_val field in the argument berval. The null
pointer is returned on error (that is, is out of memory).

The ber flatten routine allocates a struct berval whose contents are BER encoding
taken from the ber argument. The buPtr pointer points to the returned berval, which
must be freed using ber_bvfree (). This routine returns 0 on success and —1 on
error.

EXAMPLE 1 Assume the variable ber contains a lightweight BER encoding of the following
ASN.1 object:

AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)

b

derefAliases ENUMERATED {
neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3N)

1

sizelimit INTEGER (0 .. 65535),

timelimit INTEGER (0 .. 65535),

Networking Library Functions 27

ber_decode(3LDAP)

ERRORS

NOTES

ATTRIBUTES

SEE ALSO

28

EXAMPLE 1 Assume the variable ber contains a lightweight BER encoding of the following

ASN.1 object: (Continued)
attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType

EXAMPLE 2 The element can be decoded using ber scanf () as follows.

int scope, ali, size,
char *dn, **attrs;
if (ber_ scanf(ber,
&size, &time, &attrsonly,

/* error */

time, attrsonly;

"{aiiiib{v}}", &dn, &scope, &ali,

&attrs) == -1)

else

/* success */
If an error occurs during decoding, generally these functions return —1.

The return values for all of these functions are declared in the <1ber.h> header file.
Some functions may allocate memory which must be freed by the calling application.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWGsl (32-bit)
SUNW.Gslx (64-bit)
Interface Stability Evolving

ber encode(3LDAP)

Yeong, W., Howes, T., and Hardcastle-Kille, S., "Lightweight Directory Access
Protocol", OSI-DS-26, April 1992.

Information Processing - Open Systems Interconnection - Model and Notation -
Service Definition - Specification of Basic Encoding Rules for Abstract Syntax Notation
One, International Organization for Standardization, International Standard 8825.

man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

NAME

SYNOPSIS

DESCRIPTION

ber_encode(3LDAP)

ber_encode, ber_alloc, ber_printf, ber_put_int, ber_put_ostring, ber_put_string,
ber_put_null, ber_put_boolean, ber_put_bitstring, ber_start_seq, ber_start_set,
ber_put_seq, ber_put_set — simplified Basic Encoding Rules library encoding functions

cel flag... 1 file... -1ldapl library...]

#include <lber.h>

BerElement*ber_alloc () ;

ber printf (BerElement *ber, char *fmt[, arg... 1);
ber put int (BerElement *ber, long num, char tag) ;

ber put ostring(BerElement *ber, char **str, unsigned long len, char
tag) ;

%%,

ber put string(BerElement *ber, char **str, char tag) ;

ber put null (BerElement *ber, char tag) ;

ber put boolean (BerElement *ber, int bool, char tag) ;

ber put bitstring(BerElement *ber, char *str, int blen, char tag) ;
ber start seq(BerElement *ber, char tag) ;

ber start_ set (BerElement *ber, char tag) ;

ber put seq(BerElement *ber) ;

ber put set (BerElement *ber) ;

These functions provide a subfunction interface to a simplified implementation of the
Basic Encoding Rules of ASN.1. The version of BER these functions support is the one
defined for the LDAP protocol. The encoding rules are the same as BER, except that
only definite form lengths are used, and bitstrings and octet strings are always
encoded in primitive form. In addition, these lightweight BER functions restrict tags
and class to fit in a single octet (this means the actual tag must be less than 31). When
a "tag" is specified in the descriptions below, it refers to the tag, class, and primitive or
constructed bit in the first octet of the encoding. This man page describes the encoding
functions in the lber library. See ber_ decode(3LDAP) for details on the
corresponding decoding functions.

Normally, the only functions that need be called by an application are ber alloc (),
to allocate a BER element, and ber_printf () to do the actual encoding. The other
functions are provided for those applications that need more control than

ber printf () provides. In general, these functions return the length of the element
encoded, or —1 if an error occurred.

The ber alloc () function is used to allocate a new BER element.

The ber_printf () function is used to encode a BER element in much the same way
that sprintf (3S) works. One important difference, though, is that some state
information is kept with the ber parameter so that multiple calls can be made to

Networking Library Functions 29

ber_encode(3LDAP)

ber printf () to append things to the end of the BER element. Ber_printf ()
writes to ber, a pointer to a BerElement such as returned by ber_alloc (). It
interprets and formats its arguments according to the format string fmt. The format
string can contain the following characters:

-b Boolean. An integer parameter should be supplied. A boolean
element is output.

-1 Integer. An integer parameter should be supplied. An integer
element is output.

-B Bitstring. A char * pointer to the start of the bitstring is supplied,
followed by the number of bits in the bitstring. A bitstring element
is output.

-n Null. No parameter is required. A null element is output.

-0 Octet string. A char * is supplied, followed by the length of the

string pointed to. An octet string element is output.

-s Octet string. A null-terminated string is supplied. An octet string
element is output, not including the trailing NULL octet.

-t Tag. An int specifying the tag to give the next element is provided.
This works across calls.

-V Several octet strings. A null-terminated array of char *’s is
supplied. Note that a construct like '{v}’ is required to get an actual
SEQUENCE OF octet strings.

—{ Begin sequence. No parameter is required.
-} End sequence. No parameter is required.
-1& Begin set. No parameter is required.

-1 End set. No parameter is required.

The ber_put_int () function writes the integer element num to the BER element ber.

The ber put boolean () function writes the boolean value given by bool to the BER
element.

The ber_put_bitstring () function writes blen bits starting at str as a bitstring
value to the given BER element. Note that blen is the length in bits of the bitstring.

The ber_put_ostring () function writes len bytes starting at str to the BER element
as an octet string.

The ber put string() function writes the null-terminated string (minus the
terminating ") to the BER element as an octet string.

The ber put null () function writes a NULL element to the BER element.

30 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

EXAMPLES

RETURN VALUES

ber_encode(3LDAP)

The ber_start_seq() function is used to start a sequence in the BER element. The
ber start_set () function works similarly. The end of the sequence or set is
marked by the nearest matching call to ber put seqg() orber put set (),
respectively.

The ber_first_element () function is used to return the tag and length of the firs
element in a set or sequence. It also returns in cookie a magic cookie parameter that
should be passed to subsequent calls to ber next element (), which returns
similar information.

EXAMPLE 1 Assuming the following variable declarations, and that the variables have been
assigned appropriately, an BER encoding of the following ASN.1 object:

AlmostASearchRequest := SEQUENCE {
baseObject DistinguishedName,
scope ENUMERATED {

baseObject (0),
singleLevel (1),
wholeSubtree (2)
.
derefAliases ENUMERATED {
neverDerefaliases (0),
derefInSearching (1),
derefFindingBaseObj (2),
alwaysDerefAliases (3N)
.
sizelimit INTEGER (O 65535) ,
timelimit INTEGER (0 65535) ,
attrsOnly BOOLEAN,
attributes SEQUENCE OF AttributeType

can be achieved like so:

int scope, ali, size, time, attrsonly;
char *dn, **attrs;
/* . fill in values ... */
if ((ber = ber_alloc()) == NULLBER)
/* error */
if (ber_printf(ber, "{siiiib{v}}", dn, scope, ali,
size, time, attrsonly, attrs) == -1
/* error */
else

/* success */

If an error occurs during encoding, ber _alloc () returns NULL; other functions
generally return —1.

Networking Library Functions

t

31

ber_encode(3LDAP)
ATTRIBUTES | See attributes(5) for a description of the following attributes:

32

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability SUNWocsl (32-bit)
SUNWGslx (64-bit)
Interface Stability Evolving

SEE ALSO | attributes(b), ber decode(3LDAP)

Protocol", OSI-DS-26, April 1992.

Yeong, W., Howes, T., and Hardcastle-Kille, S., "Lightweight Directory Access

Information Processing - Open Systems Interconnection - Model and Notation -
Service Definition - Specification of Basic Encoding Rules for Abstract Syntax Notation
One, International Organization for Standardization, International Standard 8825.

NOTES | The return values for all of these functions are declared in the <1ber.h> header file.

man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

bind - bind a name to a socket

bind (3SOCKET)

ce [flag ... 1 file ... -lsocket -lnsl [library ...]

#include <sys/types.h>
#include <sys/socket.h>

int bind(int s, const struct sockaddr *name, int namelen) ;

bind () assigns a name to an unnamed socket. When a socket is created with
socket(3SOCKET), it exists in a name space (address family) but has no name
assigned. bind () requests that the name pointed to by name be assigned to the socket.

If the bind is successful, 0 is returned. A return value of —1 indicates an error, which is
further specified in the global errno.

The bind () call will fail if:

EACCES

EADDRINUSE

EADDRNOTAVAIL

EBADF

EINVAL

EINVAL

ENOSR

ENOTSOCK

The requested address is protected, and

{PRIV_NET PRIVADDR} is not asserted in the effective

set of the current process.
The specified address is already in use.

The specified address is not available on the local
machine.

s is not a valid descriptor.

namelen is not the size of a valid address for the
specified address family.

The socket is already bound to an address.

There were insufficient STREAMS resources for the
operation to complete.

s is a descriptor for a file, not a socket.

The following errors are specific to binding names in the UNIX domain:

EACCES

EIO

EISDIR

ELOOP

ENOENT

ENOTDIR

Search permission is denied for a component of the
path prefix of the pathname in name.

An I/0 error occurred while making the directory
entry or allocating the inode.

A null pathname was specified.

Too many symbolic links were encountered in
translating the pathname in name.

A component of the path prefix of the pathname in
name does not exist.

A component of the path prefix of the pathname in
name is not a directory.

Networking Library Functions

33

bind(3SOCKET)

34

EROFS The inode would reside on a read-only file system.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO | unlink(2), socket(3SOCKET), attributes(5), privileges(b),

socket . h(3HEAD)

NOTES | Binding a name in the UNIX domain creates a socket in the file system that must be

man pages section 3: Networking Library Functions ¢ Last Revised 20 Feb 2003

deleted by the caller when it is no longer needed byusing unlink(2).

The rules used in name binding vary between communication domains.

NAME
SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ERRORS

bind(3XNET)
bind - bind a name to a socket

ce [flag ... 1 file ... -1xnet [library ...]
#include <sys/socket.h>

int bind (int socket, const struct sockaddr *address, socklen t
address_len) ;

The bind () function assigns an address to an unnamed socket. Sockets created with
socket(3XNET) function are initially unnamed. They are identified only by their
address family.

The function takes the following arguments:
socket Specifies the file descriptor of the socket to be bound.

address Points to a sockaddr structure containing the address to be
bound to the socket. The length and format of the address depend
on the address family of the socket.

address_len Specifies the length of the sockaddr structure pointed to by the
address argument.

The socket in use may require the process to have appropriate privileges to use the
bind () function.

An application program can retrieve the assigned socket name with the
getsockname(3XNET) function.

Upon successful completion, bind () returns 0. Otherwise, -1 is returned and errno
is set to indicate the error.

The bind () function will fail if:

EADDRINUSE The specified address is already in use.

EADDRNOTAVAIL The specified address is not available from the local
machine.

EAFNOSUPPORT The specified address is not a valid address for the
address family of the specified socket.

EBADF The socket argument is not a valid file descriptor.

EFAULT The address argument can not be accessed.

EINVAL The socket is already bound to an address, and the

protocol does not support binding to a new address; or
the socket has been shut down.

ENOTSOCK The socket argument does not refer to a socket.

EOPNOTSUPP The socket type of the specified socket does not
support binding to an address.

Networking Library Functions 35

bind(3XNET)
If the address family of the socket is AF_UNIX, then bind () will fail if:

EACCES A component of the path prefix denies search
permission, or the requested name requires writing in a
directory with a mode that denies write permission.

EDESTADDRREQ

EISDIR The address argument is a null pointer.

EIO An I/0O error occurred.

ELOOP Too many symbolic links were encountered in
translating the pathname in address.

ENAMETOOLONG A component of a pathname exceeded NAME_MAX
characters, or an entire pathname exceeded PATH MAX
characters.

ENOENT A component of the pathname does not name an
existing file or the pathname is an empty string.

ENOTDIR A component of the path prefix of the pathname in
address is not a directory.

EROFS The name would reside on a read-only filesystem.

The bind () function may fail if:

EACCES The specified address is protected, and
{PRIV_NET PRIVADOR} is not asserted in the effective
set of the current process.

EINVAL The address_len argument is not a valid length for the
address family.

EISCONN The socket is already connected.

ENAMETOOLONG Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH_MAX.

ENOBUFS Insufficient resources were available to complete the
call.

ENOSR There were insufficient STREAMS resources for the

operation to complete.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

36 man pages section 3: Networking Library Functions ¢ Last Revised 20 Feb 2003

bind (3XNET)

SEE ALSO | connect(3XNET), getsockname(3XNET), 1isten(3XNET), socket(3XNET),
attributes(5), privileges(5), standards(b)

Networking Library Functions 37

byteorder(3SOCKET)
NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

38 man pages section 3

byteorder, htonl, htons, ntohl, ntohs — convert values between host and network byte
order

ce [flag... 1 file... -lsocket -1nsl [library...]
#include <sys/types.h>

#include <netinet/in.h>

#include <inttypes.h>

uint32_t htonl (uint32_t hostlong) ;
uintlé t htons (uintlé t hostshort) ;
uint32 t ntohl (uint32 t netlong) ;

uintl6é t ntohs (uintlé_t mnetshort) ;

These routines convert 16-bit and 32-bit quantities between network byte order and
host byte order. On some architectures these routines are defined as NULL macros in
the include file <netinet/in.h>. On other architectures, the routines are functional
when the host byte order is different from network byte order.

The routines are most often used in conjunction with Internet addresses and ports as
returned by gethostent () and getservent (). See gethostbyname(3NSL) and
getservbyname(3SOCKET).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

gethostbyname(3NSL), getservbyname(3SOCKET), inet . h(3HEAD),
attributes(b)

: Networking Library Functions ¢ Last Revised 19 Feb 2004

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

ATTRIBUTES

SEE ALSO

cldap_close(3LDAP)
cldap_close — dispose of connectionless LDAP pointer

ccl flag... 1 file... -1ldapl library...]

#include <lber.h>
#include <ldap.h>

void cldap close (LDAP *Id) ;

The cldap close () function disposes of memory allocated by
cldap open(3LDAP). It should be called when all CLDAP communication is
complete.

Id The LDAP pointer returned by a previous call to
cldap_open(3LDAP).

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNW.Gsl (32-bit)
SUNWGeslx (64-bit)
Interface Stability Evolving

1dap(3LDAP), cldap open(3LDAP), cldap search s(3LDAP),
cldap_setretryinfo(3LDAP)

Networking Library Functions 39

cldap_open(3LDAP)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

cldap_open — LDAP connectionless communication preparation

ccl flag... 1 file... -1ldapl library...]

#include <lber.h>
#include <ldap.h>

LDAP *cldap open (char *host, int port) ;
host The name of the host on which the LDAP server is running.

port The port number to connect.

The cldap_open () function is called to prepare for connectionless LDAP
communication (over udp(7P)). It allocates an LDAP structure which is passed to
future search requests.

If the default IANA-assigned port of 389 is desired, LDAP_PORT should be specified
for port. host can contain a space-separated list of hosts or addresses to try.
cldap_open () returns a pointer to an LDAP structure, which should be passed to
subsequent calls to cldap search s(BLDAP), cldap setretryinfo(3LDAP), and
cldap close(3LDAP). Certain fields in the LDAP structure can be set to indicate size
limit, time limit, and how aliases are handled during operations. See

ldap open(3LDAP) and <1dap.h> for more details.

If an error occurs, cldap open () will return NULL and errno will be set
appropriately.

See attributes(d) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWocsl (32-bit)
SUNWGslx (64-bit)
Interface Stability Evolving

1dap(3LDAP) cldap_ search s(BLDAP), cldap setretryinfo(3LDAP),
cldap close(3LDAP), attributes(5), udp(7P)

40 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

Retransmission
Algorithm

EXAMPLES

cldap_search_s(3LDAP)
cldap_search_s — connectionless LDAP search

ccl flag... 1 file... -1ldapl library. ..]

#include <lber.h>
#include <ldap.h>

int cldap_ search s(LDAP *Id, char *base, int scope, char *filter, char
*attrs, int attrsonly, LDAPMessage **tes, char *logdn) ;

The cldap_search_s () function performs an LDAP search using the
Connectionless LDAP (CLDAP) protocol.

cldap_search s () has parameters and behavior identical to that of
ldap_search_s(B3LDAP), except for the addition of the logdn parameter. logdn should
contain a distinguished name to be used only for logging purposed by the LDAP
server. It should be in the text format described by RFC 1779, A String Representation of
Distinguished Names.

cldap_search_s () operates using the CLDAP protocol over udp(7P). Since UDP is
a non-reliable protocol, a retry mechanism is used to increase reliability. The

cldap setretryinfo(3LDAP) function can be used to set two retry parameters:
tries, a count of the number of times to send a search request and timeout, an initial
timeout that determines how long to wait for a response before re-trying. timeout is
specified seconds. These values are stored in the 1d_cldaptries and
1d_cldaptimeout members of the 1d LDAP structure, and the default values set in
ldap open(3LDAP) are 4 and 3 respectively. The retransmission algorithm used is:

Step 1 Set the current timeout to 1d_cldaptimeout seconds, and the
current LDAP server address to the first LDAP server found
during the 1dap_open(3LDAP) call.

Step 2 Send the search request to the current LDAP server address.

Step 3 Set the wait timeout to the current timeout divided by the number
of server addresses found during 1dap open(3LDAP) or to one
second, whichever is larger. Wait at most that long for a response;
if a response is received, STOP. Note that the wait timeout is
always rounded down to the next lowest second.

Step 4 Repeat steps 2 and 3 for each LDAP server address.

Step 5 Set the current timeout to twice its previous value and repeat Steps
2 through 5 a maximum of tries times.

Assume that the default values for tries and timeout of 4 tries and 3 seconds are used.
Further, assume that a space-separated list of two hosts, each with one address, was
passed to c1dap_open(3LDAP). The pattern of requests sent will be (stopping as
soon as a response is received):

Time Search Request Sent To:
+0 Host A try 1
+1 (0+3/2) Host B try 1

Networking Library Functions 41

cldap_search_s(3LDAP)

+2 (1+3/2) Host A try 2

+5 (2+6/2) Host B try 2

+8 (5+6/2) Host A try 3

+14 (8+12/2) Host B try 3

+20 (14+12/2) Host A try 4

+32 (20+24/2) Host B try 4

+44 (20+24/2) (give up - no response)

ERRORS | cldap_search s () returns LDAP_SUCCESS if a search was successful and the
appropriate LDAP error code otherwise. See 1dap error(3LDAP) for more
information.

ATTRIBUTES | See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWGsl (32-bit)
SUNWGeslx (64-bit)
Interface Stability Evolving

SEE ALSO | 1dap(3LDAP), 1dap error(3LDAP), 1dap search s(3LDAP),
cldap open(3LDAP), cldap setretryinfo(3LDAP), cldap close(3LDAP),
attributes(5), udp(7P)

42 man pages section 3: Networking Library Functions ¢ Last Revised 27 Jan 2002

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

ATTRIBUTES

SEE ALSO

cldap_setretryinfo(3LDAP)
cldap_setretryinfo — set connectionless LDAP request retransmission parameters

ccl flag... 1 file... -1ldapl library...]

#include <lber.h>
#include <ldap.h>

void cldap_ setretryinfo (LDAP *Id, int fries, int timeout) ;

Id LDAP pointer returned from a previous call to
cldap_open(3LDAP).

tries Maximum number of times to send a request.

timeout Initial time, in seconds, to wait before re-sending a request.

The cldap setretryinfo () function is used to set the CLDAP request
retransmission behavior for future cldap search s(3LDAP) calls. The default
values (set by c1dap_ open(3LDAP)) are 4 tries and 3 seconds between tries. See
cldap_search_ s(3LDAP) for a complete description of the retransmission algorithm
used.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWGsl (32-bit)
SUNWGslx (64-bit)

Interface Stability Evolving

1dap(3LDAP), cldap open(3LDAP), cldap search s(3LDAP),
cldap _close(B3LDAP), attributes(5)

Networking Library Functions 43

connect(3SOCKET)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

connect — initiate a connection on a socket

ce [flag ... 1 file ... -1lsocket -1lnsl [library ...]
#include <sys/types.h>
#include <sys/socket.h>

int connect (int s, const struct sockaddr *name, int namelen) ;

The parameter s is a socket. If it is of type SOCK_DGRAM, connect () specifies the peer
with which the socket is to be associated. This address is the address to which
datagrams are to be sent if a receiver is not explicitly designated. This address is the
only address from which datagrams are to be received. If the socket s is of type
SOCK_STREAM, connect () attempts to make a connection to another socket. The
other socket is specified by name. name is an address in the communication space of
the socket. Each communication space interprets the name parameter in its own way. If
s is not bound, then s will be bound to an address selected by the underlying transport
provider. Generally, stream sockets can successfully connect () only once. Datagram
sockets can use connect () multiple times to change their association. Datagram
sockets can dissolve the association by connecting to a null address.

If the connection or binding succeeds, 0 is returned. Otherwise, —1 is returned and sets
errno to indicate the error.

The call fails if:

EACCES Search permission is denied for a component of the
path prefix of the pathname in name.

EADDRINUSE The address is already in use.

EADDRNOTAVAIL The specified address is not available on the remote
machine.

EAFNOSUPPORT Addresses in the specified address family cannot be
used with this socket.

EALREADY The socket is non-blocking, and a previous connection
attempt has not yet been completed.

EBADF s is not a valid descriptor.

ECONNREFUSED The attempt to connect was forcefully rejected. The
calling program should close(2) the socket descriptor,
and issue another socket(3SOCKET) call to obtain a
new descriptor before attempting another connect ()
call.

EINPROGRESS The socket is non-blocking, and the connection cannot
be completed immediately. You can use select(3C) to
complete the connection by selecting the socket for
writing.

EINTR The connection attempt was interrupted before any

data arrived by the delivery of a signal.

44 man pages section 3: Networking Library Functions ¢ Last Revised 24 Jun 2002

ATTRIBUTES

SEE ALSO

EINVAL

EIO

EISCONN

ELOOP

ENETUNREACH
EHOSTUNREACH

ENOENT

ENOENT

ENOSR

ENXIO

ETIMEDOUT

EWOULDBLOCK

connect(3SOCKET)

namelen is not the size of a valid address for the
specified address family.

An I/0 error occurred while reading from or writing to
the file system.

The socket is already connected.

Too many symbolic links were encountered in
translating the pathname in name.

The network is not reachable from this host.
The remote host is not reachable from this host.

A component of the path prefix of the pathname in
name does not exist.

The socket referred to by the pathname in name does
not exist.

There were insufficient STREAMS resources available to
complete the operation.

The server exited before the connection was complete.

Connection establishment timed out without
establishing a connection.

The socket is marked as non-blocking, and the
requested operation would block.

The following errors are specific to connecting names in the UNIX domain. These
errors might not apply in future versions of the UNIX IPC domain.

ENOTDIR

ENOTSOCK

ENOTSOCK

EPROTOTYPE

A component of the path prefix of the pathname in
name is not a directory.

s is not a socket.
name is not a socket.

The file that is referred to by name is a socket of a type
other than type s. For example, s is a SOCK_DGRAM
socket, while name refers to a SOCK_STREAM socket.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe

close(2), accept(3SOCKET), get sockname(3SOCKET), select(3C),
socket(3SOCKET), socket .h(BHEAD), attributes(5)

Networking Library Functions 45

connect(3XNET)

46

NAME
SYNOPSIS

DESCRIPTION

connect — connect a socket

ce [flag ... 1 file ... -lxnet [library ...]
#include <sys/socket.h>

int connect (int socket, const struct sockaddr *address, socklen t
address_len) ;

The connect () function requests a connection to be made on a socket. The function
takes the following arguments:

socket Specifies the file descriptor associated with the socket.

address Points to a sockaddr structure containing the peer address. The
length and format of the address depend on the address family of
the socket.

address_len Specifies the length of the sockaddr structure pointed to by the

address argument.

If the socket has not already been bound to a local address, connect () will bind it to
an address which, unless the socket’s address family is AF_UNIX, is an unused local
address.

If the initiating socket is not connection-mode, then connect () sets the socket’s peer
address, but no connection is made. For SOCK_DGRAM sockets, the peer address
identifies where all datagrams are sent on subsequent send(3XNET) calls, and limits
the remote sender for subsequent recv(3XNET) calls. If address is a null address for
the protocol, the socket’s peer address will be reset.

If the initiating socket is connection-mode, then connect () attempts to establish a
connection to the address specified by the address argument.

If the connection cannot be established immediately and O_NONBLOCK is not set for
the file descriptor for the socket, connect () will block for up to an unspecified
timeout interval until the connection is established. If the timeout interval expires
before the connection is established, connect () will fail and the connection attempt
will be aborted. If connect () is interrupted by a signal that is caught while blocked
waiting to establish a connection, connect () will fail and set errno to EINTR, but
the connection request will not be aborted, and the connection will be established
asynchronously.

If the connection cannot be established immediately and O_NONBLOCK is set for the
file descriptor for the socket, connect () will fail and set errno to EINPROGRESS,
but the connection request will not be aborted, and the connection will be established
asynchronously. Subsequent calls to connect () for the same socket, before the
connection is established, will fail and set errno to EALREADY.

When the connection has been established asynchronously, select(3C) and pol1(2)
will indicate that the file descriptor for the socket is ready for writing.

man pages section 3: Networking Library Functions ¢ Last Revised 10 Jun 2002

USAGE

RETURN VALUES

ERRORS

connect(3XNET)

The socket in use may require the process to have appropriate privileges to use the
connect () function.

If connect () fails, the state of the socket is unspecified. Portable applications should
close the file descriptor and create a new socket before attempting to reconnect.

Upon successful completion, connect () returns 0. Otherwise, -1 is returned and
errno is set to indicate the error.

The connect () function will fail if:

EADDRNOTAVAIL The specified address is not available from the local
machine.

EAFNOSUPPORT The specified address is not a valid address for the
address family of the specified socket.

EALREADY A connection request is already in progress for the
specified socket.

EBADF The socket argument is not a valid file descriptor.

ECONNREFUSED The target address was not listening for connections or
refused the connection request.

EFAULT The address parameter can not be accessed.

EINPROGRESS O_NONBLOCK is set for the file descriptor for the

socket and the connection cannot be immediately
established; the connection will be established
asynchronously.

EINTR The attempt to establish a connection was interrupted
by delivery of a signal that was caught; the connection
will be established asynchronously.

EISCONN The specified socket is connection-mode and is already
connected.

ENETUNREACH No route to the network is present.

ENOTSOCK The socket argument does not refer to a socket.

EPROTOTYPE The specified address has a different type than the
socket bound to the specified peer address.

ETIMEDOUT The attempt to connect timed out before a connection
was made.

If the address family of the socket is AF_UNIX, then connect () will fail if:

EIO An I/0 error occurred while reading from or writing to
the file system.

Networking Library Functions 47

connect(3XNET)

ATTRIBUTES

ELOOP

ENAMETOOLONG

ENOENT

ENOTDIR

Too many symbolic links were encountered in
translating the pathname in address.

A component of a pathname exceeded NAME MAX
characters, or an entire pathname exceeded PATH MAX
characters.

A component of the pathname does not name an
existing file or the pathname is an empty string.

A component of the path prefix of the pathname in
address is not a directory.

The connect () function may fail if:

EACCES

EADDRINUSE

ECONNRESET

EHOSTUNREACH

EINVAL

ENAMETOOLONG

ENETDOWN

ENOBUFS

ENOSR

EOPNOTSUPP

Search permission is denied for a component of the
path prefix; or write access to the named socket is
denied.

Attempt to establish a connection that uses addresses
that are already in use.

Remote host reset the connection request.

The destination host cannot be reached (probably
because the host is down or a remote router cannot
reach it).

The address_len argument is not a valid length for the
address family; or invalid address family in sockaddr
structure.

Pathname resolution of a symbolic link produced an
intermediate result whose length exceeds PATH MAX.

The local interface used to reach the destination is
down.

No buffer space is available.

There were insufficient STREAMS resources available
to complete the operation.

The socket is listening and can not be connected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard

MT-Level

MT-Safe

48 man pages section 3: Networking Library Functions ¢ Last Revised 10 Jun 2002

connect(3XNET)

SEE ALSO | close(2), poll(2), accept(3XNET), bind(3XNET), get sockname(3XNET),
select(3C), send(3XNET), shutdown(3XNET), socket(3XNET), attributes(b),
standards(d)

Networking Library Functions 49

dial(3NSL)

50

NAME
SYNOPSIS

DESCRIPTION

dial, undial — establish an outgoing terminal line connection

ce [flag... 1 file... -1nsl [library...]
#include <dial.h>

int dial (CALL call) ;

void undial (int fd) ;

The dial () function returns a file-descriptor for a terminal line open for read /write.
The argument to dial () is a CALL structure (defined in the header <dial.hs).

When finished with the terminal line, the calling program must invoke undial () to
release the semaphore that has been set during the allocation of the terminal device.

CALL is defined in the header <dial.h> and has the following members:

struct termio *attr; /* pointer to termio attribute struct */

int baud; /* transmission data rate */

int speed; /* 212A modem: low=300, high=1200 */

char *1line; /* device name for out-going line */

char *telno; /* pointer to tel-no digits string */

int modem; /* specify modem control for direct lines */
char *device; /* unused */

int dev_len; /* unused */

The CALL element speed is intended only for use with an outgoing dialed call, in
which case its value should be the desired transmission baud rate. The CALL element
baud is no longer used.

If the desired terminal line is a direct line, a string pointer to its device-name should
be placed in the 1ine element in the CALL structure. Legal values for such terminal
device names are kept in the Devices file. In this case, the value of the baud element
should be set to -1. This value will cause dial to determine the correct value from the
<Devices> file.

The telno element is for a pointer to a character string representing the telephone
number to be dialed. Such numbers may consist only of these characters:

0-9 dial 0-9
* dail *
dail

= wait for secondary dial tone

- delay for approximately 4 seconds

man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

NOTES

dial(3NSL)

The CALL element modem is used to specify modem control for direct lines. This
element should be non-zero if modem control is required. The CALL element attr is a
pointer to a termio structure, as defined in the header <termio.h>. A NULL value
for this pointer element may be passed to the dial function, but if such a structure is
included, the elements specified in it will be set for the outgoing terminal line before
the connection is established. This setting is often important for certain attributes such
as parity and baud-rate.

The CALL elements device and dev_1len are no longer used. They are retained in the
CALL structure for compatibility reasons.

On failure, a negative value indicating the reason for the failure will be returned.
Mnemonics for these negative indices as listed here are defined in the header
<dial.hs>.

INTRPT -1 /* interrupt occurred */

D _HUNG -2 /* dialer hung (no return from write) */
NO_ANS -3 /* no answer within 10 seconds */

ILL BD -4 /* illegal baud-rate */

A_PROB -5 /* acu problem (open() failure) */

L _PROB -6 /* line problem (open() failure) */
NO_Ldv -7 /* can’t open Devices file */

DV_NT A -8 /* requested device not available */
DV_NT K -9 /* requested device not known */

NO_BD_A -10 /* no device available at requested baud */
NO_BD K -11 /* no device known at requested baud */
DV_NT E -12 /* requested speed does not match */
BAD_SYS -13 /* system not in Systems file*/

/etc/uucp/Devices
/etc/uucp/Systems

/var/spool/uucp/LCK. . tty-device

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

uucp(1C), alarm(2), read(2), write(2), attributes(5), termio(7I)

Including the header <dial.h> automatically includes the header <termio.h>. An
alarm(2) system call for 3600 seconds is made (and caught) within the dial module
for the purpose of “touching” the LCK. . file and constitutes the device allocation
semaphore for the terminal device. Otherwise, uucp(1C) may simply delete the LCK. .
entry on its 90-minute clean-up rounds. The alarm may go off while the user program
is in a read(2) or write(2) function, causing an apparent error return. If the user
program expects to be around for an hour or more, error returns from read () s should
be checked for (errno==EINTR), and the read () possibly reissued.

Networking Library Functions 51

dial(3NSL)

This interface is unsafe in multithreaded applications. Unsafe interfaces should be
called only from the main thread.

52 man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

NAME
SYNOPSIS

DESCRIPTION

doconfig(3NSL)
doconfig — execute a configuration script

ce [flag ... 1 file ... -1nsl [library ...]

include <sac.h>

int doconfig (int fildes, char *script, long rflag) ;

doconfig () is a Service Access Facility library function that interprets the
configuration scripts contained in the files </etc/saf /pmtag/ configs,
</etc/saf/ sysconfigs, and </etc/saf/pmtag/svctag>, where pmtag specifies
the tag associated with the port monitor, and suctag specifies the service tag associated
with a given service. See pmadm(1M) and sacadm(1M).

script is the name of the configuration script; fildes is a file descriptor that designates
the stream to which stream manipulation operations are to be applied; rflag is a
bitmask that indicates the mode in which script is to be interpreted. If #flag is zero,
all commands in the configuration script are eligible to be interpreted. If rflag has the
NOASSIGN bit set, the assign command is considered illegal and will generate an
error return. If rflag has the NORUN bit set, the run and runwait commands are
considered illegal and will generate error returns.

The configuration language in which script is written consists of a sequence of
commands, each of which is interpreted separately. The following reserved keywords
are defined: assign, push, pop, runwait, and run. The comment character is #;
when a # occurs on a line, everything from that point to the end of the line is ignored.
Blank lines are not significant. No line in a command script may exceed 1024
characters.

assign variable=value
Used to define environment variables. variable is the name of the environment
variable and value is the value to be assigned to it. The value assigned must be a
string constant; no form of parameter substitution is available. value may be quoted.
The quoting rules are those used by the shell for defining environment variables.
assign will fail if space cannot be allocated for the new variable or if any part of
the specification is invalid.

push modulel[, module2, module3, . . .]
Used to push STREAMS modules onto the stream designated by fildes. modulel is
the name of the first module to be pushed, module2 is the name of the second
module to be pushed, etc. The command will fail if any of the named modules
cannot be pushed. If a module cannot be pushed, the subsequent modules on the
same command line will be ignored and modules that have already been pushed
will be popped.

pop [module]
Used to pop STREAMS modules off the designated stream. If pop is invoked with
no arguments, the top module on the stream is popped. If an argument is given,
modules will be popped one at a time until the named module is at the top of the
stream. If the named module is not on the designated stream, the stream is left as it
was and the command fails. If module is the special keyword ALL, then all modules
on the stream will be popped. Note that only modules above the topmost driver are
affected.

Networking Library Functions 53

doconfig(3NSL)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

runwait command
The runwait command runs a command and waits for it to complete. command is
the pathname of the command to be run. The command is run with /usr/bin/sh
-c prepended to it; shell scripts may thus be executed from configuration scripts.
The runwait command will fail if command cannot be found or cannot be
executed, or if command exits with a non-zero status.

run command
The run command is identical to runwait except that it does not wait for
command to complete. command is the pathname of the command to be run. run
will not fail unless it is unable to create a child process to execute the command.

Although they are syntactically indistinguishable, some of the commands available to
run and runwait are interpreter built-in commands. Interpreter built-ins are used
when it is necessary to alter the state of a process within the context of that process.
The doconfig () interpreter built-in commands are similar to the shell special
commands and, like these, they do not spawn another process for execution. See sh(l).
The built-in commands are:

cd
ulimit
umask

doconfig () returns 0 if the script was interpreted successfully. If a command in the
script fails, the interpretation of the script ceases at that point and a positive number is
returned; this number indicates which line in the script failed. If a system error occurs,
a value of —1 is returned. When a script fails, the process whose environment was
being established should not be started.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

sh(1), pmadm(1M), sacadm(1M), attributes(5)

This interface is unsafe in multithreaded applications. Unsafe interfaces should be
called only from the main thread.

54 man pages section 3: Networking Library Functions ¢ Last Revised 30 Dec 1996

NAME

SYNOPSIS

DESCRIPTION

USAGE

endhostent(3XNET)

endhostent, gethostbyaddr, gethostbyname, gethostent, sethostent — network host
database functions

ce [flag ... 1 file ... -1xnet [library ...]
#include <netdb.h>
extern int h_errno;

void endhostent (void) ;

struct hostent *gethostbyaddr (const void *addr, socklen t len, int
type) ;
struct hostent *gethostbyname (const char *name) ;

struct hostent *gethostent (void) ;

void sethostent (int stayopen) ;

The gethostent (), gethostbyaddr (), and gethostbyname () functions each
return a pointer to a hostent structure, the members of which contain the fields of an
entry in the network host database.

The gethostent () function reads the next entry of the database, opening a
connection to the database if necessary.

The gethostbyaddr () function searches the database and finds an entry which
matches the address family specified by the type argument and which matches the
address pointed to by the addr argument, opening a connection to the database if
necessary. The addr argument is a pointer to the binary-format (that is, not
null-terminated) address in network byte order, whose length is specified by the len
argument. The datatype of the address depends on the address family. For an address
of type AF_INET, thisis an in addr structure, defined in <netinet/in.h>. For an
address of type AF_INETS, there is an in6_addr structure defined in
<netinet/in.h>.

The gethostbyname () function searches the database and finds an entry which
matches the host name specified by the name argument, opening a connection to the
database if necessary. If name is an alias for a valid host name, the function returns
information about the host name to which the alias refers, and name is included in the
list of aliases returned.

The sethostent () function opens a connection to the network host database, and
sets the position of the next entry to the first entry. If the stayopen argument is
non-zero, the connection to the host database will not be closed after each call to
gethostent () (either directly, or indirectly through one of the other gethost* ()
functions).

The endhostent () function closes the connection to the database.

The gethostent (), gethostbyaddr (), and gethostbyname () functions may
return pointers to static data, which may be overwritten by subsequent calls to any of
these functions.

These functions are generally used with the Internet address family.

Networking Library Functions 55

endhostent(3XNET)
RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

On successful completion, gethostbyaddr (), gethostbyname () and
gethostent () return a pointer to a hostent structure if the requested entry was
found, and a null pointer if the end of the database was reached or the requested entry
was not found. Otherwise, a null pointer is returned.

On unsuccessful completion, gethostbyaddr () and gethostbyname () functions
set li_errno to indicate the error.

No errors are defined for endhostent (), gethostent () and sethostent ().

The gethostbyaddr () and gethostbyname () functions will fail in the following
cases, setting hi_errno to the value shown in the list below. Any changes to errno are
unspecified.

HOST_NOT_FOUND No such host is known.

NO_DATA The server recognised the request and the name but no
address is available. Another type of request to the
name server for the domain might return an answer.

NO_RECOVERY An unexpected server failure occurred which can not
be recovered.

TRY_AGAIN A temporary and possibly transient error occurred,
such as a failure of a server to respond.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

endservent(3XNET), htonl(3XNET), inet addr(3XNET), attributes(5),
standards(b)

56 man pages section 3: Networking Library Functions ¢ Last Revised 1 Nov 2003

NAME

SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ERRORS

endnetent(3XNET)

endnetent, getnetbyaddr, getnetbyname, getnetent, setnetent — network database
functions

ce [flag ... 1 file ... -lxnet [library ...]
#include <netdb.h>

void endnetent (void) ; struct netent *getnetbyaddr (in_addr_ t net,
int type) ;

struct netent *getnetbyname (const char *name) ;
struct netent *getnetent (void) ;

void setnetent (int stayopen) ;

The getnetbyaddr (), getnetbyname () and getnetent (), functions each return
a pointer to a netent structure, the members of which contain the fields of an entry in
the network database.

The getnetent () function reads the next entry of the database, opening a
connection to the database if necessary.

The getnetbyaddr () function searches the database from the beginning, and finds
the first entry for which the address family specified by type matches the
n_addrtype member and the network number net matches the n_net member,
opening a connection to the database if necessary. The net argument is the network
number in host byte order.

The getnetbyname () function searches the database from the beginning and finds
the first entry for which the network name specified by name matches the n_name
member, opening a connection to the database if necessary.

The setnetent () function opens and rewinds the database. If the stayopen argument
is non-zero, the connection to the net database will not be closed after each call to
getnetent () (either directly, or indirectly through one of the other getnet* ()
functions).

The endnetent () function closes the database.

The getnetbyaddr (), getnetbyname () and getnetent (), functions may return
pointers to static data, which may be overwritten by subsequent calls to any of these
functions.

These functions are generally used with the Internet address family.

On successful completion, getnetbyaddr (), getnetbyname () and getnetent (),
return a pointer to a netent structure if the requested entry was found, and a null
pointer if the end of the database was reached or the requested entry was not found.
Otherwise, a null pointer is returned.

No errors are defined.

Networking Library Functions 57

endnetent(3XNET)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

58

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

SEE ALSO | attributes(5), standards(5)

man pages section 3: Networking Library Functions ¢ Last Revised 10 Jun 2002

NAME

SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ERRORS

endprotoent(3XNET)

endprotoent, getprotobynumber, getprotobyname, getprotoent, setprotoent — network
protocol database functions

ce [flag ... 1 file ... -lxnet [library ...]
#include <netdb.h>

void endprotoent (void) ;

struct protoent *getprotobyname (const char *name) ;
struct protoent *getprotobynumber (int profo) ;
struct protoent *getprotoent (void) ;

void setprotoent (int stayopen) ;

The getprotobyname (), getprotobynumber () and getprotoent (), functions
each return a pointer to a protoent structure, the members of which contain the
fields of an entry in the network protocol database.

The getprotoent () function reads the next entry of the database, opening a
connection to the database if necessary.

The getprotobyname () function searches the database from the beginning and
finds the first entry for which the protocol name specified by name matches the
p_name member, opening a connection to the database if necessary.

The getprotobynumber () function searches the database from the beginning and
finds the first entry for which the protocol number specified by number matches the
p_proto member, opening a connection to the database if necessary.

The setprotoent () function opens a connection to the database, and sets the next
entry to the first entry. If the stayopen argument is non-zero, the connection to the
network protocol database will not be closed after each call to getprotoent ()
(either directly, or indirectly through one of the other getproto* () functions).

The endprotoent () function closes the connection to the database.

The getprotobyname (), getprotobynumber () and getprotoent () functions
may return pointers to static data, which may be overwritten by subsequent calls to
any of these functions.

These functions are generally used with the Internet address family.

On successful completion, getprotobyname (), getprotobynumber () and
getprotoent () functions return a pointer to a protoent structure if the requested
entry was found, and a null pointer if the end of the database was reached or the
requested entry was not found. Otherwise, a null pointer is returned.

No errors are defined.

Networking Library Functions 59

endprotoent(3XNET)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

60

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

SEE ALSO | attributes(5), standards(5)

man pages section 3: Networking Library Functions ¢ Last Revised 10 Jun 2002

NAME

SYNOPSIS

DESCRIPTION

USAGE

endservent(3XNET)

endservent, getservbyport, getservbyname, getservent, setservent — network services
database functions

ce [flag ... 1 file ... -lxnet [library ...]
#include <netdb.h>

void endservent (void) ;

struct servent *getservbyname (const char *name, const char *profo) ;
struct servent *getservbyport (int port, const char *proto) ;

struct servent *getservent (void) ;

void setservent (int stayopen) ;

The getservbyname (), getservbyport () and getservent () functions each
return a pointer to a servent structure, the members of which contain the fields of an
entry in the network services database.

The getservent () function reads the next entry of the database, opening a
connection to the database if necessary.

The getservbyname () function searches the database from the beginning and finds
the first entry for which the service name specified by name matches the s_name
member and the protocol name specified by proto matches the s proto member,
opening a connection to the database if necessary. If proto is a null pointer, any value of
the s_proto member will be matched.

The getservbyport () function searches the database from the beginning and finds
the first entry for which the port specified by port matches the s_port member and
the protocol name specified by proto matches the s_proto member, opening a
connection to the database if necessary. If proto is a null pointer, any value of the
s_proto member will be matched. The port argument must be in network byte order.

The setservent () function opens a connection to the database, and sets the next
entry to the first entry. If the stayopen argument is non-zero, the net database will not
be closed after each call to the getservent () function, either directly, or indirectly
through one of the other getserv* () functions.

The endservent () function closes the database.

The port argument of get servbyport () need not be compatible with the port values
of all address families.

The getservent (), getservbyname () and getservbyport () functions may
return pointers to static data, which may be overwritten by subsequent calls to any of
these functions.

These functions are generally used with the Internet address family.

Networking Library Functions 61

endservent(3XNET)

RETURN VALUES | On successful completion, get servbyname (), getservbyport () and
getservent () return a pointer to a servent structure if the requested entry was
found, and a null pointer if the end of the database was reached or the requested entry
was not found. Otherwise, a null pointer is returned.

ERRORS | No errors are defined.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

SEE ALSO | endhostent(3XNET), endprotoent(3XNET), htonl(3XNET), inet addr(3XNET),
attributes(5), standards(5)

62 man pages section 3: Networking Library Functions ¢ Last Revised 14 Jun 2002

NAME

SYNOPSIS

DESCRIPTION

FILES

ethers(3SOCKET)

ethers, ether_ntoa, ether_aton, ether_ntohost, ether_hostton, ether_line — Ethernet
address mapping operations

ce [flag ... 1 file ... -1lsocket -lnsl [library ...]
#include <sys/types.h>
#include <sys/ethernet.h>

char *ether ntoa(const struct ether addr *e);
struct ether addr *ether aton (const char *s);
int ether ntohost (char *hostname, const struct ether addr *e);
int ether hostton(const char *hostname, struct ether addr *e);

int ether line(const char *I, struct ether addr *e, char *hostname) ;

These routines are useful for mapping 48 bit Ethernet numbers to their ASCII
representations or their corresponding host names, and vice versa.

The function ether_ntoa () converts a 48 bit Ethernet number pointed to by e to its
standard ASCII representation; it returns a pointer to the ASCII string. The
representation is of the form x : x : x : x: x: x where x is a hexadecimal number
between 0 and ££. The function ether aton () converts an ASCII string in the
standard representation back to a 48 bit Ethernet number; the function returns NULL if
the string cannot be scanned successfully.

The function ether_ntohost () maps an Ethernet number (pointed to by e) to its
associated hostname. The string pointed to by hostname must be long enough to hold
the hostname and a NULL character. The function returns zero upon success and
non-zero upon failure. Inversely, the function ether_hostton () maps a hostname
string to its corresponding Ethernet number; the function modifies the Ethernet
number pointed to by e. The function also returns zero upon success and non-zero
upon failure. In order to do the mapping, both these functions may lookup one or
more of the following sources: the ethers file, the NIS maps ethers.byname and
ethers.byaddr and the NIS+ table ethers. The sources and their lookup order are
specified in the /etc/nsswitch. conf file. See nsswitch. conf(4) for details.

The function ether line () scans a line, pointed to by /, and sets the hostname and
the Ethernet number, pointed to by e. The string pointed to by hostname must be long
enough to hold the hostname and a NULL character. The function returns zero upon
success and non-zero upon failure. The format of the scanned line is described by
ethers(4).

/etc/ethers Ethernet address to hostname database or domain

/etc/nsswitch.conf configuration file for the name service switch

Networking Library Functions 63

ethers(3SOCKET)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

64

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

SEE ALSO | ethers(4), nsswitch.conf(4), attributes(b)

man pages section 3: Networking Library Functions ¢ Last Revised 5 Apr 2004

NAME
SYNOPSIS

DESCRIPTION

freeaddrinfo(3XNET)

freeaddrinfo, getaddrinfo — get address information

ce [flag ... 1 file ... -1xnet [library ...]
#include <sys/socket.h>
#include <netdb.h>

void freeaddrinfo (struct addrinfo *ai) ;

int getaddrinfo (const char *restrict nodename, const char
*restrict servname, const struct addrinfo *restrict hints,
struct addrinfo **restrict res) ;

The freeaddrinfo () function frees one or more addrinfo structures returned by
getaddrinfo (), along with any additional storage associated with those structures.
If the ai_next member of the structure is not null, the entire list of structures is freed.
The freeaddrinfo () function supports the freeing of arbitrary sublists of an
addrinfo list originally returned by getaddrinfo ().

The getaddrinfo () function translates the name of a service location (for example,
a host name) and/or a service name and returns a set of socket addresses and
associated information to be used in creating a socket with which to address the
specified service.

The nodename and servname arguments are either null pointers or pointers to
null-terminated strings. One or both of these two arguments are supplied by the
application as a non-null pointer.

The format of a valid name depends on the address family or families. If a specific
family is not given and the name could be interpreted as valid within multiple
supported families, the implementation attempts to resolve the name in all supported
families and, in absence of errors, one or more results are returned.

If the nodename argument is not null, it can be a descriptive name or can be an address
string. If the specified address family is AF_ INET, AF_INET6, or AF_UNSPEC, valid
descriptive names include host names. If the specified address family is AF_INET or
AF_UNSPEC, address strings using Internet standard dot notation as specified in
inet addr(3XNET) are valid.

If the specified address family is AF INET6 or AF_UNSPEC, standard IPv6 text forms
described in inet ntop(3XNET) are valid.

If nodename is not null, the requested service location is named by nodename; otherwise,
the requested service location is local to the caller.

If servname is null, the call returns network-level addresses for the specified nodename.
If servname is not null, it is a null-terminated character string identifying the requested
service. This string can be either a descriptive name or a numeric representation
suitable for use with the address family or families. If the specified address family is
AF INET,AF INET6, or AF_UNSPEC, the service can be specified as a string
specifying a decimal port number.

Networking Library Functions 65

freeaddrinfo(3XNET)

If the hints argument is not null, it refers to a structure containing input values that can
direct the operation by providing options and by limiting the returned information to
a specific socket type, address family and/or protocol. In this hints structure every
member other than ai_flags,ai family,ai socktype,and ai_ protocol is set
to 0 or a null pointer. A value of AF_UNSPEC for ai_family means that the caller
accepts any address family. A value of 0 for ai_socktype means that the caller
accepts any socket type. A value of 0 for ai_protocol means that the caller accepts
any protocol. If hints is a null pointer, the behavior is as if it referred to a structure
containing the value 0 for the ai flags, ai socktype, and ai protocol
members, and AF_UNSPEC for the ai family member.

The ai flags member to which the hints parameter points is set to 0 or be the
bitwise-inclusive OR of one or more of the values AI_PASSIVE, AI CANONNAME,
AT NUMERICHOST, and AT NUMERICSERV.

If the AT PASSIVE flag is specified, the returned address information is suitable for
use in binding a socket for accepting incoming connections for the specified service. In
this case, if the nodename argument is null, then the IP address portion of the socket
address structure is set to INADDR_ANY for an IPv4 address or IN6ADDR_ANY INIT
for an IPv6 address. If the AI PASSIVE flag is not specified, the returned address
information is suitable for a call to connect(3XNET) (for a connection-mode protocol)
or for a call to connect (), sendto(3XNET), or sendmsg(3XNET) (for a
connectionless protocol). In this case, if the nodename argument is null, then the IP
address portion of the socket address structure is set to the loopback address.

If the AI_CANONNAME flag is specified and the nodename argument is not null, the
function attempts to determine the canonical name corresponding to nodename (for
example, if nodename is an alias or shorthand notation for a complete name).

If the AT_NUMERICHOST flag is specified, then a non-null nodename string supplied is a
numeric host address string. Otherwise, an EAI NONAME error is returned. This flag
prevents any type of name resolution service (for example, the DNS) from being
invoked.

If the AT NUMERICSERY flag is specified, then a non-null servname string supplied is a
numeric port string. Otherwise, an EAI NONAME error is returned. This flag prevents
any type of name resolution service (for example, NIS+) from being invoked.

If the AI_V4MAPPED flag is specified along with an ai_family of AF_INET6, then
getaddrinfo () returns IPv4-mapped IPv6 addresses on finding no matching IPv6
addresses (ai_addrlenis 16). The AI_V4MAPPED flag is ignored unless ai_family
equals AF_INETé6. If the AI_ALL flag is used with the AI_V4MAPPED flag, then
getaddrinfo () returns all matching IPv6 and IPv4 addresses. The AT ALL flag
without the AT V4MAPPED flag is ignored.

66 man pages section 3: Networking Library Functions ¢ Last Revised 1 Nov 2003

RETURN VALUES

ERRORS

freeaddrinfo(3XNET)

The ai_socktype member to which argument hints points specifies the socket type
for the service, as defined in socket(3XNET). If a specific socket type is not given (for
example, a value of 0) and the service name could be interpreted as valid with
multiple supported socket types, the implementation attempts to resolve the service
name for all supported socket types and, in the absence of errors, all possible results
are returned. A non-zero socket type value limits the returned information to values
with the specified socket type.

If the ai_family member to which hints points has the value AF_UNSPEC, addresses
are returned for use with any address family that can be used with the specified
nodename and/or servname. Otherwise, addresses are returned for use only with the
specified address family. If ai family is not AF UNSPEC and ai protocol isnot 0,
then addresses are returned for use only with the specified address family and
protocol; the value of ai_protocol is interpreted as in a call to the socket ()
function with the corresponding values of ai_family and ai_protocol.

A Q return value for getaddrinfo () indicates successful completion; a non-zero
return value indicates failure. The possible values for the failures are listed in the
ERRORS section.

Upon successful return of getaddrinfo (), the location to which res points refers to
a linked list of addrinfo structures, each of which specifies a socket address and
information for use in creating a socket with which to use that socket address. The list
includes at least one addrinfo structure. The ai next member of each structure
contains a pointer to the next structure on the list, or a null pointer if it is the last
structure on the list. Each structure on the list includes values for use with a call to the
socket function, and a socket address for use with the connect function or, if the
AI_PASSIVE flag was specified, for use with the bind(8XNET) function. The

ai family,ai socktype, and ai_protocol members are usable as the
arguments to the socket () function to create a socket suitable for use with the
returned address. The ai_addr and ai_addrlen members are usable as the
arguments to the connect () or bind () functions with such a socket, according to
the AT _PASSIVE flag.

If nodename is not null, and if requested by the AI_CANONNAME flag, the

al canonname member of the first returned addrinfo structure points to a
null-terminated string containing the canonical name corresponding to the input
nodename. If the canonical name is not available, then ai canonname refers to the
nodename argument or a string with the same contents. The contents of the ai_flags
member of the returned structures are undefined.

All members in socket address structures returned by getaddrinfo () that are not
filled in through an explicit argument (for example, sin6_flowinfo) are set to 0,
making it easier to compare socket address structures.

The getaddrinfo () function will fail if:

EAI_AGAIN The name could not be resolved at this time. Future attempts
might succeed.

Networking Library Functions 67

freeaddrinfo(3XNET)

EATI BADFLAGS

EAT FAIL

EAT FAMILY

EATI MEMORY

EAT NONAME

EAT SERVICE

EAT SOCKTYPE
EAT SYSTEM

EATI OVERFLOW

The ai_flags member of the addrinfo structure had an invalid
value.

A non-recoverable error occurred when attempting to resolve the
name.

The address family was not recognized.

There was a memory allocation failure when trying to allocate
storage for the return value.

he name does not resolve for the supplied parameters. Neither
nodename nor servname were supplied. At least one of these must be
supplied.

The service passed was not recognized for the specified socket
type.
The intended socket type was not recognized.

A system error occurred. The error code can be found in errno.

An argument buffer overflowed.

USAGE | If the caller handles only TCP and not UDP, for example, then the ai_protocol

is called.

member of the hints structure should be set to IPPROTO_TCP when getaddrinfo ()

If the caller handles only IPv4 and not IPv6, then the ai_family member of the hints
structure should be set to AF_INET when getaddrinfo () is called.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability

Standard

MT-Level

MT-Safe

SEE ALSO | connect(3XNET), gai_strerror(3XNET), gethostbyname(3XNET),

getnameinfo(3XNET), getservbyname(3XNET), inet addr(3XNET),
inet ntop(3XNET), socket(3XNET), attributes(d), standards(b)

68 man pages section 3: Networking Library Functions ¢ Last Revised 1 Nov 2003

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

gai_strerror(3XNET)
gai_strerror — address and name information error description

ce [flag ... 1 file ... -1xnet [library ...]
#include <netdb.h>

const char *gai_ strerror (int ecode) ;

The gai_strerror () function returns a text string describing an error value for the
getaddrinfo(3XNET) and getnameinfo(3XNET) functions listed in the
<netdb.h> header.

When the ecode argument is one of the following values listed in the <netdb.h>
header:

EAT AGAIN
EAT BADFLAGS
EAT FAIL

EAI FAMILY
EAT MEMORY
EAT NONAME
EATI SERVICE
EAI SOCKTYPE

EATI SYSTEM

the function return value points to a string describing the error. If the argument is not
one of those values, the function returns a pointer to a string whose contents indicate
an unknown error.

Upon successful completion, gai_strerror () returns a pointer to a string
describing the error value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

getaddrinfo(3XNET), getnameinfo(3XNET), attributes(5), standards(b)

Networking Library Functions 69

getaddrinfo(3SOCKET)

NAME | getaddrinfo, getnameinfo, freeaddrinfo, gai_strerror — translate between node name
and address

SYNOPSIS | cc [flag ...] file... -lsocket -lnsl [library ...]
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo (const char *nodename, const char *servname, const
struct addrinfo *hints, struct addrinfo **res) ;

int getnameinfo (const struct sockaddr *sa, socklen t salen, char
*host, size t hostlen, char *serv, size t servlen, int flags) ;

void freeaddrinfo (struct addrinfo *ai) ;

char *gai strerror (int errcode) ;

DESCRIPTION | These functions perform translations from node name to address and from address to
node name in a protocol-independent manner.

The getaddrinfo () function performs the node name to address translation. The
nodename and servname arguments are pointers to null-terminated strings or NULL. One
or both of these arguments must be a non-null pointer. In the normal client scenario,
both the nodename and servname are specified. In the normal server scenario, only the
servname is specified.

A non-null nodename string can be a node name or a numeric host addrss string. The
nodename can also be an IPv6 zone-id in the form:

<address>%<zone-id>

The address is the literal IPv6 link-local address or host name of the destination. The
zone-id is the interface ID of the IPv6 link used to send the packet. The zone-id can
either be a numeric value, indicating a literal zone value, or an interface name such as
hme0.

A non-null servname string can be either a service name or a decimal port number.

The caller can optionally pass an addrinfo structure, pointed to by the hints
argument, to provide hints concerning the type of socket that the caller supports.

The addrinfo structure is defined as:

struct addrinfo {

int ai_flags; /* AI_ PASSIVE, AI_CANONNAME,
AI_NUMERICHOST, AI_NUMERICSERV
AI V4MAPPED, AI ALL, AI_ADDRCONFIG */

int ai family; /* PF _xxx */

int ai_socktype; /* SOCK_xxx */

int ai_protocol; /* 0 or IPPROTO_xxx for IPv4 and IPvé */
socklen t ai_addrlen; /* length of ai_addr */

char *al_ canonname; /* canonical name for nodename */

struct sockaddr *ai_addr; /* binary address */

struct addrinfo *ai next; /* next structure in linked list */

}i

70 man pages section 3: Networking Library Functions ¢ Last Revised 16 Mar 2004

getaddrinfo(3SOCKET)

In this hints structure, all members other than ai_flags,ai family, ai socktype,
and ai protocol must be 0 or a null pointer. A value of PF_UNSPEC for ai family
indicates that the caller will accept any protocol family. A value of 0 for ai socktype
indicates that the caller will accept any socket type. A value of 0 for ai_protocol
indicates that the caller will accept any protocol. For example, if the caller handles
only TCP and not UDP, then the ai_socktype member of the hints structure should
be set to SOCK_STREAM when getaddrinfo () is called. If the caller handles only
IPv4 and not IPv6, then the ai family member of the hints structure should be set to
PF_INET when getaddrinfo () is called. If the third argument to getaddrinfo ()
is a null pointer, it is as if the caller had filled in an addrinfo structure initialized to 0
with ai family set to PF_UNSPEC.

Upon success, a pointer to a linked list of one or more addrinfo structures is
returned through the final argument. The caller can process each addrinfo structure
in this list by following the ai_next pointer, until a null pointer is encountered. In
each returned addrinfo structure the three members ai family, ai socktype,
and ai_protocol are the corresponding arguments for a call to the
socket(3SOCKET) function. In each addrinfo structure the ai _addr member
points to a filled-in socket address structure whose length is specified by the
ai_addrlen member.

If the AI_PASSIVE bit is set in the ai_flags member of the hints structure, the caller
plans to use the returned socket address structure in a call to bind(3SOCKET). In this
case, if the nodename argument is a null pointer, the IP address portion of the socket
address structure will be set to INADDR ANY for an IPv4 address or
IN6ADDR ANY INIT for an IPv6 address.

If the AT PASSIVE bit is not set in the ai flags member of the hints structure, then
the returned socket address structure will be ready for a call to connect(3SOCKET)
(for a connection-oriented protocol) or either connect(3SOCKET),
sendto(3SOCKET), or sendmsg(3SOCKET) (for a connectionless protocol). If the
nodename argument is a null pointer, the IP address portion of the socket address
structure will be set to the loopback address.

If the AT CANONNAME bit is set in the ai_flags member of the hints structure, then
upon successful return the ai canonname member of the first addrinfo structure in
the linked list will point to a null-terminated string containing the canonical name of
the specified nodename.

If the AT NUMERICHOST bit is set in the ai flags member of the hints structure,
then a non-null nodename string must be a numeric host address string. Otherwise an
error of EAI_NONAME is returned. This flag prevents any type of name resolution
service (such as DNS) from being called.

If the AT_NUMERICSERV flag is specified, then a non-null servname string supplied
shall be a numeric port string. Otherwise, an [EAI_NONAME] error is returned. This
flag prevents any type of name resolution service (for example, NIS+) from being
invoked.

Networking Library Functions 71

getaddrinfo(3SOCKET)

If the AT_V4MAPPED flag is specified along with an ai_family of AF_INETS6, then
getaddrinfo () returns IPv4-mapped IPv6 addresses on finding no matching IPv6
addresses (ai_addrlen shall be 16). For example, if no AAAA records are found
when using DNS, a query is made for A records. Any found records are returned as
IPv4-mapped IPv6 addresses.

The AT_V4MAPPED flag is ignored unless ai_family equals AF_INETS6.

If the AT ALL flag is used with the AI_ VAMAPPED flag, then getaddrinfo ()
returns all matching IPv6 and IPv4 addresses. For example, when using the DNS,
queries are made for both AAAA records and A records, and getaddrinfo () returns
the combined results of both queries. Any IPv4 addresses found are returned as
IPv4-mapped IPv6 addresses.

The AI_ALL flag without the AI_V4MAPPED flag is ignored.

When ai_family is not specified (AF_UNSPEC), AI_V4MAPPED and AI_ALL flags are
used only if AF_INETS6 is supported.

If the AT ADDRCONFIG flag is specified, IPv4 addresses are returned only if an IPv4
address is configured on the local system, and IPv6 addresses are returned only if an
IPv6 address is configured on the local system. For this case, the loopback address is
not considered to be as valid as a configured address. For example, when using the
DNS, a query for AAAA records should occur only if the node has at least one IPv6
address configured (other than IPv6 loopback) and a query for A records should occur
only if the node has at least one IPv4 address configured (other than the IPv4
loopback).

All of the information returned by getaddrinfo () is dynamically allocated: the
addrinfo structures as well as the socket address structures and canonical node
name strings pointed to by the addrinfo structures. The freeaddrinfo () function
is called to return this information to the system the function. For freeaddrinfo (),
the addrinfo structure pointed to by the ai argument is freed, along with any
dynamic storage pointed to by the structure. This operation is repeated until a null
ai_next pointer is encountered.

To aid applications in printing error messages based on the EAT_* codes returned by
getaddrinfo (), the gai strerror () is defined. The argument is one of the EAT *
values defined below and the return value points to a string describing the error. If the
argument is not one of the EAI_* values, the function still returns a pointer to a string
whose contents indicate an unknown error.

The getnameinfo () function looks up an IP address and port number provided by
the caller in the name service database and system-specific database, and returns text
strings for both in buffers provided by the caller. The function indicates successful
completion by a 0 return value; a non-zero return value indicates failure.

The first argument, sa, points to either a sockaddr_in structure (for IPv4) or a
sockaddr_iné structure (for IPv6) that holds the IP address and port number. The
salen argument gives the length of the sockaddr_in or sockaddr_iné structure.

72 man pages section 3: Networking Library Functions ¢ Last Revised 16 Mar 2004

RETURN VALUES

getaddrinfo(3SOCKET)

The function returns the node name associated with the IP address in the buffer
pointed to by the host argument.

The function can also return the IPv6 zone-id in the form:

<address>%<zone-id>

The caller provides the size of this buffer with the hostlen argument. The service name
associated with the port number is returned in the buffer pointed to by serv, and the
servlen argument gives the length of this buffer. The caller specifies not to return either
string by providing a 0 value for the hostlen or servlen arguments. Otherwise, the caller
must provide buffers large enough to hold the node name and the service name,
including the terminating null characters.

To aid the application in allocating buffers for these two returned strings, the
following constants are defined in <netdb.h>:

#define NI_MAXHOST 1025
#define NI_MAXSERV 32

The final argument is a flag that changes the default actions of this function. By
default, the fully-qualified domain name (FQDN) for the host is looked up in the name
service database and returned. If the flag bit NI_NOFQDN is set, only the node name
portion of the FQDN is returned for local hosts.

If the flag bit NI _NUMERICHOST is set, or if the host’s name cannot be located in the
name service, the numeric form of the host’s address is returned instead of its name,
for example, by calling inet_ntop () (see inet(3SOCKET)) instead of
getipnodebyname(3SOCKET). If the flag bit NI NAMEREQD is set, an error is
returned if the host’s name cannot be located in the name service database.

If the flag bit NI_NUMERICSERYV is set, the numeric form of the service address is
returned (for example, its port number) instead of its name. The two NI NUMERIC*
flags are required to support the -n flag that many commands provide.

A fifth flag bit, NI_DGRAM, specifies that the service is a datagram service, and causes
getservbyport(3SOCKET) to be called with a second argument of udp instead of
the default tcp. This is required for the few ports (for example, 512-514) that have
different services for UDP and TCP.

These NI_* flags are defined in <netdb.h> along with the AT * flags already defined
for getaddrinfo ().

For getaddrinfo (), if the query is successful, a pointer to a linked list of one or
more addrinfo structures is returned by the fourth argument and the function
returns 0. The order of the addresses returned i nthe fourth argument is discussed in
the ADDRESS ORDERING section. If the query fails, a non-zero error code will be
returned. For getnameinfo (), if successful, the strings hostname and service are
copied into host and serv, respectively. If unsuccessful, zero values for either hostlen or

Networking Library Functions 73

getaddrinfo(3SOCKET)

Address Ordering

74 man pages section 3:

servlen will suppress the associated lookup; in this case no data is copied into the
applicable buffer. If gai_strerror () is successful, a pointer to a string containing an
error message appropriate for the EAI_* errors is returned. If errcode is not one of the
EAI_*values, a pointer to a string indicating an unknown error is returned.

AF_INET6 addresses returned by the fourth argument of getaddrinfo () are
ordered according to the algorithm described in RFC 3484, Default Address Selection for
Internet Protocol version 6 (IPv6). The addresses are ordered using a list of pair-wise
comparison rules which are applied in order. If a rule determines that one address is
better than another, the remaining rules are irrelevant to the comparison of those two
addresses. If two addresses are equivalent according to one rule, the remaining rules
act as a tie-breaker. The address ordering list of pair-wise comparison rules follow

below:

Avoid unusable destinations.

Prefer a destination that is reachable through
the IP routing table.

Prefer matching scope.

Prefer a destination whose scope is equal to
the scope of its source address. See inet6(7P)
for the definition of scope used by this rule.

Avoid link-local source.

Avoid selecting a link-local source address
when the destination address is not a
link-local address.

Avoid deprecated addresses.

Prefer a destination that is not deprecated
(IFF_DEPRECATED).

Prefer matching label. This rule uses labels
that are obtained through the IPv6 default
address selection policy table. See
ipaddrsel(1M) for a description of the
default contents of the table and how the table
is configured.

Prefer a destination whose label is equal to the
label of its source address.

Prefer higher precedence. This rule uses
precedence values that are obtained through
the IPv6 default address selection policy table.
See ipaddrsel(1M) for a description of the
default contents of the table and how the table
is configured.

Prefer the destination whose precedence is
higher than the other destination.

Prefer native transport.

Prefer a destination if the interface that is used
for sending packets to that destination is not
an IP over IP tunnel.

Prefer smaller scope. See inet6(7P) for the
definition of this rule.

Prefer the destination whose scope is smaller
than the other destination.

Networking Library Functions ¢ Last Revised 16 Mar 2004

ERRORS

FILES

ATTRIBUTES

SEE ALSO

getaddrinfo(3SOCKET)

Use longest matching prefix.

When the two destinations belong to the same
address family, prefer the destination that has
the longer matching prefix with its source
address.

The following names are the error values returned by getaddrinfo () and are

defined in <netdb.h>:
EAT ADDRFAMILY
EATI AGAIN

EATI BADFLAGS

EATI FAIL

EAT FAMILY

EAI MEMORY

EATI NODATA

EAT NONAME

EAT SERVICE
EATI SOCKTYPE
EATI OVERFLOW
EATI SYSTEM
/etc/inet/hosts

/etc/inet/ipnodes

/etc/netconfig

/etc/nsswitch.conf

Address family for nodename is not supported.
Temporary failure in name resolution has occurred .
Invalid value specified for ai_flags.

Non-recoverable failure in name resolution has
occurred.

The ai_family is not supported.

Memory allocation failure has occurred.

No address is associated with nodename.

Neither nodename nor servname is provided or known.
The servname is not supported for ai_socktype.
The ai_socktype is not supported.

Argument buffer has overflowed.

System error was returned in errno.

host name database

local database that associates names of nodes with IP
addresses

network configuration database

configuration file for the name service switch

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe with exceptions

ipaddrsel(1M), gethostbyname(3NSL), get ipnodebyname(3SOCKET),
htonl(3SOCKET), inet(3SOCKET), netdb.h(3HEAD), socket(3SOCKET),
hosts(4), ipnodes(4), nsswitch.conf(4), inet6(7P)

Draves, R. RFC 3484, Default Address Selection for Internet Protocol version 6 (IPv6).
Network Working Group. February 2003.

Networking Library Functions 75

gethostbyname(3NSL)

NAME | gethostbyname, gethostbyname_r, gethostbyaddr, gethostbyaddr_r, gethostent,
gethostent_r, sethostent, endhostent — get network host entry

SYNOPSIS | cc [flag... 1 file... -1lnsl [library...]
#include <netdb.h>

struct hostent *gethostbyname (const char *name, int main, int argc,
const char **argu) ;

struct hostent *gethostbyname r (const char *name, struct hostent
*result, char *buffer, int buflen, int *h_errnop) ;

struct hostent *gethostbyaddr (const char *addr, int len, int type) ;

struct hostent *gethostbyaddr r (const char *addr, int length, int
type, struct hostent *result, char *buffer, int buflen, int
*h_errnop) ;

struct hostent *gethostent (void) ;

struct hostent *gethostent r(struct hostent *result, char *buﬁer,
int buflen, int *h_errnop) ;

int sethostent (int stayopen) ;

int endhostent (void) ;

DESCRIPTION | These functions are used to obtain entries describing hosts. An entry can come from
any of the sources for hosts specified in the /etc/nsswitch. conf file. See
nsswitch.conf(4). These functions have been superseded by
getipnodebyname(3SOCKET), get ipnodebyaddr(3SOCKET), and
getaddrinfo(3SOCKET), which provide greater portability to applications when
multithreading is performed or technologies such as IPv6 are used. For example, the
functions described in the following cannot be used with applications targeted to
work with IPv6.

The gethostbyname () function searches for information for a host with the
hostname specified by the character-string parameter name.

The gethostbyaddr () function searches for information for a host with a given host
address. The parameter type specifies the family of the address. This should be one of
the address families defined in <sys/socket . h>. See the NOTES section for more
information. Also see the EXAMPLES section for information on how to convert an
Internet IP address notation that is separated by periods (.) into an addr parameter. The
parameter len specifies the length of the buffer indicated by addr.

All addresses are returned in network order. In order to interpret the addresses,
byteorder(3SOCKET) must be used for byte order conversion.

The sethostent (), gethostent (), and endhostent () functions are used to
enumerate host entries from the database.

76 man pages section 3: Networking Library Functions ¢ Last Revised 5 Apr 2004

Reentrant
Interfaces

RETURN VALUES

gethostbyname(3NSL)

The sethostent () function sets or resets the enumeration to the beginning of the set
of host entries. This function should be called before the first call to gethostent ().
Calls to gethostbyname () and gethostbyaddr () leave the enumeration position
in an indeterminate state. If the stayopen flag is non-zero, the system can keep allocated
resources such as open file descriptors until a subsequent call to endhostent ().

Successive calls to the gethostent () function return either successive entries or
NULL, indicating the end of the enumeration.

The endhostent () function can be called to indicate that the caller expects to do no
further host entry retrieval operations; the system can then deallocate resources it was
using. It is still allowed, but possibly less efficient, for the process to call more host
retrieval functions after calling endhostent ().

The gethostbyname (), gethostbyaddr (), and gethostent () functions use
static storage that is reused in each call, making these functions unsafe for use in
multithreaded applications.

The gethostbyname r (), gethostbyaddr r (), and gethostent r () functions
provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the _r suffix. The reentrant interfaces, however, use buffers
supplied by the caller to store returned results and the interfaces are safe for use in
both single-threaded and multithreaded applications.

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as
well as the following additional parameters. The parameter result must be a pointer to
a struct hostent structure allocated by the caller. On successful completion, the
function returns the host entry in this structure. The parameter buffer must be a pointer
to a buffer supplied by the caller. This buffer is used as storage space for the host data.
All of the pointers within the returned struct hostent result point to data stored
within this buffer. See the RETURN VALUES section for more information. The buffer
must be large enough to hold all of the data associated with the host entry. The
parameter buflen should give the size in bytes of the buffer indicated by buffer. The
parameter /i_errnop should be a pointer to an integer. An integer error status value is
stored there on certain error conditions. See the ERRORS section for more information.

For enumeration in multithreaded applications, the position within the enumeration is
a process-wide property shared by all threads. The sethostent () function can be
used in a multithreaded application but resets the enumeration position for all
threads. If multiple threads interleave calls to gethostent_r (), the threads will
enumerate disjoint subsets of the host database.

Like their non-reentrant counterparts, gethostbyname r () and
gethostbyaddr r () leave the enumeration position in an indeterminate state.

Host entries are represented by the struct hostent structure defined in
<netdb.h>:

Networking Library Functions 77

gethostbyname(3NSL)

struct hostent {

char *h name; /* canonical name of host */
char **h aliases; /* alias list */

int h_addrtype; /* host address type */

int h length; /* length of address */
char **h addr_list; /* list of addresses */

}i

"1

See the EXAMPLES section for information about how to retrieve a “.”” separated
Internet IP address string from the h_addr_list field of struct hostent.

The gethostbyname (), gethostbyname r (), gethostbyaddr (), and
gethostbyaddr r () functions each return a pointer to a struct hostent if they
successfully locate the requested entry; otherwise they return NULL.

The gethostent () and gethostent r () functions each return a pointer to a
struct hostent if they successfully enumerate an entry; otherwise they return
NULL, indicating the end of the enumeration.

The gethostbyname (), gethostbyaddr (), and gethostent () functions use
static storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

When the pointer returned by the reentrant functions gethostbyname r (),
gethostbyaddr r (), and gethostent r() is not NULL, it is always equal to the
result pointer that was supplied by the caller.

The sethostent () and endhostent () functions return 0 on success.

ERRORS | The reentrant functions gethostbyname r (), gethostbyaddr r (), and
gethostent_r () will return NULL and set errno to ERANGE if the length of the buffer
supplied by caller is not large enough to store the result. See Intro(2) for the proper
usage and interpretation of errno in multithreaded applications.

The reentrant functions gethostbyname r () and gethostbyaddr r () set the
integer pointed to by h_errnop to one of these values in case of error.

On failures, the non-reentrant functions gethostbyname () and gethostbyaddr ()
set a global integer h_errno to indicate one of these error codes (defined in
<netdb.h>): HOST NOT FOUND, TRY AGAIN, NO RECOVERY, NO DATA, and
NO_ADDRESS.

If a resolver is provided with a malformed address, or if any other error occurs before
gethostbyname () is resolved, then gethostbyname () returns an internal error
with a value of —1.

The gethostbyname () function will set hi_errno to NETDB_INTERNAL when it
returns a NULL value.

EXAMPLES | EXAMPLE 1 Using gethostbyname ()

Here is a sample program that gets the canonical name, aliases, and “.”” separated

"1y

Internet IP addresses for a given “.”” separated IP address:

78 man pages section 3: Networking Library Functions ¢ Last Revised 5 Apr 2004

FILES

gethostbyname(3NSL)

EXAMPLE 1 Using gethostbyname () (Continued)

#include <stdio.h>
#include <stdlib.h
#include <string.hs>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>
int main(int argc, const char **argv)
{
in_addr_t addr;
struct hostent *hp;
char **p;
if (argc != 2) {
(void) printf ("usage: %s IP-address\
", argv[0]);
exit (1);
}

if ((int) (addr = inet_addr (argv[l])) == -1) ({
(void) printf ("IP-address must be of the form a.b.c.d\

exit (2);
}
hp = gethostbyaddr ((char *)&addr, 4, AF_INET);
if (hp == NULL) {
(void) printf ("host information for %s not found\
", argvl[l]);
exit (3);
}

for (p = hp->h _addr list; *p != 0; p++) {
struct in_addr in;

char **q;
(void) memcpy (&in.s_addr, *p, sizeof (in.s_addr));
(void) printf ("%$s\\t%s", inet ntoa(in), hp->h name) ;
for (g = hp->h aliases; *qg != 0; g++)
(void) printf (" %s", *q);

(void) putchar(’\
")
}

exit (0);

}

Note that the preceding sample program is unsafe for use in multithreadeded
applications

/etc/hosts
/etc/netconfig

/etc/nsswitch.conf

Networking Library Functions

79

gethostbyname(3NSL)

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level See “Reentrant Interfaces” in the
DESCRIPTION section.

Intro(2), Intro(3), byteorder(3SOCKET), inet(3SOCKET), netdb . h(3HEAD),
netdir(3NSL), hosts(4), netconfig(4), nss(4), nsswitch.conf(4),
attributes(5)

The reentrant interfaces gethostbyname r (), gethostbyaddr r (), and
gethostent_r () are included in this release on an uncommitted basis only and are
subject to change or removal in future minor releases.

To ensure that they all return consistent results, gethostbyname (),
gethostbyname r (), and netdir getbyname () are implemented in terms of the
same internal library function. This function obtains the system-wide source lookup
policy based on the inet family entries in netconfig(4) and the hosts: entry in
nsswitch.conf(4). Similarly, gethostbyaddr (), gethostbyaddr_r (), and
netdir getbyaddr () are implemented in terms of the same internal library
function. If the inet family entries in netconfig(4) have a “-”’ in the last column for
nametoaddr libraries, then the entry for hosts in nsswitch.conf will be used;
nametoaddr libraries in that column will be used, and nsswitch.conf will not be
consulted.

There is no analogue of gethostent () and gethostent_r () in the netdir
functions, so these enumeration functions go straight to the hosts entry in
nsswitch.conf. Thus enumeration can return results from a different source than
that used by gethostbyname (), gethostbyname r (), gethostbyaddr (), and
gethostbyaddr r ().

All the functions that return a struct hostent must always return the canonical
name in the h_name field. This name, by definition, is the well-known and official
hostname shared between all aliases and all addresses. The underlying source that
satisfies the request determines the mapping of the input name or address into the set
of names and addresses in hostent. Different sources might do that in different ways.
If there is more than one alias and more than one address in hostent, no pairing is
implied between them.

The system attempts to put those addresses that are on the same subnet as the caller
before addresses that are on different subnets. However, if address sorting is disabled
by setting SORT ADDRS to FALSE in the /etc/default/nss file, the system does
not put the local subnet addresses first. See nss(4) for more information.

When compiling multithreaded applications, see Intro(3), MULTITHREADED
APPLICATIONS, for information about the use of the REENTRANT flag.

80 man pages section 3: Networking Library Functions ¢ Last Revised 5 Apr 2004

gethostbyname(3NSL)

Use of the enumeration interfaces gethostent () and gethostent r() is
discouraged; enumeration might not be supported for all database sources. The
semantics of enumeration are discussed further in nsswitch.conf(4).

The current implementations of these functions only return or accept addresses for the
Internet address family (type AF_INET).

The form for an address of type AF_INET is a struct in_addr defined in
<netinet/in.h>. The functions described in inet(3SOCKET), and illustrated in the
EXAMPLES section, are helpful in constructing and manipulating addresses in this
form.

Networking Library Functions 81

gethostname(3XNET)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

gethostname — get name of current host

ce [flag ... 1 file ... -1xnet [library ...]
#include <unistd.h>

int gethostname (char *name, size_ t namelen) ;

The gethostname () function returns the standard host name for the current
machine. The namelen argument specifies the size of the array pointed to by the name
argument. The returned name is null-terminated, except that if namelen is an
insufficient length to hold the host name, then the returned name is truncated and it is
unspecified whether the returned name is null-terminated.

Host names are limited to 255 bytes.
On successful completion, 0 is returned. Otherwise, -1 is returned.
No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

uname(1), gethostid(3C), attributes(b), standards(b)

82 man pages section 3: Networking Library Functions ¢ Last Revised 10 Jun 2002

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

getipnodebyname(3SOCKET)
getipnodebyname, getipnodebyaddr, freehostent — get IP node entry

ce [flag... 1 file... -lsocket -1nsl [library...]
#include <sys/socket.h>
#include <netdb.h>

struct hostent *getipnodebyname (const char *name, int af, int flags,
int *error_num) ;

struct hostent *getipnodebyaddr (const void *src, size t len, int af,
int *error_num) ;

void freehostent (struct hostent *ptr);

af Address family

flags Various flags

name Name of host

error_num Error storage

src Address for lookup

len Length of address

ptr Pointer to hostent structure

The getipnodebyname () function searches the ipnodes database from the
beginning. The function finds the first h_name member that matches the hostname
specified by name. The function takes an af argument that specifies the address family.
The address family can be AF_INET for IPv4 addresses or AF_INET6 for IPv6
addresses. The flags argument determines what results are returned based on the value
of flags. If the flags argument is set to 0 (zero), the default operation of the function is
specified as follows:

m If the af argument is AF_INET, a query is made for an IPv4 address. If successful,
IPv4 addresses are returned and the h _1length member of the hostent structure
is 4. Otherwise, the function returns a NULL pointer.

m If the af argument is AF_INETS6, a query is made for an IPv6 address. If successful,
IPv6 addresses are returned and the h_1length member of the hostent structure
is 16. Otherwise, the function returns a NULL pointer.

The flags argument changes the default actions of the function. Set the flags argument
with a logical OR operation on any of combination of the following values:

AI VAMAPPED
AI ALL
AI ADDRCONFIG

The special flags value, AI_DEFAULT, should handle most applications. Porting
simple applications to use IPv6 replaces the call

hptr = gethostbyname (name) ;

Networking Library Functions 83

getipnodebyname(3SOCKET)
with
hptr = getipnodebyname (name, AF_INET6, AI DEFAULT, &error num) ;

The flags value 0 (zero) implies a strict interpretation of the af argument:

m If flags is 0 and af is AF_INET, the caller wants only IPv4 addresses. A query is
made for A records. If successful, IPv4 addresses are returned and the h_length
member of the hostent structure is 4. Otherwise, the function returns a NULL
pointer.

m If flags is 0 and af is AF INETS6, the caller wants only IPv6 addresses. A query is
made for AAAA records. If successful, IPv6 addresses are returned and the
h length member of the hostent structure is 16. Otherwise, the function returns
a NULL pointer.

Logically OR other constants into the flags argument to modify the behavior of the
getipnodebyname () function.

m If the AT_V4MAPPED flag is specified with af set to AF_INET6, the caller can accept
IPv4-mapped IPv6 addresses. If no ARAA records are found, a query is made for A
records. Any A records found are returned as IPv4-mapped IPv6 addresses and the
h_lengthis 16. The AI_V4MAPPED flag is ignored unless af equals AF_INET6.

m The AI ALL flag is used in conjunction with the AT V4MAPPED flag, exclusively
with the IPv6 address family. When AI_ALL is logically ORed with AI_V4MAPPED
flag, the caller wants all addresses: IPv6 and IPv4-mapped IPv6 addresses. A query
is first made for ARAA records and, if successful, IPv6 addresses are returned.
Another query is then made for A records. Any A records found are returned as
IPv4-mapped IPv6 addresses and the h_length is 16. Only when both queries fail
does the function return a NULL pointer. The AI ALL flag is ignored unless af is set
to AF_INETS.

m The AI_ADDRCONFIG flag specifies that a query for AAAA records should occur
only when the node is configured with at least one IPv6 source address. A query
for A records should occur only when the node is configured with at least one IPv4
source address. For example, if a node is configured with no IPv6 source addresses,
af equals AF_INET6, and the node name queried has both AAAA and A records,
then:

® A NULL pointer is returned when only the AT_ADDRCONFIG value is specified.
® The A records are returned as IPv4-mapped IPv6 addresses when the
AI_ADDRCONFIG and AI_V4MAPPED values are specified.

The special flags value, AI_DEFAULT, is defined as

#define AI DEFAULT (AI_V4MAPPED | AI_ADDRCONFIG)

The getipnodebyname () function allows the name argument to be a node name or a
literal address string: a dotted-decimal IPv4 address or an IPv6 hex address.
Applications do not have to call inet pton(3SOCKET) to handle literal address
strings.

84 man pages section 3: Networking Library Functions ¢ Last Revised 5 Apr 2004

RETURN VALUES

getipnodebyname(3SOCKET)

Four scenarios arise based on the type of literal address string and the value of the af
argument. The two simple cases occur when name is a dotted-decimal IPv4 address
and af equals AF INET and when name is an IPv6 hex address and af equals
AF_INET6. The members of the returned hostent structure are:

h_name Pointer to a copy of the name argument

h_aliases NULL pointer.

h addrtype Copy of the af argument.

h length 4 for AF_INET or 16 for AF_INET6.

h_addr_list Array of pointers to 4-byte or 16-byte binary addresses.

The array is terminated by a NULL pointer.

Upon successful completion, get ipnodebyname () and getipnodebyaddr ()
return a hostent structure. Otherwise they return NULL.

The hostent structure does not change from the existing definition when used with
gethostbyname(3NSL). For example, host entries are represented by the struct
hostent structure defined in <netdb.h>:

struct hostent {

char *h name; /* canonical name of host */
char **h aliases; /* alias list */

int h_addrtype; /* host address type */

int h length; /* length of address */

char **h addr list; /* list of addresses */

}i

An error occurs when name is an IPv6 hex address and af equals AF_INET. The return
value of the function is a NULL pointer and error num equals HOST NOT FOUND.

The getipnodebyaddr () function has the same arguments as the existing
gethostbyaddr(3NSL) function, but adds an error number. As with
getipnodebyname (), getipnodebyaddr () is thread-safe. The error num value
is returned to the caller with the appropriate error code to support thread-safe error
code returns. The following error conditions can be returned for error num:

HOST NOT FOUND Host is unknown.

NO_DATA No address is available for the name
specified in the server request. This error is
not a soft error. Another type of name server
request might be successful.

NO_ RECOVERY An unexpected server failure occurred,
which is a non-recoverable error.

TRY AGAIN This error is a soft error that indicates that
the local server did not receive a response
from an authoritative server. A retry at
some later time might be successful.

Networking Library Functions 85

getipnodebyname(3SOCKET)

One possible source of confusion is the handling of IPv4-mapped IPv6 addresses and
IPv4-compatible IPv6 addresses, but the following logic should apply:

1. Ifafis AF INET6, and if len equals 16, and if the IPv6 address is an IPv4-mapped
IPv6 address or an IPv4-compatible IPv6 address, then skip over the first 12 bytes
of the IPv6 address, set af to AF_INET, and set len to 4.

If af is AF_INET, lookup the name for the given IPv4 address.
If af is AF_INETS6, lookup the name for the given IPv6 address.

If the function is returning success, then the single address that is returned in the
hostent structure is a copy of the first argument to the function with the same
address family that was passed as an argument to this function.

All four steps listed are performed in order.

This structure, and the information pointed to by this structure, are dynamically
allocated by get ipnodebyname () and getipnodebyaddr (). The freehostent ()
function frees this memory.

EXAMPLES | EXAMPLE 1 Getting the Canonical Name, Aliases, and Internet IP Addresses for a Given
Hostname

The following is a sample program that retrieves the canonical name, aliases, and all
Internet IP addresses, both version 6 and version 4, for a given hostname.

#include <stdio.hs>
#include <string.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <netdb.h>

main (int argc, const char **argv)
char abuf [INET6 ADDRSTRLEN] ;

int error num;

struct hostent *hp;

char **p;

if (arge !'= 2) {
(void) printf ("usage: %s hostname\
", argvl[0]);
exit (1) ;
}

/* argv[l] can be a pointer to a hostname or literal IP address */
hp = getipnodebyname (argv[1], AF_INET6, AI ALL | AI ADDRCONFIG |
AI V4MAPPED, &error num) ;
if (hp == NULL) ({
if (error_num == TRY AGAIN) ({
printf ("%s: unknown host or invalid literal address "
"(try again later)\

", argv[1l]);

86 man pages section 3: Networking Library Functions ¢ Last Revised 5 Apr 2004

ATTRIBUTES

SEE ALSO

NOTES

getipnodebyname(3SOCKET)

EXAMPLE 1 Getting the Canonical Name, Aliases, and Internet IP Addresses for a Given
Hostname (Continued)

} else {
printf ("%$s: unknown host or invalid literal address\

argv[1l]);
}
exit (1) ;
}
for (p = hp->h addr list; *p != 0; p++) {
struct iné_addr iné6;
char **qg;

bcopy (*p, (caddr_t)&iné6, hp->h_length);
(void) printf ("$s\\t%s", inet ntop (AF_INET6, (void *)&iné,

abuf, sizeof (abuf)), hp->h name);
for (g = hp->h_aliases; *q != 0; qg++)
(void) printf (" %s", *q);

(void) putchar (’\

}

freehostent (hp) ;
exit (0);

}

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

getaddrinfo(3SOCKET), gethostbyname(3NSL), hton1(3SOCKET),
inet(3SOCKET), netdb.h(B3HEAD), hosts(4), ipnodes(4), nsswitch.conf(4),
attributes(5)

No enumeration functions are provided for IPv6. Existing enumeration functions such
as sethostent(3NSL) do not work in combination with the getipnodebyname ()
and getipnodebyaddr () functions.

All the functions that return a struct hostent must always return the canonical in
the h name field. This name, by definition, is the well-known and official hostname
shared between all aliases and all addresses. The underlying source that satisfies the
request determines the mapping of the input name or address into the set of names
and addresses in hostent. Different sources might make such as determination in
different ways. If more than one alias and more than one address in hostent exist, no
pairing is implied between the alias and address.

The current implementations of these functions return or accept only addresses for the
Internet address family (type AF _INET) or the Internet address family Version 6 (type
AF_INETS6).

Networking Library Functions 87

getipnodebyname(3SOCKET)

The form for an address of type AF_INET is a struct in_addr defined in
<netinet/in.h>. The form for an address of type AF_INET6 isa struct
in6é_addr, also defined in <netinet/in.h>. The functions described in

inet ntop(3SOCKET) and inet pton(3SOCKET) that are illustrated in the
EXAMPLES section are helpful in constructing and manipulating addresses in either
of these forms.

88 man pages section 3: Networking Library Functions ¢ Last Revised 5 Apr 2004

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

getipsecalgbyname(3NSL)

getipsecalgbyname, getipsecalgbynum, freeipsecalgent — query algorithm mapping
entries

cc -flag ... file...-1nsl [-library ...]
#include <netdb.h>

struct ipsecalgent *getipsecalgbyname (const char *alg _name, int
pmtocol_num, int *errnop) ;

struct ipsecalgent *getipsecalgbynum(int alg num, int protocol_num,
int *errnop) ;

void freeipsecalgent (struct ipsecalgent *pftr) ;

Use the getipsecalgbyname (), getipsecalgbynum(), freeipsecalgent ()
functions to obtain the IPsec algorithm mappings that are defined by
ipsecalgs(IM). The IPsec algorithms and associated protocol name spaces are
defined by RFC 2407.

getipsecalgbyname () and getipsecalgbynum () return a structure that
describes the algorithm entry found. This structure is described in the RETURN
VALUES section below.

freeipsecalgent () must be used by the caller to free the structures returned by
getipsecalgbyname () and getipsecalgbynum () when they are no longer
needed.

Both getipsecalgbyname () and getipsecalgbynum() take as parameter the
protocol identifier in which the algorithm is defined. See
getipsecprotobyname(3NSL) and getipsecprotobynum(3NSL).

The following protocol numbers are pre-defined:

IPSEC_PROTO ESP Defines the encryption algorithms (transforms) that can
be used by IPsec to provide data confidentiality.

IPSEC_PROTO_AH Defines the authentication algorithms (transforms) that
can be used by IPsec to provide authentication.

getipsecalgbyname () looks up the algorithm by its name, while

getipsecalgbynum() looks up the algorithm by its assigned number.

errnop A pointer to an integer used to return an error status value on

certain error conditions. See ERRORS.

The getipsecalgbyname () and getipsecalgbynum () functions return a pointer
to the structure ipsecalgent_t, defined in <netdb.hs>. If the requested algorithm
cannot be found, these functions return NULL.

The structure ipsecalgent_t is defined as follows:

typedef struct ipsecalgent {
char **a_names; /* algorithm names */
int a_proto_num; /* protocol number */

Networking Library Functions 89

getipsecalgbyname(3NSL)

ERRORS

ATTRIBUTES

SEE ALSO

int a_alg_num; /* algorithm number */

char *a_mech name; /* mechanism name */

int *a_block_sizes; /* supported block sizes */
int *a_key sizes; /* supported key sizes */

int a_key increment; /* key size increment */

} ipsecalgent t;

If a_key increment isnon-zero, a_key sizes[0] contains the default key size for
the algorithm. a_key sizes[1] and a_key sizes[2] specify the smallest and
biggest key sizes support by the algorithm, and a_key increment specifies the valid
key size increments in that range.

If a_key increment is zero, the array a_key sizes contains the set of key sizes, in
bits, supported by the algorithm. The last key length in the array is followed by an
element of value 0. The first element of this array is used as the default key size for the
algorithm.

a_name is an array of algorithm names, terminated by an element containing a NULL
pointer. a_name [0] is the primary name for the algorithm.

a_proto_num is the protocol identifer of this algorithm. a_alg_num is the algorithm
number. a_mech_name contains the mechanism name associated with the algorithm.

a_block_sizes is an array containing the supported block lengths or MAC lengths,
in bytes, supported by the algorithm. The last valid value in the array is followed by
an element containing the value 0.

When the specified algorithm cannot be returned to the caller, get ipsecalgbynam ()
and getipsecalgbynum () return a value of NULL and set the integer pointed to by
the errnop parameter to one of the following values:

ENOMEM Not enough memory
ENOENT Specified algorithm not found
EINVAL Specified protocol number not found

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNW.Gsl (32 bit)
SUNWGslx (64 bit)

MT Level MT Safe

Interface Stability Evolving

cryptoadm(1M), ipsecalgs(1IM), getipsecprotobyname(3NSL),
getipsecprotobynum(3NSL), attributes(b)

90 man pages section 3: Networking Library Functions ¢ Last Revised 20 Aug 2003

getipsecalgbyname(3NSL)

Piper, D. RFC 2407, The Internet IP Security Domain of Interpretation for ISAKMP.
Network Working Group. November, 1998.

Networking Library Functions 91

getipsecprotobyname(3NSL)

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ATTRIBUTES

getipsecprotobyname, getipsecprotobynum — query IPsec protocols entries

cc -flag ... file...-1nsl [-library ...]
#include <netdb.h>

int getipsecprotobyname (const char *proto_name) ;

char *getipsecprotobynum (int proto_num) ;

Use the getipsecprotobyname () and getipsecprotobynum () functions to
obtain the IPsec algorithm mappings that are defined by ipsecalgs(1M). You can
also use the getipsecprotobyname () and getipsecprotobynum () functions in
conjunction with getipsecalgbyname(3NSL) and getipsecalgbynum(3NSL) to
obtain information about the supported IPsec algorithms. The IPsec algorithms and
associated protocol name spaces are defined by RFC 2407.

getipsecprotobyname () takes as an argument the name of an IPsec protocol and
returns its assigned protocol number. The character string returned by the
getipsecprotobyname () function must be freed by the called when it is no longer
needed.

getipsecprotobynum() takes as an argument a protocol number and returns the
corresponding protocol name.

The following protocol numbers are pre-defined:

IPSEC_PROTO ESP Defines the encryption algorithms (transforms) that can
be used by IPsec to provide data confidentiality.

IPSEC_PROTO_AH Defines the authentication algorithms (transforms) that
can be used by IPsec to provide authentication.

proto_name A pointer to the name of an IPsec protocol.

proto_num A pointer to a protocol number. conditions.

The getipsecprotobyname () function returns a protocol number upon success, or
-1 if the protocol specified does not exist.

The getipsecprotobynum () function returns a protocol name upon success, or the
NULL value if the protocol number specified does not exist.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNW.Gsl (32 bit)
SUNWGslx (64 bit)
MT Level MT Safe

92 man pages section 3: Networking Library Functions ¢ Last Revised 13 Aug 2003

SEE ALSO

getipsecprotobyname(3NSL)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

ipsecalgs(1M), getipsecalgbyname(3NSL), getipsecalgbynum(3NSL),
attributes(b5)

Piper, D. RFC 2407, The Internet IP Security Domain of Interpretation for ISAKMP.
Network Working Group. November, 1998.

Networking Library Functions

93

getnameinfo(3XNET)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

getnameinfo — get name information

ce [flag ... 1 file ... -1lxnet [library ...]
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo (const struct sockaddr *restrict sa, socklen t
salen, char *restrict node, socklen t nodelen, char *restrict
service, socklen t servicelen, unsigned flags) ;

The getnameinfo () function translates a socket address to a node name and service
location, all of which are defined as in getaddrinfo(3XNET).

The sa argument points to a socket address structure to be translated. If the socket
address structure contains an IPv4-mapped IPv6 address or an IPv4-compatible IPv6
address, the implementation extracts the embedded IPv4 address and lookup the node
name for that IPv4 address.

If the node argument is non-NULL and the nodelen argument is non-zero, then the node
argument points to a buffer able to contain up to nodelen characters that receives the
node name as a null-terminated string. If the node argument is NULL or the nodelen
argument is zero, the node name is not returned. If the node’s name cannot be located,
the numeric form of the node’s address is returned instead of its name.

If the service argument is non-NULL and the servicelen argument is non-zero, then the
service argument points to a buffer able to contain up to servicelen bytes that receives
the service name as a null-terminated string. If the service argument is NULL or the
servicelen argument is zero, the service name is not returned. If the service’s name
cannot be located, the numeric form of the service address (for example, its port
number) is returned instead of its name.

The flags argument is a flag that changes the default actions of the function. By default
the fully-qualified domain name (FQDN) for the host is returned, but:

m If the flag bit NI_NOFQDN is set, only the node name portion of the FQDN is
returned for local hosts.

m f the flag bit NI_NUMERICHOST is set, the numeric form of the host’s address is
returned instead of its name, under all circumstances.

m If the flag bit NI_NAMEREQD is set, an error is returned if the host’s name cannot be
located.

m If the flag bit NI_NUMERICSERV is set, the numeric form of the service address is
returned (for example, its port number) instead of its name, under all
circumstances.

m If the flag bit NI_DGRAM is set, this indicates that the service is a datagram service
(sock_DGRAM). The default behavior assumes that the service is a stream service
(SOCK_STREAM).

A Q return value for getnameinfo () indicates successful completion; a non-zero
return value indicates failure. The possible values for the failures are listed in the
ERRORS section.

94 man pages section 3: Networking Library Functions ¢ Last Revised 1 Nov 2003

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

NOTES

getnameinfo(3XNET)

Upon successful completion, getnameinfo () returns the node and service names, if
requested, in the buffers provided. The returned names are always null-terminated
strings.

The getnameinfo () function will fail if:

EAI AGAIN The name could not be resolved at this time. Future attempts
might succeed.

EAI_BADFLAGS The flags argument had an invalid value.

EAI FAIL A non-recoverable error occurred.

EAI FAMILY The address family was not recognized or the address length was
invalid for the specified family.

EAI_MEMORY There was a memory allocation failure.

EAI_NONAME The name does not resolve for the supplied parameters.

NI NAMEREQD is set and the host’s name cannot be located, or
both nodename and servname were NULL.

EAI_SYSTEM A system error occurred. The error code can be found in errno.

If the returned values are to be used as part of any further name resolution (for
example, passed to getaddrinfo ()), applications should provide buffers large
enough to store any result possible on the system.

Given the IPv4-mapped IPv6 address ":ffff:1.2.3.4", the implementation performs a
lookup as if the socket address structure contains the IPv4 address "1.2.3.4".

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

gai strerror(3XNET), getaddrinfo(3XNET), getservbyname(3XNET),
socket(3XNET), attributes(b), standards(b)

The IPv6 unspecified address ("::") and the IPv6 loopback address ("::1") are not
IPv4-compatible addresses. If the address is the IPv6 unspecified address ("::"), a
lookup is not performed, and the EAI_NONAME error is returned.

The two NI_NUMERICxxx flags are required to support the -n flag that many
commands provide.

The NI_DGRAM flag is required for the few AF_INET and AF INET6 port numbers (for
example, [512,514]) that represent different services for UDP and TCP.

Networking Library Functions 95

getnetbyname(3SOCKET)

96

NAME

SYNOPSIS

DESCRIPTION

man pages section 3:

getnetbyname, getnetbyname_r, getnetbyaddr, getnetbyaddr_r, getnetent, getnetent _r,
setnetent, endnetent — get network entry

ce [flag ... 1 file ... -1lsocket -1lnsl [library ...]
#include <netdb.h>

struct netent *getnetbyname (const char *name) ;

struct netent *getnetbyname r (const char *name, struct netent
*result, char *buffer, int buflen) ;

struct netent *getnetbyaddr (long net, int type) ;

struct netent *getnetbyaddr r(long netf, int fype, struct netent
*result, char *buffer, int buflen) ;

struct netent *getnetent (void) ;

struct netent *getnetent r(struct netent *result, char *buffer, int

buflen) ;
int setnetent (int stayopen) ;

int endnetent (void) ;

These functions are used to obtain entries for networks. An entry may come from any
of the sources for networks specified in the /etc/nsswitch. conf file. See
nsswitch.conf(4).

getnetbyname () searches for a network entry with the network name specified by
the character string parameter name.

getnetbyaddr () searches for a network entry with the network address specified by
net. The parameter type specifies the family of the address. This should be one of the
address families defined in <sys/socket . h>. See the NOTES section below for more
information.

Network numbers and local address parts are returned as machine format integer
values, that is, in host byte order. See also inet(3SOCKET).

The netent .n_net member in the netent structure pointed to by the return value
of the above functions is calculated by inet _network (). The inet_network ()
function returns a value in host byte order that is aligned based upon the input string.
For example:

Text Value

“10” 0x0000000a
“10.0" 0x00000a00
“10.0.1" 0a000a0001

Networking Library Functions ¢ Last Revised 4 Nov 2004

Reentrant
Interfaces

getnetbyname(3SOCKET)
Text Value

*10.0.1.28" 0x0a000180

Commonly, the alignment of the returned value is used as a crude approximate of
pre-CIDR (Classless Inter-Domain Routing) subnet mask. For example:

in_addr_t addr, mask;

addr = inet_network (net_name) ;

mask= ~(in_addr t)O0;

if ((addr & IN_CLASSA NET)
addr <<= 8, mask <<=

if ((addr & IN _CLASSA NET)
addr <<= 8, mask <<=

if ((addr & IN_CLASSA NET)
addr <<= 8, mask <<=

o

o

o

I o I o I

This usage is deprecated by the CIDR requirements. See Fuller, V., Li, T., Yu, J., and
Varadhan, K. RFC 1519, Classless Inter-Domain Routing (CIDR): an Address Assignment
and Aggregation Strategy. Network Working Group. September 1993.

The functions setnetent (), getnetent (), and endnetent () are used to
enumerate network entries from the database.

setnetent () sets (or resets) the enumeration to the beginning of the set of network
entries. This function should be called before the first call to getnetent (). Calls to
getnetbyname () and getnetbyaddr () leave the enumeration position in an
indeterminate state. If the stayopen flag is non-zero, the system may keep allocated
resources such as open file descriptors until a subsequent call to endnetent ().

Successive calls to getnetent () return either successive entries or NULL, indicating
the end of the enumeration.

endnetent () may be called to indicate that the caller expects to do no further
network entry retrieval operations; the system may then deallocate resources it was
using. It is still allowed, but possibly less efficient, for the process to call more network
entry retrieval functions after calling endnetent ().

The functions getnetbyname (), getnetbyaddr (), and getnetent () use static
storage that is reused in each call, making these routines unsafe for use in
multi-threaded applications.

The functions getnetbyname r (), getnetbyaddr r (), and getnetent r()
provide reentrant interfaces for these operations.

Each reentrant interface performs the same operation as its non-reentrant counterpart,
named by removing the “_r” suffix. The reentrant interfaces, however, use buffers
supplied by the caller to store returned results, and are safe for use in both
single-threaded and multi-threaded applications.

Networking Library Functions 97

getnetbyname(3SOCKET)

RETURN VALUES
ERRORS
FILES

98

Each reentrant interface takes the same parameters as its non-reentrant counterpart, as
well as the following additional parameters. The parameter result must be a pointer to
a struct netent structure allocated by the caller. On successful completion, the
function returns the network entry in this structure. The parameter buffer must be a
pointer to a buffer supplied by the caller. This buffer is used as storage space for the
network entry data. All of the pointers within the returned struct netent result
point to data stored within this buffer. See RETURN VALUES. The buffer must be large
enough to hold all of the data associated with the network entry. The parameter buflen
should give the size in bytes of the buffer indicated by buffer.

For enumeration in multi-threaded applications, the position within the enumeration
is a process-wide property shared by all threads. setnetent () may be used in a
multi-threaded application but resets the enumeration position for all threads. If
multiple threads interleave calls to getnetent_r (), the threads will enumerate
disjointed subsets of the network database.

Like their non-reentrant counterparts, getnetbyname_r () and getnetbyaddr_r ()
leave the enumeration position in an indeterminate state.

Network entries are represented by the struct netent structure defined in
<netdb.h>.

The functions getnetbyname (), getnetbyname r, getnetbyaddr, and
getnetbyaddr_r () each return a pointer to a struct netent if they successfully
locate the requested entry; otherwise they return NULL.

The functions getnetent () and getnetent_r () each return a pointer to a struct
netent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

The functions getnetbyname (), getnetbyaddr (), and getnetent () use static
storage, so returned data must be copied before a subsequent call to any of these
functions if the data is to be saved.

When the pointer returned by the reentrant functions getnetbyname_r (),
getnetbyaddr r (), and getnetent r () is non-NULL, it is always equal to the
result pointer that was supplied by the caller.

The functions setnetent () and endnetent () return 0 on success.

The reentrant functions getnetbyname r (), getnetbyaddr r and

getnetent_r () will return NULL and set errno to ERANGE if the length of the buffer
supplied by caller is not large enough to store the result. See intro(2) for the proper
usage and interpretation of errno in multi-threaded applications.

/etc/networks network name database

/etc/nsswitch.conf configuration file for the name service switch

man pages section 3: Networking Library Functions ¢ Last Revised 4 Nov 2004

ATTRIBUTES

SEE ALSO

WARNINGS

NOTES

getnetbyname(3SOCKET)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Intro(2), Intro(3), byteorder(3SOCKET), inet(3SOCKET), netdb.h(3HEAD),
networks(4), nsswitch.conf(4), attributes(b)

Fuller, V,, Li, T, Yu, J., and Varadhan, K. RFC 1519, Classless Inter-Domain Routing
(CIDR): an Address Assignment and Aggregation Strategy. Network Working Group.
September 1993.

The reentrant interfaces getnetbyname r (), getnetbyaddr r(),and
getnetent_r () are included in this release on an uncommitted basis only, and are
subject to change or removal in future minor releases.

The current implementation of these functions only return or accept network numbers
for the Internet address family (type AF_INET). The functions described in
inet(3SOCKET) may be helpful in constructing and manipulating addresses and
network numbers in this form.

When compiling multi-threaded applications, see Intro(3), Notes On Multithread
Applications, for information about the use of the REENTRANT flag.

Use of the enumeration interfaces getnetent () and getnetent r () is
discouraged; e