»
2 Sun

microsystems

man pages section 3: Extended
Library Functions

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816-5172—-10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights — Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 1'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systeme Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l'industrie
de I'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

a &

Adobe PostScript

©

050105@ 10536

Contents

Preface 21

Extended Library Functions
aclcheck(3SEC) 28
aclsort(3SEC) 30
acltomode(3SEC) 31
acltotext(3SEC) 32
acos(BM) 34
acosh(3M) 36
asin(3M) 38
asinh(3M) 40
atan2(3M) 41
atan(3M) 43
atanh(3M) 44
au_open(3BSM) 46
au_preselect(3BSM) 48
au_to(3BSM) 50
auto_ef(3EXT) 53
au_user_mask(3BSM) 56
bgets(3GEN) 57
bufsplit(3GEN) 59
cabs(3M) 60
cacos(3M) 61
cacosh(3M) 62
carg(3M) 63
casin(3M) 64

27

casinh(3M) 65

catan(3M) 66

catanh(3M) 67

cbrt(3M) 68

ccos(3M) 69

ccosh(3M) 70

ceilBM) 71

cexp(B3M) 72

cimag(3M) 73

clog(3M) 74
config_admin(3CFGADM) 75
conj(3M) 83
ConnectToServer(3DMI) 84
copylist(3GEN) 85
copysign(3M) 86

cos(3M) 87

cosh(3M) 88

cpc(B3CPC) 90
cpc_access(3CPC) 92
cpc_bind_curlwp(3CPC) 93
cpc_bind_event(3CPC) 101
cpc_buf_create(3CPC) 107
cpc_count_usr_events(3CPC) 110
cpc_enable(3CPC) 112
cpc_event(3CPC) 114
cpc_event_diff(3CPC) 116
cpc_getcpuver(3CPC) 118
cpc_npic(3CPC) 120
cpc_open(3CPC) 122
cpe_pctx_bind_event(3CPC) 123
cpc_set_create(3CPC) 125
cpc_seterrin(3CPC) 128
cpc_seterrhndIr(3CPC) 129
cpc_shared_open(3CPC) 131
cpc_strtoevent(3CPC) 133
cpc_version(3CPC) 135
cpl_complete_word(3TECLA) 136
cpow(3M) 142

4 man pages section 3: Extended Library Functions * January 2005

cproj(3M) 143

creal(3M) 144

csin(3M) 145

csinh(3M) 146

csqrt(BM) 147

ctan(3M) 148

ctanh(3M) 149
ct_ctl_adopt(3CONTRACT) 150
ct_event_read(3CONTRACT) 152
ct_pr_event_get_pid(3CONTRACT) 155
ct_pr_status_get_param(3CONTRACT) 158
ct_pr_tmpl_set_transfer(3CONTRACT) 160
ct_status_read(B3CONTRACT) 163
ct_tmpl_activate(3CONTRACT) 166
dat_cno_create(3DAT) 168
dat_cno_free(3DAT) 169
dat_cno_modify_agent(3DAT) 170
dat_cno_query(3DAT) 171
dat_cno_wait(3DAT) 172
dat_cr_accept(3DAT) 174
dat_cr_handoff(3DAT) 176
dat_cr_query(3DAT) 177
dat_cr_reject(3DAT) 178
dat_ep_connect(3DAT) 179
dat_ep_create(3DAT) 183
dat_ep_create_with_srq(3DAT) 187
dat_ep_disconnect(3DAT) 192
dat_ep_dup_connect(3DAT) 194
dat_ep_free(3DAT) 197
dat_ep_get_status(3DAT) 199
dat_ep_modify(3DAT) 201
dat_ep_post_rdma_read(3DAT) 206
dat_ep_post_rdma_write(3DAT) 209
dat_ep_post_recv(3DAT) 212
dat_ep_post_send(3DAT) 215
dat_ep_query(3DAT) 218
dat_ep_recv_query(3DAT) 220
dat_ep_reset(3DAT) 223

dat_ep_set_watermark(3DAT) 224
dat_evd_clear_unwaitable(3DAT) 226
dat_evd_dequeue(3DAT) 227
dat_evd_disable(3DAT) 229
dat_evd_enable(3DAT) 230
dat_evd_free(3DAT) 231
dat_evd_modify_cno(3DAT) 232
dat_evd_post_se(3DAT) 234
dat_evd_query(3DAT) 235
dat_evd_resize(3DAT) 236
dat_evd_set_unwaitable(3DAT) 237
dat_evd_wait(3DAT) 238
dat_get_consumer_context(3DAT) 242
dat_get_handle_type(3DAT) 243
dat_ia_close(3DAT) 244
dat_ia_open(3DAT) 247
dat_ia_query(3DAT) 250
dat_lmr_create(3DAT) 255
dat_Imr_free(3DAT) 259
dat_Imr_query(3DAT) 260
dat_Imr_sync_rdma_read(3DAT) 261
dat_Imr_sync_rdma_write(3DAT) 263
dat_provider_fini(3DAT) 265
dat_provider_init(3DAT) 266
dat_psp_create(3DAT) 268
dat_psp_create_any(3DAT) 272
dat_psp_free(3DAT) 274
dat_psp_query(3DAT) 275
dat_pz_create(3DAT) 276
dat_pz_free(3DAT) 277
dat_pz_query(3DAT) 278
dat_registry_add_provider(3DAT) 279
dat_registry_list_providers(3DAT) 280
dat_registry_remove_provider(3DAT) 282
dat_rmr_bind(3DAT) 283
dat_rmr_create(3DAT) 287
dat_rmr_free(3DAT) 288
dat_rmr_query(3DAT) 289

6 man pages section 3: Extended Library Functions * January 2005

dat_rsp_create(3DAT) 290
dat_rsp_free(3DAT) 292
dat_rsp_query(3DAT) 293
dat_set_consumer_context(3DAT) 294
dat_srq_create(3DAT) 295
dat_srq_free(3DAT) 298
dat_srq_post_recv(3DAT) 299
dat_srq_query(3DAT) 302
dat_srq_resize(3DAT) 304
dat_srq_set_Iw(3DAT) 306
dat_strerror(3DAT) 308
demangle(3EXT) 309
devid_get(3DEVID) 310
di_binding_name(3DEVINFO) 314
di_child_node(3DEVINFO) 316
di_devfs_path(3DEVINFO) 318
di_init(3DEVINFO) 319
di_link_next_by_node(3DEVINFO) 322
di_link_spectype(3DEVINFO) 323
di_Inode_name(3DEVINFO) 324
di_Inode_next(3DEVINFO) 325
di_Inode_private_set(3DEVINFO) 326
di_minor_devt(3DEVINFO) 328
di_minor_next(3DEVINFO) 329
di_prom_init(3DEVINFO) 330
di_prom_prop_data(3DEVINFO) 331
di_prom_prop_lookup_bytes(3DEVINFO)
di_prop_bytes(3DEVINFO) 335
di_prop_lookup_bytes(3DEVINFO) 338
di_prop_next(3DEVINFO) 340
DisconnectToServer(3DMI) 341
di_walk_link(3DEVINFO) 342
di_walk_Inode(3DEVINFO) 343
di_walk_minor(3DEVINFO) 344
di_walk_node(3DEVINFO) 345
DmiAddComponent(3DMI) 346
DmiAddRow(3DMI) 350
dmi_error(3DMI) 355

333

DmiGetConfig(3DMI) 356
DmilListAttributes(3DMI) 359
DmiRegisterCi(3DMI) 364
ea_error(3EXACCT) 366
ea_open(3EXACCT) 367
ea_pack_object(3EXACCT) 369
ea_set_item(BEXACCT) 374
ef_expand_file(3TECLA) 377
efi_alloc_and_init(3EXT) 381
elf32_checksum(3ELF) 383
elf32_fsize(3ELF) 384
elf32_getehdr(3ELF) 385
elf32_getphdr(3ELF) 387
elf32_getshdr(3ELF) 389
elf32_xlatetof(3ELF) 390
elf(3ELF) 392
elf_begin(3ELF) 398
elf_cntl(3ELF) 403

elf errmsg(3ELF) 405
elf_fill(BELF) 406

elf flagdata(3ELF) 407
elf_getarhdr(3ELF) 409
elf_getarsym(3ELF) 411
elf _getbase(3ELF) 412
elf_getdata(3ELF) 413
elf_getident(3ELF) 418
elf_getscn(3ELF) 420
elf_hash(3ELF) 422

elf kind(3ELF) 423
elf_rawfile(3ELF) 424
elf_strptr(3ELF) 425
elf_update(3ELF) 426
elf_version(3ELF) 430
erf(3M) 431

erfc(3M) 432
Exacct(3PERL) 433
Exacct::Catalog(3PERL) 436
Exacct::File(3PERL) 438

8 man pages section 3: Extended Library Functions * January 2005

Exacct::Object(3PERL) 441
Exacct::Object::Group(BPERL) 444
Exacct::Object::Item(3PERL) 446
exp2(3M) 448

exp(BM) 449
expml(3M) 451
fabs(3M) 453
fdim(3M) 454
feclearexcept(3M) 455
fegetenv(3M) 456
fegetexceptflag(3M) 457
fegetround(3M) 458
feholdexcept(3M) 459
feraiseexcept(3M) 460
fesetprec(3M) 461
fetestexcept(3M) 462
feupdateenv(3M) 463
fex_merge_flags(3M) 465
fex_set_handling(3M) 466
fex_set_log(3M) 470
floor(3M) 473

fma(3M) 474
fmax(3M) 476
fmin(3M) 477
fmod(BM) 478
fpclassify(3M) 479
freeDmiString(3DMI) 480
frexp(3M) 481
celf(GELF) 482
getacinfo(3BSM) 488
getauclassent(3BSM) 490
getauditflags(3BSM) 492
getauevent(3BSM) 493
getauthattr(3SECDB) 495
getauusernam(3BSM) 498
getddent(3BSM) 500
getdmapent(3BSM) 502
getexecattr(3SECDB) 504

10

getfauditflags(3BSM) 507
getprofattr(3SECDB) 508
getprojent(3PROJECT) 510
getuserattr(3SECDB) 514
gl_get_line(BTECLA) 516
gl_io_mode(3TECLA) 544

gmatch(3GEN) 551
HBA_GetAdapterAttributes(3HBAAPI) 552
HBA_GetAdapterName(3HBAAPI) 553
HBA_GetAdapterPortAttributes(3HBAAPI) 555
HBA_GetBindingCapability(3HBAAPI) 558
HBA_GetEventBuffer(3HBAAPI) 560
HBA_GetFcpPersistentBinding(3HBAAPI) 561
HBA_GetFcpTargetMapping(3BHBAAPI) 565
HBA_GetNumberOfAdapters(3HBAAPI) 568
HBA_GetPortStatistics(BHBAAPI) 569
HBA_GetVersion(3HBAAPI) 571

HBA_GetWrapperLibraryAttributes(3HBAAPI) 572

HBA_LoadLibrary(3HBAAPI) 573
HBA_OpenAdapter(3HBAAPI) 574
HBA_RefreshInformation(3HBAAPI) 576
HBA_RegisterForAdapterEvents(3HBAAPI) 577
HBA_SendCTPassThru(3HBAAPI) 582
HBA_SendRLS(3HBAAPI) 585
HBA_SendScsilnquiry(3HBAAPI) 588
HBA_SetRNIDMgmtInfo(3HBAAPI) 593
hypot(3M) 596

idn_decodename(3EXT) 598
IFDHCloseChannel(3SMARTCARD) 606
IFDHControl(3SMARTCARD) 607
IFDHCreateChannel(3SMARTCARD) 608
IFDHCreateChannelByName(3SMARTCARD) 609
IFDHGetCapabilities(3SMARTCARD) 611
IFDHICCPresence(3SMARTCARD) 613
IFDHPowerlCC(3SMARTCARD) 614
IFDHSetCapabilities(3SMARTCARD) 616
IFDHSetProtocolParameters(3SMARTCARD) 617
IFDHTransmitToICC(3SMARTCARD) 619

man pages section 3: Extended Library Functions ¢ January 2005

ilogb(3M) 621
isencrypt(3GEN) 622
isfinite(3M) 623
isgreater(3M) 624
isgreaterequal(3M) 625
isinf(3M) 626
isless(3M) 627
islessequal(3M) 628
islessgreater(3M) 629
isnan(3M) 630
isnormal(3M) 631
isunordered(3M) 632
jio3M) 633
kstat(3KSTAT) 634
Kstat(3PERL) 640
kstat_chain_update(3KSTAT)
kstat_lookup(3KSTAT) 643
kstat_open(3KSTAT) 644
kstat_read(3KSTAT) 645
kva_match(3SECDB) 646
kvm_getu(3KVM) 647
kvm_kread(BKVM) 649
kvm_nextproc(3KVM) 650
kvm_nlist(3KVM) 652
kvm_open(3KVM) 653
kvm_read(3KVM) 655
Idexp(3M) 656
1d_support(3EXT) 658
Igamma(3M) 659

lgrp_affinity_get(3LGRP) 662

lgrp_children(3LGRP) 664

642

lgrp_cookie_stale(3LGRP) 665

lgrp_cpus(3LGRP) 666
lgrp_fini(BLGRP) 667
lgrp_home(BLGRP) 668
lgrp_init(BLGRP) 669
Igrp_latency(3LGRP) 670
lgrp_mem_size(3LGRP) 671

1

lgrp_nlgrps(3LGRP) 672
lgrp_parents(3LGRP) 673
lgrp_root(3LGRP) 674
lgrp_version(3LGRP) 675
lgrp_view(BLGRP) 676
libpicl3PICL) ~ 677
libpicltree(3PICLTREE) 680
libtecla_version(3TECLA) 682
libtnfctl(3TNF) 683

lIrint(3M) 688

llround(3M) 690

logl0O(3M) 692

loglp(BM) 694

log2(3M) 696

log(3M) 698

logb(3M) 700

Irint(3M) 702

Iround(3M) 703
maillock(BMAIL) 704
matherr(3M) 706
m_create_layout(3LAYOUT) 712
md53EXT) 714
m_destroy_layout(3LAYOUT) 716
media_findname(3VOLMGT) 717
media_getattr(SVOLMGT) 719
media_getid B3VOLMGT) 721
m_getvalues_layout(3LAYOUT) 722
mkdirp(3GEN) 723

modf(3M) 724

mp(3MP) 725
m_setvalues_layout(3LAYOUT) 727
m_transform_layout(3LAYOUT) 728
m_wtransform_layout(3LAYOUT) 733
nan(3M) 739

nearbyint(3M) 740
newDmiOctetString(3DMI) 741
newDmiString(3DMI) 742
nextafter(3M) 743

12 man pages section 3: Extended Library Functions ¢ January 2005

nlist(3ELF) 745

NOTEQEXT) 746
nvlist_add_boolean(3NVPAIR) 748
nvlist_alloc(3NVPAIR) 751
nvlist_lookup_boolean(3NVPAIR) 758
nvlist_next_nvpair(3NVPAIR) 761
nvlist_remove(3NVPAIR) 764
nvpair_value_byte(3NVPAIR) 765
p2open(3GEN) 767

pam(3PAM) 769
pam_acct_mgmt(3PAM) 772
pam_authenticate(3PAM) 773
pam_chauthtok(3PAM) 775
pam_getenv(3PAM) 777
pam_getenvlist(3PAM) 778
pam_get_user(3PAM) 779
pam_open_session(3PAM) 780
pam_putenv(3PAM) 781
pam_setcred(3PAM) 783
pam_set_data(3PAM) 785
pam_set_item(3PAM) 787
pam_sm(3PAM) 789
pam_sm_acct_mgmt(3PAM) 793
pam_sm_authenticate(3PAM) 795
pam_sm_chauthtok(3PAM) 797
pam_sm_open_session(3PAM) 800
pam_sm_setcred(3PAM) 801
pam_start(3PAM) 803
pam_strerror(3PAM) 805
pathfind(3GEN) 806
pca_lookup_file(3TECLA) 808
pctx_capture(3CPC) 812
pctx_set_events(3CPC) 814
picld_log(3PICLTREE) 817
picld_plugin_register(3PICLTREE) 818
picl_find_node(3PICL) 820
picl_get_first_prop(3PICL) 821
picl_get_frutree_parent(3PICL) 822

13

picl_get_next_by_row(3PICL) 823
picl_get_node_by_path(3PICL) 824
picl_get_prop_by_name(3PICL) 826
picl_get_propinfo(3PICL) 827
picl_get_propinfo_by_name(3PICL) 828
picl_get_propval(3PICL) 829
picl_get_root(BPICL) 831
picl_initialize(3PICL) 832
picl_set_propval(3PICL) 833
picl_shutdown(3PICL) 835
picl_strerror(3PICL) 836
picl_wait(3PICL) 837
picl_walk_tree_by_class(3PICL) 838
pool_associate(3POOL) 839
pool_component_info(3POOL) 842
pool_component_to_elem(3POOL) 844
pool_conf_alloc(3POOL) 845
pool_dynamic_location(3POOL) 851
pool_error(3POOL) 854
pool_get_binding(3POOL) 856
pool_get_pool(3POOL) 859
pool_get_property(3POOL) 861
pool_resource_create(3POOL) 864
pool_value_alloc(3POOL) 867
pool_walk_components(3POOL) 870
pow(3M) 872
printDmiAttributeValues(3DMI) 875
printDmiDataUnion(3DMI) 876
printDmiString(3DMI) 877
Privilege(3PERL) 878
Project(3PERL) 880
project_walk(3PROJECT) 882
ptree_add_node(3PICLTREE) 884
ptree_add_prop(3PICLTREE) 885
ptree_create_and_add_node(3PICLTREE) 886
ptree_create_and_add_prop(3PICLTREE) 887
ptree_create_node(3PICLTREE) 888
ptree_create_prop(3PICLTREE) 889

14 man pages section 3: Extended Library Functions ¢ January 2005

ptree_create_table(3PICLTREE) 891
ptree_find_node(BPICLTREE) 892
ptree_get_first_prop(3PICLTREE) 893
ptree_get_frutree_parent(3PICLTREE) 894
ptree_get_next_by_row(3PICLTREE) 895
ptree_get_node_by_path(3PICLTREE) 896
ptree_get_prop_by_name(3PICLTREE) 898
ptree_get_propinfo(3PICLTREE) 899
ptree_get_propinfo_by_name(3PICLTREE) 900
ptree_get_propval(BPICLTREE) 901
ptree_get_root(3PICLTREE) 902
ptree_init_propinfo(3PICLTREE) 903
ptree_post_event(3PICLTREE) 904
ptree_register_handler(3PICLTREE) 905
ptree_unregister_handler(3PICLTREE) 906
ptree_update_propval BPICLTREE) 907
ptree_walk_tree_by_class(3PICLTREE) 908
read_vtoc(3EXT) 909
reg_ci_callback(3DMI) 910
regexpr(3GEN) 911

remainder(3M) 914

remquo(3M) 915

rint(3M) 916

round(3M) 917
rsm_create_localmemory_handle(3RSM) 918
rsm_get_controller(3RSM) 920
rsm_get_interconnect_topology(3RSM) 922
rsm_get_segmentid_range(3RSM) 924
rsm_intr_signal_post(3RSM) 926
rsm_intr_signal_wait_pollfd(3RSM) 928
rsm_memseg_export_create(3RSM) 930
rsm_memseg_export_publish(3RSM) 933
rsm_memseg_get_pollfd(3RSM) 936
rsm_memseg_import_connect(3RSM) 937
rsm_memseg_import_get(3RSM) 939
rsm_memseg_import_init_barrier(3RSM) 941
rsm_memseg_import_map(3RSM) 942
rsm_memseg_import_open_barrier(3RSM) 944

15

rsm_memseg_import_put(3RSM) 946
rsm_memseg_import_putv(3RSM) 948
rsm_memseg_import_set_mode(3RSM) 950
rtld_audit(3EXT) 951

rtld_db(3EXT) 952

scalb(3M) 953

scalbIn(3M) 955
SCF_Card_exchangeAPDU(3SMARTCARD) 957
SCF_Card_lock(3SMARTCARD) 959
SCF_Card_reset(3SMARTCARD) 961
scf_entry_create(3SCF) 963

scf_error(3SCF) 965

scf_handle_create(3SCF) 967
scf_handle_decode_fmri(3SCF) 970
scf_instance_create(3SCF) 973
scf_iter_create(3SCF) 977

scf_limit(3SCF) 983

scf_pg_create(3SCF) 984
scf_property_create(3SCF) 991
scf_scope_create(3SCF) 994
scf_service_create(3SCF) 997
SCF_Session_close(3SMARTCARD) 1001
SCF_Session_freeInfo(3SMARTCARD) 1003
SCF_Session_getInfo(3SMARTCARD) 1005
SCF_Session_getSession(3SMARTCARD) 1008
SCF_Session_getTerminal 3SMARTCARD) 1010
scf_simple_prop_get(3SCF) 1013
scf_simple_walk_instances(3SCF) 1020
scf_snaplevel_create(3SCF) 1021
scf_snapshot_create(3SCF) 1025
SCF_strerror(3SMARTCARD) 1028
SCF_Terminal_addEventListener(3SMARTCARD) 1029
SCF_Terminal_getCard(3SMARTCARD) 1035
SCF_Terminal_waitForCardPresent(3SMARTCARD) 1037
scf_transaction_create(3SCF) 1040
scf_value_create(3SCF) 1046

sendfile(3EXT) 1051

sendfilev(3EXT) 1054

16 man pages section 3: Extended Library Functions ¢ January 2005

setproject(3PROJECT) 1057
signbit(3M) 1060

significand(3M) 1061

sin(3M) 1062

sincos(3M) 1063

sinh(3M) 1064
smf_enable_instance(3SCF) 1066
sqrt(3M) 1069
SSAAgentlsAlive(3SNMP) 1071
SSAOidCmp(3SNMP) 1074
SSAStringCpy(3SNMP) 1076
stdarg(3EXT) 1077

strccpy(3GEN) 1079

strfind(3GEN) 1080
SUNW_C_GetMechSession(3EXT) 1081
sysevent_bind_handle(3SYSEVENT) 1083
sysevent_free(3SYSEVENT) 1085
sysevent_get_attr_list(3SYSEVENT) 1086
sysevent_get_class_name(3SYSEVENT) 1087
sysevent_get_vendor_name(3SYSEVENT) 1089
sysevent_post_event(3SYSEVENT) 1091
sysevent_subscribe_event(3SYSEVENT) 1093
tan(3M) 1096

tanh(3M) 1097

Task(3PERL) 1098

tgamma(3M) 1099
tnfctl_buffer_alloc(3TNF) 1101
tnfctl_close(3TNF) 1103
tnfctl_indirect_open(3TNF) 1105
tnfctl_internal_open(3TNF) 1108
tnfctl_kernel_open(3TNF) 1110
tnfctl_pid_open(3TNF) 1111
tnfctl_probe_apply(3TNF) 1116
tnfctl_probe_state_get(3TNF) 1119
tnfctl_register_funcs(3TNF) 1123
tnfctl_strerror(3TNF) 1124
tnfctl_trace_attrs_get(3TNF) 1125
tnfctl_trace_state_set(3TNF) 1127

TNF_DECLARE_RECORD(3TNF) 1129
TNF_PROBE(3TNF) 1132
tnf_process_disable(3TNF) 1137
tracing(3TNF) 1139

trunc(3M) 1143

Ucred(3PERL) 1144

uuid_clear(3UUID) 1146

varargs(3EXT) 1148

vatan_(BMVEC) 1150

vc_abs_(BMVEC) 1153
volmgt_acquire(Q3VOLMGT) 1155
volmgt_check(3VOLMGT) 1158
volmgt_feature_enabled(3VOLMGT) 1159
volmgt_inuse(3VOLMGT) 1160
volmgt_ownspath(3VOLMGT) 1161
volmgt_release(3VOLMGT) 1162
volmgt_root(3VOLMGT) 1163
volmgt_running(3VOLMGT) 1164
volmgt_symname(3VOLMGT) 1165
wsreg_add_child_component(3WSREG) 1167
wsreg_add_compatible_version(3WSREG) 1169
wsreg_add_dependent_component(3WSREG) 1171
wsreg_add_display_name(BWSREG) 1173
wsreg_add_required_component(3WSREG) 1175
wsreg_can_access_registry(3WSREG) 1177
wsreg_clone_component(3WSREG) 1179
wsreg_components_equal(3WSREG) 1180
wsreg_create_component(3WSREG) 1181
wsreg_get(3WSREG) 1182
wsreg_initializeBWSREG) 1183
wsreg_query_create(BWSREG) 1184
wsreg_query_set_id(3WSREG) 1185
wsreg_query_set_instance(3WSREG) 1186
wsreg_query_set_location(3WSREG) 1187
wsreg_query_set_unique_name(3WSREG) 1188
wsreg_query_set_version(3WSREG) 1189
wsreg_register(3WSREG) 1190
wsreg_set_data(3WSREG) 1192

18 man pages section 3: Extended Library Functions ¢ January 2005

wsreg_set_id(3WSREG) 1194
wsreg_set_instance(3WSREG) 1195
wsreg_set_location(3WSREG) 1197
wsreg_set_parent(BWSREG) 1198
wsreg_set_type(3WSREG) 1199
wsreg_set_uninstaller(3WSREG) 1200
wsreg_set_unique_name(3WSREG) 1201
wsreg_set_vendor(3WSREG) 1202
wsreg_set_version(3WSREG) 1203
wsreg_unregister(BWSREG) 1204
yO(BM) 1206

Index 1209

19

20 man pages section 3: Extended Library Functions ¢ January 2005

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the
information it references:

Section 1 describes, in alphabetical order, commands available with the operating
system.

Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

Section 5 contains miscellaneous documentation such as character-set tables.
Section 6 contains available games and demos.

Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

21

22

m Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

m Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

® Section 9F describes the kernel functions available for use by device drivers.

m Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename

Separator. Only one of the arguments
separated by this character can be
specified at a time.

{} Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

man pages section 3: Extended Library Functions ¢ January 2005

PROTOCOL

DESCRIPTION

IOCTL

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

This section occurs only in subsection 3R to
indicate the protocol description file.

This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioct1(2) system call is called
ioctl and generates its own heading. ioct1 calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioct1 calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

This section lists the command operands and
describes how they affect the actions of the
command.

This section describes the output — standard output,
standard error, or output files — generated by the
command.

If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or -1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the

23

USAGE

EXAMPLES

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example$%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(b) for more information.

This section lists references to other man pages,
in-house documentation, and outside publications.

24 man pages section 3: Extended Library Functions ¢ January 2005

DIAGNOSTICS

WARNINGS

NOTES

BUGS

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

This section describes known bugs and, wherever
possible, suggests workarounds.

25

26 man pages section 3: Extended Library Functions ¢ January 2005

Extended Library Functions

27

aclcheck(3SEC)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

aclcheck — check the validity of an ACL

cc

[flag... 1 file... -1sec [library...]

#include <sys/acl.h>

int aclcheck (aclent t *aclbufp, int nentries, int =*which) ;

The aclcheck () function checks the validity of an ACL pointed to by aclbufp. The
nentries argument is the number of entries contained in the buffer. The which
parameter returns the index of the first entry that is invalid.

The function verifies that an ACL pointed to by aclbufp is valid according to the
following rules:

There must be exactly one GROUP_0BJ ACL entry.
There must be exactly one USER _0BJ ACL entry.
There must be exactly one OTHER_OBJ ACL entry.

If there are any GROUP ACL entries, then the group ID in each group ACL entry
must be unique.

If there are any USER ACL entries, then the user ID in each user ACL entry must be
unique.

If there are any GROUP or USER ACL entries, then there must be exactly one
CLASS_OBJ (ACL mask) entry.

If there are any default ACL entries, then the following apply:

® There must be exactly one default GROUP_OBJ ACL entry.
® There must be exactly one default OTHER_OBJ ACL entry.
m There must be exactly one default USER_OBJ ACL entry.

m If there are any DEF_GROUP entries, then the group ID in each DEF_GROUP ACL
entry must be unique.

m If there are any DEF_USER entries, then the user ID in each DEF_USER ACL
entry must be unique.

m If there are any DEF_GROUP or DEF_USER entries, then there must be exactly
one DEF_CLASS OBJ (default ACL mask) entry.

If any of the above rules are violated, then the function fails with errno set to
EINVAL.

If the ACL is valid, alcheck () will return 0. Otherwise errno is set to EINVAL and
return code is set to one of the following:

GRP_ERROR There is more than one GROUP_OBJ or
DEF_GROUP_OBJ ACL entry.

USER_ERROR There is more than one USER_OBJ or DEF_USER_OBJ
ACL entry.

CLASS ERROR There is more than one CLASS 0OBJ (ACL mask) or

DEF_CLASS_OBJ (default ACL mask) entry.

28 man pages section 3: Extended Library Functions ¢ Last Revised 10 Dec 2001

ATTRIBUTES

SEE ALSO

OTHER ERROR

DUPLICATE ERROR

ENTRY_ ERROR

MISS ERROR

MEM_ERROR

aclcheck(3SEC)

There is more than one OTHER OBJ or
DEF_OTHER_OBJ ACL entry.

Duplicate entries of USER, GROUP, DEF USER, or
DEF_GROUP.

The entry type is invalid.

Missing an entry. The which parameter returns —1 in
this case.

The system cannot allocate any memory. The which
parameter returns —1 in this case.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

MT-Level

Unsafe

acl(2), aclsort(3SEC), attributes(b)

Extended Library Functions 29

aclsort(3SEC)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

30

ATTRIBUTES

SEE ALSO

aclsort — sort an ACL

ce [flag ... 1 file ... -1lsec [library ...]
#include <sys/acl.h>

int aclsort (int mnentries, int calclass, aclent_t *aclbufp) ;

The aclbufp argument points to a buffer containing ACL entries. The nentries argument
specifies the number of ACL entries in the buffer. The calclass argument, if non-zero,
indicates that the CLASS_0BJ (ACL mask) permissions should be recalculated. The
union of the permission bits associated with all ACL entries in the buffer other than
CLASS OBJ, OTHER OBJ, and USER OBJ is calculated. The result is copied to the
permission bits associated with the CLASS OBJ entry.

The aclsort () function sorts the contents of the ACL buffer as follows:

m Entries will be in the order USER_0BJ, USER, GROUP_OBJ, GROUP, CLASS_OBJ
(ACL mask), OTHER_OBJ, DEF_USER_OBJ, DEF_USER, DEF_GROUP_OBJ,
DEF_GROUP, DEF_CLASS_ OBJ (default ACL mask), and DEF_OTHER OBJ.

m Entries of type USER, GROUP, DEF_USER, and DEF_GROUP will be sorted in
increasing order by ID.

The aclsort () function will succeed if all of the following are true:

m There is exactly one entry each of type USER_OBJ, GROUP_OBJ, CLASS_0OBJ (ACL
mask), and OTHER OBJ.

m There is exactly one entry each of type DEF_USER_OBJ, DEF_GROUP_OBJ,
DEF_CLASS_OBJ (default ACL mask), and DEF_OTHER_OBJ if there are any
default entries.

m Entries of type USER, GROUP, DEF_USER, or DEF _GROUP may not contain duplicate
entries. A duplicate entry is one of the same type containing the same numeric ID.

Upon successful completion, the function returns 0. Otherwise, it returns —1.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

acl(2), aclcheck(3SEC), attributes(b)

man pages section 3: Extended Library Functions e Last Revised 10 Dec 2001

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

acltomode(3SEC)
acltomode, aclfrommode — convert an ACL to or from permission bits

ce [flag... 1 file... -lsec [library...]
#include <sys/types.h>
#include <sys/acl.h>

int acltomode (aclent t *aclbufp, int nentries, mode t *modep) ;

int aclfrommode (aclent t *aclbufp, int nentries, mode t *modep) ;

The acltomode () function converts an ACL pointed to by aclbufp into the permission
bits buffer pointed to by modep. If the USER_0OBJ ACL entry, GROUP_0OBJ ACL entry, or
the OTHER_OBJ ACL entry cannot be found in the ACL buffer, then the function fails
with errno set to EINVAL.

The USER_OBJ ACL entry permission bits are copied to the file owner class bits in the
permission bits buffer. The OTHER _OBJ ACL entry permission bits are copied to the
file other class bits in the permission bits buffer. If there is a CLASS_0OBJ (ACL mask)
entry, the CLASS_OBJ ACL entry permission bits are copied to the file group class bits
in the permission bits buffer. Otherwise, the GROUP_0OBJ ACL entry permission bits
are copied to the file group class bits in the permission bits buffer.

The aclfrommode () function converts the permission bits pointed to by modep into
an ACL pointed to by aclbufp. If the USER_0OBJ ACL entry, GROUP_0BJ ACL entry, or
the OTHER_OBJ ACL entry cannot be found in the ACL buffer, the function fails with
errno set to EINVAL.

The file owner class bits from the permission bits buffer are copied to the USER_OBJ
ACL entry. The file other class bits from the permission bits buffer are copied to the
OTHER_OBJ ACL entry. If there is a CLASS_0OBJ (ACL mask) entry, the file group class
bits from the permission bits buffer are copied to the CLASS 0BJ ACL entry, and the
GROUP_O0OBJ ACL entry is not modified. Otherwise, the file group class bits from the
permission bits buffer are copied to the GROUP_0BJ ACL entry.

The nentries argument represents the number of ACL entries in the buffer pointed to
by aclbufp.

Upon successful completion, the function returns 0. Otherwise, it returns —1 and sets
errno to indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

acl(2), attributes(b)

Extended Library Functions 31

acltotext(3SEC)
NAME

SYNOPSIS

DESCRIPTION

acltotext, aclfromtext — convert internal representation to or from external
representation

ce [flag... 1 file... -1lsec [library...]

#include <sys/acl.h>
char *acltotext(aclent t *aclbufp, int aclent) ;

aclent t *aclfromtext (char *acltextp, int *aclent) ;

The acltotext () function converts an internal ACL representation pointed to by
aclbufp into an external ACL representation. The space for the external text string is
obtained using malloc(3C). The caller is responsible for freeing the space upon
completion..

The aclfromtext () function converts an external ACL representation pointed to by
acltextp into an internal ACL representation. The space for the list of ACL entries is
obtained using malloc(3C). The caller is responsible for freeing the space upon
completion. The aclcnt argument indicates the number of ACL entries found.

An external ACL representation is defined as follows:

<acl_entry>[,<acl_entry>]...

Each <acl_entry> contains one ACL entry. The external representation of an ACL entry
contains two or three colon-separated fields. The first field contains the ACL entry tag
type. The entry type keywords are defined as:

user This ACL entry with no UID specified in the ACL entry ID field
specifies the access granted to the owner of the object. Otherwise,
this ACL entry specifies the access granted to a specific user-name
or user-id number.

group This ACL entry with no GID specified in the ACL entry ID field
specifies the access granted to the owning group of the object.
Otherwise, this ACL entry specifies the access granted to a specific
group-name or group-id number.

other This ACL entry specifies the access granted to any user or group
that does not match any other ACL entry.

mask This ACL entry specifies the maximum access granted to user or
group entries.

default:user This ACL entry with no uid specified in the ACL entry ID field
specifies the default access granted to the owner of the object.
Otherwise, this ACL entry specifies the default access granted to a
specific user-name or user-ID number.

32 man pages section 3: Extended Library Functions ¢ Last Revised 10 Dec 2001

RETURN VALUES

ATTRIBUTES

SEE ALSO

default:group This ACL entry with no gid specified in the ACL entry ID field

acltotext(3SEC)

specifies the default access granted to the owning group of the
object. Otherwise, this ACL entry specifies the default access
granted to a specific group-name or group-ID number.

default:other This ACL entry specifies the default access for other entry.

default:mask This ACL entry specifies the default access for mask entry.

The second field contains the ACL entry ID, as follows:

uid This field specifies a user-name, or user-ID if there is no user-name

associated with the user-ID number.

gid This field specifies a group-name, or group-ID if there is no
group-name associated with the group-ID number.

empty This field is used by the user and group ACL entry types.

The third field contains the following symbolic discretionary access permissions:

r read permission

w write permission

x execute/search permission
- no access

Upon successful completion, the acltotext () function returns a pointer to a text

string. Otherwise, it returns NULL.

Upon successful completion, the aclfromtext () function returns a pointer to a list

of ACL entries. Otherwise, it returns NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

MT-Level

Unsafe

acl(2), malloc(3C), attributes(5)

Extended Library Functions

33

acos(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

acos, acosf, acosl — arc cosine functions

cc [flag... 1 file... -1m [library...]

#include <math.h>
double acos (double x) ;
float acosf (float x);

long double acosl (long double x) ;

These functions compute the principal value of the arc cosine of x. The value of x
should be in the range [-1,1].

Upon successful completion, these functions return the arc cosine of x in the range [0,
7] radians.

For finite values of x not in the range [-1,1], a domain error occurs and NaN is
returned.

If x is NaN, NaN is returned.
If x is +1, +0 is returned.
If x is +Inf, a domain error occurs and NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by acos () as
specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The x argument is finite and not in the range [-1,1], or is +Inf.

If the integer expression (math errhandling &
MATH ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The acos () function sets errno to EDOM if x is not +Inf or NaN
and is not in the range [-1,1].

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_ EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling acos (). On return, if errno is
non-zero, an error has occurred. The acosf () and acosl () functions do not set
errno.

34 man pages section 3: Extended Library Functions ¢ Last Revised 1 Sep 2001

ATTRIBUTES

SEE ALSO

acos(3M)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard

MT-Level

MT-Safe

cos(BM), feclearexcept(3M), fetestexcept(3M), isnan(3M), math.h(3HEAD),
matherr(3M), attributes(5), standards(5)

Extended Library Functions

35

acosh(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

acosh, acoshf, acoshl — inverse hyperbolic cosine functions

cc [flag... 1 file... -1m [library...]

#include <math.h>

double acosh(double x) ;

float acoshf (float x);

long double acoshl (long double x) ;

These functions compute the inverse hyperbolic cosine of their argument x.

Upon successful completion, these functions return the inverse hyperbolic cosine of
their argument.

For finite values of x < 1, a domain error occurs and NaN is returned.
If x is NaN, NaN is returned.

If x is +1, 40 is returned.

If x is +Inf, +Inf is returned.

If x is —Inf, a domain error occurs and NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by acosh ()
as specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The x argument is finite and less than 1.0, or is —Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The acosh () function sets errno to EDOM if x is less than 1.0.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE DIVBYZERO | FE OVERFLOW | FE UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling acosh (). On return, if errno is
non-zero, an error has occurred. The acoshf () and acoshl () functions do not set
errno.

36 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2002

acosh(3M)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

SEE ALSO | cosh(3M), feclearexcept(3M), fetestexcept(3M), math.h(3HEAD),
matherr(3M), attributes(5), standards(5)

Extended Library Functions 37

asin(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

asin, asinf, asinl — arc sine function

cc [flag... 1 file... -1m [library...]
#include <math.h>

double asin(double x) ;
float asinf (float x) ;

long double asinl (long double x) ;

These functions compute the principal value of the arc sine of their argument x. The
value of x should be in the range [-1,1].

Upon successful completion, these functions return the arc sine of x in the range
[-r/2, m/2] radians.

For finite values of x not in the range [-1,1], a domain error occurs and a NaN is
returned.

If x is NaN, NaN is returned.
If x is +0, x is returned.
If x is +Inf, a domain error occurs and a NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by asin () as
specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The x argument is finite and not in the range [-1,1], or is +Inf.

If the integer expression (math errhandling &
MATH ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The asin () function sets errno to EDOM if x is not +Inf or NaN
and is not in the range [-1,1].

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_ EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling asin (). On return, if errno is
non-zero, an error has occurred. The asinf () and asinl () functions do not set
errno.

38 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2002

asin(3M)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

SEE ALSO | isnan(3M), feclearexcept(3M), fetestexcept(3M), math.h(BHEAD),
matherr(3M), sin(3M), attributes(5), standards(5)

Extended Library Functions 39

asinh(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

asinh, asinhf, asinhl — inverse hyperbolic sine functions

cc [flag... 1 file... -1m [library...]

#include <math.h>
double asinh(double x) ;
float asinhf (float x) ;

long double asinhl (long double x) ;
These functions compute the inverse hyperbolic sine of their argument x.

Upon successful completion, these functions return the inverse hyperbolic sine of their
argument.

If x is NaN, NaN is returned.
If x is +0 or =Inf, x is returned.
No errors are defined.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

math.h(B3HEAD), sinh(3M), attributes(5), standards(5)

40 man pages section 3: Extended Library Functions * Last Revised 1 Sep 2002

atan2(3M)
NAME | atan2, atan2f, atan2l — arc tangent function
SYNOPSIS | cc [flag... 1 file... -1m [library...]

#include <math.h>
double atan2 (double y, double Xx) ;
float atan2f (float y, float x);

long double atan2l (long double y, long double Xx);

DESCRIPTION | These functions compute the principal value of the arc tangent of y/x, using the signs
of both arguments to determine the quadrant of the return value.

RETURN VALUES | Upon successful completion, these functions return the arc tangent of y/x in the range
[—m,m] radians.

If y is +0 and x is < 0, £ is returned.

If y is +0 and x is > 0, +0 is returned.

If yis < 0 and x is +0, —nt/2 is returned.

If yis > 0 and x is +0, m/2 is returned.

If x is 0, a pole error does not occur.

If either x or y is NaN, a NaN is returned.

If y is +0 and x is -0, +m is returned.

If y is +0 and x is +0, +0 is returned.

For finite values of =y > 0, if x is —Inf, +m is returned.
For finite values of +y > 0, if x is +Inf, +0 is returned.
For finite values of x, if y is +Inf, +1/2 is returned.

If y is +Inf and x is —Inf, +3n/4 is returned.

If y is +Inf and x is +Inf, +n/4 is returned.

If both arguments are 0, a domain error does not occur.
ERRORS | No errors are defined.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

Extended Library Functions 41

atan2(3M)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO | atan(3M), isnan(3M), math.h(3BHEAD)tan(3M), attributes(5), standards(5)

42 man pages section 3: Extended Library Functions * Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

atan(3M)

atan, atanf, atanl — arc tangent function

cc [flag... 1 file... -1m [library...]

#include <math.h>
double atan (double x) ;
float atanf (float x);

long double atanl (long double x) ;
These functions compute the principal value of the arc tangent of x.

Upon successful completion, these functions return the arc tangent of x in the range
[-m/2,m/2] radians.

If x is NaN, NaN is returned.
If x is 0, x is returned.

If x is +Inf, +1/2 is returned.
No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

atan2(3M), isnan(3M), math.h(3HEAD), tan(3M), attributes(5), standards(5)

Extended Library Functions

43

atanh(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

atanh, atanhf, atanhl — inverse hyperbolic tangent functions

cc [flag... 1 file... -1m [library...]

#include <math.h>
double atanh (double x) ;
float atanhf (float x);

long double atanhl (long double x) ;
These functions compute the inverse hyperbolic tangent of their argument x.

Upon successful completion, these functions return the inverse hyperbolic tangent of
their argument.

If x is +1, a pole error occurs and atanh (), atanhf (), and atanhl () return the
value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively, with the
same sign as the correct value of the function.

For finite | x| > 1, a domain error occurs and a NaN is returned.
If x is NaN, NaN is returned.

If x is +0, x is returned.

If x is +Inf, a domain error occurs and a NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by atanh ()
as specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The x argument is finite and not in the range [-1,1], or is +Inf.

If the integer expression (math_errhandling &
MATH ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The atanh () function sets errno to EDOM if the absolute value of
x is greater than 1.0.

Pole Error The x argument is =1.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception is raised.

The atanh () function sets errno to ERANGE if the absolute value
of x is equal to 1.0.

44 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2002

USAGE

ATTRIBUTES

SEE ALSO

atanh(3M)

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling atanh () . On return, if errno is
non-zero, an error has occurred. The atanhf () and atanhl () functions do not set
errno.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), math.h(3HEAD), matherr(3M),
tanh(3M), attributes(5), standards(5)

Extended Library Functions 45

au_open(3BSM)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

au_open, au_close, au_write — construct and write audit records

ce [flag ... 1 file ... -lbsm -lsocket -1lnsl -lintl [library ...]
#include <bsm/libbsm.h>

int au_close(int d, int keep, short event) ;
int au_open (void) ;

int au write(int d, token t *m);

The au_open () function returns an audit record descriptor to which audit tokens can
be written using au_write (). The audit record descriptor is an integer value that
identifies a storage area where audit records are accumulated.

The au_close () function terminates the life of an audit record d of type event started
by au open (). If the keep parameter is AU TO NO_ WRITE, the data contained therein
is discarded. If the keep parameter is AU_TO_WRITE, the additional parameters are
used to create a header token. Depending on the audit policy information obtained by
auditon(2), additional tokens such as sequence and trailer tokens can be added to the
record. The au_close () function then writes the record to the audit trail by calling
audit(2). Any memory used is freed by calling free(3C).

The au_write () function adds the audit token pointed to by m to the audit record
identified by the descriptor d. After this call is made the audit token is no longer
available to the caller.

Upon successful completion, au_open () returns an audit record descriptor. If a
descriptor could not be allocated, au_open () returns —1 and sets errno to indicate
the error.

Upon successful completion, au_close () returns 0. If 4 is an invalid or corrupted
descriptor or if audit () fails, au_close () returns —1 without setting errno. If
audit () fails, errno is set to one of the error values described on the audit(2)
manual page.

Upon successful completion, au_write () returns 0. If 4 is an invalid descriptor or m
is an invalid token, or if audit () fails, au_write () returns —1 without setting
errno. If audit () fails, errno is set to one of the error values described on the
audit(2) manual page.

The au_open () function will fail if:

ENOMEM The physical limits of the system have been exceeded such that
sufficient memory cannot be allocated.

EAGAIN There is currently insufficient memory available. The application
can try again later.

46 man pages section 3: Extended Library Functions e Last Revised 15 Jan 2002

ATTRIBUTES

SEE ALSO

NOTES

au_open(3BSM)

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Stable

MT-Level

MT-Safe

bsmconv(lM), audit(2), auditon(2), au _preselect(3BSM), au_ to(3BSM),

free(3C), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

Extended Library Functions

47

au_preselect(3BSM)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

au_preselect — preselect an audit event

ce [flag ... 1 file... -lbsm -lsocket -1lnsl -lintl [library ...]
#include <bsm/libbsm.h>

int au preselect (au_event_t event, au _mask_t *mask_p, int sorf, int

flag) ;

au_preselect () determines whether or not the audit event event is preselected
against the binary preselection mask pointed to by mask_p (usually obtained by a call
to getaudit(2)). au_preselect () looks up the classes associated with event in
audit event(4) and compares them with the classes in mask_p. If the classes
associated with event match the classes in the specified portions of the binary
preselection mask pointed to by mask_p, the event is said to be preselected.

sorf indicates whether the comparison is made with the success portion, the failure
portion or both portions of the mask pointed to by mask_p.

The following are the valid values of sorf:

AU_PRS_SUCCESS Compare the event class with the success portion of the
preselection mask.

AU PRS FAILURE Compare the event class with the failure portion of the
preselection mask.

AU_PRS_BOTH Compare the event class with both the success and
failure portions of the preselection mask.

flag tells au_preselect () how to read the audit_event(4) database. Upon initial
invocation, au_preselect () reads the audit_event(4) database and allocates
space in an internal cache for each entry with malloc(3C). In subsequent invocations,
the value of flag determines where au_preselect () obtains audit event information.
The following are the valid values of flag:

AU_PRS_REREAD Get audit event information by searching the
audit_event(4) database.

AU PRS USECACHE Get audit event information from internal cache created
upon the initial invocation. This option is much faster.

au_preselect () returns:

0 event is not preselected.
1 event is preselected.
-1 An error occurred. au_preselect () couldn’t allocate memory or

couldn’t find event in the audit event(4) database.

/etc/security/audit_class maps audit class number to audit class
names and descriptions

48 man pages section 3: Extended Library Functions ¢ Last Revised 15 Jan 2002

ATTRIBUTES

SEE ALSO

NOTES

au_preselect(3BSM)

/etc/security/audit_event maps audit even number to audit event
names and associates

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

bsmconv(lM), getaudit(2), au_open(3BSM), getauclassent(3BSM),
getauevent(3BSM), malloc(3C), audit class(4), audit_event(4),
attributes(b)

au_preselect () is normally called prior to constructing and writing an audit
record. If the event is not preselected, the overhead of constructing and writing the
record can be saved.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

Extended Library Functions 49

au_to(3BSM)

NAME | au_to, au_to_arg, au_to_arg32, au_to_arg64, au_to_attr, au_to_cmd, au_to_data,
au_to_groups, au_to_in_addr, au_to_ipc, au_to_iport, au_to_me, au_to_newgroups,
au_to_opaque, au_to_path, au_to_process, au_to_process_ex, au_to_return,
au_to_return32, au_to_return64, au_to_socket, au_to_subject, au_to_subject_ex,
au_to_text — create audit record tokens

SYNOPSIS | cc [flag... 1 file... -lbsm -lsocket -lnsl -lintl [library...]
#include <sys/types.h>
#include <sys/vnode.h>
#include <netinet/in.h>
#include <bsm/libbsm.h>

token t *au to arg(char n, char *text, uint32 t v);
token t *au to arg32(char n, char *text, uint32 t v);
token t *au to arg64 (char n, char *text, uinté64 t v);
token t *au to attr(struct vattr *attr);

token_t *au to_cmd(uint_t argc, char **argu, char **enuvp) ;

token_t *au to_data(char unmit_print, char unit_type, char unit_count,
char *p);

token_t *au to_groups (int *groups) ;

token t *au to_in addr (struct in_addr *internet_addr) ;
token t *au to ipc(char type, int id);

token t *au to iport(u_short t iport);

token t *au to me(void) ;

token_t *au to newgroups (int n, gid_t *groups) ;
token t *au to opaque (char *data, short bytes) ;
token_t *au_to_path(char *path) ;

token t *au to process(au id t auid, uid t euid, gid t egid, uid t
ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid);

token t *au to process ex(au id t auid, uid t euid, gid t egid, uid t
ruid, gid_t rgid, pid_t pid, au_asid_t sid, au tid_addr_ t *tid) ;

token t *au to return (char number, uin32t_t value) ;

token t *au to return32 (char number, uin32t_t value) ;

token t *au to return64 (char number, uiné4t t wvalue) ;

token t *au to socket (struct oldsocket *s0) ;

token t *au to subject(au id t auid, uid t euid, gid t egid, uid t
ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid);

token t *au to subject ex(au id t auid, uid t euid, gid t egid, uid t
ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid) ;

50 man pages section 3: Extended Library Functions e Last Revised 15 Jan 2002

DESCRIPTION

au_to(3BSM)

token t *au to text (char *text);

The au_to_arg(),au_to_arg32(),and au_to_argé4 () functions format the
data in v into an “argument token”. The n argument indicates the argument number.
The text argument is a null-terminated string describing the argument.

The au_to_attr () function formats the data pointed to by attr into a “vnode
attribute token”.

The au_to_cmd () function formats the data pointed to by argv into a “command
token”. A command token reflects a command and its parameters as entered. For
example, the pfexec(l) utility uses au_to cmd () to record the command and
arguments it reads from the command line.

The au_to_data () function formats the data pointed to by p into an “arbitrary data
token”. The unit_print parameter determines the preferred display base of the data and
is one of AUP_BINARY, AUP_OCTAL, AUP DECIMAL, AUP_HEX, or AUP_STRING. The
unit_type parameter defines the basic unit of data and is one of AUR_BYTE, AUR_CHAR,
AUR_SHORT, AUR_INT, or AUR_LONG. The unit_count parameter specifies the number
of basic data units to be used and must be positive.

The au_to_groups () function formats the array of 16 integers pointed to by groups
into a “groups token”. The au_to_newgroups () function (see below) should be
used in place of this function.

The au_to_in_addr () function formats the data pointed to by internet_addr into an
“internet address token”.

The au_to_ipc () function formats the data in the id parameter into an “interprocess
communications ID token”.

The au_to_iport () function formats the data pointed to by iport into an “ip port
address token”.

The au_to_me () function collects audit information from the current process and
creates a “subject token” by calling au_to_subject ().

The au_to_newgroups () function formats the array of n integers pointed to by
groups into a “newgroups token”. This function should be used in place of
au_to_groups ().

The au_to_opaque () function formats the bytes bytes pointed to by data into an
“opaque token”. The value of size must be positive.

The au_to_path () function formats the path name pointed to by path into a “path
token.”

Extended Library Functions 51

au_to(3BSM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

The au_to process () function formats an auid (audit user ID), an euid (effective
user ID), an egid (effective group ID), a ruid (real user ID), a rgid (real group ID), a pid
(process ID), an sid (audit session ID), and a tid (audit terminal ID containing an IPv4
IP address), into a “process token”. A process token should be used when the process
is the object of an action (ie. when the process is the receiver of a signal). The
au_to_process_ex () function (see below) should be used in place of this function.

The au_to process_ex () function formats an auid (audit user ID), an euid (effective
user ID), an egid (effective group ID), a ruid (real user ID), a rgid (real group ID), a pid
(process ID), an sid (audit session ID), and a tid (audit terminal ID containing an IPv4
or IPv6 IP address), into a “process token”. A process token should be used when the
process is the object of an action (that is, when the process is the receiver of a signal).
This function should be used in place of au_to_process ().

The au _to return(),au to return32(),and au to returné4 () functions
format an error number number and a return value value into a “return value token”.

The au_to_socket () function format the data pointed to by so into a “socket
token.”

The au_to_subject () function formats an auid (audit user ID), an euid (effective
user ID), an egid (effective group ID), a ruid (real user ID), an rgid (real group ID), a pid
(process ID), an sid (audit session ID), an tid (audit terminal ID containing an IPv4 IP
address), into a “subject token”. The au_to_subject_ex () function (see below)
should be used in place of this function.

The au_to subject ex () function formats an auid (audit user ID), an euid (effective
user ID), an egid (effective group ID), a ruid (real user ID), an rgid (real group ID), a pid
(process ID), an sid (audit session ID), an tid (audit terminal ID containing an IPv4 or
IPv6 IP address), into a “subject token”. This function should be used in place of
au_to_subject ().

The au_to_text () function formats the null-terminated string pointed to by text
into a “text token”.

These functions return NULL if memory cannot be allocated to put the resultant token
into, or if an error in the input is detected.

See attributes(S) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

bsmconv(lM), au_open(3BSM), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

52 man pages section 3: Extended Library Functions ¢ Last Revised 15 Jan 2002

NAME

SYNOPSIS

DESCRIPTION

auto_ef(3EXT)

auto_ef, auto_ef_file, auto_ef_str, auto_ef_free, auto_ef_get_encoding,
auto_ef_get_score — auto encoding finder functions

cc [flag... 1 file... -lauto_ef [library...]
#include <auto_ef.h>

size t auto _ef file(auto_ef t **info, const char *filename, int flags) ;

size t auto ef str(auto ef t **info, const char *buffer, size t
bufsize, int flags) ;

void auto_ef free(auto_ef t *info) ;
char *auto ef get encoding(auto ef t info);

double auto ef get score(auto_ef t info);
Auto encoding finder provides functions that find the encoding of given file or string.

The auto_ef file () function examines text in the file specified with filename and
returns information on possible encodings.

The info argument is a pointer to a pointer to an auto_ef_t, the location at which the
pointer to the auto_ef_t array is stored upon return.

The flags argument specifies the level of examination. Currently only one set of flags,
exclusive each other, is available: AE LEVEL 0, AE LEVEL 1,AE LEVEL 2, and

AE LEVEL 3.The AE LEVEL 0 level is fastest but the result can be less accurate. The
AE LEVEL 3 level produces best result but can be slow. If the flags argument is
unspecified, the default is AE LEVEL 0. When another flag or set of flags are defined
in the future, use the inclusive-bitwise OR operation to specify multiple flags.

Information about encodings are stored in data typeauto ef t in the order of
possibility with the most possible encoding stored first. To examine the information,
use the auto_ef get_encoding() and auto_ef get_ score () access functions.
For a list of encodings with which auto_ef_file () can examine text, see
auto_ef(1).

If auto_ef file() cannot determine the encoding of text, it returns 0 and stores
NULL at the location pointed by info.

The auto_ef get_encoding () function returns the name of the encoding. The
returned string is vaild until until the location pointed to by info is freed with

auto ef free (). Applications should not use £ree(3C) to free the pointer returned
by auto ef get encoding().

The auto_ef get score () function returns the score of this encoding in the range
between 0.0 and 1.0.

The auto ef str() function is identical to auto ef file (), except that it
examines text in the buffer specified by buffer with a maximum size of bufsize bytes,
instead of text in a file.

Extended Library Functions 53

auto_ef(3EXT)

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

The auto_ef_ free () function frees the area allocated by auto_ef file() or by
auto_ef_str (), taking as its argument the pointer stored at the location pointed to

by info.

Upon successful completion, the auto_ef_file() and auto_ef_str () functions
return the number of possible encodings for which information is stored. Otherwise,
-1 is returned.

The auto ef get encoding () function returns the string that stores the encoding
name.

the auto_ef get score () function returns the score value for encoding the name
with the examined text data.

The auto ef file() and auto ef str () will fail if:

EACCES Search permission is denied on a component of the path prefix, the
file exists and the permissions specified by mode are denied, the
file does not exist and write permission is denied for the parent
directory of the file to be created, or 1ibauto_ef cannot find the
internal hashtable.

EINTR A signal was caught during the execution.

ENOMEM Failed to allocate area to store the result.

EMFILE Too many files descriptors are currently open in the calling
process.

ENFILE Too many files are currently open in the system.

EXAMPLE 1 Specify the array index to examine stored information.

Since auto_ef file () stores the array whose elements hold information on each
possible encoding, the following example specifies the array index to examine the
stored information.

#include <auto_ef.h>

auto_ef t *array info;
size_ t number ;
char *encoding;

number = auto_ef file(&array info, filename, flags);
encoding = auto_ef get_encoding(array_infol[0]);

auto _ef free(array info);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

54 man pages section 3: Extended Library Functions * Last Revised 22 Sep 2003

SEE ALSO

auto_ef(3EXT)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

auto_ef(1), libauto_ ef(3LIB), attributes(d)

Extended Library Functions

55

au_user_mask(3BSM)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

NOTES

56 man pages section 3

au_user_mask — get user’s binary preselection mask

ce [flag ... 1 file ... -lbsm -lsocket -1nsl -lintl [library ...]
#include <bsm/libbsm.h>

int au user mask(char *username, au mask t *mask_p) ;

au_user_mask () reads the default, system wide audit classes from
audit_control(4), combines them with the per-user audit classes from the
audit_user(4) database, and updates the binary preselection mask pointed to by
mask_p with the combined value.

The audit flags in the flags field of the audit_control(4) database and the
always-audit-flags and never-audit-flags from the audit_user(4) database represent
binary audit classes. These fields are combined by au_preselect(3BSM) as follows:

mask = (flags + always-audit-flags) — never-audit-flags

au_user_mask () only fails if both the both the audit_control(4) and the
audit_ user(4) database entries could not be retrieved. This allows for flexible
configurations.

au_user mask () returns:
0 Success.

-1 Failure. Both the audit_ control(4) and the audit_ user(4) database
entries could not be retrieved.

/etc/security/audit_control contains default parameters read by the
audit daemon, auditd(1M)

/etc/security/audit user stores per-user audit event mask

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

login(l), bsmconv(1M), getaudit(2), setaudit(2), au preselect(3BSM),
getacinfo(3BSM), getauusernam(3BSM), audit control(4), audit user(4),
attributes(b)

au_user_mask () should be called by programs like 1ogin(1) which set a process’s
preselection mask with setaudit(2). getaudit(2) should be used to obtain audit
characteristics for the current process.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

: Extended Library Functions ¢ Last Revised 17 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

bgets(3GEN)
bgets — read stream up to next delimiter

cc [flag ... 1 file ... -1gen [library ...]
#include <libgen.h>

char *bgets (char *buffer, size_t count, FILE *stream, const char
*breakstring) ;

The bgets () function reads characters from stream into buffer until either count is
exhausted or one of the characters in breakstring is encountered in the stream. The read
data is terminated with a null byte ("\ 0") and a pointer to the trailing null is returned.
If a breakstring character is encountered, the last non-null is the delimiter character that
terminated the scan.

Note that, except for the fact that the returned value points to the end of the read
string rather than to the beginning, the call

bgets (buffer, sizeof buffer, stream, "\n");
is identical to

fgets (buffer, sizeof buffer, stream);
There is always enough room reserved in the buffer for the trailing null character.

If breakstring is a null pointer, the value of breakstring from the previous call is used. If
breakstring is null at the first call, no characters will be used to delimit the string.

NULL is returned on error or end-of-file. Reporting the condition is delayed to the next
call if any characters were read but not yet returned.

EXAMPLE 1 Example of the bgets () function.

The following example prints the name of the first user encountered in

/etc/passswd, including a trailing ":"
#include <stdio.h>
#include<libgen.h>

int main()

{
char buffer([8];
FILE *fp;

if ((fp = fopen("/etc/passwd","r")) == NULL) ({
perror ("/etc/passwd") ;
return 1;

}

if (bgets(buffer, 8, fp, ":") == NULL)
perror ("bgets") ;
return 1;

}

(void) puts(buffer) ;

return 0;

Extended Library Functions 57

bgets(3GEN)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

58

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level MT-Safe

SEE ALSO | gets(3C), attributes(b)

NOTES | When compiling multithread applications, the _REENTRANT flag must be defined on

man pages section 3: Extended Library Functions ¢ Last Revised 9 May 2001

the compile line. This flag should only be used in multithreaded applications.

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

NOTES

ATTRIBUTES

SEE ALSO

bufsplit(3GEN)
bufsplit — split buffer into fields

cc [flag ... 1 file ... -1gen [library ...]
#include <libgen.h>

size_t bufsplit(char *buf, size_t n, char **q);

bufsplit () examines the buffer, buf, and assigns values to the pointer array, a, so
that the pointers point to the first n fields in buf that are delimited by TABs or
NEWLINESs.

To change the characters used to separate fields, call buf split () with buf pointing to
the string of characters, and n and a set to zero. For example, to use colon (:), period
(.),and comma (,), as separators along with TAB and NEWLINE:

bufsplit (":.,\t\n", 0, (char**)0);

The number of fields assigned in the array a. If buf is zero, the return value is zero and
the array is unchanged. Otherwise the value is at least one. The remainder of the
elements in the array are assigned the address of the null byte at the end of the buffer.

EXAMPLE 1 Example of bufsplit () function.
/*

* get al[0] = "This", all] = "is", al[2] = "a",
* al3] = "test"
*/

bufsplit ("This\tis\ta\ttest\n", 4, a);

bufsplit () changes the delimiters to null bytes in buf.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(b)

Extended Library Functions 59

cabs(3M)
NAME | cabs, cabsf, cabsl — return a complex absolute value

SYNOPSIS | cc [flag... 1 file... -1m [library...]

#include <complex.h>
double cabs (double complex z) ;
float cabsf (float complex z) ;

long double cabsl (long double complex z) ;

DESCRIPTION | These functions compute the complex absolute value (also called norm, modulus, or
magnitude) of z.

RETURN VALUES | These functions return the complex absolute value.
ERRORS | No errors are defined.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

SEE ALSO | complex.h(3HEAD), attributes(5), standards(5)

60 man pages section 3: Extended Library Functions ¢ Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

cacos(3M)
cacos, cacosf, cacosl — complex arc cosine functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex cacos (double complex z) ;
float complex cacosf (float complex z);

long double complex cacosl (long double complex z) ;

These functions compute the complex arc cosine of z, with branch cuts outside the
interval [-1, +1] along the real axis.

These functions return the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0, nrnn |
along the real axis.

No errors are defined.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

ccos(3M), complex.h(BHEAD), attributes(5), standards(5)

Extended Library Functions 61

cacosh(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

cacosh, cacoshf, cacoshl — complex arc hyperbolic cosine functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex cacosh(double complex z) ;
float complex cacoshf (float complex z) ;

long double complex cacoshl (long double complex z) ;

These functions compute the complex arc hyperbolic cosine of z, with a branch cut at
values less than 1 along the real axis.

These functions return the complex arc hyperbolic cosine value, in the range of a
half-strip of non-negative values along the real axis and in the interval [-ir, +in] along
the imaginary axis.

No errors are defined.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

ccosh(3M), complex.h(3HEAD), attributes(5), standards(5)

62 man pages section 3: Extended Library Functions * Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

carg(3M)
carg, cargf, cargl — complex argument functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double carg(double complex z) ;
float cargf (float complex z);

long double cargl (long double complex z) ;

These functions compute the argument (also called phase angle) of z, with a branch
cut along the negative real axis.

These functions return the value of the argument in the interval [—x, +r].
No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cimag(3M), complex.h(3HEAD), conj(3M), cproj(3M), attributes(5),
standards(5)

Extended Library Functions 63

casin(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

casin, casinf, casinl — complex arc sine functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex casin(double complex z) ;
float complex casinf (float complex z);

long double complex casinl (long double complex z) ;

These functions compute the complex arc sine of z, with branch cuts outside the
interval [-1, +1] along the real axis.

These functions return the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [—n/2, +1/2]
along the real axis.

No errors are defined.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

complex.h(BHEAD), csin(3M), attributes(5), standards(5)

64 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

casinh(3M)
casinh, casinhf, casinhl — complex arc hyperbolic sine functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex casinh(double complex z) ;
float complex casinhf (float complex z) ;

long double complex casinhl (long double complex z) ;

These functions compute the complex arc hyperbolic sine of z, with branch cuts
outside the interval [-i, +i] along the imaginary axis.

These functions return the complex arc hyperbolic sine value, in the range of a strip
mathematically unbounded along the real axis and in the interval [—in/2, +in/2]
along the imaginary axis.

No errors are defined.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

complex.h(BHEAD), csinh(3M), attributes(5), standards(5)

Extended Library Functions 65

catan(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

catan, catanf, catanl — complex arc tangent functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex catan (double complex z) ;
float complex catanf (float complex z) ;

long double complex catanl (long double complex z) ;

These functions compute the complex arc tangent of z, with branch cuts outside the
interval [—i, +++++nni] along the imaginary axis.

These functions return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [—n/2, +1/2]
along the real axis.

No errors are defined.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

complex.h(BHEAD), ctan(3M), attributes(5), standards(5)

66 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

catanh(3M)

catanh, catanhf, catanhl — complex arc hyperbolic tangent functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>

double complex catanh(double complex z) ;

float complex catanhf (float complex z) ;

long double complex catanhl (long double complex z) ;

These functions compute the complex arc hyperbolic tangent of z, with branch cuts

outside the interval [-1, +1] along the real axis.

These functions return the complex arc hyperbolic tangent value, in the range of a
strip mathematically unbounded along the real axis and in the interval [—in/2, +in/2]

along the imaginary axis.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard

MT-Level

MT-Safe

complex.h(BHEAD), ctanh(3M), attributes(5), standards(5)

Extended Library Functions

67

cbrt(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

cbrt, cbrtf, cbrtl — cube root functions

cc [flag... 1 file... -1m [library...]

#include <math.h>
double cbrt (double x) ;
float cbrtf (float x);

long double cbrtl (long double x) ;

These functions compute the real cube root of their argument x.
On successful completion, these functions return the cube root of x.
If x is NaN, a NaN is returned.

If x is +0 or +Inf, x is returned.

No errors are defined.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

math.h(BHEAD), attributes(b), standards(5)

68 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION
RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

ccos(3M)
ccos, ccosf, ccosl — complex cosine functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex ccos (double complex z) ;
float complex ccosf (float complex z);

long double complex ccosl (long double complex z) ;
These functions compute the complex cosine of z.

These functions return the complex cosine value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cacos(3M), complex.h(BHEAD), attributes(b), standards(5)

Extended Library Functions 69

ccosh(3M)
NAME
SYNOPSIS

DESCRIPTION
RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

ccosh, ccoshf, ccoshl — complex hyperbolic cosine functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex ccosh(double complex z) ;
float complex ccoshf (float complex z);

long double complex ccoshl (long double complex z) ;
These functions compute the complex hyperbolic cosine of z.
These functions return the complex hyperbolic cosine value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cacosh(83M), complex.h(3HEAD), attributes(5), standards(b)

70 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

ceil(3M)
ceil, ceilf, ceill - ceiling value function

cc [flag... 1 file... -1m [library...]

#include <math.h>

double ceil (double x) ;

float ceilf (float x);

long double ceill (long double x) ;

These functions compute the smallest integral value not less than x.

Upon successful completion, the ceil (), ceilf (), and ceill () functions return
the smallest integral value not less than x, expressed as a type double, float, or
long double, respectively.

If x is NaN, a NaN is returned.
If x is 0 or +Inf, x is returned.

The integral value returned by these functions need not be expressible as an int or
long int. The return value should be tested before assigning it to an integer type to
avoid the undefined results of an integer overflow.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), £loor(3M), isnan(3M),
math.h(BHEAD), attributes(b), standards(5)

Extended Library Functions 71

cexp(3M)
NAME
SYNOPSIS

DESCRIPTION
RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

cexp, cexpf, cexpl — complex exponential functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex cexp (double complex z) ;
float complex cexpf (float complex z);

long double complex cexpl (long double complex z) ;
These functions compute the complex exponent of z, defined as e”z.
These functions return the complex exponential value of z.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

clog(BM), complex.h(3BHEAD), attributes(5), standards(5)

72 man pages section 3: Extended Library Functions ¢ Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION
RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

cimag(3M)
cimag, cimagf, cimagl — complex imaginary functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double cimag(double complex z) ;
float cimagf (float complex z) ;

long double cimagl (long double complex z) ;
These functions compute the imaginary part of z.

These functions return the imaginary part value (as a real).
No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

carg(3M), complex.h(B3HEAD), conj(3M), cproj(3M), creal(3M),
attributes(b), standards(5)

Extended Library Functions 73

clog(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

clog, clogf, clogl — complex natural logarithm functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex clog(double complex z) ;
float complex clogf (float complex z);

long double complex clogl (long double complex z) ;

These functions compute the complex natural (base e) logarithm of z, with a branch
cut along the negative real axis.

These functions return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [-i , +i] along the
imaginary axis.

No errors are defined.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cexp(3M), complex.h(BHEAD), attributes(5), standards(5)

74 man pages section 3: Extended Library Functions ¢ Last Revised 1 Sep 2002

NAME

SYNOPSIS

Deprecated
Interfaces

HARDWARE
DEPENDENT
LIBRARY
SYNOPSIS

config_admin(3CFGADM)

config_admin, config_change_state, config_private_func, config_test, config_stat,
config_list, config_list_ext, config_ap_id_cmp, config_unload_libs, config_strerror —
configuration administration interface

ce [flag... 1 file... -lcfgadm [library...]
#include <config admin.h>
#include <sys/param.h>

cfga_err t config change state(cfga cmd t state_change_cmd, int
num_ap_ids, char * const *ap_ids, const char *options, struct
cfga confirm *confp, struct cfga msg *msgp, char **errstring,
cfga_flags_t flags) ;

cfga _err t config private func (const char *function, int num_ap_ids,
char * const *ap_ids, const char *options, struct cfga confirm
*confp, struct cfga msg *msgp, char **errstring, cfga_ flags_t

flags) ;

cfga_err t config test(int num_ap_ids, char * const *ap_ids, const
char *options, struct cfga_msg *msgp, char **errstring,
cfga_flags_t flags) ;

cfga_err t config list ext (int num_ap_ids, char * const *ap_ids,
struct cfga list data **ap_id_list, int *nlist, const char *options,
const char *[listops, char **errstring, cfga flags_ t flags) ;

int config ap id cmp(const cfga ap id t ap_idl, const cfga ap id t
ap_id2) ;

void config unload libs (void) ;

const char *config strerror(cfga err t cfgerrnum) ;

The following interfaces have been deprecated and their use is strongly discouraged:

cfga_err t config stat(int num_ap_ids, char * const *ap_ids, struct
cfga_stat_data *buf, const char *options, char **errstring) ;

cfga err t config list(struct cfga stat data **ap_id_list, int *nlist,
const char *options, char **errstring) ;

The config_admin library is a generic interface that is used for dynamic
configuration, (DR). Each piece of hardware that supports DR must supply a
hardware-specific plugin library that contains the entry points listed in this subsection.
The generic library will locate and link to the appropriate library to effect DR
operations. The interfaces specified in this subsection are really "hidden" from users of
the generic libraries. It is, however, necessary that writers of the hardware-specific
plug in libraries know what these interfaces are.

cfga err t cfga change state(cfga cmd t state_change_cmd, const char
*ap_id, const char *options, struct cfga_confirm *confp, struct
cfga msg *msgp, char **errstring, cfga flags t flags) ;

cfga err t cfga private func(const char *function, const char *ap_id,
const char *options, struct cfga confirm *confp, struct cfga msg

Extended Library Functions 75

config_admin(3CFGADM)

Deprecated
Interfaces

DESCRIPTION

*msgp, char **errstring, cfga flags t flags) ;

cfga err t cfga test(const char *ap_id, const char *options, struct
cfga_msg *msgp, char **errstring, cfga flags t flags) ;

cfga err t cfga list ext(const char *ap_id, struct cfga list data
*xqp id list, int *nlist, const char *options, const char *listopts,
char **errstring, cfga flags t flags) ;

cfga_err t cfga help (struct cfga msg *msgp, const char *options,
cfga_flags_t flags) ;

int cfga ap id cmp(const cfga ap id t ap_idl, const cfga ap id t
ap_id2) ;

The following interfaces have been deprecated and their use is strongly discouraged:

cfga_err t cfga stat(const char *ap_id, struct cfga stat data *buf,
const char *options, char **errstring) ;

cfga_err t cfga list(const char *ap_id, struct cfga stat data
**qp_id_list, int *mnlist, const char *options, char **errstring) ;

The config * () functions provide a hardware independent interface to
hardware-specific system configuration administration functions. The cfga_* ()
functions are provided by hardware-specific libraries that are dynamically loaded to
handle configuration administration functions in a hardware-specific manner.

The 1ibcfgadm library is used to provide the services of the cfgadm(1M) command.
The hardware-specific libraries are located in
/usr/platform/${machine}/lib/cfgadm,
/usr/platform/${arch}/lib/cfgadm, and /usr/1lib/cfgadm. The
hardware-specific library names are derived from the driver name or from class names
in device tree nodes that identify attachment points.

The config change_state () function performs operations that change the state of
the system configuration. The state_change_cmd argument can be one of the following:
CFGA CMD_INSERT, CFGA CMD REMOVE, CFGA CMD DISCONNECT,

CFGA CMD_CONNECT, CFGA CMD_ CONFIGURE, or CFGA CMD UNCONFIGURE. The
state_change_cmd CFGA_CMD_INSERT is used to prepare for manual insertion or to
activate automatic hardware insertion of an occupant. The

state_change_cmd CFGA_CMD_REMOVE is used to prepare for manual removal or
activate automatic hardware removal of an occupant. The state_change_cmd
CFGA_CMD_DISCONNECT is used to disable normal communication to or from an
occupant in a receptacle. The state_change_cmd CFGA CMD_CONNECT is used to enable
communication to or from an occupant in a receptacle. The state_change_cmd
CFGA_CMD_CONFIGURE is used to bring the hardware resources contained on, or
attached to, an occupant into the realm of Solaris, allowing use of the occupant’s
hardware resources by the system. The state_change_cmd CFGA_CMD_UNCONFIGURE is
used to remove the hardware resources contained on, or attached to, an occupant from
the realm of Solaris, disallowing further use of the occupant’s hardware resources by
the system.

76 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2004

config_admin(3CFGADM)

The flags argument may contain one or both of the defined flags, CFGA_FLAG_FORCE
and CFGA_FLAG VERBOSE. If the CFGA FLAG_FORCE flag is asserted certain safety
checks will be overridden. For example, this may not allow an occupant in the failed
condition to be configured, but might allow an occupant in the failing condition to be
configured. Acceptance of a force is hardware dependent. If the
CFGA_FLAG_VERBOSE flag is asserted hardware-specific details relating to the
operation are output utilizing the cfga_msg mechanism.

The config private_ func () function invokes private hardware-specific functions.

The config test () function is used to initiate testing of the specified attachment
point.

The num_ap_ids argument specifies the number of ap_ids in the ap_ids array. The ap_ids
argument points to an array of ap_ids.

The ap_id argument points to a single ap_id.

The function and options strings conform to the get subopt(3C) syntax convention and
are used to supply hardware-specific function or option information. No generic
hardware-independent functions or options are defined.

The cfga confirm structure referenced by confp provides a call-back interface to get
permission to proceed should the requested operation require, for example, a
noticeable service interruption. The cfga confirm structure includes the following
members:

int (*confirm) (void *appdata ptr, const char *message) ;

void *appdata_ptr;

The confirm() function is called with two arguments: the generic pointer appdata_ptr
and the message detailing what requires confirmation. The generic pointer appdata_ptr
is set to the value passed in in the cfga confirm structure member appdata ptr
and can be used in a graphical user interface to relate the confirm function call to the
config * () call. The confirm() function should return 1 to allow the operation to
proceed and 0 otherwise.

The cfga_msg structure referenced by msgp provides a call-back interface to output
messages from a hardware-specific library. In the presence of the
CFGA_ FLAG VERBOSE flag, these messages can be informational; otherwise they are
restricted to error messages. The cfga_msg structure includes the following members:

int (*message routine) (void *appdata ptr, const char *message) ;

void *appdata_ptr;

The message_routine () function is called with two arguments: the generic pointer
appdata_ptr and the message. The generic pointer appdata_ptr is set to the value passed
in in the cfga_confirm structure member appdata_ ptr and can be used in a
graphical user interface to relate the message_routine () function call to the
config * () call. The messages must be in the native language specified by the
LC_MESSAGES locale category; see setlocale(3C).

Extended Library Functions 77

config_admin(3CFGADM)

For some generic errors a hardware-specific error message can be returned. The
storage for the error message string, including the terminating null character, is
allocated by the config_* functions using malloc(3C) and a pointer to this storage
returned through errstring. If errstring is NULL no error message will be generated or
returned. If errstring is not NULL and no error message is generated, the pointer
referenced by errstring will be set to NULL. It is the responsibility of the function
calling config * () to deallocate the returned storage using £ree(3C). The error
messages must be in the native language specified by the LC_MESSAGES locale
category; see setlocale(3C).

The config list ext () function provides the listing interface. When supplied
with a list of ap_ids through the first two arguments, it returns an array of

cfga list data t structures for each attachment point specified. If the first two
arguments are 0 and NULL respectively, then all attachment points in the device tree
will be listed. Additionally, dynamic expansion of an attachment point to list dynamic
attachment points may also be requested by passing the CFGA_FLAG LIST ALL flag
through the flags argument. Storage for the returned array of stat structures is
allocated by the config list_ext () function using malloc(3C). This storage must
be freed by the caller of config list_ext () by using free(3C).

The cfga_list_data structure includes the following members:

cfga log ext_t ap_log_id; /* Attachment point logical id */
cfga phys_ext_t ap_phys_id; /* Attachment point physical id */
cfga_class_t ap_class; /* Attachment point class */
cfga_stat_t ap_r state; /* Receptacle state */

cfga_stat_t ap_o_state; /* Occupant state */

cfga cond_t ap_cond; /* Attachment point condition */
cfga_busy_t ap_busy; /* Busy indicator */

time_t ap_status_time; /* Attachment point last change*/
cfga_info t ap_info; /* Miscellaneous information */
cfga type t ap_type; /* Occupant type */

The types are defined as follows:

typedef char cfga log ext t [CFGA_LOG_EXT LEN] ;
typedef char cfga phys_ext t[CFGA PHYS_ EXT LEN] ;
typedef char cfga class t[CFGA CLASS LEN];
typedef char cfga_info_t [CFGA_ INFO_LEN] ;

typedef char cfga type t[CFGA TYPE LEN];

typedef enum cfga cond_t;

typedef enum cfga_ stat_t;

typedef int cfga busy t;

typedef int cfga flags_t;

The listopts argument to config list ext () conforms to the getsubopt (3C)
syntax and is used to pass listing sub-options. Currently, only the sub-option
class=class_name is supported. This list option restricts the listing to attachment
points of class class name.

The listopts argument to cfga_list_ext () is reserved for future use.
Hardware-specific libraries should ignore this argument if it is NULL. If listopts is not
NULL and is not supported by the hardware-specific library, an appropriate error code
should be returned.

78 man pages section 3: Extended Library Functions ¢ Last Revised 1 Sep 2004

RETURN VALUES

config_admin(3CFGADM)

The ap_log idand the ap_phys_id members give the hardware-specific logical
and physical names of the attachment point. The ap_busy memberd indicates activity
is present that may result in changes to state or condition. The ap_status_time
member provides the time at which either the ap_r state,ap_o_state, or
ap_cond field of the attachment point last changed. The ap_info member is
available for the hardware-specific code to provide additional information about the
attachment point. The ap_class member contains the attachment point class (if any)
for an attachment point. The ap_class member is filled in by the generic library. If
the ap_log_idand ap_phys_id members are not filled in by the hardware-specific
library, the generic library will fill in these members using a generic format. The
remaining members are the responsibility of the corresponding hardware-tospecific
library.

All string members in the cfga_list_data structure are null-terminated.

The config stat(),config list(),cfga_stat(),and cfga list ()
functions and the cfga_stat_data data structure are deprecated interfaces and are
provided solely for backward compatibility. Use of these interfaces is strongly
discouraged.

The config ap_id_cmp function performs a hardware dependent comparison on
two ap_ids, returning an equal to, less than or greater than indication in the manner of
strcmp(3C). Each argument is either a cfga_ap_1id_t or can be a null-terminated
string. This function can be used when sorting lists of ap_ids, for example with
gsort(3C), or when selecting entries from the result of a config list function call.

The config unload_libs function unlinks all previously loaded hardware-specific
libraries.

The config strerror function can be used to map an error return value to an error
message string. See RETURN VALUES. The returned string should not be overwritten.
config strerror returns NULL if cfgerrnum is out-of-range.

The cfga_help function can be used request that a hardware-specific library output
it’s localized help message.

The config * () and cfga_* () functions return the following values. Additional
error information may be returned through errstring if the return code is not CFGA_OK.
See DESCRIPTION for details.

CFGA BUSY The command was not completed due to an
element of the system configuration
administration system being busy.

CFGA_ATTR_INVAL No attachment points with the specified
attributes exists

CFGA ERROR An error occurred during the processing of
the requested operation. This error code
includes validation of the command
arguments by the hardware-specific code.

Extended Library Functions 79

config_admin(3CFGADM)

CFGA INSUFFICIENT CONDITION

CFGA_ INVAL

CFGA_LIB_ERROR

CFGA_NACK

CFGA _NO LIB

CFGA_NOTSUPP

CFGA_OK

CFGA_OPNOTSUPP

CFGA_ PRIV

CFGA_SYSTEM BUSY

Operation failed due to attachment point
condition.

The system configuration administration
operation requested is not supported on the
specified attachment point.

A procedural error occurred in the library,
including failure to obtain process resources
such as memory and file descriptors.

The command was not completed due to a
negative acknowledgement from the
confp->conf irm function.

A hardware-specific library could not be
located using the supplied ap_id.

System configuration administration is not
supported on the specified attachment
point.

The command completed as requested.

System configuration administration
operation is not supported on this
attachment point.

The caller does not have the required
process privileges. For example, if
configuration administration is performed
through a device driver, the permissions on
the device node would be used to control
access.

The command required a service
interruption and was not completed due to
a part of the system that could not be
quiesced.

ERRORS | Many of the errors returned by the system configuration administration functions are

attachment point ap_id not known
The attachment point detailed in the error message does not exist.

hardware-specific. The strings returned in errstring may include the following;:

unknown hardware option option for operation
An unknown option was encountered in the options string.

hardware option option requires a value
An option in the options string should have been of the form option=value.

listing option list_option requires a value
An option in the listopts string should have been of the form option=value.

80 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2004

ATTRIBUTES

SEE ALSO

NOTES

config_admin(3CFGADM)

hardware option option does not require a value
An option in the options string should have been a simple option.

attachment point ap_id is not configured
A config_change_state command to CFGA_CMD_UNCONFIGURE an occupant was
made to an attachment point whose occupant was not in the
CFGA_STAT CONFIGURED state.

attachment point ap_id is not unconfigured
A config_change_state command requiring an unconfigured occupant was made to
an attachment point whose occupant was not in the CFGA STAT UNCONFIGURED
state.

attachment point ap_id condition not satisfactory
A config_change_state command was made to an attachment point whose condition
prevented the operation.

attachment point ap_id in condition condition cannot be used
A config_change_state operation with force indicated was directed to an attachment
point whose condition fails the hardware dependent test.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu, SUNWkvm

MT-Level Safe

cfgadm(1M), devinfo(1M), dlopen(3C), d1sym(3C), £ree(3C), getsubopt(3C),
malloc(3C), gsort(3C), setlocale(3C), stremp(3C), libecfgadm(3LIB),
attributes(b)

Applications using this library should be aware that the underlying implementation
may use system services which alter the contents of the external variable errno and
may use file descriptor resources.

The following code shows the intended error processing when config_* () returns a
value other than CFGA OK:

void
emit_error(cfga_err t cfgerrnum, char *estrp)
{
const char *ep;
ep = config strerror (cfgerrnum) ;
if (ep == NULL)
ep = gettext("configuration administration unknown error") ;

if (estrp != NULL && *estrp != ’\0’) {
(void) fprintf (stderr, "%s: %s\n", ep, estrp);
} else {

(void) fprintf (stderr, "%$s\n", ep);

}

if (estrp != NULL)

Extended Library Functions 81

config_admin(3CFGADM)

free ((void *)estrp);

}

Reference should be made to the Hardware Specific Guide for details of System
Configuration Administration support.

82 man pages section 3: Extended Library Functions * Last Revised 1 Sep 2004

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

conj(3M)
conj, conjf, conjl — complex conjugate functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex conj (double complex z) ;
float complex conjf (float complex z);

long double complex conjl (long double complex z) ;

These functions compute the complex conjugate of z, by reversing the sign of its
imaginary part.

These functions return the complex conjugate value.
No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

carg(3M), cimag(3M), complex.h(3HEAD), cproj(3M), creal(3M),
attributes(b), standards(5)

Extended Library Functions 83

ConnectToServer(3DMI)

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

ConnectToServer — connect to a DMI service provider

ce [flag ... 1 file ... -ldmici -ldmimi [library ...]
#include <dmi/api.hh>

bool_t ConnectToServer (ConnectI *argp, DmiRpcHandle *dmi_rpc_handle) ;

The ConnectToServer () function enables a management application or a
component instrumentation to connect to a DMI service provider.

The argp parameter is an input parameter that uses the following data structure:

struct ConnectIN {
char *host;
const char *nettype;
ServerType servertype;
RpcType rpctype;

}

The host member indicates the host on which the service provider is running. The
default is localhost.

The nettype member specifies the type of transport RPC uses. The default is netpath.

The servertype member indicates whether the connecting process is a management
application or a component instrumentation.

The rpctype member specifies the type of RPC, either ONC or DCE. Only ONC is
supported in the Solaris 7 release.

The dmi_rpc_handle parameter is the output parameter that returns DMI RPC handle.
The ConnectToServer () function returns TRUE if successful, otherwise FALSE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Safe

DisconnectToServer(3DMI),attributes(5)

84 man pages section 3: Extended Library Functions ¢ Last Revised 4 Aug 1998

NAME
SYNOPSIS

DESCRIPTION

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

copylist(3GEN)
copylist — copy a file into memory

cc [flag ... 1 file ... -1gen [library ...]
#include <libgen.h>

char *copylist (const char *filenm, off_t *szptr);

The copylist () function copies a list of items from a file into freshly allocated
memory, replacing new-lines with null characters. It expects two arguments: a pointer
filenm to the name of the file to be copied, and a pointer szptr to a variable where the
size of the file will be stored.

Upon success, copylist () returns a pointer to the memory allocated. Otherwise it
returns NULL if it has trouble finding the file, calling malloc (), or reading the file.

The copylist () function has a transitional interface for 64-bit file offsets. See
1fe64(5).

EXAMPLE 1 Example of copylist () function.

/* read "file" into buf */
off t size;

char *buf;

buf = copylist("file", &size);

if (buf) {
for (i=0; i<size; 1i++)
if (buf[il])
putchar (buf [i]) ;
else
putchar ('\n’) ;
}
} else {
fprintf (stderr, "%s: Copy failed for "file".\n", argv[0]);
exit (1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

malloc(3C), attributes(b), 1£64(5)

When compiling multithreaded applications, the REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

Extended Library Functions 85

copysign(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

copysign, copysignf, copysignl — number manipulation function

cc [flag... 1 file... -1m [library...]

#include <math.h>
double copysign (double x, double y);
float copysignf (float x, float y);

long double copysignl (long double x, long double y);
These functions produce a value with the magnitude of x and the sign of .

Upon successful completion, these functions return a value with the magnitude of x
and the sign of y.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

math.h(B3HEAD), signbit(3M),attributes(5), standards(5)

86 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

cos(3M)
cos, cosf, cosl — cosine function

cc [flag... 1 file... -1m [library...]

#include <math.h>

double cos (double x) ;

float cosf (float x);

long double cosl (long double x) ;

These functions compute the cosine of x, measured in radians.
Upon successful completion, these functions return the cosine of x.
If x is NaN, NaN is returned.

If x is +0, 1.0 is returned.

If x is +Inf, a domain error occurs and a NaN is returned.

These functions will fail if:

Domain Error The x argument is +Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE DIVBYZERO | FE OVERFLOW | FE UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

acos(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M),
math.h(3HEAD), sin(3M), tan(3M), attributes(b), standards(b)

Extended Library Functions 87

cosh(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

cosh, coshf, coshl — hyperbolic cosine function

cc [flag... 1 file... -1m [library...]

#include <math.h>
double cosh(double x) ;
float coshf (float x);

long double coshl (long double x) ;
These functions compute the hyperbolic cosine of their argument x.
Upon successful completion, these functions return the hyperbolic cosine of x.

If the correct value would cause overflow, a range error occurs and cosh (), coshf (),
and coshl () return the value of the macro HUGE VAL, HUGE VALF, and HUGE VALL,
respectively.

If x is NaN, a NaN is returned.
If x is 0, 1.0 is returned.
If x is +Inf, £Inf is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by cosh () as
specified by SVID3 and XPG3.

These functions will fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling &
MATH ERREXCEPT) is non-zero, the overflow floating-point
exception is raised.

The cosh () function sets errno to ERANGE if the result would
cause an overflow.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE DIVBYZERO | FE OVERFLOW | FE UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling cosh () . On return, if errno is
non-zero, an error has occurred. The coshf () and coshl () functions do not set
errno.

88 man pages section 3: Extended Library Functions » Last Revised 1 Sep 2002

ATTRIBUTES

SEE ALSO

cosh(3M)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

acosh(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M),
math.h(BHEAD), matherr(3M), sinh(8M), tanh(3M), attributes(b),
standards(5)

Extended Library Functions 89

cpc(3CPC)
NAME

DESCRIPTION

Shared Counters
or Private
Counters

Configuration
Interfaces

Performance
Counter Access

Finding Events

cpc — hardware performance counters

Modern microprocessors contain hardware performance counters that allow the
measurement of many different hardware events related to CPU behavior, including
instruction and data cache misses as well as various internal states of the processor.
The counters can be configured to count user events, system events, or both. Data
from the performance counters can be used to analyze and tune the behavior of
software on a particular type of processor.

Most processors are able to generate an interrupt on counter overflow, allowing the
counters to be used for various forms of profiling.

This manual page describes a set of APIs that allow Solaris applications to use these
counters. Applications can measure their own behavior, the behavior of other
applications, or the behavior of the whole system.

There are two principal models for using these performance counters. Some users of
these statistics want to observe system-wide behavior. Other users want to view the
performance counters as part of the register set exported by each LWP. On a machine
performing more than one activity, these two models are in conflict because the
counters represent a critical hardware resource that cannot simultaneously be both
shared and private.

The following configuration interfaces are provided:

cpc_open(3CPC) Check the version the application was compiled with

against the version of the library.

cpc_cciname(3CPC) Return a printable string to describe the performance

counters of the processor.

cpc_npic(3CPC) Return the number of performance counters on the

processor.

Return a reference to documentation that should be
consulted to understand how to use and interpret data
from the performance counters.

cpc_cpuref(3CPC)

Performance counters can be present in hardware but not acccessible because either
some of the necessary system software components are not available or not installed,
or the counters might be in use by other processes. The cpc_open(3CPC) function
determines the accessibility of the counters and must be invoked before any attempt to
program the counters.

Each different type of processor has its own set of events available for measurement.
The cpc_walk events all(3CPC)and cpc walk events pic(3CPC) functions
allow an application to determine the names of events supported by the underlying
processor.

90 man pages section 3: Extended Library Functions e Last Revised 30 Jan 2004

Using Attributes

Performance
Counter Context

Performance
Counters In Other
Processes

SEE ALSO

cpc(3CPC)

Some processors have advanced performance counter capabilities that are configured
with attributes. The cpc_walk attrs(3CPC) function can be used to determine the
names of attributes supported by the underlying processor. The documentation
referenced by cpc_cpuref(3CPC) should be consulted to understand the meaning of
a processor’s performance counter attributes.

Each processor on the system possesses its own set of performance counter registers.
For a single process, it is often desirable to maintain the illusion that the counters are
an intrinsic part of that process (whichever processors it runs on), since this allows the
events to be directly attributed to the process without having to make passive all other
activity on the system.

To achieve this behavior, the library associates performance counter context with each
LWP in the process. The context consists of a small amount of kernel memory to hold
the counter values when the LWP is not running, and some simple kernel functions to
save and restore those counter values from and to the hardware registers when the
LWP performs a normal context switch. A process can only observe and manipulate its
own copy of the performance counter control and data registers.

Though applications can be modified to instrument themselves as demonstrated
above, it is frequently useful to be able to examine the behavior of an existing
application without changing the source code. A separate library, 1ibpctx, provides a
simple set of interfaces that use the facilities of proc(4) to control a target process, and
together with functions in 1ibepc, allow truss-like tools to be constructed to
measure the performance counters in other applications. An example of one such
application is cputrack(l).

The functions in 1ibpctx are independent of those in 1ibcpe. These functions
manage a process using an event-loop paradigm — that is, the execution of certain
system calls by the controlled process cause the library to stop the controlled process
and execute callback functions in the context of the controlling process. These handlers
can perform various operations on the target process using APIs in 1ibpctx and
libcpe that consume pctx_t handles.

cputrack(l), cpustat(lM), cpc_bind curlwp(3CPC), cpc_buf create(3CPC),
cpc_enable(3CPC), cpc_npic(3CPC), cpc_open(3CPC),

cpc_set create(3CPC), cpc_seterrhndlr(3CPC), 1ibepe(3LIB),

pctx capture(3CPC), pctx_set events(3CPC), proc(4).

Extended Library Functions 91

cpc_access(3CPC)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

cpc_access — test access CPU performance counters

cc [flag... 1 file... —lcpc [library...]
#include <libcpc.h>

int cpc_access (void) ;

Access to CPU performance counters is possible only on systems where the
appropriate hardware exists and is correctly configured. The cpc_access () function
must be used to determine if the hardware exists and is accessible on the platform
before any of the interfaces that use the counters are invoked.

When the hardware is available, access to the per-process counters is always allowed
to the process itself, and allowed to other processes mediated using the existing
security mechanisms of /proc.

Upon successful completion, cpc_access () returns 0. Otherwise, it returns —1 and
sets errno to indicate the error.

By default, two common errno values are decoded and cause the library to print an
error message using its reporting mechanism. See cpc_seterrfn(3CPC) for a
description of how this behavior can be modified.

The cpc_access () function will fail if:
EAGAIN Another process may be sampling system-wide CPU statistics.

ENOSYS CPU performance counters are inaccessible on this machine. This
error can occur when the machine supports CPU performance
counters, but some software components are missing. Check to see
that all CPU Performance Counter packages have been correctly
installed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

cpc(3CPC), cpc_open(3CPC), cpc_seterrfn(3CPC), 1ibepc(3LIB), proc(4),
attributes(b)

The cpc_access () function is Obsolete and might be removed in a future release.
Applications should use cpc_open(3CPC) instead.

92 man pages section 3: Extended Library Functions ¢ Last Revised 30 Jan 2004

NAME

SYNOPSIS

DESCRIPTION

cpc_bind_curlwp(3CPC)

cpc_bind_curlwp, cpc_bind_pctx, cpc_bind_cpu, cpc_unbind, cpc_request_preset,
cpc_set_restart — bind request sets to hardware counters

cc [flag... 1 file... -lcpc [library...]
#include <libcpc.h>

int epec_bind curlwp (cpc_t *cpc, cpc_set t *set, uint t flags) ;

int epe bind pctx(cpc t *cpc, pctx t *pctx, id t id, cpc_set t *set,
uint_t flags) ;

int epe_bind cpu(cpc_t *cpc, processorid t id, cpc_set t *sef,
uint_t flags) ;

int cpc_unbind(cpc_t *cpc, cpc_set_t *set) ;
int ecpe request preset(cpc t *cpc, int index, uinté64 t preset) ;

int cpc_set_restart(cpc_t *cpc, cpc_set_t *set);

These functions program the processor’s hardware counters according to the requests
contained in the set argument. If these functions are successful, then upon return the
physical counters will have been assigned to count events on behalf of each request in
the set, and each counter will be enabled as configured.

The cpc_bind curlwp () function binds the set to the calling LWP. If successful, a
performance counter context is associated with the LWP that allows the system to
virtualize the hardware counters to that specific LWP.

By default, the system binds the set to the current LWP only. If the
CPC_BIND_LWP_INHERIT flag is present in the flags argument, however, any
subsequent LWPs created by the current LWP will inherit a copy of the request set.
The newly created LWP will have its virtualized 64-bit counters initialized to the
preset values specified in sef, and the counters will be enabled and begin counting
events on behalf of the new LWP. This automatic inheritance behavior can be useful
when dealing with multithreaded programs to determine aggregate statistics for the
program as a whole.

If the CPC_BIND_LWP_INHERIT flag is specified and any of the requests in the set
have the CPC_OVF_NOTIFY_ EMT flag set, the process will immediately dispatch a
SIGEMT signal to the freshly created LWP so that it can preset its counters
appropriately on the new LWP. This initialization condition can be detected using
cpc_set_sample(3CPC) and looking at the counter value for any requests with
CPC_OVF_NOTIFY_ EMT set. The value of any such counters will be UINT64_MAX.

The cpc_bind pctx () function binds the set to the LWP specified by the pctx-id
pair, where pctx refers to a handle returned from libpctx and id is the ID of the desired
LWP in the target process. If successful, a performance counter context is associated
with the specified LWP and the system virtualizes the hardware counters to that
specific LWP. The flags argument is reserved for future use and must always be 0.

Extended Library Functions 93

cpc_bind_curlwp(3CPC)

RETURN VALUES

ERRORS

The cpc_bind_cpu () function binds the set to the specified CPU and measures
events occurring on that CPU regardless of which LWP is running. Only one such
binding can be active on the specified CPU at a time. As long as any application has
bound a set to a CPU, per-LWP counters are unavailable and any attempt to use either
cpc_bind curlwp () or cpc_bind pctx () returns EAGAIN. The first invocation of
cpc_bind cpu () invalidates all currently bound per-LWP counter sets, and any
attempt to sample an invalidated set returns EAGAIN. To bind to a CPU, the library
binds the calling LWP to the measured CPU with processor_bind(2). The application
must not change its processor binding until after it has unbound the set with
cpc_unbind (). The flags argument is reserved for future use and must always be 0.

The cpc_request preset () function updates the preset and current value stored
in the indexed request within the currently bound set, thereby changing the starting

value for the specified request for the calling LWP only, which takes effect at the next
call to cpc_set_restart ().

When a performance counter counting on behalf of a request with the
CPC_OVF_NOTIFY_ EMT flag set overflows, the performance counters are frozen and
the LWP to which the set is bound receives a SIGEMT signal. The

cpc_set_restart () function can be called from a SIGEMT signal handler function
to quickly restart the hardware counters. Counting begins from each request’s original
preset (see cpc_set_add_request(3CPC)), or from the preset specified in a prior
call to cpc_request_preset (). Applications performing performance counter
overflow profiling should use the cpc_set restart () function to quickly restart
counting after receiving a SIGEMT overflow signal and recording any relevant
program state.

The cpc_unbind () function unbinds the set from the resource to which it is bound.
All hardware resources associated with the bound set are freed and if the set was
bound to a CPU, the calling LWP is unbound from the corresponding CPU. See
processor bind(2).

Upon successful completion these functions return 0. Otherwise, -1 is returned and
errno is set to indicate the error.

Applications wanting to get detailed error values should register an error handler
with cpc_seterrhndlr(3CPC). Otherwise, the library will output a specific error
description to stderr.

These functions will fail if:

EACCES For cpc_bind_curlwp (), the system has Pentium 4 processors
with HyperThreading and at least one physical processor has more
than one hardware thread online. See NOTES.

For cpc_bind cpu (), the process does not have the cpc_cpu
privilege to access the CPU’s counters.

EAGAIN For cpc_bind curlwp () and cpc_bind pctx(), the
performance counters are not available for use by the application.

94 man pages section 3: Extended Library Functions ¢ Last Revised 22 Jun 2004

EXAMPLES

cpc_bind_curlwp(3CPC)

For cpc_bind_cpu (), another process has already bound to this
CPU. Only one process is allowed to bind to a CPU at a time and
only one set can be bound to a CPU at a time.

EINVAL The set does not contain any requests or cpc_set add request
() was not called.

The value given for an attribute of a request is out of range.

The system could not assign a physical counter to each request in
the system. See NOTES.

One or more requests in the set conflict and might not be
programmed simultaneously.

The set was not created with the same cpc handle.
For cpc_bind_cpu (), the specified processor does not exist.
For cpc_unbind (), the set is not bound.

For cpc_request preset () and cpc_set restart (), the
calling LWP does not have a bound set.

ENOSYS For cpc_bind_cpu (), the specified processor is not online.

ENOTSUP The cpc_bind curlwp () function was called with the
CPC_OVF_NOTIFY_ EMT flag, but the underlying processor is not
capable of detecting counter overflow.

ESRCH For cpc_bind pctx (), the specified LWP in the target process
does not exist.

EXAMPLE 1 Use hardware performance counters to measure events in a process.

The following example demonstrates how a standalone application can be
instrumented with the 1ibcpc(3LIB) functions to use hardware performance counters
to measure events in a process. The application performs 20 iterations of a
computation, measuring the counter values for each iteration. By default, the example
makes use of two counters to measure external cache references and external cache
hits. These options are only appropriate for UltraSPARC processors. By setting the
EVENTO and EVENT1 environment variables to other strings (a list of which can be
obtained from the -h option of the cpustat(1M) or cputrack(l) utilities), other
events can be counted. The error () routine is assumed to be a user-provided routine
analogous to the familiar print £(3C) function from the C library that also performs
an exit(2) after printing the message.

#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <libecpc.hs>

Extended Library Functions 95

cpc_bind_curlwp(3CPC)

96 man pages section 3: Extended Library Functions ¢ Last Revised 22 Jun

(Continued)
#include <errno.h<
int
main(int argc, char *argvl[])
{
int iter;
char *event0 = NULL, *eventl = NULL;
cpc_t *cpc;
cpc_set_t *set;
cpc_buf t *diff, *after, *before;
int ind0, indl;
uinté4_t valO, vall;
if ((cpc = cpc_open(CPC_VER_CURRENT)) ==
error ("perf counters unavailable:
if ((event0 = getenv("EVENTO")) == NULL)
event0 = "EC_ref";
if ((eventl = getenv("EVENT1")) == NULL)
eventl = "EC_hit";
if ((set = cpc_set_create(cpc)) == NULL)
error ("could not create set: %s",
if ((ind0 = cpc_set_add request (cpc, set
NULL)) == -1)
error ("could not add first reque
if ((indl = cpc_set_add request (cpc, set
NULL)) == -1)
error ("could not add first reque
if ((diff = cpc_buf create(cpc, set)) ==
error ("could not create buffer:
if ((after = cpc_buf create(cpc, set)) =
error ("could not create buffer:
if ((before = cpc_buf create(cpc, set))
error ("could not create buffer:
if (cpc_bind curlwp(cpc, set, 0) == -1)
error ("cannot bind lwp%d: %s",
for (iter = 1; iter <= 20; iter++)
if (cpc_set_sample(cpc, set, bef
break;
/* ==> Computation to be measur
if (cpc_set_sample(cpc, set, aft
break;
cpc_buf sub(cpc, diff, after, be

NULL)

o
ss",

strerror (errno)) ;

strerror (errno)) ;

, eventO, O,

st: %s",

strerror (errno)) ;

, eventl, O,

st: %s", strerror(errno));
NULL)

strerror (errno)) ;

= NULL)

%s", strerror (errno)) ;

== NULL)

strerror (errno)) ;

o
s,

o
s,

CPC_COUNT USER,

CPC_COUNT_USER,

EXAMPLE 1 Use hardware performance counters to measure events in a process.

0,

0,

_lwp_self (), strerror(errno));
ore) == -1)

ed goes here <== */

er) == -1)

fore) ;

2004

cpc_bind_curlwp(3CPC)

EXAMPLE 1 Use hardware performance counters to measure events in a process.
(Continued)

cpc_buf get (cpc, diff, ind0, &valo);
cpc_buf get (cpc, diff, indl, &vall);

(void) printf ("%3d: %" PRIA64 " %" PRIdA64 "\n", iter,
valo, wvall);

if (iter != 21)
error ("cannot sample set: %s", strerror(errno));

cpc_close (cpe) ;

return (0);

}

EXAMPLE 2 Write a signal handler to catch overflow signals.

The following example builds on Example 1 and demonstrates how to write the signal
handler to catch overflow signals. A counter is preset so that it is 1000 counts short of
overflowing. After 1000 counts the signal handler is invoked.

The signal handler:

cpc_t *cpc;
cpc_set_t *set;
cpc_buf_ t *buf;
int index;

void

emt_handler (int sig, siginfo t *sip, void *arg)
ucontext t *uap = arg;
uint64 t val;

if (sig != SIGEMT || sip->si code != EMT CPCOVF) ({
psignal (sig, "example") ;
psiginfo(sip, "example");
return;

o\

(void) printf ("lwp%d - si_addr %p ucontext: %%pc %p %%sp %p\n",
_lwp_self (), (void *)sip->si_addr,
(void *)uap->uc_mcontext.gregs[PC],

(void *)uap->uc_mcontext.gregs[SP]) ;

if (cpc_set_sample(cpc, set, buf) != 0)
error ("cannot sample: %s", strerror(errno)) ;

cpc_buf get (cpc, buf, index, &val);
(void) printf ("0x%" PRIx64"\n", val);

(void) fflush(stdout) ;

Extended Library Functions 97

cpc_bind_curlwp(3CPC)

98

EXAMPLE 2 Write a signal handler to catch overflow signals. (Continued)

/*

* Update a request’s preset and restart the counters. Counters which
* have not been preset with cpc request preset () will resume counting
* from their current value.

*/
(cpc_request_preset (cpc, indl, vall) != 0)
error ("cannot set preset for request %d: %s", indl,
strerror (errno)) ;
if (cpc_set restart(cpc, set) != 0)
error ("cannot restart lwp%d: %s", _lwp_self(), strerror(errno));

}

The setup code, which can be positioned after the code that opens the CPC library and
creates a set:

#define PRESET (UINT64_ MAX - 999ull)
struct sigaction act;
act.sa_sigaction = emt_handler;

bzero(&act.sa_mask, sizeof (act.sa_mask));
act.sa_flags = SA_RESTART|SA SIGINFO;

if (sigaction(SIGEMT, &act, NULL) == -1)
error ("sigaction: %s", strerror (errno)) ;

if ((index = cpc_set_add_request (cpc, set, event, PRESET,

CPC_COUNT USER | CPC_OVF_NOTIFY EMT, 0, NULL)) != 0)
error ("cannot add request to set: %s", strerror(errno)) ;
if ((buf = cpc_buf_create(cpc, set)) == NULL)
error ("cannot create buffer: %s", strerror(errno)) ;
if (cpc_bind_ curlwp(cpc, set, 0) == -1)
error ("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {
/* ==> Computation to be measured goes here <== */

cpc_unbind(cpc, set); /* done */

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

man pages section 3: Extended Library Functions e Last Revised 22 Jun 2004

SEE ALSO

NOTES

cpc_bind_curlwp(3CPC)

cputrack(l), cpustat(1M), psrinfo(1M), processor bind(2),
cpc_seterrhndlr(3CPC), cpc_set sample(3CPC), 1ibepe(3LIB),
attributes(b)

When a set is bound, the system assigns a physical hardware counter to count on
behalf of each request in the set. If such an assignment is not possible for all requests
in the set, the bind function returns -1 and sets errno to EINVAL. The assignment of
requests to counters depends on the capabilities of the available counters. Some
processors (such as Pentium 4) have a complicated counter control mechanism that
requires the reservation of limited hardware resources beyond the actual counters. It
could occur that two requests for different events might be impossible to count at the
same time due to these limited hardware resources. See the processor manual as
referenced by cpc_cpuref(3CPC) for details about the underlying processor’s
capabilities and limitations.

Some processors can be configured to dispatch an interrupt when a physical counter
overflows. The most obvious use for this facility is to ensure that the full 64-bit counter
values are maintained without repeated sampling. Certain hardware, such as the
UltraSPARC processor, does not record which counter overflowed. A more subtle use
for this facility is to preset the counter to a value slightly less than the maximum
value, then use the resulting interrupt to catch the counter overflow associated with
that event. The overflow can then be used as an indication of the frequency of the
occurrence of that event.

The interrupt generated by the processor might not be particularly precise. That is, the
particular instruction that caused the counter overflow might be earlier in the
instruction stream than is indicated by the program counter value in the ucontext.

When a request is added to a set with the CPC_OVF_NOTIFY EMT flag set, then as
before, the control registers and counter are preset from the 64-bit preset value given.
When the flag is set, however, the kernel arranges to send the calling process a
SIGEMT signal when the overflow occurs. The si_code member of the corresponding
siginfo structure is set to EMT CPCOVF and the si _addr member takes the
program counter value at the time the overflow interrupt was delivered. Counting is
disabled until the set is bound again.

If the CPC_CAP_OVERFLOW_PRECISE bit is set in the value returned by
cpc_caps(3CPC), the processor is able to determine precisely which counter has
overflowed after receiving the overflow interrupt. On such processors, the SIGEMT
signal is sent only if a counter overflows and the request that the counter is counting
has the CPC_OVF NOTIFY EMT flag set. If the capability is not present on the
processor, the system sends a SIGEMT signal to the process if any of its requests have
the CPC_OVF_NOTIFY_ EMT flag set and any counter in its set overflows.

Different processors have different counter ranges available, though all processors
supported by Solaris allow at least 31 bits to be specified as a counter preset value.
Portable preset values lie in the range UINT64_MAX to UINT64_MAX-INT32_MAX.

Extended Library Functions 99

cpc_bind_curlwp(3CPC)

Pentium 4

The appropriate preset value will often need to be determined experimentally.
Typically, this value will depend on the event being measured as well as the desire to
minimize the impact of the act of measurement on the event being measured. Less
frequent interrupts and samples lead to less perturbation of the system.

If the processor cannot detect counter overflow, bind will fail and return ENOTSUP.
Only user events can be measured using this technique. See Example 2.

Most Pentium 4 events require the specification of an event mask for counting. The
event mask is specified with the emask attribute.

Pentium 4 processors with HyperThreading Technology have only one set of hardware
counters per physical processor. To use cpc_bind curlwp () or cpc_bind pctx()
to measure per-LWP events on a system with Pentium 4 HT processors, a system
administrator must first take processors in the system offline until each physical
processor has only one hardware thread online (See the -p option to psrinfo(1M)). If
a second hardware thread is brought online, all per-LWP bound contexts will be
invalidated and any attempt to sample or bind a CPC set will return EAGAIN.

Only one CPC set at a time can be bound to a physical processor with
cpc_bind cpu().Any call to cpc bind cpu() that attempts to bind a set to a
processor that shares a physical processor with a processor that already has a
CPU-bound set returns an error.

To measure the shared state on a Pentium 4 processor with HyperThreading, the
count_sibling_usr and count_sibling_sys attributes are provided for use with
cpc_bind cpu (). These attributes behave exactly as the CPC_COUNT USER and
CPC_COUNT_SYSTEM request flags, except that they act on the sibling hardware
thread sharing the physical processor with the CPU measured by cpc_bind cpu().
Some CPC sets will fail to bind due to resource constraints. The most common type of
resource constraint is an ESCR conflict among one or more requests in the set. For
example, the branch_retired event cannot be measured on counters 12 and 13
simultaneously because both counters require the CRU_ESCR2 ESCR to measure this
event. To measure branch_retired events simultaneously on more than one counter, use
counters such that one counter uses CRU_ESCR2 and the other counter uses
CRU_ESCR3. See the processor documentation for details.

100 man pages section 3: Extended Library Functions « Last Revised 22 Jun 2004

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

cpc_bind_event(3CPC)
cpc_bind_event, cpc_take_sample, cpc_rele — use CPU performance counters on lwps

cc [flag... 1 file... —lcpc [library...]
#include <libcpc.h>

int epe_bind event (cpc_event t *event, int flags) ;
int cpc_take sample(cpc_event t *event) ;

int cpec_rele(void) ;

Once the events to be sampled have been selected using, for example,
cpc_strtoevent(3CPC), the event selections can be bound to the calling LWP using
cpc_bind event ().If cpc_bind event () returns successfully, the system has
associated performance counter context with the calling LWP. The context allows the
system to virtualize the hardware counters to that specific LWP, and the counters are
enabled.

Two flags are defined that can be passed into the routine to allow the behavior of the
interface to be modified, as described below.

Counter values can be sampled at any time by calling cpc_take_sample (), and
dereferencing the fields of the ce_pic[] array returned. The ce_hrt field contains the
timestamp at which the kernel last sampled the counters.

To immediately remove the performance counter context on an LWP, the cpc_rele ()
interface should be used. Otherwise, the context will be destroyed after the LWP or
process exits.

The caller should take steps to ensure that the counters are sampled often enough to
avoid the 32-bit counters wrapping. The events most prone to wrap are those that
count processor clock cycles. If such an event is of interest, sampling should occur
frequently so that less than 4 billion clock cycles can occur between samples.
Practically speaking, this is only likely to be a problem for otherwise idle systems, or
when processes are bound to processors, since normal context switching behavior will
otherwise hide this problem.

Upon successful completion, cpc_bind event () and cpc_take sample () return
0. Otherwise, these functions return —1, and set errno to indicate the error.

The cpc_bind event () and cpc_take_sample () functions will fail if:

EAGAIN Another process may be sampling system-wide CPU statistics. For
cpc_bind event (), this implies that no new contexts can be
created. For cpc_take sample (), this implies that the
performance counter context has been invalidated and must be
released with cpc_rele (). Robust programs should be coded to
expect this behavior and recover from it by releasing the now
invalid context by calling cpc_rele () sleeping for a while, then
attempting to bind and sample the event once more.

EINVAL The cpc_take sample () function has been invoked before the
context is bound.

Extended Library Functions 101

cpc_bind_event(3CPC)

102

ENOTSUP The caller has attempted an operation that is illegal or not
supported on the current platform, such as attempting to specify
signal delivery on counter overflow on a CPU that doesn’t
generate an interrupt on counter overflow.

USAGE | Prior to calling cpc_bind event (), applications should call cpc_access(3CPC) to
determine if the counters are accessible on the system.

EXAMPLES | EXAMPLE 1 Use hardware performance counters to measure events in a process.

The example below shows how a standalone program can be instrumented with the
libcpe routines to use hardware performance counters to measure events in a
process. The program performs 20 iterations of a computation, measuring the counter
values for each iteration. By default, the example makes the counters measure external
cache references and external cache hits; these options are only appropriate for
UltraSPARC processors. By setting the PERFEVENTS environment variable to other
strings (a list of which can be gleaned from the -h flag of the cpustat or cputrack
utilities), other events can be counted. The error () routine below is assumed to be a
user-provided routine analogous to the familiar print £(3C) routine from the C
library but which also performs an exit(2) after printing the message.

#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <libcpc.hs>
int

main(int argc, char *argvl[])
{

int cpuver, iter;
char *setting = NULL;
cpc_event_t event;

if (cpc_version(CPC_VER CURRENT) != CPC_VER_CURRENT)
error ("application:library cpc version mismatch!") ;

if ((cpuver = cpc_getcpuver()) == -1)
error ("no performance counter hardware!") ;

if ((setting = getenv ("PERFEVENTS")) == NULL)
setting = "pic0=EC_ref,picl=EC_hit";
if (cpc_strtoevent (cpuver, setting, &event) != 0)

error ("can’t measure ’‘%s’ on this processor", setting);
setting = cpc_eventtostr (&event) ;

if (cpc_access() == -1)

error ("can’t access perf counters: %$s", strerror(errno)) ;
if (cpc_bind event (&event, 0) == -1)

error ("can’t bind lwp%d: %s", _lwp_self (), strerror(errno));
for (iter = 1; iter <= 20; iter++) {

cpc_event_t before, after;

man pages section 3: Extended Library Functions e Last Revised 26 Feb 2004

cpc_bind_event(3CPC)

EXAMPLE 1 Use hardware performance counters to measure events in a process.
(Continued)

if (cpc_take_sample (&before) == -1)
break;
/* ==> Computation to be measured goes here <== */
if (cpc_take sample(&after) == -1)
break;
(void) printf ("%$3d: %" PRIJ64 " %" PRId64 "\n", iter,
after.ce_pic[0] - before.ce_pic[0],
after.ce pic[l] - before.ce pic(1l]);
}
if (iter != 20)
error ("can’'t sample ’‘%s’: %s", setting, strerror (errno)) ;

free(setting) ;
return (0) ;

}

EXAMPLE 2 Write a signal handler to catch overflow signals.

This example builds on Example 1, but demonstrates how to write the signal handler
to catch overflow signals. The counters are preset so that counter zero is 1000 counts
short of overflowing, while counter one is set to zero. After 1000 counts on counter
zero, the signal handler will be invoked.

First the signal handler:

#define PRESETO (UINT64_MAX - UINT64_C(999))
#define PRESET1 0

void

emt_handler (int sig, siginfo t *sip, void *arg)
ucontext_t *uap = arg;

cpc_event_t sample;

if (sig != SIGEMT || sip->si_code != EMT_CPCOVF) {
psignal (sig, "example");
psiginfo(sip, "example");
return;

(void) printf ("lwp%d - si_addr %p ucontext: %%pc sp %p\n",
_lwp_self (), (void *)sip->si_addr,
(void *)uap->uc_mcontext.gregs[PC],

(void *)uap->uc_mcontext.gregs[USP]) ;

oe

e}
o
o

if (cpc_take sample (&sample) == -1)
error ("can’t sample: %s", strerror (errno)) ;

Extended Library Functions 103

cpc_bind_event(3CPC)
EXAMPLE 2 Write a signal handler to catch overflow signals. (Continued)
(void) printf ("0x$" PRIx64 " 0x3" PRIx64 "\n",

sample.ce pic[0], sample.ce pic[1]);
(void) fflush(stdout) ;

sample.ce_pic[0] = PRESETO;
sample.ce pic[1l] = PRESETI1;
if (cpc_bind_event (&sample, CPC_BIND_EMT_OVF) == -1)
error ("cannot bind lwp%d: %s", _lwp self(), strerror(errno));

}

and second the setup code (this can be placed after the code that selects the event to be
measured):

struct sigaction act;
cpc_event_t event;

act.sa_sigaction = emt_handler;
bzero (&act.sa mask, sizeof (act.sa mask));
act.sa_flags = SA RESTART|SA SIGINFO;

if (sigaction(SIGEMT, &act, NULL) == -1)
error ("sigaction: %s", strerror(errno)) ;
event.ce pic[0] = PRESETO;
event.ce pic[1l] = PRESETI;
if (cpc_bind event (&event, CPC BIND EMT OVF) == -1)
error ("cannot bind lwp%d: %s", _lwp_self (), strerror(errno));

for (iter = 1; iter <= 20; iter++) {
* ==> Computation to be measured goes here <== */

}

cpc_bind_event (NULL, 0); /* done */

Note that a more general version of the signal handler would use write(2) directly
instead of depending on the signal-unsafe semantics of stderr and stdout. Most
real signal handlers will probably do more with the samples than just print them out.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

SEE ALSO | cpustat(IM), cpc(3CPC), cpc_access(3CPC), cpc_bind curlwp(3CPC),
cpc_set sample(3CPC), cpc_strtoevent(3CPC), cpc_unbind(3CPC),
libepe(3LIB), attributes(b)

104 man pages section 3: Extended Library Functions e Last Revised 26 Feb 2004

NOTES

SPARC

x86

Handling counter
overflow

cpc_bind_event(3CPC)

The cpc_bind event (), cpc_take sample (), and cpc_rele () functions are
Obsolete and might be removed in a future release. Applications should use
cpc_bind curlwp(3CPC), cpc set sample(3CPC), and cpc unbind(3CPC)
instead.

Sometimes, even the overhead of performing a system call will be too disruptive to the
events being measured. Once a call to cpc_bind_event () has been issued, it is
possible to directly access the performance hardware registers from within the
application. If the performance counter context is active, then the counters will count
on behalf of the current LWP.

rd %$pic, %rN ! All UltraSPARC
wr %$rN, %pic ! (ditto, but see text)
rdpmc ! Pentium II only

If the counter context is not active or has been invalidated, the $pic register (SPARC),
and the rdpmc instruction (Pentium) will become unavailable.

Note that the two 32-bit UltraSPARC performance counters are kept in the single
64-bit $pic register so a couple of additional instructions are required to separate the
values. Also note that when the $pcr register bit has been set that configures the $pic
register as readable by an application, it is also writable. Any values written will be
preserved by the context switching mechanism.

Pentium II processors support the non-privileged rdpmc instruction which requires
[5] that the counter of interest be specified in $ecx, and returns a 40-bit value in the
$edx : $eax register pair. There is no non-privileged access mechanism for Pentium I
processors.

As described above, when counting events, some processors allow their counter
registers to silently overflow. More recent CPUs such as UltraSPARC III and Pentium
II, however, are capable of generating an interrupt when the hardware counter
overflows. Some processors offer more control over when interrupts will actually be
generated. For example, they might allow the interrupt to be programmed to occur
when only one of the counters overflows. See cpc_strtoevent(3CPC) for the
syntax.

The most obvious use for this facility is to ensure that the full 64-bit counter values are
maintained without repeated sampling. However, current hardware does not record
which counter overflowed. A more subtle use for this facility is to preset the counter to
a value to a little less than the maximum value, then use the resulting interrupt to
catch the counter overflow associated with that event. The overflow can then be used
as an indication of the frequency of the occurrence of that event.

Note that the interrupt generated by the processor may not be particularly precise.
That is, the particular instruction that caused the counter overflow may be earlier in
the instruction stream than is indicated by the program counter value in the ucontext.

When cpc_bind event () is called with the CPC_BIND EMT OVF flag set, then as
before, the control registers and counters are preset from the 64-bit values contained in
event. However, when the flag is set, the kernel arranges to send the calling process a

Extended Library Functions 105

cpc_bind_event(3CPC)

Inheriting events

106

onto multiple
LWPs

SIGEMT signal when the overflow occurs, with the si_code field of the
corresponding siginfo structure set to EMT_CPCOVF, and the si_addr field is the
program counter value at the time the overflow interrupt was delivered. Counting is
disabled until the next call to cpc_bind event (). Even in a multithreaded process,
during execution of the signal handler, the thread behaves as if it is temporarily bound
to the running LWP.

Different processors have different counter ranges available, though all processors
supported by Solaris allow at least 31 bits to be specified as a counter preset value;
thus portable preset values lie in the range UINT64_MAX to

UINT64 MAX—INT32 MAX.

The appropriate preset value will often need to be determined experimentally.
Typically, it will depend on the event being measured, as well as the desire to
minimize the impact of the act of measurement on the event being measured; less
frequent interrupts and samples lead to less perturbation of the system.

If the processor cannot detect counter overflow, this call will fail (ENOTSUP).
Specifying a null event unbinds the context from the underlying LWP and disables
signal delivery. Currently, only user events can be measured using this technique. See
Example 2, above.

By default, the library binds the performance counter context to the current LWP only.
If the CPC_BIND_LWP_INHERIT flag is set, then any subsequent LWPs created by that
LWP will automatically inherit the same performance counter context. The counters
will be initialized to 0 as if a cpc_bind event () had just been issued. This
automatic inheritance behavior can be useful when dealing with multithreaded
programs to determine aggregate statistics for the program as a whole.

If the CPC_BIND EMT OVF flag is also set, the process will immediately dispatch a
SIGEMT signal to the freshly created LWP so that it can preset its counters
appropriately on the new LWP. This initialization condition can be detected using
cpc_take sample () to check that both ce pic[] values are set to UINT64 MAX.

man pages section 3: Extended Library Functions e Last Revised 26 Feb 2004

NAME

SYNOPSIS

DESCRIPTION

cpc_buf_create(3CPC)

cpc_buf_create, cpc_buf_destroy, cpc_set_sample, cpc_buf_get, cpc_buf_set,
cpc_buf_hrtime, cpc_buf_tick, cpc_buf_sub, cpc_buf_add, cpc_buf_copy, cpc_buf_zero
- sample and manipulate CPC data

cc [flag... 1 file... -lcpc [library...]
#include <libcpc.h>

cpc_buf t *cpc_buf create(cpc_t *cpc, cpc_set_t *set);
int epe_buf destroy (cpc_t *cpc, cpc_buf t *buf);
int cpc_set sample(cpc_t *cpc, cpc_set t *set, cpc buf t *buf);

int epe_buf get(cpc t *cpc, cpc_buf t *buf, int index, uinté4_t
*val) ;

int epe_buf set(cpc t *cpc, cpc buf t *buf, int index, uinté4 t wval) ;
hrtime t cpc_buf hrtime(cpc t *cpc, cpc_buf t *buf) ;
uint64 t cpc buf tick(cpc t *cpc, cpc buf t *buf);

void cpc_buf sub(cpc t *cpc, cpc_buf t *ds, cpc_buf t *a, cpc buf t
*b) ;

void epc_buf add(cpc_t *cpc, cpc_buf t *ds, cpc buf t *a, cpc buf t
*b) ;

void cpc_buf copy(cpc t *cpc, cpc_buf t *ds, cpc_buf t *src);
void epc_buf zero(cpc t *cpc, cpc buf t *buf);

Counter data is sampled into CPC buffers, which are represented by the opaque data
type cpc_buf_t. A CPC buffer is created with cpc_buf_create () to hold the data
for a specific CPC set. Once a CPC buffer has been created, it can only be used to store
and manipulate the data of the CPC set for which it was created.

Once a set has been successfully bound, the counter values are sampled using
cpc_set sample (). The cpc_set sample () function takes a snapshot of the
hardware performance counters counting on behalf of the requests in set and stores the
64-bit virtualized software representations of the counters in the supplied CPC buffer.
If a set was bound with cpc_bind curlwp(3CPC) or cpc_bind cpu(3CPC), the set
can only be sampled by the LWP that bound it.

The kernel maintains 64-bit virtual software counters to hold the counts accumulated
for each request in the set, thereby allowing applications to count past the limits of the
underlying physical counter, which can be significantly smaller than 64 bits. The
kernel attempts to maintain the full 64-bit counter values even in the face of physical
counter overflow on architectures and processors that can automatically detect
overflow. If the processor is not capable of overflow detection, the caller must ensure
that the counters are sampled often enough to avoid the physical counters wrapping.
The events most prone to wrap are those that count processor clock cycles. If such an
event is of interest, sampling should occur frequently so that the counter does not
wrap between samples.

Extended Library Functions 107

cpc_buf_create(3CPC)

RETURN VALUES

108

ERRORS

The cpc_buf_get () function retrieves the last sampled value of a particular request
in buf. The index argument specifies which request value in the set to retrieve. The
index for each request is returned during set configuration by
cpc_set add request(3CPC). The 64-bit virtualized software counter value is
stored in the location pointed to by the val argument.

The cpc_buf_ set () function stores a 64-bit value to a specific request in the
supplied buffer. This operation can be useful for performing calculations with CPC
buffers, but it does not affect the value of the hardware counter (and thus will not
affect the next sample).

The cpc_buf_ hrtime () function returns a high-resolution timestamp indicating
exactly when the set was last sampled by the kernel.

The cpc_buf_tick () function returns a 64-bit virtualized cycle counter indicating
how long the set has been programmed into the counter since it was bound. The units
of the values returned by cpc_buf_tick () are CPU clock cycles.

The cpc_buf_sub () function calculates the difference between each request in sets a
and b, storing the result in the corresponding request within set ds. More specifically,
for each request index 7, this function performs ds[n] = a[n] - b[n]. Similarly,

cpc_buf add () adds each request in sets 4 and b and stores the result in the
corresponding request within set ds.

The cpc_buf copy () function copies each value from buffer src into buffer ds. Both
buffers must have been created from the same cpc_set_t.

The cpc_buf zero () function sets each request’s value in the buffer to zero.
The cpc_buf destroy () function frees all resources associated with the CPC bulffer.

Upon successful completion, cpc_buf_create () returns a pointer to a CPC buffer
which can be used to hold data for the set argument. Otherwise, this function returns
NULL and sets errno to indicate the error.

Upon successful completion, cpc_set sample (), cpc_buf get (), and
cpc_buf set () return 0. Otherwise, they return -1 and set errno to indicate the
error.

These functions will fail if:

EINVAL For cpc_set_sample (), the set is not bound, the set and/or
CPC buffer were not created with the given cpc handle, or the CPC
buffer was not created with the supplied set.

EAGAIN When using cpc_set_sample () to sample a CPU-bound set, the
LWP has been unbound from the processor it is measuring.

ENOMEM The library could not allocate enough memory for its internal data
structures.

man pages section 3: Extended Library Functions « Last Revised 30 Jan 2004

ATTRIBUTES

SEE ALSO

NOTES

cpc_buf_create(3CPC)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

cpc_bind curlwp(3CPC), cpc_set add request(3CPC), 1ibcpc(3LIB),
attributes(b)

Often the overhead of performing a system call can be too disruptive to the events
being measured. Once a cpc_bind_curlwp(3CPC) call has been issued, it is possible
to access directly the performance hardware registers from within the application. If
the performance counter context is active, the counters will count on behalf of the
current LWP.

Not all processors support this type of access. On processors where direct access is not
possible, cpc_set_sample () must be used to read the counters.

SPARC

rd %pic, %$rN ! A1l UltraSPARC

wr $rN, %pic ! (All UltraSPARC, but see text)
x86

rdpmc ! Pentium II, III, and 4 only

If the counter context is not active or has been invalidated, the $pic register (SPARC),
and the rdpmc instruction (Pentium) becomes unavailable.

Pentium II and III processors support the non-privileged rdpmc instruction that
requires that the counter of interest be specified in $ecx and return a 40-bit value in
the $edx:%eax register pair. There is no non-privileged access mechanism for Pentium
I processors.

Extended Library Functions 109

cpc_count_usr_events(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

cpc_count_usr_events, cpc_count_sys_events — enable and disable performance
counters

cc [flag... 1 file... =lcpc [library...]
#include <libcpc.h>

int cpc_count usr_events (int enable) ;

int cpc_count sys events (int enable) ;

In certain applications, it can be useful to explicitly enable and disable performance
counters at different times so that the performance of a critical algorithm can be
examined. The cpc_count _usr_events () function can be used to control whether
events are counted on behalf of the application running in user mode, while
cpc_count_sys events () can be used to control whether events are counted on
behalf of the application while it is running in the kernel, without otherwise
disturbing the binding of events to the invoking LWP. If the enable argument is
non-zero, counting of events is enabled, otherwise they are disabled.

Upon successful completion, cpc_count usr events () and
cpc_count_sys events () return 0. Otherwise, the functions return —1 and set
errno to indicate the error.

The cpc_count _usr_events () and cpc_count_sys_events () functions will
fail if:

EAGAIN The associated performance counter context has been invalidated
by another process.

EINVAL No performance counter context has been created, or an attempt
was made to enable system events while delivering counter
overflow signals.

EXAMPLE 1 Use cpc_count_usr events () to minimize code needed by application.

In this example, the routine cpc_count_usr_events () is used to minimize the
amount of code that needs to be added to the application. The cputrack(l) command
can be used in conjunction with these interfaces to provide event programming,
sampling, and reporting facilities.

If the application is instrumented in this way and then started by cputrack with the
nouser flag set in the event specification, counting of user events will only be enabled
around the critical code section of interest. If the program is run normally, no harm
will ensue.

int have_counters = 0;
int
main (int argc, char *argv[])

{

if (cpc_version(CPC_VER CURRENT) == CPC_VER CURRENT &&
cpc_getcpuver () != -1 && cpc_access() == 0)
have_counters = 1;

110 man pages section 3: Extended Library Functions ¢ Last Revised 30 Jan 2004

ATTRIBUTES

SEE ALSO

NOTES

cpc_count_usr_events(3CPC)

EXAMPLE 1 Use cpc_count_usr_events () to minimize code needed by application.

(Continued)

/* ... other application code */

if (have_counters)

(void) cpc_count_usr_events (1) ;

/* ==> Code to be measured goes here <== *

if (have_counters)

(void) cpc_count usr_events(0) ;

/* ... other application code */

}

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

MT-Safe

Interface Stability

Obsolete

cputrack(l), cpc(3CPC), cpc_access(3CPC), cpc_bind event(3CPC),
cpc_enable(3CPC), cpc_getcpuver(3CPC), cpc_pctx bind event(3CPC),

cpc_version(3CPC), libepce(3LIB), attributes(5)

The cpc_count _usr_events () and cpc_count_sys_events () functions are
Obsolete and might be removed in a future release. Applications should use

cpc_enable(3CPC) instead.

Extended Library Functions 111

cpc_enable(3CPC)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

cpc_enable, cpc_disable — enable and disable performance counters

cc [flag... 1 file... -lcpc [library...]
#include <libcpc.h>

int cpc_enable (cpc_t *cpc) ;

int cpc_disable(cpc_t *cpc) ;

In certain applications, it can be useful to explicitly enable and disable performance
counters at different times so that the performance of a critical algorithm can be
examined. The cpc_enable () and cpc_disable () functions can be used to enable

and disable the performance counters without otherwise disturbing the invoking
LWP’s performance hardware configuration.

Upon successful completion, cpc_enable () and cpc_disable () return 0.
Otherwise, they return -1 and set errno to indicate the error.

These functions will fail if:

EAGAIN The associated performance counter context has been invalidated
by another process.

EINVAL No performance counter context has been created for the calling
LWP.

EXAMPLE 1 Use cpc_enable and cpc_disable to minimize code needed by application.

In the following example, the cpc_enable () and cpc_disable () functions are
used to minimize the amount of code that needs to be added to the application. The
cputrack(l) command can be used in conjunction with these functions to provide
event programming, sampling, and reporting facilities.

If the application is instrumented in this way and then started by cputrack with the
nouser flag set in the event specification, counting of user events will only be enabled
around the critical code section of interest. If the program is run normally, no harm
will ensue.

int

main(int argc, char *argv[])

cpc_tt *cpc = cpc_open (CPC_VER _CURRENT) ;
/* ... application code ... */

if (cpc != NULL)
(void) cpc_enable (cpc) ;

/* ==> Code to be measured goes here <== */

if (cpc != NULL)
(void) cpc_disable (cpc) ;

/* ... other application code */

112 man pages section 3: Extended Library Functions ¢ Last Revised 30 Jan 2004

ATTRIBUTES

SEE ALSO

cpc_enable(3CPC)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

MT-Level

Safe

cputrack(l), cpc(3CPC), cpc_open(3CPC), 1ibepe(3LIB), attributes(5)

Extended Library Functions

113

cpc_event(3CPC)
NAME
SYNOPSIS

DESCRIPTION

SPARC

x86

ATTRIBUTES

cpc_event — data structure to describe CPU performance counters

#include <libcpc.h>

The 1ibcpe interfaces manipulate CPU performance counters using the
cpc_event t data structure. This structure contains several fields that are common
to all processors, and some that are processor-dependent. These structures can be
declared by a consumer of the API, thus the size and offsets of the fields and the entire
data structure are fixed per processor for any particular version of the library. See
cpc_version(3CPC) for details of library versioning.

For UltraSPARC, the structure contains the following members:

typedef struct {
int ce_cpuver;
hrtime_t ce_hrt;
uinté64_t ce_tick;
uint64_t ce pic[2];
uinté64_t ce_pcr;

} cpc_event t;

For Pentium, the structure contains the following members:

typedef struct {
int ce_cpuver;
hrtime t ce hrt;
uinté64_t ce_tsc;
uint64_t ce picl[2];
uint32_t ce_pes[2];

#define ce cesr ce_pes|[0]

} cpc_event t;

The APIs are used to manipulate the highly processor-dependent control registers (the
ce_pcr, ce_cesr, and ce_pes fields); the programmer is strongly advised not to
reference those fields directly in portable code. The ce_pic array elements contain
64-bit accumulated counter values. The hardware registers are virtualized to 64-bit
quantities even though the underlying hardware only supports 32-bits (UltraSPARC)
or 40-bits (Pentium) before overflow.

The ce hrt field is a high resolution timestamp taken at the time the counters were
sampled by the kernel. This uses the same timebase as gethrtime(3C).

On SPARC V9 machines, the number of cycles spent running on the processor is
computed from samples of the processor-dependent $tick register, and placed in the
ce_tick field. On Pentium processors, the processor-dependent time-stamp counter
register is similarly sampled and placed in the ce_tsc field.

See attributes(5) for descriptions of the following attributes:

114 man pages section 3: Extended Library Functions ¢ Last Revised 12 May 2003

SEE ALSO

cpc_event(3CPC)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

gethrtime(3C), cpc(3CPC), cpc_version(3CPC), 1ibepe(3LIB), attributes(5)

Extended Library Functions

115

cpc_event_diff(3CPC)

NAME
SYNOPSIS

DESCRIPTION

cpc_event accum

cpc_event diff ()

ATTRIBUTES

SEE ALSO

cpc_event_diff, cpc_event_accum — simple difference and accumulate operations

cc [flag... 1 file... —lcpc [library...]
#include <libcpc.hs>

void cpc_event accum(cpc event t *accum, cpc_event t *event) ;

void cpc_event diff (cpc event t *diff, cpc_event t *after,
cpc_event t *before) ;

The cpc_event accum() and cpc_event diff () functions perform common
accumulate and difference operations on cpc_event(3CPC) data structures. Use of
these functions increases program portability, since structure members are not
referenced directly .

)The cpc_event accum() function adds the ce pic fields of event into the
corresponding fields of accum. The ce_hrt field of accum is set to the later of the times
in event and accum.

SPARC:

The function adds the contents of the ce_tick field of event into the corresponding
field of accum.

x86:

The function adds the contents of the ce_tsc field of event into the corresponding
field of accum.

The cpc_event_diff () function places the difference between the ce_pic fields of
after and before and places them in the corresponding field of diff. The ce hrt field of
diff is set to the ce_hrt field of after.

SPARC:

Additionally, the function computes the difference between the ce tick fields of after
and before, and places it in the corresponding field of diff.

x86:

Additionally, the function computes the difference between the ce_tsc fields of after
and before, and places it in the corresponding field of diff.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe

cpc(3CPC), cpc_buf add(3CPC), cpc_buf sub(3CPC), cpc_event(3CPC),
libcpe(3LIB), attributes(b)

116 man pages section 3: Extended Library Functions ¢ Last Revised 30 Jan 2004

cpc_event_diff(3CPC)

NOTES | The cpc_event accum() and cpc_event diff () functions are Obsolete and
might be removed in a future release. Applications should use cpc_buf_add(3CPC)
and cpc_buf sub(3CPC) instead.

Extended Library Functions 117

cpc_getcpuver(3CPC)

118

NAME

SYNOPSIS

DESCRIPTION

cpc_getcpuver, cpc_getcciname, cpc_getcpuref, cpc_getusage, cpc_getnpic,
cpc_walk_names — determine CPU performance counter configuration

cc [flag... 1 file... =lcpc [library...]
#include <libcpc.h>

int cpc_getcpuver (void) ;

const char *cpc_getcciname (int cpuver) ;
const char *cpc_getcpuref (int cpuver) ;
const char *cpc_getusage (int cpuver) ;
uint_t cpc_getnpic (int cpuver) ;

void ecpc_walk names (int cpuver, int regno, void *arg, void
(*action) (void *arg, int regno, const char *name, uint8 t bits)) ;

The cpc_getcpuver () function returns an abstract integer that corresponds to the
distinguished version of the underlying processor. The library distinguishes between
processors solely on the basis of their support for performance counters, so the version
returned should not be interpreted in any other way. The set of values returned by the
library is unique across all processor implementations.

The cpc_getcpuver () function returns —1 if the library cannot support CPU
performance counters on the current architecture. This may be because the processor
has no such counter hardware, or because the library is unable to recognize it. Either
way, such a return value indicates that the configuration functions described on this
manual page cannot be used.

The cpc_getceiname () function returns a printable description of the processor
performance counter interfaces-for example, the string UltraSPARC I&I1. Note that this
name should not be assumed to be the same as the name the manufacturer might
otherwise ascribe to the processor. It simply names the performance counter interfaces
as understood by the library, and thus names the set of performance counter events
that can be described by that interface. If the cpuver argument is unrecognized, the
function returns NULL.

The cpc_getcpuref () function returns a string that describes a reference work that
should be consulted to (allow a human to) understand the semantics of the
performance counter events that are known to the library. If the cpuver argument is
unrecognized, the function returns NULL. The string returned might be substantially
longer than 80 characters. Callers printing to a terminal might want to insert line
breaks as appropriate.

The cpc_getusage () function returns a compact description of the

getsubopt () -oriented syntax that is consumed by cpc_strtoevent(3CPC). It is
returned as a space-separated set of tokens to allow the caller to wrap lines at
convenient boundaries. If the cpuver argument is unrecognized, the function returns
NULL.

man pages section 3: Extended Library Functions » Last Revised 30 Jan 2004

USAGE

ATTRIBUTES

SEE ALSO

NOTES

cpc_getcpuver(3CPC)

The cpc_getnpic () function returns the number of valid fields in the ce pic|]
array of a cpc_event_t data structure.

The library maintains a list of events that it believes the processor capable of
measuring, along with the bit patterns that must be set in the corresponding control
register, and which counter the result will appear in. The cpc_walk names ()
function calls the action() function on each element of the list so that an application
can print appropriate help on the set of events known to the library. The arg parameter
is passed uninterpreted from the caller on each invocation of the action(') function.

If the parameters specify an invalid or unknown CPU or register number, the function
silently returns without invoking the action function.

Prior to calling any of these functions, applications should call cpc_access(3CPC) to
determine if the counters are accessible on the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

cpc(3CPC), cpc_access(3CPC), cpc_cciname(3CPC), cpec cpuref(3CPC),
cpc_npic(3CPC), cpc_walk events all(3CPC)libepc(3LIB), attributes(5)

The cpc_getcpuver (), cpc_getcciname (), cpc_getcpuref (),
cpc_getusage (), cpc_getnpic (), and cpc_walk names () functions are
Obsolete and might be removed in a future release. Applications should use
cpc_cciname(3CPC), cpc_cpuref(3CPC), cpc_npic(3CPC), and
cpc_walk events all(3CPC) instead.

Only SPARC processors are described by the SPARC version of the library, and only
x86 processors are described by the x86 version of the library.

Extended Library Functions 119

cpc_npic(3CPC)

120

NAME

SYNOPSIS

DESCRIPTION

cpc_npic, cpc_caps, cpc_cciname, cpc_cpuref, cpc_walk_events_all,
cpc_walk_events_pic, cpc_walk_attrs — determine CPU performance counter
configuration

cc [flag... 1 file... -lcpc [library...]
#include <libcpc.h>

const char *cpc_cciname (cpc_t *cpc) ;
const char *cpc_cpuref (cpc_t *cpc) ;
uint_t epc _npic(cpc_t *cpe) ;
uint t cpc_caps(cpc_t *cpe) ;

void cpc_walk events all(cpc_t *cpc, void *arg, void (*action) (void
*arg, const char *event)) ;

void cpc_walk events pic(cpc_t *cpc, uint_t picno, void *arg, void
(*action) (void *arg, uint_t picno, const char *event)) ;

void epc_walk attrs(cpc_t *cpc, void *arg, void (*action) (void *arg,
const char *attr)) ;

The cpc_cciname () function returns a printable description of the processor
performance counter interfaces, for example, the string UltraSPARC III+ & IV. This
name should not be assumed to be the same as the name the manufacturer might
otherwise ascribe to the processor. It simply names the performance counter interfaces
as understood by the system, and thus names the set of performance counter events
that can be described by that interface.

The cpc_cpuref () function returns a string that describes a reference work that
should be consulted to (allow a human to) understand the semantics of the
performance counter events that are known to the system. The string returned might
be substantially longer than 80 characters. Callers printing to a terminal might want to
insert line breaks as appropriate.

The cpc_npic () function returns the number of performance counters accessible on
the processor.

The cpc_caps () function returns a bitmap containing the bitwise inclusive-OR of
zero or more flags that describe the capabilities of the processor. If
CPC_CAP_OVERFLOW_INTERRUPT is present, the processor can generate an interrupt
when a hardware performance counter overflows. If CP.C_CAP_OVERFLOW_PRECISE
is present, the processor can determine precisely which counter overflowed, thereby
affecting the behavior of the overflow notification mechanism described in
cpc_bind_ curlwp(3CPC).

The system maintains a list of performance counter events supported by the
underlying processor. Some processors are able to count all events on all hardware
counters, while other processors restrict certain events to be counted only on specific
hardware counters. The system also maintains a list of processor-specific attributes
that can be used for advanced configuration of the performance counter hardware.

man pages section 3: Extended Library Functions « Last Revised 30 Jan 2004

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

cpc_npic(3CPC)

These functions allow applications to determine what events and attributes are
supported by the underlying processor. The reference work pointed to by
cpc_cpuref () should be consulted to understand the reasons for and use of the
attributes.

The cpc_walk events all () function calls the action function on each element of a
global event list. The action function is called with each event supported by the
processor, regardless of which counter is capable of counting it. The action function is
called only once for each event, even if that event can be counted on more than one
counter.

The cpc_walk_events_pic () function calls the action function with each event
supported by the counter indicated by the picno argument, where picno ranges from 0
to the value returned by cpc_npic ().

The system maintains a list of attributes that can be used to enable advanced features
of the performance counters on the underlying processor. The cpc_walk_attrs ()
function calls the action function for each supported attribute name. See the reference
material as returned by cpc_cpuref(3CPC) for the semantics use of attributes.

The cpc_cciname () function always returns a printable description of the processor
performance counter interfaces.

The cpc_cpuref () function always returns a string that describes a reference work.

The cpc_npic () function always returns the number of performance counters
accessible on the processor.

The cpc_caps () function always returns a bitmap containing the bitwise
inclusive-OR of zero or more flags that describe the capabilities of the processor.

If the user-defined function specified by action is not called, the
cpc_walk events all(),cpc_walk events pic(),and cpc_walk attrs()
functions set errno to indicate the error.

The cpc_walk_events_all (), cpc_walk_events_pic(),and
cpc_walk attrs () functions will fail if:

ENOMEM There is not enough memory available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

cpc_bind curlwp(3CPC), libepe(3LIB), attributes(5)

Extended Library Functions 121

cpc_open(3CPC)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

cpc_open, cpc_close — initialize the CPU Performance Counter library

cc [flag... 1 file... -lcpc [library...]
#include <libcpc.h>

cpc_t *cpc_open (int wvers) ;
int cpc_close(cpc_t *cpc) ;

The cpc_open () function initializes 1ibcpc(3LIB) and returns an identifier that
must be used as the cpc argument in subsequent 1ibcpc function calls. The
cpc_open () function takes an interface version as an argument and returns NULL if
that version of the interface is incompatible with the 1ibcpc implementation present
on the system. Usually, the argument has the value of CPC_VER_CURRENT bound to
the application when it was compiled.

The cpc_close () function releases all resources associated with the cpc argument.
Any bound counters utilized by the process are unbound. All entities of type
cpc_set_t and cpc_buf_t are invalidated and destroyed.

If the version requested is supported by the implementation, cpc_open () returns a
cpc_t handle for use in all subsequent 1ibcpc operations. If the implementation
cannot support the version needed by the application, cpc_open () returns NULL,
indicating that the application at least needs to be recompiled to operate correctly on
the new platform and might require further changes.

The cpc_close () function always returns 0.

These functions will fail if:

EINVAL The version requested by the client is incompatible with the
implementation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libcpce(3LIB), attributes(5)

122 man pages section 3: Extended Library Functions « Last Revised 30 Jan 2004

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

cpc_pctx_bind_event(3CPC)

cpc_pctx_bind_event, cpc_pctx_take_sample, cpc_pctx_rele, cpc_pctx_invalidate —
access CPU performance counters in other processes

cc [flag... 1 file... —=lcpc —lpctx [library...]
#include <libpctx.h>
#include <libcpc.h>

int cpc_pctx bind event (pctx t *pctx, id_t lwpid, cpc_event t *event,
int flags) ;

int cpe pctx take sample(pctx t *pctx, id t lwpid, cpc event t
*event) ;

int epe_pectx_rele(pctx_t *pctx, id_t lwpid) ;
int epe_pctx invalidate (pctx_t *pctx, id_t lwpid) ;

These functions are designed to be run in the context of an event handler created
using the 1ibpctx(3LIB) family of functions that allow the caller, also known as the
controlling process, to manipulate the performance counters in the context of a controlled
process. The controlled process is described by the pctx argument, which must be
obtained from an invocation of pctx_capture(3CPC) or pctx_create(3CPC) and
passed to the functions described on this page in the context of an event handler.

The semantics of the functions cpc_pctx_bind event (),
cpc_pctx take sample (), and cpc pctx rele () are directly analogous to those
of cpc_bind event (), cpc_take sample (), and cpc_rele () described on the
cpc_bind event(3CPC) manual page.

The cpc_pectx invalidate () function allows the performance context to be
invalidated in an LWP in the controlled process.

These functions return 0 on success. On failure, they return —1 and set errno to
indicate the error.

The cpc_pctx_bind event (), cpc_pctx_take sample(), and
cpc_pctx_rele () functions return the same errno values the analogous functions
described on the cpc_bind event(3CPC) manual page. In addition, these function
may fail if:

ESRCH The value of the [wpid argument is invalid in the context of the
controlled process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Interface Stability Evolving

cpc(3CPC), cpc_bind event(3CPC), 1ibcpe(3LIB), pctx capture(3CPC),
pctx create(3CPC), attributes(5)

Extended Library Functions 123

cpc_pctx_bind_event(3CPC)

NOTES | The cpc_pctx_bind event (), cpc_pctx_invalidate (), cpc_pctx_rele(),
and cpc_pctx_take_sample () functions are Obsolete and might be removed in a
future release. Applications should use cpc_bind pctx(3CPC), cpc unbind(3CPC),
and cpc_set sample(3CPC) instead.

The capability to create and analyze overflow events in other processes is not
available, though it may be made available in a future version of this API. In the
current implementation, the flags field must be specified as 0.

124 man pages section 3: Extended Library Functions « Last Revised 30 Jan 2004

NAME

SYNOPSIS

DESCRIPTION

cpc_set_create(3CPC)

cpc_set_create, cpc_set_destroy, cpc_set_add_request, cpc_walk_requests — manage
sets of counter requests

cc [flag... 1 file... -lcpc [library...]
#include <libcpc.h>

cpc_set_t *cpc_set create(cpc_t *cpc) ;
int cpc_set_destroy(cpc_t *cpc, cpc_set_t *set);

int cpc_set_add request(cpc_t *cpc, cpc_set_t *set, const char
*event, uinté4_t preset, uint_t ﬂags, uint_t nattrs, const
cpc_attr_t *attrs) ;

void cpc_walk requests(cpc_t *cpc, cpc_set t *set, void *arg, void
(*action) (void *arg, int index, const char *event, uinté4_t preset,
uint_t flags, int nattrs, const cpc_attr t *attrs));

The cpc_set_create () function returns an initialized and empty CPC set. A CPC
set contains some number of requests, where a request represents a specific
configuration of a hardware performance instrumentation counter present on the
processor. The cpc_set_t data structure is opaque and must not be accessed directly
by the application.

Applications wanting to program one or more performance counters must create an
empty set with cpc_set_create () and add requests to the set with
cpc_set_add_request (). Once all requests have been added to a set, the set must
be bound to the hardware performance counters (see cpc_bind curlwp (),
cpc_bind pctx (), and cpc_bind cpu (), all described on
cpc_bind_curlwp(3CPC)) before counting events. At bind time, the system attempts
to match each request with an available physical counter capable of counting the event
specified in the request. If the bind is successful, a 64-bit virtualized counter is created
to store the counts accumulated by the hardware counter. These counts are stored and
managed in CPC buffers separate from the CPC set whose requests are being counted.
See cpc_buf create(3CPC) and cpc_set sample(3CPC).

The cpc_set_add_request () function specifies a configuration of a hardware
counter. The arguments to cpc_set_add request () are:

event A string containing the name of an event supported by the
system’s processor. The cpc_walk_events_all() and
cpc_walk events pic () functions (both described on
cpc_npic(3CPC)) can be used to query the processor for the
names of available events.

preset The value with which the system initializes the counter.

flags Three flags are defined that modify the behavior of the counter
acting on behalf of this request:

CPC_COUNT USER
The counter should count events that occur while the processor
is in user mode.

Extended Library Functions 125

cpc_set_create(3CPC)

CPC_COUNT SYSTEM
The counter should count events that occur while the processor
is in privileged mode.

CPC_OVF_NOTIFY EMT
Request a signal to be sent to the application when the physical
counter overflows. A SIGEMT signal is delivered if the processor
is capable of delivering an interrupt when the counter counts
past its maximum value. All requests in the set containing the
counter that overflowed are stopped until the set is rebound.

At least one of CPC_COUNT USER or CPC_COUNT SYSTEM must
be specified to program the hardware for counting.

nattrs, attrs The nattrs argument specifies the number of attributes pointed to
by the attrs argument, which is an array of cpc_attr_t structures
containing processor-specific attributes that modify the request’s
configuration. The cpc_walk_attrs () function (see
cpc_npic(3CPC)) can be used to query the processor for the list
of attributes it accepts. The library makes a private copy of the
attrs array, allowing the application to dispose of it immediately
after calling cpc_set_add_request ().

The cpc_walk_ requests () function calls the action function on each request that
has been added to the set. The arg argument is passed unmodified to the action
function with each call.

RETURN VALUES | Upon successful completion, cpc_set_create () returns a handle to the opaque
cpc_set_t data structure. Otherwise, NULL is returned and errno is set to indicate
the error.

Upon successful completion, Cpc_set destroy () returns 0. Otherwise, -1 is
returned and errno is set to indicate the error.

Upon successful completion, cpc_set_add_request () returns an integer index
used to refer to the data generated by that request during data retrieval. Otherwise, -1
is returned and errno is set to indicate the error.

ERRORS | These functions will fail if:

EINVAL An event, attribute, or flag passed to cpc_set _add_request ()
was invalid.

For cpc_set destroy () and cpc_set_add request (), the
set parameter was not created with the given cpc_t.

ENOMEM There was not enough memory available to the process to create
the library’s data structures.

126 man pages section 3: Extended Library Functions « Last Revised 22 Jun 2004

ATTRIBUTES

SEE ALSO

NOTES

cpc_set_create(3CPC)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

MT-Level

Safe

cpc_bind curlwp(3CPC), cpc buf create(3CPC), cpc_npic(3CPC),
cpc_seterrhndlr(3CPC), libepe(3LIB), attributes(5)

The system automatically determines which particular physical counter to use to
count the events specified by each request. Applications can force the system to use a

particular counter by specifying the counter number in an attribute named picnum that
is passed to cpc_set_add request (). Counters are numbered from O ton - 1,
where n is the number of counters in the processor as returned by cpc_npic(3CPC).

Some processors, such as UltraSPARC, do not allow the hardware counters to be
programmed differently. In this case, all requests in the set must have the same
configuration, or an attempt to bind the set will return EINVAL. If a

cpc_errhndlr_t has been registered with cpc_seterrhndlr(3CPC), the error

handler is called with subcode CPC CONFLICTING REQS. For example, on
UltraSPARC pic0 and picl must both program events in the same processor mode

(user mode, kernel mode, or both). For example, pic0 cannot be programmed with
CPC_COUNT_USER while pic1 is programmed with CPC_COUNT_SYSTEM. Refer to
the hardware documentation referenced by cpc_cpuref(3CPC) for details about a

particular processor’s performance instrumentation hardware.

Extended Library Functions

127

cpc_seterrfn(3CPC)
NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

cpc_seterrfn — control libcpc error reporting

cc [flag... 1 file... —lcpc [library...]
#include <libcpc.h>

typedef void (cpc errfn t) (const char *fun, const char *fmt, va list
ap) ;

void cpc_seterrfn(cpc_errfn t *errfn) ;

For the convenience of programmers instrumenting their code, several 1ibcpc(3LIB)
functions automatically emit to stderr error messages that attempt to provide a more
detailed explanation of their error return values. While this can be useful for simple
programs, some applications may wish to report their errors differently—for example,
to a window or to a log file.

The cpc_seterrfn () function allows the caller to provide an alternate function for
reporting errors; the type signature is shown above. The frn argument is passed the
library function name that detected the error, the format string fmt and argument
pointer ap can be passed directly to vsnprint £(3C) or similar varargs-based routine
for formatting.

The default printing routine can be restored by calling the routine with an errfn
argument of NULL.

EXAMPLE 1 Debugging example.

This example produces error messages only when debugging the program containing
it, or when the cpc_strtoevent () function is reporting an error when parsing an
event specification

int debugging;

void

myapp_errfn(const char *fn, const char *fmt, va_list ap)

if (strcmp(fn, "strtoevent") != 0 && !debugging)
return;
(void) fprintf (stderr, "myapp: cpc_%s(): ", fn);

(void) vfprintf (stderr, fmt, ap);

}

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Interface Stability Obsolete

cpc(3CPC), cpc_seterrhndlr(3CPC), 1ibcpce(3LIB), vsnprint £(3C),
attributes(b)

The cpc_seterrfn () function function is Obsolete and might be removed in a
future release. Applications should use cpc_seterrhndlr(3CPC) instead.

128 man pages section 3: Extended Library Functions « Last Revised 30 Jan 2004

NAME
SYNOPSIS

DESCRIPTION

cpc_seterrhndlr(3CPC)
cpc_seterrhndlr — control libcpc error reporting

cc [flag... 1 file... -lcpc [library...]
#include <libcpc.h>

typedef void(epc errhndlr t) (cpc t *cpc, const char *fn, int
subcode, const char *fmt, va_list ap);

void epc_seterrhndlr (cpc_t *cpc, cpc_errhndlr_t *errfn) ;

For the convenience of programmers instrumenting their code, several 1ibcpc(3LIB)
functions automatically emit to stderr error messages that attempt to provide a more
detailed explanation of their error return values. While this can be useful for simple
programs, some applications might wanat to report their errors differently, for
example, to a window or to a log file.

The cpc_seterrhndlr () function allows the caller to provide an alternate function
for reporting errors. The type signature is shown in the SYNOPSIS. The fn argument is
passed the library function name that detected the error, an integer subcode indicating
the specific error condidtion that has occurred, and the format string fmt that contains
a textual description of the integer subcode. The format string fint and argument
pointer ap can be passed directly to vsnprint £(3C) or similar varargs-based function
for formatting.

The integer subcodes are provided to allow programs to recognize error conditions
while using 1ibcpe. The fmf string is provided as a convenience for easy printing.
The error subcodes are:

CPC_INVALID EVENT
A specified event is not supported by the processor.

CPC_INVALID PICNUM
The counter number does not fall in the range of available counters.

CPC_INVALID ATTRIBUTE
A specified attribute is not supported by the processor.

CPC_ATTRIBUTE OUT OF RANGE
The value of an attribute is outside the range supported by the processor.

CPC_RESOURCE_ UNAVAIL
A hardware resource necessary for completing an operation was unavailable.

CPC_PIC NOT CAPABLE
The requested counter cannot count an assigned event.

CPC_REQ INVALID FLAGS
One or more requests has invalid flags.

CPC_CONFLICTING REQS
The requests in a set cannot be programmed onto the hardware at the same time.

CPC_ATTR REQUIRES PRIVILEGE
A request contains an attribute which requires the cpc_cpu privilege, which the
process does not have.

Extended Library Functions 129

cpc_seterrhndlr(3CPC)

130

EXAMPLES

ATTRIBUTES

SEE ALSO

The default printing routine can be restored by calling the routine with an errfn
argument of NULL.

EXAMPLE 1 Debugging example.

The following example produces error messages only when debugging the program
containing it, or when the cpc_bind curlwp (), cpc_bind cpu(),or
cpc_bind pctx () functions are reporting an error when binding a cpc_set_t.

int debugging;

void

myapp_errfn(const char *fn, int subcode, const char *fmt, va_list ap)

if (strncmp(fn, "cpc_bind", 8) != 0 && !debugging)
return;
(void) fprintf (stderr, "myapp: cpc_%s(): ", fn);

(void) vfprintf (stderr, fmt, ap);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

cpc_bind curlwp(3CPC), libepe(3LIB), vsnprint £(3C), attributes(5)

man pages section 3: Extended Library Functions « Last Revised 30 Jan 2004

NAME

SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

cpc_shared_open(3CPC)

cpc_shared_open, cpc_shared_bind_event, cpc_shared_take_sample, cpc_shared_rele,
cpc_shared_close — use CPU performance counters on processors

cc [flag... 1 file... —lcpc [library...]
#include <libcpc.h>

int cpc_shared open(void) ;

int ecpe_shared bind event (int fd, cpc event t *event, int flags) ;
int cpe_shared take sample(int fd, cpc_event t *event);

int cpe_shared rele(int fd) ;

void cpc_shared close (int fd) ;

The cpc_shared open () function allows the caller to access the hardware counters
in such a way that the performance of the currently bound CPU can be measured. The
function returns a file descriptor if successful. Only one such open can be active at a
time on any CPU.

The cpc_shared bind event (), cpc_shared take sample (), and
cpc_shared_rele () functions are directly analogous to the corresponding
cpc_bind event (), cpc_take sample (), and cpc_rele () functions described
on the cpc_bind event(3CPC)manual page, except that they operate on the
counters of a particular processor.

If a thread wishes to access the counters using this interface, it must do so using a
thread bound to an Iwp, (see the THR_BOUND flag to thr_create(3C)), that has in
turn bound itself to a processor using processor_bind(2).

Unlike the cpc_bind event(3CPC) family of functions, no counter context is
attached to those Iwps, so the performance counter samples from the processors
reflects the system-wide usage, instead of per-lwp usage.

The first successful invocation of cpc_shared open () will immediately
invalidate all existing performance counter context on the system, and prevent all
subsequent attempts to bind counter context to Iwps from succeeding anywhere on
the system until the last caller invokes cpc_shared close().

This is because it is impossible to simultaneously use the counters to accurately
measure per-lwp and system-wide events, so there is an exclusive interlock between
these uses.

Access to the shared counters is mediated by file permissions on a cpc pseudo device.
Only a user with the {PRIV_SYS CONFIG] privilege is allowed to access the shared
device. This control prevents use of the counters on a per-lwp basis to other users.

The CPC_BIND LWP_INHERIT and CPC_BIND_ EMT OVF flags are invalid for the
shared interface.

On success, the functions (except for cpc_shared_close ()) return 0. On failure, the
functions return —1 and set errno to indicate the reason.

Extended Library Functions 131

cpc_shared_open(3CPC)
ERRORS | EACCES

EAGAIN

EAGAIN

EINVAL

ENOTSUP

ENXIO

The caller does not have appropriate privilege to access the CPU
performance counters system-wide.

For cpc_shared_open(), this value implies that the counters on the
bound cpu are busy because they are already being used to
measure system-wide events by some other caller.

Otherwise, this return value implies that the counters are not
available because the thread has been unbound from the processor
it was bound to at open time. Robust programs should be coded to
expect this behavior, and should invoke cpc_shared close(),
before retrying the operation.

The counters cannot be accessed on the current CPU because the
calling thread is not bound to that CPU using
processor bind(2).

The caller has attempted an operation that is illegal or not
supported on the current platform.

The current machine either has no performance counters, or has
been configured to disallow access to them system-wide.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level

MT-Safe

Interface Stability

Obsolete

SEE ALSO | processor_bind(2), cpc(3CPC), cpc_bind cpu(3CPC), cpc_bind event(3CPC),

cpc_set_sample(3CPC), cpc_unbind(3CPC), 1ibepe(3LIB), thr create(3C),
attributes(b)

NOTES | The cpc_shared open(), cpc_shared bind event (),

instead.

cpc_shared take sample (), cpc_shared rele(), and cpc_shared close()
functions are Obsolete and might be removed in a future release. Applications should
use cpc_bind cpu(3CPC), cpc_set sample(3CPC), and cpc unbind(3CPC)

132 man pages section 3: Extended Library Functions « Last Revised 30 Jan 2004

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

UltraSPARC

Pentium I

cpc_strtoevent(3CPC)
cpc_strtoevent, cpc_eventtostr — translate strings to and from events

cc [flag... 1 file... —lcpc [library...]
#include <libcpc.h>

int cpc_strtoevent (int cpuver, const char *spec, cpc_event_ t *event) ;

char *cpc_eventtostr (cpc_event t *event) ;

The cpc_strtoevent () function translates an event specification to the appropriate
collection of control bits in a cpc_event_t structure pointed to by the event
argument. The event specification is a get subopt (3C)-style string that describes the
event and any attributes that the processor can apply to the event or events. If
successful, the funciton returns 0, the ce_cpuver field and the ISA-dependent control
registers of event are initialized appropriately, and the rest of the cpc_event_t
structure is initialized to 0.

The cpc_eventtostr () function takes an event and constructs a compact canonical
string representation for that event.

Upon successful completion, cpc_strtoevent () returns 0. If the string cannot be
decoded, a non-zero value is returned and a message is printed using the library’s
error-reporting mechanism (see cpc_seterrfn(3CPQC)).

Upon successful completion, cpc_eventtostr () returns a pointer to a string. The
string returned must be freed by the caller using free(3C). If cpc_eventtostr ()
fails, a null pointer is returned.

The event selection syntax used is processor architecture-dependent. The supported
processor families allow variations on how events are counted as well as what events
can be counted. This information is available in compact form from the
cpc_getusage () function (see cpc_getcpuver(3CPC)), but is explained in further
detail below.

On UltraSPARC processors, the syntax for setting options is as follows:
picO=<eventspec>,picl=<eventspec> [,sys] [, nouser]

This syntax, which reflects the simplicity of the options available using the $pcr
register, forces both counter events to be selected. By default only user events are

counted; however, the sys keyword allows system (kernel) events to be counted as
well. User event counting can be disabled by specifying the nouser keyword.

The keywords pic0 and picl may be omitted; they can be used to resolve
ambiguities if they exist.

On Pentium processors, the syntax for setting counter options is as follows:

picO=<eventspec>,picl=<eventspec> [,sys[[0]|1]]] [,nouser[[0]|1]]]
[,noedge[[0]1]11] [,pcl[0|1]]1]

The syntax and semantics are the same as UltraSPARC, except that is possible to
specify whether a particular counter counts user or system events. If unspecified, the
specification is presumed to apply to both counters.

Extended Library Functions 133

cpc_strtoevent(3CPC)

Pentium II

EXAMPLES

SPARC

ATTRIBUTES

SEE ALSO

NOTES

There are some additional keywords. The noedge keyword specifies that the counter
should count clocks (duration) instead of events. The pc keyword allows the external
pin control pins to be set high (defaults to low). When the pin control register is set
high, the external pin will be asserted when the associated register overflows. When
the pin control register is set low, the external pin will be asserted when the counter
has been incremented. The electrical effect of driving the pin is dependent uptoon how
the motherboard manufacturer has chosen to connect it, if it is connected at all.

For Pentium II processors, the syntax is substantially more complex, reflecting the
complex configuration options available:

picO=<eventspec>,picl=<eventspec> [,sys[[0]1]]]
[,nouser[[0]1]]] [,noedge([0]1]]1] [,pcl[0[11]1] [,inv([0|1]]] [,int[[0]1]]]
[,cmask[0]|1] =<maskspec>] [,umask[0]|1]=<maskspecs>]

This syntax is a straightforward extension of the earlier syntax. The additional inv,
int, cmasko0, cmaskl, umask0, and umaskl keywords allow extended counting
semantics. The mask specification is a number between 0 and 255, expressed in
hexadecimal, octal or decimal notation.

EXAMPLE 1 SPARC Example.

cpc_event t event;
char *setting = "pic0=EC ref,picl=EC hit"; /* UltraSPARC-specific */

if (cpc_strtoevent (cpuver, setting, &event) != 0)
/* can'’t measure 'setting’ on this processor */
else

setting = cpc_eventtostr (&event) ;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe

cpc(3CPC), cpc_getcpuver(3CPC), cpc_set add request(3CPC),
cpc_seterrfn(3CPC), free(3C), getsubopt(3C), libepc(3LIB), attributes(5)

The cpc_strtoevent () and cpc_eventtostr () functions are Obsolete and might
be removed in a future release. Applications should use
cpc_set add request(3CPC) instead.

These functions are provided as a convenience only. As new processors are usually
released asynchronously with software, the library allows the pic0 and pic1l
keywords to interpret numeric values specified directly in hexadecimal, octal, or
decimal.

134 man pages section 3: Extended Library Functions « Last Revised 30 Jan 2004

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

cpc_version(3CPC)
cpc_version — coordinate CPC library and application versions

cc [flag... 1 file... =lcpc [library...]
#include <libcpc.h>

uint t cpe_version (uint_t wversion) ;

The cpc_version () function takes an interface version as an argument and returns
an interface version as a result. Usually, the argument will be the value of
CPC_VER_CURRENT bound to the application when it was compiled.

If the version requested is still supported by the implementation, cpc_version ()
returns the requested version number and the application can use the facilities of the
library on that platform. If the implementation cannot support the version needed by
the application, cpc_version () returns CPC_VER_NONE, indicating that the
application will at least need to be recompiled to operate correctly on the new
platform, and may require further changes.

If version is CPC_VER_NONE, cpc_version () returns the most current version of the
library.

EXAMPLE 1 Protect an application from using an incompatible library.

The following lines of code protect an application from using an incompatible library:

if (cpc version(CPC_VER CURRENT) == CPC_VER NONE) {
/* version mismatch - library cannot translate */
exit (1) ;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

cpc(3CPC), cpc_open(3CPC), 1ibepe(3LIB), attributes(5)

The cpc_version () function is Obsolete and might be removed in a future release.
Applications should use cpc_open(3CPC) instead.

The version number is used only to express incompatible semantic changes in the
performance counter interfaces on the given platform within a single instruction set
architecture, for example, when a new set of performance counter registers are added
to an existing processor family that cannot be specified in the existing cpc_event_t
data structure.

Extended Library Functions 135

cpl_complete_word(3TECLA)

136

NAME

SYNOPSIS

DESCRIPTION

cpl_complete_word, cfc_file_start, cfc_literal_escapes, cfc_set_check_fn,
cpl_add_completion, cpl_file_completions, cpl_last_error, cpl_list_completions,
cpl_recall_matches, cpl_record_error, del_CplFileConf, cpl_check_exe,
del_WordCompletion, new_CplFileConf, new_WordCompletion — look up possible
completions for a word

cc [flag... 1 file... -ltecla [library...]
#include <stdio.h>
#include <libtecla.h>

WordCompletion *new WordCompletion (void) ;
WordCompletion *del_WordCompletion (WordCompletion *cpl) ;
CPL_MATCH FN(cpl file completions);

CplFileConf *new CplFileConf (void) ;

void cfec_file start((CplFileConf *cfc, int start_index) ;
void cfc literal escapes(CplFileConf *cfc, int literal) ;

void cfc_set check fn(CplFileConf *cfc, CplCheckFn *chk_fn, void
*chk_data) ;

CPL_CHECK FN(cpl check exe);
CplFileConf *del CplFileConf (CplFileConf *cfc) ;

CplMatches *cpl complete word(WordCompletion *cpl, const char
*[ine, int word_end, void *data, CplMatchFn *match_fn) ;

CplMatches *cpl recall matches (WordCompletion *cpl) ;

int epl list completions (CplMatches *result, FILE *fp, int
term_width) ;

int cpl add completion (WordCompletion *Cpl, const char *line, int
word_start, int word_end, const char *suffix, const char *type_suffix,
const char *cont_suffix) ;

void epl record error (WordCompletion *cpl, const char *errmsg) ;

const char *cpl last error (WordCompletion *cpl) ;

The cpl_complete_word () function is part of the 1ibtecla(3LIB) library. It is
usually called behind the scenes by g1 get 1ine(3TECLA), but can also be called
separately.

Given an input line containing an incomplete word to be completed, it calls a
user-provided callback function (or the provided file-completion callback function) to
look up all possible completion suffixes for that word. The callback function is
expected to look backward in the line, starting from the specified cursor position, to
find the start of the word to be completed, then to look up all possible completions of
that word and record them, one at a time, by calling cpl add completion().

man pages section 3: Extended Library Functions e Last Revised 1 Jun 2004

cpl_complete_word(3TECLA)

The new_WordCompletion () function creates the resources used by the
cpl_complete_word () function. In particular, it maintains the memory that is used
to return the results of calling cpl complete word().

The del_WordCompletion () function deletes the resources that were returned by a
previous call to new WordCompletion (). It always returns NULL (that is, a deleted
object). It takes no action if the cpl argument is NULL.

The callback functions that look up possible completions should be defined with the
CPL_MATCH FN () macro, which is defined in <1ibtecla.h>. Functions of this type
are called by cpl_complete_word (), and all of the arguments of the callback are
those that were passed to said function. In particular, the /ine argument contains the
input line containing the word to be completed, and word_end is the index of the
character that follows the last character of the incomplete word within this string. The
callback is expected to look backwards from word_end for the start of the incomplete
word. What constitutes the start of a word clearly depends on the application, so it
makes sense for the callback to take on this responsibility. For example, the builtin
filename completion function looks backwards until it encounters an unescaped space
or the start of the line. Having found the start of the word, the callback should then
lookup all possible completions of this word, and record each completion with
separate calls to cpl_add completion (). If the callback needs access to an
application-specific symbol table, it can pass it and any other data that it needs using
the data argument. This removes any need for global variables.

The callback function should return 0 if no errors occur. On failure it should return 1
and register a terse description of the error by calling cpl_record_error ().

The last error message recorded by calling cpl record_error () can subsequently
be queried by calling cpl_last_error().

The cpl_add completion () function is called zero or more times by the
completion callback function to record each possible completion in the specified
WordCompletion object. These completions are subsequently returned by
cpl_complete_word (). The cpl, line, and word_end arguments should be those that
were passed to the callback function. The word_start argument should be the index
within the input line string of the start of the word that is being completed. This
should equal word_end if a zero-length string is being completed. The suffix argument
is the string that would have to be appended to the incomplete word to complete it. If
this needs any quoting (for example, the addition of backslashes before special
charaters) to be valid within the displayed input line, this should be included. A copy
of the suffix string is allocated internally, so there is no need to maintain your copy of
the string after cpl_add_completion () returns.

In the array of possible completions that the cpl_complete_word () function
returns, the suffix recorded by cpl add_completion () is listed along with the
concatentation of this suffix with the word that lies between word_start and word_end
in the input line.

Extended Library Functions 137

cpl_complete_word(3TECLA)

The type_suffix argument specifies an optional string to be appended to the completion
if it is displayed as part of a list of completions by cpl_list_completions. The intention is
that this indicate to the user the type of each completion. For example, the file
completion function places a directory separator after completions that are directories,
to indicate their nature to the user. Similary, if the completion were a function, you
could indicate this to the user by setting type_suffix to "()". Note that the type_suffix
string is not copied, so if the argument is not a literal string between speech marks, be
sure that the string remains valid for at least as long as the results of

cpl complete word() are needed.

The cont_suffix argument is a continuation suffix to append to the completed word in
the input line if this is the only completion. This is something that is not part of the
completion itself, but that gives the user an indication about how they might continue
to extend the token. For example, the file-completion callback function adds a
directory separator if the completed word is a directory. If the completed word were a
function name, you could similarly aid the user by arranging for an open parenthesis
to be appended.

The cpl complete word() is normally called behind the scenes by
gl_get_1ine(3TECLA), but can also be called separately if you separately allocate a
WordCompletion object. It performs word completion, as described at the beginning
of this section. Its first argument is a resource object previously returned by
new_WordCompletion (). The line argument is the input line string, containing the
word to be completed. The word_end argument contains the index of the character in
the input line, that just follows the last character of the word to be completed. When
called by g1_get_1line (), this is the character over which the user pressed TAB. The
match_fn argument is the function pointer of the callback function which will lookup
possible completions of the word, as described above, and the data argument provides
a way for the application to pass arbitrary data to the callback function.

If no errors occur, the cpl_complete_word () function returns a pointer to a
CplMatches container, as defined below. This container is allocated as part of the cpl
object that was passed to cpl_complete word (), and will thus change on each call
which uses the same cpl argument.

typedef struct {

char *completion; /* A matching completion */
/* string */
char *suffix; /* The part of the */

/* completion string which */
/* would have to be */
/* appended to complete the */
/* original word. */

const char *type suffix; /* A suffix to be added when */
/* listing completions, to */
/* indicate the type of the */
/* completion. */

} CplMatch;

typedef struct {
char *suffix; /* The common initial part */
/* of all of the completion */

man pages section 3: Extended Library Functions e Last Revised 1 Jun 2004

Builtin Filename
completion
Callback

cpl_complete_word(3TECLA)

/* suffixes. */

const char *cont_suffix; /* Optional continuation */
/* string to be appended to */
/* the sole completion when */
/* nmatch==1. */

CplMatch *matches; /* The array of possible */
/* completion strings, */
/* sorted into lexical */
/* order. */

int nmatch; /* The number of elements in */
/* the above matches[] */
/* array. */

} CplMatches;

If an error occurs during completion, cpl_complete_word () returns NULL. A
description of the error can be acquired by calling the cpl_last_error () function.

The cpl_last_error () function returns a terse description of the error which
occurred on the last call to cpl_complete word() or cpl add completion().

As a convenience, the return value of the last call to cpl complete word () can be
recalled at a later time by calling cpl recall matches().If cpl complete word
() returned NULL, so will cpl recall matches().

When the cpl_complete_word () function returns multiple possible completions,
the cpl_list completions () function can be called upon to list them, suitably
arranged across the available width of the terminal. It arranges for the displayed
columns of completions to all have the same width, set by the longest completion. It
also appends the type_suffix strings that were recorded with each completion, thus
indicating their types to the user.

By default the g1_get line () function, passes the CPL._MATCH FN

(cps_file completions) completion callback function to cpl complete word
(). This function can also be used separately, either by sending it to

cpl complete word (), or by calling it directly from your own completion callback
function.

#define CPL MATCH FN(fn) int (fn) (WordCompletion *cpl, \
void *data, const char *1line, \
int word_end)

typedef CPL_MATCH_FN (CplMatchFn) ;
CPL_MATCH_FN (cpl_file_completions) ;

Certain aspects of the behavior of this callback can be changed via its data argument. If
you are happy with its default behavior you can pass NULL in this argument.
Otherwise it should be a pointer to a Cpl1FileConf object, previously allocated by
calling new CplFileConf ().

CplFileConf objects encapsulate the configuration parameters of
cpl file completions (). These parameters, which start out with default values,
can be changed by calling the accessor functions described below.

Extended Library Functions 139

cpl_complete_word(3TECLA)

140

Thread Safety

By default, the cpl_file completions () callback function searches backwards for
the start of the filename being completed, looking for the first unescaped space or the
start of the input line. If you wish to specify a different location, call

cfc_file start () with the index at which the filename starts in the input line.
Passing start_index=-1 reenables the default behavior.

By default, when cpl_file completions () looks at a filename in the input line,
each lone backslash in the input line is interpreted as being a special character which
removes any special significance of the character which follows it, such as a space
which should be taken as part of the filename rather than delimiting the start of the
filename. These backslashes are thus ignored while looking for completions, and
subsequently added before spaces, tabs and literal back slashes in the list of
completions. To have unescaped back slashes treated as normal characters, call
cfc_literal_ escapes () with a non-zero value in its literal argument.

By default, cpl_file completions () reports all files whose names start with the
prefix that is being completed. If you only want a selected subset of these files to be
reported in the list of completions, you can arrange this by providing a callback
function which takes the full pathname of a file, and returns 0 if the file should be
ignored, or 1 if the file should be included in the list of completions. To register such a
function for use by cpl file completions(),call cfc_set check fn(),and
pass it a pointer to the function, together with a pointer to any data that you would
like passed to this callback whenever it is called. Your callback can make its decisions
based on any property of the file, such as the filename itself, whether the file is
readable, writable or executable, or even based on what the file contains.

#define CPL_CHECK FN(fn) int (fn) (void *data, \
const char *pathname)

typedef CPL_CHECK FN(CplCheckFn) ;

void cfc_set_check fn(CplFileConf *cfc, CplCheckFn *chk fn, \
void *chk_data) ;

The cpl check exe () function is a provided callback of the above type, for use
with cpl file completions (). It returns non-zero if the filename that it is given
represents a normal file that the user has execute permission to. You could use this to
have cpl_file completions () only list completions of executable files.

When you have finished with a Cp1FileConf variable, you can pass it to the
del CplFileConf () destructor function to reclaim its memory.

It is safe to use the facilities of this module in multiple threads, provided that each
thread uses a separately allocated WordCompletion object. In other words, if two
threads want to do word completion, they should each call new_WordCompletion ()
to allocate their own completion objects.

man pages section 3: Extended Library Functions e Last Revised 1 Jun 2004

cpl_complete_word(3TECLA)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

SEE ALSO | ef expand file(3TECLA), gl get 1ine(3TECLA), 1ibtecla(3LIB),
pca_lookup file(3TECLA), attributes(5)

Extended Library Functions 141

cpow(3M)
NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

cpow, cpowf, cpowl — complex power functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex cpow(double complex x, double complex V) ;
float complex cpowf (float complex x, float complex V) ;

long double complex cpowl (long double complex x, long double
complex V) ;

These functions compute the complex power function x"y, with a branch cut for the
first parameter along the negative real axis.

These functions return the complex power function value.
No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cabs(3M), complex.h(3HEAD), csqrt(3M), attributes(5), standards(5)

142 man pages section 3: Extended Library Functions ¢ Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

cproj(3M)
cproj, cprojf, cprojl — complex projection functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex cproj (double complex z) ;
float complex cprojf (float complex z) ;

long double complex cprojl (long double complex z) ;

These functions compute a projection of z onto the Riemann sphere: z projects to z,
except that all complex infinities (even those with one infinite part and one NaN part)
project to positive infinity on the real axis. If z has an infinite part, then cproj(z) is
equivalent to:

INFINITY + I * copysign(0.0, cimag(z)
These functions return the value of the projection onto the Riemann sphere.
No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

carg(3M), cimag(3M), complex.h(3HEAD), conj(3M), creal(3M),
attributes(5), standards(5)

Extended Library Functions 143

creal(3M)
NAME
SYNOPSIS

DESCRIPTION
RETURN VALUES
ERRORS

USAGE

ATTRIBUTES

SEE ALSO

creal, crealf, creall — complex real functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double creal (double complex z) ;
float crealf (float complex z) ;

long double creall (long double complex z) ;
These functions compute the real part of z.

These functions return the real part value.

No errors are defined.

For a variable z of complex type:

z == creal(z) + cimag(z)*I

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

carg(3M), cimag(3M), complex.h(3HEAD), conj(3M), cproj(3M),
attributes(b), standards(b)

144 man pages section 3: Extended Library Functions ¢ Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION
RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

csin(3M)
csin, csinf, csinl — complex sine functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex csin(double complex z) ;
float complex csinf (float complex z);

long double complex ecsinl (long double complex z) ;
These functions compute the complex sine of z.

These functions return the complex sine value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

casin(3M), complex.h(BHEAD), attributes(b), standards(5)

Extended Library Functions 145

csinh(3M)
NAME
SYNOPSIS

DESCRIPTION
RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

csinh, csinhf, csinhl — complex hyperbolic sine functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex csinh(double complex z) ;
float complex csinhf (float complex z) ;

long double complex ecsinhl (long double complex z) ;
These functions compute the complex hyperbolic sine of z.

These functions return the complex hyperbolic sine value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

casinh(3M), complex.h(3HEAD), attributes(5), standards(b)

146 man pages section 3: Extended Library Functions ¢ Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

csqrt(3M)

csqrt, csqrtf, csqrtl — complex square root functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex csqgrt (double complex z) ;
float complex csqgrtf (float complex z);

long double complex ecsqrtl (long double complex z) ;

These functions compute the complex square root of z, with a branch cut along the
negative real axis.

These functions return the complex square root value, in the range of the right
half-plane (including the imaginary axis).

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cabs(3M), complex.h(3HEAD), cpow(3M), attributes(5), standards(5)

Extended Library Functions

147

ctan(3M)
NAME
SYNOPSIS

DESCRIPTION
RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

ctan, ctanf, ctanl — complex tangent functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex ctan (double complex z) ;
float complex ctanf (float complex z);

long double complex ctanl (long double complex z) ;
These functions compute the complex tangent of z.

These functions return the complex tangent value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

catan(3M), complex.h(BHEAD), attributes(b), standards(5)

148 man pages section 3: Extended Library Functions ¢ Last Revised 1 Sep 2002

NAME
SYNOPSIS

DESCRIPTION
RETURN VALUES
ERRORS

ATTRIBUTES

SEE ALSO

ctanh(3M)
ctanh, ctanhf, ctanhl — complex hyperbolic tangent functions

cc [flag... 1 file... -1m [library...]

#include <complex.h>
double complex ctanh(double complex z) ;
float complex ctanhf (float complex z);

long double complex ctanhl (long double complex z) ;
These functions compute the complex hyperbolic tangent of z.
These functions return the complex hyperbolic tangent value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

catanh(3M), complex.h(3HEAD), attributes(5), standards(5)

Extended Library Functions 149

ct_ctl_adopt(3CONTRACT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

150

ERRORS

ct_ctl_adopt, ct_ctl_abandon, ct_ctl_newct, ct_ctl_ack, ct_ctl_qack — common contract
control functions

cc [flag... 1 file... -D_LARGEFILE64_ SOURCE -lcontract [library...]
#include <libcontract.hs>

int et _ctl adopt(int fd) ;

int et ctl abandon (int fd) ;

int et _ctl newct(int fd, uinté4_t evid) ;
int et_ctl_ack(int fd, uintée4_t evid) ;

int et _ctl gack(int fd, uinté64 t evid, int templatefd) ;

These functions operate on contract control file descriptors obtained from the
contract(4) file system.

The ct_ctl_adopt () function adopts the contract referenced by the file descriptor
fd. After a successful call to ct_ctl_adopt (), the contract is owned by the calling
process and any events in that contract’s event queue are appended to the process’s
bundle of the appropriate type.

The ct_ctl_abandon () function abandons the contract referenced by the file
descriptor fd. After a successful call to ct_ctl_abandon () the process no longer
owns the contract, any events sent by that contract are automatically removed from
the process’s bundle, and any critical events on the contract’s event queue are
automatically acknowledged. Depending on its type and terms, the contract will either
be orphaned or destroyed.

The ct_ctl_ack () function acknowledges the critical event specified byevid. If the
event corresponds to an exit negotiation, ct_ct1l_ack () also indicates that the caller
is prepared for the system to proceed with the referenced reconfiguration.

The ct_ctl_gack () function requests a new quantum of time for the negotiation
specified by the event ID evid.

The ct_ctl_newct () function instructs the contract specified by the file descriptor
fd that when the current exit negotiation completes, another contract with the terms
provided by the template specified by templatefd should be automatically written.

Upon successful completion, ct_ctl_adopt (), ct_ctl_abandon (),
ct _ctl newct(),ct ctl ack(),and ct _ctl gack() return 0. Otherwise, they
return a non-zero error value.

The ct_ctl adopt () function will fail if:
EBUSY The contract is in the owned state.

EINVAL The contract was not inherited by the caller’s process contract or
was created by a process in a different zone.

man pages section 3: Extended Library Functions ¢ Last Revised 1 Apr 2004

ATTRIBUTES

SEE ALSO

ct_ctl_adopt(3CONTRACT)

The ct_ctl abandon(),ct ctl newct (), ct ctl ack(),and ct_ctl gack()
functions will fail if:

EBUSY

The contract does not belong to the calling process.

The ct_ctl newct () and ct_ctl gack () functions will fail if:

ESRCH

The event ID specified by evid does not correspond to an
unacknowledged negotiation event.

The ct_ctl newct () function will fail if:

EINVAL

The file descriptor specified by fd was not a valid template file
descriptor.

The ct_ctl ack() function will fail if:

ERSCH

The event ID specified by evid does not correspond to an
acknowldeged critical event.

The ct_ctl gack () function will fail if:

ERANGE

The maximum amount of time has been requested.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libcontract(3LIB), contract(4), attributes(5), Lfcompile(5)

Extended Library Functions

151

ct_event_read(3CONTRACT)

152

NAME

SYNOPSIS

DESCRIPTION

ct_event_read, ct_event_read_critical, ct_event_reset, ct_event_reliable, ct_event_free,
ct_event_get_flags, ct_event_get_ctid, ct_event_get_evid, ct_event_get_type,
ct_event_get_nevid, ct_event_get_newct — common contract event functions

cc [flag... 1 file... -D_LARGEFILE64_ SOURCE -lcontract [library...]
#include <libcontract.hs>

int ct_event_read(int fd, ct_evthdl_t *evthndlp) ;

int ct_event read critical (int fd, ct_evthdl t *evthndlp) ;
int ct_event reset (int fd);

int ct_event reliable (int fd);

void ct_event free(ct evthdl t evthndl) ;

ctid t ct event get ctid(ct evthdl t evthndl) ;

ctevid t ct_event get evid(ct evthdl t evthndl) ;

uint t ct_event get flags(ct_evthdl t evthndl) ;

uint t ct_event get type(ct evthdl t evthndl) ;

int ct event get mnevid(ct evthdl t evthndl, ctevid t *evidp) ;

int ct_event get mewct (ct evthdl t evthndl, ctid t *ctidp) ;

These functions operate on contract event endpoint file descriptors obtained from the
contract(4) file system and event object handles returned by ct _event read ()
and ct_event read critical().

The ct_event read() function reads the next event from the queue referenced by
the file descriptor fd and initializes the event object handle pointed to by evthndlp.
After a successful call to ct_event_read (), the caller is responsible for calling
ct_event free () on this event object handle when it has finished using it.

The ct_event read critical () function behaves like ct _event read() except
that it reads the next critical event from the queue, skipping any intermediate events.

The ct_event reset () function resets the location of the listener to the beginning
of the queue. This function can be used to re-read events, or read events that were sent
before the event endpoint was opened. Informative and acknowledged critical events,
however, might have been removed from the queue.

The ct_event_reliable () function indicates that no event published to the
specified event queue should be dropped by the system until the specified listener has
read the event. This function requires that the caller have the

{PRIV_CONTRACT_ EVENT} privilege in its effective set.

The ct_event_free () function frees any storage associated with the event object
handle specified by evthndl.

The ct_event get ctid() function returns the ID of the contract that sent the
specified event.

man pages section 3: Extended Library Functions ¢ Last Revised 1 Apr 2004

RETURN VALUES

ERRORS

ATTRIBUTES

ct_event_read(3CONTRACT)

The ct_event_get_evid () function returns the ID of the specified event.

The ct_event get flags () function returns the event flags for the specified event.
Valid event flags are:

CTE_INFO The event is an informative event.

CTE_ACK The event has been acknowledged (for critical and negotiation
messages).

CTE_NEG The message represents an exit negotiation.

The ct_event get_type () function reads the event type. The value is one of the
event types described in contract(4) or the contract type’s manual page.

The ct_event get nevid() function reads the negotiation ID from an
CT_EV_NEGEND event.

The ct_event get newct () function obtains the ID of the contract created when
the negotiation referenced by the CT _EV_NEGEND event succeeded. If no contract was
created, ctidp will be 0. If the operation was cancelled, *ctidp will equal the ID of the
existing contract.

Upon successful completion, ct_event_read (), ct_event_read critical(),
ct_event reset(),ct event reliable(),ct event get nevid(),and
ct_event get newct () return 0. Otherwise, they return a non-zero error value.

The ct_event get flags(),ct _event get ctid(),ct_event get evid(),
and ct_event get type () functions return data as described in the
DESCRIPTION.

The ct_event reliable () function will fail if:

EPERM The caller does not have {PRIV_CONTRACT EVENT} in its effective
set.

The ct_event read() and ct_event read critical () functions will fail if:

EAGAIN The event endpoint was opened O_NONBLOCK and no applicable
events were available to be read.

The The ct_event get nevid() and ct_event get newct () functions will fail
if:

EINVAL The evthndl argument is not a CT_EV_NEGEND event object.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Extended Library Functions 153

ct_event_read(3CONTRACT)

154

ATTRIBUTE TYPE

ATTRIBUTE VALUE

MT-Level

Safe

SEE ALSO | libcontract(3LIB), contract(4), attributes(5), 1fcompile(5)

man pages section 3: Extended Library Functions ¢ Last Revised 1 Apr 2004

NAME

SYNOPSIS

DESCRIPTION

ct_pr_event_get_pid(3CONTRACT)

ct_pr_event_get_pid, ct_pr_event_get_ppid, ct_pr_event_get_signal,
ct_pr_event_get_sender, ct_pr_event_get_senderct, ct_pr_event_get_exitstatus,
ct_pr_event_get_pcorefile, ct_pr_event_get_gcorefile, ct_pr_event_get_zcorefile —
process contract event functions

cc [flag... 1 file... -D_LARGEFILE64_ SOURCE -lcontract [library...]
#include <libcontract.hs>
#include <sys/contract/process.h>

int et pr event get pid(ct evthdl t evthdl, pid t *pidp) ;

int et_pr event get ppid(ct_evthdl t evthdl, pid_t *pidp) ;

int ct_pr_event get signal (ct_evthdl_t evthdl, int *signalp) ;

int et pr event get sender(ct evthdl t evthdl, pid t *pidp) ;

int et _pr event get senderct(ct evthdl t evthdl, ctid t *pidp) ;
int ct_pr event get exitstatus(ct evthdl t evthdl, int *statusp) ;
int et pr event get pcorefile(ct evthdl t evthdl, char **namep) ;
int et pr event get gcorefile(ct evthdl t evthdl, char **namep) ;

int ct_pr event get zcorefile(ct_evthdl t evthdl, char **namep) ;

These functions read process contract event information from an event object returned
by ct_event read(3CONTRACT) or ct_event read critical(3CONTRACT).

The ct_pr event get pid() function reads the process ID of the process
generating the event.

The ct_pr event get ppid() function reads the process ID of the process that
forked the new process causing the CT_PR_EV_FORK event.

The ct_pr event _get_signal () function reads the signal number of the signal
that caused the CT PR _EV_SIGNAL event.

The ct_pr_event_get_sender () function reads the process ID of the process that
sent the signal that caused the CT_PR_EV_SIGNAL event. If the signal’s sender was
not in the same zone as the signal’s recipient, this information is available only to
event consumers in the global zone.

The ct_pr_event_get_senderct function reads the contract ID of the process that sent
the signal that caused the CT_PR_EV_SIGNAL event. If the signal’s sender was not in
the same zone as the signal’s recipient, this information is available only

The ct_pr_event_get_exitstatus () function reads the exit status of the process
generating a CT_PR_EV_EXIT event.

The ct_pr_event_get_pcorefile () function reads the name of the process core
file if one was created when the CT_PR_EV_CORE event was generated. A pointer to a
character array is stored in *namep and is freed when ct _event free(3CONTRACT)
is called on the event handle.

Extended Library Functions 155

ct_pr_event_get_pid(3CONTRACT)

RETURN VALUES

156

ERRORS

The ct_pr_event get_gcorefile () function reads the name of the zone’s global

core file if one was created when the CT_PR_EV_CORE event was generated. A pointer
to a character array is stored in *namep and is freed when ct _event free () is called
on the event handle.

The ct_pr event get zcorefile () function reads the name of the system-wide
core file in the global zone if one was created when the CT PR_EV_CORE event was
generated. This information is available only to event consumers in the global zone. A
pointer to a character array is stored in *namep and is freed when ct_event _free ()
is called on the event handle.

Upon successful completion, ct_pr_event _get pid(), ct_pr event get ppid
(),ct_pr event get signal(),ct pr event get sender(),

ct_pr event get senderct(),ct _pr event get exitstatus(),

ct_pr event get pcorefile(),ct pr event get gcorefile(),and
ct_pr_event get zcorefile () return 0. Otherwise, they return a non-zero error
value.

The ct_pr event get pid(),ct pr event get ppid(),

ct_pr event get signal(),ct_pr event get sender(),

ct_pr event get senderct(),ct pr event get exitstatus(),
ct_pr event get pcorefile(),ct pr event get gcorefile(),and
ct_pr event get zcorefile () functions will fail if:

EINVAL The evthdl argument is not a process contract event object.

The ct_pr event get ppid(),ct pr event get signal(),
ct_pr_event_get_ sender(),ct_pr_event_get senderct(),

ct_pr event get exitstatus(),ct _pr event get pcorefile(),
ct_pr event get gcorefile(),and ct pr event get zcorefile ()
functions will fail if:

EINVAL The requested data do not match the event type.

The ct_pr event get sender ()a functions will fail if:

ENOENT The process ID of the sender was not available, or the event object
was read by a process running in a non-global zone and the sender
was in a different zone.

The ct_pr event get pcorefile(),ct _pr event get gcorefile (), and
ct_pr_event get zcorefile () functions will fail if:

ENOENT The requested core file was not created.

The ct_pr event get zcorefile () function will fail if:

ENOENT The event object was read by a process running in a non-global
zone.

man pages section 3: Extended Library Functions e Last Revised 19 Jul 2004

EXAMPLES

ATTRIBUTES

SEE ALSO

ct_pr_event_get_pid(3CONTRACT)
EXAMPLE 1 Print the instigator of all CT_PR_EV_SIGNAL events.

Open the process contract bundle. Loop reading events. Fetch and display the
signalled pid and signalling pid for each CT_PR_EV_SIGNAL event encountered.

#include <sys/types.h>
#include <fcntl.hs>
#include <stdio.h>
#include <libcontract.h>

int f£d4;
ct_evthdl_t event;
pid_t pid, sender;

fd = open("/system/contract/process/bundle", O_RDONLY) ;

for (;;) {
ct_event_read(fd, &event);
if (ct_event get type(event) != CT PR_EV_SIGNAL) {

ct_event_free (event) ;
continue;

}

ct_pr_event_get_pid(event, &pid);

if (ct_pr event get sender (event, &sender) == ENOENT)
printf ("process %1d killed by unknown process\n",
(long)pid) ;
else

printf ("process %1d killed by process %$1d\n",
(long)pid, (long)sender);
ct _event free(event) ;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

ct_event free(3CONTRACT), ct_event read(3CONTRACT),
ct_event read critical(3CONTRACT), libcontract(3LIB), contract(4),
process(4), attributes(b), 1fcompile(b)

Extended Library Functions 157

ct_pr_status_get_param(3CONTRACT)

NAME ct_pr_status_get_param, Ct_pr_status_get_fatal, ct_pr_status_get_members,
ct_pr_status_get_contracts — process contract status functions

SYNOPSIS | cc [flag... 1 file... -D_LARGEFILE64_SOURCE -lcontract [library...]
#include <libcontract.h>
#include <sys/contract/process.h>

int et pr status get param(ct stathdl t stathdl, uint t *paramp) ;
int et _pr status get fatal(ct_stathdl t stathdl, uint t *eventsp) ;

int ct_pr status get members (ct stathdl t stathdl, pid_t **pidpp,
uint_t *n) ;

int et pr status get contracts(ct stathdl t stathdl, ctid t **idpp,
uint_t *n);

DESCRIPTION | These functions read process contract status information from a status object returned
by ct_status read(3CONTRACT).

The ct_pr status get param() function reads the parameter set term. The value
is a collection of bits as described in process(4).

The ct_pr status get fatal () function reads the fatal event set term. The value
is a collection of bits as described in process(4).

The ct_pr status get members () function obtains a list of the process IDs of the
members of the process contract. A pointer to an array of process IDs is stored in
*pidpp. The number of elements in this array is stored in *n. These data are freed when
the status object is freed by a call to ct_status_free(3CONTRACT).

The ct_pr status_get contracts () function obtains a list of IDs of contracts
that have been inherited by the contract. A pointer to an array of IDs is stored in *idpp.
The number of elements in this array is stored in *n. These data are freed when the
status object is freed by a call to ct _status_free ().

RETURN VALUES | Upon successful completion, ct_pr_status_get_param(),

ct_pr status get fatal(),ct pr status get members(),and

ct pr status get contracts () return 0. Otherwise, they return a non-zero
error value.

ERRORS | The ct_pr_ status _get param(), ct _pr status get fatal(),
ct_pr status _get members(),and ct_pr status get contracts()
functions will fail if:

EINVAL The stathdl argument is not a process contract status object.

The ct_pr status_get param(),ct_pr_ status_get fatal(),
ct_pr status_get members(),and ct_r status_get contracts()
functions will fail if:

ENOENT The requested data were not available in the status object.

158 man pages section 3: Extended Library Functions ¢ Last Revised 1 Apr 2004

EXAMPLES

ATTRIBUTES

SEE ALSO

ct_pr_status_get_param(3CONTRACT)
EXAMPLE 1 Print members of process contract 1.

Open the status file for contract 1, read the contract’s status, obtain the list of
processes, print them, and free the status object.

#include <sys/types.h>
#include <fcntl.hs>
#include <libcontract.h>
#include <stdio.h>

int f£d4;

uint_t i, n;
pid_t *procs;
ct_stathdl_t st;

fd = open("/system/contract/process/1/status");
ct_status_read(fd, &st);
ct_pr_status_get members(st, &procs, &n);
for (i = 0 ; 1 < n; i++)

printf ("$1d\n", (long)procsl[i]);
ct_status_free(stat);
close (fd) ;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

ct_status_ free(3CONTRACT), ct_status read(3CONTRACT),
libcontract(3LIB), contract(4), process(4), attributes(5), LEcompile(5)

Extended Library Functions 159

ct_pr_tmpl_set_transfer(3CONTRACT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ct_pr_tmpl_set_transfer, ct_pr_tmpl_set_fatal, ct_pr_tmpl_set_param,
ct_pr_tmpl_get_transfer, ct_pr_tmpl_get_fatal, ct_pr_tmpl_get_param — process
contract template functions

cc [flag... 1 file... -D_LARGEFILE64_ SOURCE -lcontract [library...]
#include <libcontract.h>
#include <sys/contract/process.h>

int et pr tmpl set transfer (int fd, ctid t ctid);
int et pr tmpl set fatal (int fd, uint t events) ;
int et pr tmpl set param(int fd, uint t params) ;
int et pr tmpl get transfer (int fd, ctid t *ctidp) ;
int ct pr tmpl get fatal (int fd, uint t %eventsp) ;

int ct_pr tmpl get param(int fd, uint t *paramsp) ;

These functions read and write process contract terms and operate on process contract
template file descriptors obtained from the contract(4) file system.

The ct_pr tmpl set transfer() and ct_pr tmpl get transfer()
functions write and read the transfer contract term. The value is the ID of an empty
regent process contract owned by the caller whose inherited contracts are to be
transferred to a newly created contract.

The ct_pr tmpl set fatal() and ct_pr tmpl get fatal () functions write
and read the fatal event set term. The value is a collection of bits as described in
process(4).

The ct_pr tmpl set param() and ct_pr_ tmpl get param() functions write
and read the parameter set term. The value is a collection of bits as described in
process(4).

Upon successful completion, ct_pr_tmpl_set_transfer(),
ct_pr tmpl set fatal(),ct pr tmpl set param(),

ct_pr tmpl get transfer(),ct pr tmpl get fatal(),and
ct_pr_tmpl get param() return 0. Otherwise, they return a non-zero error value.

The ct_pr tmpl set param() function will fail if:

EINVAL An invalid parameter was specified.

The ct_pr tmpl set fatal () function will fail if:

EINVAL An invalid event was specified.

The ct _pr tmpl set transfer() function will fail if:
ESRCH The ID specified by ctid does not correspond to a process contract.

EACCES The ID specified by ctid does not correspond to a process contract
owned by the calling process.

160 man pages section 3: Extended Library Functions ¢ Last Revised 1 Apr 2004

EXAMPLES

ATTRIBUTES

ct_pr_tmpl_set_transfer(3CONTRACT)

ENOTEMPTY The ID specified by ctid does not correspond to an empty process
contract.

EXAMPLE 1 Create and activate a process contract template.

The following example opens a new template, makes hardware errors and signals fatal
events, makes hardware errors critical events, and activates the template. It then forks
a process in the new contract using the requested terms.

#include <libcontract.hs>
#include <fentl.hs>
#include <unistd.hs>

int f£d;

fd = open("/system/contract/process/template", O RDWR) ;

(void) ct_pr tmpl set fatal(fd, CT_PR _EV_HWERR|CT PR EV_SIGNAL) ;
(void) ct_tmpl set critical(fd, CT PR _EV_HWERR) ;

(void) ct_tmpl activate(fd);

close (fd) ;

if (fork()) {
/* parent - owns new process contract */

} else {
/* child - in new process contract */

EXAMPLE 2 Clear the process contract template.

The following example opens the template file and requests that the active template be
cleared.

#include <libcontract.h>
#include <fentl.hs>

int f£d;
fd = open("/system/contract/process/template", O_RDWR) ;

(void) ct_tmpl clear (fd);
close (fd) ;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

Extended Library Functions 161

ct_pr_tmpl_set_transfer(3CONTRACT)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO | libcontract(3LIB), contract(4), process(4), attributes(5), Lfcompile(5)

162 man pages section 3: Extended Library Functions ¢ Last Revised 1 Apr 2004

NAME

SYNOPSIS

DESCRIPTION

ct_status_read(3CONTRACT)

ct_status_read, ct_status_free, ct_status_get_id, ct_status_get_zoneid,

ct_status_get_type, ct_status_get_state, ct_status_get_holder, ct_status_get_nevents,
ct_status_get_ntime, ct_status_get_qtime, ct_status_get_nevid, ct_status_get_cookie,
ct_status_get_informative, ct_status_get_critical — common contract status functions

cc [flag... 1 file... -D_LARGEFILE64_ SOURCE -lcontract [library...]
#include <libcontract.h>

int ct_status read(int fd, int defail, ct_stathdl t *stathdlp) ;
void ct_status free(ct_ stathdl t stathdl) ;

ctid t ct_status get id(ct_stathdl_t stathdl) ;

zoneid t ct status get zoneid(ct stathdl t stathdl) ;

char *ct_status get type(ct stathdl t stathdl) ;

uint t ct status get state(ct_stathdl t stathdl) ;

pid t ct status get holder (ct stathdl t stathdl) ;

int ct_status get nevents(ct stathdl t stathdl) ;

int ct_status get ntime(ct stathdl t stathdl) ;

int ct_status get gtime(ct stathdl t stathdl) ;

ctevid t ct_status_get nevid(ct stathdl t stathdl) ;
uinté64 t ct_ status get cookie(ct_stathdl t stathdl) ;
ctevid t ct status get informative(ct stathdl t stathdl) ;

uint t ct status get critical(ct_stathdl t stathdl) ;

These functions operate on contract status file descriptors obtained from the
contract(4) file system and status object handles returned by ct _status_read().

The ct_status_read () function reads the contract’s status and initializes the status
object handle pointed to by stathdlp. After a successful call to ct_status_read (),
the caller is responsible for calling ct _status_free () on this status object handle
when it has finished using it. Because the amount of information available for a
contract might be large, the detail argument allows the caller to specify how much
information ct_status_read () should obtain. A value of CTD_COMMON fetches only
those data accessible by the functions on this manual page. CTD_FIXED fetches
CTD_COMMON data as well as fixed-size contract type-specific data. CTD_ALL fetches
CTD_FIXED data as well as variable lengthed data, such as arrays. See the manual
pages for contract type-specific status accessor functions for information concerning
which data are fetched by CTD FIXED and CTD ALL.

The ct_status_free () function frees any storage associated with the specified
status object handle.

The remaining functions all return contract information obtained from a status object.

The ct_status_get_id () function returns the contract’s ID.

Extended Library Functions 163

ct_status_read(3CONTRACT)

RETURN VALUES

The ct_status_get zoneid() function returns the contract’s creator’s zone ID, or
—1 if the creator’s zone no longer exists.

The ct_status_get_type () function returns the contract’s type. The string should
be neither modified nor freed.

The ct_status_get state () function returns the state of the contract. Valid state
values are:

CTS_OWNED a contract that is currently owned by a process
CTS_INHERITED a contract that has been inherited by a regent process contract
CTS_ORPHAN a contract that has no owner and has not been inherited

CTS_DEAD a contract that is no longer in effect and will be automatically
removed from the system as soon as the last reference to it is
release (for example, an open status file descriptor)

The ct_status get holder () function returns the process ID of the contract’s
owner if the contract is in the CTS OWNED state, or the ID of the regent process
contract if the contract is in the CTS INHERITED state.

The ct_status get nevents () function returns the number of unacknowledged
critical events on the contract’s event queue.

The ct_status get ntime () function returns the amount of time remaining (in
seconds) before the ongoing exit negotiation times out, or -1 if there is no negotiation
ongoing.

The ct_status get gtime () function returns the amount of time remaining (in
seconds) in the quantum before the ongoing exit negotiation times out, or -1 if there is
no negotiation ongoing.

The ct_status_get nevid() function returns the event ID of the ongoing
negotiation, or 0 if there are none.

The ct_status_get cookie () function returns the cookie term of the contract.

The ct_status get critical () function is used to read the critical event set
term. The value is a collection of bits as described in the contract type’s manual page.

The ct_status get informative () function is used to read the informative
event set term. The value is a collection of bits as described in the contract type’s
manual page.

Upon successful completion, ct _status_read () returns 0. Otherwise, it returns a
non-zero error value.

164 man pages section 3: Extended Library Functions ¢ Last Revised 1 Apr 2004

ERRORS

ATTRIBUTES

SEE ALSO

ct_status_read(3CONTRACT)

Upon successful completion, ct_status_get_id (), ct_status_get_type(),
ct_status_get holder(),ct status get state(),

ct_status_get nevents(),ct status get ntime(),

ct_status_get gtime(),ct status_get nevid(),ct_ status get cookie
(), ct_status_get critical(),and ct_status_get informative () return
the data described in the DESCRIPTION.

The ct_status_read () function will fail if:

EINVAL The detail level specified is invalid.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libcontract(3LIB), contract(4), attributes(5), Lfcompile(5)

Extended Library Functions 165

ct_tmpl_activate(3CONTRACT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ct_tmpl_activate, ct_tmpl_clear, ct_tmpl_create, ct_tmpl_set_cookie,
ct_tmpl_set_critical, ct_tmpl_set_informative, ct_tmpl_get_cookie, ct_tmpl_get_critical,
ct_tmpl_get_informative — common contract template functions

cc [flag... 1 file... -D_LARGEFILE64_SOURCE -lcontract [library...]
#include <libcontract.h>

int et _tmpl activate(int fd);

int et tmpl clear (int fd);

int et _tmpl create(int fd, ctid_t *idp);

int ct tmpl set cookie(int fd, uinté4 t cookie) ;

int et _tmpl set critical (int fd, uint t events) ;

int ct tmpl set informative (int fd, uint t events) ;
int ct_tmpl get cookie(int fd, uinté4_t *cookiep) ;
int et tmpl get critical (int fd, uint t *eventsp) ;
int ct_tmpl get informative(int fd, uint_t *eventsp) ;

These functions operate on contract template file descriptors obtained from the
contract(4) file system.

The ct_tmpl activate () function makes the template referenced by the file
descriptor fd the active template for the calling thread.

The ct_tmpl_clear () function clears calling thread’s active template.

The ct_tmpl_ create () function uses the template referenced by the file descriptor
fd to create a new contract. If successful, the ID of the newly created contract is placed
in *idp.

The ct_tmpl set cookie() and ct_tmpl get cookie () functions write and
read the cookie term of a contract template. The cookie term is ignored by the system,
except to include its value in a resulting contract’s status object. The default cookie
term is 0.

The ct _tmpl set critical() and ct tmpl get critical () functions write
and read the critical event set term. The value is a collection of bits as described in the
contract type’s manual page.

The ct _tmpl set informative () and ct tmpl get informative ()
functions write and read the informative event set term. The value is a collection of
bits as described in the contract type’s manual page.

Upon successful completion, ct_tmpl_activate(),ct_tmpl create(),
ct_tmpl set cookie(),ct tmpl get cookie(),ct tmpl set critical(),
ct_tmpl get critical(),ct tmpl set informative(),and

ct_tmpl get informative () return 0. Otherwise, they return a non-zero error
value.

166 man pages section 3: Extended Library Functions ¢ Last Revised 1 Apr 2004

ERRORS

ATTRIBUTES

SEE ALSO

ct_tmpl_activate(3CONTRACT)

The ct_tmpl create () function will fail if:

ERANGE The terms specified in the template were unsatisfied at the time of
the call.

EAGAIN The project.max-contracts resource control would have been
exceeded.

The ct_tmpl set critical() and ct_tmpl set informative () functions
will fail if:

EINVAL An invalid event was specified.

The ct_tmpl set critical () function will fail if:

EPERM One of the specified events was disallowed given other contract
terms (see contract(4)) and {PRIV_CONTRACT EVENT} was not
in the effective set for the calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libcontract(3LIB), contract(4), attributes(b), 1fcompile(5)

Extended Library Functions 167

dat_cno_create(3DAT)
NAME | dat_cno_create — create a CNO instance

SYNOPSIS | cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_cno_create (
IN DAT IA HANDLE ia_handle,
IN DAT OS_WAIT PROXY AGENT agent,
OUT DAT CNO_HANDLE *cno_handle
)
PARAMETERS | ia_handle Handle for an instance of DAT IA.
agent An optional OS Wait Proxy Agent that is to be invoked whenever
CNO is invoked. DAT 0S WAIT PROXY AGENT NULL indicates
that there is no proxy agent
cno_handle Handle for the created instance of CNO.

DESCRIPTION | The dat_cno_create () function creates a CNO instance. Upon creation, there are
no Event Dispatchers feeding it.

The agent parameter specifies the proxy agent, which is OS-dependent and which is
invoked when the CNO is triggered. After it is invoked, it is no longer associated with
the CNO. The value of DAT 0S_WAIT PROXY AGENT NULL specifies that no OS Wait
Proxy Agent is associated with the created CNO.

Upon creation, the CNO is not associated with any EVDs, has no waiters and has, at
most, one OS Wait Proxy Agent.

RETURN VALUES | DAT SUCCESS The operation was successful.
DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.
DAT INVALID HANDLE The ia_handle parameter is invalid.
DAT INVALID PARAMETER One of the parameters was invalid, out of

range, or a combination of parameters was
invalid, or the agent parameter is invalid.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Safe

SEE ALSO | 1ibdat(3LIB), attributes(5)

168 man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

dat_cno_free(3DAT)

dat_cno_free — destroy an instance of the CNO

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_cno_free (
IN DAT CNO_HANDLE cno_handle
)
cno_handle Handle for an instance of the CNO

The dat_cno_free () function destroys a specified instance of the CNO.

A CNO cannot be deleted while it is referenced by an Event Dispatcher or while a
thread is blocked on it.

DAT SUCCESS The operation was successful.
DAT INVALID HANDLE The cno_handle () parameter is invalid.
DAT INVALID STATE Parameter in an invalid state. CNO is in use by an EVD

instance or there is a thread blocked on it.

If there is a thread blocked in dat _cno wait(3DAT), the Consumer can do the
following steps to unblock the waiter:

Create a temporary EVD that accepts software events. It can be created in advance.

For a CNO with the waiter, attach that EVD to the CNO and post the software
event on the EVD.

This unblocks the CNO.
Repeat for other CNOs that have blocked waiters.

Destroy the temporary EVD after all CNOs are destroyed and the EVD is no longer
needed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

dat_cno_wait(3DAT), 1ibdat(3LIB), attributes(b)

Extended Library Functions 169

dat_cno_modify_agent(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_cno_modify_agent — modify the OS Wait Proxy Agent

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_cno_modify agent (
IN DAT CNO_HANDLE cno_handle,
IN DAT OS_WAIT PROXY AGENT agent
)
cno_handle Handle for an instance of CNO
agent Pointer to an optional OS Wait Proxy Agent to invoke whenever

CNO s invoked. DAT 0S WAIT PROXY AGENT NULL indicates
that there is no proxy agent.

The dat_cno_modify agent () function modifies the OS Wait Proxy Agent
associated with a CNO. If non-null, any trigger received by the CNO is also passed to
the OS Wait Proxy Agent. This is in addition to any local delivery through the CNO.
The Consumer can pass the value of DAT 0S WAIT PROXY AGENT NULL to
disassociate the current Proxy agent from the CNO

DAT SUCCESS The operation was successful.
DAT INVALID HANDLE The cno_handle parameter is invalid.

DAT INVALID PARAMETER One of the parameters was invalid, out of range, or a
combination of parameters was invalid, or the agent
parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

170 man pages section 3: Extended Library Functions Last Revised 16 Jul 2004

dat_cno_query(3DAT)
NAME | dat_cno_query — provide the Consumer parameters of the CNO

SYNOPSIS | cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_cno_query (
IN DAT CNO_HANDLE cno_handle,
IN DAT CNO_PARAM MASK cno_param_mask,
OUT DAT CNO_PARAM *cno_param

)

PARAMETERS | cno_handle Handle for the created instance of the Consumer Notification

Object
cno_param_mask ~ Mask for CNO parameters

Pointer to a Consumer-allocated structure that the Provider fills
with CNO parameters

cno_param

DESCRIPTION | The dat_cno_query () function provides the Consumer parameters of the CNO. The
Consumer passes in a pointer to the Consumer-allocated structures for CNO
parameters that the Provider fills.

The cno_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for cno_param_mask requested parameters. The
Provider can return values for any other parameters.

Avalue of DAT OS_WAIT PROXY AGENT_NULL in cno_param indicates that there are
no Proxy Agent associated with the CNO.

RETURN VALUES | DAT SUCCESS The operation was successful.
DAT INVALID_ PARAMETER The cno_param_mask parameter is invalid.

DAT_INVALID HANDLE The cno_handle parameter is invalid.

ATTRIBUTES | See attributes(d) for descriptions of the following attributes:

SEE ALSO

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Unsafe

libdat(3LIB), attributes(5)

Extended Library Functions

171

dat_cno_wait(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

172

dat_cno_wait — wait for notification events

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_cno_wait (

IN DAT CNO_HANDLE cno_handle,

IN DAT_TIMEOUT timeout ,

OUT DAT_EVD_ HANDLE *evd_handle

)
cno_handle Handle for an instance of CNO
timeout The duration to wait for a notification. The value

DAT TIMEOUT INFINITE can be used to wait indefinitely.

evd_handle Handle for an instance of EVD

The dat cno wait () function allows the Consumer to wait for notification events
from a set of Event Dispatchers all from the same Interface Adapter. The Consumer
blocks until notified or the timeout period expires.

An Event Dispatcher that is disabled or in the "Waited" state does not deliver
notifications. A uDAPL Consumer waiting directly upon an Event Dispatcher
preempts the CNO.

The consumer can optionally specify a timeout, after which it is unblocked even if
there are no notification events. On a timeout, evd_handle is explicitly set to a null
handle.

The returned evd_handle is only a hint. Another Consumer can reap the Event before
this Consumer can get around to checking the Event Dispatcher. Additionally, other
Event Dispatchers feeding this CNO might have been notified. The Consumer is
responsible for ensuring that all EVDs feeding this CNO are polled regardless of
whether they are identified as the immediate cause of the CNO unblocking.

All the waiters on the CNO, including the OS Wait Proxy Agent if it is associated with
the CNO, are unblocked with the NULL handle returns for an unblocking EVD
evd_handle when the IA instance is destroyed or when all EVDs the CNO is associated
with are freed.

DAT SUCCESS The operation was successful.

DAT INVALID HANDLE The cno_handle parameter is invalid.

DAT QUEUE_EMPTY The operation timed out without a notification.

DAT INVALID PARAMETER One of the parameters was invalid or out of range, a
combination of parameters was invalid, or the timeout

parameter is invalid.

DAT INTERRUPTED CALL The operation was interrupted by a signal.

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

dat_cno_wait(3DAT)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

SEE ALSO | 1ibdat(3LIB), attributes(b)

Extended Library Functions 173

dat_cr_accept(3DAT)
NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

174

dat_cr_accept — establishes a Connection between the active remote side requesting
Endpoint and the passive side local Endpoint

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_cr_accept (

IN DAT CR_HANDLE cr_handle,
IN DAT _EP_HANDLE ep_handle,
IN DAT_ COUNT private data_ size,

IN const DAT_ PVOID
)

private_data

cr_handle Handle to an instance of a Connection Request that the
Consumer is accepting.
ep_handle Handle for an instance of a local Endpoint that the

Consumer is accepting the Connection Request on. If
the local Endpoint is specified by the Connection
Request, the ep_handle shall be DAT HANDLE NULL.

private_data_size Size of the private_data, which must be nonnegative.

private_data Pointer to the private data that should be provided to
the remote Consumer when the Connection is
established. If private_data_size is zero, then private_data

can be NULL.

The dat_cr accept () function establishes a Connection between the active remote
side requesting Endpoint and the passive side local Endpoint. The local Endpoint is
either specified explicitly by ep_handle or implicitly by a Connection Request. In the
second case, ep_handle is DAT HANDLE_ NULL.

Consumers can specify private data that is provided to the remote side upon
Connection establishment.

If the provided local Endpoint does not satisfy the requested Connection Request, the
operation fails without any effect on the local Endpoint, Pending Connection Request,
private data, or remote Endpoint.

The operation is asynchronous. The successful completion of the operation is reported
through a Connection Event of type DAT CONNECTION_ EVENT_ ESTABLISHED on the
connect_evd of the local Endpoint.

If the Provider cannot complete the Connection establishment, the connection is not
established and the Consumer is notified through a Connection Event of type

DAT CONNECTION EVENT ACCEPT COMPLETION ERROR on the connect_evd of the
local Endpoint. It can be caused by the active side timeout expiration, transport error,
or any other reason. If Connection is not established, Endpoint transitions into
Disconnected state and all posted Recv DTOs are flushed to its recv_evd_handle.

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

dat_cr_accept(3DAT)

This operation, if successful, also destroys the Connection Request instance. Use of the
handle of the destroyed cr_handle in any consequent operation fails.

DAT SUCCESS The operation was successful.
DAT INVALID HANDLE The cr_handle or ep_handle parameter is invalid.

DAT INVALID_ PARAMETER The private_data_size or private_data parameter is
invalid, out of range, or a combination of parameters
was invalid

Consumers should be aware that Connection establishment might fail in the following
cases: If the accepting Endpoint has an outstanding RDMA Read outgoing attribute
larger than the requesting remote Endpoint or outstanding RDMA Read incoming
attribute, or if the outstanding RDMA Read incoming attribute is smaller than the
requesting remote Endpoint or outstanding RDMA Read outgoing attribute.

Consumers should set the accepting Endpoint RDMA Reads as the target (incoming)
to a number larger than or equal to the remote Endpoint RDMA Read outstanding as
the originator (outgoing), and the accepting Endpoint RDMA Reads as the originator
to a number smaller than or equal to the remote Endpoint RDMA Read outstanding as
the target. DAT API does not define a protocol on how remote peers exchange
Endpoint attributes. The exchange of outstanding RDMA Read incoming and
outgoing attributes of EPs is left to the Consumer ULP. Consumer can use Private Data
for it.

If the Consumer does not care about posting RDMA Read operations or remote
RDMA Read operations on the connection, it can set the two outstanding RDMA Read
attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes of the
Endpoint, the Provider is free to pick up any value for default. The Provider can
change these default values during connection setup.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions 175

dat_cr_handoff(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_cr_handoff — hand off the Connection Request to another Service Point

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN

dat_cr_handoff (

IN DAT CR_HANDLE cr _handle,

IN DAT_CONN_QUAL handoff
)

cr_handle Handle to an instance of a Connection Request that the Consumer
is handing off.
handoff Indicator of another Connection Qualifier on the same IA to which

this Connection Request should be handed off.

The dat_cr handoff () function hands off the Connection Request to another
Service Point specified by the Connection Qualifier handoff.

The operation is synchronous. This operation also destroys the Connection Request
instance. Use of the handle of the destroyed Connection Request in any consequent
operation fails.

DAT SUCCESS The operation was successful.
DAT INVALID HANDLE The cr_handle parameter is invalid.

DAT INVALID_ PARAMETER The handoff parameter is invalid.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

176 man pages section 3: Extended Library Functions Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

dat_cr_query(3DAT)

dat_cr_query — provide parameters of the Connection Request

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_cr_query (
IN DAT CR_HANDLE cr_handle,
IN DAT_CR_PARAM MASK cr_param mask,
ouT DAT_CR_PARAM *cr_param
)
cr_handle Handle for an instance of a Connection Request.

cr_param_mask Mask for Connection Request parameters.

Pointer to a Consumer-allocated structure that the Provider fills for
Consumer-requested parameters.

Ccr_param

The dat _cr query () function provides to the Consumer parameters of the
Connection Request. The Consumer passes in a pointer to the Consumer-allocated
structures for Connection Request parameters that the Provider fills.

The cr_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for cr_param_mask requested parameters. The
Provider can return values for any other parameters.

DAT SUCCESS The operation was successful

DAT INVALID HANDLE The cr_handle handle is invalid.

DAT INVALID PARAMETER The cr_param_mask parameter is invalid.

The Consumer uses dat _cr query () to get information about requesting a remote
Endpoint as well as a local Endpoint if it was allocated by the Provider for the arrived
Connection Request. The local Endpoint is created if the Consumer used PSP with
DAT PSP_PROVIDER as the value for psp_flags. For the remote Endpoint,
dat_cr_query () provides remote_ia_address and remote_port_qual. It also provides
remote peer private_data and its size.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(b)

Extended Library Functions 177

dat_cr_reject(3DAT)
NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_cr_reject — reject a Connection Request from the Active remote side requesting
Endpoint

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_cr_reject (
IN DAT CR_HANDLE cr_handle
)

cr_handle Handle to an instance of a Connection Request that the Consumer

is rejecting.

The dat _cr reject () function rejects a Connection Request from the Active remote
side requesting Endpoint. If the Provider passed a local Endpoint into a Consumer for
the Public Service Point-created Connection Request, that Endpoint reverts to Provider
Control. The behavior of an operation on that Endpoint is undefined. The local
Endpoint that the Consumer provided for Reserved Service Point reverts to Consumer
control, and the Consumer is free to use in any way it wants.

The operation is synchronous. This operation also destroys the Connection Request
instance. Use of the handle of the destroyed Connection Request in any consequent
operation fails.

DAT SUCCESS The operation was successful.

DAT INVALID HANDLE The cr_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

178 man pages section 3: Extended Library Functions Last Revised 16 Jul 2004

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_connect(3DAT)

dat_ep_connect — establish a connection between the local Endpoint and a remote

Endpoint
cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_ep_ connect (
IN DAT EP_HANDLE ep_handle,
IN DAT_IA ADDRESS_PTR remote_ia_address,
IN DAT CONN_QUAL remote conn_qual,
IN DAT_ TIMEOUT timeout,
IN DAT COUNT private data size,
IN const DAT_PVOID private_data,
IN DAT_QOS qos,
IN DAT CONNECT_FLAGS connect_flags
)
ep_handle Handle for an instance of an Endpoint.

remote_ia_address

remote_conn_qual

timeout

private_data_size

private_data

qgos

connect_flags

The Address of the remote IA to which an Endpoint is
requesting a connection.

Connection Qualifier of the remote IA from which an
Endpoint requests a connection.

Duration of time, in microseconds, that a Consumer
waits for Connection establishment. The value of
DAT_ TIMEOUT_ INFINITE represents no timeout,
indefinite wait. Values must be positive.

Size of the private_data. Must be nonnegative.

Pointer to the private data that should be provided to
the remote Consumer as part of the Connection
Request. If private_data_size is zero, then private_data
can be NULL.

Requested quality of service of the connection.

Flags for the requested connection. If the least
significant bit of DAT MULTIPATH FLAG is 0, the
Consumer does not request multipathing. If the least
significant bit of DAT __MULTIPATH_FLAG is 1, the
Consumer requests multipathing. The default value is
DAT CONNECT DEFAULT FLAG, which is 0.

The dat_ep_connect () function requests that a connection be established between
the local Endpoint and a remote Endpoint. This operation is used by the active/client
side Consumer of the Connection establishment model. The remote Endpoint is
identified by Remote IA and Remote Connection Qualifier.

Extended Library Functions 179

dat_ep_connect(3DAT)

180

As part of the successful completion of this operation, the local Endpoint is bound to a
Port Qualifier of the local IA. The Port Qualifier is passed to the remote side of the
requested connection and is available to the remote Consumer in the Connection
Request of the DAT CONNECTION REQUEST EVENT.

The Consumer-provided private_data is passed to the remote side and is provided to
the remote Consumer in the Connection Request. Consumers can encapsulate any
local Endpoint attributes that remote Consumers need to know as part of an
upper-level protocol. Providers can also provide a Provider on the remote side any
local Endpoint attributes and Transport-specific information needed for Connection
establishment by the Transport.

Upon successful completion of this operation, the local Endpoint is transferred into
DAT EP STATE ACTIVE CONNECTION PENDING.

Consumers can request a specific value of gos. The Provider specifies which quality of
service it supports in documentation and in the Provider attributes. If the local
Provider or Transport does not support the requested gos, the operation fails and

DAT MODEL_ NOT SUPPORTED is returned synchronously. If the remote Provider does
not support the requested gos, the local Endpoint is automatically transitioned into the
DAT EP STATE DISCONNECTED state, the connection is not established, and the
event returned on the connect_evd_handle is

DAT CONNECTION EVENT NON PEER REJECTED. The same

DAT CONNECTION EVENT NON PEER REJECTED event is returned if the connection
cannot be established for all reasons of not establishing the connection, except timeout,
remote host not reachable, and remote peer reject. For example, remote Consumer is
not listening on the requested Connection Qualifier, Backlog of the requested Service
Point is full, and Transport errors. In this case, the local Endpoint is automatically
transitioned into DAT EP STATE DISCONNECTED state.

The acceptance of the requested connection by the remote Consumer is reported to the
local Consumer through a DAT CONNECTION EVENT ESTABLISHED event on the
connect_evd_handle of the local Endpoint and the local Endpoint is automatically
transitioned into a DAT EP_STATE CONNECTED state.

The rejection of the connection by the remote Consumer is reported to the local
Consumer through a DAT CONNECTION_ EVENT PEER REJECTED event on the
connect_evd_handle of the local Endpoint and the local Endpoint is automatically
transitioned into a DAT_EP STATE DISCONNECTED state.

When the Provider cannot reach the remote host or the remote host does not respond
within the Consumer requested Timeout, a DAT_CONNECTION_EVENT_ UNREACHABLE
event is generated on the connect_evd_handle of the Endpoint. The Endpoint transitions
into a DAT_EP_STATE DISCONNECTED state.

If the Provider can locally determine that the remote_ia_address is invalid, or that the
remote_ia_address cannot be converted to a Transport-specific address, the operation
can fail synchronously with a DAT_INVALID_ ADDRESS return.

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

RETURN VALUES

USAGE

dat_ep_connect(3DAT)

The local Endpoint is automatically transitioned into a DAT EP_STATE_CONNECTED
state when a Connection Request accepted by the remote Consumer and the Provider
completes the Transport-specific Connection establishment. The local Consumer is
notified of the established connection through a

DAT CONNECTION_ EVENT ESTABLISHED event on the connect_evd_handle of the local
Endpoint.

When the timeout expired prior to completion of the Connection establishment, the
local Endpoint is automatically transitioned into a DAT EP_STATE DISCONNECTED
state and the local Consumer through a DAT_CONNECTION_EVENT_TIMED_ OUT event
on the connect_evd_handle of the local Endpoint.

DAT SUCCESS The operation was successful.

DAT_INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID PARAMETER Invalid parameter.

DAT INVALID ADDRESS Invalid address.

DAT_ INVALID HANDLE Invalid DAT handle; Invalid Endpoint
handle.

DAT INVALID STATE Parameter in an invalid state. Endpoint was
not in DAT EP STATE UNCONNECTED
state.

DAT MODEL_NOT_ SUPPORTED The requested Model was not supported by

the Provider. For example, the requested
gos was not supported by the local
Provider.

It is up to the Consumer to negotiate outstanding RDMA Read incoming and outgoing
with a remote peer. The outstanding RDMA Read outgoing attribute should be smaller
than the remote Endpoint outstanding RDMA Read incoming attribute. If this is not
the case, Connection establishment might fail.

DAT API does not define a protocol on how remote peers exchange Endpoint
attributes. The exchange of outstanding RDMA Read incoming and outgoing
attributes of EPs is left to the Consumer ULP. The Consumer can use Private Data for
it.

If the Consumer does not care about posting RDMA Read operations or remote
RDMA Read operations on the connection, it can set the two outstanding RDMA Read
attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes of the
Endpoint, the Provider is free to pick up any value for default. The Provider is
allowed to change these default values during connection setup.

Extended Library Functions 181

dat_ep_connect(3DAT)

182

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1, 1.2

MT-Level

Unsafe

SEE ALSO | 1ibdat(3LIB), attributes(5)

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_create(3DAT)

dat_ep_create — create an instance of an Endpoint

cc [flag... 1 file... -1ldat

#include <dat/udat.h>

DAT RETURN
dat_ep create (
IN DAT IA HANDLE
IN DAT PZ_ HANDLE
IN DAT EVD HANDLE
IN DAT EVD_HANDLE
IN DAT_EVD_ HANDLE
N DAT EP_ATTR

OUT DAT_EP HANDLE
)
ia_handle

pz_handle

recv_evd_handle

request_evd_handle

connect_evd_handle

ep_attributes

ep_handle

[library...]

ia_handle,
pz_handle,
recv_evd_handle,
request_evd_handle,
connect_evd_handle,
*ep attributes,
*ep_handle

Handle for an open instance of the IA to which the
created Endpoint belongs.

Handle for an instance of the Protection Zone.

Handle for the Event Dispatcher where events for
completions of incoming (receive) DTOs are reported.
DAT HANDLE NULL specifies that the Consumer is not
interested in events for completions of receives.

Handle for the Event Dispatcher where events for
completions of outgoing (Send, RDMA Write, RDMA
Read, and RMR Bind) DTOs are reported.

DAT HANDLE NULL specifies that the Consumer is not
interested in events for completions of requests.

Handle for the Event Dispatcher where Connection
events are reported. DAT HANDLE NULL specifies that
the Consumer is not interested in connection events for
now.

Pointer to a structure that contains
Consumer-requested Endpoint attributes. Can be NULL.

Handle for the created instance of an Endpoint.

The dat_ep_create () function creates an instance of an Endpoint that is provided
to the Consumer as ep_handle. The value of ep_handle is not defined if the DAT RETURN

is not DAT SUCCESS.

The Endpoint is created in the Unconnected state.

Protection Zone pz_handle allows Consumers to control what local memory the
Endpoint can access for DTOs and what memory remote RDMA operations can access
over the connection of a created Endpoint. Only memory referred to by LMRs and
RMRs that match the Endpoint Protection Zone can be accessed by the Endpoint.

Extended Library Functions 183

dat_ep_create(3DAT)

The recv_evd_handle and request_evd_handle parameters are Event Dispatcher instances
where the Consumer collects completion notifications of DTOs. Completions of
Receive DTOs are reported in recv_evd_handle Event Dispatcher, and completions of
Send, RDMA Read, and RDMA Write DTOs are reported in request_evd_handle Event
Dispatcher. All completion notifications of RMR bindings are reported to a Consumer
in request_evd_handle Event Dispatcher.

All Connection events for the connected Endpoint are reported to the Consumer
through connect_evd_handle Event Dispatcher.

The ep_attributes parameter specifies the initial attributes of the created Endpoint. If
the Consumer specifies NULL, the Provider fills it with its default Endpoint attributes.
The Consumer might not be able to do any posts to the Endpoint or use the Endpoint
in connection establishment until certain Endpoint attributes are set. Maximum
Message Size and Maximum Recv DTOs are examples of such attributes.

RETURN VALUES | DAT_SUCCESS The operation was successful.
DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.
DAT INVALID HANDLE Invalid DAT handle.
DAT INVALID PARAMETER Invalid parameter. One of the requested EP

parameters or attributes was invalid or a
combination of attributes or parameters is
invalid.

DAT MODEL_ NOT SUPPORTED The requested Provider Model was not
supported.

USAGE | The Consumer creates an Endpoint prior to the establishment of a connection. The
created Endpoint is in DAT EP STATE UNCONNECTED. Consumers can do the
following;:

1. Request a connection on the Endpoint through dat_ep connect(3DAT) or
dat_ep dup_ connect(3DAT) for the active side of the connection model.

2. Associate the Endpoint with the Pending Connection Request that does not have
an associated local Endpoint for accepting the Pending Connection Request for the
passive/server side of the connection model.

3. Create a Reserved Service Point with the Endpoint for the passive/server side of
the connection model. Upon arrival of a Connection Request on the Service Point,
the Consumer accepts the Pending Connection Request that has the Endpoint
associated with it

The Consumer cannot specify a request_evd_handle (recv_evd_handle) with Request
Completion Flags (Recv Completion Flags) that do not match the other Endpoint
Completion Flags for the DTO/RMR completion streams that use the same EVD. If
request_evd_handle (recv_evd_handle) is used for an EVD that is fed by any event stream
other than DTO or RMR completion event streams, only

184 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

ATTRIBUTES

dat_ep_create(3DAT)

DAT COMPLETION_THRESHOLD is valid for Request/Recv Completion Flags for the
Endpoint completion streams that use that EVD. If request_evd_handle (recv_evd_handle)
is used for request (recv) completions of an Endpoint whose associated Request (Recv)
Completion Flag attribute is DAT COMPLETION_UNSIGNALLED_FLAG, the Request
Completion Flags and Recv Completion Flags for all Endpoint completion streams
that use the EVD must specify the same. Analogously, if recv_evd_handle is used for
recv completions of an Endpoint whose associated Recv Completion Flags attribute is
DAT COMPLETION SOLICITED WAIT, the Recv Completion Flags for all Endpoint
Recv completion streams that use the same EVD must specify the same Recv
Completion Flags attribute value and the EVD cannot be used for any other event
stream types.

If EP is created with NULL attributes, Provider can fill them with its own default
values. The Consumer should not rely on the Provider-filled attribute defaults,
especially for portable applications. The Consumer cannot do any operations on the
created Endpoint except for dat ep query(3DAT), dat ep get status(3DAT),
dat ep modify(3DAT), and dat ep free(3DAT), depending on the values that the
Provider picks.

The Provider is encouraged to pick up reasonable defaults because unreasonable
values might restrict Consumers to the dat_ep query (), dat_ep get status(),
dat_ep modify(),and dat_ep free () operations. The Consumer should check
what values the Provider picked up for the attributes. It is especially important to
make sure that the number of posted operations is not too large to avoid EVD
overflow. Depending on the values picked up by the Provider, the Consumer might
not be able to do any RDMA operations; it might only be able to send or receive
messages of very small sizes, or it might not be able to have more than one segment in
a buffer. Before doing any operations, except the ones listed above, the Consumer can
configure the Endpoint using dat_ep_modify () to the attributes they want.

One reason the Consumer might still want to create an Endpoint with Null attributes
is for the Passive side of the connection establishment, where the Consumer sets up
Endpoint attributes based on the connection request of the remote side.

Consumers might want to create Endpoints with NULL attributes if Endpoint
properties are negotiated as part the Consumer connection establishment protocol.

Consumers that create Endpoints with Provider default attributes should always
verify that the Provider default attributes meet their application’s requirements with
regard to the number of request/receive DTOs that can be posted, maximum message
sizes, maximum request/receive IOV sizes, and maximum RDMA sizes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

Extended Library Functions 185

dat_ep_create(3DAT)

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

SEE ALSO | dat_ep connect(3DAT), dat_ep dup connect(3DAT), dat _ep free(3DAT),
dat_ep get status(3DAT), dat _ep modify(3DAT), dat_ep query(3DAT),
libdat(3LIB), attributes(b)

186 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_create_with_srq(3DAT)

dat_ep_create_with_srq — create an instance of End Point with Shared Receive Queue

cc [flag... 1 file... -1dat [library...]

#include <dat/udat.h>

DAT RETURN
dat_ep create with srqg (
IN DAT IA HANDLE ia_handle,
IN DAT PZ_ HANDLE pz_handle,
IN DAT EVD_HANDLE recv_evd handle,
IN DAT EVD_ HANDLE request_evd_ handle,
IN DAT_ EVD_HANDLE connect_evd_handle,
IN DAT SRQ HANDLE srqg_handle,
IN DAT_EP_ATTR *ep_attributes,
ouT DAT EP_HANDLE *ep handle
)
ia_handle Handle for an open instance of the IA to which the

pz_handle

recv_evd_handle

request_evd_handle

connect_evd_handle

srq_handle

ep_attributes

ep_handle

created Endpoint belongs.
Handle for an instance of the Protection Zone.

Handle for the Event Dispatcher where events for
completions of incoming (receive) DTOs are reported.
DAT_ HANDLE_NULL specifies that the Consumer is not
interested in events for completions of receives.

Handle for the Event Dispatcher where events for
completions of outgoing (Send, RDMA Write, RDMA
Read, and RMR Bind) DTOs are reported.

DAT_ HANDLE_NULL specifies that the Consumer is not
interested in events for completions of requests.

Handle for the Event Dispatcher where Connection
events are reported. DAT HANDLE NULL specifies that
the Consumer is not interested in connection events for
now.

Handle for an instance of the Shared Receive Queue.

Pointer to a structure that contains
Consumer-requested Endpoint attributes. Cannot be
NULL.

Handle for the created instance of an Endpoint.

The dat_ep create_with srqg() function creates an instance of an Endpoint that
is using SRQ for Recv buffers is provided to the Consumer as ep_handle. The value of
ep_handle is not defined if the DAT RETURN is not DAT SUCCESS.

The Endpoint is created in the Unconnected state.

Extended Library Functions 187

dat_ep_create_with_srq(3DAT)

Protection Zone pz_handle allows Consumers to control what local memory the
Endpoint can access for DTOs except Recv and what memory remote RDMA
operations can access over the connection of a created Endpoint. Only memory
referred to by LMRs and RMRs that match the Endpoint Protection Zone can be
accessed by the Endpoint. The Recv DTO buffers PZ must match the SRQ PZ. The SRQ
PZ might or might not be the same as the EP one. Check Provider attribute for the
support of different PZs between SRQ and its EPs.

The recv_evd_handle and request_evd_handle arguments are Event Dispatcher instances
where the Consumer collects completion notifications of DTOs. Completions of
Receive DTOs are reported in recv_evd_handle Event Dispatcher, and completions of
Send, RDMA Read, and RDMA Write DTOs are reported in request_evd_handle Event
Dispatcher. All completion notifications of RMR bindings are reported to a Consumer
in request_evd_handle Event Dispatcher.

All Connection events for the connected Endpoint are reported to the Consumer
through connect_evd_handle Event Dispatcher.

Shared Receive Queue srq_handle specifies where the EP will dequeue Recv DTO
buffers.

The created EP can be reset. The relationship between SRQ and EP is not effected by
dat_ep reset(3DAT).

SRQ can not be disassociated or replaced from created EP. The only way to
disassociate SRQ from EP is to destroy EP.

Receive buffers cannot be posted to the created Endpoint. Receive buffers must be
posted to the SRQ to be used for the created Endpoint.

The ep_attributes parameter specifies the initial attributes of the created Endpoint.
Consumer can not specify NULL for ep_attributes but can specify values only for the
parameters needed and default for the rest.

For max_request_dtos and max_request_iov, the created Endpoint will have at least the
Consumer requested values but might have larger values. Consumer can query the
created Endpoint to find out the actual values for these attributes. Created Endpoint
has the exact Consumer requested values for max_recv_dtos, max_message_size,
max_rdma_size, max_ rdma_read_in, and max_rdma_read_out. For all other attributes,
except max_recv_iov that is ignored, the created Endpoint has the exact values
requested by Consumer. If Provider cannot satisfy the Consumer requested attribute
values the operation fails.

RETURN VALUES | DAT_SUCCESS The operation was successful.
DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.
DAT INVALID HANDLE Invalid DAT handle.

188 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

USAGE

dat_ep_create_with_srq(3DAT)

DAT INVALID_ PARAMETER Invalid parameter. One of the requested EP
parameters or attributes was invalid or a
combination of attributes or parameters is
invalid. For example, pz_handle specified
does not match the one for SRQ or the
requested maximum RDMA Read IOV
exceeds IA capabilities..

DAT MODEL NOT SUPPORTED The requested Provider Model was not
supported.

The Consumer creates an Endpoint prior to the establishment of a connection. The
created Endpoint is in DAT EP STATE UNCONNECTED. Consumers can do the
following;:

1. Request a connection on the Endpoint through dat_ep connect(3DAT) or
dat_ep dup_ connect(3DAT) for the active side of the connection model.

2. Associate the Endpoint with the Pending Connection Request that does not have
an associated local Endpoint for accepting the Pending Connection Request for the
passive/server side of the con-nection model.

3. Create a Reserved Service Point with the Endpoint for the passive/server side of
the connection model. Upon arrival of a Connection Request on the Service Point,
the Consumer accepts the Pending Connection Request that has the Endpoint
associated with it.

The Consumer cannot specify a request_evd_handle (recv_evd_handle) with Request
Completion Flags (Recv Completion Flags) that do not match the other Endpoint
Completion Flags for the DTO/RMR completion streams that use the same EVD. If
request_evd_handle (recv_evd_ handle) is used for request (recv) completions of an
Endpoint whose associated Request (Recv) Completion Flag attribute is

DAT COMPLETION UNSIGNALLED FLAG, the Request Completion Flags and Recv
Completion Flags for all Endpoint completion streams that use the EVD must specify
the same. By definition, completions of all Recv DTO posted to SRQ complete with
Signal. Analogously, if recv_evd_handle is used for recv completions of an Endpoint
whose associated Recv Completion Flag attribute is

DAT COMPLETION_SOLICITED_WAIT, the Recv Completion Flags for all Endpoint
Recv completion streams that use the same EVD must specify the same Recv
Completion Flags attribute value and the EVD cannot be used for any other event
stream types. If recv_evd_handle is used for Recv completions of an Endpoint that uses
SRQ and whose Recv Completion Flag attribute is

DAT COMPLETION_EVD THRESHOLD then all Endpoint DTO completion streams
(request and/or recv completion streams) that use that recv_evd_handle must specify
DAT COMPLETION_EVD_ THRESHOLD. Other event stream types can also use the same
EVD.

Extended Library Functions 189

dat_ep_create_with_srq(3DAT)

Consumers might want to use DAT COMPLETION UNSIGNALLED FLAG for Request
and/or Recv completions when they control locally with posted DTO/RMR
completion flag (not needed for Recv posted to SRQ) whether posted DTO/RMR
completes with Signal or not. Consumers might want to use

DAT COMPLETION SOLICITED WAIT for Recv completions when the remote sender
side control whether posted Recv competes with Signal or not or not. uDAPL
Consumers might want to use DAT_COMPLETION_EVD_THRESHOLD for Request
and/or Recv completions when they control waiter unblocking with the threshold
parameter of the dat evd wait(3DAT).

Some Providers might restrict whether multiple EPs that share a SRQ can have
different Protection Zones. Check the srq_ep_pz_difference_support Provider attribute for
it.

Consumers might want to have a different PZ between EP and SRQ. This allows
incoming RDMA operations to be specific to this EP PZ and not the same for all EPs
that share SRQ. This is critical for servers that supports multiple independent clients.

The Provider is strongly encouraged to create an EP that is ready to be connected. Any
effects of previous connections or connection establishment attempts on the
underlying Transport-specific Endpoint to which the DAT Endpoint is mapped to
should be hidden from the Consumer. The methods described below are examples:

m The Provider does not create an underlying Transport Endpoint until the
Consumer is connecting the Endpoint or accepting a connection request on it. This
allows the Provider to accumulate Consumer requests for attribute settings even
for attributes that the underlying transport does not allow to change after the
Transport Endpoint is created.

® The Provider creates the underlying Transport Endpoint or chooses one from a
pool of Provider-controlled Transport Endpoints when the Consumer creates the
Endpoint. The Provider chooses the Transport Endpoint that is free from any
underlying internal attributes that might prevent the Endpoint from being
connected. For IB and IP, that means that the Endpoint is not in the TimeWait state.
Changing of some of the Endpoint attributes becomes hard and might potentially
require mapping the Endpoint to another underlying Transport Endpoint that
might not be feasible for all transports.

m The Provider allocates a Transport-specific Endpoint without worrying about
impact on it from previous connections or connection establishment attempts. Hide
the Transport-specific TimeWait state or CM timeout of the underlying transport
Endpoint within dat_ep_connect(3DAT), dat_ep_ dup_connect(3DAT), or
dat_cr accept(3DAT). On the Active side of the connection establishment, if the
remnants of a previous connection for Transport-specific Endpoint can be hidden
within the Timeout parameter, do so. If not, generating DAT CONNECTION_
EVENT_NON_PEER_REJECTED is an option. For the Passive side, generating a
DAT_ CONNECTION_COMPLETION_ERROR event locally, while sending a
non-peer-reject message to the active side, is a way of handling it.

190 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

ATTRIBUTES

SEE ALSO

dat_ep_create_with_srq(3DAT)

Any transitions of an Endpoint into an Unconnected state can be handled similarly.
One transition from a Disconnected to an Unconnected state is a special case.

For dat_ep_ reset(3DAT), the Provider can hide any remnants of the previous
connection or failed connection establishment in the operation itself. Because the
operation is synchronous, the Provider can block in it until the TimeWait state effect of
the previous connection or connection setup is expired, or until the Connection
Manager timeout of an unsuccessful connection establishment attempt is expired.
Alternatively, the Provider can create a new Endpoint for the Consumer that uses the
same handle.

DAT Providers are required not to change any Consumer-specified Endpoint attributes
during connection establishment. If the Consumer does not specify an attribute, the
Provider can set it to its own default. Some EP attributes, like outstanding RDMA
Read incoming or outgoing, if not set up by the Consumer, can be changed by
Providers to establish connection. It is recommended that the Provider pick the default
for outstanding RDMA Read attributes as 0 if the Consumer has not specified them.
This ensures that connection establishment does not fail due to insufficient
outstanding RDMA Read resources, which is a requirement for the Provider.

The Provider is not required to check for a mismatch between the maximum RDMA
Read IOV and maximum RDMA Read outgoing attributes, but is allowed to do so. In
the later case it is allowed to return DAT INVALID PARAMETER when a mismatch is
detected. Provider must allocate resources to satisfy the combination of these two EP
attributes for local RDMA Read DTOs.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Safe

dat_ep create(3DAT), dat _srq create(3DAT), dat srq free(3DAT),
dat srg query(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions 191

dat_ep_disconnect(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_disconnect — terminate a connection or a connection establishment

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_ep disconnect (
IN DAT EP_HANDLE ep_handle,
IN DAT_CLOSE_FLAGS disconnect_flags
)
ep_handle Handle for an instance of Endpoint.
disconnect_flags Flags for disconnect. Flag values are as follows:

DAT CLOSE_ABRUPT FLAG
Abrupt close. This is the default value.

DAT CLOSE GRACEFUL_ FLAG
Graceful close.

The dat _ep disconnect () function requests a termination of a connection or
connection establishment. This operation is used by the active/client or a
passive/server side Consumer of the connection model.

The disconnect_flags parameter allows Consumers to specify whether they want
graceful or abrupt disconnect. Upon disconnect, all outstanding and in-progress DTOs
and RMR Binds must be completed.

For abrupt disconnect, all outstanding DTOs and RMR Binds are completed
unsuccessfully, and in-progress DTOs and RMR Binds can be completed successfully
or unsuccessfully. If an in-progress DTO is completed unsuccessfully, all follow on
in-progress DTOs in the same direction also must be completed unsuccessfully. This
order is presented to the Consumer through a DTO completion Event Stream of the
recv_evd_handle and and request_evd_handle of the Endpoint.

For graceful disconnect, all outstanding and in-progress request DTOs and RMR Binds
must try to be completed successfully first, before disconnect proceeds. During that
time, the local Endpoint is in a DAT EP DISCONNECT PENDING state.

The Consumer can call abrupt dat _ep disconnect () when the local Endpoint is in
the DAT EP DISCONNECT PENDING state. This causes the Endpoint to transition into
DAT EP STATE DISCONNECTED without waiting for outstanding and in-progress
request DTOs and RMR Binds to successfully complete. The graceful

dat _ep disconnect () call when the local Endpoint is in the

DAT EP DISCONNECT PENDING state has no effect.

If the Endpoint is not in DAT EP STATE CONNECTED, the semantic of the operation is
the same for graceful or abrupt disconnect_flags value.

No new Send, RDMA Read, and RDMA Write DTOs, or RMR Binds can be posted to
the Endpoint when the local Endpoint is in the DAT_EP DISCONNECT PENDING
state.

192 man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_ep_disconnect(3DAT)

The successful completion of the disconnect is reported to the Consumer through a
DAT CONNECTION EVENT DISCONNECTED event on connect_evd_handle of the
Endpoint. The Endpoint is automatically transitioned into a
DAT_EP_STATE_DISCONNECTED state upon successful asynchronous completion. If
the same EVD is used for connect_evd_handle and any recv_evd_handle and
request_evd_handle, all successful Completion events of in-progress DTOs precede
the Disconnect Completion event.

Disconnecting an unconnected Disconnected Endpoint is no-op. Disconnecting an
Endpoint in DAT_EP_STATE_UNCONNECTED, DAT_EP_STATE_RESERVED,
DAT EP_ STATE PASSIVE CONNECTION PENDING, and

DAT EP STATE TENTATIVE CONNECTION PENDING is disallowed.

Both abrupt and graceful disconnect of the Endpoint during connection establishment,
DAT EP STATE ACTIVE_ CONNECTION PENDING and

DAT EP STATE COMPLETION PENDING, "aborts" the connection establishment and
transitions the local Endpoint into DAT EP_STATE_ DISCONNECTED. That causes
preposted Recv DTOs to be flushed to recv_evd_handle.

DAT SUCCESS The operation was successful.

DAT INVALID_ HANDLE The ep_handle parameter is invalid.

DAT_INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID PARAMETER The disconnect_flags parameter is invalid.

DAT INVALID STATE A parameter is in an invalid state. Endpoint

is not in the valid state for disconnect.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

Extended Library Functions 193

dat_ep_dup_connect(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_dup_connect — establish a connection between the local Endpoint and a remote

Endpoint
cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_ep dup_connect (
N DAT EP_HANDLE ep_handle,
IN DAT _EP_HANDLE dup_ep_handle,
IN DAT_ TIMEOUT timeout,
IN DAT_COUNT private_data_size,
IN const DAT_PVOID private_ data,
IN DAT_QOS gos
)
ep_handle Handle for an instance of an Endpoint.

dup_ep_handle

timeout:

private_data_size

private_data

qgos

Connected local Endpoint that specifies a requested connection
remote end.

Duration of time, in microseconds, that Consumers wait for
Connection establishment. The value of

DAT TIMEOUT INFINITE represents no timeout, indefinite wait.
Values must be positive.

Size of private_data. Must be nonnegative.

Pointer to the private data that should be provided to the remote
Consumer as part of the Connection Request. If private_data_size is
zero, then private_data can be NULL.

Requested Quality of Service of the connection.

The dat _ep dup connect () function requests that a connection be established
between the local Endpoint and a remote Endpoint. This operation is used by the
active/client side Consumer of the connection model. The remote Endpoint is
identified by the dup_ep_handle. The remote end of the requested connection shall be
the same as the remote end of the dup_ep_handle. This is equivalent to requesting a
connection to the same remote IA, Connection Qualifier, and connect_flags as used for
establishing the connection on duplicated Endpoints and following the same

redirections.

Upon establishing the requested connection as part of the successful completion of this

operation, the local

Endpoint is bound to a Port Qualifier of the local IA. The Port

Qualifier is passed to the remote side of the requested connection and is available to
the remote Consumer in the Connection Request of the
DAT CONNECTION REQUEST EVENT.

194 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

dat_ep_dup_connect(3DAT)

The Consumer-provided private_data is passed to the remote side and is provided to
the remote Consumer in the Connection Request. Consumers can encapsulate any
local Endpoint attributes that remote Consumers need to know as part of an
upper-level protocol. Providers can also provide a Provider on the remote side any
local Endpoint attributes and Transport-specific information needed for Connection
establishment by the Transport.

Upon successful completion of this operation, the local Endpoint is transferred into
DAT EP_STATE ACTIVE CONNECTION PENDING.

Consumers can request a specific value of gos. The Provider specifies which Quality of
Service it supports in documentation and in the Provider attributes. If the local
Provider or Transport does not support the requested gos, the operation fails and

DAT MODEL_NOT_SUPPORTED is returned synchronously. If the remote Provider does
not support the requested gos, the local Endpoint is automatically transitioned into a
DAT EP STATE UNDISCONNECTED state, the connection is not established, and the
event returned on the connect_evd_handle is

DAT CONNECTION EVENT NON PEER REJECTED. The same

DAT CONNECTION EVENT NON PEER REJECTED event is returned if connection
cannot be established for all reasons for not establishing the connection, except
timeout, remote host not reachable, and remote peer reject. For example, remote host
is not reachable, remote Consumer is not listening on the requested Connection
Qualifier, Backlog of the requested Service Point is full, and Transport errors. In this
case, the local Endpoint is automatically transitioned into a

DAT EP STATE UNDISCONNECTED state.

The acceptance of the requested connection by the remote Consumer is reported to the
local Consumer through a DAT CONNECTION EVENT ESTABLISHED event on the
connect_evd_handle of the local Endpoint.

The rejection of the connection by the remote Consumer is reported to the local
Consumer through a DAT CONNECTION EVENT PEER REJECTED event on the
connect_evd_handle of the local Endpoint and the local Endpoint is automatically
transitioned into a DAT EP_STATE_ UNDISCONNECTED state.

When the Provider cannot reach the remote host or the remote host does not respond
within the Consumer-requested timeout, a DAT CONNECTION_ EVENT UNREACHABLE
is generated on the connect_evd_handle of the Endpoint. The Endpoint transitions into a
DAT_EP_STATE_DISCONNECTED state.

The local Endpoint is automatically transitioned into a DAT EP_STATE_CONNECTED
state when a Connection Request is accepted by the remote Consumer and the
Provider completes the Transport-specific Connection establishment. The local
Consumer is notified of the established connection through a

DAT CONNECTION_ EVENT ESTABLISHED event on the connect_evd_handle of the local
Endpoint.

Extended Library Functions 195

dat_ep_dup_connect(3DAT)

RETURN VALUES

196

USAGE

ATTRIBUTES

SEE ALSO

When the timeout expired prior to completion of the Connection establishment, the
local Endpoint is automatically transitioned into a

DAT EP STATE UNDISCONNECTED state and the local Consumer through a

DAT CONNECTION EVENT TIMED OUT event on the connect_evd_handle of the local
Endpoint.

DAT SUCCESS The operation was successful.

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID PARAMETER Invalid parameter.

DAT INVALID HANDLE The ep_handle or dup_ep_handle parameter is
invalid.

DAT INVALID STATE A parameter is in an invalid state.

DAT_MODEL_NOT_SUPPORTED The requested Model is not supported by

the Provider. For example, requested gos
was not supported by the local Provider.

It is up to the Consumer to negotiate outstanding RDMA Read incoming and outgoing
with a remote peer. The outstanding RDMA Read outgoing attribute should be smaller
than the remote Endpoint outstanding RDMA Read incoming attribute. If this is not
the case, connection establishment might fail.

DAT API does not define a protocol on how remote peers exchange Endpoint
attributes. The exchange of outstanding RDMA Read incoming and outgoing
attributes of EPs is left to the Consumer ULP. The Consumer can use Private Data for
it.

If the Consumer does not care about posting RDMA Read operations or remote
RDMA Read operations on the connection, it can set the two outstanding RDMA Read
attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes of the
Endpoint, the Provider is free to pick up any values as a default. The Provider is
allowed to change these default values during connection setup.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

dat_ep_free(3DAT)
dat_ep_free — destroy an instance of the Endpoint

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep free (
IN DAT EP_ HANDLE ep_handle
)

ep_handle Handle for an instance of the Endpoint.

The dat_ep_ free () function destroys an instance of the Endpoint.

The Endpoint can be destroyed in any Endpoint state except Reserved, Passive
Connection Pending, and Tentative Connection Pending. The destruction of the
Endpoint can also cause the destruction of DTOs and RMRs posted to the Endpoint
and not dequeued yet. This includes completions for all outstanding and in-progress
DTOs/RMRs. The Consumer must be ready for all completions that are not dequeued
yet either still being on the Endpoint recv_evd_handle and request_evd_handle or not
being there.

The destruction of the Endpoint during connection setup aborts connection
establishment.

If the Endpoint is in the Reserved state, the Consumer shall first destroy the associated
Reserved Service Point that transitions the Endpoint into the Unconnected state where
the Endpoint can be destroyed. If the Endpoint is in the Passive Connection Pending
state, the Consumer shall first reject the associated Connection Request that transitions
the Endpoint into the Unconnected state where the Endpoint can be destroyed. If the
Endpoint is in the Tentative Connection Pending state, the Consumer shall reject the
associated Connection Request that transitions the Endpoint back to Provider control,
and the Endpoint is destroyed as far as the Consumer is concerned.

The freeing of an Endpoint also destroys an Event Stream for each of the associated
Event Dispatchers.

Use of the handle of the destroyed Endpoint in any subsequent operation except for
the dat_ep free () fails.

DAT SUCCESS The operation was successful.
DAT INVALID HANDLE The ep_handle parameter is invalid.
DAT INVALID STATE Parameter in an invalid state. The Endpoint is in

DAT EP STATE RESERVED,

DAT EP STATE PASSIVE CONNECTION PENDING,
or

DAT EP STATE TENTATIVE CONNECTION PENDING.

Extended Library Functions 197

dat_ep_free(3DAT)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

198

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1, 1.2

MT-Level

Unsafe

SEE ALSO | 1ibdat(3LIB), attributes(5)

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

dat_ep_get_status(3DAT)
dat_ep_get_status — provide a quick snapshot of the Endpoint

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep get_status (
IN DAT EP_ HANDLE ep_handle,
OUT DAT_EP_STATE *ep_state,
OUT DAT_ BOOLEAN *recv_idle,
ouT DAT_ BOOLEAN *request_idle
)
ep_handle Handle for an instance of the Endpoint.
ep_state Current state of the Endpoint.
recu_idle Status of the incoming DTOs on the Endpoint.
request_idle Status of the outgoing DTOs and RMR Bind operations on the

Endpoint.

the dat_ep_get_status () function provides the Consumer a quick snapshot of the
Endpoint. The snapshot consists of the Endpoint state and whether there are
outstanding or in-progress, incoming or outgoing DTOs. Incoming DTOs consist of
Receives. Outgoing DTOs consist of the Requests, Send, RDMA Read, RDMA Write,
and RMR Bind.

The ep_state parameter returns the value of the current state of the Endpoint ep_handle.
State value is one of the following: DAT EP_STATE UNCONNECTED,

DAT EP STATE RESERVED, DAT EP STATE PASSIVE CONNECTION PENDING,
DAT EP STATE ACTIVE CONNECTION PENDING,

DAT EP STATE TENTATIVE CONNECTION PENDING,

DAT EP STATE CONNECTED, DAT EP STATE DISCONNECT PENDING, or

DAT EP STATE DISCONNECTED.

A recv_idle value of DAT TRUE specifies that there are no outstanding or in-progress
Receive DTOs at the Endpoint, and DAT_FALSE otherwise.

A request_idle value of DAT TRUE specifies that there are no outstanding or in-progress
Send, RDMA Read, and RDMA Write DTOs, and RMR Binds at the Endpoint, and
DAT FALSE otherwise.

This call provides a snapshot of the Endpoint status only. No heroic synchronization
with DTO queuing or processing is implied.

DAT SUCCESS The operation was successful.

DAT INVALID HANDLE The ep_handle parameter is invalid.

Extended Library Functions 199

dat_ep_get_status(3DAT)

200

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1, 1.2

MT-Level

Safe

SEE ALSO | 1ibdat(3LIB), attributes(5)

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_modify(3DAT)

dat_ep_modify — change parameters of an Endpoint

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN

dat_ep modify (

IN DAT_ EP_HANDLE ep_handle,

IN DAT_EP_PARAM MASK ep_param_mask,

IN DAT EP_PARAM *ep_param

)
ep_handle Handle for an instance of the Endpoint.
ep_param_mask Mask for Endpoint parameters.
ep_param Pointer to the Consumer-allocated structure that contains

Consumer-requested Endpoint parameters.

The dat_ep modify () function provides the Consumer a way to change parameters
of an Endpoint.

The ep_param_mask parameter allows Consumers to specify which parameters to
modify. Providers modify values for ep_param_mask requested parameters only.

Not all the parameters of the Endpoint can be modified. Some can be modified only
when the Endpoint is in a specific state. The following list specifies which parameters
can be modified and when they can be modified.

Interface Adapter
Cannot be modified.

Endpoint belongs to an open instance of IA and that association cannot be changed.

Endpoint State
Cannot be modified.

State of Endpoint cannot be changed by a dat_ep_modify () operation.

Local IA Address
Cannot be modified.

Local IA Address cannot be changed by a dat_ep_modify () operation.

Local Port Qualifier
Cannot be modified.

Local port qualifier cannot be changed by a dat_ep modify () operation.

Remote IA Address
Cannot be modified.

Remote IA Address cannot be changed by a dat_ep_modify () operation.

Remote Port Qualifier
Cannot be modified.

Extended Library Functions 201

dat_ep_modify(3DAT)

202

Remote port qualifier cannot be changed by a dat_ep_modify () operation

Protection Zone
Can be modified when in Quiescent, Unconnected, and Tentative Connection
Pending states.

Protection Zone can be changed only when the Endpoint is in quiescent state. The
only Endpoint states that isare quiescent isare DAT EP_STATE_UNCONNECTED and
DAT EP STATE TENTATIVE CONNECTION PENDING. Consumers should be
aware that any Receive DTOs currently posted to the Endpoint that do not match
the new Protection Zone fail with a DAT PROTECTION VIOLATION return.

In DTO Event Dispatcher
Can be modified when in Unconnected, Reserved, Passive Connection Request
Pending, and Tentative Connection Pending states.

Event Dispatcher for incoming DTOs (Receive) can be changed only prior to a
request for a connection for an Active side or prior to accepting a Connection
Request for a Passive side.

Out DTO Event Dispatcher
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Event Dispatcher for outgoing DTOs (Send, RDMA Read, and RDMA Write) can be
changed only prior to a request for a connection for an Active side or prior to
accepting a Connection Request for a Passive side.

Connection Event Dispatcher
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Event Dispatcher for the Endpoint Connection events can be changed only prior to
a request for a connection for an Active side or accepting a Connection Request for
a Passive side.

Service Type
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Service Type can be changed only prior to a request for a connection for an Active
side or accepting a Connection Request for a Passive side.

Maximum Message Size
Can be modified when in Unconnected, Reserved, Passive Connection Request
Pending, and Tentative Connection Pending states.

Maximum Message Size can be changed only prior to a request for a connection for
an Active side or accepting a Connection Request for a Passive side.

Maximum RDMA Size
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

dat_ep_modify(3DAT)

Maximum RDMA Size can be changed only prior to a request for a connection for
an Active side or accepting a Connection Request for a Passive side.

Quality of Service
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

QoS can be changed only prior to a request for a connection for an Active side or
accepting a Connection Request for a Passive side.

Recv Completion Flags
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Recv Completion Flags specifies what DTO flags the Endpoint should support for
Receive DTO operations. The value can be

DAT COMPLETION NOTIFICATION SUPPRESS FLAG,

DAT COMPLETION SOLICITED WAIT FLAG, or

DAT COMPLETION_EVD THRESHOLD_ FLAG. Recv posting does not support

DAT COMPLETION_ SUPPRESS FLAG or

DAT COMPLETION_BARRIER_FENCE_ FLAG dat_completion_flags values that are
only applicable to Request postings. Recv Completion Flags can be changed only
prior to a request for a connection for an Active side or accepting a Connection
Request for a Passive side, but before posting of any Recvs.

Request Completion Flags
Can be modified when in Unconnected, Reserved, Passive Connection Request
Pending, and Tentative Connection Pending states.

Request Completion Flags specifies what DTO flags the Endpoint should support
for Send, RDMA Read, RDMA Write, and RMR Bind operations. The value can be:
DAT COMPLETION UNSIGNALLED FLAG or

DAT_COMPLETION_EVD_ THRESHOLD_FLAG. Request postings always support
DAT COMPLETION_ SUPPRESS FLAG,

DAT COMPLETION SOLICITED WAIT FLAG, or

DAT COMPLETION BARRIER FENCE FLAG completion_flags values. Request
Completion Flags can be changed only prior to a request for a connection for an
Active side or accepting a Connection Request for a Passive side.

Maximum Recv DTO
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Maximum Recv DTO specifies the maximum number of outstanding
Consumer-submitted Receive DTOs that a Consumer expects at any time at the
Endpoint. Maximum Recv DTO can be changed only prior to a request for a
connection for an Active side or accepting a Connection Request for a Passive side.

Maximum Request DTO
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Extended Library Functions 203

dat_ep_modify(3DAT)

Maximum Request DTO specifies the maximum number of outstanding
Consumer-submitted send and RDMA DTOs and RMR Binds that a Consumer
expects at any time at the Endpoint. Maximum Out DTO can be changed only prior
to a request for a connection for an Active side or accepting a Connection Request
for a Passive side.

Maximum Recv IOV
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Maximum Recv IOV specifies the maximum number of elements in IOV that a
Consumer specifies for posting a Receive DTO for the Endpoint. Maximum Recv
IOV can be changed only prior to a request for a connection for an Active side or
accepting a Connection Request for a Passive side.

Maximum Request IOV
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Maximum Request IOV specifies the maximum number of elements in IOV that a
Consumer specifies for posting a Send, RDMA Read, or RDMA Write DTO for the
Endpoint. Maximum Request IOV can be changed only prior to a request for a
connection for an Active side or accepting a Connection Request for a Passive side.

Maximum outstanding RDMA Read as target
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Maximum number of outstanding RDMA Reads for which the Endpoint is the
target.

Maximum outstanding RDMA Read as originator
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Maximum number of outstanding RDMA Reads for which the Endpoint is the
originator.

Num transport-specific attributes
Can be modified when in Quiescent (unconnected) state.

Number of transport-specific attributes to be modified.

Transport-specific endpoint attributes
Can be modified when in Quiescent (unconnected) state.

Transport-specific attributes can be modified only in the transport-defined
Endpoint state. The only guaranteed safe state in which to modify transport-specific
Endpoint attributes is the quiescent state DAT EP_STATE_UNCONNECTED.

Num provider-specific attributes
Can be modified when in Quiescent (unconnected) state.

Number of Provider-specific attributes to be modified.

204 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_ep_modify(3DAT)

Provider-specific endpoint attributes
Can be modified when in Quiescent (unconnected) state.

Provider-specific attributes can be modified only in the Provider-defined Endpoint
state. The only guaranteed safe state in which to modify Provider-specific Endpoint
attributes is the quiescent state DAT EP STATE UNCONNECTED.

DAT SUCCESS
DAT INVALID HANDLE

DAT INVALID PARAMETER

DAT INVALID STATE

The operation was successful.
The ep_handle parameter is invalid.

The ep_param_mask parameter is invalid, or one of the
requested Endpoint parameters or attributes was
invalid, not supported, or cannot be modified.

Parameter in an invalid state. The Endpoint was not in
the state that allows one of the parameters or attributes
to be modified.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions 205

dat_ep_post_rdma_read(3DAT)

206

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_post_rdma_read — transfer all data to the local data buffer

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_ep post_rdma read (
IN DAT EP_ HANDLE ep_handle,
IN DAT_COUNT num_segments,
N DAT LMR_TRIPLET *local iov,
IN DAT_ DTO_COOKIE user_cookie,
IN DAT_RMR TRIPLET *remote_buffer,

IN DAT COMPLETION FLAGS completion flags
)

ep_handle Handle for an instance of the Endpoint.

num_segments Number of Imr_triplets in local_iov.

local_iov I/0 Vector that specifies the local buffer to fill.

user_cookie User-provided cookie that is returned to the Consumer
at the completion of the RDMA Read. Can be NULL.

remote_buffer A pointer to an RMR Triplet that specifies the remote
buffer from which the data is read.

completion_flags Flags for posted RDMA Read. The default

DAT COMPLETION DEFAULT FLAG is 0x00. Other
values are as follows:

Completion Suppression
DAT COMPLETION_ SUPPRESS FLAG

0x01 Suppress successful Completion.

Notification of Completion
DAT COMPLETION UNSIGNALLED FLAG

0x04 Non-notification completion. Local
Endpoint must be configured for
Notification Suppression.

Barrier Fence
DAT COMPLETION BARRIER FENCE FLAG

0x08 Request for Barrier Fence.

The dat _ep post rdma read () function requests the transfer of all the data
specified by the remote_buffer over the connection of the ep_handle Endpoint into the
local_iov.

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

RETURN VALUES

dat_ep_post_rdma_read(3DAT)

The num_segments parameter specifies the number of segments in the local_iov. The
local_iov segments are filled in the I/O Vector order until the whole message is
received. This ensures that all the "front" segments of the local_iov I/O Vector are
completely filled, only one segment is partially filled, if needed, and all segments that
follow it are not filled at all.

The user_cookie allows Consumers to have unique identifiers for each DTO. These
identifiers are completely under user control and are opaque to the Provider. There is
no requirement on the Consumer that the value user_cookie should be unique for each
DTO. The user_cookie is returned to the Consumer in the Completion event for the
posted RDMA Read.

A Consumer must not modify the local_iov or its content until the DTO is completed.
When a Consumer does not adhere to this rule, the behavior of the Provider and the
underlying Transport is not defined. Providers that allow Consumers to get ownership
of the local_iov but not the memory it specifies back after the
dat_ep_post_rdma_read () returns should document this behavior and also
specify its support in Provider attributes. This behavior allows Consumers full control
of the local_iov after dat _ep post rdma_read () returns. Because this behavior is
not guaranteed by all Providers, portable Consumers should not rely on this behavior.
Consumers should not rely on the Provider copying local_iov information.

The completion of the posted RDMA Read is reported to the Consumer
asynchronously through a DTO Completion event based on the specified
completion_flags value. The value of DAT_COMPLETION_UNSIGNALLED FLAG is only
valid if the Endpoint Request Completion Flags

DAT COMPLETION UNSIGNALLED FLAG. Otherwise, DAT INVALID PARAMETER is
returned.

The DAT SUCCESS return of the dat_ep post rdma read () is at least the
equivalent of posting an RDMA Read operation directly by native Transport.
Providers should avoid resource allocation as part of dat _ep post rdma read()
to ensure that this operation is nonblocking and thread safe for an UpCall.

The operation is valid for the Endpoint in the DAT EP STATE CONNECTED and
DAT EP_STATE DISCONNECTED states. If the operation returns successfully for the
Endpoint in the DAT _EP STATE_DISCONNECTED state, the posted RDMA Read is
immediately flushed to request_evd_handle.

DAT SUCCESS The operation was successful.

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID PARAMETER Invalid parameter. For example, one of the
IOV segments pointed to a memory outside
its LMR.

DAT INVALID_ HANDLE The ep_handle parameter is invalid.

Extended Library Functions 207

dat_ep_post_rdma_read(3DAT)

DAT INVALID STATE A parameter is in an invalid state. Endpoint
was not in the
DAT EP STATE CONNECTED or
DAT EP_STATE DISCONNECTED state.

DAT_ LENGTH_ERROR The size of the receiving buffer is too small
for sending buffer data. The size of the local

buffer is too small for the data of the remote
buffer.

DAT PROTECTION VIOLATION Protection violation for local or remote
memory access. Protection Zone mismatch
between either an LMR of one of the
local_iov segments and the local Endpoint or
the rmr_context and the remote Endpoint.

DAT PRIVILEGES VIOLATION Privileges violation for local or remote
memory access. Either one of the LMRs
used in local_iov is invalid or does not have
the local write privileges, or rmr_context
does not have the remote read privileges.

USAGE | For best RDMA Read operation performance, the Consumer should align each buffer
segment of local_iov to the Optimal Buffer Alignment attribute of the Provider. For
portable applications, the Consumer should align each buffer segment of local_iov to
the DAT OPTIMAL_ ALIGNMENT.

If connection was established without outstanding RDMA Read attributes matching
on Endpoints on both sides (outstanding RDMA Read outgoing on one end is larger
than the outstanding RDMA Read incoming on the other end), connection is broken
when the number of incoming RDMA Read exceeds the outstanding RDMA Read
incoming attribute of the Endpoint. The Consumer can use its own flow control to
ensure that it does not post more RDMA Reads then the remote EP outstanding
RDMA Read incoming attribute is. Thus, they do not rely on the underlying Transport
enforcing it.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

SEE ALSO | libdat(3LIB), attributes(5)

208 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_post_rdma_write(3DAT)

dat_ep_post_rdma_write — write all data to the remote data buffer

cc [flag... 1 file... -1dat [library...]

#include <dat/udat.h>

DAT RETURN

dat_ep post rdma_read (

IN DAT EP_HANDLE

IN DAT_COUNT

IN DAT LMR_ TRIPLET
IN DAT DTO_COOKIE
IN DAT RMR_TRIPLET

ep_handle,
num_segments,
*local iov,
user_cookie,
*remote_buffer,

IN DAT COMPLETION FLAGS completion flags

)
ep_handle
num_segments

local_iov

user_cookie

remote_buffer

completion_flags

Handle for an instance of the Endpoint.
Number of Imr_triplets in local_iov.

I/0 Vector that specifies the local buffer from which
the data is transferred.

User-provided cookie that is returned to the Consumer
at the completion of the RDMA Wrrite.

A pointer to an RMR Triplet that specifies the remote
buffer from which the data is read.

Flags for posted RDMA read. The default
DAT COMPLETION DEFAULT FLAG is 0x00. Other
values are as follows:

Completion Suppression
DAT COMPLETION SUPPRESS FLAG

0x01 Suppress successful Completion.

Notification of Completion
DAT COMPLETION_ UNSIGNALLED_ FLAG

0x04 Non-notification completion. Local
Endpoint must be configured for
Notification Suppression.

Barrier Fence
DAT COMPLETION BARRIER FENCE FLAG

0x08 Request for Barrier Fence.

The dat _ep post rdma write () function requests the transfer of all the data
specified by the local_iov over the connection of the ep_handle Endpoint into the

remote_buffer.

The num_segments parameter specifies the number of segments in the local_iov. The
local_iov segments are traversed in the I/O Vector order until all the data is

transferred.

Extended Library Functions 209

dat_ep_post_rdma_write(3DAT)

RETURN VALUES

A Consumer must not modify the local_iov or its content until the DTO is completed.
When a Consumer does not adhere to this rule, the behavior of the Provider and the
underlying Transport is not defined. Providers that allow Consumers to get ownership
of the local_iov but not the memory it specifies back after the

dat_ep post_rdma_write () returns should document this behavior and also
specify its support in Provider attributes. This behavior allows Consumers full control
of the local_iov after dat_ep post rdma write () returns. Because this behavior is
not guaranteed by all Providers, portable Consumers should not rely on this behavior.
Consumers should not rely on the Provider copying local_iov information.

The DAT SUCCESS return of the dat_ep post rdma write () is atleast the
equivalent of posting an RDMA Write operation directly by native Transport.
Providers should avoid resource allocation as part of dat_ep_post_rdma_write ()
to ensure that this operation is nonblocking and thread safe for an UpCall.

The completion of the posted RDMA Write is reported to the Consumer
asynchronously through a DTO Completion event based on the specified
completion_flags value. The value of DAT COMPLETION_UNSIGNALLED_FLAG is only
valid if the Endpoint Request Completion Flags

DAT COMPLETION UNSIGNALLED FLAG. Otherwise, DAT INVALID PARAMETER is
returned.

The user_cookie allows Consumers to have unique identifiers for each DTO. These
identifiers are completely under user control and are opaque to the Provider. There is
no requirement on the Consumer that the value user_cookie should be unique for each
DTO. The user_cookie is returned to the Consumer in the Completion event for the
posted RDMA Write.

The operation is valid for the Endpoint in the DAT_EP STATE_CONNECTED and
DAT EP_STATE_DISCONNECTED states. If the operation returns successfully for the
Endpoint in the DAT EP STATE DISCONNECTED state, the posted RDMA Write is
immediately flushed to request_evd_handle.

DAT_SUCCESS The operation was successful.

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID PARAMETER Invalid parameter. For example, one of the
IOV segments pointed to a memory outside
its LMR.

DAT INVALID HANDLE The ep_handle parameter is invalid.

DAT INVALID STATE A parameter is in an invalid state. Endpoint

was not in the
DAT EP_STATE CONNECTED or
DAT EP_STATE DISCONNECTED state.

210 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

USAGE

ATTRIBUTES

SEE ALSO

DAT LENGTH ERROR

DAT PROTECTION_VIOLATION

DAT PRIVILEGES VIOLATION

dat_ep_post_rdma_write(3DAT)

The size of the receiving buffer is too small
for sending buffer data. The size of the
remote buffer is too small for the data of the
local buffer.

Protection violation for local or remote
memory access. Protection Zone mismatch
between either an LMR of one of the
local_iov segments and the local Endpoint or
the rmr_context and the remote Endpoint.

Privileges violation for local or remote
memory access. Either one of the LMRs
used in local_iov is invalid or does not have
the local read privileges, or rmr_context does
not have the remote write privileges.

For best RDMA Write operation performance, the Consumer should align each buffer
segment of local_iov to the Optimal Buffer Alignment attribute of the Provider. For
portable applications, the Consumer should align each buffer segment of local_iov to

the DAT OPTIMAL ALIGNMENT.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions 211

dat_ep_post_recv(3DAT)

212

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_post_recv — receive data over the connection of the Endpoint

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_ep post_recv (
IN DAT EP_ HANDLE ep_handle,
IN DAT_COUNT num_segments,
IN DAT LMR_TRIPLET *local_iov,
IN DAT_ DTO_COOKIE user_cookie,
IN DAT COMPLETION_FLAGS completion flags
)
ep_handle Handle for an instance of the Endpoint.
num_segments Number of Imr_triplets in local_iov. Can be 0 for
receiving a 0 size message.
local_iov I/0 Vector that specifies the local buffer to be filled.
Can be NULL for receiving a 0 size message.
user_cookie: User-provided cookie that is returned to the Consumer
at the completion of the Receive DTO. Can be NULL.
completion_flags Flags for posted Receive. The default

DAT COMPLETION DEFAULT FLAG is 0x00. Other
values are as follows:

Notification of Completion
DAT COMPLETION UNSIGNALLED FLAG

0x04 Non-notification completion. Local
Endpoint must be configured for
Unsignaled CompletionNotification
Suppression.

The dat_ep post_recv () function requests the receive of the data over the
connection of the ep_handle Endpoint of the incoming message into the local_iov.

The num_segments parameter specifies the number of segments in the local_iov. The
local_iov segments are filled in the I/O Vector order until the whole message is
received. This ensures that all the "front" segments of the local_iov 1/O Vector are
completely filled, only one segment is partially filled, if needed, and all segments that
follow it are not filled at all.

The user_cookie allows Consumers to have unique identifiers for each DTO. These
identifiers are completely under user control and are opaque to the Provider. There is
no requirement on the Consumer that the value user_cookie should be unique for each
DTO. The user_cookie is returned to the Consumer in the Completion event for the
posted Receive.

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

RETURN VALUES

dat_ep_post_recv(3DAT)

The completion of the posted Receive is reported to the Consumer asynchronously
through a DTO Completion event based on the configuration of the connection for
Solicited Wait and the specified completion_flags value for the matching Send. The
value of DAT COMPLETION UNSIGNALLED FLAG is only valid if the Endpoint Recv
Completion Flags DAT COMPLETION UNSIGNALLED_ FLAG. Otherwise,

DAT INVALID PARAMETER is returned.

A Consumer must not modify the local_iov or its content until the DTO is completed.
When a Consumer does not adhere to this rule, the behavior of the Provider and the
underlying Transport is not defined. Providers that allow Consumers to get ownership
of the local_iov but not the memory it specified back after the dat _ep post recv ()
returns should document this behavior and also specify its support in Provider
attributes. This behavior allows Consumer full control of the local_iov content after
dat_ep_post_recv () returns. Because this behavior is not guaranteed by all
Providers, portable Consumers should not rely on this behavior. Consumers
shouldnot rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ep_post_recv () is at least the equivalent of
posting a Receive operation directly by native Transport. Providers should avoid
resource allocation as part of dat_ep post recv () to ensure that this operation is
nonblocking and thread safe for an UpCall.

If the size of an incoming message is larger than the size of the local_iov, the reported
status of the posted Receive DTO in the corresponding Completion DTO event is
DAT DTO_ LENGTH_ERROR. If the reported status of the Completion DTO event
corresponding to the posted Receive DTO is not DAT DTO_SUCCESS, the content of
the local_iov is not defined.

The operation is valid for all states of the Endpoint. The actual data transfer does not
take place until the Endpoint is in the DAT EP_STATE_CONNECTED state. The
operation on the Endpoint in DAT EP_STATE DISCONNECTED is allowed. If the
operation returns successfully, the posted Recv is immediately flushed to
reco_evd_handle.

DAT SUCCESS The operation was successful.

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID PARAMETER Invalid parameter. For example, one of the
IOV segments pointed to a memory outside
its LMR.

DAT INVALID HANDLE The ep_handle parameter is invalid.

DAT PROTECTION VIOLATION Protection violation for local or remote

memory access. Protection Zone mismatch
between an LMR of one of the local_iov
segments and the local Endpoint.

Extended Library Functions 213

dat_ep_post_recv(3DAT)

DAT PRIVILEGES VIOLATION Privileges violation for local or remote
memory access. One of the LMRs used in
local_iov was either invalid or did not have
the local read privileges.

USAGE | For best Recv operation performance, the Consumer should align each buffer segment
of local_iov to the Optimal Buffer Alignment attribute of the Provider. For portable
applications, the Consumer should align each buffer segment of local_iov to the

DAT OPTIMAL ALIGNMENT.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

SEE ALSO | libdat(3LIB), attributes(5)

214 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_post_send(3DAT)

dat_ep_post_send — transfer data to the remote side

cc [flag... 1 file... -1dat [library...]

#include <dat/udat.h>

DAT RETURN
dat_ep post_send (
IN DAT EP_ HANDLE ep_handle,
IN DAT_COUNT num_segments,
N DAT LMR_TRIPLET *local iov,
IN DAT DTO_COOKIE user_cookie,
IN DAT COMPLETION_FLAGS completion flags
)
ep_handle Handle for an instance of the Endpoint.

num_segments

local_iov

user_cookie:

completion_flags

Number of Imr_triplets in local_iov. Can be 0 for 0 size
message.

I/0 Vector that specifies the local buffer that contains
data to be transferred. Can be NULL for 0 size message.

User-provided cookie that is returned to the Consumer
at the completion of the send. Can be NULL.

Flags for posted Send. The default
DAT COMPLETION DEFAULT FLAG is 0x00. Other
values are as follows:

Completion Suppression
DAT COMPLETION SUPPRESS FLAG

0x01 Suppress successful Completion.

Solicited Wait
DAT COMPLETION_SOLICITED WAIT FLAG

0x02 Request for notification completion for
matching receive on the other side of the
connection.

Notification of Completion
DAT COMPLETION_ UNSIGNALLED_ FLAG

0x04 Non-notification completion. Local
Endpoint must be configured for
Notification Suppression.

Barrier Fence
DAT COMPLETION BARRIER FENCE FLAG

0x08 Request for Barrier Fence.

The dat_ep_post_send () function requests a transfer of all the data from the
local_iov over the connection of the ep_handle Endpoint to the remote side.

Extended Library Functions 215

dat_ep_post_send(3DAT)

RETURN VALUES

The num_segments parameter specifies the number of segments in the local_iov. The
local_iov segments are traversed in the I/O Vector order until all the data is
transferred.

A Consumer cannot modify the local_iov or its content until the DTO is completed.
When a Consumer does not adhere to this rule, the behavior of the Provider and the
underlying Transport is not defined. Providers that allow Consumers to get ownership
of the local_iov back after the dat_ep post_send () returns should document this
behavior and also specify its support in Provider attributes. This behavior allows
Consumers full control of the local_iov, but not the memory it specifies after

dat_ep post send () returns. Because this behavior is not guaranteed by all
Providers, portable Consumers should not rely on this behavior. Consumers should
not rely on the Provider copying local_iov information.

The DAT SUCCESS return of the dat_ep post send() is at least the equivalent of
posting a Send operation directly by native Transport. Providers should avoid
resource allocation as part of dat_ep_post_send () to ensure that this operation is
nonblocking and thread safe for an UpCall.

The completion of the posted Send is reported to the Consumer asynchronously
through a DTO Completion event based on the specified completion_flags value. The
value of DAT_COMPLETION _UNSIGNALLED_ FLAG is only valid if the Endpoint
Request Completion Flags DAT COMPLETION UNSIGNALLED FLAG. Otherwise,
DAT INVALID PARAMETER is returned.

The user_cookie allows Consumers to have unique identifiers for each DTO. These
identifiers are completely under user control and are opaque to the Provider. There is
no requirement on the Consumer that the value user_cookie should be unique for each
DTO. The user_cookie is returned to the Consumer in the Completion event for the
posted Send.

The operation is valid for the Endpoint in the DAT_EP STATE_CONNECTED and
DAT EP_STATE_DISCONNECTED states. If the operation returns successfully for the
Endpoint in the DAT EP STATE DISCONNECTED state, the posted Send is
immediately flushed to request_evd_handle.

DAT_SUCCESS The operation was successful.

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID PARAMETER Invalid parameter. For example, one of the
IOV segments pointed to a memory outside
its LMR.

DAT INVALID HANDLE The ep_handle parameter is invalid.

216 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

USAGE

ATTRIBUTES

SEE ALSO

DAT INVALID STATE

DAT PROTECTION_VIOLATION

DAT PRIVILEGES VIOLATION

dat_ep_post_send(3DAT)

A parameter is in an invalid state. Endpoint
was not in the

DAT EP STATE CONNECTED or

DAT EP_STATE DISCONNECTED state.

Protection violation for local or remote
memory access. Protection Zone mismatch
between an LMR of one of the local_iov
segments and the local Endpoint.

Privileges violation for local or remote
memory access. One of the LMRs used in
local_iov was either invalid or did not have
the local read privileges.

For best Send operation performance, the Consumer should align each buffer segment
of local_iov to the Optimal Buffer Alignment attribute of the Provider. For portable
applications, the Consumer should align each buffer segment of local_iov to the

DAT OPTIMAL ALIGNMENT.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions 217

dat_ep_query(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

dat_ep_query — provide parameters of the Endpoint

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN

dat_ep_ query (

IN DAT EP_ HANDLE ep_handle,

IN DAT_EP_PARAM MASK ep_param mask,

ouT DAT_EP_PARAM *ep_param

)
ep_handle Handle for an instance of the Endpoint.
ep_param_mask Mask for Endpoint parameters.
ep_param Pointer to a Consumer-allocated structure that the Provider fills

with Endpoint parameters.

The dat_ep query () function provides the Consumer parameters, including
attributes and status, of the Endpoint. Consumers pass in a pointer to
Consumer-allocated structures for Endpoint parameters that the Provider fills.

The ep_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for ep_param_mask requested parameters. The
Provider can return values for any other parameters.

Some of the parameters only have values for certain Endpoint states. Specifically, the
values for remote_ia_address and remote_port_qual are valid only for Endpoints in the
DAT EP STATE PASSIVE CONNECTION PENDING,

DAT EP STATE ACTIVE CONNECTION PENDING,

DAT EP STATE TENTATIVE CONNECTION PENDING,

DAT EP_STATE DISCONNECT_ PENDING, DAT EP STATE COMPLETION PENDING,
or DAT EP_STATE CONNECTED states. The values of local_port_qual is valid only for
Endpoints in the DAT EP STATE PASSIVE CONNECTION PENDING,

DAT EP STATE ACTIVE CONNECTION PENDING,

DAT EP STATE DISCONNECT PENDING,DAT EP STATE COMPLETION PENDING,
or DAT EP STATE CONNECTED states, and might be valid for

DAT EP_STATE UNCONNECTED, DAT EP_STATE RESERVED,

DAT EP STATE TENTATIVE CONNECTION PENDING,

DAT EP STATE PASSIVE CONNECTION PENDING, and

DAT EP STATE UNCONNECTED states.

DAT SUCCESS The operation was successful.
DAT_INVALID HANDLE The ep_handle parameter is invalid.

DAT INVALID_ PARAMETER The ep_param_mask parameter is invalid.

218 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

ATTRIBUTES

SEE ALSO

dat_ep_query(3DAT)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1, 1.2

MT-Level

Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions

219

dat_ep_recv_query(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ep_recv_query — provide Endpoint receive queue consumption on SRQ

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_ep recv_query (
IN DAT EP HANDLE ep_handle,
ouT DAT_COUNT *nbufs_allocated,
ouT DAT COUNT *bufs alloc_span
)
ep_handle Handle for an instance of the EP.
nbufs_allocated The number of buffers at the EP for which completions have not
yet been generated.
bufs_alloc_span The span of buffers that EP needs to complete arriving messages.

The dat _ep recv query () function provides to the Consumer a snapshot for Recv
buffers on EP. The values for nbufs_allocated and bufs_alloc_span are not defined when
DAT RETURN is not DAT_SUCCESS

The Provider might not support nbufs_allocated, bufs_alloc_span or both. Check the
Provider attribute for EP Recv info support. When the Provider does not support both
of these counts, the return value for the operation can be

DAT_ MODEL NOT SUPPORTED.

If nbufs_allocated is not NULL, the count pointed to by nbufs_allocated will return a
snapshot count of the number of buffers allocated to ep_handle but not yet completed.

Once a buffer has been allocated to an EP, it will be completed to the EP recv_evd if the
EVD has not overflowed. When an EP does not use SRQ, a buffer is allocated as soon
as it is posted to the EP. For EP that uses SRQ, a buffer is allocated to the EP when EP
removes it from SRQ.

If bufs_alloc_span is not NULL, then the count to which bufs_alloc_span pointed will
return the span of buffers allocated to the ep_handle. The span is the number of
additional successful Recv completions that EP can generate if all the messages it is
currently receiving will complete successfully.

If a message sequence number is assigned to all received messages, the buffer span is
the difference between the latest message sequence number of an allocated buffer
minus the latest message sequence number for which completion has been generated.
This sequence number only counts Send messages of remote Endpoint of the
connection.

The Message Sequence Number (MSN) represents the order that Send messages were
submitted by the remote Consumer. The ordering of sends is intrinsic to the definition
of a reliable service. Therefore every send message does have a MSN whether or not
the native transport has a field with that name.

220 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

RETURN VALUES

USAGE

dat_ep_recv_query(3DAT)

For both nbufs_allocated and bufs_alloc_span, the Provider can return the reserved value
DAT VALUE UNKNOWN if it cannot obtain the requested count at a reasonable cost.

DAT SUCCESS The operation was successful.
DAT INVALID PARAMETER Invalid parameter.
DAT INVALID HANDLE The DAT handle ep_handle is invalid.

DAT MODEL_NOT_SUPPORTEDThe requested Model was not supported by the
Provider.

If the Provider cannot support the query for nbufs_allocated or bufs_alloc_span, the
value returned for that attribute must be DAT VALUE UNKNOWN.

An implementation that processes incoming packets out of order and allocates from
SRQs on an arrival basis can have gaps in the MSNs associated with buffers allocated
to an Endpoint.

For example, suppose Endpoint X has received buffer fragments for MSNs 19, 22, and
23. With arrival ordering, the EP would have allocated three buffers from the SRQ for
messages 19, 22, and 23. The number allocated would be 3, but the span would be 5.
The difference of two represents the buffers that will have to be allocated for messages
20 and 21. They have not yet been allocated, but messages 22 and 23 will not be
delivered until after messages 20 and 21 have not only had their buffers allocated but
have also completed.

An implementation can choose to allocate 20 and 21 as soon as any higher buffer is
allocated. This makes sense if you presume that this is a valid connection, because
obviously 20 and 21 are in flight. However, it creates a greater vulnerability to Denial
Of Service attacks. There are also other implementation tradeoffs, so the Consumer
should accept that different RNICs for iWARP will employ different strategies on
when to perform these allocations.

Each implementation will have some method of tracking the receive buffers already
associated with an EP and knowing which buffer matches which incoming message,
though those methods might vary. In particular, there are valid implementations such
as linked lists, where a count of the outstanding buffers is not instantly available. Such
implementations would have to scan the allocated list to determine both the number
of buffers and their span. If such a scan is necessary, it is important that it be only a
single scan. The set of buffers that was counted must be the same set of buffers for
which the span is reported.

The implementation should not scan twice, once to count the buffers and then again to
determine their span. Not only is it inefficient, but it might produce inconsistent
results if buffers were completed or arrived between the two scans.

Other implementations can simply maintain counts of these values to easily filter
invalid packets. If so, these status counters should be updated and referenced
atomically.

Extended Library Functions 221

dat_ep_recv_query(3DAT)

The implementation must never report n buffers in a span that is less than n.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

SEE ALSO | dat_ep create(3DAT), dat srqg create(3DAT), dat srg free(3DAT),
dat_srqg_query(3DAT), dat _ep set watermark(3DAT), 1ibdat(3LIB),
attributes(b)

222 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

dat_ep_reset(3DAT)

dat_ep_reset — transition the local Endpoint from a Disconnected to an Unconnected

state

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_ep reset (
IN DAT EP_HANDLE ep_handle
)
ep_handle Handle for an instance of Endpoint.

The dat_ep_reset () function transitions the local Endpoint from a Disconnected to

an Unconnected state.

The operation might cause the loss of any completions of previously posted DTOs and

RMRs that were not dequeued yet.

The dat_ep_ reset () function is valid for both Disconnected and Unconnected

states. For Unconnected state, the operation is no-op because the Endpoint is already
in an Unconnected state. For an Unconnected state, the preposted Recvs are not

affected by the call.

DAT_SUCCESS The operation was successful.

DAT INVALID HANDLE ep_handle is invalid.

DAT INVALID STATE Parameter in an invalid state. Endpoint is not in the

valid state for reset.

If the Consumer wants to ensure that all Completions are dequeued, the Consumer

can post DTO or RMR operations as a "marker” that are flushed to recv_evd_handle or
request_evd_handle. Now, when the Consumer dequeues the completion of the

"marker” from the EVD, it is guaranteed that all previously posted DTO and RMR

completions for the Endpoint were dequeued for that EVD. Now, it is safe to reset the

Endpoint without losing any completions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions

223

dat_ep_set_watermark(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

dat_ep_set_watermark — set high watermark on Endpoint

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN

dat_ep_ set_watermark (

IN DAT EP_ HANDLE ep_handle,

IN DAT_ COUNT soft_high watermark,

IN DAT COUNT hard high watermark

)
ep_handle The handle for an instance of an Endpoint.
soft_high_watermark The soft high watermark for the number of Recv

buffers consumed by the Endpoint.

hard_high_watermark The hard high watermark for the number of Recv

buffers consumed by the Endpoint.

The dat_ep set watermark () function sets the soft and hard high watermark
values for EP and arms EP for generating asynchronous events for high watermarks.
An asynchronous event will be generated for 1A async_evd when the number of Recv
buffers at EP exceeds the soft high watermark for the first time. A connection broken
event will be generated for EP connect_evd when the number of Recv buffers at EP
exceeds the hard high watermark. These can occur during this call or when EP takes a
buffer from the SRQ or EP RQ. The soft and hard high watermark asynchronous event
generation and setting are independent of each other.

The asynchronous event for a soft high watermark is generated only once per setting.
Once an event is generated, no new asynchronous events for the soft high watermark
is generated until the EP is again set for the soft high watermark. If the Consumer is
once again interested in the event, the Consumer should again set the soft high
watermark.

If the Consumer is not interested in a soft or hard high watermark, the value of

DAT WATERMARK INFINITE can be specified for the case that is the default value.
This value specifies that a non-asynchronous event will be generated for a high
watermark EP attribute for which this value is set. It does not prevent generation of a
connection broken event for EP when no Recv bulffer is available for a message arrived
on the EP connection.

The operation is supported for all states of Endpoint.

DAT_ SUCCESS
The operation was successful.

DAT INVALID HANDLE
The ep_handle argument is an invalid DAT handle.

DAT INVALID PARAMETER
One of the parameters is invalid.

224 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

dat_ep_set_watermark(3DAT)

DAT MODEL NOT SUPPORTED
The requested Model was not supported by the Provider. The Provider does not
support EP Soft or Hard High Watermarks.

USAGE | For a hard high watermark, the Provider is ready to generate a connection broken
event as soon as the connection is established.

If the asynchronous event for a soft or hard high watermark has not yet been
generated, this call simply modifies the values for these attributes. The Provider
remains armed for generation of these asynchronous events.

Regardless of whether an asynchronous event for the soft and hard high watermark
has been generated, this operation will set the generation of an asynchronous event
with the Consumer-provided high watermark values. If the new high watermark
values are below the current number of Receive DTOs at EP, an asynchronous event
will be generated immediately. Otherwise the old soft or hard (or both) high
watermark values are simply replaced with the new ones.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

SEE ALSO | dat_ep create(3DAT), dat_ep recv _query(3DAT), dat _srqg create(3DAT),
dat_srqg_free(3DAT), dat_srg post recv(3DAT), dat_srg query(3DAT),
dat_srqg_resize(3DAT), dat srg set 1w(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions 225

dat_evd_clear_unwaitable(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_evd_clear_unwaitable — transition the Event Dispatcher into a waitable state

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_clear unwaitable(
IN DAT EVD HANDLE evd_handle

)

evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_clear_ unwaitable () transitions the Event Dispatcher into a
waitable state. In this state, calls to dat_evd_wait(3DAT) are permitted on the EVD.
The actual state of the Event Dispatcher is accessible through dat_evd_query(3DAT)
and is DAT EVD WAITABLE after the return of this operation.

This call does not affect a CNO associated with this EVD at all. Events arriving on the
EVD after it is set waitable still trigger the CNO (if appropriate), and can be retrieved
with dat_evd_ dequeue(3DAT).

DAT_SUCCESS The operation was successful.

DAT INVALID HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Safe

dat_evd dequeue(3DAT), dat _evd query(3DAT),
dat_evd set unwaitable(3DAT), dat evd wait(3DAT), 1ibdat(3LIB),
attributes(b)

226 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_evd_dequeue(3DAT)
dat_evd_dequeue — remove the first event from the Event Dispatcher event queue

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_evd_dequeue (
IN DAT EVD HANDLE evd_handle,
OUT DAT EVENT *event
)
evd_handle Handle for an instance of the Event Dispatcher.
event Pointer to the Consumer-allocated structure that Provider fills with

the event data.

The dat_evd_dequeue () function removes the first event from the Event Dispatcher
event queue and fills the Consumer allocated event structure with event data. The first
element in this structure provides the type of the event; the rest provides the
event-type-specific parameters. The Consumer should allocate an event structure big
enough to hold any event that the Event Dispatcher can deliver.

For all events the Provider fills the dat _event that the Consumer allocates. So for all
events, all fields of dat event are OUT from the Consumer point of view. For

DAT CONNECTION REQUEST EVENT, the Provider creates a Connection Request
whose cr_handle is returned to the Consumer in DAT CR_ARRIVAL EVENT DATA.
That object is destroyed by the Provider as part of dat_cr accept(3DAT),

dat_cr reject(3DAT), or dat_cr handoff(3DAT). The Consumer should not use
cr_handle or any of its parameters, including private_data, after one of these operations
destroys the Connection Request.

For DAT CONNECTION EVENT ESTABLISHED for the Active side of connection
establishment, the Provider returns the pointer for private_data and the
private_data_size. For the Passive side, DAT CONNECTION EVENT ESTABLISHED
event private_data is not defined and private_data_size returns zero. The Provider is
responsible for the memory allocation and deallocation for private_data. The
private_data is valid until the Active side Consumer destroys the connected Endpoint
(dat_ep free(3DAT)), or transitions the Endpoint into Unconnected state so it is
ready for the next connection. So while the Endpoint is in Connected, Disconnect
Pending, or Disconnected state, the private_data of

DAT CONNECTION REQUEST EVENT is still valid for Active side Consumers.

Provider must pass to the Consumer the entire Private Data that the remote Consumer
provided for dat_ep connect(3DAT), dat_ep dup connect(3DAT), and

dat_cr_ accept (). If the Consumer provides more data than the Provider and
Transport can support (larger than IA Attribute of max_private_data_size),

DAT INVALID PARAMETER is returned for that operation.

Extended Library Functions 227

dat_evd_dequeue(3DAT)

RETURN VALUES

228

USAGE

ATTRIBUTES

SEE ALSO

The returned event that was posted from an Event Stream guarantees Consumers that
all events that were posted from the same Event Stream prior to the returned event
were already returned to a Consumer directly through a dat _evd dequeue () or
dat_evd wait(3DAT) operation.

The ordering of events dequeued by overlapping calls to dat _evd wait () or
dat_evd_dequeue () is not specified.

DAT_SUCCESS The operation was successful. An event was returned
to a Consumer.

DAT INVALID HANDLE Invalid DAT handle; evd_handle is invalid.

DAT QUEUE EMPTY There are no entries on the Event Dispatcher queue.

DAT INVALID STATE One of the parameters was invalid for this operation.

There is already a waiter on the EVD.

No matter how many contexts attempt to dequeue from an Event Dispatcher, each
event is delivered exactly once. However, which Consumer receives which event is not
defined. The Provider is not obligated to provide the first caller the first event unless it
is the only caller. The Provider is not obligated to ensure that the caller receiving the
first event executes earlier than contexts receiving later events.

Preservation of event ordering within an Event Stream is an important feature of the
DAT Event Model. Consumers are cautioned that overlapping or concurrent calls to
dat_evd_dequeue () from multiple contexts can undermine this ordering
information. After multiple contexts are involved, the Provider can only guarantee the
order that it delivers events into the EVD. The Provider cannot guarantee that they are
processed in the correct order.

Although calling dat_evd_dequeue () does not cause a context switch, the Provider
is under no obligation to prevent one. A context could successfully complete a
dequeue, and then reach the end of its timeslice, before returning control to the
Consumer code. Meanwhile, a context receiving a later event could be executing.

The Event ordering is preserved when dequeueing is serialized. Potential Consumer
serialization methods include, but are not limited to, performing all dequeueing from
a single context or protecting dequeueing by way of lock or semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Safe

dat_cr accept(3DAT), dat cr handoff(3DAT), dat cr reject(3DAT),
dat_ep connect(3DAT), dat _ep dup_ connect(3DAT), dat_ep free(3DAT),
dat evd wait(3DAT)libdat(3LIB), attributes(5)

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

dat_evd_disable(3DAT)
NAME | dat_evd_disable — disable the Event Dispatcher

SYNOPSIS | cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_disable(
IN DAT EVD HANDLE evd_handle
)

PARAMETERS | evd_handle Handle for an instance of Event Dispatcher.

DESCRIPTION | The dat_evd_disable () function disables the Event Dispatcher so that the arrival
of an event does not affect the associated CNO.

If the Event Dispatcher is already disabled, this operation is no-op.

Events arriving on this EVD might cause waiters on the associated CNO to be
awakened after the return of this routine because an unblocking a CNO waiter is
already "in progress" at the time this routine is called or returned.

RETURN VALUES | DAT SUCCESS The operation was successful.

DAT INVALID HANDLE The evd_handle parameter is invalid.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

SEE ALSO | dat_evd enable(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions 229

dat_evd_enable(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_evd_enable — enable the Event Dispatcher

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_evd_enable (
IN DAT EVD HANDLE evd_handle
)
evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_enable () function enables the Event Dispatcher so that the arrival of
an event can trigger the associated CNO. The enabling and disabling EVD has no
effect on direct waiters on the EVD. However, direct waiters effectively take ownership
of the EVD, so that the specified CNO is not triggered even if is enabled.

If the Event Dispatcher is already enabled, this operation is no-op.
DAT SUCCESS The operation was successful.

DAT INVALID HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Safe

dat_evd disable(3DAT), 1ibdat(3LIB), attributes(5)

230 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

dat_evd_free(3DAT)

dat_evd_free — destroy an instance of the Event Dispatcher

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_evd_free (
IN DAT EVD HANDLE evd_handle
)
evd_handle Handle for an instance of the Event Dispatcher.

The dat_evd_free () function destroys a specified instance of the Event Dispatcher.

All events on the queue of the specified Event Dispatcher are lost. The destruction of
the Event Dispatcher instance does not have any effect on any DAT Objects that
originated an Event Stream that had fed events to the Event Dispatcher instance. There
should be no event streams feeding the Event Dispatcher and no threads blocked on
the Event Dispatcher when the EVD is being closed as at the time when it was created.

Use of the handle of the destroyed Event Dispatcher in any consequent operation fails.

DAT SUCCESS The operation was successful.
DAT_INVALID HANDLE The evd_handle parameter is invalid
DAT INVALID STATE Invalid parameter. There are Event Streams associated

with the Event Dispatcher feeding it.

Consumers are advised to destroy all Objects that originate Event Streams that feed an
instance of the Event Dispatcher before destroying it. An exception to this rule is Event
Dispatchers of an IA.

Freeing an IA automatically destroys all Objects associated with it directly and
indirectly, including Event Dispatchers.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions 231

dat_evd_modify_cno(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

dat_evd_modify_cno — change the associated CNO for the Event Dispatcher

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_evd modify cno (
IN DAT EVD HANDLE evd_handle,
IN DAT CNO_HANDLE cno_handle
)
evd_handle Handle for an instance of the Event Dispatcher.
cno_handle Handle for a CNO. The value of DAT NULL_HANDLE specifies no

CNO.

The dat_evd modify cno () function changes the associated CNO for the Event
Dispatcher.

A Consumer can specify the value of DAT HANDLE NULL for cno_handle to associate
not CNO with the Event Dispatcher instance.

Upon completion of the dat_evd modify cno () operation, the passed IN new
CNO is used for notification. During the operation, an event arrival can be delivered
to the old or new CNO. If Notification is generated by EVD, it is delivered to the new
or old CNO.

If the EVD is enabled at the time dat_evd modify cno () is called, the Consumer
must be prepared to collect a notification event on the EVD’s old CNO as well as the
new one. Checking immediately prior to calling dat_evd_modify_ cno () isnot
adequate. A notification could have been generated after the prior check and before
the completion of the change.

The Consumer can avoid the risk of missed notifications either by temporarily
disabling the EVD, or by checking the prior CNO after invoking this operation. The
Consumer can disable EVD before a dat_evd _modify cno () call and enable it
afterwards. This ensures that any notifications from the EVD are delivered to the new
CNO only.

If this function is used to disassociate a CNO from the EVD, events arriving on this
EVD might cause waiters on that CNO to awaken after returning from this routine
because of unblocking a CNO waiter already "in progress" at the time this routine is
called. If this is the case, the events causing that unblocking are present on the EVD
upon return from the dat_evd modify cno () call and can be dequeued at that
time

DAT SUCCESS The operation was successful.

DAT INVALID HANDLE Invalid DAT handle.

232 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

ATTRIBUTES

SEE ALSO

dat_evd_modify_cno(3DAT)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1, 1.2

MT-Level

Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions

233

dat_evd_post_se(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_evd_post_se — post Software event to the Event Dispatcher event queue

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_evd_post_se(
IN DAT EVD HANDLE evd_handle,
IN const DAT EVENT *event
)
evd_handle Handle for an instance of the Event Dispatcher
event A pointer to a Consumer created Software Event.

The dat _evd post_se () function posts Software events to the Event Dispatcher
event queue. This is analogous to event arrival on the Event Dispatcher software
Event Stream. The event that the Consumer provides adheres to the event format as
defined in <dat .h>. The first element in the event provides the type of the event
(DAT_EVENT_TYPE_SOFTWARE); the rest provide the event-type-specific parameters.
These parameters are opaque to a Provider. Allocation and release of the memory
referenced by the event pointer in a software event are the Consumer’s responsibility.

There is no ordering between events from different Event Streams. All the
synchronization issues between multiple Consumer contexts trying to post events to
an Event Dispatcher instance simultaneously are left to a Consumer.

If the event queue is full, the operation is completed unsuccessfully and returns
DAT_QUEUE_FULL. The event is not queued. The queue overflow condition does takes
place and, therefore, the asynchronous Event Dispatcher is not effected.

DAT SUCCESS The operation was successful.
DAT INVALID HANDLE The evd_handle parameter is invalid.
DAT INVALID PARAMETER The event parameter is invalid.

DAT QUEUE_FULL The Event Dispatcher queue is full.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

234 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_evd_query(3DAT)

dat_evd_query — provide parameters of the Event Dispatcher,

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN

dat_evd_query (

IN DAT EVD HANDLE

IN DAT EVD PARAM MASK

ouT DAT EVD_ PARAM
)

evd_handle
evd_param_mask

evd_param

evd_handle,
evd_param_mask,
*evd_param

Handle for an instance of Event Dispatcher.
Mask for EVD parameters

Pointer to a Consumer-allocated structure that the Provider fills for

Consumer-requested parameters.

The dat _evd query () function provides to the Consumer parameters of the Event
Dispatcher, including the state of the EVD (enabled /disabled). The Consumer passes
in a pointer to the Consumer-allocated structures for EVD parameters that the

Provider fills.

The evd_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for evd_param_mask requested parameters. The
Provider can return values for any of the other parameters.

DAT SUCCESS

DAT INVALID HANDLE

The operation was successful.

The evd_handle parameter is invalid.

DAT INVALID_ PARAMETER The evd_param_mask parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions 235

dat_evd_resize(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

dat_evd_resize — modify the size of the event queue of Event Dispatcher

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_evd_resize(
IN DAT EVD HANDLE evd_handle,
IN DAT COUNT evd_min_glen
)
evd_handle Handle for an instance of Event Dispatcher.
evd_min_glen New number of events the Event Dispatcher event queue must

hold.

The dat_evd_resize () function modifies the size of the event queue of Event
Dispatcher.

Resizing of Event Dispatcher event queue should not cause any incoming or current
events on the event queue to be lost. If the number of entries on the event queue is
larger then the requested evd_min_glen, the operation can return
DAT_INVALID_STATE and not change an instance of Event Dispatcher

DAT SUCCESS The operation was successful.

DAT INVALID HANDLE The evd_handle parameter is invalid.

DAT INVALID PARAMETER The evd_min_glen parameter is invalid

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations

DAT INVALID STATE Invalid parameter. The number of entries on

the event queue of the Event Dispatcher
exceeds the requested event queue length.

This operation is useful when the potential number of events that could be placed on
the event queue changes dynamically.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

236 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_evd_set_unwaitable(3DAT)

dat_evd_set_unwaitable — transition the Event Dispatcher into an unwaitable state

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_evd_set_unwaitable(
IN DAT EVD HANDLE evd_handle
)
evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_set_unwaitable () transitions the Event Dispatcher into an
unwaitable state. In this state, calls to dat_evd wait(3DAT) return synchronously
with a DAT_INVALID_ STATE error, and threads already blocked in

dat_evd wait () are awakened and return with a DAT INVALID STATE error
without any further action by the Consumer. The actual state of the Event Dispatcher
is accessible through dat _evd query(3DAT) and is DAT EVD_UNWAITABLE after the
return of this operation.

This call does not affect a CNO associated with this EVD at all. Events arriving on the
EVD after it is set unwaitable still trigger the CNO (if appropriate), and can be
retrieved with dat_evd_dequeue(3DAT). Because events can arrive normally on the
EVD, the EVD might overflow; the Consumer is expected to protect against this
possibility.

DAT_SUCCESS The operation was successful.

DAT INVALID HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Safe

dat_evd clear unwaitable(3DAT), dat evd dequeue(3DAT),
dat_evd query(3DAT), dat _evd wait(3DAT), 1ibdat(3LIB), attributes(b)

Extended Library Functions 237

dat_evd_wait(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_evd_wait — remove first event from the Event Dispatcher event queue

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_evd wait (
IN DAT EVD HANDLE evd_handle,
IN DAT TIMEOUT timeout,
IN DAT COUNT threshold ,
OUT DAT EVENT *event
OUT DAT_ COUNT *nmore
)
evd_handle Handle for an instance of the Event Dispatcher.
timeout The duration of time, in microseconds, that the Consumer is
willing to wait for the event.
threshold The number of events that should be on the EVD queue before the
operation should return with DAT _SUCCESS. The threshold must
be at least 1.
event Pointer to the Consumer-allocated structure that the Provider fills
with the event data.
nmore The snapshot of the queue size at the time of the operation return.

The dat _evd wait () function removes the first event from the Event Dispatcher
event queue and fills the Consumer-allocated event structure with event data. The first
element in this structure provides the type of the event; the rest provides the event
type-specific parameters. The Consumer should allocate an event structure big enough
to hold any event that the Event Dispatcher can deliver.

For all events, the Provider fills the dat_event that the Consumer allocates. Therefore,
for all events, all fields of dat_event are OUT from the Consumer point of view. For
DAT_ CONNECTION_REQUEST_EVENT, the Provider creates a Connection Request
whose cr_handle is returned to the Consumer in DAT CR ARRIVAL EVENT DATA.
That object is destroyed by the Provider as part of dat _cr accept(3DAT),

dat_cr reject(3DAT), or dat_cr handoff(3DAT). The Consumer should not use
cr_handle or any of its parameters, including private_data, after one of these operations
destroys the Connection Request.

For DAT CONNECTION EVENT ESTABLISHED for the Active side of connection
establishment, the Provider returns the pointer for private_data and the
private_data_size. For the Passive side, DAT CONNECTION EVENT ESTABLISHED
event private_data is not defined and private_data_size returns zero. The Provider is
responsible for the memory allocation and deallocation for private_data. The
private_data is valid until the Active side Consumer destroys the connected Endpoint

238 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

dat_evd_wait(3DAT)

(dat_ep_free(3DAT)), or transitions the Endpoint into Unconnected state so it is
ready for the next connection. So, while the Endpoint is in Connected, Disconnect
Pending, or Disconnected state, the private_data of

DAT CONNECTION REQUEST EVENT is still valid for Active side Consumers.

Provider must pass to the Consumer the entire Private Data that the remote Consumer
provided for dat_ep connect(3DAT), dat_ep dup connect(3DAT), and
dat_cr_accept (). If the Consumer provides more data than the Provider and
Transport can support (larger than IA Attribute of max_private_data_size),

DAT INVALID_PARAMETER is returned for that operation.

A Consumer that blocks performing a dat_evd_wait () on an Event Dispatcher
effectively takes exclusive ownership of that Event Dispatcher. Any other dequeue
operation (dat _evd wait () ordat evd dequeue(3DAT)) on the Event Dispatcher
is rejected with a DAT INVALID STATE error code.

The CNO associated with the evd_handle () is not triggered upon event arrival if
there is a Consumer blocked on dat evd wait () on this Event Dispatcher.

The timeout allows the Consumer to restrict the amount of time it is blocked waiting
for the event arrival. The value of DAT TIMEOUT INFINITE indicates that the
Consumer waits indefinitely for an event arrival. Consumers should use extreme
caution in using this value.

When timeout value is reached and the number of events on the EVD queue is below
the threshold value, the operation fails and returns DAT TIMEOUT EXPIRED. In this
case, no event is dequeued from the EVD and the return value for the event argument
is undefined. However, an nmore value is returned that specifies the snapshot of the
number of the events on the EVD queue that is returned.

The threshold allows the Consumer to wait for a requested number of event arrivals
prior to waking the Consumer. If the value of the threshold is larger than the Event
Dispatcher queue length, the operation fails with the return

DAT INVALID PARAMETER. If a non-positive value is specified for threshold, the
operation fails and returns DAT INVALID PARAMETER.

If EVD is used by an Endpoint for a DTO completion stream that is configured for a
Consumer-controlled event Notification (DAT COMPLETION UNSIGNALLED FLAG or
DAT COMPLETION_SOLICITED_WAIT FLAG for Receive Completion Type for
Receives; DAT COMPLETION_UNSIGNALLED_FLAG for Request Completion Type for
Send, RDMA Read, RDMA Write and RMR Bind), the threshold value must be 1. An
attempt to specify some other value for threshold for this case results in

DAT INVALID STATE.

Extended Library Functions 239

dat_evd_wait(3DAT)

The returned value of nmore indicates the number of events left on the Event
Dispatcher queue after the dat_evd_wait () returns. If the operation return value is
DAT SUCCESS, the nmore value is at least the value of (threshold -1). Notice that nmore
is only a snapshot and the number of events can be changed by the time the
Consumer tries to dequeue events with dat_evd wait () with timeout of zero or
with dat_evd_dequeue ().

For returns other than DAT SUCCESS, DAT TIMEOUT EXPIRED, and
DAT INTERRUPTED CALL, the returned value of nmore is undefined.

The returned event that was posted from an Event Stream guarantees Consumers that
all events that were posted from the same Event Stream prior to the returned event
were already returned to a Consumer directly through a dat_evd_dequeue () or
dat_evd wait () operation.

If the return value is neither DAT SUCCESS nor DAT TIMEOUT EXPIRED, then
returned values of nmore and event are undefined. If the return value is

DAT TIMEOUT EXPIRED, then the return value of event is undefined, but the return
value of nmore is defined. If the return value is DAT SUCCESS, then the return values
of nmore and event are defined.

If this function is called on an EVD in an unwaitable state, or if
dat_evd_set unwaitable(3DAT) is called on an EVD on which a thread is blocked
in this function, the function returns with DAT INVALID STATE.

The ordering of events dequeued by overlapping calls to dat_evd_wait () or
dat_evd_dequeue () is not specified.

RETURN VALUES | DAT_SUCCESS The operation was successful. An event was returned
to a Consumer.

DAT INVALID HANDLE The evd_handle parameter is invalid.

DAT INVALID PARAMETER The timeout or threshold parameter is invalid. For
example, threshold is larger than the EVD’s
evd_min_glen.

DAT ABORT The operation was aborted because IA was closed or
EVD was destroyed
DAT INVALID STATE One of the parameters was invalid for this operation.

There is already a waiter on the EVD, or the EVD is in
an unwaitable state.

DAT TIMEOUT EXPIRED The operation timed out.

DAT_INTERRUPTED_ CALL The operation was interrupted by a signal.

USAGE | Consumers should be cautioned against using threshold combined with infinite
timeout.

240 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

ATTRIBUTES

SEE ALSO

dat_evd_wait(3DAT)

Consumers should not mix different models for control of unblocking a waiter. If the
Consumer uses Notification Suppression or Solicited Wait to control the Notification
events for unblocking a waiter, the threshold must be set to 1. If the Consumer uses
threshold to control when a waiter is unblocked,

DAT COMPLETION UNSIGNALLED FLAG locally and

DAT COMPLETION_SOLICITED_WAIT remotely shall not be used. By default, all
completions are Notification events.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Safe

dat_cr accept(3DAT), dat cr handoff(3DAT), dat_cr reject(3DAT),
dat_ep connect(3DAT), dat _ep dup connect(3DAT),dat_ep free(3DAT),
dat_evd_dequeue(3DAT), dat _evd set unwaitable(3DAT), 1ibdat(3LIB),
attributes(b)

Extended Library Functions 241

dat_get_consumer_context(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_get_consumer_context —get Consumer context

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_get_consumer context (
IN DAT_ HANDLE dat_handle,
ouT DAT_CONTEXT *context

)
dat_handle Handle for a DAT Object associated with context.

context Pointer to Consumer-allocated storage where the current value of
the dat_handle context will be stored.

The dat_get consumer context () function gets the Consumer context from the
specified dat_handle. The dat_handle can be one of the following handle types:

DAT IA HANDLE, DAT EP_HANDLE, DAT EVD HANDLE, DAT CR_HANDLE,

DAT RSP HANDLE, DAT PSP HANDLE, DAT PZ HANDLE, DAT LMR_HANDLE,

DAT RMR HANDLE, or DAT CNO HANDLE.

DAT_SUCCESS The operation was successful. The Consumer context
was successfully retrieved from the specified handle.

DAT INVALID HANDLE The dat_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

dat set consumer context(3DAT), 1ibdat(3LIB), attributes(b)

242 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

dat_get_handle_type(3DAT)
dat_get_handle_type — get handle type

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN

dat_get_handle_typet (

IN DAT HANDLE dat_handle,

OUT DAT HANDLE_TYPE *handle_type
)

dat_handle Handle for a DAT Object.
handle_type Type of the handle of dat_handle.

The dat get handle type () function allows the Consumer to discover the type of
a DAT Object using its handle.

The dat_handle can be one of the following handle types: DAT IA HANDLE,
DAT EP_HANDLE, DAT EVD HANDLE, DAT CR_HANDLE, DAT RSP HANDLE,
DAT PSP _HANDLE, DAT PZ HANDLE, DAT LMR HANDLE, or DAT RMR HANDLE.

The handle_type is one of the following handle types: DAT HANDLE_TYPE_IA,

DAT HANDLE TYPE_EP, DAT HANDLE TYPE_ EVD, DAT HANDLE TYPE_ CR,

DAT HANDLE TYPE PSP, DAT HANDLE TYPE RSP, DAT HANDLE TYPE PZ,
DAT HANDLE TYPE LMR, DAT HANDLE TYPE RMR, or DAT HANDLE TYPE CNO.

DAT SUCCESS The operation was successful.

DAT INVALID HANDLE The dat_handle parameter is invalid.

Consumers can use this operation to determine the type of Object being returned. This
is needed for calling an appropriate query or any other operation on the Object
handle.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions 243

dat_ia_close(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

dat_ia_close — close an IA

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_ia close (
IN DAT IA HANDLE ia_handle,
IN DAT_CLOSE_FLAGS ia_flags
)
ia_handle Handle for an instance of a DAT IA.
ia_flags Flags for IA closure. Flag definitions are:

DAT CLOSE ABRUPT FLAG
Abrupt close. Abrupt cascading close of IA including all
Consumer created DAT objects.

DAT CLOSE GRACEFUL FLAG
Graceful close. Closure is successful only if all DAT objects
created by the Consumer have been freed before the graceful
closure call.

Default value of DAT CLOSE_DEFAULT =
DAT CLOSE_ABRUPT_ FLAG represents abrupt closure of IA.

The dat _ia close () function closes an IA (destroys an instance of the Interface
Adapter).

The ia_flags specify whether the Consumer wants abrupt or graceful close.

The abrupt close does a phased, cascading destroy. All DAT Objects associated with an
IA instance are destroyed. These include all the connection oriented Objects: public
and reserved Service Points; Endpoints, Connection Requests, LMRs (including
Imr_contexts), RMRs (including rmr_contexts), Event Dispatchers, CNOs, and
Protection Zones. All the waiters on all CNOs, including the OS Wait Proxy Agents,
are unblocked with the DAT_HANDLE_NULL handle returns for an unblocking EVD.
All direct waiters on all EVDs are also unblocked and return with DAT_ABORT.

The graceful close does a destroy only if the Consumer has done a cleanup of all DAT
objects created by the Consumer with the exception of the asynchronous EVD.
Otherwise, the operation does not destroy the IA instance and returns the

DAT INVALID STATE.

If async EVD was created as part of the of dat _ia open(3DAT), dat_ia close()
must destroy it. If async_evd_handle was passed in by the Consumer at
dat_ia_open (), this handle is not destroyed. This is applicable to both abrupt and
graceful ia_flags values.

Because the Consumer did not create async EVD explicitly, the Consumer does not
need to destroy it for graceful close to succeed.

DAT_SUCCESS The operation was successful.

244 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

USAGE

ATTRIBUTES

dat_ia_close(3DAT)

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations. This is a catastrophic error.

DAT INVALID HANDLE Invalid DAT handle; ia_handle is invalid.

DAT INVALID_PARAMETER Invalid parameter; ia_flags is invalid.

DAT INVALID STATE Parameter in an invalid state. IA instance
has Consumer-created objects associated
with it.

The dat_ia_close () function is the root cleanup method for the Provider, and,
thus, all Objects.

Consumers are advised to explicitly destroy all Objects they created prior to closing
the IA instance, but can use this function to clean up everything associated with an
open instance of IA. This allows the Consumer to clean up in case of errors.

Note that an abrupt close implies destruction of EVDs and CNOs. Just as with explicit
destruction of an EVD or CNO, the Consumer should take care to avoid a race
condition where a Consumer ends up attempting to wait on an EVD or CNO that has
just been deleted.

The techniques described in dat cno free(3DAT) and dat evd free (3DAT) can
be used for these purposes.

If the Consumer desires to shut down the IA as quickly as possible, the Consumer can
call dat_ia_close(abrupt) without unblocking CNO and EVD waiters in an orderly
fashion. There is a slight chance that an invalidated DAT handle will cause a memory
fault for a waiter. But this might be an acceptable behavior, especially if the Consumer
is shutting down the process.

No provision is made for blocking on event completion or pulling events from queues.

This is the general cleanup and last resort method for Consumer recovery. An
implementation must provide for successful completion under all conditions, avoiding
hidden resource leakage (dangling memory, zombie processes, and so on) eventually
leading to a reboot of the operating system.

The dat_ia_close () function deletes all Objects that were created using the IA
handle.

The dat_ia close () function can decrement a reference count for the Provider
Library that is incremented by dat _ia open() to ensure that the Provider Library
cannot be removed when it is in use by a DAT Consumer.

See attributes(5) for descriptions of the following attributes:

Extended Library Functions 245

dat_ia_close(3DAT)

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

SEE ALSO | dat_cno_free(3DAT), dat_evd free (3DAT), dat_ia open(3DAT),
libdat(3LIB), attributes(b)

246 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_ia_open(3DAT)
dat_ia_open — open an Interface Adapter (IA)

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT_RETURN
_dat_ia_open (
IN const DAT_NAME_PTR in_name_ptr,
IN DAT COUNT async_evd_min_glen,
INOUT DAT EVD HANDLE *async_evd_handle,
ouT DAT IA HANDLE *ia_handle
)
ia_name_ptr Symbolic name for the IA to be opened. The name
should be defined by the Provider registration.
async_evd_min_qlen Minimum length of the Asynchronous Event
Dispatcher queue.
async_evd_handle Pointer to a handle for an Event Dispatcher for
asynchronous events generated by the IA. This
parameter can be DAT EVD ASYNC EXISTS to
indicate that there is already EVD for asynchronous
events for this Interface Adapter or
DAT_ HANDLE_NULL for a Provider to generate EVD for
it.
ia_handle Handle for an open instance of a DAT IA. This handle

is used with other functions to specify a particular
instance of the IA.

The dat_ia_open () function opens an IA by creating an IA instance. Multiple
instances (opens) of an IA can exist.

The value of DAT HANDLE_NULL for async_evd_handle (*async_evd_handle ==

DAT HANDLE_NULL) indicates that the default Event Dispatcher is created with the
requested async_evd_min_qglen. The async_evd_handle returns the handle of the created
Asynchronous Event Dispatcher. The first Consumer that opens an IA must use

DAT HANDLE NULL because no EVD can yet exist for the requested ia_name_ptr.

The Asynchronous Event Dispatcher (async_evd_handle) is created with no CNO
(DAT HANDLE NULL). Consumers can change these values using

dat_evd modify cno(3DAT). The Consumer can modify parameters of the Event
Dispatcher using dat_evd resize(3DAT) and dat_evd modify cno().

The Provider is required to provide a queue size at least equal to async_evd_min_glen,
but is free to provide a larger queue size or dynamically enlarge the queue when
needed. The Consumer can determine the actual queue size by querying the created
Event Dispatcher instance.

Extended Library Functions 247

dat_ia_open(3DAT)

If async_evd_handle is not DAT HANDLE NULL, the Provider does not create an Event
Dispatcher for an asynchronous event and the Provider ignores the async_evd_min_glen
value. The async_evd_handle value passed in by the Consumer must be an
asynchronous Event Dispatcher created for the same Provider (ia_name_ptr). The
Provider does not have to check for the validity of the Consumer passed in
async_evd_handle. It is the Consumer responsibility to guarantee that async_evd_handle
is valid and for this Provider. How the async_evd_handle is passed between DAT
Consumers is out of scope of the DAT specification. If the Provider determines that the
Consumer-provided async_evd_handle is invalid, the operation fails and returns

DAT INVALID HANDLE. The async_evd_handle remains unchanged, so the returned
async_evd_handle is the same the Consumer passed in. All asynchronous notifications
for the open instance of the IA are directed by the Provider to the Consumer passed in
Asynchronous Event Dispatcher specified by async_evd_handle.

Consumer can specify the value of DAT _EVD_ASYNC_EXISTS to indicate that there
exists an event dispatcher somewhere else on the host, in user or kernel space, for
asynchronous event notifications. It is up to the Consumer to ensure that this event
dispatcher is unique and unambiguous. A special handle may be returned for the
Asynchronous Event Dispatcher for this scenario, DAT _EVD_OUT OF SCOPE, to
indicate that there is a default Event Dispatcher assigned for this Interface Adapter,
but that it is not in a scope where this Consumer may directly invoke it.

The Asynchronous Event Dispatcher is an Object of both the Provider and IA. Each
Asynchronous Event Dispatcher bound to an IA instance is notified of all
asynchronous events, such that binding multiple Asynchronous Event Dispatchers
degrades performance by duplicating asynchronous event notifications for all
Asynchronous Event Dispatchers. Also, transport and memory resources can be
consumed per Event Dispatcher bound to an IA

As with all Event Dispatchers, the Consumer is responsible for synchronizing access to
the event queue.

Valid IA names are obtained from dat registry list providers(3DAT).

RETURN VALUES | DAT_SUCCESS The operation was successful.

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID PARAMETER Invalid parameter.

DAT_PROVIDER_NOT_FOUND The specified provider was not registered in
the registry.

DAT INVALID HANDLE Invalid DAT handle; async_evd_handle is
invalid.

USAGE | Thedat _ia open() function is the root method for the Provider, and, thus, all
Objects. It is the root handle through which the Consumer obtains all other DAT
handles. When the Consumer closes its handle, all its DAT Objects are released.

248 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

ATTRIBUTES

SEE ALSO

dat_ia_open(3DAT)

The dat_ia_ open () function is the workhorse method that provides an IA instance.
It can also initialize the Provider library or do any other registry-specific functions.

The dat_ia_open () function creates a unique handle for the IA to the Consumer. All
further DAT Objects created for this Consumer reference this handle as their owner.

The dat_ia_ open () function can use a reference count for the Provider Library to
ensure that the Provider Library cannot be removed when it is in use by a DAT

Consumer.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1, 1.2

MT-Level

Safe

dat_evd modify cno(3DAT), dat_evd resize(83DAT), dat ia close(3DAT),
dat_registry list providers(3DAT), l1ibdat(3LIB), attributes(5)

Extended Library Functions 249

dat_ia_query(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

Interface Adapter
Attributes

dat_ia_query — query an IA

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_ia query (
IN DAT IA HANDLE ia_handle,
OUT DAT EVD HANDLE *async_evd_handle,
IN DAT_IA ATTR_MASK ia_attr_mask,
OUT DAT IA ATTR *ia_attributes
IN DAT_PROVIDER_ATTR MASK provider_attr_mask,
OUT DAT PROVIDER ATTR *provider_attributes
)
ia_handle Handle for an open instance of an IA.
async_evd_handle Handle for an Event Dispatcher for asynchronous
events generated by the IA.
ia_attr_mask Mask for the ia_attributes.
ia_attributes Pointer to a Consumer-allocated structure that the
Provider fills with IA attributes.
provider_attr_mask Mask for the provider_attributes.
provider_attributes Pointer to a Consumer-allocated structure that the

Provider fills with Provider attributes.

The dat_ia query () functions provides the Consumer with the IA parameters, as
well as the IA and Provider attributes. Consumers pass in pointers to
Consumer-allocated structures for the IA and Provider attributes that the Provider
fills.

The ia_attr_mask and provider_attr_mask parameters allow the Consumer to specify
which attributes to query. The Provider returns values for requested attributes. The
Provider can also return values for any of the other attributes.

The IA attributes are common to all open instances of the IA. DAT defines a method to
query the IA attributes but does not define a method to modify them.

If IA is multiported, each port is presented to a Consumer as a separate IA.

Adapter name:
The name of the IA controlled by the Provider. The same as ia_name_ptr.

Vendor name:
Vendor if IA hardware.

HW version major:
Major version of IA hardware.

HW version minor:
Minor version of IA hardware.

250 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

dat_ia_query(3DAT)

Firmware version major:
Major version of IA firmware.

Firmware version minor:
Minor version of IA firmware.

IA_address_ptr:
An address of the interface Adapter.

Max EPs:
Maximum number of Endpoints that the IA can support. This covers all Endpoints
in all states, including the ones used by the Providers, zero or more applications,
and management.

Max DTOs per EP:
Maximum number of DTOs and RMR_binds that any Endpoint can support for a
single direction. This means the maximum number of outstanding and in-progress
Send, RDMA Read, RDMA Write DTOs, and RMR Binds at any one time for any
Endpoint; and maximum number of outstanding and in-progress Receive DTOs at
any one time for any Endpoint.

Max incoming RDMA Reads per EP:
Maximum number of RDMA Reads that can be outstanding per (connected)
Endpoint with the IA as the target.

Max outgoing RDMA Reads per EP:
Maximum number of RDMA Reads that can be outstanding per (connected)
Endpoint with the IA as the originator.

Max EVDs:
Maximum number of Event Dispatchers that an IA can support. An IA cannot
support an Event Dispatcher directly, but indirectly by Transport-specific Objects,
for example, Completion Queues for Infiniband™ and VI. The Event Dispatcher
Objects can be shared among multiple Providers and similar Objects from other
APIs, for example, Event Queues for uDAPL.

Max EVD queue size:
Maximum size of the EVD queue supported by an IA.

Max IOV segments per DTO:
Maximum entries in an IOV list that an IA supports. Notice that this number cannot
be explicit but must be implicit to transport-specific Object entries. For example, for
IB, it is the maximum number of scatter/gather entries per Work Request, and for
VI it is the maximum number of data segments per VI Descriptor.

Max LMRs:
Maximum number of Local Memory Regions IA supports among all Providers and
applications of this IA.

Max LMR block size:
Maximum contiguous block that can be registered by the IA.

Mac LMR VA:
Highest valid virtual address within the context of an LMR. Frequently, IAs on
32-bit architectures support only 32-bit local virtual addresses.

Extended Library Functions 251

dat_ia_query(3DAT)

Max PZs:
Maximum number of Protection Zones that the IA supports.

Max MTU size:
Maximum message size supported by the IA

Max RDMA size:
Maximum RDMA size supported by the IA

Max RMREs:
Maximum number of RMRs an IA supports among all Providers and applications
of this IA.

Max RMR target address:
Highest valid target address with the context of a local RMR. Frequently, IAs on
32-bit architectures support only 32-bit local virtual addresses.

Num transport attributes:
Number of transport-specific attributes.

Transport-specific attributes:
Array of transport-specific attributes. Each entry has the format of
DAT NAMED ATTR, which is a structure with two elements. The first element is the
name of the attribute. The second element is the value of the attribute as a string.

Num vendor attributes:
Number of vendor-specific attributes.

Vendor-specific attributes:
Array of vendor-specific attributes. Each entry has the format of
DAT NAMED ATTR, which is a structure with two elements. The first element is the
name of the attribute. The second element is the value of the attribute as a string.

DAPL Provider | The provider attributes are specific to the open instance of the IA. DAT defines a
Attributes | method to query Provider attributes but does not define a method to modify them.

Provider name:
Name of the Provider vendor.

Provider version major:
Major Version of uDAPL Provider.

Provider version minor:
Minor Version of uDAPL Provider.

DAPL API version major:
Major Version of uDAPL API supported.

DAPL API version minor:
Minor Version of uDAPL API supported.

LMR memory types supported:
Memory types that LMR Create supports for memory registration. This value is a
union of LMR Memory Types DAT_MEM_TYPE_VIRTUAL, DAT MEM TYPE_LMR,
and DAT_MEM_ TYPE_ SHARED VIRTUAL that the Provider supports. All Providers

252 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

dat_ia_query(3DAT)

must support the following Memory Types: DAT MEM_TYPE VIRTUAL,
DAT MEM TYPE LMR,and DAT MEM TYPE SHARED VIRTUAL.

IOV ownership:
An enumeration flag that specifies the ownership of the local buffer description
(IOV list) after post DTO returns. The three values are as follows:

m DAT IOV CONSUMER indicates that the Consumer has the ownership of the
local buffer description after a post returns.

®m DAT IOV PROVIDER NOMOD indicates that the Provider still has ownership of
the local buffer description of the DTO when the post DTO returns, but the
Provider does not modify the buffer description.

m DAT IOV _PROVIDER MOD indicates that the Provider still has ownership of the
local buffer description of the DTO when the post DTO returns and can modify
the buffer description.

In any case, the Consumer obtains ownership of the local buffer description after
the DTO transfer is completed and the Consumer is notified through a DTO
completion event.

QOS supported:
The union of the connection QOS supported by the Provider.

Completion flags supported:
The following values for the completion flag DAT COMPLETION FLAGS are
supported by the Provider: DAT COMPLETION_SUPPRESS_FLAG,
DAT COMPLETION UNSIGNALLED FLAG,
DAT COMPLETION SOLICITED WAIT FLAG,and
DAT COMPLETION_ BARRIER FENCE FLAG.

Thread safety:
Provider Library thread safe or not. The Provider Library is not required to be
thread safe.

Max private data size:
Maximum size of private data the Provider supports. This value is at least 64 bytes.

Multipathing support:
Capability of the Provider to support Multipathing for connection establishment.

EP creator for PSP:
Indicator for who can create an Endpoint for a Connection Request. For the
Consumer it is DAT PSP CREATES EP NEVER. For the Provider it is
DAT PSP _CREATES EP ALWAYS. For both it is DAT PSP CREATES EP IFASKED.
This attribute is used for Public Service Point creation.

PZ support:
Indicator of what kind of protection the Provider’s PZ provides.

Optimal Buffer Alignment:
Local and remote DTO buffer alignment for optimal performance on the Platform.
The DAT_OPTIMAL_ALIGMNEMT must be divisible by this attribute value. The
maximum allowed value is DAT OPTIMAL ALIGMNEMT, or 256.

Extended Library Functions 253

dat_ia_query(3DAT)

EVD stream merging support:
A 2D binary matrix where each row and column represent an event stream type.
Each binary entry is 1 if the event streams of its row and column can be fed to the
same EVD, and 0 otherwise.

More than two different event stream types can feed the same EVD if for each pair
of the event stream types the entry is 1.

The Provider should support merging of all event stream types.

The Consumer should check this attribute before requesting an EVD that merges
multiple event stream types.

Num provider attributes:
Number of Provider-specific attributes.

Provider-specific attributes:
Array of Provider-specific attributes. Each entry has the format of
DAT NAMED ATTR, which is a structure with two elements. The first element is the
name of the attribute. The second element is the value of the attribute as a string.

RETURN VALUES | DAT_SUCCESS The operation was successful.
DAT INVALID PARAMETER Invalid parameter;

DAT INVALID HANDLE Invalid DAT handle; ia_handle is invalid.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

SEE ALSO | 1ibdat(3LIB), attributes(b)

254 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

dat_Ilmr_create(3DAT)
dat_lmr_create — register a memory region with an IA

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_lmr_ create (
IN DAT IA HANDLE ia_handle,
IN DAT MEM_TYPE mem_type,
IN DAT REGION_DESCRIPTION region description,
IN DAT VLEN length,
N DAT PZ_ HANDLE pz_handle,
IN DAT_MEM_PRIV_FLAGS mem_privileges,
OUT DAT LMR HANDLE *1lmr_handle,
ouT DAT LMR_ CONTEXT *1lmr_context,
ouT DAT RMR_ CONTEXT *rmr_context,
ouT DAT VLEN *registered size,
ouT DAT_ VADDR *registered address
)
ia_handle Handle for an open instance of the IA.
mem_type Type of memory to be registered. The following list outlines the

memory type specifications.

DAT MEM TYPE_ VIRTUAL
Consumer virtual memory.

Region description: A pointer to a contiguous user virtual
range.

Length: Length of the Memory Region.

DAT MEM TYPE LMR
LMR.

Region description: An LMR_handle.

Length: Length parameter is ignored.

DAT MEM TYPE_ SHARED VIRTUAL
Shared memory region. All DAT Consumers of the same
uDAPL Provider specify the same Consumer cookie to indicate
who is sharing the shared memory region. This supports a
peer-to-peer model of shared memory. All DAT Consumers of
the shared memory must allocate the memory region as shared
memory using Platform-specific primitives.

Region description: A structure with 2 elements, where the first
one is of type DAT_LMR_COOKIE and is a unique identifier of
the shared memory region, and the second one is a pointer to a
contiguous user virtual range.

Length: Length of the Memory Region

Extended Library Functions 255

dat_lmr_create(3DAT)

256

DESCRIPTION

region_description

length
pz_handle

mem_privileges:

Imr_handle

Imr_context

registered_size

registered_address

Pointer to type-specific data describing the memory in the region
to be registered. The type is derived from the mem_type parameter.

Length parameter accompanying the region_description.
Handle for an instance of the Protection Zone.

Consumer-requested memory access privileges for the registered
local memory region. The Default value is

DAT MEM PRIV NONE FLAG. The constant value

DAT MEM PRIV ALL FLAG = 0x33, which specifies both Read and
Write privileges, is also defined. Memory privilege definitions are
as follows:

Local Read
DAT MEM PRIV LOCAL_ READ FLAG

0x01 Local read access requested.

Local Write
DAT MEM PRIV LOCAL WRITE FLAG

0x10 Local write access requested.

Remote Read
DAT MEM_ PRIV _REMOTE READ FLAG

0x02 Remote read access requested.

Remote Write
DAT MEM PRIV REMOTE WRITE_ FLAG

0x20 Remote write access requested.
Handle for the created instance of the LMR.

Context for the created instance of the LMR to use for DTO local
buffers.

Actual memory size registered by the Provider.

Actual base address of the memory registered by the Provider.

The dat_1lmr_create () function registers a memory region with an IA. The
specified buffer must have been previously allocated and pinned by the uDAPL
Consumer on the platform. The Provider must do memory pinning if needed, which
includes whatever OS-dependent steps are required to ensure that the memory is
available on demand for the Interface Adapter. uDAPL does not require that the
memory never be swapped out; just that neither the hardware nor the Consumer ever
has to deal with it not being there. The created Imr_context can be used for local buffers
of DTOs and for binding RMRs, and Imr_handle can be used for creating other LMRs.
For uDAPL the scope of the Imr_context is the address space of the DAT Consumer.

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

RETURN VALUES

USAGE

ATTRIBUTES

dat_Ilmr_create(3DAT)

The return values of registered_size and registered_address indicate to the Consumer how
much the contiguous region of Consumer virtual memory was registered by the
Provider and where the region starts in the Consumer virtual address.

The mem_type parameter indicates to the Provider the kind of memory to be registered,
and can take on any of the values defined in the table in the PARAMETERS section.

The pz_handle parameter allows Consumers to restrict local accesses to the registered
LMR by DTOs.

DAT_ LMR_COOKIE is a pointer to a unique identifier of the shared memory region of
the DAT_MEM_TYPE_SHARED_VIRTUAL DAT memory type. The identifier is an array
of 40 bytes allocated by the Consumer. The Provider must check the entire 40 bytes
and shall not interpret it as a null-terminated string.

The return value of rmr_context can be transferred by the local Consumer to a
Consumer on a remote host to be used for an RDMA DTO.

If mem_privileges does not specify remote Read and Write privileges, rmr_context is not
generated and NULL is returned. No remote privileges are given for Memory Region
unless explicitly asked for by the Consumer.

DAT SUCCESS The operation was successful.

DAT UNSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID PARAMETER Invalid parameter.

DAT INVALID HANDLE Invalid DAT handle.

DAT INVALID STATE Parameter in an invalid state. For example,
shared virtual buffer was not created shared
by the platform.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by

the Provider. For example, requested
Memory Type was not supported by the
Provider.

Consumers can create an LMR over the existing LMR memory with different
Protection Zones and privileges using previously created IA translation table entries.

The Consumer should use rmr_context with caution. Once advertised to a remote peer,
the rmr_context of the LMR cannot be invalidated. The only way to invalidate it is to
destroy the LMR with dat 1mr free(3DAT).

See attributes(5) for descriptions of the following attributes:

Extended Library Functions 257

dat_Imr_create(3DAT)

258

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Safe

SEE ALSO | dat 1lmr free(3DAT), 1ibdat(3LIB), attributes(5)

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_lmr_free(3DAT)
dat_lmr_free — destroy an instance of the LMR

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_lmr_ free (
IN DAT LMR_HANDLE lmr_handle
)

Imr_handle: Handle for an instance of LMR to be destroyed.

The dat_1mr free () function destroys an instance of the LMR. The LMR cannot be
destroyed if it is in use by an RMR. The operation does not deallocate the memory
region or unpin memory on a host.

Use of the handle of the destroyed LMR in any subsequent operation except for
dat_lmr_free() fails. Any DTO operation that uses the destroyed LMR after the
dat lmr free () is completed shall fail and report a protection violation. The use of
rmr_context of the destroyed LMR by a remote peer for an RDMA DTO results in an
error and broken connection on which it was used. Any remote RDMA operation that
uses the destroyed LMR rmr_context, whose Transport-specific request arrived to the
local host after the dat_1lmr_free () has completed, fails and reports a protection
violation. Remote RDMA operation that uses the destroyed LMR rmyr_context, whose
Transport-specific request arrived to the local host prior to the dat_lmr_free ()
returns, might or might not complete successfully. If it fails,

DAT DTO ERR REMOTE ACCESS is reported in DAT DTO COMPLETION STATUS for
the remote RDMA DTO and the connection is broken.

DAT SUCCESS The operation was successful.

DAT_ INVALID HANDLE The Imr_handle parameter is invalid.

DAT_INVALID STATE Parameter in an invalid state; LMR is in use by an RMR
instance.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions 259

dat_Ilmr_query(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

260

dat_lmr_query — provide LMR parameters

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_lmr_query (
IN DAT LMR_HANDLE lmr_handle,
IN DAT_LMR_PARAM_MASK lmr_param mask,
ouT DAT_LMR_PARAM *1mr_ param
)
Imr_handle Handle for an instance of the LMR.

Imr_param_mask ~ Mask for LMR parameters.

Pointer to a Consumer-allocated structure that the Provider fills
with LMR parameters.

Imr_param

The dat 1lmr query () function provides the Consumer LMR parameters. The
Consumer passes in a pointer to the Consumer-allocated structures for LMR
parameters that the Provider fills.

The Imr_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for Imr_param_mask requested parameters. The
Provider can return values for any other parameters.

DAT SUCCESS The operation was successful.
DAT INVALID PARAMETER The Imr_param_mask function is invalid.

DAT INVALID HANDLE The Imr_handle function is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

dat_Imr_sync_rdma_read(3DAT)

dat_lmr_sync_rdma_read — synchronize local memory with RDMA read on
non-coherent memory

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_lmr_sync_rdma_read (
IN DAT IA HANDLE ia_ handle,
IN const DAT LMR_TRIPLET *local_segments,
IN DAT_ VLEN num_ segments

)

ia_handle A handle for an open instance of the IA.
local_segments An array of buffer segments.
num_segments The number of segments in the local_segments argument.

The dat 1mr sync rdma read() function makes memory changes visible to an
incoming RDMA Read operation. This operation guarantees consistency by locally
flushing the non-coherent cache prior to it being retrieved by remote peer RDMA read
operations.

The dat_1mr sync_rdma read () function is needed if and only if the Provider
attribute specifies that this operation is needed prior to an incoming RDMA Read
operation. The Consumer must call dat_1lmr_ sync_rdma_read () after modifying
data in a memory range in this region that will be the target of an incoming RDMA
Read operation. The dat 1lmr sync rdma read () function must be called after the
Consumer has modified the memory range but before the RDMA Read operation
begins. The memory range that will be accessed by the RDMA read operation must be
supplied by the caller in the local_segments array. After this call returns, the RDMA
Read operation can safely see the modified contents of the memory range. It is
permissible to batch synchronizations for multiple RDMA Read operations in a single
call by passing a local_segments array that includes all modified memory ranges. The
local_segments entries need not contain the same LMR and need not be in the same
Protection Zone.

If the Provider attribute specifying that this operation is required attempts to read
from a memory range that is not properly synchronized using
dat_lmr sync_ rdma read (), the returned contents are undefined.

DAT SUCCESS
The operation was successful.

DAT INVALID_ HANDLE
The DAT handle is invalid.

DAT INVALID PARAMETER
One of the parameters is invalid. For example, the address range for a local
segment fell outside the boundaries of the corresponding Local Memory Region or
the LMR handle was invalid.

Extended Library Functions 261

dat_Imr_sync_rdma_read(3DAT)

262

USAGE

ATTRIBUTES

SEE ALSO

Determining when an RDMA Read will start and what memory range it will read is
the Consumer’s responsibility. One possibility is to have the Consumer that is
modifying memory call dat_lmr_sync_rdma_read () and then post a Send DTO
message that identifies the range in the body of the Send. The Consumer wanting to
perform the RDMA Read can receive this message and know when it is safe to initiate
the RDMA Read operation.

This call ensures that the Provider receives a coherent view of the buffer contents upon
a subsequent remote RDMA Read operation. After the call completes, the Consumer
can be assured that all platform-specific buffer and cache updates have been
performed, and that the LMR range has consistency with the Provider hardware. Any
subsequent write by the Consumer can void this consistency. The Provider is not
required to detect such access.

The action performed on the cache before the RDMA Read depends on the cache type:

® I/0O noncoherent cache will be invalidated.
m CPU noncoherent cache will be flushed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_lmr_ sync_rdma write(3DAT), 1ibdat(3LIB), attributes(5)

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

dat_Imr_sync_rdma_write(3DAT)

dat_lmr_sync_rdma_write — synchronize local memory with RDMA write on
non-coherent memory

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_lmr_ sync_rdma_write (
IN DAT IA HANDLE ia_handle,
IN const DAT LMR_TRIPLET *local_segments,
IN DAT_VLEN num_segments

)

ia_handle Ahandle for an open instance of the IA.
local_segments An array of buffer segments.
num_segments The number of segments in the local_segments argument.

The dat_1mr sync rdma write () function makes effects of an incoming RDMA
Write operation visible to the Consumer. This operation guarantees consistency by
locally invalidating the non-coherent cache whose buffer has been populated by
remote peer RDMA write operations.

The dat_1mr sync_rdma_write () function is needed if and only if the Provider
attribute specifies that this operation is needed after an incoming RDMA Write
operation. The Consumer must call dat 1mr sync rdma write () before reading
data from a memory range in this region that was the target of an incoming RDMA
Write operation. The dat_1mr sync_rdma write () function must be called after
the RDMA Write operation completes, and the memory range that was modified by
the RDMA Write must be supplied by the caller in the local_ segments array. After this
call returns, the Consumer may safely see the modified contents of the memory range.
It is permissible to batch synchronizations of multiple RDMA Write operations in a
single call by passing a local_segments array that includes all modified memory ranges.
The local_segments entries need not contain the same LMR and need not be in the same
Protection Zone.

The Consumer must also use dat_lmr_sync_rdma_write () when performing
local writes to a memory range that was or will be the target of incoming RDMA
writes. After performing the local write, the Consumer must call

dat lmr sync rdma write () before the RDMA Write is initiated. Conversely,
after an RDMA Write completes, the Consumer must call
dat_lmr sync rdma_write () before performing a local write to the same range.

If the Provider attribute specifies that this operation is needed and the Consumer
attempts to read from a memory range in an LMR without properly synchronizing
using dat_lmr_sync_rdma_write (), the returned contents are undefined. If the
Consumer attempts to write to a memory range without properly synchronizing, the
contents of the memory range become undefined.

DAT SUCCESS
The operation was successful.

Extended Library Functions 263

dat_Imr_sync_rdma_write(3DAT)

USAGE

ATTRIBUTES

SEE ALSO

DAT INVALID HANDLE
The DAT handle is invalid.

DAT INVALID PARAMETER
One of the parameters is invalid. For example, the address range for a local
segment fell outside the boundaries of the corresponding Local Memory Region or
the LMR handle was invalid.

Determining when an RDMA Write completes and determining which memory range
was modified is the Consumer’s responsibility. One possibility is for the RDMA Write
initiator to post a Send DTO message after each RDMA Write that identifies the range
in the body of the Send. The Consumer at the target of the RDMA Write can receive
the message and know when and how to call dat_1mr sync rdma write ().

This call ensures that the Provider receives a coherent view of the buffer contents after
a subsequent remote RDMA Write operation. After the call completes, the Consumer
can be assured that all platform-specific buffer and cache updates have been
performed, and that the LMR range has consistency with the Provider hardware. Any
subsequent read by the Consumer can void this consistency. The Provider is not
required to detect such access.

The action performed on the cache before the RDMA Write depends on the cache type:

® I/0 noncoherent cache will be flushed.
m CPU noncoherent cache will be invalidated.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_lmr_ sync_rdma_ read(3DAT), 1ibdat(3LIB), attributes(5)

264 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_provider_fini(3DAT)

dat_provider_fini — disassociate the Provider from a given IA name

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
void
dat_provider fini (
IN const DAT PROVIDER_ INFO *provider info
)
provider_info The information that was provided when dat_provider_init was
called.

A destructor the Registry calls on a Provider before it disassociates the Provider from a
given IA name.

The Provider can use this method to undo any initialization it performed when
dat_provider init(3DAT) was called for the same IA name. The Provider’s
implementation of this method should call

dat_registry remove provider(3DAT) to unregister its IA Name. If it does not,
the Registry might remove the entry itself.

This method can be called for a given IA name at any time after all open instances of
that IA are closed, and is certainly called before the Registry unloads the Provider
library. However, it is not called more than once without an intervening call to
dat_provider init () for that IA name.

No values are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level

dat_provider init(3DAT), dat registry remove provider(3DAT),
libdat(3LIB), attributes(b)

Extended Library Functions 265

dat_provider_init(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

dat_provider_init — locate the Provider in the Static Registry

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
void
dat_provider init (
IN const DAT PROVIDER_ INFO *provider info,
IN const char * instance_data
)
provider_info The information that was provided by the Consumer to locate the

Provider in the Static Registry.

instance_data The instance data string obtained from the entry found in the
Static Registry for the Provider.

A constructor the Registry calls on a Provider before the first call to
dat_ia_open(3DAT) for a given IA name when the Provider is auto-loaded. An
application that explicitly loads a Provider on its own can choose to use

dat provider init () just as the Registry would have done for an auto-loaded
Provider.

The Provider’s implementation of this method must call

dat registry add provider(3DAT), using the IA name in the

provider info.ia name field, to register itself with the Dynamic Registry. The
implementation must not register other IA names at this time. Otherwise, the Provider
is free to perform any initialization it finds useful within this method.

This method is called before the first call to dat_ia_ open () for a given IA name
after one of the following has occurred:

®m The Provider library was loaded into memory.
® The Registry called dat_provider fini(3DAT) for that IA name.

m The Provider called dat_registry remove provider(3DAT) for that IA name
(but it is still the Provider indicated in the Static Registry).

If this method fails, it should ensure that it does not leave its entry in the Dynamic
Registry.

No values are returned.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level

266 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

dat_provider_init(3DAT)

SEE ALSO | dat_ia open(3DAT), dat provider fini(3DAT),
dat_registry add provider(3DAT),
dat_registry remove provider(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions 267

dat_psp_create(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_psp_create — create a persistent Public Service Point

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_psp_create(
IN DAT IA HANDLE ia_handle,
IN DAT_CONN_QUAL conn_qual,
IN DAT EVD HANDLE evd_handle,
IN DAT_PSP_FLAGS psp_flags,

OUT DAT_PSP_HANDLE *psp_handle
)

ia_handle Handle for an instance of DAT IA.

conn_gual Connection Qualifier of the IA on which the Public Service Point is
listening.

evd_handle Event Dispatcher that provides the Connection Requested Events

to the Consumer. The size of the event queue for the Event
Dispatcher controls the size of the backlog for the created Public
Service Point.

psp_flags Flag that indicates whether the Provider or Consumer creates an
Endpoint per arrived Connection Request. The value of
DAT PSP_PROVIDER indicates that the Consumer wants to get an
Endpoint from the Provider; a value of DAT PSP_CONSUMER
means the Consumer does not want the Provider to provide an
Endpoint for each arrived Connection Request.

psp_handle Handle to an opaque Public Service Point.

The dat psp create () function creates a persistent Public Service Point that can
receive multiple requests for connection and generate multiple Connection Request
instances that are delivered through the specified Event Dispatcher in Notification
events.

The dat_psp create () function is blocking. When the Public Service Point is
created, DAT SUCCESS is returned and psp_handle contains a handle to an opaque
Public Service Point Object.

There is no explicit backlog for a Public Service Point. Instead, Consumers can control
the size of backlog through the queue size of the associated Event Dispatcher.

The psp_flags parameter allows Consumers to request that the Provider create an
implicit Endpoint for each incoming Connection Request, or request that the Provider
should not create one per Connection Request. If the Provider cannot satisfy the
request, the operation shall fail and DAT MODEL NOT SUPPORTED is returned.

268 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

RETURN VALUES

USAGE

dat_psp_create(3DAT)

All Endpoints created by the Provider have DAT HANDLE_ NULL for the Protection
Zone and all Event Dispatchers. The Provider sets up Endpoint attributes to match the
Active side connection request. The Consumer can change Endpoint parameters.
Consumers should change Endpoint parameters, especially PZ and EVD, and are
advised to change parameters for local accesses prior to the connection request
acceptance with the Endpoint.

DAT SUCCESS The operation was successful.

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID HANDLE The ia_handle or evd_handle parameter is
invalid.

DAT INVALID PARAMETER The conn_qual or psp_flags parameter is
invalid.

DAT_CONN_QUAL IN USE The specified Connection Qualifier was in
use.

DAT MODEL NOT SUPPORTED The requested Model was not supported by
the Provider.

Two uses of a Public Service Point are as follows:

Model 1 For this model, the Provider manipulates a pool of Endpoints for a Public
Service Point. The Provider can use the same pool for more than one Public
Service Point.

m The DAT Consumer creates a Public Service Point with a flag set to
DAT PSP _PROVIDER

® The Public Service Point does the following:

® Collects native transport information reflecting a received
Connection Reques

m Creates an instance of Connection Reques

m Creates a Connection Request Notice (event) that includes the
Connection Request instance (thatwhich includes, among others,
Public Service Point, its Connection Qualifier, Provider-generated
Local Endpoint, and information about remote Endpoint)

m Delivers the Connection Request Notice to the Consumer-specified
target (CNO) evd_handle

The Public Service Point is persistent and continues to listen for
incoming requests for connection.

m Upon receiving a connection request, or at some time subsequent to
that, the DAT Consumer can modify the provided local Endpoint to
match the Connection Request and must either accept () or
reject () the pending Connection Request.

Extended Library Functions 269

dat_psp_create(3DAT)

m If accepted, the provided Local Endpoint is now in a "connected" state
and is fully usable for this connection, pending only any native
transport mandated RTU (ready-to-use) messages. This includes
binding it to the IA port if that was not done previously. The Consumer
is notified that the Endpoint is in Connected state by a Connection
Established Event on the Endpoint connect_evd_handle.

m If rejected, control of the Local Endpoint point is returned back to the
Provider and its ep_handle is no longer usable by the Consumer.

Model 2 For this model, the Consumer manipulates a pool of Endpoints. Consumers
can use the same pool for more than one Service Point.

m DAT Consumer creates a Public Service Point with a flag set to
DAT PSP _CONSUMER.

m Public Service Point:

m Collects native transport information reflecting a received
Connection Request

m (Creates an instance of Connection Request

m Creates a Connection Request Notice (event) that includes the
Connection Request instance (which includes, among others, Public
Service Point, its Connection Qualifier, Provider-generated Local
Endpoint and information about remote Endpoint)

® Delivers the Connection Request Notice to the Consumer-specified
target (CNO) evd_handle

The Public Service Point is persistent and continues to listen for
incoming requests for connection.

m The Consumer creates a pool of Endpoints that it uses for accepting
Connection Requests. Endpoints can be created and modified at any
time prior to accepting a Connection Request with that Endpoint.

m Upon receiving a connection request or at some time subsequent to that,
the DAT Consumer can modify its local Endpoint to match the
Connection Request and must either accept () or reject () the
pending Connection Request.

m If accepted, the provided Local Endpoint is now in a "connected" state
and is fully usable for this connection, pending only any native
transport mandated RTU messages. This includes binding it to the IA
port if that was not done previously. The Consumer is notified that the
Endpoint is in Connected state by a Connection Established Event on
the Endpoint connect_evd_handle.

m If rejected, the Consumer does not have to provide any Endpoint for
dat_cr_ reject(3DAT).

270 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

dat_psp_create(3DAT)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

SEE ALSO | dat_cr reject(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions 271

dat_psp_create_any(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_psp_create_any — create a persistent Public Service Point

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_psp_create_any (
IN DAT IA HANDLE ia_handle,
IN DAT_CONN_QUAL conn_qual,
IN DAT EVD HANDLE evd_handle,
IN DAT_PSP_FLAGS psp_flags,

OUT DAT_PSP_HANDLE *psp_handle
)

ia_handle Handle for an instance of DAT IA.

conn_gual Connection Qualifier of the IA on which the Public Service Point is
listening.

evd_handle Event Dispatcher that provides the Connection Requested Events

to the Consumer. The size of the event queue for the Event
Dispatcher controls the size of the backlog for the created Public
Service Point.

psp_flags Flag that indicates whether the Provider or Consumer creates an
Endpoint per arrived Connection Request. The value of
DAT PSP_PROVIDER indicates that the Consumer wants to get an
Endpoint from the Provider; a value of DAT PSP_CONSUMER
means the Consumer does not want the Provider to provide an
Endpoint for each arrived Connection Request.

psp_handle Handle to an opaque Public Service Point.

The dat psp create any () function creates a persistent Public Service Point that
can receive multiple requests for connection and generate multiple Connection
Request instances that are delivered through the specified Event Dispatcher in
Notification events.

The dat_psp create_any () function allocates an unused Connection Qualifier,
creates a Public Service point for it, and returns both the allocated Connection
Quualifier and the created Public Service Point to the Consumer.

The allocated Connection Qualifier should be chosen from "nonprivileged" ports that
are not currently used or reserved by any user or kernel Consumer or host ULP of the
IA. The format of allocated Connection Qualifier returned is specific to IA transport

type.

The dat_psp_create_any () function is blocking. When the Public Service Point is
created, DAT SUCCESS is returned, psp_handle contains a handle to an opaque Public
Service Point Object, and conn_qual contains the allocated Connection Qualifier. When
return is not DAT SUCCESS, psp_handle and conn_gqual return values are undefined.

272 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_psp_create_any(3DAT)

There is no explicit backlog for a Public Service Point. Instead, Consumers can control
the size of backlog through the queue size of the associated Event Dispatcher.

The psp_flags parameter allows Consumers to request that the Provider create an
implicit Endpoint for each incoming Connection Request, or request that the Provider
should not create one per Connection Request. If the Provider cannot satisfy the
request, the operation shall fail and DAT MODEL NOT SUPPORTED is returned.

All Endpoints created by the Provider have DAT HANDLE NULL for the Protection
Zone and all Event Dispatchers. The Provider sets up Endpoint attributes to match the
Active side connection request. The Consumer can change Endpoint parameters.
Consumers should change Endpoint parameters, especially PZ and EVD, and are
advised to change parameters for local accesses prior to the connection request
acceptance with the Endpoint.

DAT SUCCESS The operation was successful.

DAT_INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID HANDLE The ia_handle or evd_handle parameter is
invalid.

DAT INVALID PARAMETER The conn_qual or psp_flags parameter is
invalid.

DAT CONN QUAL UNAVAILABLE No Connection Qualifiers available.

DAT MODEL NOT SUPPORTED The requested Model was not supported by
the Provider.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Safe

libdat(3LIB), attributes(b)

Extended Library Functions 273

dat_psp_free(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_psp_free — destroy an instance of the Public Service Point

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_psp_free (
IN DAT PSP _HANDLE psp_handle
)
psp_handle Handle for an instance of the Public Service Point.

The dat_psp_free () function destroys a specified instance of the Public Service
Point.

Any incoming Connection Requests for the Connection Qualifier on the destroyed
Service Point it had been listening on are automatically rejected by the Provider with
the return analogous to the no listening Service Point.

The behavior of the Connection Requests in progress is undefined and left to an
implementation. But it must be consistent. This means that either a Connection
Requested Event has been generated for the Event Dispatcher associated with the
Service Point, including the creation of the Connection Request instance, or the
Connection Request is rejected by the Provider without any local notification.

This operation shall have no effect on previously generated Connection Requested
Events. This includes Connection Request instances and, potentially, Endpoint
instances created by the Provider.

The behavior of this operation with creation of a Service Point on the same Connection
Qualifier at the same time is not defined. Consumers are advised to avoid this
scenario.

Use of the handle of the destroyed Public Service Point in any consequent operation
fails.

DAT SUCCESS The operation was successful.

DAT INVALID HANDLE The psp_handle parameter is invalid.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

274 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_psp_query(3DAT)

dat_psp_query — provide parameters of the Public Service Point

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN

dat_psp_query (

IN DAT PSP HANDLE

IN DAT PSP PARAM MASK

OUT DAT PSP PARAM
)

psp_handle
psp_param_mask

psp_param

psp_handle,
psp_param_mask,
*psp_param

Handle for an instance of Public Service Point.
Mask for PSP parameters.

Pointer to a Consumer-allocated structure that Provider fills for

Consumer-requested parameters.

The dat psp query () function provides to the Consumer parameters of the Public
Service Point. Consumer passes in a pointer to the Consumer allocated structures for

PSP parameters that Provider fills.

The psp_param_mask parameter allows Consumers to specify which parameters they
would like to query. The Provider will return values for psp_param_mask requested
parameters. The Provider may return the value for any of the other parameters.

DAT SUCCESS

DAT INVALID HANDLE

The operation was successful.

The psp_handle parameter is invalid.

DAT INVALID_ PARAMETER The psp_param_mask parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Safe

libdat(3LIB), attributes(5)

Extended Library Functions 275

dat_pz_create(3DAT)

NAME | dat_pz_create — create an instance of the Protection Zone

SYNOPSIS | cc [flag... 1 file... -1dat [library...]

#include <dat/udat.h>

DAT_RETURN
dat_pz_create (
IN DAT IA HANDLE ia_handle,
OUT DAT PZ HANDLE *pz_handle
)

PARAMETERS | ia_handle Handle for an open instance of the IA.
pz_handle Handle for the created instance of Protection Zone.

DESCRIPTION | The dat _pz create () function creates an instance of the Protection Zone. The
Protection Zone provides Consumers a mechanism for association Endpoints with
LMRs and RMRs to provide protection for local and remote memory accesses by

DTOs.
RETURN VALUES | DAT SUCCESS The operation was successful.
DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.
DAT INVALID PARAMETER Invalid parameter.
DAT INVALID HANDLE The ia_handle parameter is invalid.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

SEE ALSO | 1ibdat(3LIB), attributes(5)

276 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_pz_free(3DAT)

dat_pz_free — destroy an instance of the Protection Zone

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_pz_free (
IN DAT PZ HANDLE pz_handle
)
pz_handle Handle for an instance of Protection Zone to be destroyed.

The dat_pz_ free () function destroys an instance of the Protection Zone. The
Protection Zone cannot be destroyed if it is in use by an Endpoint, LMR, or RMR.

Use of the handle of the destroyed Protection Zone in any subsequent operation
except for dat_pz_free () fails.

DAT SUCCESS The operation was successful.

DAT INVALID STATE Parameter in an invalid state. The Protection Zone was
in use by Endpoint, LMR, or RMR instances.

DAT_ INVALID HANDLE The pz_handle parameter is invalid.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

Extended Library Functions 277

dat_pz_query(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_pz_query — provides parameters of the Protection Zone

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_pz_query (
IN DAT PZ HANDLE pz_handle,
IN DAT_PZ_ PARAM MASK pz_param_mask,
ouT DAT_PZ_PARAM *pz_param
)
pz_handle: Handle for the created instance of the Protection Zone.
pz_param_mask: Mask for Protection Zone parameters.
pz_param: Pointer to a Consumer-allocated structure that the Provider fills

with Protection Zone parameters.

The dat pz query () function provides the Consumer parameters of the Protection
Zone. The Consumer passes in a pointer to the Consumer-allocated structures for
Protection Zone parameters that the Provider fills.

The pz_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for pz_param_mask requested parameters. The
Provider can return values for any other parameters.

DAT SUCCESS The operation was successful.
DAT INVALID PARAMETER The pz_param_mask parameter is invalid.

DAT INVALID HANDLE The pz_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Safe

libdat(3LIB), attributes(5)

278 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_registry_add_provider(3DAT)
dat_registry_add_provider — declare the Provider with the Dynamic Registry

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_registry add provider (
IN const DAT PROVIDER *provider,
IN const DAT PROVIDER_INFO *provider_info
)
provider Self-description of a Provider.
provider_info Attributes of the Provider.

The Provider declares itself with the Dynamic Registry. Note that the caller can choose
to register itself multiple times, for example once for each port. The choice of what to
virtualize is up to the Provider. Each registration provides an Interface Adapter to
DAT. Each Provider must have a unique name.

The same IA Name cannot be added multiple times. An attempt to register the same
IA Name again results in an error with the return value
DAT PROVIDER ALREADY REGISTERED.

The contents of provider_info must be the same as those the Consumer uses in the call
todat_ia_open(3DAT) directly, or the ones provided indirectly defined by the
header files with which the Consumer compiled.

DAT_ SUCCESS The operation was successful.

DAT INSUFFICIENT RESOURCES The maximum number of Providers was
already registered.

DAT INVALID PARAMETER Invalid parameter.

DAT PROVIDER ALREADY REGISTERED Invalid or nonunique name.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level

dat_ia open(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions 279

dat_registry_list_providers(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

dat_registry_list_providers — obtain a list of available pProviders from the Static
Registry

typedef struct dat provider_ info ({
char ia_ name [DAT NAME MAX LENGTH] ;

DAT UINT32 dapl_version major;
DAT_UINT32 dapl_version minor;
DAT_BOOLEAN is_thread safe;

} DAT PROVIDER INFO;

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_registry list providers (
IN DAT_COUNT max_ to_return,
OUT DAT_COUNT *number_entries,
ouT DAT PROVIDER INFO * (dat_provider list[])

)

max_to_return Maximum number of entries that can be returned to the Consumer
in the dat_provider_list.

number_entries The actual number of entries returned to the Consumer in the
dat_provider_list if successful or the number of Providers available.

dat_provider_list ~ Points to an array of DAT PROVIDER_INFO pointers supplied by
the Consumer. Each Provider’s information will be copied to the
destination specified.

The dat_registry list providers () function allows the Consumer to obtain a
list of available Providers from the Static Registry. The information provided is the
Interface Adapter name, the uDAPL/kDAPL API version supported, and whether the
provided version is thread-safe. The Consumer can examine the attributes to
determine which (if any) Interface Adapters it wants to open. This operation has no
effect on the Registry itself.

The Registry can open an IA using a Provider whose dapl_version_minor is larger than
the one the Consumer requests if no Provider entry matches exactly. Therefore,
Consumers should expect that an IA can be opened successfully as long as at least one
Provider entry returned by dat registry list providers () matches the
ia_name, dapl_version_major, and is_thread_safe fields exactly, and has a
dapl_version_minor that is equal to or greater than the version requested.

If the operation is successful, the returned value is DAT SUCCESS and number_entries
indicates the number of entries filled by the registry in dat_provider_list.

If the operation is not successful, then number_entries returns the number of entries in
the registry. Consumers can use this return to allocate dat_provider_list large enough
for the registry entries. This number is just a snapshot at the time of the call and may
be changed by the time of the next call. If the operation is not successful, then the
content of dat_provider_list is not defined.

280 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

dat_registry_list_providers(3DAT)

If dat_provider_list is too small, including pointing to NULL for the registry entries, then
the operation fails with the return DAT INVALID PARAMETER.

DAT SUCCESS The operation was successful.

DAT_ INVALID PARAMETER Invalid parameter. For example, dat_provider_list is too
small or NULL.

DAT_INTERNAL_ ERROR Internal error. The DAT static registry is missing.
DAT NAME_ MAX LENGTH includes the null character for string termination.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Safe

libdat(3LIB), attributes(b)

Extended Library Functions 281

dat_registry_remove_provider(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_registry_remove_provider — unregister the Provider from the Dynamic Registry

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_registry remove provider (

IN DAT PROVIDER *provider
IN const DAT PROVIDER INFO *provider_info
)
provider Self-description of a Provider.
provider_info Attributes of the Provider.

The Provider removes itself from the Dynamic Registry. It is the Provider’s
responsibility to complete its sessions. Removal of the registration only prevents new
sessions.

The Provider cannot be removed while it is in use. An attempt to remove the Provider
while it is in use results in an error with the return code DAT PROVIDER IN USE.

DAT_ SUCCESS The operation was successful.
DAT INVALID PARAMETER Invalid parameter. The Provider was not found.

DAT PROVIDER IN USE The Provider was in use.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level

libdat(3LIB), attributes(5)

282 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

dat_rmr_bind(3DAT)

dat_rmr_bind — bind the RMR to the specified memory region within an LMR

cc [flag... 1 file... -1dat [library...]

#include <dat/udat.h>

DAT RETURN
dat_rmr bind(
IN DAT_RMR_HANDLE rmr_handle,
IN DAT LMR TRIPLET *1mr triplet,
IN DAT MEM_PRIV_FLAGS mem_privileges,
IN DAT_EP_HANDLE ep_handle,
IN DAT RMR_COOKIE user cookie,
IN DAT COMPLETION_ FLAGS completion flags,

ouT DAT_RMR_CONTEXT
)

rmr_handle

Imr_triplet

mem_privileges

ep_handle

user_cookie

completion_flags

*rmr_context

Handle for an RMR instance.

A pointer to an Imr_triplet that defines the memory
region of the LMR.

Consumer-requested memory access privileges for the
registered remote memory region. The Default value is
DAT MEM PRIV _NONE_ FLAG. The constant value
DAT MEM_PRIV_ALL_FLAG = 0x33, which specifies
both Read and Write privileges, is also defined.
Memory privilege definitions are as follows:

Remote Read
DAT MEM_ PRIV _REMOTE READ FLAG

0x02 Remote read access requested.

Remote Write
DAT MEM PRIV REMOTE WRITE FLAG

0x20 Remote write access requested.
Endpoint to which dat_rmr bind() is posted.

User-provided cookie that is returned to a Consumer at
the completion of the dat_rmr_bind (). Can be NULL.

Flags for RMR Bind. The default
DAT COMPLETION DEFAULT FLAG is 0. Flag
definitions are as follows:

Completion Suppression
DAT COMPLETION_SUPPRESS_ FLAG

0x01 Suppress successful Completion.

Notification of Completion
DAT COMPLETION UNSIGNALLED FLAG

0x04 Non-notification completion. Local
Endpoint must be configured for

Extended Library Functions 283

dat_rmr_bind(3DAT)
Notification Suppression.

Barrier Fence
DAT COMPLETION BARRIER FENCE FLAG

0x08 Request for Barrier Fence.

rmr_context New rmr_context for the bound RMR suitable to be
shared with a remote host.

DESCRIPTION | The dat_rmr_bind () function binds the RMR to the specified memory region within
an LMR and provides the new rmr_context value. The dat_rmr_bind () operation is
a lightweight asynchronous operation that generates a new rmr_context. The
Consumer is notified of the completion of this operation through a rmr_bind
Completion event on the request_evd_handle of the specified Endpoint ep_handle.

The return value of rmr_context can be transferred by local Consumer to a Consumer
on a remote host to be used for an RDMA DTO. The use of rmr_context by a remote
host for an RDMA DTO prior to the completion of the dat_rmr_bind () can result in
an error and a broken connection. The local Consumer can ensure that the remote
Consumer does not have rmr_context before dat_rmr_bind () is completed. One way
is to "wait" for the completion dat _rmr bind() on the rmr_bind Event Dispatcher of
the specified Endpoint ep_handle. Another way is to send rmr_context in a Send DTO
over the connection of the Endpoint ep_handle. The barrier-fencing behavior of the
dat_rmr_bind () with respect to Send and RDMA DTOs ensures that a Send DTO
does not start until dat_rmr_bind () completed.

The dat_rmr bind() function automatically fences all Send, RDMA Read, and
RDMA Write DTOs and dat_rmr_bind () operations submitted on the Endpoint
ep_handle after the dat _rmr bind (). Therefore, none of these operations starts until
dat_rmr bind() is completed.

If the RMR Bind fails after dat_rmr bind () returns, connection of ep_handle is
broken. The Endpoint transitions into a DAT EP STATE DISCONNECTED state and
the DAT CONNECTION EVENT BROKEN event is delivered to the connect_evd_handle of
the Endpoint.

The dat_rmr_bind () function employs fencing to ensure that operations sending
the RMR Context on the same Endpoint as the bind specified cannot result in an error
from the peer side using the delivered RMR Context too soon. One method, used by
InfiniBand, is to ensure that none of these operations start on the Endpoint until after
the bind is completed. Other transports can employ different methods to achieve the
same goal.

Any RDMA DTO that uses the previous value of rmr_context after the
dat _rmr bind() is completed fail and report a protection violation.

By default, dat_rmr_bind () generates notification completions.

284 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

RETURN VALUES

dat_rmr_bind(3DAT)

The mem_privileges parameter allows Consumers to restrict the type of remote accesses
to the registered RMR by RDMA DTOs. Providers whose underlying Transports
require that privileges of the requested RMR and the associated LMR match, that is

m Set RMR’s DAT MEM PRIV REMOTE READ FLAG requires that LMR’s
DAT MEM PRIV LOCAL READ FLAG is also set,

m Set RMR’s DAT MEM PRIV REMOTE WRITE FLAG requires that LMR’s
DAT MEM PRIV LOCAL WRITE FLAG is also set,

or the operation fails and returns DAT PRIVILEGES VIOLATION.

In the Imr_triplet, the value of length of zero means that the Consumer does not want to
associate an RMR with any memory region within the LMR and the return value of
rmr_context for that case is undefined.

The completion of the posted RMR Bind is reported to the Consumer asynchronously
through a DTO Completion event based on the specified completion_flags value. The
value of DAT COMPLETION UNSIGNALLED FLAG is only valid if the Endpoint
Request Completion Flags DAT COMPLETION_UNSIGNALLED_FLAG. Otherwise,
DAT INVALID PARAMETER is returned.

The user_cookie parameter allows Consumers to have unique identifiers for each
dat_rmr_bind (). These identifiers are completely under user control and are
opaque to the Provider. The Consumer is not required to ensure the uniqueness of the
user_cookie value. The user_cookie is returned to the Consumer in the rmr_bind
Completion event for this operation.

The operation is valid for the Endpoint in the DAT EP STATE CONNECTED and
DAT EP STATE DISCONNECTED states. If the operation returns successfully for the
Endpoint in DAT EP STATE DISCONNECTED state, the posted RMR Bind is
immediately flushed to request_evd_handle.

DAT SUCCESS The operation was successful.

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID PARAMETER Invalid parameter. For example, the

target_address or segment_length exceeded
the limits of the existing LMR.

DAT INVALID HANDLE Invalid DAT handle.

DAT_INVALID STATE Parameter in an invalid state. Endpoint was
not in the a DAT _EP_STATE_CONNECTED or
DAT EP STATE DISCONNECTED state.

DAT MODEL NOT SUPPORTED The requested Model was not supported by
the Provider.

Extended Library Functions 285

dat_rmr_bind(3DAT)

286

DAT PRIVILEGES VIOLATION

DAT PROTECTION VIOLATION

Privileges violation for local or remote
memory access.

Protection violation for local or remote
memory access.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Unsafe

SEE ALSO | 1ibdat(3LIB), attributes(5)

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_rmr_create(3DAT)

dat_rmr_create — create an RMR for the specified Protection Zone

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_rmr_create(
IN DAT PZ HANDLE pz_handle,
ouT DAT_RMR_HANDLE *rmr_handle
)
pz_handle Handle for an instance of the Protection Zone.
rmr_handle Handle for the created instance of an RMR.

The dat_rmr create () function creates an RMR for the specified Protection Zone.
This operation is relatively heavy. The created RMR can be bound to a memory region
within the LMR through a lightweight dat _rmr bind(3DAT) operation that

generates rmr_context.

If the operation fails (does not return DAT_SUCCESS), the return values of rmr_handle
are undefined and Consumers should not use them.

The pz_handle parameter provide Consumers a way to restrict access to an RMR by

authorized connection only.
DAT SUCCESS

DAT INSUFFICIENT RESOURCES

DAT INVALID HANDLE

The operation was successful.

The operation failed due to resource
limitations.

The pz_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Safe

dat_rmr bind(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions

287

dat_rmr_free(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_rmr_free — destroy an instance of the RMR

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_rmr_free (
IN DAT RMR_HANDLE rmr_handle
)
rmr_handle Handle for an instance of the RMR to be destroyed.

The dat_rmr free () function destroys an instance of the RMR.

Use of the handle of the destroyed RMR in any subsequent operation except for the
dat_rmr_free () fails. Any remote RDMA operation that uses the destroyed RMR
rmr_context, whose Transport-specific request arrived to the local host after the
dat_rmr_free () has completed, fails and reports a protection violation. Remote
RDMA operation that uses the destroyed RMR rmr_context, whose Transport-specific
request arrived to the local host prior to the dat_rmr free () return, might or might
not complete successfully. If it fails, DAT DTO_ERR REMOTE_ACCESS is reported in
DAT DTO_COMPLETION STATUS for the remote RDMA DTO and the connection is
broken.

The dat_rmr free () function is allowed on either bound or unbound RMR. If RMR
isbound, dat_rmr free () unbinds (free HCA TPT and other resources and
whatever else binds with length of 0 should do), and then free RMR.

DAT SUCCESS The operation was successful.

DAT INVALID HANDLE The rmr_handle handle is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

288 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_rmr_query — provide RMR parameters

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN

dat_rmr_query (

IN DAT RMR HANDLE

IN DAT RMR PARAM MASK

ouT DAT RMR_PARAM
)

rmr_handle

dat_rmr_query(3DAT)

rmr_handle,
rmr_param_mask,
*rmr_param

Handle for an instance of the RMR.

rmr_param_mask ~ Mask for RMR parameters.

rmr_param

Pointer to a Consumer-allocated structure that the Provider fills
with RMR parameters.

The dat _rmr query () function provides RMR parameters to the Consumer. The
Consumer passes in a pointer to the Consumer-allocated structures for RMR

parameters that the Provider fills.

The rmr_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for rmr_param_mask requested parameters. The
Provider can return values for any other parameters.

Not all parameters can have a value at all times. For example, Imr_handle,
target_address, segment_length, mem_privileges, and rmr_context are not defined for an

unbound RMR.

DAT SUCCESS

The operation was successful.

DAT INVALID PARAMETER The rmr_param_mask parameter is invalid.

DAT INVALID HANDLE

The mr_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.1,1.2

MT-Level

Unsafe

libdat(3LIB), attributes(5)

Extended Library Functions 289

dat_rsp_create(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

dat_rsp_create — create a Reserved Service Point

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_rsp create (
N DAT IA HANDLE ia_handle,
IN DAT CONN_QUAL conn_gual,
IN DAT_EP_HANDLE ep_handle,
IN DAT EVD HANDLE evd handle,

OUT DAT RSP HANDLE *rsp handle

)
ia_handle

conn_qual

ep_handle

evd_handle

rsp_handle

Handle for an instance of DAT IA.

Connection Qualifier of the IA the Reserved Service Point listens
to.

Handle for the Endpoint associated with the Reserved Service
Point that is the only Endpoint that can accept a Connection
Request on this Service Point. The value DAT HANDLE NULL
requests the Provider to associate a Provider-created Endpoint
with this Service Point.

The Event Dispatcher to which an event of Connection Request
arrival is generated.

Handle to an opaque Reserved Service Point.

The dat_rsp_create () function creates a Reserved Service Point with the specified
Endpoint that generates, at most, one Connection Request that is delivered to the
specified Event Dispatcher in a Notification event.

DAT SUCCESS

The operation was successful.

DAT INSUFFICIENT RESOURCES The operation failed due to resource
limitations.

DAT INVALID HANDLE The ia_handle, evd_handle, or ep_handle
parameter is invalid.

DAT INVALID PARAMETER The conn_qual parameter is invalid.

DAT INVALID STATE Parameter in an invalid state. For example,

an Endpoint was not in the Idle state.

DAT CONN_QUAL IN USE Specified Connection Qualifier is in use.

The usage of a Reserve Service Point is as follows:

m The DAT Consumer creates a Local Endpoint and configures it appropriately.

®m The DAT Consumer creates a Reserved Service Point specifying the Local

Endpoint.

® The Reserved Service Point performs the following;:

290 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

ATTRIBUTES

SEE ALSO

dat_rsp_create(3DAT)

m Collects native transport information reflecting a received Connection Request.
m Creates a Pending Connection Request.

m (Creates a Connection Request Notice (event) that includes the Pending
Connection Request (which includes, among others, Reserved Service Point
Connection Qualifier, its Local Endpoint, and information about remote
Endpoint).

m Delivers the Connection Request Notice to the Consumer-specified target
(CNO) evd_handle. The Local Endpoint is transitioned from Reserved to Passive
Connection Pending state.

m Upon receiving a connection request, or at some time subsequent to that, the DAT
Consumer must either accept () or reject () the Pending Connection Request.

m If accepted, the original Local Endpoint is now in a Connected state and fully usable
for this connection, pending only native transport mandated RTU messages. This
includes binding it to the IA port if that was not done previously. The Consumer is
notified that the Endpoint is in a Connected state by a Connection Established Event
on the Endpoint connect_evd_handle.

m If rejected, the Local Endpoint point transitions into Unconnected state. The DAT
Consumer can elect to destroy it or reuse it for other purposes.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

Extended Library Functions 291

dat_rsp_free(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_rsp_free — destroy an instance of the Reserved Service Point

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_rsp_ free (
IN DAT RSP_HANDLE rsp_handle
)
rsp_handle Handle for an instance of the Reserved Service Point.

The dat_rsp_free () function destroys a specified instance of the Reserved Service
Point.

Any incoming Connection Requests for the Connection Qualifier on the destroyed
Service Point was listening on are automatically rejected by the Provider with the
return analogous to the no listening Service Point.

The behavior of the Connection Requests in progress is undefined and left to an
implementation, but it must be consistent. This means that either a Connection
Requested Event was generated for the Event Dispatcher associated with the Service
Point, including the creation of the Connection Request instance, or the Connection
Request is rejected by the Provider without any local notification.

This operation has no effect on previously generated Connection Request Event and
Connection Request.

The behavior of this operation with creation of a Service Point on the same Connection
Qualifier at the same time is not defined. Consumers are advised to avoid this
scenario.

For the Reserved Service Point, the Consumer-provided Endpoint reverts to Consumer
control. Consumers shall be aware that due to a race condition, this Reserved Service
Point might have generated a Connection Request Event and passed the associated
Endpoint to a Consumer in it.

Use of the handle of the destroyed Service Point in any consequent operation fails.
DAT SUCCESS The operation was successful.

DAT INVALID HANDLE The rsp_handle parameter is invalid.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(b)

292 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_rsp_query(3DAT)

dat_rsp_query — provide parameters of the Reserved Service Point

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_rsp_query (
IN DAT RSP_HANDLE rsp_handle,
IN DAT_RSP_PARAM MASK rsp_param _mask,
ouT DAT_RSP_PARAM *rsp_param
)
rsp_handle Handle for an instance of Reserved Service Point

rsp_param_mask ~ Mask for RSP parameters.

rsp_param Pointer to a Consumer-allocated structure that the Provider fills for
Consumer-requested parameters.

The dat _rsp query () function provides to the Consumer parameters of the
Reserved Service Point. The Consumer passes in a pointer to the Consumer-allocated
structures for RSP parameters that the Provider fills.

The rsp_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for rsp_param_mask requested parameters. The
Provider can return values for any other parameters.

DAT SUCCESS The operation was successful.
DAT INVALID HANDLE The rsp_handle parameter is invalid.

DAT INVALID PARAMETER The rsp_param_mask parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Safe

libdat(3LIB), attributes(5)

Extended Library Functions 293

dat_set_consumer_context(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_set_consumer_context — set Consumer context

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_set_consumer context (
IN DAT_ HANDLE dat_handle,
IN DAT CONTEXT context
)
dat_handle Handle for a DAT Object associated with context.
context Consumer context to be stored within the associated dat_handle.

The Consumer context is opaque to the uDAPL Provider. NULL
represents no context.

The dat_set consumer context () function associates a Consumer context with
the specified dat_handle. The dat_handle can be one of the following handle types:
DAT IA HANDLE, DAT EP HANDLE, DAT EVD HANDLE, DAT CR_HANDLE,

DAT RSP HANDLE, DAT PSP HANDLE, DAT PZ HANDLE, DAT LMR HANDLE,

DAT RMR HANDLE, or DAT CNO HANDLE.

Only a single Consumer context is provided for any dat_handle. If there is a previous
Consumer context associated with the specified handle, the new context replaces the
old one. The Consumer can disassociate the existing context by providing a NULL
pointer for the context. The Provider makes no assumptions about the contents of
context; no check is made on its value. Furthermore, the Provider makes no attempt to
provide any synchronization for access or modification of the context.

DAT_SUCCESS The operation was successful.
DAT INVALID PARAMETER The context parameter is invalid.

DAT INVALID HANDLE The dat_handle parameter is invalid.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1,1.2

MT-Level Unsafe

dat get consumer context(3DAT), 1ibdat(3LIB), attributes(b)

294 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

dat_srq_create(3DAT)
dat_srq_create —

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_srqg_create (
IN DAT_IA_ HANDLE ia_handle,
IN DAT PZ_ HANDLE pz_handle,
IN DAT_SRQ_ATTR *srq_attr,
ouT DAT SRQ HANDLE *srg_handle
)
ia_handle A handle for an open instance of the IA to which the created SRQ
belongs.
pz_handle A handle for an instance of the Protection Zone.
srq_attr A pointer to a structure that contains Consumer-requested SRQ
attributes.
srq_handle Ahandle for the created instance of a Shared Receive Queue.

The dat _srqg create () function creates an instance of a Shared Receive Queue
(SRQ) that is provided to the Consumer as srq_handle. If the value of DAT RETURN is
not DAT_SUCCESS, the value of srq_handle is not defined.

The created SRQ is unattached to any Endpoints.

The Protection Zone pz_handle allows Consumers to control what local memory can be
used for the Recv DTO bulffers posted to the SRQ. Only memory referred to by LMRs
of the posted Recv buffers that match the SRQ Protection Zone can be accessed by the
SRQ.

The srq_attributes argument specifies the initial attributes of the created SRQ. If the
operation is successful, the created SRQ will have the queue size at least max_recv_dtos
and the number of entries on the posted Recv scatter list of at lease max_recv_iov. The
created SRQ can have the queue size and support number of entries on post Recv
buffers larger than requested. Consumer can query SRQ to find out the actual
supported queue size and maximum Recv IOV.

The Consumer must set low_watermark to DAT _SRQ_ LW DEFAULT to ensure that an
asynchronous event will not be generated immediately, since there are no buffers in
the created SRQ. The Consumer should set the Maximum Receive DTO attribute and
the Maximum number of elements in IOV for posted buffers as needed.

When an associated EP tries to get a buffer from SRQ and there are no buffers
available, the behavior of the EP is the same as when there are no buffers on the EP
Recv Work Queue.

DAT_SUCCESS
The operation was successful.

Extended Library Functions 295

dat_srq_create(3DAT)

296

USAGE

DAT INSUFFICIENT RESOURCES
The operation failed due to resource limitations.

DAT INVALID HANDLE
Either ia_handle or pz_handle is an invalid DAT handle.

DAT INVALID_ PARAMETER
One of the parameters is invalid. Either one of the requested SRQ attributes was
invalid or a combination of attributes is invalid.

DAT MODEL_NOT SUPPORTED
The requested Model was not supported by the Provider.

SRQ is created by the Consumer prior to creation of the EPs that will be using it. Some
Providers might restrict whether multiple EPs that share a SRQ can have different
Protection Zones. Check the srq_ep_pz_difference_support Provider attribute. The EPs
that use SRQ might or might not use the same recv_evd.

Since a Recv buffer of SRQ can be used by any EP that is using SRQ, the Consumer
should ensure that the posted Recv buffers are large enough to receive an incoming
message on any of the EPs.

If Consumers do not want to receive an asynchronous event when the number of
buffers in SRQ falls below the Low Watermark, they should leave its value as

DAT SRQ LW DEFAULT. If Consumers do want to receive a notification, they can set
the value to the desired one by calling dat srg set 1w(3DAT).

SRQ allows the Consumer to use fewer Recv buffers then posting the maximum
number of buffers for each connection. If the Consumer can upper bound the number
of incoming messages over all connections whose local EP is using SRQ), then instead
of posting this maximum for each connection the Consumer can post them for all
connections on SRQ. For example, the maximum utilized link bandwidth divided over
the message size can be used for an upper bound.

Depending on the underlying Transport, one or more messages can arrive
simultaneously on an EP that is using SRQ. Thus, the same EP can have multiple Recv
buffers in its possession without these buffers being on SRQ or recv_evd.

Since Recv buffers can be used by multiple connections of the local EPs that are using
SRQ, the completion order of the Recv buffers is no longer guaranteed even when they
use of the same recv_evd. For each connection the Recv buffers completion order is
guaranteed to be in the order of the posted matching Sends to the other end of the
connection. There is no ordering guarantee that Receive buffers will be returned in the
order they were posted even if there is only a single connection (Endpoint) associated
with the SRQ. There is no ordering guarantee between different connections or
between different recv_evds.

man pages section 3: Extended Library Functions e Last Revised 16 Jul 2004

ATTRIBUTES

SEE ALSO

dat_srq_create(3DAT)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.2

MT-Level

Safe

dat_srqg free(3DAT), dat_srg post recv(3DAT), dat_srg query(3DAT),

dat_srqg resize(3DAT), dat srg set 1w(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions

297

dat_srq_free(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

dat_srq_free — destroy an instance of the shared receive queue

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_srqg_free (
IN DAT SRQ HANDLE srqg_handle
)
srq_handle A handle for an instance of SRQ to be destroyed.

The dat_srqg free () function destroys an instance of the SRQ. The SRQ cannot be
destroyed if it is in use by an EP.

It is illegal to use the destroyed handle in any consequent operation.

DAT SUCCESS The operation was successful.
DAT INVALID_ HANDLE The srq_handle argument is an invalid DAT handle.
DAT SRQ IN USE The Shared Receive Queue can not be destroyed

because it is in still associated with an EP instance.

If the Provider detects the use of a deleted object handle, it should return
DAT INVALID HANDLE. The Provider should avoid assigning the used handle as long
as possible. Once reassigned the handle is no longer a handle of a destroyed object.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_srqg_create(3DAT), dat_srqg post recv(3DAT), dat srqg query(3DAT),
dat _srqg resize(3DAT), dat srg set 1w(3DAT), 1ibdat(3LIB), attributes(5)

298 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

dat_srq_post_recv(3DAT)
dat_srq_post_recv — add receive buffers to shared receive queue

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>

DAT RETURN
dat_srqg_post_recv (
IN DAT SRQ HANDLE srqg_handle,
IN DAT_COUNT num_segments,
IN DAT LMR_TRIPLET *local iov,
IN DAT DTO_COOKIE user cookie
)
srq_handle A handle for an instance of the SRQ.
num_segments The number of Imr_triplets in local_iov. Can be 0 for receiving a
zero-size message.
local_iov An I/0 Vector that specifies the local buffer to be filled. Can be
NULL for receiving a zero-size message.
user_cookie A user-provided cookie that is returned to the Consumer at the

completion of the Receive DTO. Can be NULL.

The dat srqg post recv () function posts the receive buffer that can be used for the
incoming message into the local_iov by any connected EP that uses SRQ.

The num_segments argument specifies the number of segments in the local_iov. The
local_iov segments are filled in the I/O Vector order until the whole message is
received. This ensures that all the front segments of the local_iov I/O Vector are
completely filled, only one segment is partially filled, if needed, and all segments that
follow it are not filled at all. The actual order of segment fillings is left to the
implementation.

The user_cookie argument allows Consumers to have unique identifiers for each DTO.
These identifiers are completely under user control and are opaque to the Provider.
There is no requirement on the Consumer that the value user_cookie should be unique
for each DTO. The user_cookie is returned to the Consumer in the Completion event for
the posted Receive.

The completion of the posted Receive is reported to the Consumer asynchronously
through a DTO Completion event based on the configuration of the EP that dequeues
the posted buffer and the specified completion_flags value for Solicited Wait for the
matching Send. If EP Recv Completion Flag is

DAT COMPLETION UNSIGNALLED FLAG, which is the default value for SRQ EP, then
all posted Recvs will generate completions with Signal Notifications.

A Consumer should not modify the local_iov or its content until the DTO is completed.
When a Consumer does not adhere to this rule, the behavior of the Provider and the
underlying Transport is not defined. Providers that allow Consumers to get ownership
of the local_iov but not the memory it specified back after the dat_srq post_recv ()
returns should document this behavior and also specify its support in Provider

Extended Library Functions 299

dat_srq_post_recv(3DAT)

RETURN VALUES

attributes. This behavior allows Consumer full control of the local_iov content after
dat_srg_post_recv () returns. Because this behavior is not guaranteed by all
Providers, portable Consumers shall not rely on this behavior. Consumers shall not
rely on the Provider copying local_iov information.

The DAT SUCCESS return of the dat_srg post recv () is at least the equivalent of
posting a Receive operation directly by native Transport. Providers shall avoid
resource allocation as part of dat_srg _post_recv () to ensure that this operation is
nonblocking.

The completion of the Receive posted to the SRQ is equivalent to what happened to
the Receive posted to the Endpoint for the Endpoint that dequeued the Receive buffer
from the Shared Receive queue.

The posted Recv DTO will complete with signal, equivalently to the completion of
Recv posted directly to the Endpoint that dequeued the Recv buffer from SRQ with
DAT COMPLETION UNSIGNALLED FLAG value not set for it.

The posted Recv DTOs will complete in the order of Send postings to the other
endpoint of each connection whose local EP uses SRQ. There is no ordering among
different connections regardless if they share SRQ and recv_evd or not.

If the reported status of the Completion DTO event corresponding to the posted
RDMA Read DTO is not DAT DTO SUCCESS, the content of the local_iov is not defined
and the transfered_length in the DTO Completion event is not defined.

The operation is valid for all states of the Shared Receive Queue.

The dat_srqg_post_recv () function is asynchronous, nonblocking, and its thread
safety is Provider-dependent.

DAT_ SUCCESS
The operation was successful.

DAT INVALID HANDLE
The srq_handle argument is an invalid DAT handle.

DAT INSUFFICIENT RESOURCES
The operation failed due to resource limitations.

DAT INVALID_ PARAMETER
Invalid parameter. For example, one of the IOV segments pointed to a memory
outside its LMR.

DAT PROTECTION VIOLATION
Protection violation for local or remote memory access.

Protection Zone mismatch between an LMR of one of the local_iov segments and the
SRQ.

300 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

USAGE

ATTRIBUTES

SEE ALSO

dat_srq_post_recv(3DAT)

DAT PRIVILEGES VIOLATION
Privileges violation for local or remote memory access. One of the LMRs used in
local_iov was either invalid or did not have the local write privileges.

For the best Recv operation performance, the Consumer should align each buffer
segment of local_iov to the Optimal Buffer Alignment attribute of the Provider. For
portable applications, the Consumer should align each buffer segment of local_iov to
the DAT OPTIMAL ALIGNMENT.

Since any of the Endpoints that use the SRQ can dequeue the posted buffer from SRQ,
Consumers should post a buffer large enough to handle incoming message on any of
these Endpoint connections.

The buffer posted to SRQ does not have a DTO completion flag value. Posting Recv
buffer to SRQ is semantically equivalent to posting to EP with

DAT COMPLETION_UNSIGNALLED_FLAG is not set. The configuration of the Recv
Completion flag of an Endpoint that dequeues the posted buffer defines how DTO
completion is generated. If the Endpoint Recv Completion flag is

DAT COMPLETION SOLICITED WAIT FLAG then matching Send DTO completion
flag value for Solicited Wait determines if the completion will be Signalled or not. If
the Endpoint Recv Completion flag is not

DAT COMPLETION_SOLICITED_WAIT_ FLAG, the posted Recv completion will be
generated with Signal. If the Endpoint Recv Completion flag is

DAT COMPLETION EVD THRESHOLD FLAG, the posted Recv completion will be
generated with Signal and dat_evd_wait threshold value controls if the waiter will be
unblocked or not.

Only the Endpoint that is in Connected or Disconnect Pending states can dequeue
buffers from SRQ. When an Endpoint is transitioned into Disconnected state, all the
buffers that it dequeued from SRQ are queued on the Endpoint recv_evd. All the
buffers that the Endpoint has not completed by the time of transition into
Disconnected state and that have not completed message reception will be flushed.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_srqg_create(3DAT), dat _srg free(3DAT), dat_srg query(3DAT),
dat_srqg_resize(3DAT), dat srg set 1w(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions 301

dat_srq_query(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

dat_srq_query — provide parameters of the shared receive queue

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_srqg_query (
IN DAT_SRQ HANDLE srqg_handle,
IN DAT SRQ PARAM MASK srg param mask,
ouT DAT_SRQ_PARAM *srg_param
)
srq_handle A handle for an instance of the SRQ.

srq_param_mask ~ The mask for SRQ parameters.

srq_param A pointer to a Consumer-allocated structure that the Provider fills
with SRQ parameters.

The dat srq query () function provides to the Consumer SRQ parameters. The
Consumer passes a pointer to the Consumer-allocated structures for SRQ parameters
that the Provider fills.

The srq_param_mask argument allows Consumers to specify which parameters to
query. The Provider returns values for the requested srq_param_mask parameters. The
Provider can return values for any other parameters.

In addition to the elements in SRQ attribute, dat _srg_gquery () provides additional
information in the srq_param structure if Consumer requests it with srq_param_mask
settings. The two that are related to entry counts on SRQ are the number of Receive
buffers (available_dto_count) available for EPs to dequeue and the number of occupied
SRQ entries (outstanding_dto_count) not available for new Recv buffer postings.

DAT_SUCCESS The operation was successful.
DAT INVALID PARAMETER The srq_param_mask argument is invalid.

DAT INVALID HANDLE The srq_handle argument is an invalid DAT handle.

The Provider might not be able to provide the number of outstanding Recv of SRQ or
available Recvs of SRQ. The Provider attribute indicates if the Provider does not
support the query for one or these values. Even when the Provider supports the query
for one or both of these values, it might not be able to provide this value at this
moment. In either case, the return value for the attribute that cannot be provided will
be DAT VALUE UNKNOWN.

Example: Consumer created SRQ with 10 entries and associated 1 EP with it. 3 Recv
buffers have been posted to it. The query will report:

max_recv_dtos=10,
available_dto_count=3,

outstanding dto count=3.

After a Send message arrival the query will report:

302 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

ATTRIBUTES

SEE ALSO

dat_srq_query(3DAT)

max_recv_dtos=10,
available_dto_count=2,

outstanding dto count=3.

After Consumer dequeues Recv completion the query will report:

max_recv_dtos=10,
available_dto_count=2,
outstanding dto count=2.

In general, each EP associated with SRQ can have multiple buffers in progress of
receiving messages as well completed Recv on EVDs. The watermark setting helps to
control how many Recv buffers posted to SRQ an Endpoint can own.

If the Provider cannot support the query for the number of outstanding Recv of SRQ
or available Recvs of SRQ, the value return for that attribute should be
DAT VALUE_UNKNOWN.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_srqg_create(3DAT), dat _srg free(8DAT), dat srg post recv(3DAT),
dat_srqg_resize(3DAT), dat _srqg set 1w(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions 303

dat_srq_resize(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

dat_srq_resize — modify the size of the shared receive queue

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT RETURN
dat_srqg_resize (
IN DAT SRQ HANDLE srqg_handle,
IN DAT_COUNT srq_max_recv_dto
)
srq_handle A handle for an instance of the SRQ.

srq_max_recv_dto The new maximum number of Recv DTOs that Shared Receive
Queue must hold.

The dat_srq resize () function modifies the size of the queue of SRQ.

Resizing of Shared Receive Queue should not cause any incoming messages on any of
the EPs that use the SRQ to be lost. If the number of outstanding Recv buffers on the
SRQ is larger then the requested srq_max_recv_dto, the operation returns

DAT INVALID_STATE and do not change SRQ. This includes not just the buffers on
the SRQ but all outstanding Receive buffers that had been posted to the SRQ and
whose completions have not reaped yet. Thus, the outstanding buffers include the
buffers on SRQ, the buffers posted to SRQ at are at SRQ associated EPs, and the buffers
posted to SRQ for which completions have been generated but not yet reaped by
Consumer from recv_evds of the EPs that use the SRQ.

If the requested srq_max_recv_dto is below the SRQ low watermark, the operation
returns DAT _INVALID STATE and does not change SRQ.

DAT_ SUCCESS
The operation was successful.

DAT INVALID HANDLE
The srq_handle argument is an invalid DAT handle.

DAT INVALID PARAMETER
The srq_max_recv_dto argument is invalid.

DAT INSUFFICIENT RESOURCES
The operation failed due to resource limitations.

DAT INVALID_ STATE
Invalid state. Either the number of entries on the SRQ exceeds the requested SRQ
queue length or the requested SRQ queue length is smaller than the SRQ low
watermark.

The dat_srqg_resize () function is required not to lose any buffers. Thus, it cannot
shrink below the outstanding number of Recv buffers on SRQ. There is no requirement
to shrink the SRQ to return DAT SUCCESS.

304 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

ATTRIBUTES

SEE ALSO

dat_srq_resize(3DAT)

The quality of the implementation determines how closely to the Consumer-requested
value the Provider shrinks the SRQ. For example, the Provider can shrink the SRQ to
the Consumer-requested value and if the requested value is smaller than the
outstanding buffers on SRQ, return DAT INVALID STATE; or the Provider can shrink
to some value larger than that requested by the Consumer but below current SRQ size;
or the Provider does not change the SRQ size and still returns DAT SUCCESS.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_srqg_create(3DAT), dat _srqg free(3DAT), dat srg post recv(3DAT),
dat_srqg_query(3DAT), dat srg set 1w(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions 305

dat_srq_set_Iw(3DAT)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

dat_srq_set_Iw — set low watermark on shared receive queue

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_srg_set_lw (
IN DAT SRQ HANDLE srqg_handle,
IN DAT_COUNT low_watermark
)
srq_handle Ahandle for an instance of a Shared Receive Queue.
low_watermark The low watermark for the number of Recv buffers on SRQ.

The dat_srqg_set 1w() function sets the low watermark value for the SRQ and
arms the SRQ for generating an asynchronous event for the low watermark. An
asynchronous event will be generated when the number of buffers on the SRQ is
below the low watermark for the first time. This can occur during the current call or
when an associated EP takes a buffer from the SRQ.

The asynchronous event will be generated only once per setting of the low watermark.
Once an event is generated, no new asynchronous events for the number of buffers
inthe SRQ below the specified value will be generated until the SRQ is again set for
the Low Watermark. If the Consumer is again interested in the event, the Consumer
should set the low watermark again.

DAT SUCCESS
The operation was successful.

DAT INVALID HANDLE
The srq_handle argument is an invalid DAT handle.

DAT INVALID_ PARAMETER
Invalid parameter; the value of low_watermark is exceeds the value of max_recv_dtos.

DAT MODEL_NOT_SUPPORTED
The requested Model was not supported by the Provider. The Provider does not
support SRQ Low Watermark.

Upon receiving the asynchronous event for the SRQ low watermark, the Consumer
can replenish Recv buffers on the SRQ or take any other action that is appropriate.

Regardless of whether an asynchronous event for the low watermark has been
generated, this operation will set the generation of an asynchronous event with the
Consumer-provided low watermark value. If the new low watermark value is below
the current number of free Receive DTOs posted to the SRQ, an asynchronous event
will be generated immediately. Otherwise the old low watermark value is simply
replaced with the new one.

306 man pages section 3: Extended Library Functions ¢ Last Revised 16 Jul 2004

ATTRIBUTES

SEE ALSO

dat_srq_set_Iw(3DAT)

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Standard: uDAPL, 1.2

MT-Level

Unsafe

dat_srqg create(3DAT), dat _srg free(3DAT), dat srg post recv(3DAT),

dat_srqg_query(3DAT), dat_srg resize(3DAT), 1ibdat(3LIB), attributes(5)

Extended Library Functions

307

dat_strerror(3DAT)
NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

dat_strerror — convert a DAT return code into human readable strings

cc [flag... 1 file... -1dat [library...]
#include <dat/udat.h>
DAT_RETURN
dat_strerror (
IN DAT RETURN return,
ouT const char **major message,
ouT const char **minorfmessage
)
return DAT function return value.
message A pointer to a character string for the return.

The dat_strerror () function converts a DAT return code into human readable
strings. The major_message is a string-converted DAT TYPE_STATUS, while
minor_message is a string-converted DAT SUBTYPE_STATUS. If the return of this
function is not DAT SUCCESS, the values of major_message and minor_message are not
defined.

If an undefined DAT RETURN value was passed as the return parameter, the operation
fails with DAT INVALID PARAMETER returned. The operation succeeds when
DAT_SUCCESS is passed in as the return parameter.

DAT_ SUCCESS The operation was successful.

DAT INVALID PARAMETER Invalid parameter. The return value is invalid.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(b)

308 man pages section 3: Extended Library Functions * Last Revised 16 Jul 2004

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

demangle(3EXT)
demangle, cplus_demangle — decode a C++ encoded symbol name

ce [flag ... 1 file[library ... 1 -ldemangle

#include <demangle.h>

int ecplus demangle (const char *symbol, char *profotype, size t size) ;

The cplus_demangle () function decodes (demangles) a C++ linker symbol name
(mangled name) into a (partial) C++ prototype, if possible. C++ mangled names may
not have enough information to form a complete prototype.

The symbol string argument points to the input mangled name.
The prototype argument points to a user-specified output string buffer, of size bytes.

The cplus_demangle () function operates on mangled names generated by
SPARCompilers C++3.0.1,4.0.1, 4.1 and 4.2.

The cplus_demangle () function improves and replaces the demangle () function.

Refer to the CC. 1, dem.1, and c++filt .1 manual pages in the
/opt/SUNWspro/man/manl directory. These pages are only available with the
SPROcc package.

The cplus_demangle () function returns the following values:

0 The symbol argument is a valid mangled name and
prototype contains a (partial) prototype for the symbol.

DEMANGLE ENAME The symbol argument is not a valid mangled name and
the content of prototype is a copy of the symbol.

DEMANGLE_ESPACE The prototype output buffer is too small to contain the
prototype (or the symbol), and the content of prototype
is undefined.

Extended Library Functions 309

devid_get(3DEVID)

NAME | devid_get, devid_compare, devid_deviceid_to_nmlist, devid_free, devid_free_nmlist,
devid_get_minor_name, devid_sizeof, devid_str_decode, devid_str_free,
devid_str_encode, devid_valid — device ID interfaces for user applications

SYNOPSIS | cc [flag... 1 file... -1devid [library... 1]

#include <devid.h>

int devid get(int fd, ddi_devid t *retdevid) ;

void devid free(ddi devid t devid) ;

int devid _get minor name (int fd, char **retminor_name) ;

int devid deviceid to nmlist (char *search_path, ddi_devid_t devid,
char *minor_name, devid nmlist t **retlist) ;

void devid free nmlist(devid nmlist t *list) ;

int devid compare (ddi_devid t devidl, ddi devid t devid2) ;
size t devid sizeof (ddi_devid t devid) ;

int devid valid(ddi_devid_t devid) ;

char *devid str encode (ddi devid t devid, char *minor_name) ;

int devid str decode(char *devidstr, ddi_ devid t #retdevid, char
**retminor_name) ;

void devid str free(char *str);

DESCRIPTION | These functions provide unique identifiers (device IDs) for devices. Applications and
device drivers use these functions to identify and locate devices, independent of the
device’s physical connection or its logical device name or number.

The devid get () function returns in retdevid the device ID for the device associated
with the open file descriptor fd, which refers to any device. It returns an error if the
device does not have an associated device ID. The caller must free the memory
allocated for retdevid using the devid_free () function.

The devid free () function frees the space that was allocated for the returned devid
by devid get () and devid str decode().

The devid get minor name () function returns the minor name, in retminor_name,
for the device associated with the open file descriptor fd. This name is specific to the
particular minor number, but is "instance number" specific. The caller of this function
must free the memory allocated for the returned retminor_name string using
devid str free().

The devid deviceid _to_nmlist () function returns an array of devid_nmlist
structures, where each entry matches the devid and minor_name passed in. If the
minor_name specified is one of the special values (DEVID MINOR NAME ALL,

DEVID MINOR NAME ALL CHR,or DEVID MINOR NAME ALL_BLXK), then all minor
names associated with devid which also meet the special minor_name filtering

310 man pages section 3: Extended Library Functions ¢ Last Revised 30 Nov 2001

devid_get(3DEVID)

requirements are returned. The devid_nmlist structure contains the device name and
device number. The last entry of the array contains a null pointer for the devname and
NODEV for the device number. This function traverses the file tree, starting at
search_path. For each device with a matching device ID and minor name tuple, a
device name and device number are added to the retlist. If no matches are found, an
error is returned. The caller of this function must free the memory allocated for the
returned array with the devid_free nmlist () function. This function may take a
long time to complete if called with the device ID of an unattached device.

The devid_free_nmlist () function frees the memory allocated by the
devid deviceid to nmlist () function.

The devid_compare () function compares two device IDs and determines both
equality and sort order. The function returns an integer greater than 0 if the device ID
pointed to by devid1 is greater than the device ID pointed to by devid2. It returns 0 if
the device ID pointed to by devidl is equal to the device ID pointed to by devid2. It
returns an integer less than 0 if the device ID pointed to by devid1 is less than the
device ID pointed to by devid2. This function is the only valid mechanism to determine
the equality of two devids. This function may indicate equality for arguments which
by simple inspection appear different.

The devid_sizeof () function returns the size of devid in bytes.

The devid valid () function validates the format of a devid. It returns 1 if the format
is valid, and 0 if invalid. This check may not be as complete as the corresponding
kernel function ddi_devid valid () (see ddi_devid_ compare(9F)).

The devid str encode () function encodes a devid and minor_name into a
null-terminated ASCII string, returning a pointer to that string. To avoid shell
conflicts, the devid portion of the string is limited to uppercase and lowercase letters,
digits, and the plus (+), minus (-), period (.), equals (=), underscore (_), tilde (~), and
comma (,) characters. If there is an ASCII quote character in the binary form of a devid,
the string representation will be in hex_id form, not ascii_id form. The comma (,)
character is added for "id1," at the head of the string devid. If both a devid and a
minor_name are non-null, a slash (/)is used to separate the devid from the minor_name
in the encoded string. If minor_name is null, only the devid is encoded. If the devid is
null then the special string "id0" is returned. Note that you cannot compare the
returned string against another string with st remp(3C) to determine devid equality.
The string returned must be freed by calling devid_str_free().

The devid_str decode () function takes a string previously produced by the
devid_str encode () or ddi_devid str encode () (see

ddi_devid_ compare(9F)) function and decodes the contained device ID and minor
name, allocating and returning pointers to the extracted parts via the retdevid and
retminor_name arguments. If the special devidstr "id0" was specified, the returned
device ID and minor name will both be null. A non-null returned devid must be freed
by the caller by the devid_free () function. A non-null returned minor name must
be freed by calling devid str free().

Extended Library Functions 311

devid_get(3DEVID)

RETURN VALUES

312

EXAMPLES

The devid_str free () function frees the character string returned by
devid_str_encode () and the retminor_name argument returned by
devid_str decode().

Upon successful completion, the devid_get (), devid_get_minor_name (),
devid_str decode (), and devid deviceid to nmlist () functions return 0.
Otherwise, they return —1.

The devid compare () function returns the following values:

-1 The device ID pointed to by devid1 is less than the device ID pointed to by
devid2.

0 The device ID pointed to by devidl is equal to the device ID pointed to by
devid2.

1 The device ID pointed to by devidl is greater than the device ID pointed to
by devid?2.

The devid sizeof () function returns the size of devid in bytes. If devid is null, the
number of bytes that must be allocated and initialized to determine the size of a
complete device ID is returned.

The devid valid () function returns 1 if the devid is valid and 0 if the devid is
invalid.

The devid str encode () function returns NULL to indicate failure. Failure may be
caused by attempting to encode an invalid string. If the return value is non-null, the
caller must free the returned string by using the devid_str free () function.

EXAMPLE 1 Using devid_get (), devid_get minor name(),and devid str_encode
0

The following example shows the proper use of devid_get (),
devid_get_minor name (), and devid_str_encode () to free the space allocated
for devid, minor_name and encoded devid.

int f£d4;
ddi_devid t devid;
char *minor name, *devidstr;

if ((fd = open("/dev/dsk/c0t3d0s0", O RDONLY|O NDELAY)) < 0) {

}

if (devid_get (fd, &devid) != 0) {

}

if (devid_get minor name (fd, &minor name) != 0) {

}

if ((devidstr = devid_str encode(devid, minor_name)) == 0) {

}

printf ("devid %s\n", devidstr);

man pages section 3: Extended Library Functions ¢ Last Revised 30 Nov 2001

ATTRIBUTES

SEE ALSO

devid_get(3DEVID)

EXAMPLE 1 Using devid get (), devid_get minor name(),and devid str_encode

() (Continued)

devid str free(devidstr) ;
devid_free(devid) ;
devid str free(minor name) ;

EXAMPLE 2 Using devid_deviceid_to_nmlist () and devid_free nmlist ()

The following example shows the proper use of devid deviceid to _nmlist ()

and devid_ free nmlist():

devid nmlist_t *list = NULL;
int err;
if (devid_deviceid to_nmlist ("/dev/rdsk", devid,
minor name, &list))
return (-1);
/* loop through list and process device names and numbers */
devid_free nmlist (list);

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Stable

free(3C), 1ibdevid(3LIB), attributes(5), ddi_devid_compare(9F)

Extended Library Functions 313

di_binding_name(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

di_binding_name, di_bus_addr, di_compatible_names, di_devid, di_driver_name,
di_driver_ops, di_driver_major, di_instance, di_nodeid, di_node_name - return
libdevinfo node information

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

char *di binding name (di node t node) ;
char *di bus addr (di_node_t node) ;

int di_compatible names (di node t node, char **names) ;
ddi_devid t di devid(di node t mnode) ;
char *di_driver name (di node t node) ;
uint t di_driver ops(di_node_t node) ;
int di_driver major (di_node t node) ;
int di_instance(di_node_ t node) ;

int di nodeid(di_node_t node) ;

char *di_node name (di_ node t node) ;
names The address of a pointer.

node A handle to a device node.
These functions extract information associated with a device node.

The di_binding name () function returns a pointer to the binding name. The
binding name is the name used by the system to select a driver for the device.

The di_bus_addr () function returns a pointer to a null-terminated string containing
the assigned bus address for the device. NULL is returned if a bus address has not been
assigned to the device. A zero-length string may be returned and is considered a valid

bus address.

The return value of di_compatible_ names () is the number of compatible names.
names is updated to point to a buffer contained within the snapshot. The buffer
contains a concatenation of null-terminated strings, for example:

<namel>/0<name2>/0 . . .<namens,/0

See the discussion of generic names in Writing Device Drivers for a description of how
compatible names are used by Solaris to achieve driver binding for the node.

The di_devid () function returns the device ID for node, if it is registered. Otherwise,
a null pointer is returned. Interfaces in the 1ibdevid(3LIB) library may be used to
manipulate the handle to the device id. This function is obsolete and might be
removed from a future Solaris release. Applications should use the “devid” property
instead.

314 man pages section 3: Extended Library Functions ¢ Last Revised 22 Mar 2004

EXAMPLES

ATTRIBUTES

SEE ALSO

di_binding_name(3DEVINFO)

The di_driver name () function returns the name of the driver bound to the node. A
null pointer is returned if node is not bound to any driver.

The di_driver ops () function returns a bit array of device driver entry points that
are supported by the driver bound to this node. Possible bit fields supported by the
driver are DI_CB_OPS,DI_BUS_OPS,DI_STREAM OPS.

The di_driver major () function returns the major number associated with the
driver bound to node. If there is no driver bound to the node, this function returns —1.

The di_instance () function returns the instance number of the device. A value of
-1 indicates an instance number has not been assigned to the device by the system.

The di_nodeid () function returns the type of device, which may be one of the
following possible values: DI_PSEUDO_NODEID, DI_PROM_NODEID, and

DI SID NODEID. Devices of type DI PROM NODEID may have additional properties
that are defined by the PROM. See di_prom prop data(3DEVINFO) and
di_prom prop lookup bytes(3DEVINFO).

The di_node name () function returns a pointer to a null-terminated string
containing the node name.

See di init(3DEVINFO) for an example demonstrating typical use of these
functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving (di_devid () is obsolete)

MT-Level Safe

di_init(3DEVINFO), di prom_init(3DEVINFO),
di_prom prop data(3DEVINFO), di prom prop lookup bytes(3DEVINFO),
libdevid(3LIB), 1ibdevinfo(3LIB), attributes(b)

Writing Device Drivers

Extended Library Functions 315

di_child_node(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

di_child_node, di_parent_node, di_sibling_node, di_drv_first_node, di_drv_next_node
— libdevinfo node traversal functions

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

di_node t di_child node(di node_ t node) ;

di node t di parent node(di_node_ t node) ;

di _node t di_sibling node(di_node_t node) ;

di node t di drv first node(const char *drv_name, di_node_ t root) ;

di_node t di_drv next node(di node t node) ;

dru_name The name of the driver of interest.
node A handle to any node in the snapshot.
root The handle of the root node for the snapshot returned by

di_init(3DEVINFO).

The kernel device configuration data may be viewed in two ways, either as a tree of
device configuration nodes or as a list of nodes associated with each driver. In the tree
view, each node may contain references to its parent, the next sibling in a list of
siblings, and the first child of a list of children. In the per-driver view, each node
contains a reference to the next node associated with the same driver. Both views are
captured in the snapshot, and the interfaces are provided for node access.

The di_child node () function obtains a handle to the first child of node. If no child
node exists in the snapshot, DI_NODE_NIL is returned and errno is set to ENXIO or
ENOTSUP.

The di_parent node () function obtains a handle to the parent node of node. If no
parent node exists in the snapshot, DI_NODE_NIL is returned and errno is set to
ENXTIO or ENOTSUP.

The di_sibling node () function obtains a handle to the next sibling node of node.
If no next sibling node exists in the snapshot, DI_NODE_NIL is returned and errno is
set to ENXIO or ENOTSUP.

The di_drv_first node () function obtains a handle to the first node associated
with the driver specified by drv_name. If there is no such driver, DI_NODE_NIL is
returned with errno is set to EINVAL. If the driver exists but there is no node
associated with this driver, DI_NODE_NIL is returned and errno is set to ENXIO or
ENOTSUP.

The di_drv _next node () function returns a handle to the next node bound to the
same driver. If no more nodes exist, DI_NODE_NIL is returned.

Upon successful completion, a handle is returned. Otherwise, DI NODE NIL is
returned and errno is set to indicate the error.

316 man pages section 3: Extended Library Functions ¢ Last Revised 1 Dec 1998

ERRORS

ATTRIBUTES

SEE ALSO

di_child_node(3DEVINFO)

These functions will fail if:

EINVAL The argument is invalid.
ENXIO The requested node does not exist.
ENOTSUP The node was not found in the snapshot, but it may exist in the

kernel. This error may occur if the snapshot contains a partial
device tree.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), 1ibdevinfo(3LIB), attributes(5)

Writing Device Drivers

Extended Library Functions 317

di_devfs_path(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_devfs_path, di_devfs_minor_path, di_devfs_path_free — generate and free physical
path names

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

char *di_devfs path(di node t node) ;
char *di_devfs minor path(di minor t minor) ;

void di_devfs path free(char *path_buf) ;

node The handle to a device node in the snapshot.
minor The handle to a device minor node in the snapshot.
path_buf A pointer returned by di_devfs path() or

di devfs minor path().

The di_devfs path () function generates the physical path of the device node
specified by node.

The di_devfs_minor_path() function generates the physical path of the device
minor node specified by minor.

The di_devfs_path_free () function frees memory that was allocated to store the
physical path by di_devfs_path() and di_devfs_minor_path (). The caller of
di devfs path() and di_devfs minor path() is responsible for freeing this
memory allocated by calling di_devfs path free().

Upon successful completion, the di_devfs path() and di_devfs minor path()
functions return a pointer to the string containing the physical path of a device node
or a device minor node, respectively. Otherwise, they return NULL and errno is set to
indicate the error.

The di_devfs path() and di_devfs minor path() functions will fail if:

EINVAL The node or minor argument is not a valid handle.

The di_devfs path() and di_devfs minor path() functions can also return
any error value returned by malloc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), 1ibdevinfo(3LIB), malloc(3C), attributes(5)

Writing Device Drivers

318 man pages section 3: Extended Library Functions ¢ Last Revised 22 Mar 2004

di_init(3DEVINFO)
NAME | di_init, di_fini — create and destroy a snapshot of kernel device tree

SYNOPSIS | cc [flag... 1 file... -1ldevinfo [library...]

#include <libdevinfo.h>
di_node_t di_init (const char *phys_path, uint_t flags) ;
void di_fini (di node_ t root) ;

PARAMETERS | flags Snapshot content specification. The possible values can be a
bitwise OR of the following;:

DINFOSUBTREE Include subtree.
DINFOPROP Include properties.
DINFOMINOR Include minor data.
DINFOCPYALL Include all of the above.

DINFOLYR Include device layering data. If flags is 0, the
snapshot contains only a single node without properties or minor
nodes.

phys_path Physical path of the root node of the snapshot. See
di_devfs_ path(3DEVINFO).

root Handle obtained by calling di_init ().

DESCRIPTION | The di_init () function creates a snapshot of the kernel device tree and returns a
handle of the root node. The caller specifies the contents of the snapshot by providing
flag and phys_path.

The di_fini () function destroys the snapshot of the kernel device tree and frees the
associated memory. All handles associated with this snapshot become invalid after the
calltodi fini ().

RETURN VALUES | Upon success, di_init () returns a handle. Otherwise, DI_NODE_NIL is returned
and errno is set to indicate the error.

ERRORS | Thedi_init () function can set errno to any error code that can also be set by
open(2), ioct1(2) or mmap(2). The most common error codes include:

EACCESS Insufficient privilege for accessing device configuration data.

ENXIO Either the device named by phys_path is not present in the system,
or the devinfo(7D) driver is not installed properly.

EINVAL Either phys_path is incorrectly formed or the flags argument is
invalid.

EXAMPLES | EXAMPLE 1 Using the 1ibdevinfo Interfaces To Print All Device Tree Node Names

The following is an example using the 1ibdevinfo interfaces to print all device tree
node names:

Extended Library Functions 319

di_init(3DEVINFO)

EXAMPLE 1 Using the 1ibdevinfo Interfaces To Print All Device Tree Node Names
(Continued)

/*
* Code to print all device tree node names

*/

#include <stdio.h>
#include <libdevinfo.h>

int
prt_nodename (di_node t node, void *arg)

{

printf ("$s\n", di node name (node)) ;
return (DI_WALK CONTINUE) ;

main ()

{

di node t root node;

if ((root_node = di_init("/", DINFOSUBTREE)) == DI_NODE_NIL) {
fprintf (stderr, "di_init() failed\n");
exit (1) ;

}

di_walk node (root_node, DI_WALK CLDFIRST, NULL, prt_nodename) ;
di fini(root node) ;

EXAMPLE 2 Using the 1ibdevinfo Interfaces To Print The Physical Path Of SCSI Disks

The following example uses the 1ibdevinfo interfaces to print the physical path of
SCSI disks:

/*
* Code to print physical path of scsi disks
*/

#include <stdio.h>
#include <libdevinfo.h>
#define DISK DRIVER nsd" /* driver name */

void
prt_diskinfo(di_node_t node)
{
int instance;
char *phys_path;

/*

* If the device node exports no minor nodes,

* there is no physical disk.

*/

if (di_minor next (node, DI_MINOR NIL) == DI_MINOR_NIL)
return;

}

320 man pages section 3: Extended Library Functions ¢ Last Revised 8 Dec 2003

ATTRIBUTES

SEE ALSO

di_init(3DEVINFO)

EXAMPLE 2 Using the 1ibdevinfo Interfaces To Print The Physical Path Of SCSI Disks
(Continued)

instance = di_ instance (node) ;

phys path = di_devfs_path (node) ;

printf ("$s%d: %$s\n", DISK DRIVER, instance, phys path);
di_devfs_path_ free(phys_path);

}

void
walk_disknodes (di_node_t node)

{

node = di_drv_first node (DISK DRIVER, node) ;
while (node != DI_NODE NIL) {

prt_diskinfo (node) ;

node = di_drv_next node (node) ;

}

main ()

{

di_node_t root_node;

if ((root node = di_init("/", DINFOCPYALL)) == DI _NODE NIL) ({
fprintf (stderr, "di_init() failed\n");
exit (1) ;

walk_disknodes (root_node) ;
di_ fini (root_node) ;

}

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

open(2), ioctl(2), mmap(2), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Extended Library Functions 321

di_link_next_by_node(3DEVINFO)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_link_next_by_node, di_link_next_by_Inode — libdevinfo link traversal functions

cc [flag... 1 file... -ldevinfo [library...]

#include <libdevinfo.h>

di_link t di link next by node(di lnode t node, di_ link t link,
uint t endpoint) ;

di link t di_ link next by lnode(di node t Inode, di link t link,
uint_t endpoint) ;

link The handle to the current the link or DI_LINK NIL.

endpoint Specify which endpoint of the link the node or Inode should
correspond to, either DI_LINK TGT or DI_LINK SRC.

node The device node with which the link is associated.

Inode The Inode with which the link is associated.

The di link next by node () function returns a handle to the next link that has
the same endpoint node as link. If link is DI _LINK NIL, a handle is returned to the
first link whose endpoint specified by endpoint matches the node specified by node.

The di_link next by Ilnode () function returns a handle to the next link that has
the same endpoint Inode as link. If link is DI_LINK NIL, a handle is returned to the
first link whose endpoint specified by endpoint matches the Inode specified by Inode.

Upon successful completion, a handle to the next link is returned. Otherwise,
DI _LINK NIL is returned and errno is set to indicate the error.

The di_link next by node() and di_link next by 1lnode () functions will
fail if:

EINVAL An argument is invalid.

ENXIO The end of the link list has been reached.

The di_1link next by node () function will fail if:

ENOTSUP Device usage information is not available in snapshot.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), 1ibdevinfo(3LIB), attributes(5)

322 man pages section 3: Extended Library Functions ¢ Last Revised 12 Jul 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_link_spectype(3DEVINFO)
di_link_spectype, di_link_to_Inode — return libdevinfo link information

cc [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.hs>

int di_link spectype(di link t link) ;
di lnode t di link to 1lnode(di link t link, uint_t endpoint) ;
link Ahandle to a link.

endpoint specifies the endpoint of the link, which should correspond to
either DI LINK TGT or DI_LINK SRC

The di_1link spectype () function returns libdevinfo link information.

Thedi link to lnode () function takes a link specified by link and returns the
Inode corresponding to the link endpoint specified by endpoint.

The di link spectype () function returns the spectype parameter flag that was
used to open the target device of a link, either S IFCHR or S_IFBLK.

Upon successful completion, di_link to lnode () returns a handle to an Inode.
Otherwise, DI LINK NIL is returned and errno is set to indicate the error.

The di_link to_ lnode () function will fail if:

EINVAL An argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), 1ibdevinfo(3LIB), attributes(5)

Extended Library Functions 323

di_Inode_name(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_Inode_name, di_Inode_devinfo, di_lnode_devt — return libdevinfo Inode
information

cc [flag... 1 file... -1ldevinfo [library...]
#include <libdevinfo.h>

char *di_1lnode name (di lnode_ t Inode) ;

di node t di lnode devinfo(di lnode t Inode) ;
int di_lnode devt(di_lnode t Inode, dev_t *devt) ;
Inode A handle to an Inode.

devt A pointer to a dev_t that can be returned.
These functions return 1ibdevinfo Inode information.

The di_1node name () function returns a pointer to the name associated with Inode.

The di 1node devinfo () function returns a handle to the device node associated
with Inode.

The di 1node devt () function sets the dev_t pointed to by the devt parameter to
the dev_t associated with Inode.

The di 1node name () function returns a pointer to the name associated with Inode.

The di_1node devinfo () function returns a handle to the device node associated
with Inode.

The di_1node_devt () function returns 0 if the requested attribute exists in Inode
and was returned. It returns —1 if the requested attribute does not exist and sets errno
to indicate the error.

The di_1node devt () function will fail if:

EINVAL An argument was invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), 1ibdevinfo(3LIB), attributes(5)

324 man pages section 3: Extended Library Functions ¢ Last Revised 22 Mar 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_Inode_next(3DEVINFO)
di_lnode_next — libdevinfo Inode traversal function

cc [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.hs>

di_Inode t di lnode next (di_node t node, di_1lnode_ t Inode) ;
node A handle to a di_node.
Inode A handle to an Inode.

The di_1node next () function returns a handle to the next Inode for the device
node specified by node. If Inode is DI LNODE NIL, a handle to the first Inode is
returned.

Upon successful completion, a handle to an Inode is returned. Otherwise,
DI LNODE NIL is returned and errno is set to indicate the error.

The di_1node next () function will fail if:

EINVAL An argument is invalid.
ENOTSUP Device usage information is not available in snapshot.
ENXIO The end of the Inode list has been reached.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), 1ibdevinfo(3LIB), attributes(5)

Extended Library Functions 325

di_Inode_private_set(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

di_Inode_private_set, di_Inode_private_get, di_minor_private_set,
di_minor_private_get, di_node_private_set, di_node_private_get, di_link_private_set,
di_link_private_get — manipulate libdevinfo user traversal pointers

cc [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

void di_ lnode private set(di lnode t Inode, void *data) ;
void *di_lnode private get(di lnode_ t Inode) ;

void di_minor private set(di minor t minor, void *data) ;
void *di minor private get(di minor_ t minor) ;

void di node private set(di node t node, void *data) ;
void *di node private get(di node t node) ;

void di_link private set(di link t link, void *data) ;

void *di link private get(di link t link) ;

Inode A handle to an Inode.

minor A handle to a minor node.

node A handle to a devinfo node.
link A handle to a link.

data A pointer to caller-specific data.

The di_1node_private_set () function allows a caller to associate caller-specific
data pointed to by data with an Inode specified by Inode, thereby facilitating traversal
of Inodes in the snapshot.

The di_lnode_private_get () function allows a caller to retrieve a data pointer
that was associated with an Inode by a call to di 1lnode private set ().

The di_minor private_set () function allows a caller to associate caller-specific
data pointed to by data with a minor node specified by minor, thereby facilitating
traversal of minor nodes in the snapshot.

The di_minor private get () function allows a caller to retrieve a data pointer
that was associated with a minor node obtained by a call to
di minor private set ().

The di_node private set () function allows a caller to associate caller-specific
data pointed to by data with a devinfo node, thereby facilitating traversal of devinfo
nodes in the snapshot.

The di_node private get () function allows a caller to retrieve a data pointer that
was associated with a devinfo node obtained by a call to di_node_private_ set ().

326 man pages section 3: Extended Library Functions ¢ Last Revised 22 Mar 2004

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_Inode_private_set(3DEVINFO)

The di_link private_set () function allows a caller to associate caller-specific
data pointed to by data with a link, thereby facilitating traversal of links in the
snapshot.

The di_link private_get () function allows a caller to retrieve a data pointer that
was associated with a link obtained by a call to di_link private set ().

These functions do not perform any type of locking. It is up to the caller to satisfy any
locking needs.

The di 1node private set(),di minor private set(),
di node private set(),anddi link private set () functions do not return
values.

The di_Inode private get(),di minor private get(),

di_node private get(),and di_node private get () functions return a
pointer to caller-specific data that was initialized with their corresponding set
function. If no caller-specific data was assigned with a set function, the results are
undefined.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_ init(3DEVINFO), l1ibdevinfo(3LIB), attributes(5)

Extended Library Functions 327

di_minor_devt(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS
DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_minor_devt, di_minor_name, di_minor_nodetype, di_minor_spectype — return
libdevinfo minor node information

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

dev_t di_minor devt(di minor t minor) ;
char *di_minor name (di minor t minor) ;
char *di_minor nodetype (di_minor_ t minor) ;
int di minor spectype(di minor t minor) ;

minor A handle to minor data node.
These functions return 1ibdevinfo minor node information.

The di_minor name () function returns the minor name. See
ddi_create_minor node(9F) for a description of the name parameter.

The di_minor devt () function returns the dev_t value of the minor node that is
specified by SYS V ABL. See getmajor(9F), getminor(9F), and
ddi create minor node(9F) for more information.

The di_minor spectype () function returns the spec_type of the file, either
S_IFCHR or S_IFBLK. See ddi_create_minor_node(9F) for a description of the
spec_type parameter.

The di_minor nodetype () function returns the minor node_type of the minor node.
See ddi_create_minor_node(9F) for a description of the node_type parameter.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

attributes(5), ddi_create minor node(9F), getmajor(9F), getminor(9F)

Writing Device Drivers

328 man pages section 3: Extended Library Functions ¢ Last Revised 1 Dec 1998

di_minor_next(3DEVINFO)
NAME | di_minor_next — libdevinfo minor node traversal functions

SYNOPSIS | cc [flag... 1 file... -1ldevinfo [library...]

#include <libdevinfo.h>
di minor t di minor next(di node t node, di minor t minor) ;
PARAMETERS | minor Handle to the current minor node or DI_MINOR NIL.

node Device node with which the minor node is associated.

DESCRIPTION | The di_minor next () function returns a handle to the next minor node for the
device node node. If minor is DI MINOR N1IL, a handle to the first minor node is
returned.

RETURN VALUES | Upon successful completion, a handle to the next minor node is returned. Otherwise,
DI MINOR NIL is returned and errno is set to indicate the error.

ERRORS | The di minor next () function will fail if:

EINVAL Invalid argument.
ENOTSUP Minor node information is not available in snapshot.
ENXIO End of minor node list.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

SEE ALSO | libdevinfo(3LIB), attributes(b)

Writing Device Drivers

Extended Library Functions 329

di_prom_init(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_prom_init, di_prom_fini — create and destroy a handle to the PROM device
information

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

di_prom handle_t di prom init(void);
void di prom fini(di prom handle t ph);

ph Handle to prom returned by di_prom_init ().

For device nodes whose nodeid value is DI_PROM_NODEID (see

di nodeid(3DEVINFO)), additional properties can be retrieved from the PROM. The
di_prom_init () function returns a handle that is used to retrieve such properties.
This handle is passed to di_prom_prop lookup_ bytes(3DEVINFO) and
di_prom_prop_ next(3DEVINFO).

The di_prom_ fini () function destroys the handle and all handles to the PROM
device information obtained from that handle.

Upon successful completion, di_prom_init () returns a handle. Otherwise,
DI_PROM HANDLE NIL is returned and errno is set to indicate the error.

The di_prom_init () sets errno function to any error code that can also be set by
openprom(7D) or malloc(3C).

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di nodeid(3DEVINFO), di prom prop next(3DEVINFO),
di_prom prop lookup bytes(3DEVINFO), libdevinfo(3LIB), malloc(3C),
attributes(5), openprom(7D)

330 man pages section 3: Extended Library Functions ¢ Last Revised 1 Dec 1998

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

di_prom_prop_data(3DEVINFO)

di_prom_prop_data, di_prom_prop_next, di_prom_prop_name — access PROM device
information

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

di prom prop t di prom prop next(di prom handle t ph, di node t
node, di_prom prop t prom_prop) ;

char *di_prom prop name (di_prom_prop_ t prom_prop) ;

int di_prom prop_data(di_prom prop_t prom_prop, uchar_t
**prop_data) ;

node Handle to a device node in the snapshot of kernel device tree.
ph PROM handle

prom_prop Handle to a PROM property.

prop_data Address of a pointer.

The di_prom prop_next () function obtains a handle to the next property on the
PROM property list associated with node. If prom_prop is DI_PROM_PROP_NIL, the
first property associated with node is returned.

The di_prom prop_name () function returns the name of the prom_prop property.

The di_prom prop_data () function returns the value of the prom_prop property.
The return value is a non-negative integer specifying the size in number of bytes in
prop_data.

All memory allocated by these functions is managed by the library and must not be
freed by the caller.

The di_prom_prop_data () function returns the number of bytes in prop_data and
prop_data is updated to point to a byte array containing the property value. If 0 is
returned, the property is a boolean property and the existence of this property
indicates the value is true.

The di_prom_prop_name () function returns a pointer to a string that contains the
name of prom_prop.

The di_prom_prop_next () function returns a handle to the next PROM property.
DI _PROM PROP_NIL is returned if no additional properties exist.

See openprom(7D) for a description of possible errors.

See attributes(5) for descriptions of the following attributes:

Extended Library Functions 331

di_prom_prop_data(3DEVINFO)

332

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

MT-Level

Safe

SEE ALSO | attributes(5), openprom(7D)

Writing Device Drivers

man pages section 3: Extended Library Functions ¢ Last Revised 1 Dec 1998

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

di_prom_prop_lookup_bytes(3DEVINFO)

di_prom_prop_lookup_bytes, di_prom_prop_lookup_ints,
di_prom_prop_lookup_strings — search for a PROM property

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

int di prom prop lookup bytes(di prom handle t ph, di node t node,
const char *prop_name, uchar t **prop_data) ;

int di_prom prop lookup ints(di_ prom handle t ph, di node_t node,
const char *prop_name, int **prop_data);

int di prom prop lookup strings(di prom handle t ph, di node t
node, const char *prop_name, char **prop_data) ;

node Handle to device node in snapshot created by
di_init(3DEVINFO).

ph Handle returned by di_prom_init(3DEVINFO).

prop_data For di_prom_prop_lookup_bytes (), the address of a pointer

to an array of unsigned characters.

For di_prom prop_lookup_ints (), the address of a pointer to
an integer.

For di_prom prop_lookup_strings (), the address of pointer
to a buffer.

prop_name The name of the property being searched.

These functions return the value of a known PROM property name and value type
and update the prop_data pointer to reference memory that contains the property
value. All memory allocated by these functions is managed by the library and must
not be freed by the caller.

If the property is found, the number of entries in prop_data is returned. If the property
is a boolean type, 0 is returned and the existence of this property indicates the value is
true. Otherwise, -1 is returned and errno is set to indicate the error.

For di_prom prop lookup bytes (), the number of entries is the number of
unsigned characters contained in the buffer pointed to by prop_data.

For di_prom prop lookup_ ints (), the number of entries is the number of
integers contained in the buffer pointed to by prop_data.

For di_prom prop lookup strings (), the number of entries is the number of
null-terminated strings contained in the buffer. The strings are stored in a
concatenated format in the buffer.

These functions will fail if::

EINVAL Invalid argument.

Extended Library Functions 333

di_prom_prop_lookup_bytes(3DEVINFO)

ENXIO The property does not exist.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

SEE ALSO | di_init(3DEVINFO), di prom prop next(3DEVINFO), l1ibdevinfo(3LIB),
attributes(5), openprom(7D)

Writing Device Drivers

334 man pages section 3: Extended Library Functions ¢ Last Revised 1 Dec 1998

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

di_prop_bytes(3DEVINFO)

di_prop_bytes, di_prop_devt, di_prop_ints, di_prop_name, di_prop_strings,
di_prop_type, di_prop_int64 — access property values and attributes

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

int di prop bytes(di prop t prop, uchar t **prop_data) ;
dev_t di_prop devt(di_prop t prop) ;

int di_prop_ints(di_prop_t prop, int **prop_data) ;

int di_prop_int64 (di_prop_t prop, inté4_t **prop_data) ;
char *di_prop name (di_prop_t prop) ;

int di prop strings(di prop t prop, char **prop_data) ;

int di_prop type(di_prop_ t prop) ;

prop Handle to a property returned by di_prop_next(3DEVINFO).
prop_data For di_prop_bytes (), the address of a pointer to an unsigned
character.

For di_prop_ints (), the address of a pointer to an integer.

For di_prop_inté4 (), the address of a pointer to a 64-bit
integer.

For di_prop strings (), the address of pointer to a character.

These functions access information associated with property values and attributes. All
memory allocated by these functions is managed by the library and must not be freed
by the caller.

The di_prop_bytes () function returns the property data as a series of unsigned
characters.

The di_prop_devt () function returns the dev_t with which this property is
associated. If the value is DDI_DEV_T_ NONE, the property is not associated with any
specific minor node.

The di_prop_ints () function returns the property data as a series of integers.

The di_prop_inté4 () function returns the property data as a series of 64-bit
integers.

The di_prop name () function returns the name of the property.

The di_prop strings () function returns the property data as a concatenation of
null-terminated strings.

Extended Library Functions 335

di_prop_bytes(3DEVINFO)

RETURN VALUES

336

ERRORS

ATTRIBUTES

The di_prop_type () function returns the type of the property. The type determines
the appropriate interface to access property values. The following is a list of possible

types:

DI_PROP_TYPE BOOLEAN There is no interface to call since there is no
property data associated with boolean
properties. The existence of the property
defines a TRUE value.

DI_PROP_TYPE_ INT Use di_prop_ints () to access property
data.

DI_PROP_TYPE INT64 Use di_prop_inté4 () to access property
data.

DI_PROP_TYPE STRING Use di_prop_strings () to access
property data.

DI_PROP_TYPE BYTE Use di_prop_bytes () to access property
data.

DI_PROP_TYPE UNKNOWN Use di_prop_bytes () to access property

data. Since the type of property is
unknown, the caller is responsible for
interpreting the contents of the data.

DI_PROP_TYPE UNDEF IT The property has been undefined by the
driver. No property data is available.

Upon successful completion, di_prop_bytes (), di_prop_ints (),
di_prop_inté64(),and di_prop_strings () return a non-negative value,
indicating the number of entries in the property value buffer. See

di prom prop lookup bytes(3DEVINFO) for a description of the return values.
Otherwise, -1 is returned and errno is set to indicate the error.

The di_prop_devt () function returns the dev_t value associated with the property.

The di_prop name () function returns a pointer to a string containing the name of

the property.

The di_prop_type () function can return one of types described in the
DESCRIPTION section.

These functions will fail if:

EINVAL Invalid argument. For example, the property type does not match
the interface.

See attributes(5) for descriptions of the following attributes:

man pages section 3: Extended Library Functions e Last Revised 27 Mar 2001

SEE ALSO

di_prop_bytes(3DEVINFO)

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

MT-Level

Safe

di_prom prop lookup bytes(3DEVINFO), di prop next(3DEVINFO),

libdevinfo(3LIB), attributes(b)

Writing Device Drivers

Extended Library Functions

337

di_prop_lookup_bytes(3DEVINFO)

NAME | di_prop_lookup_bytes, di_prop_lookup_ints, di_prop_lookup_int64,
di_prop_lookup_strings — search for a property

SYNOPSIS | cc [flag... 1 file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_prop lookup bytes (dev_t dev, di node t node, const char
*prop_name, uchar t **prop_data) ;

int di_prop_ lookup ints(dev_t dev, di_node_ t node, const char
*prop_name, int **prop_data);

int di_prop lookup inté64 (dev_t dev, di node t node, const char
*prop_name, inté4 t xxprop_data) ;

int di prop lookup strings(dev t dev, di node t node, const char
*prop_name, char **prop_data) ;

PARAMETERS | dev dev_t of minor node with which the property is associated.
DDI _DEV_T ANY is a wild card that matches all dev_t’s,
including DDI_DEV_T_NONE.

node Handle to the device node with which the property is associated.

prop_data For di_prop lookup bytes (), the address to a pointer to an
array of unsigned characters containing the property data.

For di_prop_lookup_ints (), the address to a pointer to an
array of integers containing the property data.

For di prop lookup inté4 (), the address to a pointer to an
array of 64-bit integers containing the property data.

For di_prop lookup strings (), the address to a pointer to a
buffer containing a concatenation of null-terminated strings
containing the property data.

prop_name Name of the property for which to search.

DESCRIPTION | These functions return the value of a known property name type and dev_t value. All
memory allocated by these functions is managed by the library and must not be freed
by the caller.

RETURN VALUES | If the property is found, the number of entries in prop_data is returned. If the property
is a boolean type, 0 is returned and the existence of this property indicates the value is
true. Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS | These functions will fail if:

EINVAL Invalid argument.
ENOTSUP The snapshot contains no property information.
ENXIO The property does not exist; try di_prom_prop_lookup_* ().

338 man pages section 3: Extended Library Functions * Last Revised 26 Mar 2001

di_prop_lookup_bytes(3DEVINFO)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

SEE ALSO | di_init(3DEVINFO), di_prom prop lookup bytes(3DEVINFO),
libdevinfo(3LIB), attributes(5)

Writing Device Drivers

Extended Library Functions 339

di_prop_next(3DEVINFO)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_prop_next — libdevinfo property traversal function

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

di_prop t di prop next(di node t node, di_prop_t prop) ;
node Handle to a device node.

prop Handle to a property.

The di_prop_next () function returns a handle to the next property on the property
list. If prop is DI PROP_NIL, the handle to the first property is returned.

Upon successful completion, di_prop_next () returns a handle. Otherwise
DI PROP_NIL is returned and errno is set to indicate the error.

The di_prop_next () function will fail if:

EINVAL Invalid argument.
ENOTSUP The snapshot does not contain property information.
ENXIO There are no more properties.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), 1ibdevinfo(3LIB), attributes(5)

Writing Device Drivers

340 man pages section 3: Extended Library Functions ¢ Last Revised 1 Dec 1998

NAME
SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

DisconnectToServer(3DMI)
DisconnectToServer — disconnect from a DMI service provider

ce [flag ... 1 file ... -1dmici -ldmimi [library ...]
#include <dmi/api.hh>

bool_t DisconnectToServer (DmiRpcHandle *dmi_rpc_handle) ;

The DisconnectToServer () function disconnects a management application or a
component instrumentation from a DMI service provider.

The ConnectToServer () function returns TRUE if successful, otherwise FALSE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Safe

ConnectToServer(3DMI),attributes(5)

Extended Library Functions 341

di_walk_link(3DEVINFO)
NAME | di_walk_link — traverse libdevinfo links
SYNOPSIS | cc [flag... 1 file... -1ldevinfo [library...]

#include <libdevinfo.h>

int di_walk_link(di_node_t root, uint_t flag, uint_t endpoint, void
*arg, int (*link_callback) (di_link t link, void *arg));

PARAMETERS | root The handle to the root node of the subtree to visit.
flag Specify 0. Reserved for future use.
endpoint Specify if the current node being visited should be the target or
source of an link, either DI _LINK TGT or DI_LINK SRC
arg A pointer to caller-specific data.
link_callback The caller-supplied callback function.

DESCRIPTION | The di_walk_ link () function visits all nodes in the subtree rooted at root. For each
node found, the caller-supplied function link_callback() is invoked for each link
associated with that node where that node is the specified endpoint of the link. The
return value of link_callback() specifies subsequent walking behavior. See RETURN
VALUES.

RETURN VALUES | Upon successful completion, di_walk_link () returns 0. Otherwise, -1 is returned
and errno is set to indicate the error.

The callback function, link_callback(), can return one of the following;:
DI _WALK CONTINUE Continue walking.

DI WALK TERMINATE Terminate the walk immediately.

ERRORS | The di walk link () function will fail if:

EINVAL An argument is invalid.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

SEE ALSO | di_init(3DEVINFO), 1ibdevinfo(3LIB), attributes(5)

342 man pages section 3: Extended Library Functions ¢ Last Revised 22 Mar 2004

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_walk_Inode(3DEVINFO)
di_walk_Inode - traverse libdevinfo Inodes

cc [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.hs>

int di_walk_lnode(di_node_t root, uint_t flag, void *arg, int
(*Inode_callback) (di_lnode t link, void *arg)) ;

root The handle to the root node of the subtree to visit.
flag Specify 0. Reserved for future use.

arg A pointer to caller-specific data.

Inode_callback The caller-supplied callback function.

The di_walk_ lnode () function visits all nodes in the subtree rooted at root. For each
node found, the caller-supplied function Inode_callback() is invoked for each Inode
associated with that node. The return value of Inode_callback() specifies subsequent
walking behavior where that node is the specified endpoint of the link.

Upon successful completion, di walk 1node () returns 0. Otherwise, -1 is returned
and errno is set to indicate the error.

The callback function Inode_callback() can return one of the following;:
DI _WALK CONTINUE Continue walking.

DI_WALK TERMINATE Terminate the walk immediately.

The di_walk 1node () function will fail if:

EINVAL An argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), 1ibdevinfo(3LIB), attributes(5)

Extended Library Functions 343

di_walk_minor(3DEVINFO)

NAME
SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_walk_minor - traverse libdevinfo minor nodes

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.h>

int di_walk_minor (di_node_t root, const char *minor_nodetype, uint_t
flag, void *arg, int (*minor_callback)di node t node, di minor t
minor, void *arg) ;

arg Pointer to caller— specific user data.

flag Specify 0. Reserved for future use.

minor The minor node visited.

minor_nodetype A character string specifying the minor data type, which may be

one of the types defined by the Solaris DDI framework, for
example, DDI_NT_BLOCK. NULL matches all minor_node types. See
ddi_create minor node(9F).

node The device node with which to the minor node is associated.

root Root of subtree to visit.

The di_walk_minor () function visits all minor nodes attached to device nodes in a
subtree rooted at root. For each minor node that matches minor_nodetype, the
caller-supplied function minor_callback() is invoked. The walk terminates immediately
when minor_callback() returns DI_WALK TERMINATE.

Upon successful completion, di_walk minor () returns 0. Otherwise, -1 is returned
and errno is set to indicate the error.

The minor callback () function returns one of the following:
DI_WALK CONTINUE Continue to visit subsequent minor data nodes.

DI _WALK TERMINATE Terminate the walk immediately.

The di_walk minor () function will fail if:

EINVAL Invalid argument.

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di minor nodetype(3DEVINFO), libdevinfo(3LIB), attributes(b),
ddi_create minor node(9F)

Writing Device Drivers

344 man pages section 3: Extended Library Functions ¢ Last Revised 1 Dec 1998

NAME
SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

di_walk_node(3DEVINFO)
di_walk_node — traverse libdevinfo device nodes

ce [flag... 1 file... -ldevinfo [library...]
#include <libdevinfo.hs>

int di_walk_node (di_node_t root, uint_t flag, void *arg, int
(*node_callback)di _node t node, void *arg) ;

The di_walk node () function visits all nodes in the subtree rooted at root. For each
node found, the caller-supplied function node_callback() is invoked. The return value of
node_callback() specifies subsequent walking behavior.

arg Pointer to caller-specific data.
flag Specifies walking order, either DI WALK CLDFIRST (depth first) or
DI _WALK SIBFIRST (breadth first). DI_WALK CLDFIRST is the default.
node The node being visited.
root The handle to the root node of the subtree to visit.

Upon successful completion, di _walk node () returns 0. Otherwise, -1 is returned
and errno is set to indicate the error.

The node_callback() function can return one of the following:

DI _WALK CONTINUE Continue walking.

DI_WALK PRUNESIB Continue walking, but skip siblings and their child
nodes.

DI_WALK_ PRUNECHILD Continue walking, but skip su