
man pages section 3: Extended
Library Functions

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–5172–10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

050105@10536

Contents

Preface 21

Extended Library Functions 27

aclcheck(3SEC) 28
aclsort(3SEC) 30
acltomode(3SEC) 31
acltotext(3SEC) 32
acos(3M) 34
acosh(3M) 36
asin(3M) 38
asinh(3M) 40
atan2(3M) 41
atan(3M) 43
atanh(3M) 44
au_open(3BSM) 46
au_preselect(3BSM) 48
au_to(3BSM) 50

auto_ef(3EXT) 53

au_user_mask(3BSM) 56

bgets(3GEN) 57

bufsplit(3GEN) 59

cabs(3M) 60

cacos(3M) 61

cacosh(3M) 62

carg(3M) 63

casin(3M) 64

3

casinh(3M) 65

catan(3M) 66

catanh(3M) 67

cbrt(3M) 68

ccos(3M) 69

ccosh(3M) 70

ceil(3M) 71

cexp(3M) 72

cimag(3M) 73

clog(3M) 74

config_admin(3CFGADM) 75

conj(3M) 83

ConnectToServer(3DMI) 84

copylist(3GEN) 85

copysign(3M) 86

cos(3M) 87

cosh(3M) 88

cpc(3CPC) 90

cpc_access(3CPC) 92

cpc_bind_curlwp(3CPC) 93

cpc_bind_event(3CPC) 101

cpc_buf_create(3CPC) 107

cpc_count_usr_events(3CPC) 110

cpc_enable(3CPC) 112

cpc_event(3CPC) 114

cpc_event_diff(3CPC) 116

cpc_getcpuver(3CPC) 118

cpc_npic(3CPC) 120

cpc_open(3CPC) 122

cpc_pctx_bind_event(3CPC) 123

cpc_set_create(3CPC) 125

cpc_seterrfn(3CPC) 128

cpc_seterrhndlr(3CPC) 129

cpc_shared_open(3CPC) 131

cpc_strtoevent(3CPC) 133

cpc_version(3CPC) 135

cpl_complete_word(3TECLA) 136

cpow(3M) 142

4 man pages section 3: Extended Library Functions • January 2005

cproj(3M) 143

creal(3M) 144

csin(3M) 145

csinh(3M) 146

csqrt(3M) 147

ctan(3M) 148

ctanh(3M) 149

ct_ctl_adopt(3CONTRACT) 150

ct_event_read(3CONTRACT) 152

ct_pr_event_get_pid(3CONTRACT) 155

ct_pr_status_get_param(3CONTRACT) 158

ct_pr_tmpl_set_transfer(3CONTRACT) 160

ct_status_read(3CONTRACT) 163

ct_tmpl_activate(3CONTRACT) 166

dat_cno_create(3DAT) 168

dat_cno_free(3DAT) 169

dat_cno_modify_agent(3DAT) 170

dat_cno_query(3DAT) 171

dat_cno_wait(3DAT) 172

dat_cr_accept(3DAT) 174

dat_cr_handoff(3DAT) 176

dat_cr_query(3DAT) 177

dat_cr_reject(3DAT) 178

dat_ep_connect(3DAT) 179

dat_ep_create(3DAT) 183

dat_ep_create_with_srq(3DAT) 187

dat_ep_disconnect(3DAT) 192

dat_ep_dup_connect(3DAT) 194

dat_ep_free(3DAT) 197

dat_ep_get_status(3DAT) 199

dat_ep_modify(3DAT) 201

dat_ep_post_rdma_read(3DAT) 206

dat_ep_post_rdma_write(3DAT) 209

dat_ep_post_recv(3DAT) 212

dat_ep_post_send(3DAT) 215

dat_ep_query(3DAT) 218

dat_ep_recv_query(3DAT) 220

dat_ep_reset(3DAT) 223

5

dat_ep_set_watermark(3DAT) 224

dat_evd_clear_unwaitable(3DAT) 226

dat_evd_dequeue(3DAT) 227

dat_evd_disable(3DAT) 229

dat_evd_enable(3DAT) 230

dat_evd_free(3DAT) 231

dat_evd_modify_cno(3DAT) 232

dat_evd_post_se(3DAT) 234

dat_evd_query(3DAT) 235

dat_evd_resize(3DAT) 236

dat_evd_set_unwaitable(3DAT) 237

dat_evd_wait(3DAT) 238

dat_get_consumer_context(3DAT) 242

dat_get_handle_type(3DAT) 243

dat_ia_close(3DAT) 244

dat_ia_open(3DAT) 247

dat_ia_query(3DAT) 250

dat_lmr_create(3DAT) 255

dat_lmr_free(3DAT) 259

dat_lmr_query(3DAT) 260

dat_lmr_sync_rdma_read(3DAT) 261

dat_lmr_sync_rdma_write(3DAT) 263

dat_provider_fini(3DAT) 265

dat_provider_init(3DAT) 266

dat_psp_create(3DAT) 268

dat_psp_create_any(3DAT) 272

dat_psp_free(3DAT) 274

dat_psp_query(3DAT) 275

dat_pz_create(3DAT) 276

dat_pz_free(3DAT) 277

dat_pz_query(3DAT) 278

dat_registry_add_provider(3DAT) 279

dat_registry_list_providers(3DAT) 280

dat_registry_remove_provider(3DAT) 282

dat_rmr_bind(3DAT) 283

dat_rmr_create(3DAT) 287

dat_rmr_free(3DAT) 288

dat_rmr_query(3DAT) 289

6 man pages section 3: Extended Library Functions • January 2005

dat_rsp_create(3DAT) 290

dat_rsp_free(3DAT) 292

dat_rsp_query(3DAT) 293

dat_set_consumer_context(3DAT) 294

dat_srq_create(3DAT) 295

dat_srq_free(3DAT) 298

dat_srq_post_recv(3DAT) 299

dat_srq_query(3DAT) 302

dat_srq_resize(3DAT) 304

dat_srq_set_lw(3DAT) 306

dat_strerror(3DAT) 308

demangle(3EXT) 309

devid_get(3DEVID) 310

di_binding_name(3DEVINFO) 314

di_child_node(3DEVINFO) 316

di_devfs_path(3DEVINFO) 318

di_init(3DEVINFO) 319

di_link_next_by_node(3DEVINFO) 322

di_link_spectype(3DEVINFO) 323

di_lnode_name(3DEVINFO) 324

di_lnode_next(3DEVINFO) 325

di_lnode_private_set(3DEVINFO) 326

di_minor_devt(3DEVINFO) 328

di_minor_next(3DEVINFO) 329

di_prom_init(3DEVINFO) 330

di_prom_prop_data(3DEVINFO) 331

di_prom_prop_lookup_bytes(3DEVINFO) 333

di_prop_bytes(3DEVINFO) 335

di_prop_lookup_bytes(3DEVINFO) 338

di_prop_next(3DEVINFO) 340

DisconnectToServer(3DMI) 341

di_walk_link(3DEVINFO) 342

di_walk_lnode(3DEVINFO) 343

di_walk_minor(3DEVINFO) 344

di_walk_node(3DEVINFO) 345

DmiAddComponent(3DMI) 346

DmiAddRow(3DMI) 350

dmi_error(3DMI) 355

7

DmiGetConfig(3DMI) 356

DmiListAttributes(3DMI) 359

DmiRegisterCi(3DMI) 364

ea_error(3EXACCT) 366

ea_open(3EXACCT) 367

ea_pack_object(3EXACCT) 369

ea_set_item(3EXACCT) 374

ef_expand_file(3TECLA) 377

efi_alloc_and_init(3EXT) 381

elf32_checksum(3ELF) 383

elf32_fsize(3ELF) 384

elf32_getehdr(3ELF) 385

elf32_getphdr(3ELF) 387

elf32_getshdr(3ELF) 389

elf32_xlatetof(3ELF) 390

elf(3ELF) 392

elf_begin(3ELF) 398

elf_cntl(3ELF) 403

elf_errmsg(3ELF) 405

elf_fill(3ELF) 406

elf_flagdata(3ELF) 407

elf_getarhdr(3ELF) 409

elf_getarsym(3ELF) 411

elf_getbase(3ELF) 412

elf_getdata(3ELF) 413

elf_getident(3ELF) 418

elf_getscn(3ELF) 420

elf_hash(3ELF) 422

elf_kind(3ELF) 423

elf_rawfile(3ELF) 424

elf_strptr(3ELF) 425

elf_update(3ELF) 426

elf_version(3ELF) 430

erf(3M) 431

erfc(3M) 432

Exacct(3PERL) 433

Exacct::Catalog(3PERL) 436

Exacct::File(3PERL) 438

8 man pages section 3: Extended Library Functions • January 2005

Exacct::Object(3PERL) 441

Exacct::Object::Group(3PERL) 444

Exacct::Object::Item(3PERL) 446

exp2(3M) 448

exp(3M) 449

expm1(3M) 451

fabs(3M) 453

fdim(3M) 454

feclearexcept(3M) 455

fegetenv(3M) 456

fegetexceptflag(3M) 457

fegetround(3M) 458

feholdexcept(3M) 459

feraiseexcept(3M) 460

fesetprec(3M) 461

fetestexcept(3M) 462

feupdateenv(3M) 463

fex_merge_flags(3M) 465

fex_set_handling(3M) 466

fex_set_log(3M) 470

floor(3M) 473

fma(3M) 474

fmax(3M) 476

fmin(3M) 477

fmod(3M) 478

fpclassify(3M) 479

freeDmiString(3DMI) 480

frexp(3M) 481

gelf(3ELF) 482

getacinfo(3BSM) 488

getauclassent(3BSM) 490

getauditflags(3BSM) 492

getauevent(3BSM) 493

getauthattr(3SECDB) 495

getauusernam(3BSM) 498

getddent(3BSM) 500

getdmapent(3BSM) 502

getexecattr(3SECDB) 504

9

getfauditflags(3BSM) 507

getprofattr(3SECDB) 508

getprojent(3PROJECT) 510

getuserattr(3SECDB) 514

gl_get_line(3TECLA) 516

gl_io_mode(3TECLA) 544

gmatch(3GEN) 551

HBA_GetAdapterAttributes(3HBAAPI) 552

HBA_GetAdapterName(3HBAAPI) 553

HBA_GetAdapterPortAttributes(3HBAAPI) 555

HBA_GetBindingCapability(3HBAAPI) 558

HBA_GetEventBuffer(3HBAAPI) 560

HBA_GetFcpPersistentBinding(3HBAAPI) 561

HBA_GetFcpTargetMapping(3HBAAPI) 565

HBA_GetNumberOfAdapters(3HBAAPI) 568

HBA_GetPortStatistics(3HBAAPI) 569

HBA_GetVersion(3HBAAPI) 571

HBA_GetWrapperLibraryAttributes(3HBAAPI) 572

HBA_LoadLibrary(3HBAAPI) 573

HBA_OpenAdapter(3HBAAPI) 574

HBA_RefreshInformation(3HBAAPI) 576

HBA_RegisterForAdapterEvents(3HBAAPI) 577

HBA_SendCTPassThru(3HBAAPI) 582

HBA_SendRLS(3HBAAPI) 585

HBA_SendScsiInquiry(3HBAAPI) 588

HBA_SetRNIDMgmtInfo(3HBAAPI) 593

hypot(3M) 596

idn_decodename(3EXT) 598

IFDHCloseChannel(3SMARTCARD) 606

IFDHControl(3SMARTCARD) 607

IFDHCreateChannel(3SMARTCARD) 608

IFDHCreateChannelByName(3SMARTCARD) 609

IFDHGetCapabilities(3SMARTCARD) 611

IFDHICCPresence(3SMARTCARD) 613

IFDHPowerICC(3SMARTCARD) 614

IFDHSetCapabilities(3SMARTCARD) 616

IFDHSetProtocolParameters(3SMARTCARD) 617

IFDHTransmitToICC(3SMARTCARD) 619

10 man pages section 3: Extended Library Functions • January 2005

ilogb(3M) 621

isencrypt(3GEN) 622

isfinite(3M) 623

isgreater(3M) 624

isgreaterequal(3M) 625

isinf(3M) 626

isless(3M) 627

islessequal(3M) 628

islessgreater(3M) 629

isnan(3M) 630

isnormal(3M) 631

isunordered(3M) 632

j0(3M) 633

kstat(3KSTAT) 634

Kstat(3PERL) 640

kstat_chain_update(3KSTAT) 642

kstat_lookup(3KSTAT) 643

kstat_open(3KSTAT) 644

kstat_read(3KSTAT) 645

kva_match(3SECDB) 646

kvm_getu(3KVM) 647

kvm_kread(3KVM) 649

kvm_nextproc(3KVM) 650

kvm_nlist(3KVM) 652

kvm_open(3KVM) 653

kvm_read(3KVM) 655

ldexp(3M) 656

ld_support(3EXT) 658

lgamma(3M) 659

lgrp_affinity_get(3LGRP) 662

lgrp_children(3LGRP) 664

lgrp_cookie_stale(3LGRP) 665

lgrp_cpus(3LGRP) 666

lgrp_fini(3LGRP) 667

lgrp_home(3LGRP) 668

lgrp_init(3LGRP) 669

lgrp_latency(3LGRP) 670

lgrp_mem_size(3LGRP) 671

11

lgrp_nlgrps(3LGRP) 672

lgrp_parents(3LGRP) 673

lgrp_root(3LGRP) 674

lgrp_version(3LGRP) 675

lgrp_view(3LGRP) 676

libpicl(3PICL) 677

libpicltree(3PICLTREE) 680

libtecla_version(3TECLA) 682

libtnfctl(3TNF) 683

llrint(3M) 688

llround(3M) 690

log10(3M) 692

log1p(3M) 694

log2(3M) 696

log(3M) 698

logb(3M) 700

lrint(3M) 702

lround(3M) 703

maillock(3MAIL) 704

matherr(3M) 706

m_create_layout(3LAYOUT) 712

md5(3EXT) 714

m_destroy_layout(3LAYOUT) 716

media_findname(3VOLMGT) 717

media_getattr(3VOLMGT) 719

media_getid(3VOLMGT) 721

m_getvalues_layout(3LAYOUT) 722

mkdirp(3GEN) 723

modf(3M) 724

mp(3MP) 725

m_setvalues_layout(3LAYOUT) 727

m_transform_layout(3LAYOUT) 728

m_wtransform_layout(3LAYOUT) 733

nan(3M) 739

nearbyint(3M) 740

newDmiOctetString(3DMI) 741

newDmiString(3DMI) 742

nextafter(3M) 743

12 man pages section 3: Extended Library Functions • January 2005

nlist(3ELF) 745

NOTE(3EXT) 746

nvlist_add_boolean(3NVPAIR) 748

nvlist_alloc(3NVPAIR) 751

nvlist_lookup_boolean(3NVPAIR) 758

nvlist_next_nvpair(3NVPAIR) 761

nvlist_remove(3NVPAIR) 764

nvpair_value_byte(3NVPAIR) 765

p2open(3GEN) 767

pam(3PAM) 769

pam_acct_mgmt(3PAM) 772

pam_authenticate(3PAM) 773

pam_chauthtok(3PAM) 775

pam_getenv(3PAM) 777

pam_getenvlist(3PAM) 778

pam_get_user(3PAM) 779

pam_open_session(3PAM) 780

pam_putenv(3PAM) 781

pam_setcred(3PAM) 783

pam_set_data(3PAM) 785

pam_set_item(3PAM) 787

pam_sm(3PAM) 789

pam_sm_acct_mgmt(3PAM) 793

pam_sm_authenticate(3PAM) 795

pam_sm_chauthtok(3PAM) 797

pam_sm_open_session(3PAM) 800

pam_sm_setcred(3PAM) 801

pam_start(3PAM) 803

pam_strerror(3PAM) 805

pathfind(3GEN) 806

pca_lookup_file(3TECLA) 808

pctx_capture(3CPC) 812

pctx_set_events(3CPC) 814

picld_log(3PICLTREE) 817

picld_plugin_register(3PICLTREE) 818

picl_find_node(3PICL) 820

picl_get_first_prop(3PICL) 821

picl_get_frutree_parent(3PICL) 822

13

picl_get_next_by_row(3PICL) 823

picl_get_node_by_path(3PICL) 824

picl_get_prop_by_name(3PICL) 826

picl_get_propinfo(3PICL) 827

picl_get_propinfo_by_name(3PICL) 828

picl_get_propval(3PICL) 829

picl_get_root(3PICL) 831

picl_initialize(3PICL) 832

picl_set_propval(3PICL) 833

picl_shutdown(3PICL) 835

picl_strerror(3PICL) 836

picl_wait(3PICL) 837

picl_walk_tree_by_class(3PICL) 838

pool_associate(3POOL) 839

pool_component_info(3POOL) 842

pool_component_to_elem(3POOL) 844

pool_conf_alloc(3POOL) 845

pool_dynamic_location(3POOL) 851

pool_error(3POOL) 854

pool_get_binding(3POOL) 856

pool_get_pool(3POOL) 859

pool_get_property(3POOL) 861

pool_resource_create(3POOL) 864

pool_value_alloc(3POOL) 867

pool_walk_components(3POOL) 870

pow(3M) 872

printDmiAttributeValues(3DMI) 875

printDmiDataUnion(3DMI) 876

printDmiString(3DMI) 877

Privilege(3PERL) 878

Project(3PERL) 880

project_walk(3PROJECT) 882

ptree_add_node(3PICLTREE) 884

ptree_add_prop(3PICLTREE) 885

ptree_create_and_add_node(3PICLTREE) 886

ptree_create_and_add_prop(3PICLTREE) 887

ptree_create_node(3PICLTREE) 888

ptree_create_prop(3PICLTREE) 889

14 man pages section 3: Extended Library Functions • January 2005

ptree_create_table(3PICLTREE) 891

ptree_find_node(3PICLTREE) 892

ptree_get_first_prop(3PICLTREE) 893

ptree_get_frutree_parent(3PICLTREE) 894

ptree_get_next_by_row(3PICLTREE) 895

ptree_get_node_by_path(3PICLTREE) 896

ptree_get_prop_by_name(3PICLTREE) 898

ptree_get_propinfo(3PICLTREE) 899

ptree_get_propinfo_by_name(3PICLTREE) 900

ptree_get_propval(3PICLTREE) 901

ptree_get_root(3PICLTREE) 902

ptree_init_propinfo(3PICLTREE) 903

ptree_post_event(3PICLTREE) 904

ptree_register_handler(3PICLTREE) 905

ptree_unregister_handler(3PICLTREE) 906

ptree_update_propval(3PICLTREE) 907

ptree_walk_tree_by_class(3PICLTREE) 908

read_vtoc(3EXT) 909

reg_ci_callback(3DMI) 910

regexpr(3GEN) 911

remainder(3M) 914

remquo(3M) 915

rint(3M) 916

round(3M) 917

rsm_create_localmemory_handle(3RSM) 918

rsm_get_controller(3RSM) 920

rsm_get_interconnect_topology(3RSM) 922

rsm_get_segmentid_range(3RSM) 924

rsm_intr_signal_post(3RSM) 926

rsm_intr_signal_wait_pollfd(3RSM) 928

rsm_memseg_export_create(3RSM) 930

rsm_memseg_export_publish(3RSM) 933

rsm_memseg_get_pollfd(3RSM) 936

rsm_memseg_import_connect(3RSM) 937

rsm_memseg_import_get(3RSM) 939

rsm_memseg_import_init_barrier(3RSM) 941

rsm_memseg_import_map(3RSM) 942

rsm_memseg_import_open_barrier(3RSM) 944

15

rsm_memseg_import_put(3RSM) 946

rsm_memseg_import_putv(3RSM) 948

rsm_memseg_import_set_mode(3RSM) 950

rtld_audit(3EXT) 951

rtld_db(3EXT) 952

scalb(3M) 953

scalbln(3M) 955

SCF_Card_exchangeAPDU(3SMARTCARD) 957

SCF_Card_lock(3SMARTCARD) 959

SCF_Card_reset(3SMARTCARD) 961

scf_entry_create(3SCF) 963

scf_error(3SCF) 965

scf_handle_create(3SCF) 967

scf_handle_decode_fmri(3SCF) 970

scf_instance_create(3SCF) 973

scf_iter_create(3SCF) 977

scf_limit(3SCF) 983

scf_pg_create(3SCF) 984

scf_property_create(3SCF) 991

scf_scope_create(3SCF) 994

scf_service_create(3SCF) 997

SCF_Session_close(3SMARTCARD) 1001

SCF_Session_freeInfo(3SMARTCARD) 1003

SCF_Session_getInfo(3SMARTCARD) 1005

SCF_Session_getSession(3SMARTCARD) 1008

SCF_Session_getTerminal(3SMARTCARD) 1010

scf_simple_prop_get(3SCF) 1013

scf_simple_walk_instances(3SCF) 1020

scf_snaplevel_create(3SCF) 1021

scf_snapshot_create(3SCF) 1025

SCF_strerror(3SMARTCARD) 1028

SCF_Terminal_addEventListener(3SMARTCARD) 1029

SCF_Terminal_getCard(3SMARTCARD) 1035

SCF_Terminal_waitForCardPresent(3SMARTCARD) 1037

scf_transaction_create(3SCF) 1040

scf_value_create(3SCF) 1046

sendfile(3EXT) 1051

sendfilev(3EXT) 1054

16 man pages section 3: Extended Library Functions • January 2005

setproject(3PROJECT) 1057

signbit(3M) 1060

significand(3M) 1061

sin(3M) 1062

sincos(3M) 1063

sinh(3M) 1064

smf_enable_instance(3SCF) 1066

sqrt(3M) 1069

SSAAgentIsAlive(3SNMP) 1071

SSAOidCmp(3SNMP) 1074

SSAStringCpy(3SNMP) 1076

stdarg(3EXT) 1077

strccpy(3GEN) 1079

strfind(3GEN) 1080

SUNW_C_GetMechSession(3EXT) 1081

sysevent_bind_handle(3SYSEVENT) 1083

sysevent_free(3SYSEVENT) 1085

sysevent_get_attr_list(3SYSEVENT) 1086

sysevent_get_class_name(3SYSEVENT) 1087

sysevent_get_vendor_name(3SYSEVENT) 1089

sysevent_post_event(3SYSEVENT) 1091

sysevent_subscribe_event(3SYSEVENT) 1093

tan(3M) 1096

tanh(3M) 1097

Task(3PERL) 1098

tgamma(3M) 1099

tnfctl_buffer_alloc(3TNF) 1101

tnfctl_close(3TNF) 1103

tnfctl_indirect_open(3TNF) 1105

tnfctl_internal_open(3TNF) 1108

tnfctl_kernel_open(3TNF) 1110

tnfctl_pid_open(3TNF) 1111

tnfctl_probe_apply(3TNF) 1116

tnfctl_probe_state_get(3TNF) 1119

tnfctl_register_funcs(3TNF) 1123

tnfctl_strerror(3TNF) 1124

tnfctl_trace_attrs_get(3TNF) 1125

tnfctl_trace_state_set(3TNF) 1127

17

TNF_DECLARE_RECORD(3TNF) 1129

TNF_PROBE(3TNF) 1132

tnf_process_disable(3TNF) 1137

tracing(3TNF) 1139

trunc(3M) 1143

Ucred(3PERL) 1144

uuid_clear(3UUID) 1146

varargs(3EXT) 1148

vatan_(3MVEC) 1150

vc_abs_(3MVEC) 1153

volmgt_acquire(3VOLMGT) 1155

volmgt_check(3VOLMGT) 1158

volmgt_feature_enabled(3VOLMGT) 1159

volmgt_inuse(3VOLMGT) 1160

volmgt_ownspath(3VOLMGT) 1161

volmgt_release(3VOLMGT) 1162

volmgt_root(3VOLMGT) 1163

volmgt_running(3VOLMGT) 1164

volmgt_symname(3VOLMGT) 1165

wsreg_add_child_component(3WSREG) 1167

wsreg_add_compatible_version(3WSREG) 1169

wsreg_add_dependent_component(3WSREG) 1171

wsreg_add_display_name(3WSREG) 1173

wsreg_add_required_component(3WSREG) 1175

wsreg_can_access_registry(3WSREG) 1177

wsreg_clone_component(3WSREG) 1179

wsreg_components_equal(3WSREG) 1180

wsreg_create_component(3WSREG) 1181

wsreg_get(3WSREG) 1182

wsreg_initialize(3WSREG) 1183

wsreg_query_create(3WSREG) 1184

wsreg_query_set_id(3WSREG) 1185

wsreg_query_set_instance(3WSREG) 1186

wsreg_query_set_location(3WSREG) 1187

wsreg_query_set_unique_name(3WSREG) 1188

wsreg_query_set_version(3WSREG) 1189

wsreg_register(3WSREG) 1190

wsreg_set_data(3WSREG) 1192

18 man pages section 3: Extended Library Functions • January 2005

wsreg_set_id(3WSREG) 1194

wsreg_set_instance(3WSREG) 1195

wsreg_set_location(3WSREG) 1197

wsreg_set_parent(3WSREG) 1198

wsreg_set_type(3WSREG) 1199

wsreg_set_uninstaller(3WSREG) 1200

wsreg_set_unique_name(3WSREG) 1201

wsreg_set_vendor(3WSREG) 1202

wsreg_set_version(3WSREG) 1203

wsreg_unregister(3WSREG) 1204

y0(3M) 1206

Index 1209

19

20 man pages section 3: Extended Library Functions • January 2005

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

21

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

22 man pages section 3: Extended Library Functions • January 2005

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the

23

conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

24 man pages section 3: Extended Library Functions • January 2005

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

25

26 man pages section 3: Extended Library Functions • January 2005

Extended Library Functions

27

aclcheck – check the validity of an ACL

cc [flag...] file... -lsec [library...]

#include <sys/acl.h>

int aclcheck(aclent_t *aclbufp, int nentries, int *which);

The aclcheck() function checks the validity of an ACL pointed to by aclbufp. The
nentries argument is the number of entries contained in the buffer. The which
parameter returns the index of the first entry that is invalid.

The function verifies that an ACL pointed to by aclbufp is valid according to the
following rules:

� There must be exactly one GROUP_OBJ ACL entry.
� There must be exactly one USER_OBJ ACL entry.
� There must be exactly one OTHER_OBJ ACL entry.
� If there are any GROUP ACL entries, then the group ID in each group ACL entry

must be unique.
� If there are any USER ACL entries, then the user ID in each user ACL entry must be

unique.
� If there are any GROUP or USER ACL entries, then there must be exactly one

CLASS_OBJ (ACL mask) entry.
� If there are any default ACL entries, then the following apply:

� There must be exactly one default GROUP_OBJ ACL entry.
� There must be exactly one default OTHER_OBJ ACL entry.
� There must be exactly one default USER_OBJ ACL entry.
� If there are any DEF_GROUP entries, then the group ID in each DEF_GROUP ACL

entry must be unique.
� If there are any DEF_USER entries, then the user ID in each DEF_USER ACL

entry must be unique.
� If there are any DEF_GROUP or DEF_USER entries, then there must be exactly

one DEF_CLASS_OBJ (default ACL mask) entry.
� If any of the above rules are violated, then the function fails with errno set to

EINVAL.

If the ACL is valid, alcheck() will return 0. Otherwise errno is set to EINVAL and
return code is set to one of the following:

GRP_ERROR There is more than one GROUP_OBJ or
DEF_GROUP_OBJ ACL entry.

USER_ERROR There is more than one USER_OBJ or DEF_USER_OBJ
ACL entry.

CLASS_ERROR There is more than one CLASS_OBJ (ACL mask) or
DEF_CLASS_OBJ (default ACL mask) entry.

aclcheck(3SEC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

28 man pages section 3: Extended Library Functions • Last Revised 10 Dec 2001

OTHER_ERROR There is more than one OTHER_OBJ or
DEF_OTHER_OBJ ACL entry.

DUPLICATE_ERROR Duplicate entries of USER, GROUP, DEF_USER, or
DEF_GROUP.

ENTRY_ERROR The entry type is invalid.

MISS_ERROR Missing an entry. The which parameter returns −1 in
this case.

MEM_ERROR The system cannot allocate any memory. The which
parameter returns −1 in this case.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

acl(2), aclsort(3SEC), attributes(5)

aclcheck(3SEC)

ATTRIBUTES

SEE ALSO

Extended Library Functions 29

aclsort – sort an ACL

cc [flag ...] file ... -lsec [library ...]

#include <sys/acl.h>

int aclsort(int nentries, int calclass, aclent_t *aclbufp);

The aclbufp argument points to a buffer containing ACL entries. The nentries argument
specifies the number of ACL entries in the buffer. The calclass argument, if non-zero,
indicates that the CLASS_OBJ (ACL mask) permissions should be recalculated. The
union of the permission bits associated with all ACL entries in the buffer other than
CLASS_OBJ, OTHER_OBJ, and USER_OBJ is calculated. The result is copied to the
permission bits associated with the CLASS_OBJ entry.

The aclsort() function sorts the contents of the ACL buffer as follows:

� Entries will be in the order USER_OBJ, USER, GROUP_OBJ, GROUP, CLASS_OBJ
(ACL mask), OTHER_OBJ, DEF_USER_OBJ, DEF_USER, DEF_GROUP_OBJ,
DEF_GROUP, DEF_CLASS_OBJ (default ACL mask), and DEF_OTHER_OBJ.

� Entries of type USER, GROUP, DEF_USER, and DEF_GROUP will be sorted in
increasing order by ID.

The aclsort() function will succeed if all of the following are true:

� There is exactly one entry each of type USER_OBJ, GROUP_OBJ, CLASS_OBJ (ACL
mask), and OTHER_OBJ.

� There is exactly one entry each of type DEF_USER_OBJ, DEF_GROUP_OBJ,
DEF_CLASS_OBJ (default ACL mask), and DEF_OTHER_OBJ if there are any
default entries.

� Entries of type USER, GROUP, DEF_USER, or DEF_GROUP may not contain duplicate
entries. A duplicate entry is one of the same type containing the same numeric ID.

Upon successful completion, the function returns 0. Otherwise, it returns −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

acl(2), aclcheck(3SEC), attributes(5)

aclsort(3SEC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

30 man pages section 3: Extended Library Functions • Last Revised 10 Dec 2001

acltomode, aclfrommode – convert an ACL to or from permission bits

cc [flag...] file... -lsec [library...]
#include <sys/types.h>

#include <sys/acl.h>

int acltomode(aclent_t *aclbufp, int nentries, mode_t *modep);

int aclfrommode(aclent_t *aclbufp, int nentries, mode_t *modep);

The acltomode() function converts an ACL pointed to by aclbufp into the permission
bits buffer pointed to by modep. If the USER_OBJ ACL entry, GROUP_OBJ ACL entry, or
the OTHER_OBJ ACL entry cannot be found in the ACL buffer, then the function fails
with errno set to EINVAL.

The USER_OBJ ACL entry permission bits are copied to the file owner class bits in the
permission bits buffer. The OTHER_OBJ ACL entry permission bits are copied to the
file other class bits in the permission bits buffer. If there is a CLASS_OBJ (ACL mask)
entry, the CLASS_OBJ ACL entry permission bits are copied to the file group class bits
in the permission bits buffer. Otherwise, the GROUP_OBJ ACL entry permission bits
are copied to the file group class bits in the permission bits buffer.

The aclfrommode() function converts the permission bits pointed to by modep into
an ACL pointed to by aclbufp. If the USER_OBJ ACL entry, GROUP_OBJ ACL entry, or
the OTHER_OBJ ACL entry cannot be found in the ACL buffer, the function fails with
errno set to EINVAL.

The file owner class bits from the permission bits buffer are copied to the USER_OBJ
ACL entry. The file other class bits from the permission bits buffer are copied to the
OTHER_OBJ ACL entry. If there is a CLASS_OBJ (ACL mask) entry, the file group class
bits from the permission bits buffer are copied to the CLASS_OBJ ACL entry, and the
GROUP_OBJ ACL entry is not modified. Otherwise, the file group class bits from the
permission bits buffer are copied to the GROUP_OBJ ACL entry.

The nentries argument represents the number of ACL entries in the buffer pointed to
by aclbufp.

Upon successful completion, the function returns 0. Otherwise, it returns −1 and sets
errno to indicate the error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

acl(2), attributes(5)

acltomode(3SEC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 31

acltotext, aclfromtext – convert internal representation to or from external
representation

cc [flag...] file... -lsec [library...]

#include <sys/acl.h>

char *acltotext(aclent_t *aclbufp, int aclcnt);

aclent_t *aclfromtext(char *acltextp, int *aclcnt);

The acltotext() function converts an internal ACL representation pointed to by
aclbufp into an external ACL representation. The space for the external text string is
obtained using malloc(3C). The caller is responsible for freeing the space upon
completion..

The aclfromtext() function converts an external ACL representation pointed to by
acltextp into an internal ACL representation. The space for the list of ACL entries is
obtained using malloc(3C). The caller is responsible for freeing the space upon
completion. The aclcnt argument indicates the number of ACL entries found.

An external ACL representation is defined as follows:

<acl_entry>[,<acl_entry>] . . .

Each <acl_entry> contains one ACL entry. The external representation of an ACL entry
contains two or three colon-separated fields. The first field contains the ACL entry tag
type. The entry type keywords are defined as:

user This ACL entry with no UID specified in the ACL entry ID field
specifies the access granted to the owner of the object. Otherwise,
this ACL entry specifies the access granted to a specific user-name
or user-id number.

group This ACL entry with no GID specified in the ACL entry ID field
specifies the access granted to the owning group of the object.
Otherwise, this ACL entry specifies the access granted to a specific
group-name or group-id number.

other This ACL entry specifies the access granted to any user or group
that does not match any other ACL entry.

mask This ACL entry specifies the maximum access granted to user or
group entries.

default:user This ACL entry with no uid specified in the ACL entry ID field
specifies the default access granted to the owner of the object.
Otherwise, this ACL entry specifies the default access granted to a
specific user-name or user-ID number.

acltotext(3SEC)

NAME

SYNOPSIS

DESCRIPTION

32 man pages section 3: Extended Library Functions • Last Revised 10 Dec 2001

default:group This ACL entry with no gid specified in the ACL entry ID field
specifies the default access granted to the owning group of the
object. Otherwise, this ACL entry specifies the default access
granted to a specific group-name or group-ID number.

default:other This ACL entry specifies the default access for other entry.

default:mask This ACL entry specifies the default access for mask entry.

The second field contains the ACL entry ID, as follows:

uid This field specifies a user-name, or user-ID if there is no user-name
associated with the user-ID number.

gid This field specifies a group-name, or group-ID if there is no
group-name associated with the group-ID number.

empty This field is used by the user and group ACL entry types.

The third field contains the following symbolic discretionary access permissions:

r read permission

w write permission

x execute/search permission

− no access

Upon successful completion, the acltotext() function returns a pointer to a text
string. Otherwise, it returns NULL.

Upon successful completion, the aclfromtext() function returns a pointer to a list
of ACL entries. Otherwise, it returns NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

acl(2), malloc(3C), attributes(5)

acltotext(3SEC)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 33

acos, acosf, acosl – arc cosine functions

cc [flag...] file... -lm [library...]

#include <math.h>

double acos(double x);

float acosf(float x);

long double acosl(long double x);

These functions compute the principal value of the arc cosine of x. The value of x
should be in the range [−1,1].

Upon successful completion, these functions return the arc cosine of x in the range [0,
π] radians.

For finite values of x not in the range [−1,1], a domain error occurs and NaN is
returned.

If x is NaN, NaN is returned.

If x is +1, +0 is returned.

If x is ±Inf, a domain error occurs and NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by acos() as
specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The x argument is finite and not in the range [-1,1], or is ±Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The acos() function sets errno to EDOM if x is not ±Inf or NaN
and is not in the range [−1,1].

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling acos(). On return, if errno is
non-zero, an error has occurred. The acosf() and acosl() functions do not set
errno.

acos(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

34 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cos(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M), math.h(3HEAD),
matherr(3M), attributes(5), standards(5)

acos(3M)

ATTRIBUTES

SEE ALSO

Extended Library Functions 35

acosh, acoshf, acoshl – inverse hyperbolic cosine functions

cc [flag...] file... -lm [library...]

#include <math.h>

double acosh(double x);

float acoshf(float x);

long double acoshl(long double x);

These functions compute the inverse hyperbolic cosine of their argument x.

Upon successful completion, these functions return the inverse hyperbolic cosine of
their argument.

For finite values of x < 1, a domain error occurs and NaN is returned.

If x is NaN, NaN is returned.

If x is +1, +0 is returned.

If x is +Inf, +Inf is returned.

If x is −Inf, a domain error occurs and NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by acosh()
as specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The x argument is finite and less than 1.0, or is −Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The acosh() function sets errno to EDOM if x is less than 1.0.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling acosh(). On return, if errno is
non-zero, an error has occurred. The acoshf() and acoshl() functions do not set
errno.

acosh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

36 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cosh(3M), feclearexcept(3M), fetestexcept(3M), math.h(3HEAD),
matherr(3M), attributes(5), standards(5)

acosh(3M)

ATTRIBUTES

SEE ALSO

Extended Library Functions 37

asin, asinf, asinl – arc sine function

cc [flag...] file... -lm [library...]

#include <math.h>

double asin(double x);

float asinf(float x);

long double asinl(long double x);

These functions compute the principal value of the arc sine of their argument x. The
value of x should be in the range [−1,1].

Upon successful completion, these functions return the arc sine of x in the range
[−π/2, π/2] radians.

For finite values of x not in the range [−1,1], a domain error occurs and a NaN is
returned.

If x is NaN, NaN is returned.

If x is ±0, x is returned.

If x is ±Inf, a domain error occurs and a NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by asin() as
specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The x argument is finite and not in the range [−1,1], or is ±Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The asin() function sets errno to EDOM if x is not ±Inf or NaN
and is not in the range [−1,1].

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling asin(). On return, if errno is
non-zero, an error has occurred. The asinf() and asinl() functions do not set
errno.

asin(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

38 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

isnan(3M), feclearexcept(3M), fetestexcept(3M), math.h(3HEAD),
matherr(3M), sin(3M), attributes(5), standards(5)

asin(3M)

ATTRIBUTES

SEE ALSO

Extended Library Functions 39

asinh, asinhf, asinhl – inverse hyperbolic sine functions

cc [flag...] file... -lm [library...]

#include <math.h>

double asinh(double x);

float asinhf(float x);

long double asinhl(long double x);

These functions compute the inverse hyperbolic sine of their argument x.

Upon successful completion, these functions return the inverse hyperbolic sine of their
argument.

If x is NaN, NaN is returned.

If x is ±0 or ±Inf, x is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

math.h(3HEAD), sinh(3M), attributes(5), standards(5)

asinh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

40 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

atan2, atan2f, atan2l – arc tangent function

cc [flag...] file... -lm [library...]

#include <math.h>

double atan2(double y, double x);

float atan2f(float y, float x);

long double atan2l(long double y, long double x);

These functions compute the principal value of the arc tangent of y/x, using the signs
of both arguments to determine the quadrant of the return value.

Upon successful completion, these functions return the arc tangent of y/x in the range
[−π,π] radians.

If y is ±0 and x is < 0, ±π is returned.

If y is ±0 and x is > 0, ±0 is returned.

If y is < 0 and x is ±0, −π/2 is returned.

If y is > 0 and x is ±0, π/2 is returned.

If x is 0, a pole error does not occur.

If either x or y is NaN, a NaN is returned.

If y is ±0 and x is –0, ±π is returned.

If y is ±0 and x is +0, ±0 is returned.

For finite values of ±y > 0, if x is −Inf, ±π is returned.

For finite values of ±y > 0, if x is +Inf, ±0 is returned.

For finite values of x, if y is ±Inf, ±π/2 is returned.

If y is ±Inf and x is −Inf, ±3π/4 is returned.

If y is ±Inf and x is +Inf, ±π/4 is returned.

If both arguments are 0, a domain error does not occur.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

atan2(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 41

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

atan(3M), isnan(3M), math.h(3HEAD)tan(3M), attributes(5), standards(5)

atan2(3M)

SEE ALSO

42 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

atan, atanf, atanl – arc tangent function

cc [flag...] file... -lm [library...]

#include <math.h>

double atan(double x);

float atanf(float x);

long double atanl(long double x);

These functions compute the principal value of the arc tangent of x.

Upon successful completion, these functions return the arc tangent of x in the range
[−π/2,π/2] radians.

If x is NaN, NaN is returned.

If x is ±0, x is returned.

If x is ±Inf, ±π/2 is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

atan2(3M), isnan(3M), math.h(3HEAD), tan(3M), attributes(5), standards(5)

atan(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 43

atanh, atanhf, atanhl – inverse hyperbolic tangent functions

cc [flag...] file... -lm [library...]

#include <math.h>

double atanh(double x);

float atanhf(float x);

long double atanhl(long double x);

These functions compute the inverse hyperbolic tangent of their argument x.

Upon successful completion, these functions return the inverse hyperbolic tangent of
their argument.

If x is ±1, a pole error occurs and atanh(), atanhf(), and atanhl() return the
value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively, with the
same sign as the correct value of the function.

For finite |x| > 1, a domain error occurs and a NaN is returned.

If x is NaN, NaN is returned.

If x is +0, x is returned.

If x is +Inf, a domain error occurs and a NaN is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by atanh()
as specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The x argument is finite and not in the range [-1,1], or is ±Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The atanh() function sets errno to EDOM if the absolute value of
x is greater than 1.0.

Pole Error The x argument is ±1.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception is raised.

The atanh() function sets errno to ERANGE if the absolute value
of x is equal to 1.0.

atanh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

44 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling atanh(). On return, if errno is
non-zero, an error has occurred. The atanhf() and atanhl() functions do not set
errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), math.h(3HEAD), matherr(3M),
tanh(3M), attributes(5), standards(5)

atanh(3M)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 45

au_open, au_close, au_write – construct and write audit records

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]

#include <bsm/libbsm.h>

int au_close(int d, int keep, short event);

int au_open(void);

int au_write(int d, token_t *m);

The au_open() function returns an audit record descriptor to which audit tokens can
be written using au_write(). The audit record descriptor is an integer value that
identifies a storage area where audit records are accumulated.

The au_close() function terminates the life of an audit record d of type event started
by au_open(). If the keep parameter is AU_TO_NO_WRITE, the data contained therein
is discarded. If the keep parameter is AU_TO_WRITE, the additional parameters are
used to create a header token. Depending on the audit policy information obtained by
auditon(2), additional tokens such as sequence and trailer tokens can be added to the
record. The au_close() function then writes the record to the audit trail by calling
audit(2). Any memory used is freed by calling free(3C).

The au_write() function adds the audit token pointed to by m to the audit record
identified by the descriptor d. After this call is made the audit token is no longer
available to the caller.

Upon successful completion, au_open() returns an audit record descriptor. If a
descriptor could not be allocated, au_open() returns −1 and sets errno to indicate
the error.

Upon successful completion, au_close() returns 0. If d is an invalid or corrupted
descriptor or if audit() fails, au_close() returns −1 without setting errno. If
audit() fails, errno is set to one of the error values described on the audit(2)
manual page.

Upon successful completion, au_write() returns 0. If d is an invalid descriptor or m
is an invalid token, or if audit() fails, au_write() returns −1 without setting
errno. If audit() fails, errno is set to one of the error values described on the
audit(2) manual page.

The au_open() function will fail if:

ENOMEM The physical limits of the system have been exceeded such that
sufficient memory cannot be allocated.

EAGAIN There is currently insufficient memory available. The application
can try again later.

au_open(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

46 man pages section 3: Extended Library Functions • Last Revised 15 Jan 2002

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

bsmconv(1M), audit(2), auditon(2), au_preselect(3BSM), au_to(3BSM),
free(3C), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

au_open(3BSM)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 47

au_preselect – preselect an audit event

cc [flag ...] file... -lbsm -lsocket -lnsl -lintl [library ...]

#include <bsm/libbsm.h>

int au_preselect(au_event_t event, au_mask_t *mask_p, int sorf, int
flag);

au_preselect() determines whether or not the audit event event is preselected
against the binary preselection mask pointed to by mask_p (usually obtained by a call
to getaudit(2)). au_preselect() looks up the classes associated with event in
audit_event(4) and compares them with the classes in mask_p. If the classes
associated with event match the classes in the specified portions of the binary
preselection mask pointed to by mask_p, the event is said to be preselected.

sorf indicates whether the comparison is made with the success portion, the failure
portion or both portions of the mask pointed to by mask_p.

The following are the valid values of sorf:

AU_PRS_SUCCESS Compare the event class with the success portion of the
preselection mask.

AU_PRS_FAILURE Compare the event class with the failure portion of the
preselection mask.

AU_PRS_BOTH Compare the event class with both the success and
failure portions of the preselection mask.

flag tells au_preselect() how to read the audit_event(4) database. Upon initial
invocation, au_preselect() reads the audit_event(4) database and allocates
space in an internal cache for each entry with malloc(3C). In subsequent invocations,
the value of flag determines where au_preselect() obtains audit event information.
The following are the valid values of flag:

AU_PRS_REREAD Get audit event information by searching the
audit_event(4) database.

AU_PRS_USECACHE Get audit event information from internal cache created
upon the initial invocation. This option is much faster.

au_preselect() returns:

0 event is not preselected.

1 event is preselected.

−1 An error occurred. au_preselect() couldn’t allocate memory or
couldn’t find event in the audit_event(4) database.

/etc/security/audit_class maps audit class number to audit class
names and descriptions

au_preselect(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

48 man pages section 3: Extended Library Functions • Last Revised 15 Jan 2002

/etc/security/audit_event maps audit even number to audit event
names and associates

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

bsmconv(1M), getaudit(2), au_open(3BSM), getauclassent(3BSM),
getauevent(3BSM), malloc(3C), audit_class(4), audit_event(4),
attributes(5)

au_preselect() is normally called prior to constructing and writing an audit
record. If the event is not preselected, the overhead of constructing and writing the
record can be saved.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

au_preselect(3BSM)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 49

au_to, au_to_arg, au_to_arg32, au_to_arg64, au_to_attr, au_to_cmd, au_to_data,
au_to_groups, au_to_in_addr, au_to_ipc, au_to_iport, au_to_me, au_to_newgroups,
au_to_opaque, au_to_path, au_to_process, au_to_process_ex, au_to_return,
au_to_return32, au_to_return64, au_to_socket, au_to_subject, au_to_subject_ex,
au_to_text – create audit record tokens

cc [flag...] file... -lbsm -lsocket -lnsl -lintl [library...]
#include <sys/types.h>
#include <sys/vnode.h>
#include <netinet/in.h>

#include <bsm/libbsm.h>

token_t *au_to_arg(char n, char *text, uint32_t v);

token_t *au_to_arg32(char n, char *text, uint32_t v);

token_t *au_to_arg64(char n, char *text, uint64_t v);

token_t *au_to_attr(struct vattr *attr);

token_t *au_to_cmd(uint_t argc, char **argv, char **envp);

token_t *au_to_data(char unit_print, char unit_type, char unit_count,
char *p);

token_t *au_to_groups(int *groups);

token_t *au_to_in_addr(struct in_addr *internet_addr);

token_t *au_to_ipc(char type, int id);

token_t *au_to_iport(u_short_t iport);

token_t *au_to_me(void);

token_t *au_to_newgroups(int n, gid_t *groups);

token_t *au_to_opaque(char *data, short bytes);

token_t *au_to_path(char *path);

token_t *au_to_process(au_id_t auid, uid_t euid, gid_t egid, uid_t
ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid);

token_t *au_to_process_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t
ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid);

token_t *au_to_return(char number, uin32t_t value);

token_t *au_to_return32(char number, uin32t_t value);

token_t *au_to_return64(char number, uin64t_t value);

token_t *au_to_socket(struct oldsocket *so);

token_t *au_to_subject(au_id_t auid, uid_t euid, gid_t egid, uid_t
ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_t *tid);

token_t *au_to_subject_ex(au_id_t auid, uid_t euid, gid_t egid, uid_t
ruid, gid_t rgid, pid_t pid, au_asid_t sid, au_tid_addr_t *tid);

au_to(3BSM)

NAME

SYNOPSIS

50 man pages section 3: Extended Library Functions • Last Revised 15 Jan 2002

token_t *au_to_text(char *text);

The au_to_arg(), au_to_arg32(), and au_to_arg64() functions format the
data in v into an “argument token”. The n argument indicates the argument number.
The text argument is a null-terminated string describing the argument.

The au_to_attr() function formats the data pointed to by attr into a “vnode
attribute token”.

The au_to_cmd() function formats the data pointed to by argv into a “command
token”. A command token reflects a command and its parameters as entered. For
example, the pfexec(1) utility uses au_to_cmd() to record the command and
arguments it reads from the command line.

The au_to_data() function formats the data pointed to by p into an “arbitrary data
token”. The unit_print parameter determines the preferred display base of the data and
is one of AUP_BINARY, AUP_OCTAL, AUP_DECIMAL, AUP_HEX, or AUP_STRING. The
unit_type parameter defines the basic unit of data and is one of AUR_BYTE, AUR_CHAR,
AUR_SHORT, AUR_INT, or AUR_LONG. The unit_count parameter specifies the number
of basic data units to be used and must be positive.

The au_to_groups() function formats the array of 16 integers pointed to by groups
into a “groups token”. The au_to_newgroups() function (see below) should be
used in place of this function.

The au_to_in_addr() function formats the data pointed to by internet_addr into an
“internet address token”.

The au_to_ipc() function formats the data in the id parameter into an “interprocess
communications ID token”.

The au_to_iport() function formats the data pointed to by iport into an “ip port
address token”.

The au_to_me() function collects audit information from the current process and
creates a “subject token” by calling au_to_subject().

The au_to_newgroups() function formats the array of n integers pointed to by
groups into a “newgroups token”. This function should be used in place of
au_to_groups().

The au_to_opaque() function formats the bytes bytes pointed to by data into an
“opaque token”. The value of size must be positive.

The au_to_path() function formats the path name pointed to by path into a ‘‘path
token.’’

au_to(3BSM)

DESCRIPTION

Extended Library Functions 51

The au_to_process() function formats an auid (audit user ID), an euid (effective
user ID), an egid (effective group ID), a ruid (real user ID), a rgid (real group ID), a pid
(process ID), an sid (audit session ID), and a tid (audit terminal ID containing an IPv4
IP address), into a “process token”. A process token should be used when the process
is the object of an action (ie. when the process is the receiver of a signal). The
au_to_process_ex() function (see below) should be used in place of this function.

The au_to_process_ex() function formats an auid (audit user ID), an euid (effective
user ID), an egid (effective group ID), a ruid (real user ID), a rgid (real group ID), a pid
(process ID), an sid (audit session ID), and a tid (audit terminal ID containing an IPv4
or IPv6 IP address), into a “process token”. A process token should be used when the
process is the object of an action (that is, when the process is the receiver of a signal).
This function should be used in place of au_to_process().

The au_to_return(), au_to_return32(), and au_to_return64() functions
format an error number number and a return value value into a “return value token”.

The au_to_socket() function format the data pointed to by so into a ‘‘socket
token.’’

The au_to_subject() function formats an auid (audit user ID), an euid (effective
user ID), an egid (effective group ID), a ruid (real user ID), an rgid (real group ID), a pid
(process ID), an sid (audit session ID), an tid (audit terminal ID containing an IPv4 IP
address), into a “subject token”. The au_to_subject_ex() function (see below)
should be used in place of this function.

The au_to_subject_ex() function formats an auid (audit user ID), an euid (effective
user ID), an egid (effective group ID), a ruid (real user ID), an rgid (real group ID), a pid
(process ID), an sid (audit session ID), an tid (audit terminal ID containing an IPv4 or
IPv6 IP address), into a “subject token”. This function should be used in place of
au_to_subject().

The au_to_text() function formats the null-terminated string pointed to by text
into a “text token”.

These functions return NULL if memory cannot be allocated to put the resultant token
into, or if an error in the input is detected.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

bsmconv(1M), au_open(3BSM), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

au_to(3BSM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

52 man pages section 3: Extended Library Functions • Last Revised 15 Jan 2002

auto_ef, auto_ef_file, auto_ef_str, auto_ef_free, auto_ef_get_encoding,
auto_ef_get_score – auto encoding finder functions

cc [flag ...] file... -lauto_ef [library...]

#include <auto_ef.h>

size_t auto_ef_file(auto_ef_t **info, const char *filename, int flags);

size_t auto_ef_str(auto_ef_t **info, const char *buffer, size_t
bufsize, int flags);

void auto_ef_free(auto_ef_t *info);

char *auto_ef_get_encoding(auto_ef_t info);

double auto_ef_get_score(auto_ef_t info);

Auto encoding finder provides functions that find the encoding of given file or string.

The auto_ef_file() function examines text in the file specified with filename and
returns information on possible encodings.

The info argument is a pointer to a pointer to an auto_ef_t, the location at which the
pointer to the auto_ef_t array is stored upon return.

The flags argument specifies the level of examination. Currently only one set of flags,
exclusive each other, is available: AE_LEVEL_0, AE_LEVEL_1, AE_LEVEL_2, and
AE_LEVEL_3. The AE_LEVEL_0 level is fastest but the result can be less accurate. The
AE_LEVEL_3 level produces best result but can be slow. If the flags argument is
unspecified, the default is AE_LEVEL_0. When another flag or set of flags are defined
in the future, use the inclusive-bitwise OR operation to specify multiple flags.

Information about encodings are stored in data typeauto_ef_t in the order of
possibility with the most possible encoding stored first. To examine the information,
use the auto_ef_get_encoding() and auto_ef_get_score() access functions.
For a list of encodings with which auto_ef_file() can examine text, see
auto_ef(1).

If auto_ef_file() cannot determine the encoding of text, it returns 0 and stores
NULL at the location pointed by info.

The auto_ef_get_encoding() function returns the name of the encoding. The
returned string is vaild until until the location pointed to by info is freed with
auto_ef_free(). Applications should not use free(3C) to free the pointer returned
by auto_ef_get_encoding().

The auto_ef_get_score() function returns the score of this encoding in the range
between 0.0 and 1.0.

The auto_ef_str() function is identical to auto_ef_file(), except that it
examines text in the buffer specified by buffer with a maximum size of bufsize bytes,
instead of text in a file.

auto_ef(3EXT)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 53

The auto_ef_free() function frees the area allocated by auto_ef_file() or by
auto_ef_str(), taking as its argument the pointer stored at the location pointed to
by info.

Upon successful completion, the auto_ef_file() and auto_ef_str() functions
return the number of possible encodings for which information is stored. Otherwise,
−1 is returned.

The auto_ef_get_encoding() function returns the string that stores the encoding
name.

the auto_ef_get_score() function returns the score value for encoding the name
with the examined text data.

The auto_ef_file() and auto_ef_str() will fail if:

EACCES Search permission is denied on a component of the path prefix, the
file exists and the permissions specified by mode are denied, the
file does not exist and write permission is denied for the parent
directory of the file to be created, or libauto_ef cannot find the
internal hashtable.

EINTR A signal was caught during the execution.

ENOMEM Failed to allocate area to store the result.

EMFILE Too many files descriptors are currently open in the calling
process.

ENFILE Too many files are currently open in the system.

EXAMPLE 1 Specify the array index to examine stored information.

Since auto_ef_file() stores the array whose elements hold information on each
possible encoding, the following example specifies the array index to examine the
stored information.

#include <auto_ef.h>
auto_ef_t *array_info;
size_t number;
char *encoding;

number = auto_ef_file(&array_info, filename, flags);
encoding = auto_ef_get_encoding(array_info[0]);

auto_ef_free(array_info);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

auto_ef(3EXT)

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

54 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2003

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

auto_ef(1), libauto_ef(3LIB), attributes(5)

auto_ef(3EXT)

SEE ALSO

Extended Library Functions 55

au_user_mask – get user’s binary preselection mask

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]

#include <bsm/libbsm.h>

int au_user_mask(char *username, au_mask_t *mask_p);

au_user_mask() reads the default, system wide audit classes from
audit_control(4), combines them with the per-user audit classes from the
audit_user(4) database, and updates the binary preselection mask pointed to by
mask_p with the combined value.

The audit flags in the flags field of the audit_control(4) database and the
always-audit-flags and never-audit-flags from the audit_user(4) database represent
binary audit classes. These fields are combined by au_preselect(3BSM) as follows:

mask = (flags + always-audit-flags) − never-audit-flags

au_user_mask() only fails if both the both the audit_control(4) and the
audit_user(4) database entries could not be retrieved. This allows for flexible
configurations.

au_user_mask() returns:

0 Success.

−1 Failure. Both the audit_control(4) and the audit_user(4) database
entries could not be retrieved.

/etc/security/audit_control contains default parameters read by the
audit daemon, auditd(1M)

/etc/security/audit_user stores per-user audit event mask

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

login(1), bsmconv(1M), getaudit(2), setaudit(2), au_preselect(3BSM),
getacinfo(3BSM), getauusernam(3BSM), audit_control(4), audit_user(4),
attributes(5)

au_user_mask() should be called by programs like login(1) which set a process’s
preselection mask with setaudit(2). getaudit(2) should be used to obtain audit
characteristics for the current process.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

au_user_mask(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

NOTES

56 man pages section 3: Extended Library Functions • Last Revised 17 Jan 2002

bgets – read stream up to next delimiter

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

char *bgets(char *buffer, size_t count, FILE *stream, const char
*breakstring);

The bgets() function reads characters from stream into buffer until either count is
exhausted or one of the characters in breakstring is encountered in the stream. The read
data is terminated with a null byte (’\0’) and a pointer to the trailing null is returned.
If a breakstring character is encountered, the last non-null is the delimiter character that
terminated the scan.

Note that, except for the fact that the returned value points to the end of the read
string rather than to the beginning, the call

bgets(buffer, sizeof buffer, stream, "\n");

is identical to

fgets (buffer, sizeof buffer, stream);

There is always enough room reserved in the buffer for the trailing null character.

If breakstring is a null pointer, the value of breakstring from the previous call is used. If
breakstring is null at the first call, no characters will be used to delimit the string.

NULL is returned on error or end-of-file. Reporting the condition is delayed to the next
call if any characters were read but not yet returned.

EXAMPLE 1 Example of the bgets() function.

The following example prints the name of the first user encountered in
/etc/passswd, including a trailing ":"

#include <stdio.h>
#include<libgen.h>

int main()
{

char buffer[8];
FILE *fp;

if ((fp = fopen("/etc/passwd","r")) == NULL) {
perror("/etc/passwd");
return 1;

}
if (bgets(buffer, 8, fp, ":") == NULL) {

perror("bgets");
return 1;

}
(void) puts(buffer);
return 0;

}

bgets(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

Extended Library Functions 57

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

gets(3C), attributes(5)

When compiling multithread applications, the _REENTRANT flag must be defined on
the compile line. This flag should only be used in multithreaded applications.

bgets(3GEN)

ATTRIBUTES

SEE ALSO

NOTES

58 man pages section 3: Extended Library Functions • Last Revised 9 May 2001

bufsplit – split buffer into fields

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

size_t bufsplit(char *buf, size_t n, char **a);

bufsplit() examines the buffer, buf, and assigns values to the pointer array, a, so
that the pointers point to the first n fields in buf that are delimited by TABs or
NEWLINEs.

To change the characters used to separate fields, call bufsplit() with buf pointing to
the string of characters, and n and a set to zero. For example, to use colon (:), period
(.), and comma (,), as separators along with TAB and NEWLINE:

bufsplit (":.,\t\n", 0, (char**)0);

The number of fields assigned in the array a. If buf is zero, the return value is zero and
the array is unchanged. Otherwise the value is at least one. The remainder of the
elements in the array are assigned the address of the null byte at the end of the buffer.

EXAMPLE 1 Example of bufsplit() function.

/*
* set a[0] = "This", a[1] = "is", a[2] = "a",
* a[3] = "test"
*/

bufsplit("This\tis\ta\ttest\n", 4, a);

bufsplit() changes the delimiters to null bytes in buf.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

bufsplit(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

NOTES

ATTRIBUTES

SEE ALSO

Extended Library Functions 59

cabs, cabsf, cabsl – return a complex absolute value

cc [flag...] file... -lm [library...]

#include <complex.h>

double cabs(double complex z);

float cabsf(float complex z);

long double cabsl(long double complex z);

These functions compute the complex absolute value (also called norm, modulus, or
magnitude) of z.

These functions return the complex absolute value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

complex.h(3HEAD), attributes(5), standards(5)

cabs(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

60 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

cacos, cacosf, cacosl – complex arc cosine functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex cacos(double complex z);

float complex cacosf(float complex z);

long double complex cacosl(long double complex z);

These functions compute the complex arc cosine of z, with branch cuts outside the
interval [-1, +1] along the real axis.

These functions return the complex arc cosine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [0, ππππ]
along the real axis.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

ccos(3M), complex.h(3HEAD), attributes(5), standards(5)

cacos(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 61

cacosh, cacoshf, cacoshl – complex arc hyperbolic cosine functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex cacosh(double complex z);

float complex cacoshf(float complex z);

long double complex cacoshl(long double complex z);

These functions compute the complex arc hyperbolic cosine of z, with a branch cut at
values less than 1 along the real axis.

These functions return the complex arc hyperbolic cosine value, in the range of a
half-strip of non-negative values along the real axis and in the interval [-iπ, +iπ] along
the imaginary axis.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

ccosh(3M), complex.h(3HEAD), attributes(5), standards(5)

cacosh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

62 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

carg, cargf, cargl – complex argument functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double carg(double complex z);

float cargf(float complex z);

long double cargl(long double complex z);

These functions compute the argument (also called phase angle) of z, with a branch
cut along the negative real axis.

These functions return the value of the argument in the interval [−π, +π].

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cimag(3M), complex.h(3HEAD), conj(3M), cproj(3M), attributes(5),
standards(5)

carg(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 63

casin, casinf, casinl – complex arc sine functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex casin(double complex z);

float complex casinf(float complex z);

long double complex casinl(long double complex z);

These functions compute the complex arc sine of z, with branch cuts outside the
interval [−1, +1] along the real axis.

These functions return the complex arc sine value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [−π/2, +π/2]
along the real axis.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

complex.h(3HEAD), csin(3M), attributes(5), standards(5)

casin(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

64 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

casinh, casinhf, casinhl – complex arc hyperbolic sine functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex casinh(double complex z);

float complex casinhf(float complex z);

long double complex casinhl(long double complex z);

These functions compute the complex arc hyperbolic sine of z, with branch cuts
outside the interval [-i, +i] along the imaginary axis.

These functions return the complex arc hyperbolic sine value, in the range of a strip
mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2]
along the imaginary axis.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

complex.h(3HEAD), csinh(3M), attributes(5), standards(5)

casinh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 65

catan, catanf, catanl – complex arc tangent functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex catan(double complex z);

float complex catanf(float complex z);

long double complex catanl(long double complex z);

These functions compute the complex arc tangent of z, with branch cuts outside the
interval [−i, +++++ππi] along the imaginary axis.

These functions return the complex arc tangent value, in the range of a strip
mathematically unbounded along the imaginary axis and in the interval [−π/2, +π/2]
along the real axis.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

complex.h(3HEAD), ctan(3M), attributes(5), standards(5)

catan(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

66 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

catanh, catanhf, catanhl – complex arc hyperbolic tangent functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex catanh(double complex z);

float complex catanhf(float complex z);

long double complex catanhl(long double complex z);

These functions compute the complex arc hyperbolic tangent of z, with branch cuts
outside the interval [−1, +1] along the real axis.

These functions return the complex arc hyperbolic tangent value, in the range of a
strip mathematically unbounded along the real axis and in the interval [−iπ/2, +iπ/2]
along the imaginary axis.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

complex.h(3HEAD), ctanh(3M), attributes(5), standards(5)

catanh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 67

cbrt, cbrtf, cbrtl – cube root functions

cc [flag...] file... -lm [library...]

#include <math.h>

double cbrt(double x);

float cbrtf(float x);

long double cbrtl(long double x);

These functions compute the real cube root of their argument x.

On successful completion, these functions return the cube root of x.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

math.h(3HEAD), attributes(5), standards(5)

cbrt(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

68 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

ccos, ccosf, ccosl – complex cosine functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex ccos(double complex z);

float complex ccosf(float complex z);

long double complex ccosl(long double complex z);

These functions compute the complex cosine of z.

These functions return the complex cosine value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cacos(3M), complex.h(3HEAD), attributes(5), standards(5)

ccos(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 69

ccosh, ccoshf, ccoshl – complex hyperbolic cosine functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex ccosh(double complex z);

float complex ccoshf(float complex z);

long double complex ccoshl(long double complex z);

These functions compute the complex hyperbolic cosine of z.

These functions return the complex hyperbolic cosine value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cacosh(3M), complex.h(3HEAD), attributes(5), standards(5)

ccosh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

70 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

ceil, ceilf, ceill – ceiling value function

cc [flag...] file... -lm [library...]

#include <math.h>

double ceil(double x);

float ceilf(float x);

long double ceill(long double x);

These functions compute the smallest integral value not less than x.

Upon successful completion, the ceil(), ceilf(), and ceill() functions return
the smallest integral value not less than x, expressed as a type double, float, or
long double, respectively.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

The integral value returned by these functions need not be expressible as an int or
long int. The return value should be tested before assigning it to an integer type to
avoid the undefined results of an integer overflow.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), floor(3M), isnan(3M),
math.h(3HEAD), attributes(5), standards(5)

ceil(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 71

cexp, cexpf, cexpl – complex exponential functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex cexp(double complex z);

float complex cexpf(float complex z);

long double complex cexpl(long double complex z);

These functions compute the complex exponent of z, defined as e^z.

These functions return the complex exponential value of z.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

clog(3M), complex.h(3HEAD), attributes(5), standards(5)

cexp(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

72 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

cimag, cimagf, cimagl – complex imaginary functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double cimag(double complex z);

float cimagf(float complex z);

long double cimagl(long double complex z);

These functions compute the imaginary part of z.

These functions return the imaginary part value (as a real).

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

carg(3M), complex.h(3HEAD), conj(3M), cproj(3M), creal(3M),
attributes(5), standards(5)

cimag(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 73

clog, clogf, clogl – complex natural logarithm functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex clog(double complex z);

float complex clogf(float complex z);

long double complex clogl(long double complex z);

These functions compute the complex natural (base e) logarithm of z, with a branch
cut along the negative real axis.

These functions return the complex natural logarithm value, in the range of a strip
mathematically unbounded along the real axis and in the interval [-i , +i] along the
imaginary axis.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cexp(3M), complex.h(3HEAD), attributes(5), standards(5)

clog(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

74 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

config_admin, config_change_state, config_private_func, config_test, config_stat,
config_list, config_list_ext, config_ap_id_cmp, config_unload_libs, config_strerror –
configuration administration interface

cc [flag...] file... -lcfgadm [library...]
#include <config_admin.h>

#include <sys/param.h>

cfga_err_t config_change_state(cfga_cmd_t state_change_cmd, int
num_ap_ids, char * const *ap_ids, const char *options, struct
cfga_confirm *confp, struct cfga_msg *msgp, char **errstring,
cfga_flags_t flags);

cfga_err_t config_private_func(const char *function, int num_ap_ids,
char * const *ap_ids, const char *options, struct cfga_confirm
*confp, struct cfga_msg *msgp, char **errstring, cfga_flags_t
flags);

cfga_err_t config_test(int num_ap_ids, char * const *ap_ids, const
char *options, struct cfga_msg *msgp, char **errstring,
cfga_flags_t flags);

cfga_err_t config_list_ext(int num_ap_ids, char * const *ap_ids,
struct cfga_list_data **ap_id_list, int *nlist, const char *options,
const char *listops, char **errstring, cfga_flags_t flags);

int config_ap_id_cmp(const cfga_ap_id_t ap_id1, const cfga_ap_id_t
ap_id2);

void config_unload_libs(void);

const char *config_strerror(cfga_err_t cfgerrnum);

The following interfaces have been deprecated and their use is strongly discouraged:

cfga_err_t config_stat(int num_ap_ids, char * const *ap_ids, struct
cfga_stat_data *buf, const char *options, char **errstring);

cfga_err_t config_list(struct cfga_stat_data **ap_id_list, int *nlist,
const char *options, char **errstring);

The config_admin library is a generic interface that is used for dynamic
configuration, (DR). Each piece of hardware that supports DR must supply a
hardware-specific plugin library that contains the entry points listed in this subsection.
The generic library will locate and link to the appropriate library to effect DR
operations. The interfaces specified in this subsection are really "hidden" from users of
the generic libraries. It is, however, necessary that writers of the hardware-specific
plug in libraries know what these interfaces are.

cfga_err_t cfga_change_state(cfga_cmd_t state_change_cmd, const char
*ap_id, const char *options, struct cfga_confirm *confp, struct
cfga_msg *msgp, char **errstring, cfga_flags_t flags);

cfga_err_t cfga_private_func(const char *function, const char *ap_id,
const char *options, struct cfga_confirm *confp, struct cfga_msg

config_admin(3CFGADM)

NAME

SYNOPSIS

Deprecated
Interfaces

HARDWARE
DEPENDENT

LIBRARY
SYNOPSIS

Extended Library Functions 75

*msgp, char **errstring, cfga_flags_t flags);

cfga_err_t cfga_test(const char *ap_id, const char *options, struct
cfga_msg *msgp, char **errstring, cfga_flags_t flags);

cfga_err_t cfga_list_ext(const char *ap_id, struct cfga_list_data
**ap_id_list, int *nlist, const char *options, const char *listopts,
char **errstring, cfga_flags_t flags);

cfga_err_t cfga_help(struct cfga_msg *msgp, const char *options,
cfga_flags_t flags);

int cfga_ap_id_cmp(const cfga_ap_id_t ap_id1, const cfga_ap_id_t
ap_id2);

The following interfaces have been deprecated and their use is strongly discouraged:

cfga_err_t cfga_stat(const char *ap_id, struct cfga_stat_data *buf,
const char *options, char **errstring);

cfga_err_t cfga_list(const char *ap_id, struct cfga_stat_data
**ap_id_list, int *nlist, const char *options, char **errstring);

The config_*() functions provide a hardware independent interface to
hardware-specific system configuration administration functions. The cfga_*()
functions are provided by hardware-specific libraries that are dynamically loaded to
handle configuration administration functions in a hardware-specific manner.

The libcfgadm library is used to provide the services of the cfgadm(1M) command.
The hardware-specific libraries are located in
/usr/platform/${machine}/lib/cfgadm,
/usr/platform/${arch}/lib/cfgadm, and /usr/lib/cfgadm. The
hardware-specific library names are derived from the driver name or from class names
in device tree nodes that identify attachment points.

The config_change_state() function performs operations that change the state of
the system configuration. The state_change_cmd argument can be one of the following:
CFGA_CMD_INSERT, CFGA_CMD_REMOVE, CFGA_CMD_DISCONNECT,
CFGA_CMD_CONNECT, CFGA_CMD_CONFIGURE, or CFGA_CMD_UNCONFIGURE. The
state_change_cmd CFGA_CMD_INSERT is used to prepare for manual insertion or to
activate automatic hardware insertion of an occupant. The
state_change_cmd CFGA_CMD_REMOVE is used to prepare for manual removal or
activate automatic hardware removal of an occupant. The state_change_cmd
CFGA_CMD_DISCONNECT is used to disable normal communication to or from an
occupant in a receptacle. The state_change_cmd CFGA_CMD_CONNECT is used to enable
communication to or from an occupant in a receptacle. The state_change_cmd
CFGA_CMD_CONFIGURE is used to bring the hardware resources contained on, or
attached to, an occupant into the realm of Solaris, allowing use of the occupant’s
hardware resources by the system. The state_change_cmd CFGA_CMD_UNCONFIGURE is
used to remove the hardware resources contained on, or attached to, an occupant from
the realm of Solaris, disallowing further use of the occupant’s hardware resources by
the system.

config_admin(3CFGADM)

Deprecated
Interfaces

DESCRIPTION

76 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2004

The flags argument may contain one or both of the defined flags, CFGA_FLAG_FORCE
and CFGA_FLAG_VERBOSE. If the CFGA_FLAG_FORCE flag is asserted certain safety
checks will be overridden. For example, this may not allow an occupant in the failed
condition to be configured, but might allow an occupant in the failing condition to be
configured. Acceptance of a force is hardware dependent. If the
CFGA_FLAG_VERBOSE flag is asserted hardware-specific details relating to the
operation are output utilizing the cfga_msg mechanism.

The config_private_func() function invokes private hardware-specific functions.

The config_test() function is used to initiate testing of the specified attachment
point.

The num_ap_ids argument specifies the number of ap_ids in the ap_ids array. The ap_ids
argument points to an array of ap_ids.

The ap_id argument points to a single ap_id.

The function and options strings conform to the getsubopt(3C) syntax convention and
are used to supply hardware-specific function or option information. No generic
hardware-independent functions or options are defined.

The cfga_confirm structure referenced by confp provides a call-back interface to get
permission to proceed should the requested operation require, for example, a
noticeable service interruption. The cfga_confirm structure includes the following
members:

int (*confirm)(void *appdata_ptr, const char *message);

void *appdata_ptr;

The confirm() function is called with two arguments: the generic pointer appdata_ptr
and the message detailing what requires confirmation. The generic pointer appdata_ptr
is set to the value passed in in the cfga_confirm structure member appdata_ptr
and can be used in a graphical user interface to relate the confirm function call to the
config_*() call. The confirm() function should return 1 to allow the operation to
proceed and 0 otherwise.

The cfga_msg structure referenced by msgp provides a call-back interface to output
messages from a hardware-specific library. In the presence of the
CFGA_FLAG_VERBOSE flag, these messages can be informational; otherwise they are
restricted to error messages. The cfga_msg structure includes the following members:

int (*message_routine)(void *appdata_ptr, const char *message);

void *appdata_ptr;

The message_routine() function is called with two arguments: the generic pointer
appdata_ptr and the message. The generic pointer appdata_ptr is set to the value passed
in in the cfga_confirm structure member appdata_ptr and can be used in a
graphical user interface to relate the message_routine() function call to the
config_*() call. The messages must be in the native language specified by the
LC_MESSAGES locale category; see setlocale(3C).

config_admin(3CFGADM)

Extended Library Functions 77

For some generic errors a hardware-specific error message can be returned. The
storage for the error message string, including the terminating null character, is
allocated by the config_* functions using malloc(3C) and a pointer to this storage
returned through errstring. If errstring is NULL no error message will be generated or
returned. If errstring is not NULL and no error message is generated, the pointer
referenced by errstring will be set to NULL. It is the responsibility of the function
calling config_*() to deallocate the returned storage using free(3C). The error
messages must be in the native language specified by the LC_MESSAGES locale
category; see setlocale(3C).

The config_list_ext() function provides the listing interface. When supplied
with a list of ap_ids through the first two arguments, it returns an array of
cfga_list_data_t structures for each attachment point specified. If the first two
arguments are 0 and NULL respectively, then all attachment points in the device tree
will be listed. Additionally, dynamic expansion of an attachment point to list dynamic
attachment points may also be requested by passing the CFGA_FLAG_LIST_ALL flag
through the flags argument. Storage for the returned array of stat structures is
allocated by the config_list_ext() function using malloc(3C). This storage must
be freed by the caller of config_list_ext() by using free(3C).

The cfga_list_data structure includes the following members:

cfga_log_ext_t ap_log_id; /* Attachment point logical id */
cfga_phys_ext_t ap_phys_id; /* Attachment point physical id */
cfga_class_t ap_class; /* Attachment point class */
cfga_stat_t ap_r_state; /* Receptacle state */
cfga_stat_t ap_o_state; /* Occupant state */
cfga_cond_t ap_cond; /* Attachment point condition */
cfga_busy_t ap_busy; /* Busy indicator */
time_t ap_status_time; /* Attachment point last change*/
cfga_info_t ap_info; /* Miscellaneous information */

cfga_type_t ap_type; /* Occupant type */

The types are defined as follows:

typedef char cfga_log_ext_t[CFGA_LOG_EXT_LEN];
typedef char cfga_phys_ext_t[CFGA_PHYS_EXT_LEN];
typedef char cfga_class_t[CFGA_CLASS_LEN];
typedef char cfga_info_t[CFGA_INFO_LEN];
typedef char cfga_type_t[CFGA_TYPE_LEN];
typedef enum cfga_cond_t;
typedef enum cfga_stat_t;
typedef int cfga_busy_t;

typedef int cfga_flags_t;

The listopts argument to config_list_ext() conforms to the getsubopt (3C)
syntax and is used to pass listing sub-options. Currently, only the sub-option
class=class_name is supported. This list option restricts the listing to attachment
points of class class_name.

The listopts argument to cfga_list_ext() is reserved for future use.
Hardware-specific libraries should ignore this argument if it is NULL. If listopts is not
NULL and is not supported by the hardware-specific library, an appropriate error code
should be returned.

config_admin(3CFGADM)

78 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2004

The ap_log_id and the ap_phys_id members give the hardware-specific logical
and physical names of the attachment point. The ap_busy memberd indicates activity
is present that may result in changes to state or condition. The ap_status_time
member provides the time at which either the ap_r_state, ap_o_state, or
ap_cond field of the attachment point last changed. The ap_info member is
available for the hardware-specific code to provide additional information about the
attachment point. The ap_class member contains the attachment point class (if any)
for an attachment point. The ap_class member is filled in by the generic library. If
the ap_log_id and ap_phys_id members are not filled in by the hardware-specific
library, the generic library will fill in these members using a generic format. The
remaining members are the responsibility of the corresponding hardware-tospecific
library.

All string members in the cfga_list_data structure are null-terminated.

The config_stat(), config_list(), cfga_stat(), and cfga_list()
functions and the cfga_stat_data data structure are deprecated interfaces and are
provided solely for backward compatibility. Use of these interfaces is strongly
discouraged.

The config_ap_id_cmp function performs a hardware dependent comparison on
two ap_ids, returning an equal to, less than or greater than indication in the manner of
strcmp(3C). Each argument is either a cfga_ap_id_t or can be a null-terminated
string. This function can be used when sorting lists of ap_ids, for example with
qsort(3C), or when selecting entries from the result of a config_list function call.

The config_unload_libs function unlinks all previously loaded hardware-specific
libraries.

The config_strerror function can be used to map an error return value to an error
message string. See RETURN VALUES. The returned string should not be overwritten.
config_strerror returns NULL if cfgerrnum is out-of-range.

The cfga_help function can be used request that a hardware-specific library output
it’s localized help message.

The config_*() and cfga_*() functions return the following values. Additional
error information may be returned through errstring if the return code is not CFGA_OK.
See DESCRIPTION for details.

CFGA_BUSY The command was not completed due to an
element of the system configuration
administration system being busy.

CFGA_ATTR_INVAL No attachment points with the specified
attributes exists

CFGA_ERROR An error occurred during the processing of
the requested operation. This error code
includes validation of the command
arguments by the hardware-specific code.

config_admin(3CFGADM)

RETURN VALUES

Extended Library Functions 79

CFGA_INSUFFICIENT_CONDITION Operation failed due to attachment point
condition.

CFGA_INVAL The system configuration administration
operation requested is not supported on the
specified attachment point.

CFGA_LIB_ERROR A procedural error occurred in the library,
including failure to obtain process resources
such as memory and file descriptors.

CFGA_NACK The command was not completed due to a
negative acknowledgement from the
confp->confirm function.

CFGA_NO_LIB A hardware-specific library could not be
located using the supplied ap_id.

CFGA_NOTSUPP System configuration administration is not
supported on the specified attachment
point.

CFGA_OK The command completed as requested.

CFGA_OPNOTSUPP System configuration administration
operation is not supported on this
attachment point.

CFGA_PRIV The caller does not have the required
process privileges. For example, if
configuration administration is performed
through a device driver, the permissions on
the device node would be used to control
access.

CFGA_SYSTEM_BUSY The command required a service
interruption and was not completed due to
a part of the system that could not be
quiesced.

Many of the errors returned by the system configuration administration functions are
hardware-specific. The strings returned in errstring may include the following:

attachment point ap_id not known
The attachment point detailed in the error message does not exist.

unknown hardware option option for operation
An unknown option was encountered in the options string.

hardware option option requires a value
An option in the options string should have been of the form option=value.

listing option list_option requires a value
An option in the listopts string should have been of the form option=value.

config_admin(3CFGADM)

ERRORS

80 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2004

hardware option option does not require a value
An option in the options string should have been a simple option.

attachment point ap_id is not configured
A config_change_state command to CFGA_CMD_UNCONFIGURE an occupant was
made to an attachment point whose occupant was not in the
CFGA_STAT_CONFIGURED state.

attachment point ap_id is not unconfigured
A config_change_state command requiring an unconfigured occupant was made to
an attachment point whose occupant was not in the CFGA_STAT_UNCONFIGURED
state.

attachment point ap_id condition not satisfactory
A config_change_state command was made to an attachment point whose condition
prevented the operation.

attachment point ap_id in condition condition cannot be used
A config_change_state operation with force indicated was directed to an attachment
point whose condition fails the hardware dependent test.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu, SUNWkvm

MT-Level Safe

cfgadm(1M), devinfo(1M), dlopen(3C), dlsym(3C), free(3C), getsubopt(3C),
malloc(3C), qsort(3C), setlocale(3C), strcmp(3C), libcfgadm(3LIB),
attributes(5)

Applications using this library should be aware that the underlying implementation
may use system services which alter the contents of the external variable errno and
may use file descriptor resources.

The following code shows the intended error processing when config_*() returns a
value other than CFGA_OK:

void
emit_error(cfga_err_t cfgerrnum, char *estrp)
{

const char *ep;
ep = config_strerror(cfgerrnum);
if (ep == NULL)

ep = gettext("configuration administration unknown error");
if (estrp != NULL && *estrp != ’\0’) {

(void) fprintf(stderr, "%s: %s\n", ep, estrp);
} else {

(void) fprintf(stderr, "%s\n", ep);
}
if (estrp != NULL)

config_admin(3CFGADM)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 81

free((void *)estrp);

}

Reference should be made to the Hardware Specific Guide for details of System
Configuration Administration support.

config_admin(3CFGADM)

82 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2004

conj, conjf, conjl – complex conjugate functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex conj(double complex z);

float complex conjf(float complex z);

long double complex conjl(long double complex z);

These functions compute the complex conjugate of z, by reversing the sign of its
imaginary part.

These functions return the complex conjugate value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

carg(3M), cimag(3M), complex.h(3HEAD), cproj(3M), creal(3M),
attributes(5), standards(5)

conj(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 83

ConnectToServer – connect to a DMI service provider

cc [flag ...] file ... -ldmici -ldmimi [library ...]

#include <dmi/api.hh>

bool_t ConnectToServer(ConnectI *argp, DmiRpcHandle *dmi_rpc_handle);

The ConnectToServer() function enables a management application or a
component instrumentation to connect to a DMI service provider.

The argp parameter is an input parameter that uses the following data structure:

struct ConnectIN {
char *host;
const char *nettype;
ServerType servertype;
RpcType rpctype;

}

The host member indicates the host on which the service provider is running. The
default is localhost.

The nettype member specifies the type of transport RPC uses. The default is netpath.

The servertype member indicates whether the connecting process is a management
application or a component instrumentation.

The rpctype member specifies the type of RPC, either ONC or DCE. Only ONC is
supported in the Solaris 7 release.

The dmi_rpc_handle parameter is the output parameter that returns DMI RPC handle.

The ConnectToServer() function returns TRUE if successful, otherwise FALSE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Safe

DisconnectToServer(3DMI),attributes(5)

ConnectToServer(3DMI)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

84 man pages section 3: Extended Library Functions • Last Revised 4 Aug 1998

copylist – copy a file into memory

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

char *copylist(const char *filenm, off_t *szptr);

The copylist() function copies a list of items from a file into freshly allocated
memory, replacing new-lines with null characters. It expects two arguments: a pointer
filenm to the name of the file to be copied, and a pointer szptr to a variable where the
size of the file will be stored.

Upon success, copylist() returns a pointer to the memory allocated. Otherwise it
returns NULL if it has trouble finding the file, calling malloc(), or reading the file.

The copylist() function has a transitional interface for 64-bit file offsets. See
lf64(5).

EXAMPLE 1 Example of copylist() function.

/* read "file" into buf */
off_t size;
char *buf;
buf = copylist("file", &size);
if (buf) {

for (i=0; i<size; i++)
if (buf[i])

putchar(buf[i]);
else

putchar(’\n’);
}

} else {
fprintf(stderr, "%s: Copy failed for "file".\n", argv[0]);
exit (1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

malloc(3C), attributes(5), lf64(5)

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

copylist(3GEN)

NAME

SYNOPSIS

DESCRIPTION

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 85

copysign, copysignf, copysignl – number manipulation function

cc [flag...] file... -lm [library...]

#include <math.h>

double copysign(double x, double y);

float copysignf(float x, float y);

long double copysignl(long double x, long double y);

These functions produce a value with the magnitude of x and the sign of y.

Upon successful completion, these functions return a value with the magnitude of x
and the sign of y.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

math.h(3HEAD), signbit(3M),attributes(5), standards(5)

copysign(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

86 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

cos, cosf, cosl – cosine function

cc [flag...] file... -lm [library...]

#include <math.h>

double cos(double x);

float cosf(float x);

long double cosl(long double x);

These functions compute the cosine of x, measured in radians.

Upon successful completion, these functions return the cosine of x.

If x is NaN, NaN is returned.

If x is +0, 1.0 is returned.

If x is ±Inf, a domain error occurs and a NaN is returned.

These functions will fail if:

Domain Error The x argument is ±Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

acos(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M),
math.h(3HEAD), sin(3M), tan(3M), attributes(5), standards(5)

cos(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 87

cosh, coshf, coshl – hyperbolic cosine function

cc [flag...] file... -lm [library...]

#include <math.h>

double cosh(double x);

float coshf(float x);

long double coshl(long double x);

These functions compute the hyperbolic cosine of their argument x.

Upon successful completion, these functions return the hyperbolic cosine of x.

If the correct value would cause overflow, a range error occurs and cosh(), coshf(),
and coshl() return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

If x is NaN, a NaN is returned.

If x is ±0, 1.0 is returned.

If x is ±Inf, ±Inf is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by cosh() as
specified by SVID3 and XPG3.

These functions will fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception is raised.

The cosh() function sets errno to ERANGE if the result would
cause an overflow.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling cosh(). On return, if errno is
non-zero, an error has occurred. The coshf() and coshl() functions do not set
errno.

cosh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

88 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

acosh(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M),
math.h(3HEAD), matherr(3M), sinh(3M), tanh(3M), attributes(5),
standards(5)

cosh(3M)

ATTRIBUTES

SEE ALSO

Extended Library Functions 89

cpc – hardware performance counters

Modern microprocessors contain hardware performance counters that allow the
measurement of many different hardware events related to CPU behavior, including
instruction and data cache misses as well as various internal states of the processor.
The counters can be configured to count user events, system events, or both. Data
from the performance counters can be used to analyze and tune the behavior of
software on a particular type of processor.

Most processors are able to generate an interrupt on counter overflow, allowing the
counters to be used for various forms of profiling.

This manual page describes a set of APIs that allow Solaris applications to use these
counters. Applications can measure their own behavior, the behavior of other
applications, or the behavior of the whole system.

There are two principal models for using these performance counters. Some users of
these statistics want to observe system-wide behavior. Other users want to view the
performance counters as part of the register set exported by each LWP. On a machine
performing more than one activity, these two models are in conflict because the
counters represent a critical hardware resource that cannot simultaneously be both
shared and private.

The following configuration interfaces are provided:

cpc_open(3CPC) Check the version the application was compiled with
against the version of the library.

cpc_cciname(3CPC) Return a printable string to describe the performance
counters of the processor.

cpc_npic(3CPC) Return the number of performance counters on the
processor.

cpc_cpuref(3CPC) Return a reference to documentation that should be
consulted to understand how to use and interpret data
from the performance counters.

Performance counters can be present in hardware but not acccessible because either
some of the necessary system software components are not available or not installed,
or the counters might be in use by other processes. The cpc_open(3CPC) function
determines the accessibility of the counters and must be invoked before any attempt to
program the counters.

Each different type of processor has its own set of events available for measurement.
The cpc_walk_events_all(3CPC) and cpc_walk_events_pic(3CPC) functions
allow an application to determine the names of events supported by the underlying
processor.

cpc(3CPC)

NAME

DESCRIPTION

Shared Counters
or Private
Counters

Configuration
Interfaces

Performance
Counter Access

Finding Events

90 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

Some processors have advanced performance counter capabilities that are configured
with attributes. The cpc_walk_attrs(3CPC) function can be used to determine the
names of attributes supported by the underlying processor. The documentation
referenced by cpc_cpuref(3CPC) should be consulted to understand the meaning of
a processor’s performance counter attributes.

Each processor on the system possesses its own set of performance counter registers.
For a single process, it is often desirable to maintain the illusion that the counters are
an intrinsic part of that process (whichever processors it runs on), since this allows the
events to be directly attributed to the process without having to make passive all other
activity on the system.

To achieve this behavior, the library associates performance counter context with each
LWP in the process. The context consists of a small amount of kernel memory to hold
the counter values when the LWP is not running, and some simple kernel functions to
save and restore those counter values from and to the hardware registers when the
LWP performs a normal context switch. A process can only observe and manipulate its
own copy of the performance counter control and data registers.

Though applications can be modified to instrument themselves as demonstrated
above, it is frequently useful to be able to examine the behavior of an existing
application without changing the source code. A separate library, libpctx, provides a
simple set of interfaces that use the facilities of proc(4) to control a target process, and
together with functions in libcpc, allow truss-like tools to be constructed to
measure the performance counters in other applications. An example of one such
application is cputrack(1).

The functions in libpctx are independent of those in libcpc. These functions
manage a process using an event-loop paradigm — that is, the execution of certain
system calls by the controlled process cause the library to stop the controlled process
and execute callback functions in the context of the controlling process. These handlers
can perform various operations on the target process using APIs in libpctx and
libcpc that consume pctx_t handles.

cputrack(1), cpustat(1M), cpc_bind_curlwp(3CPC), cpc_buf_create(3CPC),
cpc_enable(3CPC), cpc_npic(3CPC), cpc_open(3CPC),
cpc_set_create(3CPC), cpc_seterrhndlr(3CPC), libcpc(3LIB),
pctx_capture(3CPC), pctx_set_events(3CPC), proc(4).

cpc(3CPC)

Using Attributes

Performance
Counter Context

Performance
Counters In Other

Processes

SEE ALSO

Extended Library Functions 91

cpc_access – test access CPU performance counters

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_access(void);

Access to CPU performance counters is possible only on systems where the
appropriate hardware exists and is correctly configured. The cpc_access() function
must be used to determine if the hardware exists and is accessible on the platform
before any of the interfaces that use the counters are invoked.

When the hardware is available, access to the per-process counters is always allowed
to the process itself, and allowed to other processes mediated using the existing
security mechanisms of /proc.

Upon successful completion, cpc_access() returns 0. Otherwise, it returns −1 and
sets errno to indicate the error.

By default, two common errno values are decoded and cause the library to print an
error message using its reporting mechanism. See cpc_seterrfn(3CPC) for a
description of how this behavior can be modified.

The cpc_access() function will fail if:

EAGAIN Another process may be sampling system-wide CPU statistics.

ENOSYS CPU performance counters are inaccessible on this machine. This
error can occur when the machine supports CPU performance
counters, but some software components are missing. Check to see
that all CPU Performance Counter packages have been correctly
installed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

cpc(3CPC), cpc_open(3CPC), cpc_seterrfn(3CPC), libcpc(3LIB), proc(4),
attributes(5)

The cpc_access() function is Obsolete and might be removed in a future release.
Applications should use cpc_open(3CPC) instead.

cpc_access(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

92 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

cpc_bind_curlwp, cpc_bind_pctx, cpc_bind_cpu, cpc_unbind, cpc_request_preset,
cpc_set_restart – bind request sets to hardware counters

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

int cpc_bind_curlwp(cpc_t *cpc, cpc_set_t *set, uint_t flags);

int cpc_bind_pctx(cpc_t *cpc, pctx_t *pctx, id_t id, cpc_set_t *set,
uint_t flags);

int cpc_bind_cpu(cpc_t *cpc, processorid_t id, cpc_set_t *set,
uint_t flags);

int cpc_unbind(cpc_t *cpc, cpc_set_t *set);

int cpc_request_preset(cpc_t *cpc, int index, uint64_t preset);

int cpc_set_restart(cpc_t *cpc, cpc_set_t *set);

These functions program the processor’s hardware counters according to the requests
contained in the set argument. If these functions are successful, then upon return the
physical counters will have been assigned to count events on behalf of each request in
the set, and each counter will be enabled as configured.

The cpc_bind_curlwp() function binds the set to the calling LWP. If successful, a
performance counter context is associated with the LWP that allows the system to
virtualize the hardware counters to that specific LWP.

By default, the system binds the set to the current LWP only. If the
CPC_BIND_LWP_INHERIT flag is present in the flags argument, however, any
subsequent LWPs created by the current LWP will inherit a copy of the request set.
The newly created LWP will have its virtualized 64-bit counters initialized to the
preset values specified in set, and the counters will be enabled and begin counting
events on behalf of the new LWP. This automatic inheritance behavior can be useful
when dealing with multithreaded programs to determine aggregate statistics for the
program as a whole.

If the CPC_BIND_LWP_INHERIT flag is specified and any of the requests in the set
have the CPC_OVF_NOTIFY_EMT flag set, the process will immediately dispatch a
SIGEMT signal to the freshly created LWP so that it can preset its counters
appropriately on the new LWP. This initialization condition can be detected using
cpc_set_sample(3CPC) and looking at the counter value for any requests with
CPC_OVF_NOTIFY_EMT set. The value of any such counters will be UINT64_MAX.

The cpc_bind_pctx() function binds the set to the LWP specified by the pctx-id
pair, where pctx refers to a handle returned from libpctx and id is the ID of the desired
LWP in the target process. If successful, a performance counter context is associated
with the specified LWP and the system virtualizes the hardware counters to that
specific LWP. The flags argument is reserved for future use and must always be 0.

cpc_bind_curlwp(3CPC)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 93

The cpc_bind_cpu() function binds the set to the specified CPU and measures
events occurring on that CPU regardless of which LWP is running. Only one such
binding can be active on the specified CPU at a time. As long as any application has
bound a set to a CPU, per-LWP counters are unavailable and any attempt to use either
cpc_bind_curlwp() or cpc_bind_pctx() returns EAGAIN. The first invocation of
cpc_bind_cpu() invalidates all currently bound per-LWP counter sets, and any
attempt to sample an invalidated set returns EAGAIN. To bind to a CPU, the library
binds the calling LWP to the measured CPU with processor_bind(2). The application
must not change its processor binding until after it has unbound the set with
cpc_unbind(). The flags argument is reserved for future use and must always be 0.

The cpc_request_preset() function updates the preset and current value stored
in the indexed request within the currently bound set, thereby changing the starting
value for the specified request for the calling LWP only, which takes effect at the next
call to cpc_set_restart().

When a performance counter counting on behalf of a request with the
CPC_OVF_NOTIFY_EMT flag set overflows, the performance counters are frozen and
the LWP to which the set is bound receives a SIGEMT signal. The
cpc_set_restart() function can be called from a SIGEMT signal handler function
to quickly restart the hardware counters. Counting begins from each request’s original
preset (see cpc_set_add_request(3CPC)), or from the preset specified in a prior
call to cpc_request_preset(). Applications performing performance counter
overflow profiling should use the cpc_set_restart() function to quickly restart
counting after receiving a SIGEMT overflow signal and recording any relevant
program state.

The cpc_unbind() function unbinds the set from the resource to which it is bound.
All hardware resources associated with the bound set are freed and if the set was
bound to a CPU, the calling LWP is unbound from the corresponding CPU. See
processor_bind(2).

Upon successful completion these functions return 0. Otherwise, -1 is returned and
errno is set to indicate the error.

Applications wanting to get detailed error values should register an error handler
with cpc_seterrhndlr(3CPC). Otherwise, the library will output a specific error
description to stderr.

These functions will fail if:

EACCES For cpc_bind_curlwp(), the system has Pentium 4 processors
with HyperThreading and at least one physical processor has more
than one hardware thread online. See NOTES.

For cpc_bind_cpu(), the process does not have the cpc_cpu
privilege to access the CPU’s counters.

EAGAIN For cpc_bind_curlwp() and cpc_bind_pctx(), the
performance counters are not available for use by the application.

cpc_bind_curlwp(3CPC)

RETURN VALUES

ERRORS

94 man pages section 3: Extended Library Functions • Last Revised 22 Jun 2004

For cpc_bind_cpu(), another process has already bound to this
CPU. Only one process is allowed to bind to a CPU at a time and
only one set can be bound to a CPU at a time.

EINVAL The set does not contain any requests or cpc_set_add_request
() was not called.

The value given for an attribute of a request is out of range.

The system could not assign a physical counter to each request in
the system. See NOTES.

One or more requests in the set conflict and might not be
programmed simultaneously.

The set was not created with the same cpc handle.

For cpc_bind_cpu(), the specified processor does not exist.

For cpc_unbind(), the set is not bound.

For cpc_request_preset() and cpc_set_restart(), the
calling LWP does not have a bound set.

ENOSYS For cpc_bind_cpu(), the specified processor is not online.

ENOTSUP The cpc_bind_curlwp() function was called with the
CPC_OVF_NOTIFY_EMT flag, but the underlying processor is not
capable of detecting counter overflow.

ESRCH For cpc_bind_pctx(), the specified LWP in the target process
does not exist.

EXAMPLE 1 Use hardware performance counters to measure events in a process.

The following example demonstrates how a standalone application can be
instrumented with the libcpc(3LIB) functions to use hardware performance counters
to measure events in a process. The application performs 20 iterations of a
computation, measuring the counter values for each iteration. By default, the example
makes use of two counters to measure external cache references and external cache
hits. These options are only appropriate for UltraSPARC processors. By setting the
EVENT0 and EVENT1 environment variables to other strings (a list of which can be
obtained from the -h option of the cpustat(1M) or cputrack(1) utilities), other
events can be counted. The error() routine is assumed to be a user-provided routine
analogous to the familiar printf(3C) function from the C library that also performs
an exit(2) after printing the message.

#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <libcpc.h>

cpc_bind_curlwp(3CPC)

EXAMPLES

Extended Library Functions 95

EXAMPLE 1 Use hardware performance counters to measure events in a process.
(Continued)

#include <errno.h<

int
main(int argc, char *argv[])
{
int iter;
char *event0 = NULL, *event1 = NULL;
cpc_t *cpc;
cpc_set_t *set;
cpc_buf_t *diff, *after, *before;
int ind0, ind1;
uint64_t val0, val1;

if ((cpc = cpc_open(CPC_VER_CURRENT)) == NULL)
error("perf counters unavailable: %s", strerror(errno));

if ((event0 = getenv("EVENT0")) == NULL)
event0 = "EC_ref";

if ((event1 = getenv("EVENT1")) == NULL)
event1 = "EC_hit";

if ((set = cpc_set_create(cpc)) == NULL)
error("could not create set: %s", strerror(errno));

if ((ind0 = cpc_set_add_request(cpc, set, event0, 0, CPC_COUNT_USER, 0,
NULL)) == -1)
error("could not add first request: %s", strerror(errno));

if ((ind1 = cpc_set_add_request(cpc, set, event1, 0, CPC_COUNT_USER, 0,
NULL)) == -1)
error("could not add first request: %s", strerror(errno));

if ((diff = cpc_buf_create(cpc, set)) == NULL)
error("could not create buffer: %s", strerror(errno));

if ((after = cpc_buf_create(cpc, set)) == NULL)
error("could not create buffer: %s", strerror(errno));

if ((before = cpc_buf_create(cpc, set)) == NULL)
error("could not create buffer: %s", strerror(errno));

if (cpc_bind_curlwp(cpc, set, 0) == -1)
error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {

if (cpc_set_sample(cpc, set, before) == -1)
break;

/* ==> Computation to be measured goes here <== */

if (cpc_set_sample(cpc, set, after) == -1)
break;

cpc_buf_sub(cpc, diff, after, before);

cpc_bind_curlwp(3CPC)

96 man pages section 3: Extended Library Functions • Last Revised 22 Jun 2004

EXAMPLE 1 Use hardware performance counters to measure events in a process.
(Continued)

cpc_buf_get(cpc, diff, ind0, &val0);
cpc_buf_get(cpc, diff, ind1, &val1);

(void) printf("%3d: %" PRId64 " %" PRId64 "\n", iter,
val0, val1);

}

if (iter != 21)
error("cannot sample set: %s", strerror(errno));

cpc_close(cpc);

return (0);

}

EXAMPLE 2 Write a signal handler to catch overflow signals.

The following example builds on Example 1 and demonstrates how to write the signal
handler to catch overflow signals. A counter is preset so that it is 1000 counts short of
overflowing. After 1000 counts the signal handler is invoked.

The signal handler:

cpc_t *cpc;
cpc_set_t *set;
cpc_buf_t *buf;
int index;

void
emt_handler(int sig, siginfo_t *sip, void *arg)
{

ucontext_t *uap = arg;
uint64_t val;

if (sig != SIGEMT || sip->si_code != EMT_CPCOVF) {
psignal(sig, "example");
psiginfo(sip, "example");
return;

}

(void) printf("lwp%d - si_addr %p ucontext: %%pc %p %%sp %p\n",
_lwp_self(), (void *)sip->si_addr,
(void *)uap->uc_mcontext.gregs[PC],
(void *)uap->uc_mcontext.gregs[SP]);

if (cpc_set_sample(cpc, set, buf) != 0)
error("cannot sample: %s", strerror(errno));

cpc_buf_get(cpc, buf, index, &val);

(void) printf("0x%" PRIx64"\n", val);
(void) fflush(stdout);

cpc_bind_curlwp(3CPC)

Extended Library Functions 97

EXAMPLE 2 Write a signal handler to catch overflow signals. (Continued)

/*
* Update a request’s preset and restart the counters. Counters which
* have not been preset with cpc_request_preset() will resume counting
* from their current value.
*/
(cpc_request_preset(cpc, ind1, val1) != 0)

error("cannot set preset for request %d: %s", ind1,
strerror(errno));

if (cpc_set_restart(cpc, set) != 0)
error("cannot restart lwp%d: %s", _lwp_self(), strerror(errno));

}

The setup code, which can be positioned after the code that opens the CPC library and
creates a set:

#define PRESET (UINT64_MAX - 999ull)

struct sigaction act;
...
act.sa_sigaction = emt_handler;
bzero(&act.sa_mask, sizeof (act.sa_mask));
act.sa_flags = SA_RESTART|SA_SIGINFO;
if (sigaction(SIGEMT, &act, NULL) == -1)

error("sigaction: %s", strerror(errno));

if ((index = cpc_set_add_request(cpc, set, event, PRESET,
CPC_COUNT_USER | CPC_OVF_NOTIFY_EMT, 0, NULL)) != 0)
error("cannot add request to set: %s", strerror(errno));

if ((buf = cpc_buf_create(cpc, set)) == NULL)
error("cannot create buffer: %s", strerror(errno));

if (cpc_bind_curlwp(cpc, set, 0) == -1)
error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {
/* ==> Computation to be measured goes here <== */

}

cpc_unbind(cpc, set); /* done */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

cpc_bind_curlwp(3CPC)

ATTRIBUTES

98 man pages section 3: Extended Library Functions • Last Revised 22 Jun 2004

cputrack(1), cpustat(1M), psrinfo(1M), processor_bind(2),
cpc_seterrhndlr(3CPC), cpc_set_sample(3CPC), libcpc(3LIB),
attributes(5)

When a set is bound, the system assigns a physical hardware counter to count on
behalf of each request in the set. If such an assignment is not possible for all requests
in the set, the bind function returns -1 and sets errno to EINVAL. The assignment of
requests to counters depends on the capabilities of the available counters. Some
processors (such as Pentium 4) have a complicated counter control mechanism that
requires the reservation of limited hardware resources beyond the actual counters. It
could occur that two requests for different events might be impossible to count at the
same time due to these limited hardware resources. See the processor manual as
referenced by cpc_cpuref(3CPC) for details about the underlying processor’s
capabilities and limitations.

Some processors can be configured to dispatch an interrupt when a physical counter
overflows. The most obvious use for this facility is to ensure that the full 64-bit counter
values are maintained without repeated sampling. Certain hardware, such as the
UltraSPARC processor, does not record which counter overflowed. A more subtle use
for this facility is to preset the counter to a value slightly less than the maximum
value, then use the resulting interrupt to catch the counter overflow associated with
that event. The overflow can then be used as an indication of the frequency of the
occurrence of that event.

The interrupt generated by the processor might not be particularly precise. That is, the
particular instruction that caused the counter overflow might be earlier in the
instruction stream than is indicated by the program counter value in the ucontext.

When a request is added to a set with the CPC_OVF_NOTIFY_EMT flag set, then as
before, the control registers and counter are preset from the 64-bit preset value given.
When the flag is set, however, the kernel arranges to send the calling process a
SIGEMT signal when the overflow occurs. The si_code member of the corresponding
siginfo structure is set to EMT_CPCOVF and the si_addr member takes the
program counter value at the time the overflow interrupt was delivered. Counting is
disabled until the set is bound again.

If the CPC_CAP_OVERFLOW_PRECISE bit is set in the value returned by
cpc_caps(3CPC), the processor is able to determine precisely which counter has
overflowed after receiving the overflow interrupt. On such processors, the SIGEMT
signal is sent only if a counter overflows and the request that the counter is counting
has the CPC_OVF_NOTIFY_EMT flag set. If the capability is not present on the
processor, the system sends a SIGEMT signal to the process if any of its requests have
the CPC_OVF_NOTIFY_EMT flag set and any counter in its set overflows.

Different processors have different counter ranges available, though all processors
supported by Solaris allow at least 31 bits to be specified as a counter preset value.
Portable preset values lie in the range UINT64_MAX to UINT64_MAX-INT32_MAX.

cpc_bind_curlwp(3CPC)

SEE ALSO

NOTES

Extended Library Functions 99

The appropriate preset value will often need to be determined experimentally.
Typically, this value will depend on the event being measured as well as the desire to
minimize the impact of the act of measurement on the event being measured. Less
frequent interrupts and samples lead to less perturbation of the system.

If the processor cannot detect counter overflow, bind will fail and return ENOTSUP.
Only user events can be measured using this technique. See Example 2.

Most Pentium 4 events require the specification of an event mask for counting. The
event mask is specified with the emask attribute.

Pentium 4 processors with HyperThreading Technology have only one set of hardware
counters per physical processor. To use cpc_bind_curlwp() or cpc_bind_pctx()
to measure per-LWP events on a system with Pentium 4 HT processors, a system
administrator must first take processors in the system offline until each physical
processor has only one hardware thread online (See the -p option to psrinfo(1M)). If
a second hardware thread is brought online, all per-LWP bound contexts will be
invalidated and any attempt to sample or bind a CPC set will return EAGAIN.

Only one CPC set at a time can be bound to a physical processor with
cpc_bind_cpu(). Any call to cpc_bind_cpu() that attempts to bind a set to a
processor that shares a physical processor with a processor that already has a
CPU-bound set returns an error.

To measure the shared state on a Pentium 4 processor with HyperThreading, the
count_sibling_usr and count_sibling_sys attributes are provided for use with
cpc_bind_cpu(). These attributes behave exactly as the CPC_COUNT_USER and
CPC_COUNT_SYSTEM request flags, except that they act on the sibling hardware
thread sharing the physical processor with the CPU measured by cpc_bind_cpu().
Some CPC sets will fail to bind due to resource constraints. The most common type of
resource constraint is an ESCR conflict among one or more requests in the set. For
example, the branch_retired event cannot be measured on counters 12 and 13
simultaneously because both counters require the CRU_ESCR2 ESCR to measure this
event. To measure branch_retired events simultaneously on more than one counter, use
counters such that one counter uses CRU_ESCR2 and the other counter uses
CRU_ESCR3. See the processor documentation for details.

cpc_bind_curlwp(3CPC)

Pentium 4

100 man pages section 3: Extended Library Functions • Last Revised 22 Jun 2004

cpc_bind_event, cpc_take_sample, cpc_rele – use CPU performance counters on lwps

cc [flag...] file... −lcpc [library...]
#include <libcpc.h>

int cpc_bind_event(cpc_event_t *event, int flags);

int cpc_take_sample(cpc_event_t *event);

int cpc_rele(void);

Once the events to be sampled have been selected using, for example,
cpc_strtoevent(3CPC), the event selections can be bound to the calling LWP using
cpc_bind_event(). If cpc_bind_event() returns successfully, the system has
associated performance counter context with the calling LWP. The context allows the
system to virtualize the hardware counters to that specific LWP, and the counters are
enabled.

Two flags are defined that can be passed into the routine to allow the behavior of the
interface to be modified, as described below.

Counter values can be sampled at any time by calling cpc_take_sample(), and
dereferencing the fields of the ce_pic[] array returned. The ce_hrt field contains the
timestamp at which the kernel last sampled the counters.

To immediately remove the performance counter context on an LWP, the cpc_rele()
interface should be used. Otherwise, the context will be destroyed after the LWP or
process exits.

The caller should take steps to ensure that the counters are sampled often enough to
avoid the 32-bit counters wrapping. The events most prone to wrap are those that
count processor clock cycles. If such an event is of interest, sampling should occur
frequently so that less than 4 billion clock cycles can occur between samples.
Practically speaking, this is only likely to be a problem for otherwise idle systems, or
when processes are bound to processors, since normal context switching behavior will
otherwise hide this problem.

Upon successful completion, cpc_bind_event() and cpc_take_sample() return
0. Otherwise, these functions return −1, and set errno to indicate the error.

The cpc_bind_event() and cpc_take_sample() functions will fail if:

EAGAIN Another process may be sampling system-wide CPU statistics. For
cpc_bind_event(), this implies that no new contexts can be
created. For cpc_take_sample(), this implies that the
performance counter context has been invalidated and must be
released with cpc_rele(). Robust programs should be coded to
expect this behavior and recover from it by releasing the now
invalid context by calling cpc_rele() sleeping for a while, then
attempting to bind and sample the event once more.

EINVAL The cpc_take_sample() function has been invoked before the
context is bound.

cpc_bind_event(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 101

ENOTSUP The caller has attempted an operation that is illegal or not
supported on the current platform, such as attempting to specify
signal delivery on counter overflow on a CPU that doesn’t
generate an interrupt on counter overflow.

Prior to calling cpc_bind_event(), applications should call cpc_access(3CPC) to
determine if the counters are accessible on the system.

EXAMPLE 1 Use hardware performance counters to measure events in a process.

The example below shows how a standalone program can be instrumented with the
libcpc routines to use hardware performance counters to measure events in a
process. The program performs 20 iterations of a computation, measuring the counter
values for each iteration. By default, the example makes the counters measure external
cache references and external cache hits; these options are only appropriate for
UltraSPARC processors. By setting the PERFEVENTS environment variable to other
strings (a list of which can be gleaned from the -h flag of the cpustat or cputrack
utilities), other events can be counted. The error() routine below is assumed to be a
user-provided routine analogous to the familiar printf(3C) routine from the C
library but which also performs an exit(2) after printing the message.

#include <inttypes.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <libcpc.h>
int
main(int argc, char *argv[])
{
int cpuver, iter;
char *setting = NULL;
cpc_event_t event;

if (cpc_version(CPC_VER_CURRENT) != CPC_VER_CURRENT)
error("application:library cpc version mismatch!");

if ((cpuver = cpc_getcpuver()) == -1)
error("no performance counter hardware!");

if ((setting = getenv("PERFEVENTS")) == NULL)
setting = "pic0=EC_ref,pic1=EC_hit";

if (cpc_strtoevent(cpuver, setting, &event) != 0)
error("can’t measure ’%s’ on this processor", setting);

setting = cpc_eventtostr(&event);

if (cpc_access() == -1)
error("can’t access perf counters: %s", strerror(errno));

if (cpc_bind_event(&event, 0) == -1)
error("can’t bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {
cpc_event_t before, after;

cpc_bind_event(3CPC)

USAGE

EXAMPLES

102 man pages section 3: Extended Library Functions • Last Revised 26 Feb 2004

EXAMPLE 1 Use hardware performance counters to measure events in a process.
(Continued)

if (cpc_take_sample(&before) == -1)
break;

/* ==> Computation to be measured goes here <== */

if (cpc_take_sample(&after) == -1)
break;

(void) printf("%3d: %" PRId64 " %" PRId64 "\n", iter,
after.ce_pic[0] - before.ce_pic[0],
after.ce_pic[1] - before.ce_pic[1]);

}

if (iter != 20)
error("can’t sample ’%s’: %s", setting, strerror(errno));

free(setting);
return (0);

}

EXAMPLE 2 Write a signal handler to catch overflow signals.

This example builds on Example 1, but demonstrates how to write the signal handler
to catch overflow signals. The counters are preset so that counter zero is 1000 counts
short of overflowing, while counter one is set to zero. After 1000 counts on counter
zero, the signal handler will be invoked.

First the signal handler:

#define PRESET0 (UINT64_MAX - UINT64_C(999))
#define PRESET1 0

void
emt_handler(int sig, siginfo_t *sip, void *arg)
{
ucontext_t *uap = arg;
cpc_event_t sample;

if (sig != SIGEMT || sip->si_code != EMT_CPCOVF) {
psignal(sig, "example");
psiginfo(sip, "example");
return;

}

(void) printf("lwp%d - si_addr %p ucontext: %%pc %p %%sp %p\n",
_lwp_self(), (void *)sip->si_addr,
(void *)uap->uc_mcontext.gregs[PC],
(void *)uap->uc_mcontext.gregs[USP]);

if (cpc_take_sample(&sample) == -1)
error("can’t sample: %s", strerror(errno));

cpc_bind_event(3CPC)

Extended Library Functions 103

EXAMPLE 2 Write a signal handler to catch overflow signals. (Continued)

(void) printf("0x%" PRIx64 " 0x%" PRIx64 "\n",
sample.ce_pic[0], sample.ce_pic[1]);

(void) fflush(stdout);

sample.ce_pic[0] = PRESET0;
sample.ce_pic[1] = PRESET1;
if (cpc_bind_event(&sample, CPC_BIND_EMT_OVF) == -1)

error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));
}

and second the setup code (this can be placed after the code that selects the event to be
measured):

struct sigaction act;
cpc_event_t event;
...
act.sa_sigaction = emt_handler;
bzero(&act.sa_mask, sizeof (act.sa_mask));
act.sa_flags = SA_RESTART|SA_SIGINFO;
if (sigaction(SIGEMT, &act, NULL) == -1)

error("sigaction: %s", strerror(errno));
event.ce_pic[0] = PRESET0;
event.ce_pic[1] = PRESET1;
if (cpc_bind_event(&event, CPC_BIND_EMT_OVF) == -1)

error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));

for (iter = 1; iter <= 20; iter++) {
/* ==> Computation to be measured goes here <== */

}

cpc_bind_event(NULL, 0); /* done */

Note that a more general version of the signal handler would use write(2) directly
instead of depending on the signal-unsafe semantics of stderr and stdout. Most
real signal handlers will probably do more with the samples than just print them out.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

cpustat(1M), cpc(3CPC), cpc_access(3CPC), cpc_bind_curlwp(3CPC),
cpc_set_sample(3CPC), cpc_strtoevent(3CPC), cpc_unbind(3CPC),
libcpc(3LIB), attributes(5)

cpc_bind_event(3CPC)

ATTRIBUTES

SEE ALSO

104 man pages section 3: Extended Library Functions • Last Revised 26 Feb 2004

The cpc_bind_event(), cpc_take_sample(), and cpc_rele() functions are
Obsolete and might be removed in a future release. Applications should use
cpc_bind_curlwp(3CPC), cpc_set_sample(3CPC), and cpc_unbind(3CPC)
instead.

Sometimes, even the overhead of performing a system call will be too disruptive to the
events being measured. Once a call to cpc_bind_event() has been issued, it is
possible to directly access the performance hardware registers from within the
application. If the performance counter context is active, then the counters will count
on behalf of the current LWP.

rd %pic, %rN ! All UltraSPARC
wr %rN, %pic ! (ditto, but see text)

rdpmc ! Pentium II only

If the counter context is not active or has been invalidated, the %pic register (SPARC),
and the rdpmc instruction (Pentium) will become unavailable.

Note that the two 32-bit UltraSPARC performance counters are kept in the single
64-bit %pic register so a couple of additional instructions are required to separate the
values. Also note that when the %pcr register bit has been set that configures the %pic
register as readable by an application, it is also writable. Any values written will be
preserved by the context switching mechanism.

Pentium II processors support the non-privileged rdpmc instruction which requires
[5] that the counter of interest be specified in %ecx, and returns a 40-bit value in the
%edx:%eax register pair. There is no non-privileged access mechanism for Pentium I
processors.

As described above, when counting events, some processors allow their counter
registers to silently overflow. More recent CPUs such as UltraSPARC III and Pentium
II, however, are capable of generating an interrupt when the hardware counter
overflows. Some processors offer more control over when interrupts will actually be
generated. For example, they might allow the interrupt to be programmed to occur
when only one of the counters overflows. See cpc_strtoevent(3CPC) for the
syntax.

The most obvious use for this facility is to ensure that the full 64-bit counter values are
maintained without repeated sampling. However, current hardware does not record
which counter overflowed. A more subtle use for this facility is to preset the counter to
a value to a little less than the maximum value, then use the resulting interrupt to
catch the counter overflow associated with that event. The overflow can then be used
as an indication of the frequency of the occurrence of that event.

Note that the interrupt generated by the processor may not be particularly precise.
That is, the particular instruction that caused the counter overflow may be earlier in
the instruction stream than is indicated by the program counter value in the ucontext.

When cpc_bind_event() is called with the CPC_BIND_EMT_OVF flag set, then as
before, the control registers and counters are preset from the 64-bit values contained in
event. However, when the flag is set, the kernel arranges to send the calling process a

cpc_bind_event(3CPC)

NOTES

SPARC

x86

Handling counter
overflow

Extended Library Functions 105

SIGEMT signal when the overflow occurs, with the si_code field of the
corresponding siginfo structure set to EMT_CPCOVF, and the si_addr field is the
program counter value at the time the overflow interrupt was delivered. Counting is
disabled until the next call to cpc_bind_event(). Even in a multithreaded process,
during execution of the signal handler, the thread behaves as if it is temporarily bound
to the running LWP.

Different processors have different counter ranges available, though all processors
supported by Solaris allow at least 31 bits to be specified as a counter preset value;
thus portable preset values lie in the range UINT64_MAX to
UINT64_MAX−INT32_MAX.

The appropriate preset value will often need to be determined experimentally.
Typically, it will depend on the event being measured, as well as the desire to
minimize the impact of the act of measurement on the event being measured; less
frequent interrupts and samples lead to less perturbation of the system.

If the processor cannot detect counter overflow, this call will fail (ENOTSUP).
Specifying a null event unbinds the context from the underlying LWP and disables
signal delivery. Currently, only user events can be measured using this technique. See
Example 2, above.

By default, the library binds the performance counter context to the current LWP only.
If the CPC_BIND_LWP_INHERIT flag is set, then any subsequent LWPs created by that
LWP will automatically inherit the same performance counter context. The counters
will be initialized to 0 as if a cpc_bind_event() had just been issued. This
automatic inheritance behavior can be useful when dealing with multithreaded
programs to determine aggregate statistics for the program as a whole.

If the CPC_BIND_EMT_OVF flag is also set, the process will immediately dispatch a
SIGEMT signal to the freshly created LWP so that it can preset its counters
appropriately on the new LWP. This initialization condition can be detected using
cpc_take_sample() to check that both ce_pic[] values are set to UINT64_MAX.

cpc_bind_event(3CPC)

Inheriting events
onto multiple

LWPs

106 man pages section 3: Extended Library Functions • Last Revised 26 Feb 2004

cpc_buf_create, cpc_buf_destroy, cpc_set_sample, cpc_buf_get, cpc_buf_set,
cpc_buf_hrtime, cpc_buf_tick, cpc_buf_sub, cpc_buf_add, cpc_buf_copy, cpc_buf_zero
– sample and manipulate CPC data

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

cpc_buf_t *cpc_buf_create(cpc_t *cpc, cpc_set_t *set);

int cpc_buf_destroy(cpc_t *cpc, cpc_buf_t *buf);

int cpc_set_sample(cpc_t *cpc, cpc_set_t *set, cpc_buf_t *buf);

int cpc_buf_get(cpc_t *cpc, cpc_buf_t *buf, int index, uint64_t
*val);

int cpc_buf_set(cpc_t *cpc, cpc_buf_t *buf, int index, uint64_t val);

hrtime_t cpc_buf_hrtime(cpc_t *cpc, cpc_buf_t *buf);

uint64_t cpc_buf_tick(cpc_t *cpc, cpc_buf_t *buf);

void cpc_buf_sub(cpc_t *cpc, cpc_buf_t *ds, cpc_buf_t *a, cpc_buf_t
*b);

void cpc_buf_add(cpc_t *cpc, cpc_buf_t *ds, cpc_buf_t *a, cpc_buf_t
*b);

void cpc_buf_copy(cpc_t *cpc, cpc_buf_t *ds, cpc_buf_t *src);

void cpc_buf_zero(cpc_t *cpc, cpc_buf_t *buf);

Counter data is sampled into CPC buffers, which are represented by the opaque data
type cpc_buf_t. A CPC buffer is created with cpc_buf_create() to hold the data
for a specific CPC set. Once a CPC buffer has been created, it can only be used to store
and manipulate the data of the CPC set for which it was created.

Once a set has been successfully bound, the counter values are sampled using
cpc_set_sample(). The cpc_set_sample() function takes a snapshot of the
hardware performance counters counting on behalf of the requests in set and stores the
64-bit virtualized software representations of the counters in the supplied CPC buffer.
If a set was bound with cpc_bind_curlwp(3CPC) or cpc_bind_cpu(3CPC), the set
can only be sampled by the LWP that bound it.

The kernel maintains 64-bit virtual software counters to hold the counts accumulated
for each request in the set, thereby allowing applications to count past the limits of the
underlying physical counter, which can be significantly smaller than 64 bits. The
kernel attempts to maintain the full 64-bit counter values even in the face of physical
counter overflow on architectures and processors that can automatically detect
overflow. If the processor is not capable of overflow detection, the caller must ensure
that the counters are sampled often enough to avoid the physical counters wrapping.
The events most prone to wrap are those that count processor clock cycles. If such an
event is of interest, sampling should occur frequently so that the counter does not
wrap between samples.

cpc_buf_create(3CPC)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 107

The cpc_buf_get() function retrieves the last sampled value of a particular request
in buf. The index argument specifies which request value in the set to retrieve. The
index for each request is returned during set configuration by
cpc_set_add_request(3CPC). The 64-bit virtualized software counter value is
stored in the location pointed to by the val argument.

The cpc_buf_set() function stores a 64-bit value to a specific request in the
supplied buffer. This operation can be useful for performing calculations with CPC
buffers, but it does not affect the value of the hardware counter (and thus will not
affect the next sample).

The cpc_buf_hrtime() function returns a high-resolution timestamp indicating
exactly when the set was last sampled by the kernel.

The cpc_buf_tick() function returns a 64-bit virtualized cycle counter indicating
how long the set has been programmed into the counter since it was bound. The units
of the values returned by cpc_buf_tick() are CPU clock cycles.

The cpc_buf_sub() function calculates the difference between each request in sets a
and b, storing the result in the corresponding request within set ds. More specifically,
for each request index n, this function performs ds[n] = a[n] - b[n]. Similarly,
cpc_buf_add() adds each request in sets a and b and stores the result in the
corresponding request within set ds.

The cpc_buf_copy() function copies each value from buffer src into buffer ds. Both
buffers must have been created from the same cpc_set_t.

The cpc_buf_zero() function sets each request’s value in the buffer to zero.

The cpc_buf_destroy() function frees all resources associated with the CPC buffer.

Upon successful completion, cpc_buf_create() returns a pointer to a CPC buffer
which can be used to hold data for the set argument. Otherwise, this function returns
NULL and sets errno to indicate the error.

Upon successful completion, cpc_set_sample(), cpc_buf_get(), and
cpc_buf_set() return 0. Otherwise, they return -1 and set errno to indicate the
error.

These functions will fail if:

EINVAL For cpc_set_sample(), the set is not bound, the set and/or
CPC buffer were not created with the given cpc handle, or the CPC
buffer was not created with the supplied set.

EAGAIN When using cpc_set_sample() to sample a CPU-bound set, the
LWP has been unbound from the processor it is measuring.

ENOMEM The library could not allocate enough memory for its internal data
structures.

cpc_buf_create(3CPC)

RETURN VALUES

ERRORS

108 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

cpc_bind_curlwp(3CPC), cpc_set_add_request(3CPC), libcpc(3LIB),
attributes(5)

Often the overhead of performing a system call can be too disruptive to the events
being measured. Once a cpc_bind_curlwp(3CPC) call has been issued, it is possible
to access directly the performance hardware registers from within the application. If
the performance counter context is active, the counters will count on behalf of the
current LWP.

Not all processors support this type of access. On processors where direct access is not
possible, cpc_set_sample() must be used to read the counters.

SPARC

rd %pic, %rN ! All UltraSPARC

wr %rN, %pic ! (All UltraSPARC, but see text)

x86

rdpmc ! Pentium II, III, and 4 only

If the counter context is not active or has been invalidated, the %pic register (SPARC),
and the rdpmc instruction (Pentium) becomes unavailable.

Pentium II and III processors support the non-privileged rdpmc instruction that
requires that the counter of interest be specified in %ecx and return a 40-bit value in
the %edx:%eax register pair. There is no non-privileged access mechanism for Pentium
I processors.

cpc_buf_create(3CPC)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 109

cpc_count_usr_events, cpc_count_sys_events – enable and disable performance
counters

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_count_usr_events(int enable);

int cpc_count_sys_events(int enable);

In certain applications, it can be useful to explicitly enable and disable performance
counters at different times so that the performance of a critical algorithm can be
examined. The cpc_count_usr_events() function can be used to control whether
events are counted on behalf of the application running in user mode, while
cpc_count_sys_events() can be used to control whether events are counted on
behalf of the application while it is running in the kernel, without otherwise
disturbing the binding of events to the invoking LWP. If the enable argument is
non-zero, counting of events is enabled, otherwise they are disabled.

Upon successful completion, cpc_count_usr_events() and
cpc_count_sys_events() return 0. Otherwise, the functions return −1 and set
errno to indicate the error.

The cpc_count_usr_events() and cpc_count_sys_events() functions will
fail if:

EAGAIN The associated performance counter context has been invalidated
by another process.

EINVAL No performance counter context has been created, or an attempt
was made to enable system events while delivering counter
overflow signals.

EXAMPLE 1 Use cpc_count_usr_events() to minimize code needed by application.

In this example, the routine cpc_count_usr_events() is used to minimize the
amount of code that needs to be added to the application. The cputrack(1) command
can be used in conjunction with these interfaces to provide event programming,
sampling, and reporting facilities.

If the application is instrumented in this way and then started by cputrack with the
nouser flag set in the event specification, counting of user events will only be enabled
around the critical code section of interest. If the program is run normally, no harm
will ensue.

int have_counters = 0;
int
main(int argc, char *argv[])
{

if (cpc_version(CPC_VER_CURRENT) == CPC_VER_CURRENT &&
cpc_getcpuver() != -1 && cpc_access() == 0)
have_counters = 1;

cpc_count_usr_events(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

110 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

EXAMPLE 1 Use cpc_count_usr_events() to minimize code needed by application.
(Continued)

/* ... other application code */

if (have_counters)
(void) cpc_count_usr_events(1);

/* ==> Code to be measured goes here <== */

if (have_counters)
(void) cpc_count_usr_events(0);

/* ... other application code */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

cputrack(1), cpc(3CPC), cpc_access(3CPC), cpc_bind_event(3CPC),
cpc_enable(3CPC), cpc_getcpuver(3CPC), cpc_pctx_bind_event(3CPC),
cpc_version(3CPC), libcpc(3LIB), attributes(5)

The cpc_count_usr_events() and cpc_count_sys_events() functions are
Obsolete and might be removed in a future release. Applications should use
cpc_enable(3CPC) instead.

cpc_count_usr_events(3CPC)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 111

cpc_enable, cpc_disable – enable and disable performance counters

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

int cpc_enable(cpc_t *cpc);

int cpc_disable(cpc_t *cpc);

In certain applications, it can be useful to explicitly enable and disable performance
counters at different times so that the performance of a critical algorithm can be
examined. The cpc_enable() and cpc_disable() functions can be used to enable
and disable the performance counters without otherwise disturbing the invoking
LWP’s performance hardware configuration.

Upon successful completion, cpc_enable() and cpc_disable() return 0.
Otherwise, they return -1 and set errno to indicate the error.

These functions will fail if:

EAGAIN The associated performance counter context has been invalidated
by another process.

EINVAL No performance counter context has been created for the calling
LWP.

EXAMPLE 1 Use cpc_enable and cpc_disable to minimize code needed by application.

In the following example, the cpc_enable() and cpc_disable() functions are
used to minimize the amount of code that needs to be added to the application. The
cputrack(1) command can be used in conjunction with these functions to provide
event programming, sampling, and reporting facilities.

If the application is instrumented in this way and then started by cputrack with the
nouser flag set in the event specification, counting of user events will only be enabled
around the critical code section of interest. If the program is run normally, no harm
will ensue.

int
main(int argc, char *argv[])
{

cpc_tt *cpc = cpc_open(CPC_VER_CURRENT);
/* ... application code ... */

if (cpc != NULL)
(void) cpc_enable(cpc);

/* ==> Code to be measured goes here <== */

if (cpc != NULL)
(void) cpc_disable(cpc);

/* ... other application code */

}

cpc_enable(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

112 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

cputrack(1), cpc(3CPC), cpc_open(3CPC), libcpc(3LIB), attributes(5)

cpc_enable(3CPC)

ATTRIBUTES

SEE ALSO

Extended Library Functions 113

cpc_event – data structure to describe CPU performance counters

#include <libcpc.h>

The libcpc interfaces manipulate CPU performance counters using the
cpc_event_t data structure. This structure contains several fields that are common
to all processors, and some that are processor-dependent. These structures can be
declared by a consumer of the API, thus the size and offsets of the fields and the entire
data structure are fixed per processor for any particular version of the library. See
cpc_version(3CPC) for details of library versioning.

For UltraSPARC, the structure contains the following members:

typedef struct {
int ce_cpuver;
hrtime_t ce_hrt;
uint64_t ce_tick;
uint64_t ce_pic[2];
uint64_t ce_pcr;

} cpc_event_t;

For Pentium, the structure contains the following members:

typedef struct {
int ce_cpuver;
hrtime_t ce_hrt;
uint64_t ce_tsc;
uint64_t ce_pic[2];
uint32_t ce_pes[2];

#define ce_cesr ce_pes[0]
} cpc_event_t;

The APIs are used to manipulate the highly processor-dependent control registers (the
ce_pcr, ce_cesr, and ce_pes fields); the programmer is strongly advised not to
reference those fields directly in portable code. The ce_pic array elements contain
64-bit accumulated counter values. The hardware registers are virtualized to 64-bit
quantities even though the underlying hardware only supports 32-bits (UltraSPARC)
or 40-bits (Pentium) before overflow.

The ce_hrt field is a high resolution timestamp taken at the time the counters were
sampled by the kernel. This uses the same timebase as gethrtime(3C).

On SPARC V9 machines, the number of cycles spent running on the processor is
computed from samples of the processor-dependent %tick register, and placed in the
ce_tick field. On Pentium processors, the processor-dependent time-stamp counter
register is similarly sampled and placed in the ce_tsc field.

See attributes(5) for descriptions of the following attributes:

cpc_event(3CPC)

NAME

SYNOPSIS

DESCRIPTION

SPARC

x86

ATTRIBUTES

114 man pages section 3: Extended Library Functions • Last Revised 12 May 2003

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

gethrtime(3C), cpc(3CPC), cpc_version(3CPC), libcpc(3LIB), attributes(5)

cpc_event(3CPC)

SEE ALSO

Extended Library Functions 115

cpc_event_diff, cpc_event_accum – simple difference and accumulate operations

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

void cpc_event_accum(cpc_event_t *accum, cpc_event_t *event);

void cpc_event_diff(cpc_event_t *diff, cpc_event_t *after,
cpc_event_t *before);

The cpc_event_accum() and cpc_event_diff() functions perform common
accumulate and difference operations on cpc_event(3CPC) data structures. Use of
these functions increases program portability, since structure members are not
referenced directly .

The cpc_event_accum() function adds the ce_pic fields of event into the
corresponding fields of accum. The ce_hrt field of accum is set to the later of the times
in event and accum.

SPARC:

The function adds the contents of the ce_tick field of event into the corresponding
field of accum.

x86:

The function adds the contents of the ce_tsc field of event into the corresponding
field of accum.

The cpc_event_diff() function places the difference between the ce_pic fields of
after and before and places them in the corresponding field of diff. The ce_hrt field of
diff is set to the ce_hrt field of after.

SPARC:

Additionally, the function computes the difference between the ce_tick fields of after
and before, and places it in the corresponding field of diff.

x86:

Additionally, the function computes the difference between the ce_tsc fields of after
and before, and places it in the corresponding field of diff.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe

cpc(3CPC), cpc_buf_add(3CPC), cpc_buf_sub(3CPC), cpc_event(3CPC),
libcpc(3LIB), attributes(5)

cpc_event_diff(3CPC)

NAME

SYNOPSIS

DESCRIPTION

cpc_event_accum()

cpc_event_diff()

ATTRIBUTES

SEE ALSO

116 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

The cpc_event_accum() and cpc_event_diff() functions are Obsolete and
might be removed in a future release. Applications should use cpc_buf_add(3CPC)
and cpc_buf_sub(3CPC) instead.

cpc_event_diff(3CPC)

NOTES

Extended Library Functions 117

cpc_getcpuver, cpc_getcciname, cpc_getcpuref, cpc_getusage, cpc_getnpic,
cpc_walk_names – determine CPU performance counter configuration

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_getcpuver(void);

const char *cpc_getcciname(int cpuver);

const char *cpc_getcpuref(int cpuver);

const char *cpc_getusage(int cpuver);

uint_t cpc_getnpic(int cpuver);

void cpc_walk_names(int cpuver, int regno, void *arg, void
(*action)(void *arg, int regno, const char *name, uint8_t bits));

The cpc_getcpuver() function returns an abstract integer that corresponds to the
distinguished version of the underlying processor. The library distinguishes between
processors solely on the basis of their support for performance counters, so the version
returned should not be interpreted in any other way. The set of values returned by the
library is unique across all processor implementations.

The cpc_getcpuver() function returns −1 if the library cannot support CPU
performance counters on the current architecture. This may be because the processor
has no such counter hardware, or because the library is unable to recognize it. Either
way, such a return value indicates that the configuration functions described on this
manual page cannot be used.

The cpc_getcciname() function returns a printable description of the processor
performance counter interfaces-for example, the string UltraSPARC I&II. Note that this
name should not be assumed to be the same as the name the manufacturer might
otherwise ascribe to the processor. It simply names the performance counter interfaces
as understood by the library, and thus names the set of performance counter events
that can be described by that interface. If the cpuver argument is unrecognized, the
function returns NULL.

The cpc_getcpuref() function returns a string that describes a reference work that
should be consulted to (allow a human to) understand the semantics of the
performance counter events that are known to the library. If the cpuver argument is
unrecognized, the function returns NULL. The string returned might be substantially
longer than 80 characters. Callers printing to a terminal might want to insert line
breaks as appropriate.

The cpc_getusage() function returns a compact description of the
getsubopt()-oriented syntax that is consumed by cpc_strtoevent(3CPC). It is
returned as a space-separated set of tokens to allow the caller to wrap lines at
convenient boundaries. If the cpuver argument is unrecognized, the function returns
NULL.

cpc_getcpuver(3CPC)

NAME

SYNOPSIS

DESCRIPTION

118 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

The cpc_getnpic() function returns the number of valid fields in the ce_pic[]
array of a cpc_event_t data structure.

The library maintains a list of events that it believes the processor capable of
measuring, along with the bit patterns that must be set in the corresponding control
register, and which counter the result will appear in. The cpc_walk_names()
function calls the action() function on each element of the list so that an application
can print appropriate help on the set of events known to the library. The arg parameter
is passed uninterpreted from the caller on each invocation of the action() function.

If the parameters specify an invalid or unknown CPU or register number, the function
silently returns without invoking the action function.

Prior to calling any of these functions, applications should call cpc_access(3CPC) to
determine if the counters are accessible on the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

cpc(3CPC), cpc_access(3CPC), cpc_cciname(3CPC), cpc_cpuref(3CPC),
cpc_npic(3CPC), cpc_walk_events_all(3CPC)libcpc(3LIB), attributes(5)

The cpc_getcpuver(), cpc_getcciname(), cpc_getcpuref(),
cpc_getusage(), cpc_getnpic(), and cpc_walk_names() functions are
Obsolete and might be removed in a future release. Applications should use
cpc_cciname(3CPC), cpc_cpuref(3CPC), cpc_npic(3CPC), and
cpc_walk_events_all(3CPC) instead.

Only SPARC processors are described by the SPARC version of the library, and only
x86 processors are described by the x86 version of the library.

cpc_getcpuver(3CPC)

USAGE

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 119

cpc_npic, cpc_caps, cpc_cciname, cpc_cpuref, cpc_walk_events_all,
cpc_walk_events_pic, cpc_walk_attrs – determine CPU performance counter
configuration

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

const char *cpc_cciname(cpc_t *cpc);

const char *cpc_cpuref(cpc_t *cpc);

uint_t cpc_npic(cpc_t *cpc);

uint_t cpc_caps(cpc_t *cpc);

void cpc_walk_events_all(cpc_t *cpc, void *arg, void (*action)(void
*arg, const char *event));

void cpc_walk_events_pic(cpc_t *cpc, uint_t picno, void *arg, void
(*action)(void *arg, uint_t picno, const char *event));

void cpc_walk_attrs(cpc_t *cpc, void *arg, void (*action)(void *arg,
const char *attr));

The cpc_cciname() function returns a printable description of the processor
performance counter interfaces, for example, the string UltraSPARC III+ & IV. This
name should not be assumed to be the same as the name the manufacturer might
otherwise ascribe to the processor. It simply names the performance counter interfaces
as understood by the system, and thus names the set of performance counter events
that can be described by that interface.

The cpc_cpuref() function returns a string that describes a reference work that
should be consulted to (allow a human to) understand the semantics of the
performance counter events that are known to the system. The string returned might
be substantially longer than 80 characters. Callers printing to a terminal might want to
insert line breaks as appropriate.

The cpc_npic() function returns the number of performance counters accessible on
the processor.

The cpc_caps() function returns a bitmap containing the bitwise inclusive-OR of
zero or more flags that describe the capabilities of the processor. If
CPC_CAP_OVERFLOW_INTERRUPT is present, the processor can generate an interrupt
when a hardware performance counter overflows. If CPC_CAP_OVERFLOW_PRECISE
is present, the processor can determine precisely which counter overflowed, thereby
affecting the behavior of the overflow notification mechanism described in
cpc_bind_curlwp(3CPC).

The system maintains a list of performance counter events supported by the
underlying processor. Some processors are able to count all events on all hardware
counters, while other processors restrict certain events to be counted only on specific
hardware counters. The system also maintains a list of processor-specific attributes
that can be used for advanced configuration of the performance counter hardware.

cpc_npic(3CPC)

NAME

SYNOPSIS

DESCRIPTION

120 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

These functions allow applications to determine what events and attributes are
supported by the underlying processor. The reference work pointed to by
cpc_cpuref() should be consulted to understand the reasons for and use of the
attributes.

The cpc_walk_events_all() function calls the action function on each element of a
global event list. The action function is called with each event supported by the
processor, regardless of which counter is capable of counting it. The action function is
called only once for each event, even if that event can be counted on more than one
counter.

The cpc_walk_events_pic() function calls the action function with each event
supported by the counter indicated by the picno argument, where picno ranges from 0
to the value returned by cpc_npic().

The system maintains a list of attributes that can be used to enable advanced features
of the performance counters on the underlying processor. The cpc_walk_attrs()
function calls the action function for each supported attribute name. See the reference
material as returned by cpc_cpuref(3CPC) for the semantics use of attributes.

The cpc_cciname() function always returns a printable description of the processor
performance counter interfaces.

The cpc_cpuref() function always returns a string that describes a reference work.

The cpc_npic() function always returns the number of performance counters
accessible on the processor.

The cpc_caps() function always returns a bitmap containing the bitwise
inclusive-OR of zero or more flags that describe the capabilities of the processor.

If the user-defined function specified by action is not called, the
cpc_walk_events_all(), cpc_walk_events_pic(), and cpc_walk_attrs()
functions set errno to indicate the error.

The cpc_walk_events_all(), cpc_walk_events_pic(), and
cpc_walk_attrs() functions will fail if:

ENOMEM There is not enough memory available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

cpc_bind_curlwp(3CPC), libcpc(3LIB), attributes(5)

cpc_npic(3CPC)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 121

cpc_open, cpc_close – initialize the CPU Performance Counter library

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

cpc_t *cpc_open(int vers);

int cpc_close(cpc_t *cpc);

The cpc_open() function initializes libcpc(3LIB) and returns an identifier that
must be used as the cpc argument in subsequent libcpc function calls. The
cpc_open() function takes an interface version as an argument and returns NULL if
that version of the interface is incompatible with the libcpc implementation present
on the system. Usually, the argument has the value of CPC_VER_CURRENT bound to
the application when it was compiled.

The cpc_close() function releases all resources associated with the cpc argument.
Any bound counters utilized by the process are unbound. All entities of type
cpc_set_t and cpc_buf_t are invalidated and destroyed.

If the version requested is supported by the implementation, cpc_open() returns a
cpc_t handle for use in all subsequent libcpc operations. If the implementation
cannot support the version needed by the application, cpc_open() returns NULL,
indicating that the application at least needs to be recompiled to operate correctly on
the new platform and might require further changes.

The cpc_close() function always returns 0.

These functions will fail if:

EINVAL The version requested by the client is incompatible with the
implementation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libcpc(3LIB), attributes(5)

cpc_open(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

122 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

cpc_pctx_bind_event, cpc_pctx_take_sample, cpc_pctx_rele, cpc_pctx_invalidate –
access CPU performance counters in other processes

cc [flag...] file... −lcpc −lpctx [library...]
#include <libpctx.h>

#include <libcpc.h>

int cpc_pctx_bind_event(pctx_t *pctx, id_t lwpid, cpc_event_t *event,
int flags);

int cpc_pctx_take_sample(pctx_t *pctx, id_t lwpid, cpc_event_t
*event);

int cpc_pctx_rele(pctx_t *pctx, id_t lwpid);

int cpc_pctx_invalidate(pctx_t *pctx, id_t lwpid);

These functions are designed to be run in the context of an event handler created
using the libpctx(3LIB) family of functions that allow the caller, also known as the
controlling process, to manipulate the performance counters in the context of a controlled
process. The controlled process is described by the pctx argument, which must be
obtained from an invocation of pctx_capture(3CPC) or pctx_create(3CPC) and
passed to the functions described on this page in the context of an event handler.

The semantics of the functions cpc_pctx_bind_event(),
cpc_pctx_take_sample(), and cpc_pctx_rele() are directly analogous to those
of cpc_bind_event(), cpc_take_sample(), and cpc_rele() described on the
cpc_bind_event(3CPC) manual page.

The cpc_pctx_invalidate() function allows the performance context to be
invalidated in an LWP in the controlled process.

These functions return 0 on success. On failure, they return −1 and set errno to
indicate the error.

The cpc_pctx_bind_event(), cpc_pctx_take_sample(), and
cpc_pctx_rele() functions return the same errno values the analogous functions
described on the cpc_bind_event(3CPC) manual page. In addition, these function
may fail if:

ESRCH The value of the lwpid argument is invalid in the context of the
controlled process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Interface Stability Evolving

cpc(3CPC), cpc_bind_event(3CPC), libcpc(3LIB), pctx_capture(3CPC),
pctx_create(3CPC), attributes(5)

cpc_pctx_bind_event(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 123

The cpc_pctx_bind_event(), cpc_pctx_invalidate(), cpc_pctx_rele(),
and cpc_pctx_take_sample() functions are Obsolete and might be removed in a
future release. Applications should use cpc_bind_pctx(3CPC), cpc_unbind(3CPC),
and cpc_set_sample(3CPC) instead.

The capability to create and analyze overflow events in other processes is not
available, though it may be made available in a future version of this API. In the
current implementation, the flags field must be specified as 0.

cpc_pctx_bind_event(3CPC)

NOTES

124 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

cpc_set_create, cpc_set_destroy, cpc_set_add_request, cpc_walk_requests – manage
sets of counter requests

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

cpc_set_t *cpc_set_create(cpc_t *cpc);

int cpc_set_destroy(cpc_t *cpc, cpc_set_t *set);

int cpc_set_add_request(cpc_t *cpc, cpc_set_t *set, const char
*event, uint64_t preset, uint_t flags, uint_t nattrs, const
cpc_attr_t *attrs);

void cpc_walk_requests(cpc_t *cpc, cpc_set_t *set, void *arg, void
(*action)(void *arg, int index, const char *event, uint64_t preset,
uint_t flags, int nattrs, const cpc_attr_t *attrs));

The cpc_set_create() function returns an initialized and empty CPC set. A CPC
set contains some number of requests, where a request represents a specific
configuration of a hardware performance instrumentation counter present on the
processor. The cpc_set_t data structure is opaque and must not be accessed directly
by the application.

Applications wanting to program one or more performance counters must create an
empty set with cpc_set_create() and add requests to the set with
cpc_set_add_request(). Once all requests have been added to a set, the set must
be bound to the hardware performance counters (see cpc_bind_curlwp(),
cpc_bind_pctx(), and cpc_bind_cpu(), all described on
cpc_bind_curlwp(3CPC)) before counting events. At bind time, the system attempts
to match each request with an available physical counter capable of counting the event
specified in the request. If the bind is successful, a 64-bit virtualized counter is created
to store the counts accumulated by the hardware counter. These counts are stored and
managed in CPC buffers separate from the CPC set whose requests are being counted.
See cpc_buf_create(3CPC) and cpc_set_sample(3CPC).

The cpc_set_add_request() function specifies a configuration of a hardware
counter. The arguments to cpc_set_add_request() are:

event A string containing the name of an event supported by the
system’s processor. The cpc_walk_events_all() and
cpc_walk_events_pic() functions (both described on
cpc_npic(3CPC)) can be used to query the processor for the
names of available events.

preset The value with which the system initializes the counter.

flags Three flags are defined that modify the behavior of the counter
acting on behalf of this request:

CPC_COUNT_USER
The counter should count events that occur while the processor
is in user mode.

cpc_set_create(3CPC)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 125

CPC_COUNT_SYSTEM
The counter should count events that occur while the processor
is in privileged mode.

CPC_OVF_NOTIFY_EMT
Request a signal to be sent to the application when the physical
counter overflows. A SIGEMT signal is delivered if the processor
is capable of delivering an interrupt when the counter counts
past its maximum value. All requests in the set containing the
counter that overflowed are stopped until the set is rebound.

At least one of CPC_COUNT_USER or CPC_COUNT_SYSTEM must
be specified to program the hardware for counting.

nattrs, attrs The nattrs argument specifies the number of attributes pointed to
by the attrs argument, which is an array of cpc_attr_t structures
containing processor-specific attributes that modify the request’s
configuration. The cpc_walk_attrs() function (see
cpc_npic(3CPC)) can be used to query the processor for the list
of attributes it accepts. The library makes a private copy of the
attrs array, allowing the application to dispose of it immediately
after calling cpc_set_add_request().

The cpc_walk_requests() function calls the action function on each request that
has been added to the set. The arg argument is passed unmodified to the action
function with each call.

Upon successful completion, cpc_set_create() returns a handle to the opaque
cpc_set_t data structure. Otherwise, NULL is returned and errno is set to indicate
the error.

Upon successful completion, Cpc_set_destroy() returns 0. Otherwise, -1 is
returned and errno is set to indicate the error.

Upon successful completion, cpc_set_add_request() returns an integer index
used to refer to the data generated by that request during data retrieval. Otherwise, -1
is returned and errno is set to indicate the error.

These functions will fail if:

EINVAL An event, attribute, or flag passed to cpc_set_add_request()
was invalid.

For cpc_set_destroy() and cpc_set_add_request(), the
set parameter was not created with the given cpc_t.

ENOMEM There was not enough memory available to the process to create
the library’s data structures.

cpc_set_create(3CPC)

RETURN VALUES

ERRORS

126 man pages section 3: Extended Library Functions • Last Revised 22 Jun 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

cpc_bind_curlwp(3CPC), cpc_buf_create(3CPC), cpc_npic(3CPC),
cpc_seterrhndlr(3CPC), libcpc(3LIB), attributes(5)

The system automatically determines which particular physical counter to use to
count the events specified by each request. Applications can force the system to use a
particular counter by specifying the counter number in an attribute named picnum that
is passed to cpc_set_add_request(). Counters are numbered from 0 to n - 1,
where n is the number of counters in the processor as returned by cpc_npic(3CPC).

Some processors, such as UltraSPARC, do not allow the hardware counters to be
programmed differently. In this case, all requests in the set must have the same
configuration, or an attempt to bind the set will return EINVAL. If a
cpc_errhndlr_t has been registered with cpc_seterrhndlr(3CPC), the error
handler is called with subcode CPC_CONFLICTING_REQS. For example, on
UltraSPARC pic0 and pic1 must both program events in the same processor mode
(user mode, kernel mode, or both). For example, pic0 cannot be programmed with
CPC_COUNT_USER while pic1 is programmed with CPC_COUNT_SYSTEM. Refer to
the hardware documentation referenced by cpc_cpuref(3CPC) for details about a
particular processor’s performance instrumentation hardware.

cpc_set_create(3CPC)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 127

cpc_seterrfn – control libcpc error reporting

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

typedef void (cpc_errfn_t)(const char *fn, const char *fmt, va_list
ap);

void cpc_seterrfn(cpc_errfn_t *errfn);

For the convenience of programmers instrumenting their code, several libcpc(3LIB)
functions automatically emit to stderr error messages that attempt to provide a more
detailed explanation of their error return values. While this can be useful for simple
programs, some applications may wish to report their errors differently—for example,
to a window or to a log file.

The cpc_seterrfn() function allows the caller to provide an alternate function for
reporting errors; the type signature is shown above. The fn argument is passed the
library function name that detected the error, the format string fmt and argument
pointer ap can be passed directly to vsnprintf(3C) or similar varargs-based routine
for formatting.

The default printing routine can be restored by calling the routine with an errfn
argument of NULL.

EXAMPLE 1 Debugging example.

This example produces error messages only when debugging the program containing
it, or when the cpc_strtoevent() function is reporting an error when parsing an
event specification

int debugging;
void
myapp_errfn(const char *fn, const char *fmt, va_list ap)
{

if (strcmp(fn, "strtoevent") != 0 && !debugging)
return;

(void) fprintf(stderr, "myapp: cpc_%s(): ", fn);
(void) vfprintf(stderr, fmt, ap);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

Interface Stability Obsolete

cpc(3CPC), cpc_seterrhndlr(3CPC), libcpc(3LIB), vsnprintf(3C),
attributes(5)

The cpc_seterrfn() function function is Obsolete and might be removed in a
future release. Applications should use cpc_seterrhndlr(3CPC) instead.

cpc_seterrfn(3CPC)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

128 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

cpc_seterrhndlr – control libcpc error reporting

cc [flag...] file... -lcpc [library...]

#include <libcpc.h>

typedef void(cpc_errhndlr_t)(cpc_t *cpc, const char *fn, int
subcode, const char *fmt, va_list ap);

void cpc_seterrhndlr(cpc_t *cpc, cpc_errhndlr_t *errfn);

For the convenience of programmers instrumenting their code, several libcpc(3LIB)
functions automatically emit to stderr error messages that attempt to provide a more
detailed explanation of their error return values. While this can be useful for simple
programs, some applications might wanat to report their errors differently, for
example, to a window or to a log file.

The cpc_seterrhndlr() function allows the caller to provide an alternate function
for reporting errors. The type signature is shown in the SYNOPSIS. The fn argument is
passed the library function name that detected the error, an integer subcode indicating
the specific error condidtion that has occurred, and the format string fmt that contains
a textual description of the integer subcode. The format string fmt and argument
pointer ap can be passed directly to vsnprintf(3C) or similar varargs-based function
for formatting.

The integer subcodes are provided to allow programs to recognize error conditions
while using libcpc. The fmt string is provided as a convenience for easy printing.
The error subcodes are:

CPC_INVALID_EVENT
A specified event is not supported by the processor.

CPC_INVALID_PICNUM
The counter number does not fall in the range of available counters.

CPC_INVALID_ATTRIBUTE
A specified attribute is not supported by the processor.

CPC_ATTRIBUTE_OUT_OF_RANGE
The value of an attribute is outside the range supported by the processor.

CPC_RESOURCE_UNAVAIL
A hardware resource necessary for completing an operation was unavailable.

CPC_PIC_NOT_CAPABLE
The requested counter cannot count an assigned event.

CPC_REQ_INVALID_FLAGS
One or more requests has invalid flags.

CPC_CONFLICTING_REQS
The requests in a set cannot be programmed onto the hardware at the same time.

CPC_ATTR_REQUIRES_PRIVILEGE
A request contains an attribute which requires the cpc_cpu privilege, which the
process does not have.

cpc_seterrhndlr(3CPC)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 129

The default printing routine can be restored by calling the routine with an errfn
argument of NULL.

EXAMPLE 1 Debugging example.

The following example produces error messages only when debugging the program
containing it, or when the cpc_bind_curlwp(), cpc_bind_cpu(), or
cpc_bind_pctx() functions are reporting an error when binding a cpc_set_t.

int debugging;
void
myapp_errfn(const char *fn, int subcode, const char *fmt, va_list ap)
{

if (strncmp(fn, "cpc_bind", 8) != 0 && !debugging)
return;

(void) fprintf(stderr, "myapp: cpc_%s(): ", fn);
(void) vfprintf(stderr, fmt, ap);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

cpc_bind_curlwp(3CPC), libcpc(3LIB), vsnprintf(3C), attributes(5)

cpc_seterrhndlr(3CPC)

EXAMPLES

ATTRIBUTES

SEE ALSO

130 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

cpc_shared_open, cpc_shared_bind_event, cpc_shared_take_sample, cpc_shared_rele,
cpc_shared_close – use CPU performance counters on processors

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

int cpc_shared_open(void);

int cpc_shared_bind_event(int fd, cpc_event_t *event, int flags);

int cpc_shared_take_sample(int fd, cpc_event_t *event);

int cpc_shared_rele(int fd);

void cpc_shared_close(int fd);

The cpc_shared_open() function allows the caller to access the hardware counters
in such a way that the performance of the currently bound CPU can be measured. The
function returns a file descriptor if successful. Only one such open can be active at a
time on any CPU.

The cpc_shared_bind_event(), cpc_shared_take_sample(), and
cpc_shared_rele() functions are directly analogous to the corresponding
cpc_bind_event(), cpc_take_sample(), and cpc_rele() functions described
on the cpc_bind_event(3CPC)manual page, except that they operate on the
counters of a particular processor.

If a thread wishes to access the counters using this interface, it must do so using a
thread bound to an lwp, (see the THR_BOUND flag to thr_create(3C)), that has in
turn bound itself to a processor using processor_bind(2).

Unlike the cpc_bind_event(3CPC) family of functions, no counter context is
attached to those lwps, so the performance counter samples from the processors
reflects the system-wide usage, instead of per-lwp usage.

The first successful invocation of cpc_shared_open() will immediately
invalidate all existing performance counter context on the system, and prevent all
subsequent attempts to bind counter context to lwps from succeeding anywhere on
the system until the last caller invokes cpc_shared_close().

This is because it is impossible to simultaneously use the counters to accurately
measure per-lwp and system-wide events, so there is an exclusive interlock between
these uses.

Access to the shared counters is mediated by file permissions on a cpc pseudo device.
Only a user with the {PRIV_SYS_CONFIG} privilege is allowed to access the shared
device. This control prevents use of the counters on a per-lwp basis to other users.

The CPC_BIND_LWP_INHERIT and CPC_BIND_EMT_OVF flags are invalid for the
shared interface.

On success, the functions (except for cpc_shared_close()) return 0. On failure, the
functions return –1 and set errno to indicate the reason.

cpc_shared_open(3CPC)

NAME

SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

Extended Library Functions 131

EACCES The caller does not have appropriate privilege to access the CPU
performance counters system-wide.

EAGAIN For cpc_shared_open(), this value implies that the counters on the
bound cpu are busy because they are already being used to
measure system-wide events by some other caller.

EAGAIN Otherwise, this return value implies that the counters are not
available because the thread has been unbound from the processor
it was bound to at open time. Robust programs should be coded to
expect this behavior, and should invoke cpc_shared_close(),
before retrying the operation.

EINVAL The counters cannot be accessed on the current CPU because the
calling thread is not bound to that CPU using
processor_bind(2).

ENOTSUP The caller has attempted an operation that is illegal or not
supported on the current platform.

ENXIO The current machine either has no performance counters, or has
been configured to disallow access to them system-wide.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Obsolete

processor_bind(2), cpc(3CPC), cpc_bind_cpu(3CPC), cpc_bind_event(3CPC),
cpc_set_sample(3CPC), cpc_unbind(3CPC), libcpc(3LIB), thr_create(3C),
attributes(5)

The cpc_shared_open(), cpc_shared_bind_event(),
cpc_shared_take_sample(), cpc_shared_rele(), and cpc_shared_close()
functions are Obsolete and might be removed in a future release. Applications should
use cpc_bind_cpu(3CPC), cpc_set_sample(3CPC), and cpc_unbind(3CPC)
instead.

cpc_shared_open(3CPC)

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

132 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

cpc_strtoevent, cpc_eventtostr – translate strings to and from events

cc [flag...] file... −lcpc [library...]
#include <libcpc.h>

int cpc_strtoevent(int cpuver, const char *spec, cpc_event_t *event);

char *cpc_eventtostr(cpc_event_t *event);

The cpc_strtoevent() function translates an event specification to the appropriate
collection of control bits in a cpc_event_t structure pointed to by the event
argument. The event specification is a getsubopt(3C)–style string that describes the
event and any attributes that the processor can apply to the event or events. If
successful, the funciton returns 0, the ce_cpuver field and the ISA-dependent control
registers of event are initialized appropriately, and the rest of the cpc_event_t
structure is initialized to 0.

The cpc_eventtostr() function takes an event and constructs a compact canonical
string representation for that event.

Upon successful completion, cpc_strtoevent() returns 0. If the string cannot be
decoded, a non-zero value is returned and a message is printed using the library’s
error-reporting mechanism (see cpc_seterrfn(3CPC)).

Upon successful completion, cpc_eventtostr() returns a pointer to a string. The
string returned must be freed by the caller using free(3C). If cpc_eventtostr()
fails, a null pointer is returned.

The event selection syntax used is processor architecture-dependent. The supported
processor families allow variations on how events are counted as well as what events
can be counted. This information is available in compact form from the
cpc_getusage() function (see cpc_getcpuver(3CPC)), but is explained in further
detail below.

On UltraSPARC processors, the syntax for setting options is as follows:

pic0=<eventspec>,pic1=<eventspec> [,sys] [,nouser]

This syntax, which reflects the simplicity of the options available using the %pcr
register, forces both counter events to be selected. By default only user events are
counted; however, the sys keyword allows system (kernel) events to be counted as
well. User event counting can be disabled by specifying the nouser keyword.

The keywords pic0 and pic1 may be omitted; they can be used to resolve
ambiguities if they exist.

On Pentium processors, the syntax for setting counter options is as follows:

pic0=<eventspec>,pic1=<eventspec> [,sys[[0|1]]] [,nouser[[0|1]]]
[,noedge[[0|1]]] [,pc[[0|1]]]

The syntax and semantics are the same as UltraSPARC, except that is possible to
specify whether a particular counter counts user or system events. If unspecified, the
specification is presumed to apply to both counters.

cpc_strtoevent(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

UltraSPARC

Pentium I

Extended Library Functions 133

There are some additional keywords. The noedge keyword specifies that the counter
should count clocks (duration) instead of events. The pc keyword allows the external
pin control pins to be set high (defaults to low). When the pin control register is set
high, the external pin will be asserted when the associated register overflows. When
the pin control register is set low, the external pin will be asserted when the counter
has been incremented. The electrical effect of driving the pin is dependent uptoon how
the motherboard manufacturer has chosen to connect it, if it is connected at all.

For Pentium II processors, the syntax is substantially more complex, reflecting the
complex configuration options available:

pic0=<eventspec>,pic1=<eventspec> [,sys[[0|1]]]
[,nouser[[0|1]]] [,noedge[[0|1]]] [,pc[[0|1]]] [,inv[[0|1]]] [,int[[0|1]]]
[,cmask[0|1]=<maskspec>] [,umask[0|1]=<maskspec>]

This syntax is a straightforward extension of the earlier syntax. The additional inv,
int, cmask0, cmask1, umask0, and umask1 keywords allow extended counting
semantics. The mask specification is a number between 0 and 255, expressed in
hexadecimal, octal or decimal notation.

EXAMPLE 1 SPARC Example.

cpc_event_t event;
char *setting = "pic0=EC_ref,pic1=EC_hit"; /* UltraSPARC-specific */

if (cpc_strtoevent(cpuver, setting, &event) != 0)
/* can’t measure ’setting’ on this processor */

else

setting = cpc_eventtostr(&event);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level MT-Safe

cpc(3CPC), cpc_getcpuver(3CPC), cpc_set_add_request(3CPC),
cpc_seterrfn(3CPC), free(3C), getsubopt(3C), libcpc(3LIB), attributes(5)

The cpc_strtoevent() and cpc_eventtostr() functions are Obsolete and might
be removed in a future release. Applications should use
cpc_set_add_request(3CPC) instead.

These functions are provided as a convenience only. As new processors are usually
released asynchronously with software, the library allows the pic0 and pic1
keywords to interpret numeric values specified directly in hexadecimal, octal, or
decimal.

cpc_strtoevent(3CPC)

Pentium II

EXAMPLES

SPARC

ATTRIBUTES

SEE ALSO

NOTES

134 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

cpc_version – coordinate CPC library and application versions

cc [flag...] file... −lcpc [library...]

#include <libcpc.h>

uint_t cpc_version(uint_t version);

The cpc_version() function takes an interface version as an argument and returns
an interface version as a result. Usually, the argument will be the value of
CPC_VER_CURRENT bound to the application when it was compiled.

If the version requested is still supported by the implementation, cpc_version()
returns the requested version number and the application can use the facilities of the
library on that platform. If the implementation cannot support the version needed by
the application, cpc_version() returns CPC_VER_NONE, indicating that the
application will at least need to be recompiled to operate correctly on the new
platform, and may require further changes.

If version is CPC_VER_NONE, cpc_version() returns the most current version of the
library.

EXAMPLE 1 Protect an application from using an incompatible library.

The following lines of code protect an application from using an incompatible library:

if (cpc_version(CPC_VER_CURRENT) == CPC_VER_NONE) {
/* version mismatch - library cannot translate */
exit(1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

cpc(3CPC), cpc_open(3CPC), libcpc(3LIB), attributes(5)

The cpc_version() function is Obsolete and might be removed in a future release.
Applications should use cpc_open(3CPC) instead.

The version number is used only to express incompatible semantic changes in the
performance counter interfaces on the given platform within a single instruction set
architecture, for example, when a new set of performance counter registers are added
to an existing processor family that cannot be specified in the existing cpc_event_t
data structure.

cpc_version(3CPC)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 135

cpl_complete_word, cfc_file_start, cfc_literal_escapes, cfc_set_check_fn,
cpl_add_completion, cpl_file_completions, cpl_last_error, cpl_list_completions,
cpl_recall_matches, cpl_record_error, del_CplFileConf, cpl_check_exe,
del_WordCompletion, new_CplFileConf, new_WordCompletion – look up possible
completions for a word

cc [flag...] file... -ltecla [library...]
#include <stdio.h>

#include <libtecla.h>

WordCompletion *new_WordCompletion(void);

WordCompletion *del_WordCompletion(WordCompletion *cpl);

CPL_MATCH_FN(cpl_file_completions);

CplFileConf *new_CplFileConf(void);

void cfc_file_start((CplFileConf *cfc, int start_index);

void cfc_literal_escapes(CplFileConf *cfc, int literal);

void cfc_set_check_fn(CplFileConf *cfc, CplCheckFn *chk_fn, void
*chk_data);

CPL_CHECK_FN(cpl_check_exe);

CplFileConf *del_CplFileConf(CplFileConf *cfc);

CplMatches *cpl_complete_word(WordCompletion *cpl, const char
*line, int word_end, void *data, CplMatchFn *match_fn);

CplMatches *cpl_recall_matches(WordCompletion *cpl);

int cpl_list_completions(CplMatches *result, FILE *fp, int
term_width);

int cpl_add_completion(WordCompletion *cpl, const char *line, int
word_start, int word_end, const char *suffix, const char *type_suffix,
const char *cont_suffix);

void cpl_record_error(WordCompletion *cpl, const char *errmsg);

const char *cpl_last_error(WordCompletion *cpl);

The cpl_complete_word() function is part of the libtecla(3LIB) library. It is
usually called behind the scenes by gl_get_line(3TECLA), but can also be called
separately.

Given an input line containing an incomplete word to be completed, it calls a
user-provided callback function (or the provided file-completion callback function) to
look up all possible completion suffixes for that word. The callback function is
expected to look backward in the line, starting from the specified cursor position, to
find the start of the word to be completed, then to look up all possible completions of
that word and record them, one at a time, by calling cpl_add_completion().

cpl_complete_word(3TECLA)

NAME

SYNOPSIS

DESCRIPTION

136 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

The new_WordCompletion() function creates the resources used by the
cpl_complete_word() function. In particular, it maintains the memory that is used
to return the results of calling cpl_complete_word().

The del_WordCompletion() function deletes the resources that were returned by a
previous call to new_WordCompletion(). It always returns NULL (that is, a deleted
object). It takes no action if the cpl argument is NULL.

The callback functions that look up possible completions should be defined with the
CPL_MATCH_FN() macro, which is defined in <libtecla.h>. Functions of this type
are called by cpl_complete_word(), and all of the arguments of the callback are
those that were passed to said function. In particular, the line argument contains the
input line containing the word to be completed, and word_end is the index of the
character that follows the last character of the incomplete word within this string. The
callback is expected to look backwards from word_end for the start of the incomplete
word. What constitutes the start of a word clearly depends on the application, so it
makes sense for the callback to take on this responsibility. For example, the builtin
filename completion function looks backwards until it encounters an unescaped space
or the start of the line. Having found the start of the word, the callback should then
lookup all possible completions of this word, and record each completion with
separate calls to cpl_add_completion(). If the callback needs access to an
application-specific symbol table, it can pass it and any other data that it needs using
the data argument. This removes any need for global variables.

The callback function should return 0 if no errors occur. On failure it should return 1
and register a terse description of the error by calling cpl_record_error().

The last error message recorded by calling cpl_record_error() can subsequently
be queried by calling cpl_last_error().

The cpl_add_completion() function is called zero or more times by the
completion callback function to record each possible completion in the specified
WordCompletion object. These completions are subsequently returned by
cpl_complete_word(). The cpl, line, and word_end arguments should be those that
were passed to the callback function. The word_start argument should be the index
within the input line string of the start of the word that is being completed. This
should equal word_end if a zero-length string is being completed. The suffix argument
is the string that would have to be appended to the incomplete word to complete it. If
this needs any quoting (for example, the addition of backslashes before special
charaters) to be valid within the displayed input line, this should be included. A copy
of the suffix string is allocated internally, so there is no need to maintain your copy of
the string after cpl_add_completion() returns.

In the array of possible completions that the cpl_complete_word() function
returns, the suffix recorded by cpl_add_completion() is listed along with the
concatentation of this suffix with the word that lies between word_start and word_end
in the input line.

cpl_complete_word(3TECLA)

Extended Library Functions 137

The type_suffix argument specifies an optional string to be appended to the completion
if it is displayed as part of a list of completions by cpl_list_completions. The intention is
that this indicate to the user the type of each completion. For example, the file
completion function places a directory separator after completions that are directories,
to indicate their nature to the user. Similary, if the completion were a function, you
could indicate this to the user by setting type_suffix to "()". Note that the type_suffix
string is not copied, so if the argument is not a literal string between speech marks, be
sure that the string remains valid for at least as long as the results of
cpl_complete_word() are needed.

The cont_suffix argument is a continuation suffix to append to the completed word in
the input line if this is the only completion. This is something that is not part of the
completion itself, but that gives the user an indication about how they might continue
to extend the token. For example, the file-completion callback function adds a
directory separator if the completed word is a directory. If the completed word were a
function name, you could similarly aid the user by arranging for an open parenthesis
to be appended.

The cpl_complete_word() is normally called behind the scenes by
gl_get_line(3TECLA), but can also be called separately if you separately allocate a
WordCompletion object. It performs word completion, as described at the beginning
of this section. Its first argument is a resource object previously returned by
new_WordCompletion(). The line argument is the input line string, containing the
word to be completed. The word_end argument contains the index of the character in
the input line, that just follows the last character of the word to be completed. When
called by gl_get_line(), this is the character over which the user pressed TAB. The
match_fn argument is the function pointer of the callback function which will lookup
possible completions of the word, as described above, and the data argument provides
a way for the application to pass arbitrary data to the callback function.

If no errors occur, the cpl_complete_word() function returns a pointer to a
CplMatches container, as defined below. This container is allocated as part of the cpl
object that was passed to cpl_complete_word(), and will thus change on each call
which uses the same cpl argument.

typedef struct {
char *completion; /* A matching completion */

/* string */
char *suffix; /* The part of the */

/* completion string which */
/* would have to be */
/* appended to complete the */
/* original word. */

const char *type_suffix; /* A suffix to be added when */
/* listing completions, to */
/* indicate the type of the */
/* completion. */

} CplMatch;

typedef struct {
char *suffix; /* The common initial part */

/* of all of the completion */

cpl_complete_word(3TECLA)

138 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

/* suffixes. */
const char *cont_suffix; /* Optional continuation */

/* string to be appended to */
/* the sole completion when */
/* nmatch==1. */

CplMatch *matches; /* The array of possible */
/* completion strings, */
/* sorted into lexical */
/* order. */

int nmatch; /* The number of elements in */
/* the above matches[] */
/* array. */

} CplMatches;

If an error occurs during completion, cpl_complete_word() returns NULL. A
description of the error can be acquired by calling the cpl_last_error() function.

The cpl_last_error() function returns a terse description of the error which
occurred on the last call to cpl_com plete_word() or cpl_add_completion().

As a convenience, the return value of the last call to cpl_complete_word() can be
recalled at a later time by calling cpl_recall_matches(). If cpl_complete_word
() returned NULL, so will cpl_recall_matches().

When the cpl_complete_word() function returns multiple possible completions,
the cpl_list_completions() function can be called upon to list them, suitably
arranged across the available width of the terminal. It arranges for the displayed
columns of completions to all have the same width, set by the longest completion. It
also appends the type_suffix strings that were recorded with each completion, thus
indicating their types to the user.

By default the gl_get_line() function, passes the CPL_MATCH_FN
(cps_file_completions) completion callback function to cpl_complete_word
(). This function can also be used separately, either by sending it to
cpl_complete_word(), or by calling it directly from your own completion callback
function.

#define CPL_MATCH_FN(fn) int (fn)(WordCompletion *cpl, \
void *data, const char *line, \
int word_end)

typedef CPL_MATCH_FN(CplMatchFn);

CPL_MATCH_FN(cpl_file_completions);

Certain aspects of the behavior of this callback can be changed via its data argument. If
you are happy with its default behavior you can pass NULL in this argument.
Otherwise it should be a pointer to a CplFileConf object, previously allocated by
calling new_CplFileConf().

CplFileConf objects encapsulate the configuration parameters of
cpl_file_completions(). These parameters, which start out with default values,
can be changed by calling the accessor functions described below.

cpl_complete_word(3TECLA)

Builtin Filename
completion

Callback

Extended Library Functions 139

By default, the cpl_file_completions() callback function searches backwards for
the start of the filename being completed, looking for the first unescaped space or the
start of the input line. If you wish to specify a different location, call
cfc_file_start() with the index at which the filename starts in the input line.
Passing start_index=-1 reenables the default behavior.

By default, when cpl_file_completions() looks at a filename in the input line,
each lone backslash in the input line is interpreted as being a special character which
removes any special significance of the character which follows it, such as a space
which should be taken as part of the filename rather than delimiting the start of the
filename. These backslashes are thus ignored while looking for completions, and
subsequently added before spaces, tabs and literal back slashes in the list of
completions. To have unescaped back slashes treated as normal characters, call
cfc_literal_escapes() with a non-zero value in its literal argument.

By default, cpl_file_completions() reports all files whose names start with the
prefix that is being completed. If you only want a selected subset of these files to be
reported in the list of completions, you can arrange this by providing a callback
function which takes the full pathname of a file, and returns 0 if the file should be
ignored, or 1 if the file should be included in the list of completions. To register such a
function for use by cpl_file_completions(), call cfc_set_check_fn(), and
pass it a pointer to the function, together with a pointer to any data that you would
like passed to this callback whenever it is called. Your callback can make its decisions
based on any property of the file, such as the filename itself, whether the file is
readable, writable or executable, or even based on what the file contains.

#define CPL_CHECK_FN(fn) int (fn)(void *data, \
const char *pathname)

typedef CPL_CHECK_FN(CplCheckFn);

void cfc_set_check_fn(CplFileConf *cfc, CplCheckFn *chk_fn, \

void *chk_data);

The cpl_check_exe() function is a provided callback of the above type, for use
with cpl_file_completions(). It returns non-zero if the filename that it is given
represents a normal file that the user has execute permission to. You could use this to
have cpl_file_completions() only list completions of executable files.

When you have finished with a CplFileConf variable, you can pass it to the
del_CplFileConf() destructor function to reclaim its memory.

It is safe to use the facilities of this module in multiple threads, provided that each
thread uses a separately allocated WordCompletion object. In other words, if two
threads want to do word completion, they should each call new_WordCompletion()
to allocate their own completion objects.

cpl_complete_word(3TECLA)

Thread Safety

140 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ef_expand_file(3TECLA), gl_get_line(3TECLA), libtecla(3LIB),
pca_lookup_file(3TECLA), attributes(5)

cpl_complete_word(3TECLA)

ATTRIBUTES

SEE ALSO

Extended Library Functions 141

cpow, cpowf, cpowl – complex power functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex cpow(double complex x, double complex y);

float complex cpowf(float complex x, float complex y);

long double complex cpowl(long double complex x, long double
complex y);

These functions compute the complex power function x^y, with a branch cut for the
first parameter along the negative real axis.

These functions return the complex power function value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cabs(3M), complex.h(3HEAD), csqrt(3M), attributes(5), standards(5)

cpow(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

142 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

cproj, cprojf, cprojl – complex projection functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex cproj(double complex z);

float complex cprojf(float complex z);

long double complex cprojl(long double complex z);

These functions compute a projection of z onto the Riemann sphere: z projects to z,
except that all complex infinities (even those with one infinite part and one NaN part)
project to positive infinity on the real axis. If z has an infinite part, then cproj(z) is
equivalent to:

INFINITY + I * copysign(0.0, cimag(z))

These functions return the value of the projection onto the Riemann sphere.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

carg(3M), cimag(3M), complex.h(3HEAD), conj(3M), creal(3M),
attributes(5), standards(5)

cproj(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 143

creal, crealf, creall – complex real functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double creal(double complex z);

float crealf(float complex z);

long double creall(long double complex z);

These functions compute the real part of z.

These functions return the real part value.

No errors are defined.

For a variable z of complex type:

z == creal(z) + cimag(z)*I

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

carg(3M), cimag(3M), complex.h(3HEAD), conj(3M), cproj(3M),
attributes(5), standards(5)

creal(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

144 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

csin, csinf, csinl – complex sine functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex csin(double complex z);

float complex csinf(float complex z);

long double complex csinl(long double complex z);

These functions compute the complex sine of z.

These functions return the complex sine value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

casin(3M), complex.h(3HEAD), attributes(5), standards(5)

csin(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 145

csinh, csinhf, csinhl – complex hyperbolic sine functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex csinh(double complex z);

float complex csinhf(float complex z);

long double complex csinhl(long double complex z);

These functions compute the complex hyperbolic sine of z.

These functions return the complex hyperbolic sine value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

casinh(3M), complex.h(3HEAD), attributes(5), standards(5)

csinh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

146 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

csqrt, csqrtf, csqrtl – complex square root functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex csqrt(double complex z);

float complex csqrtf(float complex z);

long double complex csqrtl(long double complex z);

These functions compute the complex square root of z, with a branch cut along the
negative real axis.

These functions return the complex square root value, in the range of the right
half-plane (including the imaginary axis).

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

cabs(3M), complex.h(3HEAD), cpow(3M), attributes(5), standards(5)

csqrt(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 147

ctan, ctanf, ctanl – complex tangent functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex ctan(double complex z);

float complex ctanf(float complex z);

long double complex ctanl(long double complex z);

These functions compute the complex tangent of z.

These functions return the complex tangent value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

catan(3M), complex.h(3HEAD), attributes(5), standards(5)

ctan(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

148 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

ctanh, ctanhf, ctanhl – complex hyperbolic tangent functions

cc [flag...] file... -lm [library...]

#include <complex.h>

double complex ctanh(double complex z);

float complex ctanhf(float complex z);

long double complex ctanhl(long double complex z);

These functions compute the complex hyperbolic tangent of z.

These functions return the complex hyperbolic tangent value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

catanh(3M), complex.h(3HEAD), attributes(5), standards(5)

ctanh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 149

ct_ctl_adopt, ct_ctl_abandon, ct_ctl_newct, ct_ctl_ack, ct_ctl_qack – common contract
control functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

int ct_ctl_adopt(int fd);

int ct_ctl_abandon(int fd);

int ct_ctl_newct(int fd, uint64_t evid);

int ct_ctl_ack(int fd, uint64_t evid);

int ct_ctl_qack(int fd, uint64_t evid, int templatefd);

These functions operate on contract control file descriptors obtained from the
contract(4) file system.

The ct_ctl_adopt() function adopts the contract referenced by the file descriptor
fd. After a successful call to ct_ctl_adopt(), the contract is owned by the calling
process and any events in that contract’s event queue are appended to the process’s
bundle of the appropriate type.

The ct_ctl_abandon() function abandons the contract referenced by the file
descriptor fd. After a successful call to ct_ctl_abandon() the process no longer
owns the contract, any events sent by that contract are automatically removed from
the process’s bundle, and any critical events on the contract’s event queue are
automatically acknowledged. Depending on its type and terms, the contract will either
be orphaned or destroyed.

The ct_ctl_ack() function acknowledges the critical event specified byevid. If the
event corresponds to an exit negotiation, ct_ctl_ack() also indicates that the caller
is prepared for the system to proceed with the referenced reconfiguration.

The ct_ctl_qack() function requests a new quantum of time for the negotiation
specified by the event ID evid.

The ct_ctl_newct() function instructs the contract specified by the file descriptor
fd that when the current exit negotiation completes, another contract with the terms
provided by the template specified by templatefd should be automatically written.

Upon successful completion, ct_ctl_adopt(), ct_ctl_abandon(),
ct_ctl_newct(), ct_ctl_ack(), and ct_ctl_qack() return 0. Otherwise, they
return a non-zero error value.

The ct_ctl_adopt() function will fail if:

EBUSY The contract is in the owned state.

EINVAL The contract was not inherited by the caller’s process contract or
was created by a process in a different zone.

ct_ctl_adopt(3CONTRACT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

150 man pages section 3: Extended Library Functions • Last Revised 1 Apr 2004

The ct_ctl_abandon(), ct_ctl_newct(), ct_ctl_ack(), and ct_ctl_qack()
functions will fail if:

EBUSY The contract does not belong to the calling process.

The ct_ctl_newct() and ct_ctl_qack() functions will fail if:

ESRCH The event ID specified by evid does not correspond to an
unacknowledged negotiation event.

The ct_ctl_newct() function will fail if:

EINVAL The file descriptor specified by fd was not a valid template file
descriptor.

The ct_ctl_ack() function will fail if:

ERSCH The event ID specified by evid does not correspond to an
acknowldeged critical event.

The ct_ctl_qack() function will fail if:

ERANGE The maximum amount of time has been requested.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libcontract(3LIB), contract(4), attributes(5), lfcompile(5)

ct_ctl_adopt(3CONTRACT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 151

ct_event_read, ct_event_read_critical, ct_event_reset, ct_event_reliable, ct_event_free,
ct_event_get_flags, ct_event_get_ctid, ct_event_get_evid, ct_event_get_type,
ct_event_get_nevid, ct_event_get_newct – common contract event functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

int ct_event_read(int fd, ct_evthdl_t *evthndlp);

int ct_event_read_critical(int fd, ct_evthdl_t *evthndlp);

int ct_event_reset(int fd);

int ct_event_reliable(int fd);

void ct_event_free(ct_evthdl_t evthndl);

ctid_t ct_event_get_ctid(ct_evthdl_t evthndl);

ctevid_t ct_event_get_evid(ct_evthdl_t evthndl);

uint_t ct_event_get_flags(ct_evthdl_t evthndl);

uint_t ct_event_get_type(ct_evthdl_t evthndl);

int ct_event_get_nevid(ct_evthdl_t evthndl, ctevid_t *evidp);

int ct_event_get_newct(ct_evthdl_t evthndl, ctid_t *ctidp);

These functions operate on contract event endpoint file descriptors obtained from the
contract(4) file system and event object handles returned by ct_event_read()
and ct_event_read_critical().

The ct_event_read() function reads the next event from the queue referenced by
the file descriptor fd and initializes the event object handle pointed to by evthndlp.
After a successful call to ct_event_read(), the caller is responsible for calling
ct_event_free() on this event object handle when it has finished using it.

The ct_event_read_critical() function behaves like ct_event_read() except
that it reads the next critical event from the queue, skipping any intermediate events.

The ct_event_reset() function resets the location of the listener to the beginning
of the queue. This function can be used to re-read events, or read events that were sent
before the event endpoint was opened. Informative and acknowledged critical events,
however, might have been removed from the queue.

The ct_event_reliable() function indicates that no event published to the
specified event queue should be dropped by the system until the specified listener has
read the event. This function requires that the caller have the
{PRIV_CONTRACT_EVENT} privilege in its effective set.

The ct_event_free() function frees any storage associated with the event object
handle specified by evthndl.

The ct_event_get_ctid() function returns the ID of the contract that sent the
specified event.

ct_event_read(3CONTRACT)

NAME

SYNOPSIS

DESCRIPTION

152 man pages section 3: Extended Library Functions • Last Revised 1 Apr 2004

The ct_event_get_evid() function returns the ID of the specified event.

The ct_event_get_flags() function returns the event flags for the specified event.
Valid event flags are:

CTE_INFO The event is an informative event.

CTE_ACK The event has been acknowledged (for critical and negotiation
messages).

CTE_NEG The message represents an exit negotiation.

The ct_event_get_type() function reads the event type. The value is one of the
event types described in contract(4) or the contract type’s manual page.

The ct_event_get_nevid() function reads the negotiation ID from an
CT_EV_NEGEND event.

The ct_event_get_newct() function obtains the ID of the contract created when
the negotiation referenced by the CT_EV_NEGEND event succeeded. If no contract was
created, ctidp will be 0. If the operation was cancelled, *ctidp will equal the ID of the
existing contract.

Upon successful completion, ct_event_read(), ct_event_read_critical(),
ct_event_reset(), ct_event_reliable(), ct_event_get_nevid(), and
ct_event_get_newct() return 0. Otherwise, they return a non-zero error value.

The ct_event_get_flags(), ct_event_get_ctid(), ct_event_get_evid(),
and ct_event_get_type() functions return data as described in the
DESCRIPTION.

The ct_event_reliable() function will fail if:

EPERM The caller does not have {PRIV_CONTRACT_EVENT} in its effective
set.

The ct_event_read() and ct_event_read_critical() functions will fail if:

EAGAIN The event endpoint was opened O_NONBLOCK and no applicable
events were available to be read.

The The ct_event_get_nevid() and ct_event_get_newct() functions will fail
if:

EINVAL The evthndl argument is not a CT_EV_NEGEND event object.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

ct_event_read(3CONTRACT)

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 153

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libcontract(3LIB), contract(4), attributes(5), lfcompile(5)

ct_event_read(3CONTRACT)

SEE ALSO

154 man pages section 3: Extended Library Functions • Last Revised 1 Apr 2004

ct_pr_event_get_pid, ct_pr_event_get_ppid, ct_pr_event_get_signal,
ct_pr_event_get_sender, ct_pr_event_get_senderct, ct_pr_event_get_exitstatus,
ct_pr_event_get_pcorefile, ct_pr_event_get_gcorefile, ct_pr_event_get_zcorefile –
process contract event functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]
#include <libcontract.h>

#include <sys/contract/process.h>

int ct_pr_event_get_pid(ct_evthdl_t evthdl, pid_t *pidp);

int ct_pr_event_get_ppid(ct_evthdl_t evthdl, pid_t *pidp);

int ct_pr_event_get_signal(ct_evthdl_t evthdl, int *signalp);

int ct_pr_event_get_sender(ct_evthdl_t evthdl, pid_t *pidp);

int ct_pr_event_get_senderct(ct_evthdl_t evthdl, ctid_t *pidp);

int ct_pr_event_get_exitstatus(ct_evthdl_t evthdl, int *statusp);

int ct_pr_event_get_pcorefile(ct_evthdl_t evthdl, char **namep);

int ct_pr_event_get_gcorefile(ct_evthdl_t evthdl, char **namep);

int ct_pr_event_get_zcorefile(ct_evthdl_t evthdl, char **namep);

These functions read process contract event information from an event object returned
by ct_event_read(3CONTRACT) or ct_event_read_critical(3CONTRACT).

The ct_pr_event_get_pid() function reads the process ID of the process
generating the event.

The ct_pr_event_get_ppid() function reads the process ID of the process that
forked the new process causing the CT_PR_EV_FORK event.

The ct_pr_event_get_signal() function reads the signal number of the signal
that caused the CT_PR_EV_SIGNAL event.

The ct_pr_event_get_sender() function reads the process ID of the process that
sent the signal that caused the CT_PR_EV_SIGNAL event. If the signal’s sender was
not in the same zone as the signal’s recipient, this information is available only to
event consumers in the global zone.

The ct_pr_event_get_senderct function reads the contract ID of the process that sent
the signal that caused the CT_PR_EV_SIGNAL event. If the signal’s sender was not in
the same zone as the signal’s recipient, this information is available only

The ct_pr_event_get_exitstatus() function reads the exit status of the process
generating a CT_PR_EV_EXIT event.

The ct_pr_event_get_pcorefile() function reads the name of the process core
file if one was created when the CT_PR_EV_CORE event was generated. A pointer to a
character array is stored in *namep and is freed when ct_event_free(3CONTRACT)
is called on the event handle.

ct_pr_event_get_pid(3CONTRACT)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 155

The ct_pr_event_get_gcorefile() function reads the name of the zone’s global
core file if one was created when the CT_PR_EV_CORE event was generated. A pointer
to a character array is stored in *namep and is freed when ct_event_free() is called
on the event handle.

The ct_pr_event_get_zcorefile() function reads the name of the system-wide
core file in the global zone if one was created when the CT_PR_EV_CORE event was
generated. This information is available only to event consumers in the global zone. A
pointer to a character array is stored in *namep and is freed when ct_event_free()
is called on the event handle.

Upon successful completion, ct_pr_event_get_pid(), ct_pr_event_get_ppid
(), ct_pr_event_get_signal(), ct_pr_event_get_sender(),
ct_pr_event_get_senderct(), ct_pr_event_get_exitstatus(),
ct_pr_event_get_pcorefile(), ct_pr_event_get_gcorefile(), and
ct_pr_event_get_zcorefile() return 0. Otherwise, they return a non-zero error
value.

The ct_pr_event_get_pid(), ct_pr_event_get_ppid(),
ct_pr_event_get_signal(), ct_pr_event_get_sender(),
ct_pr_event_get_senderct(), ct_pr_event_get_exitstatus(),
ct_pr_event_get_pcorefile(), ct_pr_event_get_gcorefile(), and
ct_pr_event_get_zcorefile() functions will fail if:

EINVAL The evthdl argument is not a process contract event object.

The ct_pr_event_get_ppid(), ct_pr_event_get_signal(),
ct_pr_event_get_sender(), ct_pr_event_get_senderct(),
ct_pr_event_get_exitstatus(), ct_pr_event_get_pcorefile(),
ct_pr_event_get_gcorefile(), and ct_pr_event_get_zcorefile()
functions will fail if:

EINVAL The requested data do not match the event type.

The ct_pr_event_get_sender()a functions will fail if:

ENOENT The process ID of the sender was not available, or the event object
was read by a process running in a non-global zone and the sender
was in a different zone.

The ct_pr_event_get_pcorefile(), ct_pr_event_get_gcorefile(), and
ct_pr_event_get_zcorefile() functions will fail if:

ENOENT The requested core file was not created.

The ct_pr_event_get_zcorefile() function will fail if:

ENOENT The event object was read by a process running in a non-global
zone.

ct_pr_event_get_pid(3CONTRACT)

RETURN VALUES

ERRORS

156 man pages section 3: Extended Library Functions • Last Revised 19 Jul 2004

EXAMPLE 1 Print the instigator of all CT_PR_EV_SIGNAL events.

Open the process contract bundle. Loop reading events. Fetch and display the
signalled pid and signalling pid for each CT_PR_EV_SIGNAL event encountered.

#include <sys/types.h>
#include <fcntl.h>
#include <stdio.h>
#include <libcontract.h>

...
int fd;
ct_evthdl_t event;
pid_t pid, sender;

fd = open("/system/contract/process/bundle", O_RDONLY);
for (;;) {

ct_event_read(fd, &event);
if (ct_event_get_type(event) != CT_PR_EV_SIGNAL) {

ct_event_free(event);
continue;

}
ct_pr_event_get_pid(event, &pid);
if (ct_pr_event_get_sender(event, &sender) == ENOENT)

printf("process %ld killed by unknown process\n",
(long)pid);

else
printf("process %ld killed by process %ld\n",

(long)pid, (long)sender);
ct_event_free(event);

}

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

ct_event_free(3CONTRACT), ct_event_read(3CONTRACT),
ct_event_read_critical(3CONTRACT), libcontract(3LIB), contract(4),
process(4), attributes(5), lfcompile(5)

ct_pr_event_get_pid(3CONTRACT)

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 157

ct_pr_status_get_param, ct_pr_status_get_fatal, ct_pr_status_get_members,
ct_pr_status_get_contracts – process contract status functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]
#include <libcontract.h>

#include <sys/contract/process.h>

int ct_pr_status_get_param(ct_stathdl_t stathdl, uint_t *paramp);

int ct_pr_status_get_fatal(ct_stathdl_t stathdl, uint_t *eventsp);

int ct_pr_status_get_members(ct_stathdl_t stathdl, pid_t **pidpp,
uint_t *n);

int ct_pr_status_get_contracts(ct_stathdl_t stathdl, ctid_t **idpp,
uint_t *n);

These functions read process contract status information from a status object returned
by ct_status_read(3CONTRACT).

The ct_pr_status_get_param() function reads the parameter set term. The value
is a collection of bits as described in process(4).

The ct_pr_status_get_fatal() function reads the fatal event set term. The value
is a collection of bits as described in process(4).

The ct_pr_status_get_members() function obtains a list of the process IDs of the
members of the process contract. A pointer to an array of process IDs is stored in
*pidpp. The number of elements in this array is stored in *n. These data are freed when
the status object is freed by a call to ct_status_free(3CONTRACT).

The ct_pr_status_get_contracts() function obtains a list of IDs of contracts
that have been inherited by the contract. A pointer to an array of IDs is stored in *idpp.
The number of elements in this array is stored in *n. These data are freed when the
status object is freed by a call to ct_status_free().

Upon successful completion, ct_pr_status_get_param(),
ct_pr_status_get_fatal(), ct_pr_status_get_members(), and
ct_pr_status_get_contracts() return 0. Otherwise, they return a non-zero
error value.

The ct_pr_status_get_param(), ct_pr_status_get_fatal(),
ct_pr_status_get_members(), and ct_pr_status_get_contracts()
functions will fail if:

EINVAL The stathdl argument is not a process contract status object.

The ct_pr_status_get_param(), ct_pr_status_get_fatal(),
ct_pr_status_get_members(), and ct_r_status_get_contracts()
functions will fail if:

ENOENT The requested data were not available in the status object.

ct_pr_status_get_param(3CONTRACT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

158 man pages section 3: Extended Library Functions • Last Revised 1 Apr 2004

EXAMPLE 1 Print members of process contract 1.

Open the status file for contract 1, read the contract’s status, obtain the list of
processes, print them, and free the status object.

#include <sys/types.h>
#include <fcntl.h>
#include <libcontract.h>
#include <stdio.h>

...
int fd;
uint_t i, n;
pid_t *procs;
ct_stathdl_t st;

fd = open("/system/contract/process/1/status");
ct_status_read(fd, &st);
ct_pr_status_get_members(st, &procs, &n);
for (i = 0 ; i < n; i++)

printf("%ld\n", (long)procs[i]);
ct_status_free(stat);
close(fd);

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

ct_status_free(3CONTRACT), ct_status_read(3CONTRACT),
libcontract(3LIB), contract(4), process(4), attributes(5), lfcompile(5)

ct_pr_status_get_param(3CONTRACT)

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 159

ct_pr_tmpl_set_transfer, ct_pr_tmpl_set_fatal, ct_pr_tmpl_set_param,
ct_pr_tmpl_get_transfer, ct_pr_tmpl_get_fatal, ct_pr_tmpl_get_param – process
contract template functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]
#include <libcontract.h>

#include <sys/contract/process.h>

int ct_pr_tmpl_set_transfer(int fd, ctid_t ctid);

int ct_pr_tmpl_set_fatal(int fd, uint_t events);

int ct_pr_tmpl_set_param(int fd, uint_t params);

int ct_pr_tmpl_get_transfer(int fd, ctid_t *ctidp);

int ct_pr_tmpl_get_fatal(int fd, uint_t *eventsp);

int ct_pr_tmpl_get_param(int fd, uint_t *paramsp);

These functions read and write process contract terms and operate on process contract
template file descriptors obtained from the contract(4) file system.

The ct_pr_tmpl_set_transfer() and ct_pr_tmpl_get_transfer()
functions write and read the transfer contract term. The value is the ID of an empty
regent process contract owned by the caller whose inherited contracts are to be
transferred to a newly created contract.

The ct_pr_tmpl_set_fatal() and ct_pr_tmpl_get_fatal() functions write
and read the fatal event set term. The value is a collection of bits as described in
process(4).

The ct_pr_tmpl_set_param() and ct_pr_tmpl_get_param() functions write
and read the parameter set term. The value is a collection of bits as described in
process(4).

Upon successful completion, ct_pr_tmpl_set_transfer(),
ct_pr_tmpl_set_fatal(), ct_pr_tmpl_set_param(),
ct_pr_tmpl_get_transfer(), ct_pr_tmpl_get_fatal(), and
ct_pr_tmpl_get_param() return 0. Otherwise, they return a non-zero error value.

The ct_pr_tmpl_set_param() function will fail if:

EINVAL An invalid parameter was specified.

The ct_pr_tmpl_set_fatal() function will fail if:

EINVAL An invalid event was specified.

The ct_pr_tmpl_set_transfer() function will fail if:

ESRCH The ID specified by ctid does not correspond to a process contract.

EACCES The ID specified by ctid does not correspond to a process contract
owned by the calling process.

ct_pr_tmpl_set_transfer(3CONTRACT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

160 man pages section 3: Extended Library Functions • Last Revised 1 Apr 2004

ENOTEMPTY The ID specified by ctid does not correspond to an empty process
contract.

EXAMPLE 1 Create and activate a process contract template.

The following example opens a new template, makes hardware errors and signals fatal
events, makes hardware errors critical events, and activates the template. It then forks
a process in the new contract using the requested terms.

#include <libcontract.h>
#include <fcntl.h>
#include <unistd.h>

...
int fd;

fd = open("/system/contract/process/template", O_RDWR);
(void) ct_pr_tmpl_set_fatal(fd, CT_PR_EV_HWERR|CT_PR_EV_SIGNAL);
(void) ct_tmpl_set_critical(fd, CT_PR_EV_HWERR);
(void) ct_tmpl_activate(fd);
close(fd);

if (fork()) {
/* parent - owns new process contract */
...

} else {
/* child - in new process contract */
...

}

...

EXAMPLE 2 Clear the process contract template.

The following example opens the template file and requests that the active template be
cleared.

#include <libcontract.h>
#include <fcntl.h>

...
int fd;

fd = open("/system/contract/process/template", O_RDWR);
(void) ct_tmpl_clear(fd);
close(fd);

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

ct_pr_tmpl_set_transfer(3CONTRACT)

EXAMPLES

ATTRIBUTES

Extended Library Functions 161

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libcontract(3LIB), contract(4), process(4), attributes(5), lfcompile(5)

ct_pr_tmpl_set_transfer(3CONTRACT)

SEE ALSO

162 man pages section 3: Extended Library Functions • Last Revised 1 Apr 2004

ct_status_read, ct_status_free, ct_status_get_id, ct_status_get_zoneid,
ct_status_get_type, ct_status_get_state, ct_status_get_holder, ct_status_get_nevents,
ct_status_get_ntime, ct_status_get_qtime, ct_status_get_nevid, ct_status_get_cookie,
ct_status_get_informative, ct_status_get_critical – common contract status functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

int ct_status_read(int fd, int detail, ct_stathdl_t *stathdlp);

void ct_status_free(ct_stathdl_t stathdl);

ctid_t ct_status_get_id(ct_stathdl_t stathdl);

zoneid_t ct_status_get_zoneid(ct_stathdl_t stathdl);

char *ct_status_get_type(ct_stathdl_t stathdl);

uint_t ct_status_get_state(ct_stathdl_t stathdl);

pid_t ct_status_get_holder(ct_stathdl_t stathdl);

int ct_status_get_nevents(ct_stathdl_t stathdl);

int ct_status_get_ntime(ct_stathdl_t stathdl);

int ct_status_get_qtime(ct_stathdl_t stathdl);

ctevid_t ct_status_get_nevid(ct_stathdl_t stathdl);

uint64_t ct_status_get_cookie(ct_stathdl_t stathdl);

ctevid_t ct_status_get_informative(ct_stathdl_t stathdl);

uint_t ct_status_get_critical(ct_stathdl_t stathdl);

These functions operate on contract status file descriptors obtained from the
contract(4) file system and status object handles returned by ct_status_read().

The ct_status_read() function reads the contract’s status and initializes the status
object handle pointed to by stathdlp. After a successful call to ct_status_read(),
the caller is responsible for calling ct_status_free() on this status object handle
when it has finished using it. Because the amount of information available for a
contract might be large, the detail argument allows the caller to specify how much
information ct_status_read() should obtain. A value of CTD_COMMON fetches only
those data accessible by the functions on this manual page. CTD_FIXED fetches
CTD_COMMON data as well as fixed-size contract type-specific data. CTD_ALL fetches
CTD_FIXED data as well as variable lengthed data, such as arrays. See the manual
pages for contract type-specific status accessor functions for information concerning
which data are fetched by CTD_FIXED and CTD_ALL.

The ct_status_free() function frees any storage associated with the specified
status object handle.

The remaining functions all return contract information obtained from a status object.

The ct_status_get_id() function returns the contract’s ID.

ct_status_read(3CONTRACT)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 163

The ct_status_get_zoneid() function returns the contract’s creator’s zone ID, or
−1 if the creator’s zone no longer exists.

The ct_status_get_type() function returns the contract’s type. The string should
be neither modified nor freed.

The ct_status_get_state() function returns the state of the contract. Valid state
values are:

CTS_OWNED a contract that is currently owned by a process

CTS_INHERITED a contract that has been inherited by a regent process contract

CTS_ORPHAN a contract that has no owner and has not been inherited

CTS_DEAD a contract that is no longer in effect and will be automatically
removed from the system as soon as the last reference to it is
release (for example, an open status file descriptor)

The ct_status_get_holder() function returns the process ID of the contract’s
owner if the contract is in the CTS_OWNED state, or the ID of the regent process
contract if the contract is in the CTS_INHERITED state.

The ct_status_get_nevents() function returns the number of unacknowledged
critical events on the contract’s event queue.

The ct_status_get_ntime() function returns the amount of time remaining (in
seconds) before the ongoing exit negotiation times out, or -1 if there is no negotiation
ongoing.

The ct_status_get_qtime() function returns the amount of time remaining (in
seconds) in the quantum before the ongoing exit negotiation times out, or -1 if there is
no negotiation ongoing.

The ct_status_get_nevid() function returns the event ID of the ongoing
negotiation, or 0 if there are none.

The ct_status_get_cookie() function returns the cookie term of the contract.

The ct_status_get_critical() function is used to read the critical event set
term. The value is a collection of bits as described in the contract type’s manual page.

The ct_status_get_informative() function is used to read the informative
event set term. The value is a collection of bits as described in the contract type’s
manual page.

Upon successful completion, ct_status_read() returns 0. Otherwise, it returns a
non-zero error value.

ct_status_read(3CONTRACT)

RETURN VALUES

164 man pages section 3: Extended Library Functions • Last Revised 1 Apr 2004

Upon successful completion, ct_status_get_id(), ct_status_get_type(),
ct_status_get_holder(), ct_status_get_state(),
ct_status_get_nevents(), ct_status_get_ntime(),
ct_status_get_qtime(), ct_status_get_nevid(), ct_status_get_cookie
(), ct_status_get_critical(), and ct_status_get_informative() return
the data described in the DESCRIPTION.

The ct_status_read() function will fail if:

EINVAL The detail level specified is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libcontract(3LIB), contract(4), attributes(5), lfcompile(5)

ct_status_read(3CONTRACT)

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 165

ct_tmpl_activate, ct_tmpl_clear, ct_tmpl_create, ct_tmpl_set_cookie,
ct_tmpl_set_critical, ct_tmpl_set_informative, ct_tmpl_get_cookie, ct_tmpl_get_critical,
ct_tmpl_get_informative – common contract template functions

cc [flag...] file... -D_LARGEFILE64_SOURCE -lcontract [library...]

#include <libcontract.h>

int ct_tmpl_activate(int fd);

int ct_tmpl_clear(int fd);

int ct_tmpl_create(int fd, ctid_t *idp);

int ct_tmpl_set_cookie(int fd, uint64_t cookie);

int ct_tmpl_set_critical(int fd, uint_t events);

int ct_tmpl_set_informative(int fd, uint_t events);

int ct_tmpl_get_cookie(int fd, uint64_t *cookiep);

int ct_tmpl_get_critical(int fd, uint_t *eventsp);

int ct_tmpl_get_informative(int fd, uint_t *eventsp);

These functions operate on contract template file descriptors obtained from the
contract(4) file system.

The ct_tmpl_activate() function makes the template referenced by the file
descriptor fd the active template for the calling thread.

The ct_tmpl_clear() function clears calling thread’s active template.

The ct_tmpl_create() function uses the template referenced by the file descriptor
fd to create a new contract. If successful, the ID of the newly created contract is placed
in *idp.

The ct_tmpl_set_cookie() and ct_tmpl_get_cookie() functions write and
read the cookie term of a contract template. The cookie term is ignored by the system,
except to include its value in a resulting contract’s status object. The default cookie
term is 0.

The ct_tmpl_set_critical() and ct_tmpl_get_critical() functions write
and read the critical event set term. The value is a collection of bits as described in the
contract type’s manual page.

The ct_tmpl_set_informative() and ct_tmpl_get_informative()
functions write and read the informative event set term. The value is a collection of
bits as described in the contract type’s manual page.

Upon successful completion, ct_tmpl_activate(), ct_tmpl_create(),
ct_tmpl_set_cookie(), ct_tmpl_get_cookie(), ct_tmpl_set_critical(),
ct_tmpl_get_critical(), ct_tmpl_set_informative(), and
ct_tmpl_get_informative() return 0. Otherwise, they return a non-zero error
value.

ct_tmpl_activate(3CONTRACT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

166 man pages section 3: Extended Library Functions • Last Revised 1 Apr 2004

The ct_tmpl_create() function will fail if:

ERANGE The terms specified in the template were unsatisfied at the time of
the call.

EAGAIN The project.max-contracts resource control would have been
exceeded.

The ct_tmpl_set_critical() and ct_tmpl_set_informative() functions
will fail if:

EINVAL An invalid event was specified.

The ct_tmpl_set_critical() function will fail if:

EPERM One of the specified events was disallowed given other contract
terms (see contract(4)) and {PRIV_CONTRACT_EVENT} was not
in the effective set for the calling process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libcontract(3LIB), contract(4), attributes(5), lfcompile(5)

ct_tmpl_activate(3CONTRACT)

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 167

dat_cno_create – create a CNO instance

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_cno_create (
IN DAT_IA_HANDLE ia_handle,
IN DAT_OS_WAIT_PROXY_AGENT agent,
OUT DAT_CNO_HANDLE *cno_handle
)

ia_handle Handle for an instance of DAT IA.

agent An optional OS Wait Proxy Agent that is to be invoked whenever
CNO is invoked. DAT_OS_WAIT_PROXY_AGENT_NULL indicates
that there is no proxy agent

cno_handle Handle for the created instance of CNO.

The dat_cno_create() function creates a CNO instance. Upon creation, there are
no Event Dispatchers feeding it.

The agent parameter specifies the proxy agent, which is OS-dependent and which is
invoked when the CNO is triggered. After it is invoked, it is no longer associated with
the CNO. The value of DAT_OS_WAIT_PROXY_AGENT_NULL specifies that no OS Wait
Proxy Agent is associated with the created CNO.

Upon creation, the CNO is not associated with any EVDs, has no waiters and has, at
most, one OS Wait Proxy Agent.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE The ia_handle parameter is invalid.

DAT_INVALID_PARAMETER One of the parameters was invalid, out of
range, or a combination of parameters was
invalid, or the agent parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_cno_create(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

168 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_cno_free – destroy an instance of the CNO

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_cno_free (
IN DAT_CNO_HANDLE cno_handle
)

cno_handle Handle for an instance of the CNO

The dat_cno_free() function destroys a specified instance of the CNO.

A CNO cannot be deleted while it is referenced by an Event Dispatcher or while a
thread is blocked on it.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cno_handle() parameter is invalid.

DAT_INVALID_STATE Parameter in an invalid state. CNO is in use by an EVD
instance or there is a thread blocked on it.

If there is a thread blocked in dat_cno_wait(3DAT), the Consumer can do the
following steps to unblock the waiter:

� Create a temporary EVD that accepts software events. It can be created in advance.

� For a CNO with the waiter, attach that EVD to the CNO and post the software
event on the EVD.

� This unblocks the CNO.

� Repeat for other CNOs that have blocked waiters.

� Destroy the temporary EVD after all CNOs are destroyed and the EVD is no longer
needed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

dat_cno_wait(3DAT), libdat(3LIB), attributes(5)

dat_cno_free(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 169

dat_cno_modify_agent – modify the OS Wait Proxy Agent

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_cno_modify_agent (
IN DAT_CNO_HANDLE cno_handle,
IN DAT_OS_WAIT_PROXY_AGENT agent
)

cno_handle Handle for an instance of CNO

agent Pointer to an optional OS Wait Proxy Agent to invoke whenever
CNO is invoked. DAT_OS_WAIT_PROXY_AGENT_NULL indicates
that there is no proxy agent.

The dat_cno_modify_agent() function modifies the OS Wait Proxy Agent
associated with a CNO. If non-null, any trigger received by the CNO is also passed to
the OS Wait Proxy Agent. This is in addition to any local delivery through the CNO.
The Consumer can pass the value of DAT_OS_WAIT_PROXY_AGENT_NULL to
disassociate the current Proxy agent from the CNO

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cno_handle parameter is invalid.

DAT_INVALID_PARAMETER One of the parameters was invalid, out of range, or a
combination of parameters was invalid, or the agent
parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_cno_modify_agent(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

170 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_cno_query – provide the Consumer parameters of the CNO

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_cno_query (
IN DAT_CNO_HANDLE cno_handle,
IN DAT_CNO_PARAM_MASK cno_param_mask,
OUT DAT_CNO_PARAM *cno_param
)

cno_handle Handle for the created instance of the Consumer Notification
Object

cno_param_mask Mask for CNO parameters

cno_param Pointer to a Consumer-allocated structure that the Provider fills
with CNO parameters

The dat_cno_query() function provides the Consumer parameters of the CNO. The
Consumer passes in a pointer to the Consumer-allocated structures for CNO
parameters that the Provider fills.

The cno_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for cno_param_mask requested parameters. The
Provider can return values for any other parameters.

A value of DAT_OS_WAIT_PROXY_AGENT_NULL in cno_param indicates that there are
no Proxy Agent associated with the CNO.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The cno_param_mask parameter is invalid.

DAT_INVALID_HANDLE The cno_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_cno_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 171

dat_cno_wait – wait for notification events

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_cno_wait (
IN DAT_CNO_HANDLE cno_handle,
IN DAT_TIMEOUT timeout,
OUT DAT_EVD_HANDLE *evd_handle
)

cno_handle Handle for an instance of CNO

timeout The duration to wait for a notification. The value
DAT_TIMEOUT_INFINITE can be used to wait indefinitely.

evd_handle Handle for an instance of EVD

The dat_cno_wait() function allows the Consumer to wait for notification events
from a set of Event Dispatchers all from the same Interface Adapter. The Consumer
blocks until notified or the timeout period expires.

An Event Dispatcher that is disabled or in the "Waited" state does not deliver
notifications. A uDAPL Consumer waiting directly upon an Event Dispatcher
preempts the CNO.

The consumer can optionally specify a timeout, after which it is unblocked even if
there are no notification events. On a timeout, evd_handle is explicitly set to a null
handle.

The returned evd_handle is only a hint. Another Consumer can reap the Event before
this Consumer can get around to checking the Event Dispatcher. Additionally, other
Event Dispatchers feeding this CNO might have been notified. The Consumer is
responsible for ensuring that all EVDs feeding this CNO are polled regardless of
whether they are identified as the immediate cause of the CNO unblocking.

All the waiters on the CNO, including the OS Wait Proxy Agent if it is associated with
the CNO, are unblocked with the NULL handle returns for an unblocking EVD
evd_handle when the IA instance is destroyed or when all EVDs the CNO is associated
with are freed.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cno_handle parameter is invalid.

DAT_QUEUE_EMPTY The operation timed out without a notification.

DAT_INVALID_PARAMETER One of the parameters was invalid or out of range, a
combination of parameters was invalid, or the timeout
parameter is invalid.

DAT_INTERRUPTED_CALL The operation was interrupted by a signal.

dat_cno_wait(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

172 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_cno_wait(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 173

dat_cr_accept – establishes a Connection between the active remote side requesting
Endpoint and the passive side local Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_cr_accept (
IN DAT_CR_HANDLE cr_handle,
IN DAT_EP_HANDLE ep_handle,
IN DAT_COUNT private_data_size,
IN const DAT_PVOID private_data

)

cr_handle Handle to an instance of a Connection Request that the
Consumer is accepting.

ep_handle Handle for an instance of a local Endpoint that the
Consumer is accepting the Connection Request on. If
the local Endpoint is specified by the Connection
Request, the ep_handle shall be DAT_HANDLE_NULL.

private_data_size Size of the private_data, which must be nonnegative.

private_data Pointer to the private data that should be provided to
the remote Consumer when the Connection is
established. If private_data_size is zero, then private_data
can be NULL.

The dat_cr_accept() function establishes a Connection between the active remote
side requesting Endpoint and the passive side local Endpoint. The local Endpoint is
either specified explicitly by ep_handle or implicitly by a Connection Request. In the
second case, ep_handle is DAT_HANDLE_NULL.

Consumers can specify private data that is provided to the remote side upon
Connection establishment.

If the provided local Endpoint does not satisfy the requested Connection Request, the
operation fails without any effect on the local Endpoint, Pending Connection Request,
private data, or remote Endpoint.

The operation is asynchronous. The successful completion of the operation is reported
through a Connection Event of type DAT_CONNECTION_EVENT_ESTABLISHED on the
connect_evd of the local Endpoint.

If the Provider cannot complete the Connection establishment, the connection is not
established and the Consumer is notified through a Connection Event of type
DAT_CONNECTION_EVENT_ACCEPT_COMPLETION_ERROR on the connect_evd of the
local Endpoint. It can be caused by the active side timeout expiration, transport error,
or any other reason. If Connection is not established, Endpoint transitions into
Disconnected state and all posted Recv DTOs are flushed to its recv_evd_handle.

dat_cr_accept(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

174 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

This operation, if successful, also destroys the Connection Request instance. Use of the
handle of the destroyed cr_handle in any consequent operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cr_handle or ep_handle parameter is invalid.

DAT_INVALID_PARAMETER The private_data_size or private_data parameter is
invalid, out of range, or a combination of parameters
was invalid

Consumers should be aware that Connection establishment might fail in the following
cases: If the accepting Endpoint has an outstanding RDMA Read outgoing attribute
larger than the requesting remote Endpoint or outstanding RDMA Read incoming
attribute, or if the outstanding RDMA Read incoming attribute is smaller than the
requesting remote Endpoint or outstanding RDMA Read outgoing attribute.

Consumers should set the accepting Endpoint RDMA Reads as the target (incoming)
to a number larger than or equal to the remote Endpoint RDMA Read outstanding as
the originator (outgoing), and the accepting Endpoint RDMA Reads as the originator
to a number smaller than or equal to the remote Endpoint RDMA Read outstanding as
the target. DAT API does not define a protocol on how remote peers exchange
Endpoint attributes. The exchange of outstanding RDMA Read incoming and
outgoing attributes of EPs is left to the Consumer ULP. Consumer can use Private Data
for it.

If the Consumer does not care about posting RDMA Read operations or remote
RDMA Read operations on the connection, it can set the two outstanding RDMA Read
attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes of the
Endpoint, the Provider is free to pick up any value for default. The Provider can
change these default values during connection setup.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_cr_accept(3DAT)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 175

dat_cr_handoff – hand off the Connection Request to another Service Point

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_cr_handoff (
IN DAT_CR_HANDLE cr_handle,
IN DAT_CONN_QUAL handoff

)

cr_handle Handle to an instance of a Connection Request that the Consumer
is handing off.

handoff Indicator of another Connection Qualifier on the same IA to which
this Connection Request should be handed off.

The dat_cr_handoff() function hands off the Connection Request to another
Service Point specified by the Connection Qualifier handoff.

The operation is synchronous. This operation also destroys the Connection Request
instance. Use of the handle of the destroyed Connection Request in any consequent
operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cr_handle parameter is invalid.

DAT_INVALID_PARAMETER The handoff parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_cr_handoff(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

176 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_cr_query – provide parameters of the Connection Request

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_cr_query (
IN DAT_CR_HANDLE cr_handle,
IN DAT_CR_PARAM_MASK cr_param_mask,
OUT DAT_CR_PARAM *cr_param

)

cr_handle Handle for an instance of a Connection Request.

cr_param_mask Mask for Connection Request parameters.

cr_param Pointer to a Consumer-allocated structure that the Provider fills for
Consumer-requested parameters.

The dat_cr_query() function provides to the Consumer parameters of the
Connection Request. The Consumer passes in a pointer to the Consumer-allocated
structures for Connection Request parameters that the Provider fills.

The cr_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for cr_param_mask requested parameters. The
Provider can return values for any other parameters.

DAT_SUCCESS The operation was successful

DAT_INVALID_HANDLE The cr_handle handle is invalid.

DAT_INVALID_PARAMETER The cr_param_mask parameter is invalid.

The Consumer uses dat_cr_query() to get information about requesting a remote
Endpoint as well as a local Endpoint if it was allocated by the Provider for the arrived
Connection Request. The local Endpoint is created if the Consumer used PSP with
DAT_PSP_PROVIDER as the value for psp_flags. For the remote Endpoint,
dat_cr_query() provides remote_ia_address and remote_port_qual. It also provides
remote peer private_data and its size.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_cr_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 177

dat_cr_reject – reject a Connection Request from the Active remote side requesting
Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_cr_reject (
IN DAT_CR_HANDLE cr_handle

)

cr_handle Handle to an instance of a Connection Request that the Consumer
is rejecting.

The dat_cr_reject() function rejects a Connection Request from the Active remote
side requesting Endpoint. If the Provider passed a local Endpoint into a Consumer for
the Public Service Point-created Connection Request, that Endpoint reverts to Provider
Control. The behavior of an operation on that Endpoint is undefined. The local
Endpoint that the Consumer provided for Reserved Service Point reverts to Consumer
control, and the Consumer is free to use in any way it wants.

The operation is synchronous. This operation also destroys the Connection Request
instance. Use of the handle of the destroyed Connection Request in any consequent
operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The cr_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_cr_reject(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

178 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ep_connect – establish a connection between the local Endpoint and a remote
Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_connect (
IN DAT_EP_HANDLE ep_handle,
IN DAT_IA_ADDRESS_PTR remote_ia_address,
IN DAT_CONN_QUAL remote_conn_qual,
IN DAT_TIMEOUT timeout,
IN DAT_COUNT private_data_size,
IN const DAT_PVOID private_data,
IN DAT_QOS qos,
IN DAT_CONNECT_FLAGS connect_flags

)

ep_handle Handle for an instance of an Endpoint.

remote_ia_address The Address of the remote IA to which an Endpoint is
requesting a connection.

remote_conn_qual Connection Qualifier of the remote IA from which an
Endpoint requests a connection.

timeout Duration of time, in microseconds, that a Consumer
waits for Connection establishment. The value of
DAT_TIMEOUT_INFINITE represents no timeout,
indefinite wait. Values must be positive.

private_data_size Size of the private_data. Must be nonnegative.

private_data Pointer to the private data that should be provided to
the remote Consumer as part of the Connection
Request. If private_data_size is zero, then private_data
can be NULL.

qos Requested quality of service of the connection.

connect_flags Flags for the requested connection. If the least
significant bit of DAT_MULTIPATH_FLAG is 0, the
Consumer does not request multipathing. If the least
significant bit of DAT__MULTIPATH_FLAG is 1, the
Consumer requests multipathing. The default value is
DAT_CONNECT_DEFAULT_FLAG, which is 0.

The dat_ep_connect() function requests that a connection be established between
the local Endpoint and a remote Endpoint. This operation is used by the active/client
side Consumer of the Connection establishment model. The remote Endpoint is
identified by Remote IA and Remote Connection Qualifier.

dat_ep_connect(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 179

As part of the successful completion of this operation, the local Endpoint is bound to a
Port Qualifier of the local IA. The Port Qualifier is passed to the remote side of the
requested connection and is available to the remote Consumer in the Connection
Request of the DAT_CONNECTION_REQUEST_EVENT.

The Consumer-provided private_data is passed to the remote side and is provided to
the remote Consumer in the Connection Request. Consumers can encapsulate any
local Endpoint attributes that remote Consumers need to know as part of an
upper-level protocol. Providers can also provide a Provider on the remote side any
local Endpoint attributes and Transport-specific information needed for Connection
establishment by the Transport.

Upon successful completion of this operation, the local Endpoint is transferred into
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING.

Consumers can request a specific value of qos. The Provider specifies which quality of
service it supports in documentation and in the Provider attributes. If the local
Provider or Transport does not support the requested qos, the operation fails and
DAT_MODEL_NOT_SUPPORTED is returned synchronously. If the remote Provider does
not support the requested qos, the local Endpoint is automatically transitioned into the
DAT_EP_STATE_DISCONNECTED state, the connection is not established, and the
event returned on the connect_evd_handle is
DAT_CONNECTION_EVENT_NON_PEER_REJECTED. The same
DAT_CONNECTION_EVENT_NON_PEER_REJECTED event is returned if the connection
cannot be established for all reasons of not establishing the connection, except timeout,
remote host not reachable, and remote peer reject. For example, remote Consumer is
not listening on the requested Connection Qualifier, Backlog of the requested Service
Point is full, and Transport errors. In this case, the local Endpoint is automatically
transitioned into DAT_EP_STATE_DISCONNECTED state.

The acceptance of the requested connection by the remote Consumer is reported to the
local Consumer through a DAT_CONNECTION_EVENT_ESTABLISHED event on the
connect_evd_handle of the local Endpoint and the local Endpoint is automatically
transitioned into a DAT_EP_STATE_CONNECTED state.

The rejection of the connection by the remote Consumer is reported to the local
Consumer through a DAT_CONNECTION_EVENT_PEER_REJECTED event on the
connect_evd_handle of the local Endpoint and the local Endpoint is automatically
transitioned into a DAT_EP_STATE_DISCONNECTED state.

When the Provider cannot reach the remote host or the remote host does not respond
within the Consumer requested Timeout, a DAT_CONNECTION_EVENT_UNREACHABLE
event is generated on the connect_evd_handle of the Endpoint. The Endpoint transitions
into a DAT_EP_STATE_DISCONNECTED state.

If the Provider can locally determine that the remote_ia_address is invalid, or that the
remote_ia_address cannot be converted to a Transport-specific address, the operation
can fail synchronously with a DAT_INVALID_ADDRESS return.

dat_ep_connect(3DAT)

180 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

The local Endpoint is automatically transitioned into a DAT_EP_STATE_CONNECTED
state when a Connection Request accepted by the remote Consumer and the Provider
completes the Transport-specific Connection establishment. The local Consumer is
notified of the established connection through a
DAT_CONNECTION_EVENT_ESTABLISHED event on the connect_evd_handle of the local
Endpoint.

When the timeout expired prior to completion of the Connection establishment, the
local Endpoint is automatically transitioned into a DAT_EP_STATE_DISCONNECTED
state and the local Consumer through a DAT_CONNECTION_EVENT_TIMED_OUT event
on the connect_evd_handle of the local Endpoint.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_ADDRESS Invalid address.

DAT_INVALID_HANDLE Invalid DAT handle; Invalid Endpoint
handle.

DAT_INVALID_STATE Parameter in an invalid state. Endpoint was
not in DAT_EP_STATE_UNCONNECTED
state.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by
the Provider. For example, the requested
qos was not supported by the local
Provider.

It is up to the Consumer to negotiate outstanding RDMA Read incoming and outgoing
with a remote peer. The outstanding RDMA Read outgoing attribute should be smaller
than the remote Endpoint outstanding RDMA Read incoming attribute. If this is not
the case, Connection establishment might fail.

DAT API does not define a protocol on how remote peers exchange Endpoint
attributes. The exchange of outstanding RDMA Read incoming and outgoing
attributes of EPs is left to the Consumer ULP. The Consumer can use Private Data for
it.

If the Consumer does not care about posting RDMA Read operations or remote
RDMA Read operations on the connection, it can set the two outstanding RDMA Read
attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes of the
Endpoint, the Provider is free to pick up any value for default. The Provider is
allowed to change these default values during connection setup.

dat_ep_connect(3DAT)

RETURN VALUES

USAGE

Extended Library Functions 181

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_connect(3DAT)

ATTRIBUTES

SEE ALSO

182 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ep_create – create an instance of an Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_create (
IN DAT_IA_HANDLE ia_handle,
IN DAT_PZ_HANDLE pz_handle,
IN DAT_EVD_HANDLE recv_evd_handle,
IN DAT_EVD_HANDLE request_evd_handle,
IN DAT_EVD_HANDLE connect_evd_handle,
IN DAT_EP_ATTR *ep_attributes,
OUT DAT_EP_HANDLE *ep_handle

)

ia_handle Handle for an open instance of the IA to which the
created Endpoint belongs.

pz_handle Handle for an instance of the Protection Zone.

recv_evd_handle Handle for the Event Dispatcher where events for
completions of incoming (receive) DTOs are reported.
DAT_HANDLE_NULL specifies that the Consumer is not
interested in events for completions of receives.

request_evd_handle Handle for the Event Dispatcher where events for
completions of outgoing (Send, RDMA Write, RDMA
Read, and RMR Bind) DTOs are reported.
DAT_HANDLE_NULL specifies that the Consumer is not
interested in events for completions of requests.

connect_evd_handle Handle for the Event Dispatcher where Connection
events are reported. DAT_HANDLE_NULL specifies that
the Consumer is not interested in connection events for
now.

ep_attributes Pointer to a structure that contains
Consumer-requested Endpoint attributes. Can be NULL.

ep_handle Handle for the created instance of an Endpoint.

The dat_ep_create() function creates an instance of an Endpoint that is provided
to the Consumer as ep_handle. The value of ep_handle is not defined if the DAT_RETURN
is not DAT_SUCCESS.

The Endpoint is created in the Unconnected state.

Protection Zone pz_handle allows Consumers to control what local memory the
Endpoint can access for DTOs and what memory remote RDMA operations can access
over the connection of a created Endpoint. Only memory referred to by LMRs and
RMRs that match the Endpoint Protection Zone can be accessed by the Endpoint.

dat_ep_create(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 183

The recv_evd_handle and request_evd_handle parameters are Event Dispatcher instances
where the Consumer collects completion notifications of DTOs. Completions of
Receive DTOs are reported in recv_evd_handle Event Dispatcher, and completions of
Send, RDMA Read, and RDMA Write DTOs are reported in request_evd_handle Event
Dispatcher. All completion notifications of RMR bindings are reported to a Consumer
in request_evd_handle Event Dispatcher.

All Connection events for the connected Endpoint are reported to the Consumer
through connect_evd_handle Event Dispatcher.

The ep_attributes parameter specifies the initial attributes of the created Endpoint. If
the Consumer specifies NULL, the Provider fills it with its default Endpoint attributes.
The Consumer might not be able to do any posts to the Endpoint or use the Endpoint
in connection establishment until certain Endpoint attributes are set. Maximum
Message Size and Maximum Recv DTOs are examples of such attributes.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_PARAMETER Invalid parameter. One of the requested EP
parameters or attributes was invalid or a
combination of attributes or parameters is
invalid.

DAT_MODEL_NOT_SUPPORTED The requested Provider Model was not
supported.

The Consumer creates an Endpoint prior to the establishment of a connection. The
created Endpoint is in DAT_EP_STATE_UNCONNECTED. Consumers can do the
following:

1. Request a connection on the Endpoint through dat_ep_connect(3DAT) or
dat_ep_dup_connect(3DAT) for the active side of the connection model.

2. Associate the Endpoint with the Pending Connection Request that does not have
an associated local Endpoint for accepting the Pending Connection Request for the
passive/server side of the connection model.

3. Create a Reserved Service Point with the Endpoint for the passive/server side of
the connection model. Upon arrival of a Connection Request on the Service Point,
the Consumer accepts the Pending Connection Request that has the Endpoint
associated with it

The Consumer cannot specify a request_evd_handle (recv_evd_handle) with Request
Completion Flags (Recv Completion Flags) that do not match the other Endpoint
Completion Flags for the DTO/RMR completion streams that use the same EVD. If
request_evd_handle (recv_evd_handle) is used for an EVD that is fed by any event stream
other than DTO or RMR completion event streams, only

dat_ep_create(3DAT)

RETURN VALUES

USAGE

184 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

DAT_COMPLETION_THRESHOLD is valid for Request/Recv Completion Flags for the
Endpoint completion streams that use that EVD. If request_evd_handle (recv_evd_handle)
is used for request (recv) completions of an Endpoint whose associated Request (Recv)
Completion Flag attribute is DAT_COMPLETION_UNSIGNALLED_FLAG, the Request
Completion Flags and Recv Completion Flags for all Endpoint completion streams
that use the EVD must specify the same. Analogously, if recv_evd_handle is used for
recv completions of an Endpoint whose associated Recv Completion Flags attribute is
DAT_COMPLETION_SOLICITED_WAIT, the Recv Completion Flags for all Endpoint
Recv completion streams that use the same EVD must specify the same Recv
Completion Flags attribute value and the EVD cannot be used for any other event
stream types.

If EP is created with NULL attributes, Provider can fill them with its own default
values. The Consumer should not rely on the Provider-filled attribute defaults,
especially for portable applications. The Consumer cannot do any operations on the
created Endpoint except for dat_ep_query(3DAT), dat_ep_get_status(3DAT),
dat_ep_modify(3DAT), and dat_ep_free(3DAT), depending on the values that the
Provider picks.

The Provider is encouraged to pick up reasonable defaults because unreasonable
values might restrict Consumers to the dat_ep_query(), dat_ep_get_status(),
dat_ep_modify(), and dat_ep_free() operations. The Consumer should check
what values the Provider picked up for the attributes. It is especially important to
make sure that the number of posted operations is not too large to avoid EVD
overflow. Depending on the values picked up by the Provider, the Consumer might
not be able to do any RDMA operations; it might only be able to send or receive
messages of very small sizes, or it might not be able to have more than one segment in
a buffer. Before doing any operations, except the ones listed above, the Consumer can
configure the Endpoint using dat_ep_modify() to the attributes they want.

One reason the Consumer might still want to create an Endpoint with Null attributes
is for the Passive side of the connection establishment, where the Consumer sets up
Endpoint attributes based on the connection request of the remote side.

Consumers might want to create Endpoints with NULL attributes if Endpoint
properties are negotiated as part the Consumer connection establishment protocol.

Consumers that create Endpoints with Provider default attributes should always
verify that the Provider default attributes meet their application’s requirements with
regard to the number of request/receive DTOs that can be posted, maximum message
sizes, maximum request/receive IOV sizes, and maximum RDMA sizes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

dat_ep_create(3DAT)

ATTRIBUTES

Extended Library Functions 185

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT), dat_ep_free(3DAT),
dat_ep_get_status(3DAT), dat_ep_modify(3DAT), dat_ep_query(3DAT),
libdat(3LIB), attributes(5)

dat_ep_create(3DAT)

SEE ALSO

186 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ep_create_with_srq – create an instance of End Point with Shared Receive Queue

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_create_with_srq (

IN DAT_IA_HANDLE ia_handle,
IN DAT_PZ_HANDLE pz_handle,
IN DAT_EVD_HANDLE recv_evd_handle,
IN DAT_EVD_HANDLE request_evd_handle,
IN DAT_EVD_HANDLE connect_evd_handle,
IN DAT_SRQ_HANDLE srq_handle,
IN DAT_EP_ATTR *ep_attributes,
OUT DAT_EP_HANDLE *ep_handle

)

ia_handle Handle for an open instance of the IA to which the
created Endpoint belongs.

pz_handle Handle for an instance of the Protection Zone.

recv_evd_handle Handle for the Event Dispatcher where events for
completions of incoming (receive) DTOs are reported.
DAT_HANDLE_NULL specifies that the Consumer is not
interested in events for completions of receives.

request_evd_handle Handle for the Event Dispatcher where events for
completions of outgoing (Send, RDMA Write, RDMA
Read, and RMR Bind) DTOs are reported.
DAT_HANDLE_NULL specifies that the Consumer is not
interested in events for completions of requests.

connect_evd_handle Handle for the Event Dispatcher where Connection
events are reported. DAT_HANDLE_NULL specifies that
the Consumer is not interested in connection events for
now.

srq_handle Handle for an instance of the Shared Receive Queue.

ep_attributes Pointer to a structure that contains
Consumer-requested Endpoint attributes. Cannot be
NULL.

ep_handle Handle for the created instance of an Endpoint.

The dat_ep_create_with_srq() function creates an instance of an Endpoint that
is using SRQ for Recv buffers is provided to the Consumer as ep_handle. The value of
ep_handle is not defined if the DAT_RETURN is not DAT_SUCCESS.

The Endpoint is created in the Unconnected state.

dat_ep_create_with_srq(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 187

Protection Zone pz_handle allows Consumers to control what local memory the
Endpoint can access for DTOs except Recv and what memory remote RDMA
operations can access over the connection of a created Endpoint. Only memory
referred to by LMRs and RMRs that match the Endpoint Protection Zone can be
accessed by the Endpoint. The Recv DTO buffers PZ must match the SRQ PZ. The SRQ
PZ might or might not be the same as the EP one. Check Provider attribute for the
support of different PZs between SRQ and its EPs.

The recv_evd_handle and request_evd_handle arguments are Event Dispatcher instances
where the Consumer collects completion notifications of DTOs. Completions of
Receive DTOs are reported in recv_evd_handle Event Dispatcher, and completions of
Send, RDMA Read, and RDMA Write DTOs are reported in request_evd_handle Event
Dispatcher. All completion notifications of RMR bindings are reported to a Consumer
in request_evd_handle Event Dispatcher.

All Connection events for the connected Endpoint are reported to the Consumer
through connect_evd_handle Event Dispatcher.

Shared Receive Queue srq_handle specifies where the EP will dequeue Recv DTO
buffers.

The created EP can be reset. The relationship between SRQ and EP is not effected by
dat_ep_reset(3DAT).

SRQ can not be disassociated or replaced from created EP. The only way to
disassociate SRQ from EP is to destroy EP.

Receive buffers cannot be posted to the created Endpoint. Receive buffers must be
posted to the SRQ to be used for the created Endpoint.

The ep_attributes parameter specifies the initial attributes of the created Endpoint.
Consumer can not specify NULL for ep_attributes but can specify values only for the
parameters needed and default for the rest.

For max_request_dtos and max_request_iov, the created Endpoint will have at least the
Consumer requested values but might have larger values. Consumer can query the
created Endpoint to find out the actual values for these attributes. Created Endpoint
has the exact Consumer requested values for max_recv_dtos, max_message_size,
max_rdma_size, max_ rdma_read_in, and max_rdma_read_out. For all other attributes,
except max_recv_iov that is ignored, the created Endpoint has the exact values
requested by Consumer. If Provider cannot satisfy the Consumer requested attribute
values the operation fails.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE Invalid DAT handle.

dat_ep_create_with_srq(3DAT)

RETURN VALUES

188 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

DAT_INVALID_PARAMETER Invalid parameter. One of the requested EP
parameters or attributes was invalid or a
combination of attributes or parameters is
invalid. For example, pz_handle specified
does not match the one for SRQ or the
requested maximum RDMA Read IOV
exceeds IA capabilities..

DAT_MODEL_NOT_SUPPORTED The requested Provider Model was not
supported.

The Consumer creates an Endpoint prior to the establishment of a connection. The
created Endpoint is in DAT_EP_STATE_UNCONNECTED. Consumers can do the
following:

1. Request a connection on the Endpoint through dat_ep_connect(3DAT) or
dat_ep_dup_connect(3DAT) for the active side of the connection model.

2. Associate the Endpoint with the Pending Connection Request that does not have
an associated local Endpoint for accepting the Pending Connection Request for the
passive/server side of the con-nection model.

3. Create a Reserved Service Point with the Endpoint for the passive/server side of
the connection model. Upon arrival of a Connection Request on the Service Point,
the Consumer accepts the Pending Connection Request that has the Endpoint
associated with it.

The Consumer cannot specify a request_evd_handle (recv_evd_handle) with Request
Completion Flags (Recv Completion Flags) that do not match the other Endpoint
Completion Flags for the DTO/RMR completion streams that use the same EVD. If
request_evd_handle (recv_evd_ handle) is used for request (recv) completions of an
Endpoint whose associated Request (Recv) Completion Flag attribute is
DAT_COMPLETION_UNSIGNALLED_FLAG, the Request Completion Flags and Recv
Completion Flags for all Endpoint completion streams that use the EVD must specify
the same. By definition, completions of all Recv DTO posted to SRQ complete with
Signal. Analogously, if recv_evd_handle is used for recv completions of an Endpoint
whose associated Recv Completion Flag attribute is
DAT_COMPLETION_SOLICITED_WAIT, the Recv Completion Flags for all Endpoint
Recv completion streams that use the same EVD must specify the same Recv
Completion Flags attribute value and the EVD cannot be used for any other event
stream types. If recv_evd_handle is used for Recv completions of an Endpoint that uses
SRQ and whose Recv Completion Flag attribute is
DAT_COMPLETION_EVD_THRESHOLD then all Endpoint DTO completion streams
(request and/or recv completion streams) that use that recv_evd_handle must specify
DAT_COMPLETION_EVD_THRESHOLD. Other event stream types can also use the same
EVD.

dat_ep_create_with_srq(3DAT)

USAGE

Extended Library Functions 189

Consumers might want to use DAT_COMPLETION_UNSIGNALLED_FLAG for Request
and/or Recv completions when they control locally with posted DTO/RMR
completion flag (not needed for Recv posted to SRQ) whether posted DTO/RMR
completes with Signal or not. Consumers might want to use
DAT_COMPLETION_SOLICITED_WAIT for Recv completions when the remote sender
side control whether posted Recv competes with Signal or not or not. uDAPL
Consumers might want to use DAT_COMPLETION_EVD_THRESHOLD for Request
and/or Recv completions when they control waiter unblocking with the threshold
parameter of the dat_evd_wait(3DAT).

Some Providers might restrict whether multiple EPs that share a SRQ can have
different Protection Zones. Check the srq_ep_pz_difference_support Provider attribute for
it.

Consumers might want to have a different PZ between EP and SRQ. This allows
incoming RDMA operations to be specific to this EP PZ and not the same for all EPs
that share SRQ. This is critical for servers that supports multiple independent clients.

The Provider is strongly encouraged to create an EP that is ready to be connected. Any
effects of previous connections or connection establishment attempts on the
underlying Transport-specific Endpoint to which the DAT Endpoint is mapped to
should be hidden from the Consumer. The methods described below are examples:

� The Provider does not create an underlying Transport Endpoint until the
Consumer is connecting the Endpoint or accepting a connection request on it. This
allows the Provider to accumulate Consumer requests for attribute settings even
for attributes that the underlying transport does not allow to change after the
Transport Endpoint is created.

� The Provider creates the underlying Transport Endpoint or chooses one from a
pool of Provider-controlled Transport Endpoints when the Consumer creates the
Endpoint. The Provider chooses the Transport Endpoint that is free from any
underlying internal attributes that might prevent the Endpoint from being
connected. For IB and IP, that means that the Endpoint is not in the TimeWait state.
Changing of some of the Endpoint attributes becomes hard and might potentially
require mapping the Endpoint to another underlying Transport Endpoint that
might not be feasible for all transports.

� The Provider allocates a Transport-specific Endpoint without worrying about
impact on it from previous connections or connection establishment attempts. Hide
the Transport-specific TimeWait state or CM timeout of the underlying transport
Endpoint within dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT), or
dat_cr_accept(3DAT). On the Active side of the connection establishment, if the
remnants of a previous connection for Transport-specific Endpoint can be hidden
within the Timeout parameter, do so. If not, generating DAT_CONNECTION_
EVENT_NON_PEER_REJECTED is an option. For the Passive side, generating a
DAT_CONNECTION_COMPLETION_ERROR event locally, while sending a
non-peer-reject message to the active side, is a way of handling it.

dat_ep_create_with_srq(3DAT)

190 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

Any transitions of an Endpoint into an Unconnected state can be handled similarly.
One transition from a Disconnected to an Unconnected state is a special case.

For dat_ep_reset(3DAT), the Provider can hide any remnants of the previous
connection or failed connection establishment in the operation itself. Because the
operation is synchronous, the Provider can block in it until the TimeWait state effect of
the previous connection or connection setup is expired, or until the Connection
Manager timeout of an unsuccessful connection establishment attempt is expired.
Alternatively, the Provider can create a new Endpoint for the Consumer that uses the
same handle.

DAT Providers are required not to change any Consumer-specified Endpoint attributes
during connection establishment. If the Consumer does not specify an attribute, the
Provider can set it to its own default. Some EP attributes, like outstanding RDMA
Read incoming or outgoing, if not set up by the Consumer, can be changed by
Providers to establish connection. It is recommended that the Provider pick the default
for outstanding RDMA Read attributes as 0 if the Consumer has not specified them.
This ensures that connection establishment does not fail due to insufficient
outstanding RDMA Read resources, which is a requirement for the Provider.

The Provider is not required to check for a mismatch between the maximum RDMA
Read IOV and maximum RDMA Read outgoing attributes, but is allowed to do so. In
the later case it is allowed to return DAT_INVALID_ PARAMETER when a mismatch is
detected. Provider must allocate resources to satisfy the combination of these two EP
attributes for local RDMA Read DTOs.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Safe

dat_ep_create(3DAT), dat_srq_create(3DAT), dat_srq_free(3DAT),
dat_srq_query(3DAT), libdat(3LIB), attributes(5)

dat_ep_create_with_srq(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 191

dat_ep_disconnect – terminate a connection or a connection establishment

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_disconnect (
IN DAT_EP_HANDLE ep_handle,
IN DAT_CLOSE_FLAGS disconnect_flags

)

ep_handle Handle for an instance of Endpoint.

disconnect_flags Flags for disconnect. Flag values are as follows:

DAT_CLOSE_ABRUPT_FLAG
Abrupt close. This is the default value.

DAT_CLOSE_GRACEFUL_FLAG
Graceful close.

The dat_ep_disconnect() function requests a termination of a connection or
connection establishment. This operation is used by the active/client or a
passive/server side Consumer of the connection model.

The disconnect_flags parameter allows Consumers to specify whether they want
graceful or abrupt disconnect. Upon disconnect, all outstanding and in-progress DTOs
and RMR Binds must be completed.

For abrupt disconnect, all outstanding DTOs and RMR Binds are completed
unsuccessfully, and in-progress DTOs and RMR Binds can be completed successfully
or unsuccessfully. If an in-progress DTO is completed unsuccessfully, all follow on
in-progress DTOs in the same direction also must be completed unsuccessfully. This
order is presented to the Consumer through a DTO completion Event Stream of the
recv_evd_handle and and request_evd_handle of the Endpoint.

For graceful disconnect, all outstanding and in-progress request DTOs and RMR Binds
must try to be completed successfully first, before disconnect proceeds. During that
time, the local Endpoint is in a DAT_EP_DISCONNECT_PENDING state.

The Consumer can call abrupt dat_ep_disconnect() when the local Endpoint is in
the DAT_EP_DISCONNECT_PENDING state. This causes the Endpoint to transition into
DAT_EP_STATE_DISCONNECTED without waiting for outstanding and in-progress
request DTOs and RMR Binds to successfully complete. The graceful
dat_ep_disconnect() call when the local Endpoint is in the
DAT_EP_DISCONNECT_PENDING state has no effect.

If the Endpoint is not in DAT_EP_STATE_CONNECTED, the semantic of the operation is
the same for graceful or abrupt disconnect_flags value.

No new Send, RDMA Read, and RDMA Write DTOs, or RMR Binds can be posted to
the Endpoint when the local Endpoint is in the DAT_EP_DISCONNECT_PENDING
state.

dat_ep_disconnect(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

192 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

The successful completion of the disconnect is reported to the Consumer through a
DAT_CONNECTION_EVENT_DISCONNECTED event on connect_evd_handle of the
Endpoint. The Endpoint is automatically transitioned into a
DAT_EP_STATE_DISCONNECTED state upon successful asynchronous completion. If
the same EVD is used for connect_evd_handle and any recv_evd_handle and
request_evd_handle, all successful Completion events of in-progress DTOs precede
the Disconnect Completion event.

Disconnecting an unconnected Disconnected Endpoint is no-op. Disconnecting an
Endpoint in DAT_EP_STATE_UNCONNECTED, DAT_EP_STATE_RESERVED,
DAT_EP_STATE_PASSIVE_CONNECTION_PENDING, and
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING is disallowed.

Both abrupt and graceful disconnect of the Endpoint during connection establishment,
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING and
DAT_EP_STATE_COMPLETION_PENDING, "aborts" the connection establishment and
transitions the local Endpoint into DAT_EP_STATE_DISCONNECTED. That causes
preposted Recv DTOs to be flushed to recv_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER The disconnect_flags parameter is invalid.

DAT_INVALID_STATE A parameter is in an invalid state. Endpoint
is not in the valid state for disconnect.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_disconnect(3DAT)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 193

dat_ep_dup_connect – establish a connection between the local Endpoint and a remote
Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_dup_connect (
IN DAT_EP_HANDLE ep_handle,
IN DAT_EP_HANDLE dup_ep_handle,
IN DAT_TIMEOUT timeout,
IN DAT_COUNT private_data_size,
IN const DAT_PVOID private_data,
IN DAT_QOS qos

)

ep_handle Handle for an instance of an Endpoint.

dup_ep_handle Connected local Endpoint that specifies a requested connection
remote end.

timeout: Duration of time, in microseconds, that Consumers wait for
Connection establishment. The value of
DAT_TIMEOUT_INFINITE represents no timeout, indefinite wait.
Values must be positive.

private_data_size Size of private_data. Must be nonnegative.

private_data Pointer to the private data that should be provided to the remote
Consumer as part of the Connection Request. If private_data_size is
zero, then private_data can be NULL.

qos Requested Quality of Service of the connection.

The dat_ep_dup_connect() function requests that a connection be established
between the local Endpoint and a remote Endpoint. This operation is used by the
active/client side Consumer of the connection model. The remote Endpoint is
identified by the dup_ep_handle. The remote end of the requested connection shall be
the same as the remote end of the dup_ep_handle. This is equivalent to requesting a
connection to the same remote IA, Connection Qualifier, and connect_flags as used for
establishing the connection on duplicated Endpoints and following the same
redirections.

Upon establishing the requested connection as part of the successful completion of this
operation, the local Endpoint is bound to a Port Qualifier of the local IA. The Port
Qualifier is passed to the remote side of the requested connection and is available to
the remote Consumer in the Connection Request of the
DAT_CONNECTION_REQUEST_EVENT.

dat_ep_dup_connect(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

194 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

The Consumer-provided private_data is passed to the remote side and is provided to
the remote Consumer in the Connection Request. Consumers can encapsulate any
local Endpoint attributes that remote Consumers need to know as part of an
upper-level protocol. Providers can also provide a Provider on the remote side any
local Endpoint attributes and Transport-specific information needed for Connection
establishment by the Transport.

Upon successful completion of this operation, the local Endpoint is transferred into
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING.

Consumers can request a specific value of qos. The Provider specifies which Quality of
Service it supports in documentation and in the Provider attributes. If the local
Provider or Transport does not support the requested qos, the operation fails and
DAT_MODEL_NOT_SUPPORTED is returned synchronously. If the remote Provider does
not support the requested qos, the local Endpoint is automatically transitioned into a
DAT_EP_STATE_UNDISCONNECTED state, the connection is not established, and the
event returned on the connect_evd_handle is
DAT_CONNECTION_EVENT_NON_PEER_REJECTED. The same
DAT_CONNECTION_EVENT_NON_PEER_REJECTED event is returned if connection
cannot be established for all reasons for not establishing the connection, except
timeout, remote host not reachable, and remote peer reject. For example, remote host
is not reachable, remote Consumer is not listening on the requested Connection
Qualifier, Backlog of the requested Service Point is full, and Transport errors. In this
case, the local Endpoint is automatically transitioned into a
DAT_EP_STATE_UNDISCONNECTED state.

The acceptance of the requested connection by the remote Consumer is reported to the
local Consumer through a DAT_CONNECTION_EVENT_ESTABLISHED event on the
connect_evd_handle of the local Endpoint.

The rejection of the connection by the remote Consumer is reported to the local
Consumer through a DAT_CONNECTION_EVENT_PEER_REJECTED event on the
connect_evd_handle of the local Endpoint and the local Endpoint is automatically
transitioned into a DAT_EP_STATE_UNDISCONNECTED state.

When the Provider cannot reach the remote host or the remote host does not respond
within the Consumer-requested timeout, a DAT_CONNECTION_EVENT_UNREACHABLE
is generated on the connect_evd_handle of the Endpoint. The Endpoint transitions into a
DAT_EP_STATE_DISCONNECTED state.

The local Endpoint is automatically transitioned into a DAT_EP_STATE_CONNECTED
state when a Connection Request is accepted by the remote Consumer and the
Provider completes the Transport-specific Connection establishment. The local
Consumer is notified of the established connection through a
DAT_CONNECTION_EVENT_ESTABLISHED event on the connect_evd_handle of the local
Endpoint.

dat_ep_dup_connect(3DAT)

Extended Library Functions 195

When the timeout expired prior to completion of the Connection establishment, the
local Endpoint is automatically transitioned into a
DAT_EP_STATE_UNDISCONNECTED state and the local Consumer through a
DAT_CONNECTION_EVENT_TIMED_OUT event on the connect_evd_handle of the local
Endpoint.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE The ep_handle or dup_ep_handle parameter is
invalid.

DAT_INVALID_STATE A parameter is in an invalid state.

DAT_MODEL_NOT_SUPPORTED The requested Model is not supported by
the Provider. For example, requested qos
was not supported by the local Provider.

It is up to the Consumer to negotiate outstanding RDMA Read incoming and outgoing
with a remote peer. The outstanding RDMA Read outgoing attribute should be smaller
than the remote Endpoint outstanding RDMA Read incoming attribute. If this is not
the case, connection establishment might fail.

DAT API does not define a protocol on how remote peers exchange Endpoint
attributes. The exchange of outstanding RDMA Read incoming and outgoing
attributes of EPs is left to the Consumer ULP. The Consumer can use Private Data for
it.

If the Consumer does not care about posting RDMA Read operations or remote
RDMA Read operations on the connection, it can set the two outstanding RDMA Read
attribute values to 0.

If the Consumer does not set the two outstanding RDMA Read attributes of the
Endpoint, the Provider is free to pick up any values as a default. The Provider is
allowed to change these default values during connection setup.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_dup_connect(3DAT)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

196 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ep_free – destroy an instance of the Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_free (
IN DAT_EP_HANDLE ep_handle

)

ep_handle Handle for an instance of the Endpoint.

The dat_ep_free() function destroys an instance of the Endpoint.

The Endpoint can be destroyed in any Endpoint state except Reserved, Passive
Connection Pending, and Tentative Connection Pending. The destruction of the
Endpoint can also cause the destruction of DTOs and RMRs posted to the Endpoint
and not dequeued yet. This includes completions for all outstanding and in-progress
DTOs/RMRs. The Consumer must be ready for all completions that are not dequeued
yet either still being on the Endpoint recv_evd_handle and request_evd_handle or not
being there.

The destruction of the Endpoint during connection setup aborts connection
establishment.

If the Endpoint is in the Reserved state, the Consumer shall first destroy the associated
Reserved Service Point that transitions the Endpoint into the Unconnected state where
the Endpoint can be destroyed. If the Endpoint is in the Passive Connection Pending
state, the Consumer shall first reject the associated Connection Request that transitions
the Endpoint into the Unconnected state where the Endpoint can be destroyed. If the
Endpoint is in the Tentative Connection Pending state, the Consumer shall reject the
associated Connection Request that transitions the Endpoint back to Provider control,
and the Endpoint is destroyed as far as the Consumer is concerned.

The freeing of an Endpoint also destroys an Event Stream for each of the associated
Event Dispatchers.

Use of the handle of the destroyed Endpoint in any subsequent operation except for
the dat_ep_free() fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INVALID_STATE Parameter in an invalid state. The Endpoint is in
DAT_EP_STATE_RESERVED,
DAT_EP_STATE_PASSIVE_CONNECTION_PENDING,
or
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING.

dat_ep_free(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

Extended Library Functions 197

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_free(3DAT)

ATTRIBUTES

SEE ALSO

198 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ep_get_status – provide a quick snapshot of the Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_get_status (
IN DAT_EP_HANDLE ep_handle,
OUT DAT_EP_STATE *ep_state,
OUT DAT_BOOLEAN *recv_idle,
OUT DAT_BOOLEAN *request_idle

)

ep_handle Handle for an instance of the Endpoint.

ep_state Current state of the Endpoint.

recv_idle Status of the incoming DTOs on the Endpoint.

request_idle Status of the outgoing DTOs and RMR Bind operations on the
Endpoint.

the dat_ep_get_status() function provides the Consumer a quick snapshot of the
Endpoint. The snapshot consists of the Endpoint state and whether there are
outstanding or in-progress, incoming or outgoing DTOs. Incoming DTOs consist of
Receives. Outgoing DTOs consist of the Requests, Send, RDMA Read, RDMA Write,
and RMR Bind.

The ep_state parameter returns the value of the current state of the Endpoint ep_handle.
State value is one of the following: DAT_EP_STATE_UNCONNECTED,
DAT_EP_STATE_RESERVED, DAT_EP_STATE_PASSIVE_CONNECTION_PENDING,
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING,
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING,
DAT_EP_STATE_CONNECTED, DAT_EP_STATE_DISCONNECT_PENDING, or
DAT_EP_STATE_DISCONNECTED.

A recv_idle value of DAT_TRUE specifies that there are no outstanding or in-progress
Receive DTOs at the Endpoint, and DAT_FALSE otherwise.

A request_idle value of DAT_TRUE specifies that there are no outstanding or in-progress
Send, RDMA Read, and RDMA Write DTOs, and RMR Binds at the Endpoint, and
DAT_FALSE otherwise.

This call provides a snapshot of the Endpoint status only. No heroic synchronization
with DTO queuing or processing is implied.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

dat_ep_get_status(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

Extended Library Functions 199

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_ep_get_status(3DAT)

ATTRIBUTES

SEE ALSO

200 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ep_modify – change parameters of an Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_modify (
IN DAT_EP_HANDLE ep_handle,
IN DAT_EP_PARAM_MASK ep_param_mask,
IN DAT_EP_PARAM *ep_param
)

ep_handle Handle for an instance of the Endpoint.

ep_param_mask Mask for Endpoint parameters.

ep_param Pointer to the Consumer-allocated structure that contains
Consumer-requested Endpoint parameters.

The dat_ep_modify() function provides the Consumer a way to change parameters
of an Endpoint.

The ep_param_mask parameter allows Consumers to specify which parameters to
modify. Providers modify values for ep_param_mask requested parameters only.

Not all the parameters of the Endpoint can be modified. Some can be modified only
when the Endpoint is in a specific state. The following list specifies which parameters
can be modified and when they can be modified.

Interface Adapter
Cannot be modified.

Endpoint belongs to an open instance of IA and that association cannot be changed.

Endpoint State
Cannot be modified.

State of Endpoint cannot be changed by a dat_ep_modify() operation.

Local IA Address
Cannot be modified.

Local IA Address cannot be changed by a dat_ep_modify() operation.

Local Port Qualifier
Cannot be modified.

Local port qualifier cannot be changed by a dat_ep_modify() operation.

Remote IA Address
Cannot be modified.

Remote IA Address cannot be changed by a dat_ep_modify() operation.

Remote Port Qualifier
Cannot be modified.

dat_ep_modify(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 201

Remote port qualifier cannot be changed by a dat_ep_modify() operation

Protection Zone
Can be modified when in Quiescent, Unconnected, and Tentative Connection
Pending states.

Protection Zone can be changed only when the Endpoint is in quiescent state. The
only Endpoint states that isare quiescent isare DAT_EP_STATE_UNCONNECTED and
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING. Consumers should be
aware that any Receive DTOs currently posted to the Endpoint that do not match
the new Protection Zone fail with a DAT_PROTECTION_VIOLATION return.

In DTO Event Dispatcher
Can be modified when in Unconnected, Reserved, Passive Connection Request
Pending, and Tentative Connection Pending states.

Event Dispatcher for incoming DTOs (Receive) can be changed only prior to a
request for a connection for an Active side or prior to accepting a Connection
Request for a Passive side.

Out DTO Event Dispatcher
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Event Dispatcher for outgoing DTOs (Send, RDMA Read, and RDMA Write) can be
changed only prior to a request for a connection for an Active side or prior to
accepting a Connection Request for a Passive side.

Connection Event Dispatcher
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Event Dispatcher for the Endpoint Connection events can be changed only prior to
a request for a connection for an Active side or accepting a Connection Request for
a Passive side.

Service Type
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Service Type can be changed only prior to a request for a connection for an Active
side or accepting a Connection Request for a Passive side.

Maximum Message Size
Can be modified when in Unconnected, Reserved, Passive Connection Request
Pending, and Tentative Connection Pending states.

Maximum Message Size can be changed only prior to a request for a connection for
an Active side or accepting a Connection Request for a Passive side.

Maximum RDMA Size
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

dat_ep_modify(3DAT)

202 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

Maximum RDMA Size can be changed only prior to a request for a connection for
an Active side or accepting a Connection Request for a Passive side.

Quality of Service
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

QoS can be changed only prior to a request for a connection for an Active side or
accepting a Connection Request for a Passive side.

Recv Completion Flags
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Recv Completion Flags specifies what DTO flags the Endpoint should support for
Receive DTO operations. The value can be
DAT_COMPLETION_NOTIFICATION_SUPPRESS_FLAG,
DAT_COMPLETION_SOLICITED_WAIT_FLAG, or
DAT_COMPLETION_EVD_THRESHOLD_FLAG. Recv posting does not support
DAT_COMPLETION_SUPPRESS_FLAG or
DAT_COMPLETION_BARRIER_FENCE_FLAG dat_completion_flags values that are
only applicable to Request postings. Recv Completion Flags can be changed only
prior to a request for a connection for an Active side or accepting a Connection
Request for a Passive side, but before posting of any Recvs.

Request Completion Flags
Can be modified when in Unconnected, Reserved, Passive Connection Request
Pending, and Tentative Connection Pending states.

Request Completion Flags specifies what DTO flags the Endpoint should support
for Send, RDMA Read, RDMA Write, and RMR Bind operations. The value can be:
DAT_COMPLETION_UNSIGNALLED_FLAG or
DAT_COMPLETION_EVD_THRESHOLD_FLAG. Request postings always support
DAT_COMPLETION_SUPPRESS_FLAG,
DAT_COMPLETION_SOLICITED_WAIT_FLAG, or
DAT_COMPLETION_BARRIER_FENCE_FLAG completion_flags values. Request
Completion Flags can be changed only prior to a request for a connection for an
Active side or accepting a Connection Request for a Passive side.

Maximum Recv DTO
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Maximum Recv DTO specifies the maximum number of outstanding
Consumer-submitted Receive DTOs that a Consumer expects at any time at the
Endpoint. Maximum Recv DTO can be changed only prior to a request for a
connection for an Active side or accepting a Connection Request for a Passive side.

Maximum Request DTO
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

dat_ep_modify(3DAT)

Extended Library Functions 203

Maximum Request DTO specifies the maximum number of outstanding
Consumer-submitted send and RDMA DTOs and RMR Binds that a Consumer
expects at any time at the Endpoint. Maximum Out DTO can be changed only prior
to a request for a connection for an Active side or accepting a Connection Request
for a Passive side.

Maximum Recv IOV
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Maximum Recv IOV specifies the maximum number of elements in IOV that a
Consumer specifies for posting a Receive DTO for the Endpoint. Maximum Recv
IOV can be changed only prior to a request for a connection for an Active side or
accepting a Connection Request for a Passive side.

Maximum Request IOV
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Maximum Request IOV specifies the maximum number of elements in IOV that a
Consumer specifies for posting a Send, RDMA Read, or RDMA Write DTO for the
Endpoint. Maximum Request IOV can be changed only prior to a request for a
connection for an Active side or accepting a Connection Request for a Passive side.

Maximum outstanding RDMA Read as target
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Maximum number of outstanding RDMA Reads for which the Endpoint is the
target.

Maximum outstanding RDMA Read as originator
Can be modified when in Unconnected, Reserved, Passive Connection Pending,
and Tentative Connection Pending states.

Maximum number of outstanding RDMA Reads for which the Endpoint is the
originator.

Num transport-specific attributes
Can be modified when in Quiescent (unconnected) state.

Number of transport-specific attributes to be modified.

Transport-specific endpoint attributes
Can be modified when in Quiescent (unconnected) state.

Transport-specific attributes can be modified only in the transport-defined
Endpoint state. The only guaranteed safe state in which to modify transport-specific
Endpoint attributes is the quiescent state DAT_EP_STATE_UNCONNECTED.

Num provider-specific attributes
Can be modified when in Quiescent (unconnected) state.

Number of Provider-specific attributes to be modified.

dat_ep_modify(3DAT)

204 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

Provider-specific endpoint attributes
Can be modified when in Quiescent (unconnected) state.

Provider-specific attributes can be modified only in the Provider-defined Endpoint
state. The only guaranteed safe state in which to modify Provider-specific Endpoint
attributes is the quiescent state DAT_EP_STATE_UNCONNECTED.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INVALID_PARAMETER The ep_param_mask parameter is invalid, or one of the
requested Endpoint parameters or attributes was
invalid, not supported, or cannot be modified.

DAT_INVALID_STATE Parameter in an invalid state. The Endpoint was not in
the state that allows one of the parameters or attributes
to be modified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_modify(3DAT)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 205

dat_ep_post_rdma_read – transfer all data to the local data buffer

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_post_rdma_read (
IN DAT_EP_HANDLE ep_handle,
IN DAT_COUNT num_segments,
IN DAT_LMR_TRIPLET *local_iov,
IN DAT_DTO_COOKIE user_cookie,
IN DAT_RMR_TRIPLET *remote_buffer,
IN DAT_COMPLETION_FLAGS completion_flags

)

ep_handle Handle for an instance of the Endpoint.

num_segments Number of lmr_triplets in local_iov.

local_iov I/O Vector that specifies the local buffer to fill.

user_cookie User-provided cookie that is returned to the Consumer
at the completion of the RDMA Read. Can be NULL.

remote_buffer A pointer to an RMR Triplet that specifies the remote
buffer from which the data is read.

completion_flags Flags for posted RDMA Read. The default
DAT_COMPLETION_DEFAULT_FLAG is 0x00. Other
values are as follows:

Completion Suppression
DAT_COMPLETION_SUPPRESS_FLAG

0x01 Suppress successful Completion.

Notification of Completion
DAT_COMPLETION_UNSIGNALLED_FLAG

0x04 Non-notification completion. Local
Endpoint must be configured for
Notification Suppression.

Barrier Fence
DAT_COMPLETION_BARRIER_FENCE_FLAG

0x08 Request for Barrier Fence.

The dat_ep_post_rdma_read() function requests the transfer of all the data
specified by the remote_buffer over the connection of the ep_handle Endpoint into the
local_iov.

dat_ep_post_rdma_read(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

206 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

The num_segments parameter specifies the number of segments in the local_iov. The
local_iov segments are filled in the I/O Vector order until the whole message is
received. This ensures that all the "front" segments of the local_iov I/O Vector are
completely filled, only one segment is partially filled, if needed, and all segments that
follow it are not filled at all.

The user_cookie allows Consumers to have unique identifiers for each DTO. These
identifiers are completely under user control and are opaque to the Provider. There is
no requirement on the Consumer that the value user_cookie should be unique for each
DTO. The user_cookie is returned to the Consumer in the Completion event for the
posted RDMA Read.

A Consumer must not modify the local_iov or its content until the DTO is completed.
When a Consumer does not adhere to this rule, the behavior of the Provider and the
underlying Transport is not defined. Providers that allow Consumers to get ownership
of the local_iov but not the memory it specifies back after the
dat_ep_post_rdma_read() returns should document this behavior and also
specify its support in Provider attributes. This behavior allows Consumers full control
of the local_iov after dat_ep_post_rdma_read() returns. Because this behavior is
not guaranteed by all Providers, portable Consumers should not rely on this behavior.
Consumers should not rely on the Provider copying local_iov information.

The completion of the posted RDMA Read is reported to the Consumer
asynchronously through a DTO Completion event based on the specified
completion_flags value. The value of DAT_COMPLETION_UNSIGNALLED_FLAG is only
valid if the Endpoint Request Completion Flags
DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_INVALID_PARAMETER is
returned.

The DAT_SUCCESS return of the dat_ep_post_rdma_read() is at least the
equivalent of posting an RDMA Read operation directly by native Transport.
Providers should avoid resource allocation as part of dat_ep_post_rdma_read()
to ensure that this operation is nonblocking and thread safe for an UpCall.

The operation is valid for the Endpoint in the DAT_EP_STATE_CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the
Endpoint in the DAT_EP_STATE_DISCONNECTED state, the posted RDMA Read is
immediately flushed to request_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one of the
IOV segments pointed to a memory outside
its LMR.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

dat_ep_post_rdma_read(3DAT)

RETURN VALUES

Extended Library Functions 207

DAT_INVALID_STATE A parameter is in an invalid state. Endpoint
was not in the
DAT_EP_STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state.

DAT_LENGTH_ERROR The size of the receiving buffer is too small
for sending buffer data. The size of the local
buffer is too small for the data of the remote
buffer.

DAT_PROTECTION_VIOLATION Protection violation for local or remote
memory access. Protection Zone mismatch
between either an LMR of one of the
local_iov segments and the local Endpoint or
the rmr_context and the remote Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote
memory access. Either one of the LMRs
used in local_iov is invalid or does not have
the local write privileges, or rmr_context
does not have the remote read privileges.

For best RDMA Read operation performance, the Consumer should align each buffer
segment of local_iov to the Optimal Buffer Alignment attribute of the Provider. For
portable applications, the Consumer should align each buffer segment of local_iov to
the DAT_OPTIMAL_ALIGNMENT.

If connection was established without outstanding RDMA Read attributes matching
on Endpoints on both sides (outstanding RDMA Read outgoing on one end is larger
than the outstanding RDMA Read incoming on the other end), connection is broken
when the number of incoming RDMA Read exceeds the outstanding RDMA Read
incoming attribute of the Endpoint. The Consumer can use its own flow control to
ensure that it does not post more RDMA Reads then the remote EP outstanding
RDMA Read incoming attribute is. Thus, they do not rely on the underlying Transport
enforcing it.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_post_rdma_read(3DAT)

USAGE

ATTRIBUTES

SEE ALSO

208 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ep_post_rdma_write – write all data to the remote data buffer

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_post_rdma_read (
IN DAT_EP_HANDLE ep_handle,
IN DAT_COUNT num_segments,
IN DAT_LMR_TRIPLET *local_iov,
IN DAT_DTO_COOKIE user_cookie,
IN DAT_RMR_TRIPLET *remote_buffer,
IN DAT_COMPLETION_FLAGS completion_flags

)

ep_handle Handle for an instance of the Endpoint.

num_segments Number of lmr_triplets in local_iov.

local_iov I/O Vector that specifies the local buffer from which
the data is transferred.

user_cookie User-provided cookie that is returned to the Consumer
at the completion of the RDMA Write.

remote_buffer A pointer to an RMR Triplet that specifies the remote
buffer from which the data is read.

completion_flags Flags for posted RDMA read. The default
DAT_COMPLETION_DEFAULT_FLAG is 0x00. Other
values are as follows:

Completion Suppression
DAT_COMPLETION_SUPPRESS_FLAG

0x01 Suppress successful Completion.

Notification of Completion
DAT_COMPLETION_UNSIGNALLED_FLAG

0x04 Non-notification completion. Local
Endpoint must be configured for
Notification Suppression.

Barrier Fence
DAT_COMPLETION_BARRIER_FENCE_FLAG

0x08 Request for Barrier Fence.

The dat_ep_post_rdma_write() function requests the transfer of all the data
specified by the local_iov over the connection of the ep_handle Endpoint into the
remote_buffer.

The num_segments parameter specifies the number of segments in the local_iov. The
local_iov segments are traversed in the I/O Vector order until all the data is
transferred.

dat_ep_post_rdma_write(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 209

A Consumer must not modify the local_iov or its content until the DTO is completed.
When a Consumer does not adhere to this rule, the behavior of the Provider and the
underlying Transport is not defined. Providers that allow Consumers to get ownership
of the local_iov but not the memory it specifies back after the
dat_ep_post_rdma_write() returns should document this behavior and also
specify its support in Provider attributes. This behavior allows Consumers full control
of the local_iov after dat_ep_post_rdma_write() returns. Because this behavior is
not guaranteed by all Providers, portable Consumers should not rely on this behavior.
Consumers should not rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ep_post_rdma_write() is at least the
equivalent of posting an RDMA Write operation directly by native Transport.
Providers should avoid resource allocation as part of dat_ep_post_rdma_write()
to ensure that this operation is nonblocking and thread safe for an UpCall.

The completion of the posted RDMA Write is reported to the Consumer
asynchronously through a DTO Completion event based on the specified
completion_flags value. The value of DAT_COMPLETION_UNSIGNALLED_FLAG is only
valid if the Endpoint Request Completion Flags
DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise, DAT_INVALID_PARAMETER is
returned.

The user_cookie allows Consumers to have unique identifiers for each DTO. These
identifiers are completely under user control and are opaque to the Provider. There is
no requirement on the Consumer that the value user_cookie should be unique for each
DTO. The user_cookie is returned to the Consumer in the Completion event for the
posted RDMA Write.

The operation is valid for the Endpoint in the DAT_EP_STATE_CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the
Endpoint in the DAT_EP_STATE_DISCONNECTED state, the posted RDMA Write is
immediately flushed to request_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one of the
IOV segments pointed to a memory outside
its LMR.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INVALID_STATE A parameter is in an invalid state. Endpoint
was not in the
DAT_EP_STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state.

dat_ep_post_rdma_write(3DAT)

RETURN VALUES

210 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

DAT_LENGTH_ERROR The size of the receiving buffer is too small
for sending buffer data. The size of the
remote buffer is too small for the data of the
local buffer.

DAT_PROTECTION_VIOLATION Protection violation for local or remote
memory access. Protection Zone mismatch
between either an LMR of one of the
local_iov segments and the local Endpoint or
the rmr_context and the remote Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote
memory access. Either one of the LMRs
used in local_iov is invalid or does not have
the local read privileges, or rmr_context does
not have the remote write privileges.

For best RDMA Write operation performance, the Consumer should align each buffer
segment of local_iov to the Optimal Buffer Alignment attribute of the Provider. For
portable applications, the Consumer should align each buffer segment of local_iov to
the DAT_OPTIMAL_ALIGNMENT.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_post_rdma_write(3DAT)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 211

dat_ep_post_recv – receive data over the connection of the Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_post_recv (
IN DAT_EP_HANDLE ep_handle,
IN DAT_COUNT num_segments,
IN DAT_LMR_TRIPLET *local_iov,
IN DAT_DTO_COOKIE user_cookie,
IN DAT_COMPLETION_FLAGS completion_flags

)

ep_handle Handle for an instance of the Endpoint.

num_segments Number of lmr_triplets in local_iov. Can be 0 for
receiving a 0 size message.

local_iov I/O Vector that specifies the local buffer to be filled.
Can be NULL for receiving a 0 size message.

user_cookie: User-provided cookie that is returned to the Consumer
at the completion of the Receive DTO. Can be NULL.

completion_flags Flags for posted Receive. The default
DAT_COMPLETION_DEFAULT_FLAG is 0x00. Other
values are as follows:

Notification of Completion
DAT_COMPLETION_UNSIGNALLED_FLAG

0x04 Non-notification completion. Local
Endpoint must be configured for
Unsignaled CompletionNotification
Suppression.

The dat_ep_post_recv() function requests the receive of the data over the
connection of the ep_handle Endpoint of the incoming message into the local_iov.

The num_segments parameter specifies the number of segments in the local_iov. The
local_iov segments are filled in the I/O Vector order until the whole message is
received. This ensures that all the "front" segments of the local_iov I/O Vector are
completely filled, only one segment is partially filled, if needed, and all segments that
follow it are not filled at all.

The user_cookie allows Consumers to have unique identifiers for each DTO. These
identifiers are completely under user control and are opaque to the Provider. There is
no requirement on the Consumer that the value user_cookie should be unique for each
DTO. The user_cookie is returned to the Consumer in the Completion event for the
posted Receive.

dat_ep_post_recv(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

212 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

The completion of the posted Receive is reported to the Consumer asynchronously
through a DTO Completion event based on the configuration of the connection for
Solicited Wait and the specified completion_flags value for the matching Send. The
value of DAT_COMPLETION _UNSIGNALLED_FLAG is only valid if the Endpoint Recv
Completion Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise,
DAT_INVALID_PARAMETER is returned.

A Consumer must not modify the local_iov or its content until the DTO is completed.
When a Consumer does not adhere to this rule, the behavior of the Provider and the
underlying Transport is not defined. Providers that allow Consumers to get ownership
of the local_iov but not the memory it specified back after the dat_ep_post_recv()
returns should document this behavior and also specify its support in Provider
attributes. This behavior allows Consumer full control of the local_iov content after
dat_ep_post_recv() returns. Because this behavior is not guaranteed by all
Providers, portable Consumers should not rely on this behavior. Consumers
shouldnot rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ep_post_recv() is at least the equivalent of
posting a Receive operation directly by native Transport. Providers should avoid
resource allocation as part of dat_ep_post_recv() to ensure that this operation is
nonblocking and thread safe for an UpCall.

If the size of an incoming message is larger than the size of the local_iov, the reported
status of the posted Receive DTO in the corresponding Completion DTO event is
DAT_DTO_LENGTH_ERROR. If the reported status of the Completion DTO event
corresponding to the posted Receive DTO is not DAT_DTO_SUCCESS, the content of
the local_iov is not defined.

The operation is valid for all states of the Endpoint. The actual data transfer does not
take place until the Endpoint is in the DAT_EP_STATE_CONNECTED state. The
operation on the Endpoint in DAT_EP_STATE_DISCONNECTED is allowed. If the
operation returns successfully, the posted Recv is immediately flushed to
recv_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one of the
IOV segments pointed to a memory outside
its LMR.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_PROTECTION_VIOLATION Protection violation for local or remote
memory access. Protection Zone mismatch
between an LMR of one of the local_iov
segments and the local Endpoint.

dat_ep_post_recv(3DAT)

RETURN VALUES

Extended Library Functions 213

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote
memory access. One of the LMRs used in
local_iov was either invalid or did not have
the local read privileges.

For best Recv operation performance, the Consumer should align each buffer segment
of local_iov to the Optimal Buffer Alignment attribute of the Provider. For portable
applications, the Consumer should align each buffer segment of local_iov to the
DAT_OPTIMAL_ALIGNMENT.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_post_recv(3DAT)

USAGE

ATTRIBUTES

SEE ALSO

214 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ep_post_send – transfer data to the remote side

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_post_send (
IN DAT_EP_HANDLE ep_handle,
IN DAT_COUNT num_segments,
IN DAT_LMR_TRIPLET *local_iov,
IN DAT_DTO_COOKIE user_cookie,
IN DAT_COMPLETION_FLAGS completion_flags

)

ep_handle Handle for an instance of the Endpoint.

num_segments Number of lmr_triplets in local_iov. Can be 0 for 0 size
message.

local_iov I/O Vector that specifies the local buffer that contains
data to be transferred. Can be NULL for 0 size message.

user_cookie: User-provided cookie that is returned to the Consumer
at the completion of the send. Can be NULL.

completion_flags Flags for posted Send. The default
DAT_COMPLETION_DEFAULT_FLAG is 0x00. Other
values are as follows:

Completion Suppression
DAT_COMPLETION_SUPPRESS_FLAG

0x01 Suppress successful Completion.

Solicited Wait
DAT_COMPLETION_SOLICITED_WAIT_FLAG

0x02 Request for notification completion for
matching receive on the other side of the
connection.

Notification of Completion
DAT_COMPLETION_UNSIGNALLED_FLAG

0x04 Non-notification completion. Local
Endpoint must be configured for
Notification Suppression.

Barrier Fence
DAT_COMPLETION_BARRIER_FENCE_FLAG

0x08 Request for Barrier Fence.

The dat_ep_post_send() function requests a transfer of all the data from the
local_iov over the connection of the ep_handle Endpoint to the remote side.

dat_ep_post_send(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 215

The num_segments parameter specifies the number of segments in the local_iov. The
local_iov segments are traversed in the I/O Vector order until all the data is
transferred.

A Consumer cannot modify the local_iov or its content until the DTO is completed.
When a Consumer does not adhere to this rule, the behavior of the Provider and the
underlying Transport is not defined. Providers that allow Consumers to get ownership
of the local_iov back after the dat_ep_post_send() returns should document this
behavior and also specify its support in Provider attributes. This behavior allows
Consumers full control of the local_iov, but not the memory it specifies after
dat_ep_post_send() returns. Because this behavior is not guaranteed by all
Providers, portable Consumers should not rely on this behavior. Consumers should
not rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_ep_post_send() is at least the equivalent of
posting a Send operation directly by native Transport. Providers should avoid
resource allocation as part of dat_ep_post_send() to ensure that this operation is
nonblocking and thread safe for an UpCall.

The completion of the posted Send is reported to the Consumer asynchronously
through a DTO Completion event based on the specified completion_flags value. The
value of DAT_COMPLETION _UNSIGNALLED_FLAG is only valid if the Endpoint
Request Completion Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise,
DAT_INVALID_PARAMETER is returned.

The user_cookie allows Consumers to have unique identifiers for each DTO. These
identifiers are completely under user control and are opaque to the Provider. There is
no requirement on the Consumer that the value user_cookie should be unique for each
DTO. The user_cookie is returned to the Consumer in the Completion event for the
posted Send.

The operation is valid for the Endpoint in the DAT_EP_STATE_CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the
Endpoint in the DAT_EP_STATE_DISCONNECTED state, the posted Send is
immediately flushed to request_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, one of the
IOV segments pointed to a memory outside
its LMR.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

dat_ep_post_send(3DAT)

RETURN VALUES

216 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

DAT_INVALID_STATE A parameter is in an invalid state. Endpoint
was not in the
DAT_EP_STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state.

DAT_PROTECTION_VIOLATION Protection violation for local or remote
memory access. Protection Zone mismatch
between an LMR of one of the local_iov
segments and the local Endpoint.

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote
memory access. One of the LMRs used in
local_iov was either invalid or did not have
the local read privileges.

For best Send operation performance, the Consumer should align each buffer segment
of local_iov to the Optimal Buffer Alignment attribute of the Provider. For portable
applications, the Consumer should align each buffer segment of local_iov to the
DAT_OPTIMAL_ALIGNMENT.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_post_send(3DAT)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 217

dat_ep_query – provide parameters of the Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_query (
IN DAT_EP_HANDLE ep_handle,
IN DAT_EP_PARAM_MASK ep_param_mask,
OUT DAT_EP_PARAM *ep_param

)

ep_handle Handle for an instance of the Endpoint.

ep_param_mask Mask for Endpoint parameters.

ep_param Pointer to a Consumer-allocated structure that the Provider fills
with Endpoint parameters.

The dat_ep_query() function provides the Consumer parameters, including
attributes and status, of the Endpoint. Consumers pass in a pointer to
Consumer-allocated structures for Endpoint parameters that the Provider fills.

The ep_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for ep_param_mask requested parameters. The
Provider can return values for any other parameters.

Some of the parameters only have values for certain Endpoint states. Specifically, the
values for remote_ia_address and remote_port_qual are valid only for Endpoints in the
DAT_EP_STATE_PASSIVE_CONNECTION_PENDING,
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING,
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING,
DAT_EP_STATE_DISCONNECT_PENDING, DAT_EP_STATE_COMPLETION_PENDING,
or DAT_EP_STATE_CONNECTED states. The values of local_port_qual is valid only for
Endpoints in the DAT_EP_STATE_PASSIVE_CONNECTION_PENDING,
DAT_EP_STATE_ACTIVE_CONNECTION_PENDING,
DAT_EP_STATE_DISCONNECT_PENDING, DAT_EP_STATE_COMPLETION_PENDING,
or DAT_EP_STATE_CONNECTED states, and might be valid for
DAT_EP_STATE_UNCONNECTED, DAT_EP_STATE_RESERVED,
DAT_EP_STATE_TENTATIVE_CONNECTION_PENDING,
DAT_EP_STATE_PASSIVE_CONNECTION_PENDING, and
DAT_EP_STATE_UNCONNECTED states.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The ep_handle parameter is invalid.

DAT_INVALID_PARAMETER The ep_param_mask parameter is invalid.

dat_ep_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

218 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_query(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 219

dat_ep_recv_query – provide Endpoint receive queue consumption on SRQ

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_recv_query (

IN DAT_EP_HANDLE ep_handle,
OUT DAT_COUNT *nbufs_allocated,
OUT DAT_COUNT *bufs_alloc_span

)

ep_handle Handle for an instance of the EP.

nbufs_allocated The number of buffers at the EP for which completions have not
yet been generated.

bufs_alloc_span The span of buffers that EP needs to complete arriving messages.

The dat_ep_recv_query() function provides to the Consumer a snapshot for Recv
buffers on EP. The values for nbufs_allocated and bufs_alloc_span are not defined when
DAT_RETURN is not DAT_SUCCESS.

The Provider might not support nbufs_allocated, bufs_alloc_span or both. Check the
Provider attribute for EP Recv info support. When the Provider does not support both
of these counts, the return value for the operation can be
DAT_MODEL_NOT_SUPPORTED.

If nbufs_allocated is not NULL, the count pointed to by nbufs_allocated will return a
snapshot count of the number of buffers allocated to ep_handle but not yet completed.

Once a buffer has been allocated to an EP, it will be completed to the EP recv_evd if the
EVD has not overflowed. When an EP does not use SRQ, a buffer is allocated as soon
as it is posted to the EP. For EP that uses SRQ, a buffer is allocated to the EP when EP
removes it from SRQ.

If bufs_alloc_span is not NULL, then the count to which bufs_alloc_span pointed will
return the span of buffers allocated to the ep_handle. The span is the number of
additional successful Recv completions that EP can generate if all the messages it is
currently receiving will complete successfully.

If a message sequence number is assigned to all received messages, the buffer span is
the difference between the latest message sequence number of an allocated buffer
minus the latest message sequence number for which completion has been generated.
This sequence number only counts Send messages of remote Endpoint of the
connection.

The Message Sequence Number (MSN) represents the order that Send messages were
submitted by the remote Consumer. The ordering of sends is intrinsic to the definition
of a reliable service. Therefore every send message does have a MSN whether or not
the native transport has a field with that name.

dat_ep_recv_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

220 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

For both nbufs_allocated and bufs_alloc_span, the Provider can return the reserved value
DAT_VALUE_UNKNOWN if it cannot obtain the requested count at a reasonable cost.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE The DAT handle ep_handle is invalid.

DAT_MODEL_NOT_SUPPORTEDThe requested Model was not supported by the
Provider.

If the Provider cannot support the query for nbufs_allocated or bufs_alloc_span, the
value returned for that attribute must be DAT_VALUE_UNKNOWN.

An implementation that processes incoming packets out of order and allocates from
SRQs on an arrival basis can have gaps in the MSNs associated with buffers allocated
to an Endpoint.

For example, suppose Endpoint X has received buffer fragments for MSNs 19, 22, and
23. With arrival ordering, the EP would have allocated three buffers from the SRQ for
messages 19, 22, and 23. The number allocated would be 3, but the span would be 5.
The difference of two represents the buffers that will have to be allocated for messages
20 and 21. They have not yet been allocated, but messages 22 and 23 will not be
delivered until after messages 20 and 21 have not only had their buffers allocated but
have also completed.

An implementation can choose to allocate 20 and 21 as soon as any higher buffer is
allocated. This makes sense if you presume that this is a valid connection, because
obviously 20 and 21 are in flight. However, it creates a greater vulnerability to Denial
Of Service attacks. There are also other implementation tradeoffs, so the Consumer
should accept that different RNICs for iWARP will employ different strategies on
when to perform these allocations.

Each implementation will have some method of tracking the receive buffers already
associated with an EP and knowing which buffer matches which incoming message,
though those methods might vary. In particular, there are valid implementations such
as linked lists, where a count of the outstanding buffers is not instantly available. Such
implementations would have to scan the allocated list to determine both the number
of buffers and their span. If such a scan is necessary, it is important that it be only a
single scan. The set of buffers that was counted must be the same set of buffers for
which the span is reported.

The implementation should not scan twice, once to count the buffers and then again to
determine their span. Not only is it inefficient, but it might produce inconsistent
results if buffers were completed or arrived between the two scans.

Other implementations can simply maintain counts of these values to easily filter
invalid packets. If so, these status counters should be updated and referenced
atomically.

dat_ep_recv_query(3DAT)

RETURN VALUES

USAGE

Extended Library Functions 221

The implementation must never report n buffers in a span that is less than n.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_ep_create(3DAT), dat_srq_create(3DAT), dat_srq_free(3DAT),
dat_srq_query(3DAT), dat_ep_set_watermark(3DAT), libdat(3LIB),
attributes(5)

dat_ep_recv_query(3DAT)

ATTRIBUTES

SEE ALSO

222 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ep_reset – transition the local Endpoint from a Disconnected to an Unconnected
state

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_reset (
IN DAT_EP_HANDLE ep_handle

)

ep_handle Handle for an instance of Endpoint.

The dat_ep_reset() function transitions the local Endpoint from a Disconnected to
an Unconnected state.

The operation might cause the loss of any completions of previously posted DTOs and
RMRs that were not dequeued yet.

The dat_ep_reset() function is valid for both Disconnected and Unconnected
states. For Unconnected state, the operation is no-op because the Endpoint is already
in an Unconnected state. For an Unconnected state, the preposted Recvs are not
affected by the call.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE ep_handle is invalid.

DAT_INVALID_STATE Parameter in an invalid state. Endpoint is not in the
valid state for reset.

If the Consumer wants to ensure that all Completions are dequeued, the Consumer
can post DTO or RMR operations as a "marker" that are flushed to recv_evd_handle or
request_evd_handle. Now, when the Consumer dequeues the completion of the
"marker" from the EVD, it is guaranteed that all previously posted DTO and RMR
completions for the Endpoint were dequeued for that EVD. Now, it is safe to reset the
Endpoint without losing any completions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_ep_reset(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 223

dat_ep_set_watermark – set high watermark on Endpoint

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ep_set_watermark (
IN DAT_EP_HANDLE ep_handle,
IN DAT_COUNT soft_high_watermark,
IN DAT_COUNT hard_high_watermark

)

ep_handle The handle for an instance of an Endpoint.

soft_high_watermark The soft high watermark for the number of Recv
buffers consumed by the Endpoint.

hard_high_watermark The hard high watermark for the number of Recv
buffers consumed by the Endpoint.

The dat_ep_set_watermark() function sets the soft and hard high watermark
values for EP and arms EP for generating asynchronous events for high watermarks.
An asynchronous event will be generated for IA async_evd when the number of Recv
buffers at EP exceeds the soft high watermark for the first time. A connection broken
event will be generated for EP connect_evd when the number of Recv buffers at EP
exceeds the hard high watermark. These can occur during this call or when EP takes a
buffer from the SRQ or EP RQ. The soft and hard high watermark asynchronous event
generation and setting are independent of each other.

The asynchronous event for a soft high watermark is generated only once per setting.
Once an event is generated, no new asynchronous events for the soft high watermark
is generated until the EP is again set for the soft high watermark. If the Consumer is
once again interested in the event, the Consumer should again set the soft high
watermark.

If the Consumer is not interested in a soft or hard high watermark, the value of
DAT_WATERMARK_INFINITE can be specified for the case that is the default value.
This value specifies that a non-asynchronous event will be generated for a high
watermark EP attribute for which this value is set. It does not prevent generation of a
connection broken event for EP when no Recv buffer is available for a message arrived
on the EP connection.

The operation is supported for all states of Endpoint.

DAT_SUCCESS
The operation was successful.

DAT_INVALID_HANDLE
The ep_handle argument is an invalid DAT handle.

DAT_INVALID_PARAMETER
One of the parameters is invalid.

dat_ep_set_watermark(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

224 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

DAT_MODEL_NOT_SUPPORTED
The requested Model was not supported by the Provider. The Provider does not
support EP Soft or Hard High Watermarks.

For a hard high watermark, the Provider is ready to generate a connection broken
event as soon as the connection is established.

If the asynchronous event for a soft or hard high watermark has not yet been
generated, this call simply modifies the values for these attributes. The Provider
remains armed for generation of these asynchronous events.

Regardless of whether an asynchronous event for the soft and hard high watermark
has been generated, this operation will set the generation of an asynchronous event
with the Consumer-provided high watermark values. If the new high watermark
values are below the current number of Receive DTOs at EP, an asynchronous event
will be generated immediately. Otherwise the old soft or hard (or both) high
watermark values are simply replaced with the new ones.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_ep_create(3DAT), dat_ep_recv_query(3DAT), dat_srq_create(3DAT),
dat_srq_free(3DAT), dat_srq_post_recv(3DAT), dat_srq_query(3DAT),
dat_srq_resize(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

dat_ep_set_watermark(3DAT)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 225

dat_evd_clear_unwaitable – transition the Event Dispatcher into a waitable state

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_clear_unwaitable(
IN DAT_EVD_HANDLE evd_handle
)

evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_clear_unwaitable() transitions the Event Dispatcher into a
waitable state. In this state, calls to dat_evd_wait(3DAT) are permitted on the EVD.
The actual state of the Event Dispatcher is accessible through dat_evd_query(3DAT)
and is DAT_EVD_WAITABLE after the return of this operation.

This call does not affect a CNO associated with this EVD at all. Events arriving on the
EVD after it is set waitable still trigger the CNO (if appropriate), and can be retrieved
with dat_evd_dequeue(3DAT).

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

dat_evd_dequeue(3DAT), dat_evd_query(3DAT),
dat_evd_set_unwaitable(3DAT), dat_evd_wait(3DAT), libdat(3LIB),
attributes(5)

dat_evd_clear_unwaitable(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

226 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_evd_dequeue – remove the first event from the Event Dispatcher event queue

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_dequeue(
IN DAT_EVD_HANDLE evd_handle,
OUT DAT_EVENT *event
)

evd_handle Handle for an instance of the Event Dispatcher.

event Pointer to the Consumer-allocated structure that Provider fills with
the event data.

The dat_evd_dequeue() function removes the first event from the Event Dispatcher
event queue and fills the Consumer allocated event structure with event data. The first
element in this structure provides the type of the event; the rest provides the
event-type-specific parameters. The Consumer should allocate an event structure big
enough to hold any event that the Event Dispatcher can deliver.

For all events the Provider fills the dat_event that the Consumer allocates. So for all
events, all fields of dat_event are OUT from the Consumer point of view. For
DAT_CONNECTION_REQUEST_EVENT, the Provider creates a Connection Request
whose cr_handle is returned to the Consumer in DAT_CR_ARRIVAL_EVENT_DATA.
That object is destroyed by the Provider as part of dat_cr_accept(3DAT),
dat_cr_reject(3DAT), or dat_cr_handoff(3DAT). The Consumer should not use
cr_handle or any of its parameters, including private_data, after one of these operations
destroys the Connection Request.

For DAT_CONNECTION_EVENT_ESTABLISHED for the Active side of connection
establishment, the Provider returns the pointer for private_data and the
private_data_size. For the Passive side, DAT_CONNECTION_EVENT_ESTABLISHED
event private_data is not defined and private_data_size returns zero. The Provider is
responsible for the memory allocation and deallocation for private_data. The
private_data is valid until the Active side Consumer destroys the connected Endpoint
(dat_ep_free(3DAT)), or transitions the Endpoint into Unconnected state so it is
ready for the next connection. So while the Endpoint is in Connected, Disconnect
Pending, or Disconnected state, the private_data of
DAT_CONNECTION_REQUEST_EVENT is still valid for Active side Consumers.

Provider must pass to the Consumer the entire Private Data that the remote Consumer
provided for dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT), and
dat_cr_accept(). If the Consumer provides more data than the Provider and
Transport can support (larger than IA Attribute of max_private_data_size),
DAT_INVALID_PARAMETER is returned for that operation.

dat_evd_dequeue(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 227

The returned event that was posted from an Event Stream guarantees Consumers that
all events that were posted from the same Event Stream prior to the returned event
were already returned to a Consumer directly through a dat_evd_dequeue() or
dat_evd_wait(3DAT) operation.

The ordering of events dequeued by overlapping calls to dat_evd_wait() or
dat_evd_dequeue() is not specified.

DAT_SUCCESS The operation was successful. An event was returned
to a Consumer.

DAT_INVALID_HANDLE Invalid DAT handle; evd_handle is invalid.

DAT_QUEUE_EMPTY There are no entries on the Event Dispatcher queue.

DAT_INVALID_STATE One of the parameters was invalid for this operation.
There is already a waiter on the EVD.

No matter how many contexts attempt to dequeue from an Event Dispatcher, each
event is delivered exactly once. However, which Consumer receives which event is not
defined. The Provider is not obligated to provide the first caller the first event unless it
is the only caller. The Provider is not obligated to ensure that the caller receiving the
first event executes earlier than contexts receiving later events.

Preservation of event ordering within an Event Stream is an important feature of the
DAT Event Model. Consumers are cautioned that overlapping or concurrent calls to
dat_evd_dequeue() from multiple contexts can undermine this ordering
information. After multiple contexts are involved, the Provider can only guarantee the
order that it delivers events into the EVD. The Provider cannot guarantee that they are
processed in the correct order.

Although calling dat_evd_dequeue() does not cause a context switch, the Provider
is under no obligation to prevent one. A context could successfully complete a
dequeue, and then reach the end of its timeslice, before returning control to the
Consumer code. Meanwhile, a context receiving a later event could be executing.

The Event ordering is preserved when dequeueing is serialized. Potential Consumer
serialization methods include, but are not limited to, performing all dequeueing from
a single context or protecting dequeueing by way of lock or semaphore.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

dat_cr_accept(3DAT), dat_cr_handoff(3DAT), dat_cr_reject(3DAT),
dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT), dat_ep_free(3DAT),
dat_evd_wait(3DAT)libdat(3LIB), attributes(5)

dat_evd_dequeue(3DAT)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

228 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_evd_disable – disable the Event Dispatcher

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_disable(
IN DAT_EVD_HANDLE evd_handle
)

evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_disable() function disables the Event Dispatcher so that the arrival
of an event does not affect the associated CNO.

If the Event Dispatcher is already disabled, this operation is no-op.

Events arriving on this EVD might cause waiters on the associated CNO to be
awakened after the return of this routine because an unblocking a CNO waiter is
already "in progress" at the time this routine is called or returned.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

dat_evd_enable(3DAT), libdat(3LIB), attributes(5)

dat_evd_disable(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 229

dat_evd_enable – enable the Event Dispatcher

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_enable(
IN DAT_EVD_HANDLE evd_handle
)

evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_enable() function enables the Event Dispatcher so that the arrival of
an event can trigger the associated CNO. The enabling and disabling EVD has no
effect on direct waiters on the EVD. However, direct waiters effectively take ownership
of the EVD, so that the specified CNO is not triggered even if is enabled.

If the Event Dispatcher is already enabled, this operation is no-op.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

dat_evd_disable(3DAT), libdat(3LIB), attributes(5)

dat_evd_enable(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

230 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_evd_free – destroy an instance of the Event Dispatcher

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_free (
IN DAT_EVD_HANDLE evd_handle
)

evd_handle Handle for an instance of the Event Dispatcher.

The dat_evd_free() function destroys a specified instance of the Event Dispatcher.

All events on the queue of the specified Event Dispatcher are lost. The destruction of
the Event Dispatcher instance does not have any effect on any DAT Objects that
originated an Event Stream that had fed events to the Event Dispatcher instance. There
should be no event streams feeding the Event Dispatcher and no threads blocked on
the Event Dispatcher when the EVD is being closed as at the time when it was created.

Use of the handle of the destroyed Event Dispatcher in any consequent operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid

DAT_INVALID_STATE Invalid parameter. There are Event Streams associated
with the Event Dispatcher feeding it.

Consumers are advised to destroy all Objects that originate Event Streams that feed an
instance of the Event Dispatcher before destroying it. An exception to this rule is Event
Dispatchers of an IA.

Freeing an IA automatically destroys all Objects associated with it directly and
indirectly, including Event Dispatchers.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_evd_free(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 231

dat_evd_modify_cno – change the associated CNO for the Event Dispatcher

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_modify_cno (
IN DAT_EVD_HANDLE evd_handle,
IN DAT_CNO_HANDLE cno_handle
)

evd_handle Handle for an instance of the Event Dispatcher.

cno_handle Handle for a CNO. The value of DAT_NULL_HANDLE specifies no
CNO.

The dat_evd_modify_cno() function changes the associated CNO for the Event
Dispatcher.

A Consumer can specify the value of DAT_HANDLE_NULL for cno_handle to associate
not CNO with the Event Dispatcher instance.

Upon completion of the dat_evd_modify_cno() operation, the passed IN new
CNO is used for notification. During the operation, an event arrival can be delivered
to the old or new CNO. If Notification is generated by EVD, it is delivered to the new
or old CNO.

If the EVD is enabled at the time dat_evd_modify_cno() is called, the Consumer
must be prepared to collect a notification event on the EVD’s old CNO as well as the
new one. Checking immediately prior to calling dat_evd_modify_cno() is not
adequate. A notification could have been generated after the prior check and before
the completion of the change.

The Consumer can avoid the risk of missed notifications either by temporarily
disabling the EVD, or by checking the prior CNO after invoking this operation. The
Consumer can disable EVD before a dat_evd_modify_cno() call and enable it
afterwards. This ensures that any notifications from the EVD are delivered to the new
CNO only.

If this function is used to disassociate a CNO from the EVD, events arriving on this
EVD might cause waiters on that CNO to awaken after returning from this routine
because of unblocking a CNO waiter already "in progress" at the time this routine is
called. If this is the case, the events causing that unblocking are present on the EVD
upon return from the dat_evd_modify_cno() call and can be dequeued at that
time

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE Invalid DAT handle.

dat_evd_modify_cno(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

232 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_evd_modify_cno(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 233

dat_evd_post_se – post Software event to the Event Dispatcher event queue

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_post_se(
IN DAT_EVD_HANDLE evd_handle,
IN const DAT_EVENT *event
)

evd_handle Handle for an instance of the Event Dispatcher

event A pointer to a Consumer created Software Event.

The dat_evd_post_se() function posts Software events to the Event Dispatcher
event queue. This is analogous to event arrival on the Event Dispatcher software
Event Stream. The event that the Consumer provides adheres to the event format as
defined in <dat.h>. The first element in the event provides the type of the event
(DAT_EVENT_TYPE_SOFTWARE); the rest provide the event-type-specific parameters.
These parameters are opaque to a Provider. Allocation and release of the memory
referenced by the event pointer in a software event are the Consumer’s responsibility.

There is no ordering between events from different Event Streams. All the
synchronization issues between multiple Consumer contexts trying to post events to
an Event Dispatcher instance simultaneously are left to a Consumer.

If the event queue is full, the operation is completed unsuccessfully and returns
DAT_QUEUE_FULL. The event is not queued. The queue overflow condition does takes
place and, therefore, the asynchronous Event Dispatcher is not effected.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

DAT_INVALID_PARAMETER The event parameter is invalid.

DAT_QUEUE_FULL The Event Dispatcher queue is full.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_evd_post_se(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

234 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_evd_query – provide parameters of the Event Dispatcher,

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_query (
IN DAT_EVD_HANDLE evd_handle,
IN DAT_EVD_PARAM_MASK evd_param_mask,
OUT DAT_EVD_PARAM *evd_param
)

evd_handle Handle for an instance of Event Dispatcher.

evd_param_mask Mask for EVD parameters

evd_param Pointer to a Consumer-allocated structure that the Provider fills for
Consumer-requested parameters.

The dat_evd_query() function provides to the Consumer parameters of the Event
Dispatcher, including the state of the EVD (enabled/disabled). The Consumer passes
in a pointer to the Consumer-allocated structures for EVD parameters that the
Provider fills.

The evd_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for evd_param_mask requested parameters. The
Provider can return values for any of the other parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

DAT_INVALID_PARAMETER The evd_param_mask parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_evd_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 235

dat_evd_resize – modify the size of the event queue of Event Dispatcher

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_resize(
IN DAT_EVD_HANDLE evd_handle,
IN DAT_COUNT evd_min_qlen
)

evd_handle Handle for an instance of Event Dispatcher.

evd_min_qlen New number of events the Event Dispatcher event queue must
hold.

The dat_evd_resize() function modifies the size of the event queue of Event
Dispatcher.

Resizing of Event Dispatcher event queue should not cause any incoming or current
events on the event queue to be lost. If the number of entries on the event queue is
larger then the requested evd_min_qlen, the operation can return
DAT_INVALID_STATE and not change an instance of Event Dispatcher

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

DAT_INVALID_PARAMETER The evd_min_qlen parameter is invalid

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations

DAT_INVALID_STATE Invalid parameter. The number of entries on
the event queue of the Event Dispatcher
exceeds the requested event queue length.

This operation is useful when the potential number of events that could be placed on
the event queue changes dynamically.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_evd_resize(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

236 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_evd_set_unwaitable – transition the Event Dispatcher into an unwaitable state

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_set_unwaitable(
IN DAT_EVD_HANDLE evd_handle
)

evd_handle Handle for an instance of Event Dispatcher.

The dat_evd_set_unwaitable() transitions the Event Dispatcher into an
unwaitable state. In this state, calls to dat_evd_wait(3DAT) return synchronously
with a DAT_INVALID_STATE error, and threads already blocked in
dat_evd_wait() are awakened and return with a DAT_INVALID_STATE error
without any further action by the Consumer. The actual state of the Event Dispatcher
is accessible through dat_evd_query(3DAT) and is DAT_EVD_UNWAITABLE after the
return of this operation.

This call does not affect a CNO associated with this EVD at all. Events arriving on the
EVD after it is set unwaitable still trigger the CNO (if appropriate), and can be
retrieved with dat_evd_dequeue(3DAT). Because events can arrive normally on the
EVD, the EVD might overflow; the Consumer is expected to protect against this
possibility.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

dat_evd_clear_unwaitable(3DAT), dat_evd_dequeue(3DAT),
dat_evd_query(3DAT), dat_evd_wait(3DAT), libdat(3LIB), attributes(5)

dat_evd_set_unwaitable(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 237

dat_evd_wait – remove first event from the Event Dispatcher event queue

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_evd_wait(
IN DAT_EVD_HANDLE evd_handle,
IN DAT_TIMEOUT timeout,
IN DAT_COUNT threshold,
OUT DAT_EVENT *event,
OUT DAT_COUNT *nmore
)

evd_handle Handle for an instance of the Event Dispatcher.

timeout The duration of time, in microseconds, that the Consumer is
willing to wait for the event.

threshold The number of events that should be on the EVD queue before the
operation should return with DAT_SUCCESS. The threshold must
be at least 1.

event Pointer to the Consumer-allocated structure that the Provider fills
with the event data.

nmore The snapshot of the queue size at the time of the operation return.

The dat_evd_wait() function removes the first event from the Event Dispatcher
event queue and fills the Consumer-allocated event structure with event data. The first
element in this structure provides the type of the event; the rest provides the event
type-specific parameters. The Consumer should allocate an event structure big enough
to hold any event that the Event Dispatcher can deliver.

For all events, the Provider fills the dat_event that the Consumer allocates. Therefore,
for all events, all fields of dat_event are OUT from the Consumer point of view. For
DAT_CONNECTION_REQUEST_EVENT, the Provider creates a Connection Request
whose cr_handle is returned to the Consumer in DAT_CR_ARRIVAL_EVENT_DATA.
That object is destroyed by the Provider as part of dat_cr_accept(3DAT),
dat_cr_reject(3DAT), or dat_cr_handoff(3DAT). The Consumer should not use
cr_handle or any of its parameters, including private_data, after one of these operations
destroys the Connection Request.

For DAT_CONNECTION_EVENT_ESTABLISHED for the Active side of connection
establishment, the Provider returns the pointer for private_data and the
private_data_size. For the Passive side, DAT_CONNECTION_EVENT_ESTABLISHED
event private_data is not defined and private_data_size returns zero. The Provider is
responsible for the memory allocation and deallocation for private_data. The
private_data is valid until the Active side Consumer destroys the connected Endpoint

dat_evd_wait(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

238 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

(dat_ep_free(3DAT)), or transitions the Endpoint into Unconnected state so it is
ready for the next connection. So, while the Endpoint is in Connected, Disconnect
Pending, or Disconnected state, the private_data of
DAT_CONNECTION_REQUEST_EVENT is still valid for Active side Consumers.

Provider must pass to the Consumer the entire Private Data that the remote Consumer
provided for dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT), and
dat_cr_accept(). If the Consumer provides more data than the Provider and
Transport can support (larger than IA Attribute of max_private_data_size),
DAT_INVALID_PARAMETER is returned for that operation.

A Consumer that blocks performing a dat_evd_wait() on an Event Dispatcher
effectively takes exclusive ownership of that Event Dispatcher. Any other dequeue
operation (dat_evd_wait() or dat_evd_dequeue(3DAT)) on the Event Dispatcher
is rejected with a DAT_INVALID_STATE error code.

The CNO associated with the evd_handle() is not triggered upon event arrival if
there is a Consumer blocked on dat_evd_wait() on this Event Dispatcher.

The timeout allows the Consumer to restrict the amount of time it is blocked waiting
for the event arrival. The value of DAT_TIMEOUT_INFINITE indicates that the
Consumer waits indefinitely for an event arrival. Consumers should use extreme
caution in using this value.

When timeout value is reached and the number of events on the EVD queue is below
the threshold value, the operation fails and returns DAT_TIMEOUT_EXPIRED. In this
case, no event is dequeued from the EVD and the return value for the event argument
is undefined. However, an nmore value is returned that specifies the snapshot of the
number of the events on the EVD queue that is returned.

The threshold allows the Consumer to wait for a requested number of event arrivals
prior to waking the Consumer. If the value of the threshold is larger than the Event
Dispatcher queue length, the operation fails with the return
DAT_INVALID_PARAMETER. If a non-positive value is specified for threshold, the
operation fails and returns DAT_INVALID_PARAMETER.

If EVD is used by an Endpoint for a DTO completion stream that is configured for a
Consumer-controlled event Notification (DAT_COMPLETION_UNSIGNALLED_FLAG or
DAT_COMPLETION_SOLICITED_WAIT_FLAG for Receive Completion Type for
Receives; DAT_COMPLETION_UNSIGNALLED_FLAG for Request Completion Type for
Send, RDMA Read, RDMA Write and RMR Bind), the threshold value must be 1. An
attempt to specify some other value for threshold for this case results in
DAT_INVALID_STATE.

dat_evd_wait(3DAT)

Extended Library Functions 239

The returned value of nmore indicates the number of events left on the Event
Dispatcher queue after the dat_evd_wait() returns. If the operation return value is
DAT_SUCCESS, the nmore value is at least the value of (threshold -1). Notice that nmore
is only a snapshot and the number of events can be changed by the time the
Consumer tries to dequeue events with dat_evd_wait() with timeout of zero or
with dat_evd_dequeue().

For returns other than DAT_SUCCESS, DAT_TIMEOUT_EXPIRED, and
DAT_INTERRUPTED_CALL, the returned value of nmore is undefined.

The returned event that was posted from an Event Stream guarantees Consumers that
all events that were posted from the same Event Stream prior to the returned event
were already returned to a Consumer directly through a dat_evd_dequeue() or
dat_evd_wait() operation.

If the return value is neither DAT_SUCCESS nor DAT_TIMEOUT_EXPIRED, then
returned values of nmore and event are undefined. If the return value is
DAT_TIMEOUT_EXPIRED, then the return value of event is undefined, but the return
value of nmore is defined. If the return value is DAT_SUCCESS, then the return values
of nmore and event are defined.

If this function is called on an EVD in an unwaitable state, or if
dat_evd_set_unwaitable(3DAT) is called on an EVD on which a thread is blocked
in this function, the function returns with DAT_INVALID_STATE.

The ordering of events dequeued by overlapping calls to dat_evd_wait() or
dat_evd_dequeue() is not specified.

DAT_SUCCESS The operation was successful. An event was returned
to a Consumer.

DAT_INVALID_HANDLE The evd_handle parameter is invalid.

DAT_INVALID_PARAMETER The timeout or threshold parameter is invalid. For
example, threshold is larger than the EVD’s
evd_min_qlen.

DAT_ABORT The operation was aborted because IA was closed or
EVD was destroyed

DAT_INVALID_STATE One of the parameters was invalid for this operation.
There is already a waiter on the EVD, or the EVD is in
an unwaitable state.

DAT_TIMEOUT_EXPIRED The operation timed out.

DAT_INTERRUPTED_CALL The operation was interrupted by a signal.

Consumers should be cautioned against using threshold combined with infinite
timeout.

dat_evd_wait(3DAT)

RETURN VALUES

USAGE

240 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

Consumers should not mix different models for control of unblocking a waiter. If the
Consumer uses Notification Suppression or Solicited Wait to control the Notification
events for unblocking a waiter, the threshold must be set to 1. If the Consumer uses
threshold to control when a waiter is unblocked,
DAT_COMPLETION_UNSIGNALLED_FLAG locally and
DAT_COMPLETION_SOLICITED_WAIT remotely shall not be used. By default, all
completions are Notification events.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

dat_cr_accept(3DAT), dat_cr_handoff(3DAT), dat_cr_reject(3DAT),
dat_ep_connect(3DAT), dat_ep_dup_connect(3DAT),dat_ep_free(3DAT),
dat_evd_dequeue(3DAT), dat_evd_set_unwaitable(3DAT), libdat(3LIB),
attributes(5)

dat_evd_wait(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 241

dat_get_consumer_context – get Consumer context

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_get_consumer_context (
IN DAT_HANDLE dat_handle,
OUT DAT_CONTEXT *context
)

dat_handle Handle for a DAT Object associated with context.

context Pointer to Consumer-allocated storage where the current value of
the dat_handle context will be stored.

The dat_get_consumer_context() function gets the Consumer context from the
specified dat_handle. The dat_handle can be one of the following handle types:
DAT_IA_HANDLE, DAT_EP_HANDLE, DAT_EVD_HANDLE, DAT_CR_HANDLE,
DAT_RSP_HANDLE, DAT_PSP_HANDLE, DAT_PZ_HANDLE, DAT_LMR_HANDLE,
DAT_RMR_HANDLE, or DAT_CNO_HANDLE.

DAT_SUCCESS The operation was successful. The Consumer context
was successfully retrieved from the specified handle.

DAT_INVALID_HANDLE The dat_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

dat_set_consumer_context(3DAT), libdat(3LIB), attributes(5)

dat_get_consumer_context(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

242 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_get_handle_type – get handle type

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_get_handle_typet (
IN DAT_HANDLE dat_handle,
OUT DAT_HANDLE_TYPE *handle_type
)

dat_handle Handle for a DAT Object.

handle_type Type of the handle of dat_handle.

The dat_get_handle_type() function allows the Consumer to discover the type of
a DAT Object using its handle.

The dat_handle can be one of the following handle types: DAT_IA_HANDLE,
DAT_EP_HANDLE, DAT_EVD_HANDLE, DAT_CR_HANDLE, DAT_RSP_HANDLE,
DAT_PSP_HANDLE, DAT_PZ_HANDLE, DAT_LMR_HANDLE, or DAT_RMR_HANDLE.

The handle_type is one of the following handle types: DAT_HANDLE_TYPE_IA,
DAT_HANDLE_TYPE_EP, DAT_HANDLE_TYPE_EVD, DAT_HANDLE_TYPE_CR,
DAT_HANDLE_TYPE_PSP, DAT_HANDLE_TYPE_RSP, DAT_HANDLE_TYPE_PZ,
DAT_HANDLE_TYPE_LMR, DAT_HANDLE_TYPE_RMR, or DAT_HANDLE_TYPE_CNO.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The dat_handle parameter is invalid.

Consumers can use this operation to determine the type of Object being returned. This
is needed for calling an appropriate query or any other operation on the Object
handle.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_get_handle_type(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 243

dat_ia_close – close an IA

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ia_close (
IN DAT_IA_HANDLE ia_handle,
IN DAT_CLOSE_FLAGS ia_flags
)

ia_handle Handle for an instance of a DAT IA.

ia_flags Flags for IA closure. Flag definitions are:

DAT_CLOSE_ABRUPT_FLAG
Abrupt close. Abrupt cascading close of IA including all
Consumer created DAT objects.

DAT_CLOSE_GRACEFUL_FLAG
Graceful close. Closure is successful only if all DAT objects
created by the Consumer have been freed before the graceful
closure call.

Default value of DAT_CLOSE_DEFAULT =
DAT_CLOSE_ABRUPT_FLAG represents abrupt closure of IA.

The dat_ia_close() function closes an IA (destroys an instance of the Interface
Adapter).

The ia_flags specify whether the Consumer wants abrupt or graceful close.

The abrupt close does a phased, cascading destroy. All DAT Objects associated with an
IA instance are destroyed. These include all the connection oriented Objects: public
and reserved Service Points; Endpoints, Connection Requests, LMRs (including
lmr_contexts), RMRs (including rmr_contexts), Event Dispatchers, CNOs, and
Protection Zones. All the waiters on all CNOs, including the OS Wait Proxy Agents,
are unblocked with the DAT_HANDLE_NULL handle returns for an unblocking EVD.
All direct waiters on all EVDs are also unblocked and return with DAT_ABORT.

The graceful close does a destroy only if the Consumer has done a cleanup of all DAT
objects created by the Consumer with the exception of the asynchronous EVD.
Otherwise, the operation does not destroy the IA instance and returns the
DAT_INVALID_STATE.

If async EVD was created as part of the of dat_ia_open(3DAT), dat_ia_close()
must destroy it. If async_evd_handle was passed in by the Consumer at
dat_ia_open(), this handle is not destroyed. This is applicable to both abrupt and
graceful ia_flags values.

Because the Consumer did not create async EVD explicitly, the Consumer does not
need to destroy it for graceful close to succeed.

DAT_SUCCESS The operation was successful.

dat_ia_close(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

244 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations. This is a catastrophic error.

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle is invalid.

DAT_INVALID_PARAMETER Invalid parameter; ia_flags is invalid.

DAT_INVALID_STATE Parameter in an invalid state. IA instance
has Consumer-created objects associated
with it.

The dat_ia_close() function is the root cleanup method for the Provider, and,
thus, all Objects.

Consumers are advised to explicitly destroy all Objects they created prior to closing
the IA instance, but can use this function to clean up everything associated with an
open instance of IA. This allows the Consumer to clean up in case of errors.

Note that an abrupt close implies destruction of EVDs and CNOs. Just as with explicit
destruction of an EVD or CNO, the Consumer should take care to avoid a race
condition where a Consumer ends up attempting to wait on an EVD or CNO that has
just been deleted.

The techniques described in dat_cno_free(3DAT) and dat_evd_free (3DAT) can
be used for these purposes.

If the Consumer desires to shut down the IA as quickly as possible, the Consumer can
call dat_ia_close(abrupt) without unblocking CNO and EVD waiters in an orderly
fashion. There is a slight chance that an invalidated DAT handle will cause a memory
fault for a waiter. But this might be an acceptable behavior, especially if the Consumer
is shutting down the process.

No provision is made for blocking on event completion or pulling events from queues.

This is the general cleanup and last resort method for Consumer recovery. An
implementation must provide for successful completion under all conditions, avoiding
hidden resource leakage (dangling memory, zombie processes, and so on) eventually
leading to a reboot of the operating system.

The dat_ia_close() function deletes all Objects that were created using the IA
handle.

The dat_ia_close() function can decrement a reference count for the Provider
Library that is incremented by dat_ia_open() to ensure that the Provider Library
cannot be removed when it is in use by a DAT Consumer.

See attributes(5) for descriptions of the following attributes:

dat_ia_close(3DAT)

USAGE

ATTRIBUTES

Extended Library Functions 245

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

dat_cno_free(3DAT), dat_evd_free (3DAT), dat_ia_open(3DAT),
libdat(3LIB), attributes(5)

dat_ia_close(3DAT)

SEE ALSO

246 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ia_open – open an Interface Adapter (IA)

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ia_open (
IN const DAT_NAME_PTR ia_name_ptr,
IN DAT_COUNT async_evd_min_qlen,
INOUT DAT_EVD_HANDLE *async_evd_handle,
OUT DAT_IA_HANDLE *ia_handle
)

ia_name_ptr Symbolic name for the IA to be opened. The name
should be defined by the Provider registration.

async_evd_min_qlen Minimum length of the Asynchronous Event
Dispatcher queue.

async_evd_handle Pointer to a handle for an Event Dispatcher for
asynchronous events generated by the IA. This
parameter can be DAT_EVD_ASYNC_EXISTS to
indicate that there is already EVD for asynchronous
events for this Interface Adapter or
DAT_HANDLE_NULL for a Provider to generate EVD for
it.

ia_handle Handle for an open instance of a DAT IA. This handle
is used with other functions to specify a particular
instance of the IA.

The dat_ia_open() function opens an IA by creating an IA instance. Multiple
instances (opens) of an IA can exist.

The value of DAT_HANDLE_NULL for async_evd_handle (*async_evd_handle ==
DAT_HANDLE_NULL) indicates that the default Event Dispatcher is created with the
requested async_evd_min_qlen. The async_evd_handle returns the handle of the created
Asynchronous Event Dispatcher. The first Consumer that opens an IA must use
DAT_HANDLE_NULL because no EVD can yet exist for the requested ia_name_ptr.

The Asynchronous Event Dispatcher (async_evd_handle) is created with no CNO
(DAT_HANDLE_NULL). Consumers can change these values using
dat_evd_modify_cno(3DAT). The Consumer can modify parameters of the Event
Dispatcher using dat_evd_resize(3DAT) and dat_evd_modify_cno().

The Provider is required to provide a queue size at least equal to async_evd_min_qlen,
but is free to provide a larger queue size or dynamically enlarge the queue when
needed. The Consumer can determine the actual queue size by querying the created
Event Dispatcher instance.

dat_ia_open(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 247

If async_evd_handle is not DAT_HANDLE_NULL, the Provider does not create an Event
Dispatcher for an asynchronous event and the Provider ignores the async_evd_min_qlen
value. The async_evd_handle value passed in by the Consumer must be an
asynchronous Event Dispatcher created for the same Provider (ia_name_ptr). The
Provider does not have to check for the validity of the Consumer passed in
async_evd_handle. It is the Consumer responsibility to guarantee that async_evd_handle
is valid and for this Provider. How the async_evd_handle is passed between DAT
Consumers is out of scope of the DAT specification. If the Provider determines that the
Consumer-provided async_evd_handle is invalid, the operation fails and returns
DAT_INVALID_HANDLE. The async_evd_handle remains unchanged, so the returned
async_evd_handle is the same the Consumer passed in. All asynchronous notifications
for the open instance of the IA are directed by the Provider to the Consumer passed in
Asynchronous Event Dispatcher specified by async_evd_handle.

Consumer can specify the value of DAT_EVD_ASYNC_EXISTS to indicate that there
exists an event dispatcher somewhere else on the host, in user or kernel space, for
asynchronous event notifications. It is up to the Consumer to ensure that this event
dispatcher is unique and unambiguous. A special handle may be returned for the
Asynchronous Event Dispatcher for this scenario, DAT_EVD_OUT_OF_SCOPE, to
indicate that there is a default Event Dispatcher assigned for this Interface Adapter,
but that it is not in a scope where this Consumer may directly invoke it.

The Asynchronous Event Dispatcher is an Object of both the Provider and IA. Each
Asynchronous Event Dispatcher bound to an IA instance is notified of all
asynchronous events, such that binding multiple Asynchronous Event Dispatchers
degrades performance by duplicating asynchronous event notifications for all
Asynchronous Event Dispatchers. Also, transport and memory resources can be
consumed per Event Dispatcher bound to an IA

As with all Event Dispatchers, the Consumer is responsible for synchronizing access to
the event queue.

Valid IA names are obtained from dat_registry_list_providers(3DAT).

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_PROVIDER_NOT_FOUND The specified provider was not registered in
the registry.

DAT_INVALID_HANDLE Invalid DAT handle; async_evd_handle is
invalid.

The dat_ia_open() function is the root method for the Provider, and, thus, all
Objects. It is the root handle through which the Consumer obtains all other DAT
handles. When the Consumer closes its handle, all its DAT Objects are released.

dat_ia_open(3DAT)

RETURN VALUES

USAGE

248 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

The dat_ia_open() function is the workhorse method that provides an IA instance.
It can also initialize the Provider library or do any other registry-specific functions.

The dat_ia_open() function creates a unique handle for the IA to the Consumer. All
further DAT Objects created for this Consumer reference this handle as their owner.

The dat_ia_open() function can use a reference count for the Provider Library to
ensure that the Provider Library cannot be removed when it is in use by a DAT
Consumer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

dat_evd_modify_cno(3DAT), dat_evd_resize(3DAT), dat_ia_close(3DAT),
dat_registry_list_providers(3DAT), libdat(3LIB), attributes(5)

dat_ia_open(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 249

dat_ia_query – query an IA

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_ia_query (
IN DAT_IA_HANDLE ia_handle,
OUT DAT_EVD_HANDLE *async_evd_handle,
IN DAT_IA_ATTR_MASK ia_attr_mask,
OUT DAT_IA_ATTR *ia_attributes,
IN DAT_PROVIDER_ATTR_MASK provider_attr_mask,
OUT DAT_PROVIDER_ATTR *provider_attributes
)

ia_handle Handle for an open instance of an IA.

async_evd_handle Handle for an Event Dispatcher for asynchronous
events generated by the IA.

ia_attr_mask Mask for the ia_attributes.

ia_attributes Pointer to a Consumer-allocated structure that the
Provider fills with IA attributes.

provider_attr_mask Mask for the provider_attributes.

provider_attributes Pointer to a Consumer-allocated structure that the
Provider fills with Provider attributes.

The dat_ia_query() functions provides the Consumer with the IA parameters, as
well as the IA and Provider attributes. Consumers pass in pointers to
Consumer-allocated structures for the IA and Provider attributes that the Provider
fills.

The ia_attr_mask and provider_attr_mask parameters allow the Consumer to specify
which attributes to query. The Provider returns values for requested attributes. The
Provider can also return values for any of the other attributes.

The IA attributes are common to all open instances of the IA. DAT defines a method to
query the IA attributes but does not define a method to modify them.

If IA is multiported, each port is presented to a Consumer as a separate IA.

Adapter name:
The name of the IA controlled by the Provider. The same as ia_name_ptr.

Vendor name:
Vendor if IA hardware.

HW version major:
Major version of IA hardware.

HW version minor:
Minor version of IA hardware.

dat_ia_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Interface Adapter
Attributes

250 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

Firmware version major:
Major version of IA firmware.

Firmware version minor:
Minor version of IA firmware.

IA_address_ptr:
An address of the interface Adapter.

Max EPs:
Maximum number of Endpoints that the IA can support. This covers all Endpoints
in all states, including the ones used by the Providers, zero or more applications,
and management.

Max DTOs per EP:
Maximum number of DTOs and RMR_binds that any Endpoint can support for a
single direction. This means the maximum number of outstanding and in-progress
Send, RDMA Read, RDMA Write DTOs, and RMR Binds at any one time for any
Endpoint; and maximum number of outstanding and in-progress Receive DTOs at
any one time for any Endpoint.

Max incoming RDMA Reads per EP:
Maximum number of RDMA Reads that can be outstanding per (connected)
Endpoint with the IA as the target.

Max outgoing RDMA Reads per EP:
Maximum number of RDMA Reads that can be outstanding per (connected)
Endpoint with the IA as the originator.

Max EVDs:
Maximum number of Event Dispatchers that an IA can support. An IA cannot
support an Event Dispatcher directly, but indirectly by Transport-specific Objects,
for example, Completion Queues for Infiniband™ and VI. The Event Dispatcher
Objects can be shared among multiple Providers and similar Objects from other
APIs, for example, Event Queues for uDAPL.

Max EVD queue size:
Maximum size of the EVD queue supported by an IA.

Max IOV segments per DTO:
Maximum entries in an IOV list that an IA supports. Notice that this number cannot
be explicit but must be implicit to transport-specific Object entries. For example, for
IB, it is the maximum number of scatter/gather entries per Work Request, and for
VI it is the maximum number of data segments per VI Descriptor.

Max LMRs:
Maximum number of Local Memory Regions IA supports among all Providers and
applications of this IA.

Max LMR block size:
Maximum contiguous block that can be registered by the IA.

Mac LMR VA:
Highest valid virtual address within the context of an LMR. Frequently, IAs on
32–bit architectures support only 32–bit local virtual addresses.

dat_ia_query(3DAT)

Extended Library Functions 251

Max PZs:
Maximum number of Protection Zones that the IA supports.

Max MTU size:
Maximum message size supported by the IA

Max RDMA size:
Maximum RDMA size supported by the IA

Max RMRs:
Maximum number of RMRs an IA supports among all Providers and applications
of this IA.

Max RMR target address:
Highest valid target address with the context of a local RMR. Frequently, IAs on
32–bit architectures support only 32–bit local virtual addresses.

Num transport attributes:
Number of transport-specific attributes.

Transport-specific attributes:
Array of transport-specific attributes. Each entry has the format of
DAT_NAMED_ATTR, which is a structure with two elements. The first element is the
name of the attribute. The second element is the value of the attribute as a string.

Num vendor attributes:
Number of vendor-specific attributes.

Vendor-specific attributes:
Array of vendor-specific attributes. Each entry has the format of
DAT_NAMED_ATTR, which is a structure with two elements. The first element is the
name of the attribute. The second element is the value of the attribute as a string.

The provider attributes are specific to the open instance of the IA. DAT defines a
method to query Provider attributes but does not define a method to modify them.

Provider name:
Name of the Provider vendor.

Provider version major:
Major Version of uDAPL Provider.

Provider version minor:
Minor Version of uDAPL Provider.

DAPL API version major:
Major Version of uDAPL API supported.

DAPL API version minor:
Minor Version of uDAPL API supported.

LMR memory types supported:
Memory types that LMR Create supports for memory registration. This value is a
union of LMR Memory Types DAT_MEM_TYPE_VIRTUAL, DAT_MEM_TYPE_LMR,
and DAT_MEM_TYPE_SHARED_VIRTUAL that the Provider supports. All Providers

dat_ia_query(3DAT)

DAPL Provider
Attributes

252 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

must support the following Memory Types: DAT_MEM_TYPE_VIRTUAL,
DAT_MEM_TYPE_LMR, and DAT_MEM_TYPE_SHARED_VIRTUAL.

IOV ownership:
An enumeration flag that specifies the ownership of the local buffer description
(IOV list) after post DTO returns. The three values are as follows:

� DAT_IOV_CONSUMER indicates that the Consumer has the ownership of the
local buffer description after a post returns.

� DAT_IOV_PROVIDER_NOMOD indicates that the Provider still has ownership of
the local buffer description of the DTO when the post DTO returns, but the
Provider does not modify the buffer description.

� DAT_IOV_PROVIDER_MOD indicates that the Provider still has ownership of the
local buffer description of the DTO when the post DTO returns and can modify
the buffer description.

In any case, the Consumer obtains ownership of the local buffer description after
the DTO transfer is completed and the Consumer is notified through a DTO
completion event.

QOS supported:
The union of the connection QOS supported by the Provider.

Completion flags supported:
The following values for the completion flag DAT_COMPLETION_FLAGS are
supported by the Provider: DAT_COMPLETION_SUPPRESS_FLAG,
DAT_COMPLETION_UNSIGNALLED_FLAG,
DAT_COMPLETION_SOLICITED_WAIT_FLAG, and
DAT_COMPLETION_BARRIER_FENCE_FLAG.

Thread safety:
Provider Library thread safe or not. The Provider Library is not required to be
thread safe.

Max private data size:
Maximum size of private data the Provider supports. This value is at least 64 bytes.

Multipathing support:
Capability of the Provider to support Multipathing for connection establishment.

EP creator for PSP:
Indicator for who can create an Endpoint for a Connection Request. For the
Consumer it is DAT_PSP_CREATES_EP_NEVER. For the Provider it is
DAT_PSP_CREATES_EP_ALWAYS. For both it is DAT_PSP_CREATES_EP_IFASKED.
This attribute is used for Public Service Point creation.

PZ support:
Indicator of what kind of protection the Provider’s PZ provides.

Optimal Buffer Alignment:
Local and remote DTO buffer alignment for optimal performance on the Platform.
The DAT_OPTIMAL_ALIGMNEMT must be divisible by this attribute value. The
maximum allowed value is DAT_OPTIMAL_ALIGMNEMT, or 256.

dat_ia_query(3DAT)

Extended Library Functions 253

EVD stream merging support:
A 2D binary matrix where each row and column represent an event stream type.
Each binary entry is 1 if the event streams of its row and column can be fed to the
same EVD, and 0 otherwise.

More than two different event stream types can feed the same EVD if for each pair
of the event stream types the entry is 1.

The Provider should support merging of all event stream types.

The Consumer should check this attribute before requesting an EVD that merges
multiple event stream types.

Num provider attributes:
Number of Provider-specific attributes.

Provider-specific attributes:
Array of Provider-specific attributes. Each entry has the format of
DAT_NAMED_ATTR, which is a structure with two elements. The first element is the
name of the attribute. The second element is the value of the attribute as a string.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter;

DAT_INVALID_HANDLE Invalid DAT handle; ia_handle is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_ia_query(3DAT)

RETURN VALUES

ATTRIBUTES

SEE ALSO

254 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_lmr_create – register a memory region with an IA

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_lmr_create (
IN DAT_IA_HANDLE ia_handle,
IN DAT_MEM_TYPE mem_type,
IN DAT_REGION_DESCRIPTION region_description,
IN DAT_VLEN length,
IN DAT_PZ_HANDLE pz_handle,
IN DAT_MEM_PRIV_FLAGS mem_privileges,
OUT DAT_LMR_HANDLE *lmr_handle,
OUT DAT_LMR_CONTEXT *lmr_context,
OUT DAT_RMR_CONTEXT *rmr_context,
OUT DAT_VLEN *registered_size,
OUT DAT_VADDR *registered_address

)

ia_handle Handle for an open instance of the IA.

mem_type Type of memory to be registered. The following list outlines the
memory type specifications.

DAT_MEM_TYPE_VIRTUAL
Consumer virtual memory.

Region description: A pointer to a contiguous user virtual
range.

Length: Length of the Memory Region.

DAT_MEM_TYPE_LMR
LMR.

Region description: An LMR_handle.

Length: Length parameter is ignored.

DAT_MEM_TYPE_SHARED_VIRTUAL
Shared memory region. All DAT Consumers of the same
uDAPL Provider specify the same Consumer cookie to indicate
who is sharing the shared memory region. This supports a
peer-to-peer model of shared memory. All DAT Consumers of
the shared memory must allocate the memory region as shared
memory using Platform-specific primitives.

Region description: A structure with 2 elements, where the first
one is of type DAT_LMR_COOKIE and is a unique identifier of
the shared memory region, and the second one is a pointer to a
contiguous user virtual range.

Length: Length of the Memory Region

dat_lmr_create(3DAT)

NAME

SYNOPSIS

PARAMETERS

Extended Library Functions 255

region_description Pointer to type-specific data describing the memory in the region
to be registered. The type is derived from the mem_type parameter.

length Length parameter accompanying the region_description.

pz_handle Handle for an instance of the Protection Zone.

mem_privileges: Consumer-requested memory access privileges for the registered
local memory region. The Default value is
DAT_MEM_PRIV_NONE_FLAG. The constant value
DAT_MEM_PRIV_ALL_FLAG = 0x33, which specifies both Read and
Write privileges, is also defined. Memory privilege definitions are
as follows:

Local Read
DAT_MEM_PRIV_LOCAL_READ_FLAG

0x01 Local read access requested.

Local Write
DAT_MEM_PRIV_LOCAL_WRITE_FLAG

0x10 Local write access requested.

Remote Read
DAT_MEM_PRIV_REMOTE_READ_FLAG

0x02 Remote read access requested.

Remote Write
DAT_MEM_PRIV_REMOTE_WRITE_FLAG

0x20 Remote write access requested.

lmr_handle Handle for the created instance of the LMR.

lmr_context Context for the created instance of the LMR to use for DTO local
buffers.

registered_size Actual memory size registered by the Provider.

registered_address Actual base address of the memory registered by the Provider.

The dat_lmr_create() function registers a memory region with an IA. The
specified buffer must have been previously allocated and pinned by the uDAPL
Consumer on the platform. The Provider must do memory pinning if needed, which
includes whatever OS-dependent steps are required to ensure that the memory is
available on demand for the Interface Adapter. uDAPL does not require that the
memory never be swapped out; just that neither the hardware nor the Consumer ever
has to deal with it not being there. The created lmr_context can be used for local buffers
of DTOs and for binding RMRs, and lmr_handle can be used for creating other LMRs.
For uDAPL the scope of the lmr_context is the address space of the DAT Consumer.

dat_lmr_create(3DAT)

DESCRIPTION

256 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

The return values of registered_size and registered_address indicate to the Consumer how
much the contiguous region of Consumer virtual memory was registered by the
Provider and where the region starts in the Consumer virtual address.

The mem_type parameter indicates to the Provider the kind of memory to be registered,
and can take on any of the values defined in the table in the PARAMETERS section.

The pz_handle parameter allows Consumers to restrict local accesses to the registered
LMR by DTOs.

DAT_LMR_COOKIE is a pointer to a unique identifier of the shared memory region of
the DAT_MEM_TYPE_SHARED_VIRTUAL DAT memory type. The identifier is an array
of 40 bytes allocated by the Consumer. The Provider must check the entire 40 bytes
and shall not interpret it as a null-terminated string.

The return value of rmr_context can be transferred by the local Consumer to a
Consumer on a remote host to be used for an RDMA DTO.

If mem_privileges does not specify remote Read and Write privileges, rmr_context is not
generated and NULL is returned. No remote privileges are given for Memory Region
unless explicitly asked for by the Consumer.

DAT_SUCCESS The operation was successful.

DAT_UNSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_STATE Parameter in an invalid state. For example,
shared virtual buffer was not created shared
by the platform.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by
the Provider. For example, requested
Memory Type was not supported by the
Provider.

Consumers can create an LMR over the existing LMR memory with different
Protection Zones and privileges using previously created IA translation table entries.

The Consumer should use rmr_context with caution. Once advertised to a remote peer,
the rmr_context of the LMR cannot be invalidated. The only way to invalidate it is to
destroy the LMR with dat_lmr_free(3DAT).

See attributes(5) for descriptions of the following attributes:

dat_lmr_create(3DAT)

RETURN VALUES

USAGE

ATTRIBUTES

Extended Library Functions 257

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

dat_lmr_free(3DAT), libdat(3LIB), attributes(5)

dat_lmr_create(3DAT)

SEE ALSO

258 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_lmr_free – destroy an instance of the LMR

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_lmr_free (
IN DAT_LMR_HANDLE lmr_handle

)

lmr_handle: Handle for an instance of LMR to be destroyed.

The dat_lmr_free() function destroys an instance of the LMR. The LMR cannot be
destroyed if it is in use by an RMR. The operation does not deallocate the memory
region or unpin memory on a host.

Use of the handle of the destroyed LMR in any subsequent operation except for
dat_lmr_free() fails. Any DTO operation that uses the destroyed LMR after the
dat_lmr_free() is completed shall fail and report a protection violation. The use of
rmr_context of the destroyed LMR by a remote peer for an RDMA DTO results in an
error and broken connection on which it was used. Any remote RDMA operation that
uses the destroyed LMR rmr_context, whose Transport-specific request arrived to the
local host after the dat_lmr_free() has completed, fails and reports a protection
violation. Remote RDMA operation that uses the destroyed LMR rmr_context, whose
Transport-specific request arrived to the local host prior to the dat_lmr_free()
returns, might or might not complete successfully. If it fails,
DAT_DTO_ERR_REMOTE_ACCESS is reported in DAT_DTO_COMPLETION_STATUS for
the remote RDMA DTO and the connection is broken.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The lmr_handle parameter is invalid.

DAT_INVALID_STATE Parameter in an invalid state; LMR is in use by an RMR
instance.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_lmr_free(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 259

dat_lmr_query – provide LMR parameters

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_lmr_query (
IN DAT_LMR_HANDLE lmr_handle,
IN DAT_LMR_PARAM_MASK lmr_param_mask,
OUT DAT_LMR_PARAM *lmr_param

)

lmr_handle Handle for an instance of the LMR.

lmr_param_mask Mask for LMR parameters.

lmr_param Pointer to a Consumer-allocated structure that the Provider fills
with LMR parameters.

The dat_lmr_query() function provides the Consumer LMR parameters. The
Consumer passes in a pointer to the Consumer-allocated structures for LMR
parameters that the Provider fills.

The lmr_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for lmr_param_mask requested parameters. The
Provider can return values for any other parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The lmr_param_mask function is invalid.

DAT_INVALID_HANDLE The lmr_handle function is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_lmr_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

260 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_lmr_sync_rdma_read – synchronize local memory with RDMA read on
non-coherent memory

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_lmr_sync_rdma_read (
IN DAT_IA_HANDLE ia_handle,
IN const DAT_LMR_TRIPLET *local_segments,
IN DAT_VLEN num_segments

)

ia_handle A handle for an open instance of the IA.

local_segments An array of buffer segments.

num_segments The number of segments in the local_segments argument.

The dat_lmr_sync_rdma_read() function makes memory changes visible to an
incoming RDMA Read operation. This operation guarantees consistency by locally
flushing the non-coherent cache prior to it being retrieved by remote peer RDMA read
operations.

The dat_lmr_sync_rdma_read() function is needed if and only if the Provider
attribute specifies that this operation is needed prior to an incoming RDMA Read
operation. The Consumer must call dat_lmr_sync_rdma_read() after modifying
data in a memory range in this region that will be the target of an incoming RDMA
Read operation. The dat_lmr_sync_rdma_read() function must be called after the
Consumer has modified the memory range but before the RDMA Read operation
begins. The memory range that will be accessed by the RDMA read operation must be
supplied by the caller in the local_segments array. After this call returns, the RDMA
Read operation can safely see the modified contents of the memory range. It is
permissible to batch synchronizations for multiple RDMA Read operations in a single
call by passing a local_segments array that includes all modified memory ranges. The
local_segments entries need not contain the same LMR and need not be in the same
Protection Zone.

If the Provider attribute specifying that this operation is required attempts to read
from a memory range that is not properly synchronized using
dat_lmr_sync_rdma_read(), the returned contents are undefined.

DAT_SUCCESS
The operation was successful.

DAT_INVALID_HANDLE
The DAT handle is invalid.

DAT_INVALID_PARAMETER
One of the parameters is invalid. For example, the address range for a local
segment fell outside the boundaries of the corresponding Local Memory Region or
the LMR handle was invalid.

dat_lmr_sync_rdma_read(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

Extended Library Functions 261

Determining when an RDMA Read will start and what memory range it will read is
the Consumer’s responsibility. One possibility is to have the Consumer that is
modifying memory call dat_lmr_sync_rdma_read() and then post a Send DTO
message that identifies the range in the body of the Send. The Consumer wanting to
perform the RDMA Read can receive this message and know when it is safe to initiate
the RDMA Read operation.

This call ensures that the Provider receives a coherent view of the buffer contents upon
a subsequent remote RDMA Read operation. After the call completes, the Consumer
can be assured that all platform-specific buffer and cache updates have been
performed, and that the LMR range has consistency with the Provider hardware. Any
subsequent write by the Consumer can void this consistency. The Provider is not
required to detect such access.

The action performed on the cache before the RDMA Read depends on the cache type:

� I/O noncoherent cache will be invalidated.
� CPU noncoherent cache will be flushed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_lmr_sync_rdma_write(3DAT), libdat(3LIB), attributes(5)

dat_lmr_sync_rdma_read(3DAT)

USAGE

ATTRIBUTES

SEE ALSO

262 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_lmr_sync_rdma_write – synchronize local memory with RDMA write on
non-coherent memory

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_lmr_sync_rdma_write (
IN DAT_IA_HANDLE ia_handle,
IN const DAT_LMR_TRIPLET *local_segments,
IN DAT_VLEN num_segments

)

ia_handle A handle for an open instance of the IA.

local_segments An array of buffer segments.

num_segments The number of segments in the local_segments argument.

The dat_lmr_sync_rdma_write() function makes effects of an incoming RDMA
Write operation visible to the Consumer. This operation guarantees consistency by
locally invalidating the non-coherent cache whose buffer has been populated by
remote peer RDMA write operations.

The dat_lmr_sync_rdma_write() function is needed if and only if the Provider
attribute specifies that this operation is needed after an incoming RDMA Write
operation. The Consumer must call dat_lmr_sync_rdma_write() before reading
data from a memory range in this region that was the target of an incoming RDMA
Write operation. The dat_lmr_sync_rdma_write() function must be called after
the RDMA Write operation completes, and the memory range that was modified by
the RDMA Write must be supplied by the caller in the local_ segments array. After this
call returns, the Consumer may safely see the modified contents of the memory range.
It is permissible to batch synchronizations of multiple RDMA Write operations in a
single call by passing a local_segments array that includes all modified memory ranges.
The local_segments entries need not contain the same LMR and need not be in the same
Protection Zone.

The Consumer must also use dat_lmr_sync_rdma_write() when performing
local writes to a memory range that was or will be the target of incoming RDMA
writes. After performing the local write, the Consumer must call
dat_lmr_sync_rdma_write() before the RDMA Write is initiated. Conversely,
after an RDMA Write completes, the Consumer must call
dat_lmr_sync_rdma_write() before performing a local write to the same range.

If the Provider attribute specifies that this operation is needed and the Consumer
attempts to read from a memory range in an LMR without properly synchronizing
using dat_lmr_sync_rdma_write(), the returned contents are undefined. If the
Consumer attempts to write to a memory range without properly synchronizing, the
contents of the memory range become undefined.

DAT_SUCCESS
The operation was successful.

dat_lmr_sync_rdma_write(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

Extended Library Functions 263

DAT_INVALID_HANDLE
The DAT handle is invalid.

DAT_INVALID_PARAMETER
One of the parameters is invalid. For example, the address range for a local
segment fell outside the boundaries of the corresponding Local Memory Region or
the LMR handle was invalid.

Determining when an RDMA Write completes and determining which memory range
was modified is the Consumer’s responsibility. One possibility is for the RDMA Write
initiator to post a Send DTO message after each RDMA Write that identifies the range
in the body of the Send. The Consumer at the target of the RDMA Write can receive
the message and know when and how to call dat_lmr_sync_rdma_write().

This call ensures that the Provider receives a coherent view of the buffer contents after
a subsequent remote RDMA Write operation. After the call completes, the Consumer
can be assured that all platform-specific buffer and cache updates have been
performed, and that the LMR range has consistency with the Provider hardware. Any
subsequent read by the Consumer can void this consistency. The Provider is not
required to detect such access.

The action performed on the cache before the RDMA Write depends on the cache type:

� I/O noncoherent cache will be flushed.
� CPU noncoherent cache will be invalidated.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_lmr_sync_rdma_read(3DAT), libdat(3LIB), attributes(5)

dat_lmr_sync_rdma_write(3DAT)

USAGE

ATTRIBUTES

SEE ALSO

264 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_provider_fini – disassociate the Provider from a given IA name

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

void
dat_provider_fini (
IN const DAT_PROVIDER_INFO *provider_info

)

provider_info The information that was provided when dat_provider_init was
called.

A destructor the Registry calls on a Provider before it disassociates the Provider from a
given IA name.

The Provider can use this method to undo any initialization it performed when
dat_provider_init(3DAT) was called for the same IA name. The Provider’s
implementation of this method should call
dat_registry_remove_provider(3DAT) to unregister its IA Name. If it does not,
the Registry might remove the entry itself.

This method can be called for a given IA name at any time after all open instances of
that IA are closed, and is certainly called before the Registry unloads the Provider
library. However, it is not called more than once without an intervening call to
dat_provider_init() for that IA name.

No values are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level

dat_provider_init(3DAT), dat_registry_remove_provider(3DAT),
libdat(3LIB), attributes(5)

dat_provider_fini(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 265

dat_provider_init – locate the Provider in the Static Registry

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

void
dat_provider_init (
IN const DAT_PROVIDER_INFO *provider_info,
IN const char * instance_data

)

provider_info The information that was provided by the Consumer to locate the
Provider in the Static Registry.

instance_data The instance data string obtained from the entry found in the
Static Registry for the Provider.

A constructor the Registry calls on a Provider before the first call to
dat_ia_open(3DAT) for a given IA name when the Provider is auto-loaded. An
application that explicitly loads a Provider on its own can choose to use
dat_provider_init() just as the Registry would have done for an auto-loaded
Provider.

The Provider’s implementation of this method must call
dat_registry_add_provider(3DAT), using the IA name in the
provider_info.ia_name field, to register itself with the Dynamic Registry. The
implementation must not register other IA names at this time. Otherwise, the Provider
is free to perform any initialization it finds useful within this method.

This method is called before the first call to dat_ia_open() for a given IA name
after one of the following has occurred:

� The Provider library was loaded into memory.

� The Registry called dat_provider_fini(3DAT) for that IA name.

� The Provider called dat_registry_remove_provider(3DAT) for that IA name
(but it is still the Provider indicated in the Static Registry).

If this method fails, it should ensure that it does not leave its entry in the Dynamic
Registry.

No values are returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level

dat_provider_init(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

266 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_ia_open(3DAT), dat_provider_fini(3DAT),
dat_registry_add_provider(3DAT),
dat_registry_remove_provider(3DAT), libdat(3LIB), attributes(5)

dat_provider_init(3DAT)

SEE ALSO

Extended Library Functions 267

dat_psp_create – create a persistent Public Service Point

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_psp_create(
IN DAT_IA_HANDLE ia_handle,
IN DAT_CONN_QUAL conn_qual,
IN DAT_EVD_HANDLE evd_handle,
IN DAT_PSP_FLAGS psp_flags,
OUT DAT_PSP_HANDLE *psp_handle
)

ia_handle Handle for an instance of DAT IA.

conn_qual Connection Qualifier of the IA on which the Public Service Point is
listening.

evd_handle Event Dispatcher that provides the Connection Requested Events
to the Consumer. The size of the event queue for the Event
Dispatcher controls the size of the backlog for the created Public
Service Point.

psp_flags Flag that indicates whether the Provider or Consumer creates an
Endpoint per arrived Connection Request. The value of
DAT_PSP_PROVIDER indicates that the Consumer wants to get an
Endpoint from the Provider; a value of DAT_PSP_CONSUMER
means the Consumer does not want the Provider to provide an
Endpoint for each arrived Connection Request.

psp_handle Handle to an opaque Public Service Point.

The dat_psp_create() function creates a persistent Public Service Point that can
receive multiple requests for connection and generate multiple Connection Request
instances that are delivered through the specified Event Dispatcher in Notification
events.

The dat_psp_create() function is blocking. When the Public Service Point is
created, DAT_SUCCESS is returned and psp_handle contains a handle to an opaque
Public Service Point Object.

There is no explicit backlog for a Public Service Point. Instead, Consumers can control
the size of backlog through the queue size of the associated Event Dispatcher.

The psp_flags parameter allows Consumers to request that the Provider create an
implicit Endpoint for each incoming Connection Request, or request that the Provider
should not create one per Connection Request. If the Provider cannot satisfy the
request, the operation shall fail and DAT_MODEL_NOT_SUPPORTED is returned.

dat_psp_create(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

268 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

All Endpoints created by the Provider have DAT_HANDLE_NULL for the Protection
Zone and all Event Dispatchers. The Provider sets up Endpoint attributes to match the
Active side connection request. The Consumer can change Endpoint parameters.
Consumers should change Endpoint parameters, especially PZ and EVD, and are
advised to change parameters for local accesses prior to the connection request
acceptance with the Endpoint.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE The ia_handle or evd_handle parameter is
invalid.

DAT_INVALID_PARAMETER The conn_qual or psp_flags parameter is
invalid.

DAT_CONN_QUAL_IN_USE The specified Connection Qualifier was in
use.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by
the Provider.

Two uses of a Public Service Point are as follows:

Model 1 For this model, the Provider manipulates a pool of Endpoints for a Public
Service Point. The Provider can use the same pool for more than one Public
Service Point.

� The DAT Consumer creates a Public Service Point with a flag set to
DAT_PSP_PROVIDER.

� The Public Service Point does the following:

� Collects native transport information reflecting a received
Connection Reques

� Creates an instance of Connection Reques

� Creates a Connection Request Notice (event) that includes the
Connection Request instance (thatwhich includes, among others,
Public Service Point, its Connection Qualifier, Provider-generated
Local Endpoint, and information about remote Endpoint)

� Delivers the Connection Request Notice to the Consumer-specified
target (CNO) evd_handle

The Public Service Point is persistent and continues to listen for
incoming requests for connection.

� Upon receiving a connection request, or at some time subsequent to
that, the DAT Consumer can modify the provided local Endpoint to
match the Connection Request and must either accept() or
reject() the pending Connection Request.

dat_psp_create(3DAT)

RETURN VALUES

USAGE

Extended Library Functions 269

� If accepted, the provided Local Endpoint is now in a "connected" state
and is fully usable for this connection, pending only any native
transport mandated RTU (ready-to-use) messages. This includes
binding it to the IA port if that was not done previously. The Consumer
is notified that the Endpoint is in Connected state by a Connection
Established Event on the Endpoint connect_evd_handle.

� If rejected, control of the Local Endpoint point is returned back to the
Provider and its ep_handle is no longer usable by the Consumer.

Model 2 For this model, the Consumer manipulates a pool of Endpoints. Consumers
can use the same pool for more than one Service Point.

� DAT Consumer creates a Public Service Point with a flag set to
DAT_PSP_CONSUMER.

� Public Service Point:

� Collects native transport information reflecting a received
Connection Request

� Creates an instance of Connection Request

� Creates a Connection Request Notice (event) that includes the
Connection Request instance (which includes, among others, Public
Service Point, its Connection Qualifier, Provider-generated Local
Endpoint and information about remote Endpoint)

� Delivers the Connection Request Notice to the Consumer-specified
target (CNO) evd_handle

The Public Service Point is persistent and continues to listen for
incoming requests for connection.

� The Consumer creates a pool of Endpoints that it uses for accepting
Connection Requests. Endpoints can be created and modified at any
time prior to accepting a Connection Request with that Endpoint.

� Upon receiving a connection request or at some time subsequent to that,
the DAT Consumer can modify its local Endpoint to match the
Connection Request and must either accept() or reject() the
pending Connection Request.

� If accepted, the provided Local Endpoint is now in a "connected" state
and is fully usable for this connection, pending only any native
transport mandated RTU messages. This includes binding it to the IA
port if that was not done previously. The Consumer is notified that the
Endpoint is in Connected state by a Connection Established Event on
the Endpoint connect_evd_handle.

� If rejected, the Consumer does not have to provide any Endpoint for
dat_cr_reject(3DAT).

dat_psp_create(3DAT)

270 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

dat_cr_reject(3DAT), libdat(3LIB), attributes(5)

dat_psp_create(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 271

dat_psp_create_any – create a persistent Public Service Point

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_psp_create_any(
IN DAT_IA_HANDLE ia_handle,
IN DAT_CONN_QUAL conn_qual,
IN DAT_EVD_HANDLE evd_handle,
IN DAT_PSP_FLAGS psp_flags,
OUT DAT_PSP_HANDLE *psp_handle
)

ia_handle Handle for an instance of DAT IA.

conn_qual Connection Qualifier of the IA on which the Public Service Point is
listening.

evd_handle Event Dispatcher that provides the Connection Requested Events
to the Consumer. The size of the event queue for the Event
Dispatcher controls the size of the backlog for the created Public
Service Point.

psp_flags Flag that indicates whether the Provider or Consumer creates an
Endpoint per arrived Connection Request. The value of
DAT_PSP_PROVIDER indicates that the Consumer wants to get an
Endpoint from the Provider; a value of DAT_PSP_CONSUMER
means the Consumer does not want the Provider to provide an
Endpoint for each arrived Connection Request.

psp_handle Handle to an opaque Public Service Point.

The dat_psp_create_any() function creates a persistent Public Service Point that
can receive multiple requests for connection and generate multiple Connection
Request instances that are delivered through the specified Event Dispatcher in
Notification events.

The dat_psp_create_any() function allocates an unused Connection Qualifier,
creates a Public Service point for it, and returns both the allocated Connection
Qualifier and the created Public Service Point to the Consumer.

The allocated Connection Qualifier should be chosen from "nonprivileged" ports that
are not currently used or reserved by any user or kernel Consumer or host ULP of the
IA. The format of allocated Connection Qualifier returned is specific to IA transport
type.

The dat_psp_create_any() function is blocking. When the Public Service Point is
created, DAT_SUCCESS is returned, psp_handle contains a handle to an opaque Public
Service Point Object, and conn_qual contains the allocated Connection Qualifier. When
return is not DAT_SUCCESS, psp_handle and conn_qual return values are undefined.

dat_psp_create_any(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

272 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

There is no explicit backlog for a Public Service Point. Instead, Consumers can control
the size of backlog through the queue size of the associated Event Dispatcher.

The psp_flags parameter allows Consumers to request that the Provider create an
implicit Endpoint for each incoming Connection Request, or request that the Provider
should not create one per Connection Request. If the Provider cannot satisfy the
request, the operation shall fail and DAT_MODEL_NOT_SUPPORTED is returned.

All Endpoints created by the Provider have DAT_HANDLE_NULL for the Protection
Zone and all Event Dispatchers. The Provider sets up Endpoint attributes to match the
Active side connection request. The Consumer can change Endpoint parameters.
Consumers should change Endpoint parameters, especially PZ and EVD, and are
advised to change parameters for local accesses prior to the connection request
acceptance with the Endpoint.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE The ia_handle or evd_handle parameter is
invalid.

DAT_INVALID_PARAMETER The conn_qual or psp_flags parameter is
invalid.

DAT_CONN_QUAL_UNAVAILABLE No Connection Qualifiers available.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by
the Provider.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_psp_create_any(3DAT)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 273

dat_psp_free – destroy an instance of the Public Service Point

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_psp_free (
IN DAT_PSP_HANDLE psp_handle

)

psp_handle Handle for an instance of the Public Service Point.

The dat_psp_free() function destroys a specified instance of the Public Service
Point.

Any incoming Connection Requests for the Connection Qualifier on the destroyed
Service Point it had been listening on are automatically rejected by the Provider with
the return analogous to the no listening Service Point.

The behavior of the Connection Requests in progress is undefined and left to an
implementation. But it must be consistent. This means that either a Connection
Requested Event has been generated for the Event Dispatcher associated with the
Service Point, including the creation of the Connection Request instance, or the
Connection Request is rejected by the Provider without any local notification.

This operation shall have no effect on previously generated Connection Requested
Events. This includes Connection Request instances and, potentially, Endpoint
instances created by the Provider.

The behavior of this operation with creation of a Service Point on the same Connection
Qualifier at the same time is not defined. Consumers are advised to avoid this
scenario.

Use of the handle of the destroyed Public Service Point in any consequent operation
fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The psp_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_psp_free(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

274 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_psp_query – provide parameters of the Public Service Point

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_psp_query (
IN DAT_PSP_HANDLE psp_handle,
IN DAT_PSP_PARAM_MASK psp_param_mask,
OUT DAT_PSP_PARAM *psp_param

)

psp_handle Handle for an instance of Public Service Point.

psp_param_mask Mask for PSP parameters.

psp_param Pointer to a Consumer-allocated structure that Provider fills for
Consumer-requested parameters.

The dat_psp_query() function provides to the Consumer parameters of the Public
Service Point. Consumer passes in a pointer to the Consumer allocated structures for
PSP parameters that Provider fills.

The psp_param_mask parameter allows Consumers to specify which parameters they
would like to query. The Provider will return values for psp_param_mask requested
parameters. The Provider may return the value for any of the other parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The psp_handle parameter is invalid.

DAT_INVALID_PARAMETER The psp_param_mask parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_psp_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 275

dat_pz_create – create an instance of the Protection Zone

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_pz_create (
IN DAT_IA_HANDLE ia_handle,
OUT DAT_PZ_HANDLE *pz_handle

)

ia_handle Handle for an open instance of the IA.

pz_handle Handle for the created instance of Protection Zone.

The dat_pz_create() function creates an instance of the Protection Zone. The
Protection Zone provides Consumers a mechanism for association Endpoints with
LMRs and RMRs to provide protection for local and remote memory accesses by
DTOs.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_INVALID_HANDLE The ia_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_pz_create(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

276 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_pz_free – destroy an instance of the Protection Zone

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_pz_free (
IN DAT_PZ_HANDLE pz_handle

)

pz_handle Handle for an instance of Protection Zone to be destroyed.

The dat_pz_free() function destroys an instance of the Protection Zone. The
Protection Zone cannot be destroyed if it is in use by an Endpoint, LMR, or RMR.

Use of the handle of the destroyed Protection Zone in any subsequent operation
except for dat_pz_free() fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_STATE Parameter in an invalid state. The Protection Zone was
in use by Endpoint, LMR, or RMR instances.

DAT_INVALID_HANDLE The pz_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_pz_free(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 277

dat_pz_query – provides parameters of the Protection Zone

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_pz_query (
IN DAT_PZ_HANDLE pz_handle,
IN DAT_PZ_PARAM_MASK pz_param_mask,
OUT DAT_PZ_PARAM *pz_param

)

pz_handle: Handle for the created instance of the Protection Zone.

pz_param_mask: Mask for Protection Zone parameters.

pz_param: Pointer to a Consumer-allocated structure that the Provider fills
with Protection Zone parameters.

The dat_pz_query() function provides the Consumer parameters of the Protection
Zone. The Consumer passes in a pointer to the Consumer-allocated structures for
Protection Zone parameters that the Provider fills.

The pz_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for pz_param_mask requested parameters. The
Provider can return values for any other parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The pz_param_mask parameter is invalid.

DAT_INVALID_HANDLE The pz_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_pz_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

278 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_registry_add_provider – declare the Provider with the Dynamic Registry

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_registry_add_provider (
IN const DAT_PROVIDER *provider,
IN const DAT_PROVIDER_INFO *provider_info

)

provider Self-description of a Provider.

provider_info Attributes of the Provider.

The Provider declares itself with the Dynamic Registry. Note that the caller can choose
to register itself multiple times, for example once for each port. The choice of what to
virtualize is up to the Provider. Each registration provides an Interface Adapter to
DAT. Each Provider must have a unique name.

The same IA Name cannot be added multiple times. An attempt to register the same
IA Name again results in an error with the return value
DAT_PROVIDER_ALREADY_REGISTERED.

The contents of provider_info must be the same as those the Consumer uses in the call
to dat_ia_open(3DAT) directly, or the ones provided indirectly defined by the
header files with which the Consumer compiled.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The maximum number of Providers was
already registered.

DAT_INVALID_PARAMETER Invalid parameter.

DAT_PROVIDER_ALREADY_REGISTERED Invalid or nonunique name.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level

dat_ia_open(3DAT), libdat(3LIB), attributes(5)

dat_registry_add_provider(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 279

dat_registry_list_providers – obtain a list of available pProviders from the Static
Registry

typedef struct dat_provider_info {
char ia_name[DAT_NAME_MAX_LENGTH];
DAT_UINT32 dapl_version_major;
DAT_UINT32 dapl_version_minor;
DAT_BOOLEAN is_thread_safe;
} DAT_PROVIDER_INFO;

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_registry_list_providers (
IN DAT_COUNT max_to_return,
OUT DAT_COUNT *number_entries,
OUT DAT_PROVIDER_INFO *(dat_provider_list[])

)

max_to_return Maximum number of entries that can be returned to the Consumer
in the dat_provider_list.

number_entries The actual number of entries returned to the Consumer in the
dat_provider_list if successful or the number of Providers available.

dat_provider_list Points to an array of DAT_PROVIDER_INFO pointers supplied by
the Consumer. Each Provider’s information will be copied to the
destination specified.

The dat_registry_list_providers() function allows the Consumer to obtain a
list of available Providers from the Static Registry. The information provided is the
Interface Adapter name, the uDAPL/kDAPL API version supported, and whether the
provided version is thread-safe. The Consumer can examine the attributes to
determine which (if any) Interface Adapters it wants to open. This operation has no
effect on the Registry itself.

The Registry can open an IA using a Provider whose dapl_version_minor is larger than
the one the Consumer requests if no Provider entry matches exactly. Therefore,
Consumers should expect that an IA can be opened successfully as long as at least one
Provider entry returned by dat_registry_list_providers() matches the
ia_name, dapl_version_major, and is_thread_safe fields exactly, and has a
dapl_version_minor that is equal to or greater than the version requested.

If the operation is successful, the returned value is DAT_SUCCESS and number_entries
indicates the number of entries filled by the registry in dat_provider_list.

If the operation is not successful, then number_entries returns the number of entries in
the registry. Consumers can use this return to allocate dat_provider_list large enough
for the registry entries. This number is just a snapshot at the time of the call and may
be changed by the time of the next call. If the operation is not successful, then the
content of dat_provider_list is not defined.

dat_registry_list_providers(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

280 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

If dat_provider_list is too small, including pointing to NULL for the registry entries, then
the operation fails with the return DAT_INVALID_PARAMETER.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter. For example, dat_provider_list is too
small or NULL.

DAT_INTERNAL_ERROR Internal error. The DAT static registry is missing.

DAT_NAME_MAX_LENGTH includes the null character for string termination.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_registry_list_providers(3DAT)

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 281

dat_registry_remove_provider – unregister the Provider from the Dynamic Registry

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_registry_remove_provider (
IN DAT_PROVIDER *provider
IN const DAT_PROVIDER_INFO *provider_info

)

provider Self-description of a Provider.

provider_info Attributes of the Provider.

The Provider removes itself from the Dynamic Registry. It is the Provider’s
responsibility to complete its sessions. Removal of the registration only prevents new
sessions.

The Provider cannot be removed while it is in use. An attempt to remove the Provider
while it is in use results in an error with the return code DAT_PROVIDER_IN_USE.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter. The Provider was not found.

DAT_PROVIDER_IN_USE The Provider was in use.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level

libdat(3LIB), attributes(5)

dat_registry_remove_provider(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

282 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_rmr_bind – bind the RMR to the specified memory region within an LMR

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_rmr_bind(
IN DAT_RMR_HANDLE rmr_handle,
IN DAT_LMR_TRIPLET *lmr_triplet,
IN DAT_MEM_PRIV_FLAGS mem_privileges,
IN DAT_EP_HANDLE ep_handle,
IN DAT_RMR_COOKIE user_cookie,
IN DAT_COMPLETION_FLAGS completion_flags,
OUT DAT_RMR_CONTEXT *rmr_context
)

rmr_handle Handle for an RMR instance.

lmr_triplet A pointer to an lmr_triplet that defines the memory
region of the LMR.

mem_privileges Consumer-requested memory access privileges for the
registered remote memory region. The Default value is
DAT_MEM_PRIV_NONE_FLAG. The constant value
DAT_MEM_PRIV_ALL_FLAG = 0x33, which specifies
both Read and Write privileges, is also defined.
Memory privilege definitions are as follows:

Remote Read
DAT_MEM_PRIV_REMOTE_READ_FLAG

0x02 Remote read access requested.

Remote Write
DAT_MEM_PRIV_REMOTE_WRITE_FLAG

0x20 Remote write access requested.

ep_handle Endpoint to which dat_rmr_bind() is posted.

user_cookie User-provided cookie that is returned to a Consumer at
the completion of the dat_rmr_bind(). Can be NULL.

completion_flags Flags for RMR Bind. The default
DAT_COMPLETION_DEFAULT_FLAG is 0. Flag
definitions are as follows:

Completion Suppression
DAT_COMPLETION_SUPPRESS_FLAG

0x01 Suppress successful Completion.

Notification of Completion
DAT_COMPLETION_UNSIGNALLED_FLAG

0x04 Non-notification completion. Local
Endpoint must be configured for

dat_rmr_bind(3DAT)

NAME

SYNOPSIS

PARAMETERS

Extended Library Functions 283

Notification Suppression.

Barrier Fence
DAT_COMPLETION_BARRIER_FENCE_FLAG

0x08 Request for Barrier Fence.

rmr_context New rmr_context for the bound RMR suitable to be
shared with a remote host.

The dat_rmr_bind() function binds the RMR to the specified memory region within
an LMR and provides the new rmr_context value. The dat_rmr_bind() operation is
a lightweight asynchronous operation that generates a new rmr_context. The
Consumer is notified of the completion of this operation through a rmr_bind
Completion event on the request_evd_handle of the specified Endpoint ep_handle.

The return value of rmr_context can be transferred by local Consumer to a Consumer
on a remote host to be used for an RDMA DTO. The use of rmr_context by a remote
host for an RDMA DTO prior to the completion of the dat_rmr_bind() can result in
an error and a broken connection. The local Consumer can ensure that the remote
Consumer does not have rmr_context before dat_rmr_bind() is completed. One way
is to "wait" for the completion dat_rmr_bind() on the rmr_bind Event Dispatcher of
the specified Endpoint ep_handle. Another way is to send rmr_context in a Send DTO
over the connection of the Endpoint ep_handle. The barrier-fencing behavior of the
dat_rmr_bind() with respect to Send and RDMA DTOs ensures that a Send DTO
does not start until dat_rmr_bind() completed.

The dat_rmr_bind() function automatically fences all Send, RDMA Read, and
RDMA Write DTOs and dat_rmr_bind() operations submitted on the Endpoint
ep_handle after the dat_rmr_bind(). Therefore, none of these operations starts until
dat_rmr_bind() is completed.

If the RMR Bind fails after dat_rmr_bind() returns, connection of ep_handle is
broken. The Endpoint transitions into a DAT_EP_STATE_DISCONNECTED state and
the DAT_CONNECTION_EVENT_BROKEN event is delivered to the connect_evd_handle of
the Endpoint.

The dat_rmr_bind() function employs fencing to ensure that operations sending
the RMR Context on the same Endpoint as the bind specified cannot result in an error
from the peer side using the delivered RMR Context too soon. One method, used by
InfiniBand, is to ensure that none of these operations start on the Endpoint until after
the bind is completed. Other transports can employ different methods to achieve the
same goal.

Any RDMA DTO that uses the previous value of rmr_context after the
dat_rmr_bind() is completed fail and report a protection violation.

By default, dat_rmr_bind() generates notification completions.

dat_rmr_bind(3DAT)

DESCRIPTION

284 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

The mem_privileges parameter allows Consumers to restrict the type of remote accesses
to the registered RMR by RDMA DTOs. Providers whose underlying Transports
require that privileges of the requested RMR and the associated LMR match, that is

� Set RMR’s DAT_MEM_PRIV_REMOTE_READ_FLAG requires that LMR’s
DAT_MEM_PRIV_LOCAL_READ_FLAG is also set,

� Set RMR’s DAT_MEM_PRIV_REMOTE_WRITE_FLAG requires that LMR’s
DAT_MEM_PRIV_LOCAL_WRITE_FLAG is also set,

or the operation fails and returns DAT_PRIVILEGES_VIOLATION.

In the lmr_triplet, the value of length of zero means that the Consumer does not want to
associate an RMR with any memory region within the LMR and the return value of
rmr_context for that case is undefined.

The completion of the posted RMR Bind is reported to the Consumer asynchronously
through a DTO Completion event based on the specified completion_flags value. The
value of DAT_COMPLETION_UNSIGNALLED_FLAG is only valid if the Endpoint
Request Completion Flags DAT_COMPLETION_UNSIGNALLED_FLAG. Otherwise,
DAT_INVALID_PARAMETER is returned.

The user_cookie parameter allows Consumers to have unique identifiers for each
dat_rmr_bind(). These identifiers are completely under user control and are
opaque to the Provider. The Consumer is not required to ensure the uniqueness of the
user_cookie value. The user_cookie is returned to the Consumer in the rmr_bind
Completion event for this operation.

The operation is valid for the Endpoint in the DAT_EP_STATE_CONNECTED and
DAT_EP_STATE_DISCONNECTED states. If the operation returns successfully for the
Endpoint in DAT_EP_STATE_DISCONNECTED state, the posted RMR Bind is
immediately flushed to request_evd_handle.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_PARAMETER Invalid parameter. For example, the
target_address or segment_length exceeded
the limits of the existing LMR.

DAT_INVALID_HANDLE Invalid DAT handle.

DAT_INVALID_STATE Parameter in an invalid state. Endpoint was
not in the a DAT_EP_STATE_CONNECTED or
DAT_EP_STATE_DISCONNECTED state.

DAT_MODEL_NOT_SUPPORTED The requested Model was not supported by
the Provider.

dat_rmr_bind(3DAT)

RETURN VALUES

Extended Library Functions 285

DAT_PRIVILEGES_VIOLATION Privileges violation for local or remote
memory access.

DAT_PROTECTION_VIOLATION Protection violation for local or remote
memory access.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_rmr_bind(3DAT)

ATTRIBUTES

SEE ALSO

286 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_rmr_create – create an RMR for the specified Protection Zone

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_rmr_create(
IN DAT_PZ_HANDLE pz_handle,
OUT DAT_RMR_HANDLE *rmr_handle

)

pz_handle Handle for an instance of the Protection Zone.

rmr_handle Handle for the created instance of an RMR.

The dat_rmr_create() function creates an RMR for the specified Protection Zone.
This operation is relatively heavy. The created RMR can be bound to a memory region
within the LMR through a lightweight dat_rmr_bind(3DAT) operation that
generates rmr_context.

If the operation fails (does not return DAT_SUCCESS), the return values of rmr_handle
are undefined and Consumers should not use them.

The pz_handle parameter provide Consumers a way to restrict access to an RMR by
authorized connection only.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE The pz_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

dat_rmr_bind(3DAT) , libdat(3LIB), attributes(5)

dat_rmr_create(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 287

dat_rmr_free – destroy an instance of the RMR

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_rmr_free (
IN DAT_RMR_HANDLE rmr_handle

)

rmr_handle Handle for an instance of the RMR to be destroyed.

The dat_rmr_free() function destroys an instance of the RMR.

Use of the handle of the destroyed RMR in any subsequent operation except for the
dat_rmr_free() fails. Any remote RDMA operation that uses the destroyed RMR
rmr_context, whose Transport-specific request arrived to the local host after the
dat_rmr_free() has completed, fails and reports a protection violation. Remote
RDMA operation that uses the destroyed RMR rmr_context, whose Transport-specific
request arrived to the local host prior to the dat_rmr_free() return, might or might
not complete successfully. If it fails, DAT_DTO_ERR_REMOTE_ACCESS is reported in
DAT_DTO_COMPLETION_STATUS for the remote RDMA DTO and the connection is
broken.

The dat_rmr_free() function is allowed on either bound or unbound RMR. If RMR
is bound, dat_rmr_free() unbinds (free HCA TPT and other resources and
whatever else binds with length of 0 should do), and then free RMR.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The rmr_handle handle is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_rmr_free(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

288 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_rmr_query – provide RMR parameters

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_rmr_query (
IN DAT_RMR_HANDLE rmr_handle,
IN DAT_RMR_PARAM_MASK rmr_param_mask,
OUT DAT_RMR_PARAM *rmr_param

)

rmr_handle Handle for an instance of the RMR.

rmr_param_mask Mask for RMR parameters.

rmr_param Pointer to a Consumer-allocated structure that the Provider fills
with RMR parameters.

The dat_rmr_query() function provides RMR parameters to the Consumer. The
Consumer passes in a pointer to the Consumer-allocated structures for RMR
parameters that the Provider fills.

The rmr_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for rmr_param_mask requested parameters. The
Provider can return values for any other parameters.

Not all parameters can have a value at all times. For example, lmr_handle,
target_address, segment_length, mem_privileges, and rmr_context are not defined for an
unbound RMR.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The rmr_param_mask parameter is invalid.

DAT_INVALID_HANDLE The mr_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_rmr_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 289

dat_rsp_create – create a Reserved Service Point

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_rsp_create (
IN DAT_IA_HANDLE ia_handle,
IN DAT_CONN_QUAL conn_qual,
IN DAT_EP_HANDLE ep_handle,
IN DAT_EVD_HANDLE evd_handle,
OUT DAT_RSP_HANDLE *rsp_handle

)

ia_handle Handle for an instance of DAT IA.

conn_qual Connection Qualifier of the IA the Reserved Service Point listens
to.

ep_handle Handle for the Endpoint associated with the Reserved Service
Point that is the only Endpoint that can accept a Connection
Request on this Service Point. The value DAT_HANDLE_NULL
requests the Provider to associate a Provider-created Endpoint
with this Service Point.

evd_handle The Event Dispatcher to which an event of Connection Request
arrival is generated.

rsp_handle Handle to an opaque Reserved Service Point.

The dat_rsp_create() function creates a Reserved Service Point with the specified
Endpoint that generates, at most, one Connection Request that is delivered to the
specified Event Dispatcher in a Notification event.

DAT_SUCCESS The operation was successful.

DAT_INSUFFICIENT_RESOURCES The operation failed due to resource
limitations.

DAT_INVALID_HANDLE The ia_handle, evd_handle, or ep_handle
parameter is invalid.

DAT_INVALID_PARAMETER The conn_qual parameter is invalid.

DAT_INVALID_STATE Parameter in an invalid state. For example,
an Endpoint was not in the Idle state.

DAT_CONN_QUAL_IN_USE Specified Connection Qualifier is in use.

The usage of a Reserve Service Point is as follows:

� The DAT Consumer creates a Local Endpoint and configures it appropriately.

� The DAT Consumer creates a Reserved Service Point specifying the Local
Endpoint.

� The Reserved Service Point performs the following:

dat_rsp_create(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

290 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

� Collects native transport information reflecting a received Connection Request.

� Creates a Pending Connection Request.

� Creates a Connection Request Notice (event) that includes the Pending
Connection Request (which includes, among others, Reserved Service Point
Connection Qualifier, its Local Endpoint, and information about remote
Endpoint).

� Delivers the Connection Request Notice to the Consumer-specified target
(CNO) evd_handle. The Local Endpoint is transitioned from Reserved to Passive
Connection Pending state.

� Upon receiving a connection request, or at some time subsequent to that, the DAT
Consumer must either accept() or reject() the Pending Connection Request.

� If accepted, the original Local Endpoint is now in a Connected state and fully usable
for this connection, pending only native transport mandated RTU messages. This
includes binding it to the IA port if that was not done previously. The Consumer is
notified that the Endpoint is in a Connected state by a Connection Established Event
on the Endpoint connect_evd_handle.

� If rejected, the Local Endpoint point transitions into Unconnected state. The DAT
Consumer can elect to destroy it or reuse it for other purposes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_rsp_create(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 291

dat_rsp_free – destroy an instance of the Reserved Service Point

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_rsp_free (
IN DAT_RSP_HANDLE rsp_handle

)

rsp_handle Handle for an instance of the Reserved Service Point.

The dat_rsp_free() function destroys a specified instance of the Reserved Service
Point.

Any incoming Connection Requests for the Connection Qualifier on the destroyed
Service Point was listening on are automatically rejected by the Provider with the
return analogous to the no listening Service Point.

The behavior of the Connection Requests in progress is undefined and left to an
implementation, but it must be consistent. This means that either a Connection
Requested Event was generated for the Event Dispatcher associated with the Service
Point, including the creation of the Connection Request instance, or the Connection
Request is rejected by the Provider without any local notification.

This operation has no effect on previously generated Connection Request Event and
Connection Request.

The behavior of this operation with creation of a Service Point on the same Connection
Qualifier at the same time is not defined. Consumers are advised to avoid this
scenario.

For the Reserved Service Point, the Consumer-provided Endpoint reverts to Consumer
control. Consumers shall be aware that due to a race condition, this Reserved Service
Point might have generated a Connection Request Event and passed the associated
Endpoint to a Consumer in it.

Use of the handle of the destroyed Service Point in any consequent operation fails.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The rsp_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

libdat(3LIB), attributes(5)

dat_rsp_free(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

292 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_rsp_query – provide parameters of the Reserved Service Point

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_rsp_query (
IN DAT_RSP_HANDLE rsp_handle,
IN DAT_RSP_PARAM_MASK rsp_param_mask,
OUT DAT_RSP_PARAM *rsp_param

)

rsp_handle Handle for an instance of Reserved Service Point

rsp_param_mask Mask for RSP parameters.

rsp_param Pointer to a Consumer-allocated structure that the Provider fills for
Consumer-requested parameters.

The dat_rsp_query() function provides to the Consumer parameters of the
Reserved Service Point. The Consumer passes in a pointer to the Consumer-allocated
structures for RSP parameters that the Provider fills.

The rsp_param_mask parameter allows Consumers to specify which parameters to
query. The Provider returns values for rsp_param_mask requested parameters. The
Provider can return values for any other parameters.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The rsp_handle parameter is invalid.

DAT_INVALID_PARAMETER The rsp_param_mask parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_rsp_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 293

dat_set_consumer_context – set Consumer context

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_set_consumer_context (
IN DAT_HANDLE dat_handle,
IN DAT_CONTEXT context
)

dat_handle Handle for a DAT Object associated with context.

context Consumer context to be stored within the associated dat_handle.
The Consumer context is opaque to the uDAPL Provider. NULL
represents no context.

The dat_set_consumer_context() function associates a Consumer context with
the specified dat_handle. The dat_handle can be one of the following handle types:
DAT_IA_HANDLE, DAT_EP_HANDLE, DAT_EVD_HANDLE, DAT_CR_HANDLE,
DAT_RSP_HANDLE, DAT_PSP_HANDLE, DAT_PZ_HANDLE, DAT_LMR_HANDLE,
DAT_RMR_HANDLE, or DAT_CNO_HANDLE.

Only a single Consumer context is provided for any dat_handle. If there is a previous
Consumer context associated with the specified handle, the new context replaces the
old one. The Consumer can disassociate the existing context by providing a NULL
pointer for the context. The Provider makes no assumptions about the contents of
context; no check is made on its value. Furthermore, the Provider makes no attempt to
provide any synchronization for access or modification of the context.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The context parameter is invalid.

DAT_INVALID_HANDLE The dat_handle parameter is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Unsafe

dat_get_consumer_context(3DAT), libdat(3LIB), attributes(5)

dat_set_consumer_context(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

294 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_srq_create –

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_srq_create (

IN DAT_IA_HANDLE ia_handle,
IN DAT_PZ_HANDLE pz_handle,
IN DAT_SRQ_ATTR *srq_attr,
OUT DAT_SRQ_HANDLE *srq_handle

)

ia_handle A handle for an open instance of the IA to which the created SRQ
belongs.

pz_handle A handle for an instance of the Protection Zone.

srq_attr A pointer to a structure that contains Consumer-requested SRQ
attributes.

srq_handle A handle for the created instance of a Shared Receive Queue.

The dat_srq_create() function creates an instance of a Shared Receive Queue
(SRQ) that is provided to the Consumer as srq_handle. If the value of DAT_RETURN is
not DAT_SUCCESS, the value of srq_handle is not defined.

The created SRQ is unattached to any Endpoints.

The Protection Zone pz_handle allows Consumers to control what local memory can be
used for the Recv DTO buffers posted to the SRQ. Only memory referred to by LMRs
of the posted Recv buffers that match the SRQ Protection Zone can be accessed by the
SRQ.

The srq_attributes argument specifies the initial attributes of the created SRQ. If the
operation is successful, the created SRQ will have the queue size at least max_recv_dtos
and the number of entries on the posted Recv scatter list of at lease max_recv_iov. The
created SRQ can have the queue size and support number of entries on post Recv
buffers larger than requested. Consumer can query SRQ to find out the actual
supported queue size and maximum Recv IOV.

The Consumer must set low_watermark to DAT_SRQ_LW_DEFAULT to ensure that an
asynchronous event will not be generated immediately, since there are no buffers in
the created SRQ. The Consumer should set the Maximum Receive DTO attribute and
the Maximum number of elements in IOV for posted buffers as needed.

When an associated EP tries to get a buffer from SRQ and there are no buffers
available, the behavior of the EP is the same as when there are no buffers on the EP
Recv Work Queue.

DAT_SUCCESS
The operation was successful.

dat_srq_create(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

Extended Library Functions 295

DAT_INSUFFICIENT_RESOURCES
The operation failed due to resource limitations.

DAT_INVALID_HANDLE
Either ia_handle or pz_handle is an invalid DAT handle.

DAT_INVALID_PARAMETER
One of the parameters is invalid. Either one of the requested SRQ attributes was
invalid or a combination of attributes is invalid.

DAT_MODEL_NOT_SUPPORTED
The requested Model was not supported by the Provider.

SRQ is created by the Consumer prior to creation of the EPs that will be using it. Some
Providers might restrict whether multiple EPs that share a SRQ can have different
Protection Zones. Check the srq_ep_pz_difference_support Provider attribute. The EPs
that use SRQ might or might not use the same recv_evd.

Since a Recv buffer of SRQ can be used by any EP that is using SRQ, the Consumer
should ensure that the posted Recv buffers are large enough to receive an incoming
message on any of the EPs.

If Consumers do not want to receive an asynchronous event when the number of
buffers in SRQ falls below the Low Watermark, they should leave its value as
DAT_SRQ_LW_DEFAULT. If Consumers do want to receive a notification, they can set
the value to the desired one by calling dat_srq_set_lw(3DAT).

SRQ allows the Consumer to use fewer Recv buffers then posting the maximum
number of buffers for each connection. If the Consumer can upper bound the number
of incoming messages over all connections whose local EP is using SRQ, then instead
of posting this maximum for each connection the Consumer can post them for all
connections on SRQ. For example, the maximum utilized link bandwidth divided over
the message size can be used for an upper bound.

Depending on the underlying Transport, one or more messages can arrive
simultaneously on an EP that is using SRQ. Thus, the same EP can have multiple Recv
buffers in its possession without these buffers being on SRQ or recv_evd.

Since Recv buffers can be used by multiple connections of the local EPs that are using
SRQ, the completion order of the Recv buffers is no longer guaranteed even when they
use of the same recv_evd. For each connection the Recv buffers completion order is
guaranteed to be in the order of the posted matching Sends to the other end of the
connection. There is no ordering guarantee that Receive buffers will be returned in the
order they were posted even if there is only a single connection (Endpoint) associated
with the SRQ. There is no ordering guarantee between different connections or
between different recv_evds.

dat_srq_create(3DAT)

USAGE

296 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Safe

dat_srq_free(3DAT), dat_srq_post_recv(3DAT), dat_srq_query(3DAT),
dat_srq_resize(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

dat_srq_create(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 297

dat_srq_free – destroy an instance of the shared receive queue

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_srq_free (
IN DAT_SRQ_HANDLE srq_handle

)

srq_handle A handle for an instance of SRQ to be destroyed.

The dat_srq_free() function destroys an instance of the SRQ. The SRQ cannot be
destroyed if it is in use by an EP.

It is illegal to use the destroyed handle in any consequent operation.

DAT_SUCCESS The operation was successful.

DAT_INVALID_HANDLE The srq_handle argument is an invalid DAT handle.

DAT_SRQ_IN_USE The Shared Receive Queue can not be destroyed
because it is in still associated with an EP instance.

If the Provider detects the use of a deleted object handle, it should return
DAT_INVALID_HANDLE. The Provider should avoid assigning the used handle as long
as possible. Once reassigned the handle is no longer a handle of a destroyed object.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_srq_create(3DAT), dat_srq_post_recv(3DAT), dat_srq_query(3DAT),
dat_srq_resize(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

dat_srq_free(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

298 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

dat_srq_post_recv – add receive buffers to shared receive queue

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_srq_post_recv (
IN DAT_SRQ_HANDLE srq_handle,
IN DAT_COUNT num_segments,
IN DAT_LMR_TRIPLET *local_iov,
IN DAT_DTO_COOKIE user_cookie

)

srq_handle A handle for an instance of the SRQ.

num_segments The number of lmr_triplets in local_iov. Can be 0 for receiving a
zero-size message.

local_iov An I/O Vector that specifies the local buffer to be filled. Can be
NULL for receiving a zero-size message.

user_cookie A user-provided cookie that is returned to the Consumer at the
completion of the Receive DTO. Can be NULL.

The dat_srq_post_recv() function posts the receive buffer that can be used for the
incoming message into the local_iov by any connected EP that uses SRQ.

The num_segments argument specifies the number of segments in the local_iov. The
local_iov segments are filled in the I/O Vector order until the whole message is
received. This ensures that all the front segments of the local_iov I/O Vector are
completely filled, only one segment is partially filled, if needed, and all segments that
follow it are not filled at all. The actual order of segment fillings is left to the
implementation.

The user_cookie argument allows Consumers to have unique identifiers for each DTO.
These identifiers are completely under user control and are opaque to the Provider.
There is no requirement on the Consumer that the value user_cookie should be unique
for each DTO. The user_cookie is returned to the Consumer in the Completion event for
the posted Receive.

The completion of the posted Receive is reported to the Consumer asynchronously
through a DTO Completion event based on the configuration of the EP that dequeues
the posted buffer and the specified completion_flags value for Solicited Wait for the
matching Send. If EP Recv Completion Flag is
DAT_COMPLETION_UNSIGNALLED_FLAG, which is the default value for SRQ EP, then
all posted Recvs will generate completions with Signal Notifications.

A Consumer should not modify the local_iov or its content until the DTO is completed.
When a Consumer does not adhere to this rule, the behavior of the Provider and the
underlying Transport is not defined. Providers that allow Consumers to get ownership
of the local_iov but not the memory it specified back after the dat_srq_post_recv()
returns should document this behavior and also specify its support in Provider

dat_srq_post_recv(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 299

attributes. This behavior allows Consumer full control of the local_iov content after
dat_srq_post_recv() returns. Because this behavior is not guaranteed by all
Providers, portable Consumers shall not rely on this behavior. Consumers shall not
rely on the Provider copying local_iov information.

The DAT_SUCCESS return of the dat_srq_post_recv() is at least the equivalent of
posting a Receive operation directly by native Transport. Providers shall avoid
resource allocation as part of dat_srq_post_recv() to ensure that this operation is
nonblocking.

The completion of the Receive posted to the SRQ is equivalent to what happened to
the Receive posted to the Endpoint for the Endpoint that dequeued the Receive buffer
from the Shared Receive queue.

The posted Recv DTO will complete with signal, equivalently to the completion of
Recv posted directly to the Endpoint that dequeued the Recv buffer from SRQ with
DAT_COMPLETION_UNSIGNALLED_FLAG value not set for it.

The posted Recv DTOs will complete in the order of Send postings to the other
endpoint of each connection whose local EP uses SRQ. There is no ordering among
different connections regardless if they share SRQ and recv_evd or not.

If the reported status of the Completion DTO event corresponding to the posted
RDMA Read DTO is not DAT_DTO_SUCCESS, the content of the local_iov is not defined
and the transfered_length in the DTO Completion event is not defined.

The operation is valid for all states of the Shared Receive Queue.

The dat_srq_post_recv() function is asynchronous, nonblocking, and its thread
safety is Provider-dependent.

DAT_SUCCESS
The operation was successful.

DAT_INVALID_HANDLE
The srq_handle argument is an invalid DAT handle.

DAT_INSUFFICIENT_RESOURCES
The operation failed due to resource limitations.

DAT_INVALID_PARAMETER
Invalid parameter. For example, one of the IOV segments pointed to a memory
outside its LMR.

DAT_PROTECTION_VIOLATION
Protection violation for local or remote memory access.

Protection Zone mismatch between an LMR of one of the local_iov segments and the
SRQ.

dat_srq_post_recv(3DAT)

RETURN VALUES

300 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

DAT_PRIVILEGES_VIOLATION
Privileges violation for local or remote memory access. One of the LMRs used in
local_iov was either invalid or did not have the local write privileges.

For the best Recv operation performance, the Consumer should align each buffer
segment of local_iov to the Optimal Buffer Alignment attribute of the Provider. For
portable applications, the Consumer should align each buffer segment of local_iov to
the DAT_OPTIMAL_ALIGNMENT.

Since any of the Endpoints that use the SRQ can dequeue the posted buffer from SRQ,
Consumers should post a buffer large enough to handle incoming message on any of
these Endpoint connections.

The buffer posted to SRQ does not have a DTO completion flag value. Posting Recv
buffer to SRQ is semantically equivalent to posting to EP with
DAT_COMPLETION_UNSIGNALLED_FLAG is not set. The configuration of the Recv
Completion flag of an Endpoint that dequeues the posted buffer defines how DTO
completion is generated. If the Endpoint Recv Completion flag is
DAT_COMPLETION_SOLICITED_WAIT_FLAG then matching Send DTO completion
flag value for Solicited Wait determines if the completion will be Signalled or not. If
the Endpoint Recv Completion flag is not
DAT_COMPLETION_SOLICITED_WAIT_FLAG, the posted Recv completion will be
generated with Signal. If the Endpoint Recv Completion flag is
DAT_COMPLETION_EVD_THRESHOLD_FLAG, the posted Recv completion will be
generated with Signal and dat_evd_wait threshold value controls if the waiter will be
unblocked or not.

Only the Endpoint that is in Connected or Disconnect Pending states can dequeue
buffers from SRQ. When an Endpoint is transitioned into Disconnected state, all the
buffers that it dequeued from SRQ are queued on the Endpoint recv_evd. All the
buffers that the Endpoint has not completed by the time of transition into
Disconnected state and that have not completed message reception will be flushed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_srq_create(3DAT), dat_srq_free(3DAT), dat_srq_query(3DAT),
dat_srq_resize(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

dat_srq_post_recv(3DAT)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 301

dat_srq_query – provide parameters of the shared receive queue

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_srq_query (
IN DAT_SRQ_HANDLE srq_handle,
IN DAT_SRQ_PARAM_MASK srq_param_mask,
OUT DAT_SRQ_PARAM *srq_param

)

srq_handle A handle for an instance of the SRQ.

srq_param_mask The mask for SRQ parameters.

srq_param A pointer to a Consumer-allocated structure that the Provider fills
with SRQ parameters.

The dat_srq_query() function provides to the Consumer SRQ parameters. The
Consumer passes a pointer to the Consumer-allocated structures for SRQ parameters
that the Provider fills.

The srq_param_mask argument allows Consumers to specify which parameters to
query. The Provider returns values for the requested srq_param_mask parameters. The
Provider can return values for any other parameters.

In addition to the elements in SRQ attribute, dat_srq_query() provides additional
information in the srq_param structure if Consumer requests it with srq_param_mask
settings. The two that are related to entry counts on SRQ are the number of Receive
buffers (available_dto_count) available for EPs to dequeue and the number of occupied
SRQ entries (outstanding_dto_count) not available for new Recv buffer postings.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER The srq_param_mask argument is invalid.

DAT_INVALID_HANDLE The srq_handle argument is an invalid DAT handle.

The Provider might not be able to provide the number of outstanding Recv of SRQ or
available Recvs of SRQ. The Provider attribute indicates if the Provider does not
support the query for one or these values. Even when the Provider supports the query
for one or both of these values, it might not be able to provide this value at this
moment. In either case, the return value for the attribute that cannot be provided will
be DAT_VALUE_UNKNOWN.

Example: Consumer created SRQ with 10 entries and associated 1 EP with it. 3 Recv
buffers have been posted to it. The query will report:

max_recv_dtos=10,
available_dto_count=3,

outstanding_dto_count=3.

After a Send message arrival the query will report:

dat_srq_query(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

302 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

max_recv_dtos=10,
available_dto_count=2,

outstanding_dto_count=3.

After Consumer dequeues Recv completion the query will report:

max_recv_dtos=10,
available_dto_count=2,

outstanding_dto_count=2.

In general, each EP associated with SRQ can have multiple buffers in progress of
receiving messages as well completed Recv on EVDs. The watermark setting helps to
control how many Recv buffers posted to SRQ an Endpoint can own.

If the Provider cannot support the query for the number of outstanding Recv of SRQ
or available Recvs of SRQ, the value return for that attribute should be
DAT_VALUE_UNKNOWN.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_srq_create(3DAT), dat_srq_free(3DAT), dat_srq_post_recv(3DAT),
dat_srq_resize(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

dat_srq_query(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 303

dat_srq_resize – modify the size of the shared receive queue

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_srq_resize (
IN DAT_SRQ_HANDLE srq_handle,
IN DAT_COUNT srq_max_recv_dto

)

srq_handle A handle for an instance of the SRQ.

srq_max_recv_dto The new maximum number of Recv DTOs that Shared Receive
Queue must hold.

The dat_srq_resize() function modifies the size of the queue of SRQ.

Resizing of Shared Receive Queue should not cause any incoming messages on any of
the EPs that use the SRQ to be lost. If the number of outstanding Recv buffers on the
SRQ is larger then the requested srq_max_recv_dto, the operation returns
DAT_INVALID_STATE and do not change SRQ. This includes not just the buffers on
the SRQ but all outstanding Receive buffers that had been posted to the SRQ and
whose completions have not reaped yet. Thus, the outstanding buffers include the
buffers on SRQ, the buffers posted to SRQ at are at SRQ associated EPs, and the buffers
posted to SRQ for which completions have been generated but not yet reaped by
Consumer from recv_evds of the EPs that use the SRQ.

If the requested srq_max_recv_dto is below the SRQ low watermark, the operation
returns DAT_INVALID_STATE and does not change SRQ.

DAT_SUCCESS
The operation was successful.

DAT_INVALID_HANDLE
The srq_handle argument is an invalid DAT handle.

DAT_INVALID_PARAMETER
The srq_max_recv_dto argument is invalid.

DAT_INSUFFICIENT_RESOURCES
The operation failed due to resource limitations.

DAT_INVALID_STATE
Invalid state. Either the number of entries on the SRQ exceeds the requested SRQ
queue length or the requested SRQ queue length is smaller than the SRQ low
watermark.

The dat_srq_resize() function is required not to lose any buffers. Thus, it cannot
shrink below the outstanding number of Recv buffers on SRQ. There is no requirement
to shrink the SRQ to return DAT_SUCCESS.

dat_srq_resize(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

304 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

The quality of the implementation determines how closely to the Consumer-requested
value the Provider shrinks the SRQ. For example, the Provider can shrink the SRQ to
the Consumer-requested value and if the requested value is smaller than the
outstanding buffers on SRQ, return DAT_INVALID_STATE; or the Provider can shrink
to some value larger than that requested by the Consumer but below current SRQ size;
or the Provider does not change the SRQ size and still returns DAT_SUCCESS.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_srq_create(3DAT), dat_srq_free(3DAT), dat_srq_post_recv(3DAT),
dat_srq_query(3DAT), dat_srq_set_lw(3DAT), libdat(3LIB), attributes(5)

dat_srq_resize(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 305

dat_srq_set_lw – set low watermark on shared receive queue

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_srq_set_lw (

IN DAT_SRQ_HANDLE srq_handle,
IN DAT_COUNT low_watermark

)

srq_handle A handle for an instance of a Shared Receive Queue.

low_watermark The low watermark for the number of Recv buffers on SRQ.

The dat_srq_set_lw() function sets the low watermark value for the SRQ and
arms the SRQ for generating an asynchronous event for the low watermark. An
asynchronous event will be generated when the number of buffers on the SRQ is
below the low watermark for the first time. This can occur during the current call or
when an associated EP takes a buffer from the SRQ.

The asynchronous event will be generated only once per setting of the low watermark.
Once an event is generated, no new asynchronous events for the number of buffers
inthe SRQ below the specified value will be generated until the SRQ is again set for
the Low Watermark. If the Consumer is again interested in the event, the Consumer
should set the low watermark again.

DAT_SUCCESS
The operation was successful.

DAT_INVALID_HANDLE
The srq_handle argument is an invalid DAT handle.

DAT_INVALID_PARAMETER
Invalid parameter; the value of low_watermark is exceeds the value of max_recv_dtos.

DAT_MODEL_NOT_SUPPORTED
The requested Model was not supported by the Provider. The Provider does not
support SRQ Low Watermark.

Upon receiving the asynchronous event for the SRQ low watermark, the Consumer
can replenish Recv buffers on the SRQ or take any other action that is appropriate.

Regardless of whether an asynchronous event for the low watermark has been
generated, this operation will set the generation of an asynchronous event with the
Consumer-provided low watermark value. If the new low watermark value is below
the current number of free Receive DTOs posted to the SRQ, an asynchronous event
will be generated immediately. Otherwise the old low watermark value is simply
replaced with the new one.

dat_srq_set_lw(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

USAGE

306 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.2

MT-Level Unsafe

dat_srq_create(3DAT), dat_srq_free(3DAT), dat_srq_post_recv(3DAT),
dat_srq_query(3DAT), dat_srq_resize(3DAT), libdat(3LIB), attributes(5)

dat_srq_set_lw(3DAT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 307

dat_strerror – convert a DAT return code into human readable strings

cc [flag...] file... -ldat [library...]
#include <dat/udat.h>

DAT_RETURN
dat_strerror(
IN DAT_RETURN return,
OUT const char **major_message,
OUT const char **minor_message

)

return DAT function return value.

message A pointer to a character string for the return.

The dat_strerror() function converts a DAT return code into human readable
strings. The major_message is a string-converted DAT_TYPE_STATUS, while
minor_message is a string-converted DAT_SUBTYPE_STATUS. If the return of this
function is not DAT_SUCCESS, the values of major_message and minor_message are not
defined.

If an undefined DAT_RETURN value was passed as the return parameter, the operation
fails with DAT_INVALID_PARAMETER returned. The operation succeeds when
DAT_SUCCESS is passed in as the return parameter.

DAT_SUCCESS The operation was successful.

DAT_INVALID_PARAMETER Invalid parameter. The return value is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: uDAPL, 1.1, 1.2

MT-Level Safe

libdat(3LIB), attributes(5)

dat_strerror(3DAT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

308 man pages section 3: Extended Library Functions • Last Revised 16 Jul 2004

demangle, cplus_demangle – decode a C++ encoded symbol name

cc [flag ...] file[library ...] -ldemangle

#include <demangle.h>

int cplus_demangle(const char *symbol, char *prototype, size_t size);

The cplus_demangle() function decodes (demangles) a C++ linker symbol name
(mangled name) into a (partial) C++ prototype, if possible. C++ mangled names may
not have enough information to form a complete prototype.

The symbol string argument points to the input mangled name.

The prototype argument points to a user-specified output string buffer, of size bytes.

The cplus_demangle() function operates on mangled names generated by
SPARCompilers C++ 3.0.1, 4.0.1, 4.1 and 4.2.

The cplus_demangle() function improves and replaces the demangle() function.

Refer to the CC.1, dem.1, and c++filt.1 manual pages in the
/opt/SUNWspro/man/man1 directory. These pages are only available with the
SPROcc package.

The cplus_demangle() function returns the following values:

0 The symbol argument is a valid mangled name and
prototype contains a (partial) prototype for the symbol.

DEMANGLE_ENAME The symbol argument is not a valid mangled name and
the content of prototype is a copy of the symbol.

DEMANGLE_ESPACE The prototype output buffer is too small to contain the
prototype (or the symbol), and the content of prototype
is undefined.

demangle(3EXT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 309

devid_get, devid_compare, devid_deviceid_to_nmlist, devid_free, devid_free_nmlist,
devid_get_minor_name, devid_sizeof, devid_str_decode, devid_str_free,
devid_str_encode, devid_valid – device ID interfaces for user applications

cc [flag...] file... -ldevid [library...]

#include <devid.h>

int devid_get(int fd, ddi_devid_t *retdevid);

void devid_free(ddi_devid_t devid);

int devid_get_minor_name(int fd, char **retminor_name);

int devid_deviceid_to_nmlist(char *search_path, ddi_devid_t devid,
char *minor_name, devid_nmlist_t **retlist);

void devid_free_nmlist(devid_nmlist_t *list);

int devid_compare(ddi_devid_t devid1, ddi_devid_t devid2);

size_t devid_sizeof(ddi_devid_t devid);

int devid_valid(ddi_devid_t devid);

char *devid_str_encode(ddi_devid_t devid, char *minor_name);

int devid_str_decode(char *devidstr, ddi_devid_t *retdevid, char
**retminor_name);

void devid_str_free(char *str);

These functions provide unique identifiers (device IDs) for devices. Applications and
device drivers use these functions to identify and locate devices, independent of the
device’s physical connection or its logical device name or number.

The devid_get() function returns in retdevid the device ID for the device associated
with the open file descriptor fd, which refers to any device. It returns an error if the
device does not have an associated device ID. The caller must free the memory
allocated for retdevid using the devid_free() function.

The devid_free() function frees the space that was allocated for the returned devid
by devid_get() and devid_str_decode().

The devid_get_minor_name() function returns the minor name, in retminor_name,
for the device associated with the open file descriptor fd. This name is specific to the
particular minor number, but is "instance number" specific. The caller of this function
must free the memory allocated for the returned retminor_name string using
devid_str_free().

The devid_deviceid_to_nmlist() function returns an array of devid_nmlist
structures, where each entry matches the devid and minor_name passed in. If the
minor_name specified is one of the special values (DEVID_MINOR_NAME_ALL,
DEVID_MINOR_NAME_ALL_CHR, or DEVID_MINOR_NAME_ALL_BLK) , then all minor
names associated with devid which also meet the special minor_name filtering

devid_get(3DEVID)

NAME

SYNOPSIS

DESCRIPTION

310 man pages section 3: Extended Library Functions • Last Revised 30 Nov 2001

requirements are returned. The devid_nmlist structure contains the device name and
device number. The last entry of the array contains a null pointer for the devname and
NODEV for the device number. This function traverses the file tree, starting at
search_path. For each device with a matching device ID and minor name tuple, a
device name and device number are added to the retlist. If no matches are found, an
error is returned. The caller of this function must free the memory allocated for the
returned array with the devid_free_nmlist() function. This function may take a
long time to complete if called with the device ID of an unattached device.

The devid_free_nmlist() function frees the memory allocated by the
devid_deviceid_to_nmlist() function.

The devid_compare() function compares two device IDs and determines both
equality and sort order. The function returns an integer greater than 0 if the device ID
pointed to by devid1 is greater than the device ID pointed to by devid2. It returns 0 if
the device ID pointed to by devid1 is equal to the device ID pointed to by devid2. It
returns an integer less than 0 if the device ID pointed to by devid1 is less than the
device ID pointed to by devid2. This function is the only valid mechanism to determine
the equality of two devids. This function may indicate equality for arguments which
by simple inspection appear different.

The devid_sizeof() function returns the size of devid in bytes.

The devid_valid() function validates the format of a devid. It returns 1 if the format
is valid, and 0 if invalid. This check may not be as complete as the corresponding
kernel function ddi_devid_valid() (see ddi_devid_compare(9F)).

The devid_str_encode() function encodes a devid and minor_name into a
null-terminated ASCII string, returning a pointer to that string. To avoid shell
conflicts, the devid portion of the string is limited to uppercase and lowercase letters,
digits, and the plus (+), minus (-), period (.), equals (=), underscore (_), tilde (~), and
comma (,) characters. If there is an ASCII quote character in the binary form of a devid,
the string representation will be in hex_id form, not ascii_id form. The comma (,)
character is added for "id1," at the head of the string devid. If both a devid and a
minor_name are non-null, a slash (/)is used to separate the devid from the minor_name
in the encoded string. If minor_name is null, only the devid is encoded. If the devid is
null then the special string "id0" is returned. Note that you cannot compare the
returned string against another string with strcmp(3C) to determine devid equality.
The string returned must be freed by calling devid_str_free().

The devid_str_decode() function takes a string previously produced by the
devid_str_encode() or ddi_devid_str_encode() (see
ddi_devid_compare(9F)) function and decodes the contained device ID and minor
name, allocating and returning pointers to the extracted parts via the retdevid and
retminor_name arguments. If the special devidstr "id0" was specified, the returned
device ID and minor name will both be null. A non-null returned devid must be freed
by the caller by the devid_free() function. A non-null returned minor name must
be freed by calling devid_str_free().

devid_get(3DEVID)

Extended Library Functions 311

The devid_str_free() function frees the character string returned by
devid_str_encode() and the retminor_name argument returned by
devid_str_decode().

Upon successful completion, the devid_get(), devid_get_minor_name(),
devid_str_decode(), and devid_deviceid_to_nmlist() functions return 0.
Otherwise, they return −1.

The devid_compare() function returns the following values:

−1 The device ID pointed to by devid1 is less than the device ID pointed to by
devid2.

0 The device ID pointed to by devid1 is equal to the device ID pointed to by
devid2.

1 The device ID pointed to by devid1 is greater than the device ID pointed to
by devid2.

The devid_sizeof() function returns the size of devid in bytes. If devid is null, the
number of bytes that must be allocated and initialized to determine the size of a
complete device ID is returned.

The devid_valid() function returns 1 if the devid is valid and 0 if the devid is
invalid.

The devid_str_encode() function returns NULL to indicate failure. Failure may be
caused by attempting to encode an invalid string. If the return value is non-null, the
caller must free the returned string by using the devid_str_free() function.

EXAMPLE 1 Using devid_get(), devid_get_minor_name(), and devid_str_encode
()

The following example shows the proper use of devid_get(),
devid_get_minor_name(), and devid_str_encode() to free the space allocated
for devid, minor_name and encoded devid.

int fd;
ddi_devid_t devid;
char *minor_name, *devidstr;
if ((fd = open("/dev/dsk/c0t3d0s0", O_RDONLY|O_NDELAY)) < 0) {

...
}
if (devid_get(fd, &devid) != 0) {

...
}
if (devid_get_minor_name(fd, &minor_name) != 0) {

...
}
if ((devidstr = devid_str_encode(devid, minor_name)) == 0) {

...
}
printf("devid %s\n", devidstr);

devid_get(3DEVID)

RETURN VALUES

EXAMPLES

312 man pages section 3: Extended Library Functions • Last Revised 30 Nov 2001

EXAMPLE 1 Using devid_get(), devid_get_minor_name(), and devid_str_encode
() (Continued)

devid_str_free(devidstr);
devid_free(devid);
devid_str_free(minor_name);

EXAMPLE 2 Using devid_deviceid_to_nmlist() and devid_free_nmlist()

The following example shows the proper use of devid_deviceid_to_nmlist()
and devid_free_nmlist():

devid_nmlist_t *list = NULL;
int err;
if (devid_deviceid_to_nmlist("/dev/rdsk", devid,

minor_name, &list))
return (-1);

/* loop through list and process device names and numbers */
devid_free_nmlist(list);

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT−Safe

Interface Stability Stable

free(3C), libdevid(3LIB), attributes(5), ddi_devid_compare(9F)

devid_get(3DEVID)

ATTRIBUTES

SEE ALSO

Extended Library Functions 313

di_binding_name, di_bus_addr, di_compatible_names, di_devid, di_driver_name,
di_driver_ops, di_driver_major, di_instance, di_nodeid, di_node_name – return
libdevinfo node information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

char *di_binding_name(di_node_t node);

char *di_bus_addr(di_node_t node);

int di_compatible_names(di_node_t node, char **names);

ddi_devid_t di_devid(di_node_t node);

char *di_driver_name(di_node_t node);

uint_t di_driver_ops(di_node_t node);

int di_driver_major(di_node_t node);

int di_instance(di_node_t node);

int di_nodeid(di_node_t node);

char *di_node_name(di_node_t node);

names The address of a pointer.

node A handle to a device node.

These functions extract information associated with a device node.

The di_binding_name() function returns a pointer to the binding name. The
binding name is the name used by the system to select a driver for the device.

The di_bus_addr() function returns a pointer to a null-terminated string containing
the assigned bus address for the device. NULL is returned if a bus address has not been
assigned to the device. A zero-length string may be returned and is considered a valid
bus address.

The return value of di_compatible_names() is the number of compatible names.
names is updated to point to a buffer contained within the snapshot. The buffer
contains a concatenation of null-terminated strings, for example:

<name1>⁄0<name2>⁄0...<namen>⁄0

See the discussion of generic names in Writing Device Drivers for a description of how
compatible names are used by Solaris to achieve driver binding for the node.

The di_devid() function returns the device ID for node, if it is registered. Otherwise,
a null pointer is returned. Interfaces in the libdevid(3LIB) library may be used to
manipulate the handle to the device id. This function is obsolete and might be
removed from a future Solaris release. Applications should use the “devid” property
instead.

di_binding_name(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

314 man pages section 3: Extended Library Functions • Last Revised 22 Mar 2004

The di_driver_name() function returns the name of the driver bound to the node. A
null pointer is returned if node is not bound to any driver.

The di_driver_ops() function returns a bit array of device driver entry points that
are supported by the driver bound to this node. Possible bit fields supported by the
driver are DI_CB_OPS, DI_BUS_OPS, DI_STREAM_OPS.

The di_driver_major() function returns the major number associated with the
driver bound to node. If there is no driver bound to the node, this function returns −1.

The di_instance() function returns the instance number of the device. A value of
-1 indicates an instance number has not been assigned to the device by the system.

The di_nodeid() function returns the type of device, which may be one of the
following possible values: DI_PSEUDO_NODEID, DI_PROM_NODEID, and
DI_SID_NODEID. Devices of type DI_PROM_NODEID may have additional properties
that are defined by the PROM. See di_prom_prop_data(3DEVINFO) and
di_prom_prop_lookup_bytes(3DEVINFO).

The di_node_name() function returns a pointer to a null-terminated string
containing the node name.

See di_init(3DEVINFO) for an example demonstrating typical use of these
functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving (di_devid() is obsolete)

MT-Level Safe

di_init(3DEVINFO), di_prom_init(3DEVINFO),
di_prom_prop_data(3DEVINFO), di_prom_prop_lookup_bytes(3DEVINFO),
libdevid(3LIB), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

di_binding_name(3DEVINFO)

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 315

di_child_node, di_parent_node, di_sibling_node, di_drv_first_node, di_drv_next_node
– libdevinfo node traversal functions

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_node_t di_child_node(di_node_t node);

di_node_t di_parent_node(di_node_t node);

di_node_t di_sibling_node(di_node_t node);

di_node_t di_drv_first_node(const char *drv_name, di_node_t root);

di_node_t di_drv_next_node(di_node_t node);

drv_name The name of the driver of interest.

node A handle to any node in the snapshot.

root The handle of the root node for the snapshot returned by
di_init(3DEVINFO).

The kernel device configuration data may be viewed in two ways, either as a tree of
device configuration nodes or as a list of nodes associated with each driver. In the tree
view, each node may contain references to its parent, the next sibling in a list of
siblings, and the first child of a list of children. In the per-driver view, each node
contains a reference to the next node associated with the same driver. Both views are
captured in the snapshot, and the interfaces are provided for node access.

The di_child_node() function obtains a handle to the first child of node. If no child
node exists in the snapshot, DI_NODE_NIL is returned and errno is set to ENXIO or
ENOTSUP.

The di_parent_node() function obtains a handle to the parent node of node. If no
parent node exists in the snapshot, DI_NODE_NIL is returned and errno is set to
ENXIO or ENOTSUP.

The di_sibling_node() function obtains a handle to the next sibling node of node.
If no next sibling node exists in the snapshot, DI_NODE_NIL is returned and errno is
set to ENXIO or ENOTSUP.

The di_drv_first_node() function obtains a handle to the first node associated
with the driver specified by drv_name. If there is no such driver, DI_NODE_NIL is
returned with errno is set to EINVAL. If the driver exists but there is no node
associated with this driver, DI_NODE_NIL is returned and errno is set to ENXIO or
ENOTSUP.

The di_drv_next_node() function returns a handle to the next node bound to the
same driver. If no more nodes exist, DI_NODE_NIL is returned.

Upon successful completion, a handle is returned. Otherwise, DI_NODE_NIL is
returned and errno is set to indicate the error.

di_child_node(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

316 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

These functions will fail if:

EINVAL The argument is invalid.

ENXIO The requested node does not exist.

ENOTSUP The node was not found in the snapshot, but it may exist in the
kernel. This error may occur if the snapshot contains a partial
device tree.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

di_child_node(3DEVINFO)

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 317

di_devfs_path, di_devfs_minor_path, di_devfs_path_free – generate and free physical
path names

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

char *di_devfs_path(di_node_t node);

char *di_devfs_minor_path(di_minor_t minor);

void di_devfs_path_free(char *path_buf);

node The handle to a device node in the snapshot.

minor The handle to a device minor node in the snapshot.

path_buf A pointer returned by di_devfs_path() or
di_devfs_minor_path().

The di_devfs_path() function generates the physical path of the device node
specified by node.

The di_devfs_minor_path() function generates the physical path of the device
minor node specified by minor.

The di_devfs_path_free() function frees memory that was allocated to store the
physical path by di_devfs_path() and di_devfs_minor_path(). The caller of
di_devfs_path() and di_devfs_minor_path() is responsible for freeing this
memory allocated by calling di_devfs_path_free().

Upon successful completion, the di_devfs_path() and di_devfs_minor_path()
functions return a pointer to the string containing the physical path of a device node
or a device minor node, respectively. Otherwise, they return NULL and errno is set to
indicate the error.

The di_devfs_path() and di_devfs_minor_path() functions will fail if:

EINVAL The node or minor argument is not a valid handle.

The di_devfs_path() and di_devfs_minor_path() functions can also return
any error value returned by malloc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), malloc(3C), attributes(5)

Writing Device Drivers

di_devfs_path(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

318 man pages section 3: Extended Library Functions • Last Revised 22 Mar 2004

di_init, di_fini – create and destroy a snapshot of kernel device tree

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_node_t di_init(const char *phys_path, uint_t flags);

void di_fini(di_node_t root);

flags Snapshot content specification. The possible values can be a
bitwise OR of the following:

DINFOSUBTREE Include subtree.

DINFOPROP Include properties.

DINFOMINOR Include minor data.

DINFOCPYALL Include all of the above.

DINFOLYR Include device layering data. If flags is 0, the
snapshot contains only a single node without properties or minor
nodes.

phys_path Physical path of the root node of the snapshot. See
di_devfs_path(3DEVINFO).

root Handle obtained by calling di_init().

The di_init() function creates a snapshot of the kernel device tree and returns a
handle of the root node. The caller specifies the contents of the snapshot by providing
flag and phys_path.

The di_fini() function destroys the snapshot of the kernel device tree and frees the
associated memory. All handles associated with this snapshot become invalid after the
call to di_fini().

Upon success, di_init() returns a handle. Otherwise, DI_NODE_NIL is returned
and errno is set to indicate the error.

The di_init() function can set errno to any error code that can also be set by
open(2), ioctl(2) or mmap(2). The most common error codes include:

EACCESS Insufficient privilege for accessing device configuration data.

ENXIO Either the device named by phys_path is not present in the system,
or the devinfo(7D) driver is not installed properly.

EINVAL Either phys_path is incorrectly formed or the flags argument is
invalid.

EXAMPLE 1 Using the libdevinfo Interfaces To Print All Device Tree Node Names

The following is an example using the libdevinfo interfaces to print all device tree
node names:

di_init(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

Extended Library Functions 319

EXAMPLE 1 Using the libdevinfo Interfaces To Print All Device Tree Node Names
(Continued)

/*
* Code to print all device tree node names
*/

#include <stdio.h>
#include <libdevinfo.h>

int
prt_nodename(di_node_t node, void *arg)
{

printf("%s\n", di_node_name(node));
return (DI_WALK_CONTINUE);

}

main()
{

di_node_t root_node;
if((root_node = di_init("/", DINFOSUBTREE)) == DI_NODE_NIL) {

fprintf(stderr, "di_init() failed\n");
exit(1);

}
di_walk_node(root_node, DI_WALK_CLDFIRST, NULL, prt_nodename);
di_fini(root_node);

}

EXAMPLE 2 Using the libdevinfo Interfaces To Print The Physical Path Of SCSI Disks

The following example uses the libdevinfo interfaces to print the physical path of
SCSI disks:

/*
* Code to print physical path of scsi disks
*/

#include <stdio.h>
#include <libdevinfo.h>
#define DISK_DRIVER "sd" /* driver name */

void
prt_diskinfo(di_node_t node)
{

int instance;
char *phys_path;

/*
* If the device node exports no minor nodes,
* there is no physical disk.
*/
if (di_minor_next(node, DI_MINOR_NIL) == DI_MINOR_NIL) {

return;
}

di_init(3DEVINFO)

320 man pages section 3: Extended Library Functions • Last Revised 8 Dec 2003

EXAMPLE 2 Using the libdevinfo Interfaces To Print The Physical Path Of SCSI Disks
(Continued)

instance = di_instance(node);
phys_path = di_devfs_path(node);
printf("%s%d: %s\n", DISK_DRIVER, instance, phys_path);
di_devfs_path_free(phys_path);

}

void
walk_disknodes(di_node_t node)
{

node = di_drv_first_node(DISK_DRIVER, node);
while (node != DI_NODE_NIL) {

prt_diskinfo(node);
node = di_drv_next_node(node);

}
}

main()
{

di_node_t root_node;
if ((root_node = di_init("/", DINFOCPYALL)) == DI_NODE_NIL) {

fprintf(stderr, "di_init() failed\n");
exit(1);

}
walk_disknodes(root_node);
di_fini(root_node);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

open(2), ioctl(2), mmap(2), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

di_init(3DEVINFO)

ATTRIBUTES

SEE ALSO

Extended Library Functions 321

di_link_next_by_node, di_link_next_by_lnode – libdevinfo link traversal functions

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_link_t di_link_next_by_node(di_lnode_t node, di_link_t link,
uint_t endpoint);

di_link_t di_link_next_by_lnode(di_node_t lnode, di_link_t link,
uint_t endpoint);

link The handle to the current the link or DI_LINK_NIL.

endpoint Specify which endpoint of the link the node or lnode should
correspond to, either DI_LINK_TGT or DI_LINK_SRC.

node The device node with which the link is associated.

lnode The lnode with which the link is associated.

The di_link_next_by_node() function returns a handle to the next link that has
the same endpoint node as link. If link is DI_LINK_NIL, a handle is returned to the
first link whose endpoint specified by endpoint matches the node specified by node.

The di_link_next_by_lnode() function returns a handle to the next link that has
the same endpoint lnode as link. If link is DI_LINK_NIL, a handle is returned to the
first link whose endpoint specified by endpoint matches the lnode specified by lnode.

Upon successful completion, a handle to the next link is returned. Otherwise,
DI_LINK_NIL is returned and errno is set to indicate the error.

The di_link_next_by_node() and di_link_next_by_lnode() functions will
fail if:

EINVAL An argument is invalid.

ENXIO The end of the link list has been reached.

The di_link_next_by_node() function will fail if:

ENOTSUP Device usage information is not available in snapshot.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

di_link_next_by_node(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

322 man pages section 3: Extended Library Functions • Last Revised 12 Jul 2004

di_link_spectype, di_link_to_lnode – return libdevinfo link information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_link_spectype(di_link_t link);

di_lnode_t di_link_to_lnode(di_link_t link, uint_t endpoint);

link A handle to a link.

endpoint specifies the endpoint of the link, which should correspond to
either DI_LINK_TGT or DI_LINK_SRC

The di_link_spectype() function returns libdevinfo link information.

The di_link_to_lnode() function takes a link specified by link and returns the
lnode corresponding to the link endpoint specified by endpoint.

The di_link_spectype() function returns the spectype parameter flag that was
used to open the target device of a link, either S_IFCHR or S_IFBLK.

Upon successful completion, di_link_to_lnode() returns a handle to an lnode.
Otherwise, DI_LINK_NIL is returned and errno is set to indicate the error.

The di_link_to_lnode() function will fail if:

EINVAL An argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

di_link_spectype(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 323

di_lnode_name, di_lnode_devinfo, di_lnode_devt – return libdevinfo lnode
information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

char *di_lnode_name(di_lnode_t lnode);

di_node_t di_lnode_devinfo(di_lnode_t lnode);

int di_lnode_devt(di_lnode_t lnode, dev_t *devt);

lnode A handle to an lnode.

devt A pointer to a dev_t that can be returned.

These functions return libdevinfo lnode information.

The di_lnode_name() function returns a pointer to the name associated with lnode.

The di_lnode_devinfo() function returns a handle to the device node associated
with lnode.

The di_lnode_devt() function sets the dev_t pointed to by the devt parameter to
the dev_t associated with lnode.

The di_lnode_name() function returns a pointer to the name associated with lnode.

The di_lnode_devinfo() function returns a handle to the device node associated
with lnode.

The di_lnode_devt() function returns 0 if the requested attribute exists in lnode
and was returned. It returns −1 if the requested attribute does not exist and sets errno
to indicate the error.

The di_lnode_devt() function will fail if:

EINVAL An argument was invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

di_lnode_name(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

324 man pages section 3: Extended Library Functions • Last Revised 22 Mar 2004

di_lnode_next – libdevinfo lnode traversal function

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_lnode_t di_lnode_next(di_node_t node, di_lnode_t lnode);

node A handle to a di_node.

lnode A handle to an lnode.

The di_lnode_next() function returns a handle to the next lnode for the device
node specified by node. If lnode is DI_LNODE_NIL, a handle to the first lnode is
returned.

Upon successful completion, a handle to an lnode is returned. Otherwise,
DI_LNODE_NIL is returned and errno is set to indicate the error.

The di_lnode_next() function will fail if:

EINVAL An argument is invalid.

ENOTSUP Device usage information is not available in snapshot.

ENXIO The end of the lnode list has been reached.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

di_lnode_next(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 325

di_lnode_private_set, di_lnode_private_get, di_minor_private_set,
di_minor_private_get, di_node_private_set, di_node_private_get, di_link_private_set,
di_link_private_get – manipulate libdevinfo user traversal pointers

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

void di_lnode_private_set(di_lnode_t lnode, void *data);

void *di_lnode_private_get(di_lnode_t lnode);

void di_minor_private_set(di_minor_t minor, void *data);

void *di_minor_private_get(di_minor_t minor);

void di_node_private_set(di_node_t node, void *data);

void *di_node_private_get(di_node_t node);

void di_link_private_set(di_link_t link, void *data);

void *di_link_private_get(di_link_t link);

lnode A handle to an lnode.

minor A handle to a minor node.

node A handle to a devinfo node.

link A handle to a link.

data A pointer to caller-specific data.

The di_lnode_private_set() function allows a caller to associate caller-specific
data pointed to by data with an lnode specified by lnode, thereby facilitating traversal
of lnodes in the snapshot.

The di_lnode_private_get() function allows a caller to retrieve a data pointer
that was associated with an lnode by a call to di_lnode_private_set().

The di_minor_private_set() function allows a caller to associate caller-specific
data pointed to by data with a minor node specified by minor, thereby facilitating
traversal of minor nodes in the snapshot.

The di_minor_private_get() function allows a caller to retrieve a data pointer
that was associated with a minor node obtained by a call to
di_minor_private_set().

The di_node_private_set() function allows a caller to associate caller-specific
data pointed to by data with a devinfo node, thereby facilitating traversal of devinfo
nodes in the snapshot.

The di_node_private_get() function allows a caller to retrieve a data pointer that
was associated with a devinfo node obtained by a call to di_node_private_set().

di_lnode_private_set(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

326 man pages section 3: Extended Library Functions • Last Revised 22 Mar 2004

The di_link_private_set() function allows a caller to associate caller-specific
data pointed to by data with a link, thereby facilitating traversal of links in the
snapshot.

The di_link_private_get() function allows a caller to retrieve a data pointer that
was associated with a link obtained by a call to di_link_private_set().

These functions do not perform any type of locking. It is up to the caller to satisfy any
locking needs.

The di_lnode_private_set(), di_minor_private_set(),
di_node_private_set(), and di_link_private_set() functions do not return
values.

The di_lnode_private_get(), di_minor_private_get(),
di_node_private_get(), and di_node_private_get() functions return a
pointer to caller-specific data that was initialized with their corresponding set
function. If no caller-specific data was assigned with a set function, the results are
undefined.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

di_lnode_private_set(3DEVINFO)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 327

di_minor_devt, di_minor_name, di_minor_nodetype, di_minor_spectype – return
libdevinfo minor node information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

dev_t di_minor_devt(di_minor_t minor);

char *di_minor_name(di_minor_t minor);

char *di_minor_nodetype(di_minor_t minor);

int di_minor_spectype(di_minor_t minor);

minor A handle to minor data node.

These functions return libdevinfo minor node information.

The di_minor_name() function returns the minor name. See
ddi_create_minor_node(9F) for a description of the name parameter.

The di_minor_devt() function returns the dev_t value of the minor node that is
specified by SYS V ABI. See getmajor(9F), getminor(9F), and
ddi_create_minor_node(9F) for more information.

The di_minor_spectype() function returns the spec_type of the file, either
S_IFCHR or S_IFBLK. See ddi_create_minor_node(9F) for a description of the
spec_type parameter.

The di_minor_nodetype()function returns the minor node_type of the minor node.
See ddi_create_minor_node(9F) for a description of the node_type parameter.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

attributes(5), ddi_create_minor_node(9F), getmajor(9F), getminor(9F)

Writing Device Drivers

di_minor_devt(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

328 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_minor_next – libdevinfo minor node traversal functions

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_minor_t di_minor_next(di_node_t node, di_minor_t minor);

minor Handle to the current minor node or DI_MINOR_NIL.

node Device node with which the minor node is associated.

The di_minor_next() function returns a handle to the next minor node for the
device node node. If minor is DI_MINOR_NIL, a handle to the first minor node is
returned.

Upon successful completion, a handle to the next minor node is returned. Otherwise,
DI_MINOR_NIL is returned and errno is set to indicate the error.

The di_minor_next() function will fail if:

EINVAL Invalid argument.

ENOTSUP Minor node information is not available in snapshot.

ENXIO End of minor node list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libdevinfo(3LIB), attributes(5)

Writing Device Drivers

di_minor_next(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 329

di_prom_init, di_prom_fini – create and destroy a handle to the PROM device
information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_prom_handle_t di_prom_init(void);

void di_prom_fini(di_prom_handle_t ph);

ph Handle to prom returned by di_prom_init().

For device nodes whose nodeid value is DI_PROM_NODEID (see
di_nodeid(3DEVINFO)), additional properties can be retrieved from the PROM. The
di_prom_init() function returns a handle that is used to retrieve such properties.
This handle is passed to di_prom_prop_lookup_bytes(3DEVINFO) and
di_prom_prop_next(3DEVINFO).

The di_prom_fini() function destroys the handle and all handles to the PROM
device information obtained from that handle.

Upon successful completion, di_prom_init() returns a handle. Otherwise,
DI_PROM_HANDLE_NIL is returned and errno is set to indicate the error.

The di_prom_init() sets errno function to any error code that can also be set by
openprom(7D) or malloc(3C).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_nodeid(3DEVINFO), di_prom_prop_next(3DEVINFO),
di_prom_prop_lookup_bytes(3DEVINFO), libdevinfo(3LIB), malloc(3C),
attributes(5), openprom(7D)

di_prom_init(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

330 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_prom_prop_data, di_prom_prop_next, di_prom_prop_name – access PROM device
information

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_prom_prop_t di_prom_prop_next(di_prom_handle_t ph, di_node_t
node, di_prom_prop_t prom_prop);

char *di_prom_prop_name(di_prom_prop_t prom_prop);

int di_prom_prop_data(di_prom_prop_t prom_prop, uchar_t
**prop_data);

node Handle to a device node in the snapshot of kernel device tree.

ph PROM handle

prom_prop Handle to a PROM property.

prop_data Address of a pointer.

The di_prom_prop_next() function obtains a handle to the next property on the
PROM property list associated with node. If prom_prop is DI_PROM_PROP_NIL, the
first property associated with node is returned.

The di_prom_prop_name() function returns the name of the prom_prop property.

The di_prom_prop_data() function returns the value of the prom_prop property.
The return value is a non-negative integer specifying the size in number of bytes in
prop_data.

All memory allocated by these functions is managed by the library and must not be
freed by the caller.

The di_prom_prop_data() function returns the number of bytes in prop_data and
prop_data is updated to point to a byte array containing the property value. If 0 is
returned, the property is a boolean property and the existence of this property
indicates the value is true.

The di_prom_prop_name() function returns a pointer to a string that contains the
name of prom_prop.

The di_prom_prop_next() function returns a handle to the next PROM property.
DI_PROM_PROP_NIL is returned if no additional properties exist.

See openprom(7D) for a description of possible errors.

See attributes(5) for descriptions of the following attributes:

di_prom_prop_data(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 331

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

attributes(5), openprom(7D)

Writing Device Drivers

di_prom_prop_data(3DEVINFO)

SEE ALSO

332 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_prom_prop_lookup_bytes, di_prom_prop_lookup_ints,
di_prom_prop_lookup_strings – search for a PROM property

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_prom_prop_lookup_bytes(di_prom_handle_t ph, di_node_t node,
const char *prop_name, uchar_t **prop_data);

int di_prom_prop_lookup_ints(di_prom_handle_t ph, di_node_t node,
const char *prop_name, int **prop_data);

int di_prom_prop_lookup_strings(di_prom_handle_t ph, di_node_t
node, const char *prop_name, char **prop_data);

node Handle to device node in snapshot created by
di_init(3DEVINFO).

ph Handle returned by di_prom_init(3DEVINFO).

prop_data For di_prom_prop_lookup_bytes(), the address of a pointer
to an array of unsigned characters.

For di_prom_prop_lookup_ints(), the address of a pointer to
an integer.

For di_prom_prop_lookup_strings(), the address of pointer
to a buffer.

prop_name The name of the property being searched.

These functions return the value of a known PROM property name and value type
and update the prop_data pointer to reference memory that contains the property
value. All memory allocated by these functions is managed by the library and must
not be freed by the caller.

If the property is found, the number of entries in prop_data is returned. If the property
is a boolean type, 0 is returned and the existence of this property indicates the value is
true. Otherwise, -1 is returned and errno is set to indicate the error.

For di_prom_prop_lookup_bytes(), the number of entries is the number of
unsigned characters contained in the buffer pointed to by prop_data.

For di_prom_prop_lookup_ints(), the number of entries is the number of
integers contained in the buffer pointed to by prop_data.

For di_prom_prop_lookup_strings(), the number of entries is the number of
null-terminated strings contained in the buffer. The strings are stored in a
concatenated format in the buffer.

These functions will fail if::

EINVAL Invalid argument.

di_prom_prop_lookup_bytes(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 333

ENXIO The property does not exist.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), di_prom_prop_next(3DEVINFO), libdevinfo(3LIB),
attributes(5), openprom(7D)

Writing Device Drivers

di_prom_prop_lookup_bytes(3DEVINFO)

ATTRIBUTES

SEE ALSO

334 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_prop_bytes, di_prop_devt, di_prop_ints, di_prop_name, di_prop_strings,
di_prop_type, di_prop_int64 – access property values and attributes

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_prop_bytes(di_prop_t prop, uchar_t **prop_data);

dev_t di_prop_devt(di_prop_t prop);

int di_prop_ints(di_prop_t prop, int **prop_data);

int di_prop_int64(di_prop_t prop, int64_t **prop_data);

char *di_prop_name(di_prop_t prop);

int di_prop_strings(di_prop_t prop, char **prop_data);

int di_prop_type(di_prop_t prop);

prop Handle to a property returned by di_prop_next(3DEVINFO).

prop_data For di_prop_bytes(), the address of a pointer to an unsigned
character.

For di_prop_ints(), the address of a pointer to an integer.

For di_prop_int64(), the address of a pointer to a 64–bit
integer.

For di_prop_strings(), the address of pointer to a character.

These functions access information associated with property values and attributes. All
memory allocated by these functions is managed by the library and must not be freed
by the caller.

The di_prop_bytes() function returns the property data as a series of unsigned
characters.

The di_prop_devt() function returns the dev_t with which this property is
associated. If the value is DDI_DEV_T_NONE, the property is not associated with any
specific minor node.

The di_prop_ints() function returns the property data as a series of integers.

The di_prop_int64() function returns the property data as a series of 64–bit
integers.

The di_prop_name() function returns the name of the property.

The di_prop_strings() function returns the property data as a concatenation of
null-terminated strings.

di_prop_bytes(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 335

The di_prop_type() function returns the type of the property. The type determines
the appropriate interface to access property values. The following is a list of possible
types:

DI_PROP_TYPE_BOOLEAN There is no interface to call since there is no
property data associated with boolean
properties. The existence of the property
defines a TRUE value.

DI_PROP_TYPE_INT Use di_prop_ints() to access property
data.

DI_PROP_TYPE_INT64 Use di_prop_int64() to access property
data.

DI_PROP_TYPE_STRING Use di_prop_strings() to access
property data.

DI_PROP_TYPE_BYTE Use di_prop_bytes() to access property
data.

DI_PROP_TYPE_UNKNOWN Use di_prop_bytes() to access property
data. Since the type of property is
unknown, the caller is responsible for
interpreting the contents of the data.

DI_PROP_TYPE_UNDEF_IT The property has been undefined by the
driver. No property data is available.

Upon successful completion, di_prop_bytes(), di_prop_ints(),
di_prop_int64(), and di_prop_strings() return a non-negative value,
indicating the number of entries in the property value buffer. See
di_prom_prop_lookup_bytes(3DEVINFO) for a description of the return values.
Otherwise, -1 is returned and errno is set to indicate the error.

The di_prop_devt() function returns the dev_t value associated with the property.

The di_prop_name() function returns a pointer to a string containing the name of
the property.

The di_prop_type() function can return one of types described in the
DESCRIPTION section.

These functions will fail if:

EINVAL Invalid argument. For example, the property type does not match
the interface.

See attributes(5) for descriptions of the following attributes:

di_prop_bytes(3DEVINFO)

RETURN VALUES

ERRORS

ATTRIBUTES

336 man pages section 3: Extended Library Functions • Last Revised 27 Mar 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_prom_prop_lookup_bytes(3DEVINFO), di_prop_next(3DEVINFO),
libdevinfo(3LIB), attributes(5)

Writing Device Drivers

di_prop_bytes(3DEVINFO)

SEE ALSO

Extended Library Functions 337

di_prop_lookup_bytes, di_prop_lookup_ints, di_prop_lookup_int64,
di_prop_lookup_strings – search for a property

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_prop_lookup_bytes(dev_t dev, di_node_t node, const char
*prop_name, uchar_t **prop_data);

int di_prop_lookup_ints(dev_t dev, di_node_t node, const char
*prop_name, int **prop_data);

int di_prop_lookup_int64(dev_t dev, di_node_t node, const char
*prop_name, int64_t **prop_data);

int di_prop_lookup_strings(dev_t dev, di_node_t node, const char
*prop_name, char **prop_data);

dev dev_t of minor node with which the property is associated.
DDI_DEV_T_ANY is a wild card that matches all dev_t’s,
including DDI_DEV_T_NONE.

node Handle to the device node with which the property is associated.

prop_data For di_prop_lookup_bytes(), the address to a pointer to an
array of unsigned characters containing the property data.

For di_prop_lookup_ints(), the address to a pointer to an
array of integers containing the property data.

For di_prop_lookup_int64(), the address to a pointer to an
array of 64–bit integers containing the property data.

For di_prop_lookup_strings(), the address to a pointer to a
buffer containing a concatenation of null-terminated strings
containing the property data.

prop_name Name of the property for which to search.

These functions return the value of a known property name type and dev_t value. All
memory allocated by these functions is managed by the library and must not be freed
by the caller.

If the property is found, the number of entries in prop_data is returned. If the property
is a boolean type, 0 is returned and the existence of this property indicates the value is
true. Otherwise, -1 is returned and errno is set to indicate the error.

These functions will fail if:

EINVAL Invalid argument.

ENOTSUP The snapshot contains no property information.

ENXIO The property does not exist; try di_prom_prop_lookup_*().

di_prop_lookup_bytes(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

338 man pages section 3: Extended Library Functions • Last Revised 26 Mar 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), di_prom_prop_lookup_bytes(3DEVINFO),
libdevinfo(3LIB), attributes(5)

Writing Device Drivers

di_prop_lookup_bytes(3DEVINFO)

ATTRIBUTES

SEE ALSO

Extended Library Functions 339

di_prop_next – libdevinfo property traversal function

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

di_prop_t di_prop_next(di_node_t node, di_prop_t prop);

node Handle to a device node.

prop Handle to a property.

The di_prop_next() function returns a handle to the next property on the property
list. If prop is DI_PROP_NIL, the handle to the first property is returned.

Upon successful completion, di_prop_next() returns a handle. Otherwise
DI_PROP_NIL is returned and errno is set to indicate the error.

The di_prop_next() function will fail if:

EINVAL Invalid argument.

ENOTSUP The snapshot does not contain property information.

ENXIO There are no more properties.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

di_prop_next(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

340 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

DisconnectToServer – disconnect from a DMI service provider

cc [flag ...] file ... -ldmici -ldmimi [library ...]

#include <dmi/api.hh>

bool_t DisconnectToServer(DmiRpcHandle *dmi_rpc_handle);

The DisconnectToServer() function disconnects a management application or a
component instrumentation from a DMI service provider.

The ConnectToServer() function returns TRUE if successful, otherwise FALSE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Safe

ConnectToServer(3DMI),attributes(5)

DisconnectToServer(3DMI)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 341

di_walk_link – traverse libdevinfo links

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_walk_link(di_node_t root, uint_t flag, uint_t endpoint, void
*arg, int (*link_callback)(di_link_t link, void *arg));

root The handle to the root node of the subtree to visit.

flag Specify 0. Reserved for future use.

endpoint Specify if the current node being visited should be the target or
source of an link, either DI_LINK_TGT or DI_LINK_SRC

arg A pointer to caller-specific data.

link_callback The caller-supplied callback function.

The di_walk_link() function visits all nodes in the subtree rooted at root. For each
node found, the caller-supplied function link_callback() is invoked for each link
associated with that node where that node is the specified endpoint of the link. The
return value of link_callback() specifies subsequent walking behavior. See RETURN
VALUES.

Upon successful completion, di_walk_link() returns 0. Otherwise, -1 is returned
and errno is set to indicate the error.

The callback function, link_callback(), can return one of the following:

DI_WALK_CONTINUE Continue walking.

DI_WALK_TERMINATE Terminate the walk immediately.

The di_walk_link() function will fail if:

EINVAL An argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

di_walk_link(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

342 man pages section 3: Extended Library Functions • Last Revised 22 Mar 2004

di_walk_lnode – traverse libdevinfo lnodes

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_walk_lnode(di_node_t root, uint_t flag, void *arg, int
(*lnode_callback)(di_lnode_t link, void *arg));

root The handle to the root node of the subtree to visit.

flag Specify 0. Reserved for future use.

arg A pointer to caller-specific data.

lnode_callback The caller-supplied callback function.

The di_walk_lnode() function visits all nodes in the subtree rooted at root. For each
node found, the caller-supplied function lnode_callback() is invoked for each lnode
associated with that node. The return value of lnode_callback() specifies subsequent
walking behavior where that node is the specified endpoint of the link.

Upon successful completion, di_walk_lnode() returns 0. Otherwise, -1 is returned
and errno is set to indicate the error.

The callback function lnode_callback() can return one of the following:

DI_WALK_CONTINUE Continue walking.

DI_WALK_TERMINATE Terminate the walk immediately.

The di_walk_lnode() function will fail if:

EINVAL An argument is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

di_walk_lnode(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 343

di_walk_minor – traverse libdevinfo minor nodes

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_walk_minor(di_node_t root, const char *minor_nodetype, uint_t
flag, void *arg, int (*minor_callback)di_node_t node, di_minor_t
minor, void *arg);

arg Pointer to caller– specific user data.

flag Specify 0. Reserved for future use.

minor The minor node visited.

minor_nodetype A character string specifying the minor data type, which may be
one of the types defined by the Solaris DDI framework, for
example, DDI_NT_BLOCK. NULL matches all minor_node types. See
ddi_create_minor_node(9F).

node The device node with which to the minor node is associated.

root Root of subtree to visit.

The di_walk_minor() function visits all minor nodes attached to device nodes in a
subtree rooted at root. For each minor node that matches minor_nodetype, the
caller-supplied function minor_callback() is invoked. The walk terminates immediately
when minor_callback() returns DI_WALK_TERMINATE.

Upon successful completion, di_walk_minor() returns 0. Otherwise, -1 is returned
and errno is set to indicate the error.

The minor_callback() function returns one of the following:

DI_WALK_CONTINUE Continue to visit subsequent minor data nodes.

DI_WALK_TERMINATE Terminate the walk immediately.

The di_walk_minor() function will fail if:

EINVAL Invalid argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_minor_nodetype(3DEVINFO), libdevinfo(3LIB), attributes(5),
ddi_create_minor_node(9F)

Writing Device Drivers

di_walk_minor(3DEVINFO)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

344 man pages section 3: Extended Library Functions • Last Revised 1 Dec 1998

di_walk_node – traverse libdevinfo device nodes

cc [flag...] file... -ldevinfo [library...]

#include <libdevinfo.h>

int di_walk_node(di_node_t root, uint_t flag, void *arg, int
(*node_callback)di_node_t node, void *arg);

The di_walk_node() function visits all nodes in the subtree rooted at root. For each
node found, the caller-supplied function node_callback() is invoked. The return value of
node_callback() specifies subsequent walking behavior.

arg Pointer to caller–specific data.

flag Specifies walking order, either DI_WALK_CLDFIRST (depth first) or
DI_WALK_SIBFIRST (breadth first). DI_WALK_CLDFIRST is the default.

node The node being visited.

root The handle to the root node of the subtree to visit.

Upon successful completion, di_walk_node() returns 0. Otherwise, -1 is returned
and errno is set to indicate the error.

The node_callback() function can return one of the following:

DI_WALK_CONTINUE Continue walking.

DI_WALK_PRUNESIB Continue walking, but skip siblings and their child
nodes.

DI_WALK_PRUNECHILD Continue walking, but skip subtree rooted at current
node .

DI_WALK_TERMINATE Terminate the walk immediately.

The di_walk_node() function will fail if:

EINVAL Invalid argument.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

di_init(3DEVINFO), libdevinfo(3LIB), attributes(5)

Writing Device Drivers

di_walk_node(3DEVINFO)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 345

DmiAddComponent, DmiAddGroup, DmiAddLanguage, DmiDeleteComponent,
DmiDeleteGroup, DmiDeleteLanguage – Management Interface database
administration functions

cc [flag ...] file ... -ldmimi -ldmi -lnsl -lrwtool [library ...]
#include <dmi/server.h>
#include <dmi/miapi.h>

bool_t DmiAddComponent(DmiAddComponentIN argin, DmiAddComponentOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiAddGroup(DmiAddGroupIN argin, DmiAddGroupOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiAddLanguage(DmiAddLanguageIN argin,
DmiAddLanguageOUT*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiDeleteComponent(DmiDeleteComponentIN argin,
DmiDeleteComponentOUT *result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiDeleteGroup(DmiDeleteGroupIN argin, DmiDeleteGroupOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiDeleteLanguage(DmiDeleteLanguageIN argin,
DmiDeleteLanguageOUT *result, DmiRpcHandle *dmi_rpc_handle);

The database administration functions add a new component to the database or add a
new language mapping for an existing component. You may also remove an existing
component, remove a specific language mapping, or remove a group from a
component.

The DmiAddComponent() function adds a new component to the DMI database. It
takes the name of a file, or the address of memory block containing MIF data, checks
the data for adherence to the DMI MIF grammar, and installs the MIF in the database.
The procedure returns a unique component ID for the newly installed component. The
argin parameter is an instance of a DmiAddComponentIN structure containing the
following members:

DmiHandle_t handle; /* an open session handle */
DmiFileDataList_t *fileData; /* MIF data for component */

The result parameter is a pointer to a DmiAddComponentOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiId_t compId; /* SP-allocated component ID */
DmiStringList_t *errors; /* installation error messages */

The DmiAddLanguage() function adds a new language mapping for an existing
component in the database. It takes the name of a file, or the address of memory block
containing translated MIF data, checks the data for adherence to the DMI MIF
grammar, and installs the language MIF in the database. The argin parameter is an
instance of a DmiAddLanguageIN structure containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiFileDataList_t *fileData; /* language mapping file */

DmiAddComponent(3DMI)

NAME

SYNOPSIS

DESCRIPTION

346 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DmiId_t compId; /* component to access */

The result parameter is a pointer to a DmiAddLanguageOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiStringList_t *errors; /* installation error messages */

The DmiAddGroup() function adds a new group to an existing component in the
database. It takes the name of a file, or the address of memory block containing the
group’s MIF data, checks the data for adherence to the DMI MIF grammar, and installs
the group MIF in the database. The argin parameter is an instance of a
DmiAddGroupIN structure containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiFileDataList_t *fileData; /* MIF file data for group */
DmiId_t compId; /* component to access */

The result parameter is a pointer to a DmiAddGroupOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiId_t groupId; /* SP-allocated group ID */
DmiStringList_t *errors; /* installation error messages */

The DmiDeleteComponent() function removes an existing component from the
database. The argin parameter is an instance of a DmiDeleteComponentIN structure
containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiId_t compId; /* component to delete */

The result parameter is a pointer to a DmiDeleteComponentOUT structure containing
the following members:

DmiErrorStatus_t error_status;

The DmiDeleteLanguage() function removes a specific language mapping for a
component. You specify the language string and component ID. The argin parameter is
an instance of a DmiDeleteLanguageIN structure containing the following
members:

DmiHandle_t handle; /* an open session handle */
DmiString_t *language; /* language to delete */
DmiId_t compId; /* component to access */

The result parameter is a pointer to a DmiDeleteLanguageOUT structure containing
the following members:

DmiErrorStatus_t error_status;

The DmiDeleteGroup() function removes a group from a component. The caller
specifies the component and group IDs. The argin parameter is an instance of a
DmiDeleteGroupIN structure containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiId_t compId; /* component containing group */

DmiAddComponent(3DMI)

Extended Library Functions 347

DmiId_t groupId; /* group to delete */

The result parameter is a pointer to a DmiDeleteGroupOUT structure containing the
following members:

DmiErrorStatus_t error_status;

The DmiAddComponent() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_FILE_ERROR
DMIERR_BAD_SCHEMA_DESCRIPTION_FILE

The DmiAddGroup() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR
DMIERR_BAD_SCHEMA_DESCRIPTION_FILE

The DmiAddLanguage() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR
DMIERR_BAD_SCHEMA_DESCRIPTION_FILE

The DmiDeleteComponent() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

THe DmiDeleteGroup() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_INSUFFICIENT_PRIVILEGES

DmiAddComponent(3DMI)

RETURN VALUES

348 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

The DmiDeleteLanguage() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsasdk

MT-level Unsafe

attributes(5)

DmiAddComponent(3DMI)

ATTRIBUTES

SEE ALSO

Extended Library Functions 349

DmiAddRow, DmiDeleteRow, DmiGetAttribute, DmiGetMultiple, DmiSetAttribute,
DmiSetMultiple – Management Interface operation functions

cc [flag ...] file ... -ldmimi -ldmi -lnsl -lrwtool [library ...]
#include <server.h>

#include <miapi.h>

bool_t DmiAddRow(DmiAddRowIN argin, DmiAddRowOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiDeleteRow(DmiDeleteRowIN argin, DmiDeleteRowOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiGetAttribute(DmiGetAttributeIN argin, DmiGetAttributeOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiGetMultiple(DmiGetMultipleIN argin, DmiGetMultipleOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiSetAttribute(DmiSetAttributeIN argin, DmiSetAttributeOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiSetMultiple(DmiSetMultipleIN argin, DmiSetMultipleOUT
*result, DmiRpcHandle *dmi_rpc_handle);

The operation functions provide a method for retrieving a single value from the
Service Provider and for setting a single attribute value. In addition, you may also
retrieve attribute values from the Service Provider. You may perform a set operation
on an attribute or a list of attributes and add or delete a row from an existing table.

The DmiAddRow() function adds a row to an existing table. The rowData parameter
contains the full data, including key attribute values, for a row. It is an error for the
key list to specify an existing table row. The argin parameter is an instance of a
DmiAddRowIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiRowData_t *rowData; /* Attribute values to set */

The result parameter is a pointer to a DmiAddRowOUT structure containing the
following members:

DmiErrorStatus_t error_status;

DmiDeleteRow() function removes a row from an existing table. The key list must
specify valid keys for a table row. The argin parameter is an instance of a
DmiDeleteRowIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiRowData_t *rowData; /* Row to delete */

The result parameter is a pointer to a DmiDeleteRowOUT structure containing the
following members:

DmiErrorStatus_t error_status;

DmiAddRow(3DMI)

NAME

SYNOPSIS

DESCRIPTION

350 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

The DmiGetAttribute() function provides a simple method for retrieving a single
attribute value from the Service Provider. The compId, groupId, attribId, and
keyList identify the desired attribute. The resulting attribute value is returned in a
newly allocated DmiDataUnion structure. The address of this structure is returned
through the value parameter. The argin parameter is an instance of a
DmiListComponentsIN structure containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiId_t compId; /* Component to access */
DmiId_t groupId; /* Group within component */
DmiId_t attribId; /* Attribute within a group */
DmiAttributeValues_t *keyList; /* Keylist to specify a table row */

The result parameter is a pointer to a DmiGetAttributeOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiDataUnion_t *value; /* Attribute value returned */

The DmiGetMultiple() function retrieves attribute values from the Service
Provider. This procedure may get the value for an individual attribute, or for multiple
attributes across groups, components, or rows of a table.

The DmiSetAttribute() function provides a simple method for setting a single
attribute value. The compId, groupId, attribId, and keyList identify the desired
attribute. The setMode parameter defines the procedure call as a Set, Reserve, or
Release operation. The new attribute value is contained in the DmiDataUnion
structure whose address is passed in the value parameter. The argin parameter is an
instance of a DmiSetAttributeIN structure containing the following members:

DmiHandle_t handle;
DmiId_t compId;
DmiId_t groupId;
DmiId_t attribId;
DmiAttributeValues_t *keyList;
DmiSetMode_t setMode;
DmiDataUnion_t *value;

The result parameter is a pointer to a DmiSetAttributeOUT structure containing the
following members:

DmiErrorStatus_t error_status;

The DmiSetMultiple() function performs a set operation on an attribute or list of
attributes. Set operations include actually setting the value, testing and reserving the
attribute for future setting, or releasing the set reserve. These variations on the set
operation are specified by the parameter setMode. The argin parameter is an instance
of a DmiSetMultipleIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiSetMode_t setMode; /* set, reserve, or release */
DmiMultiRowData_t *rowData; /* Attribute values to set */

The result parameter is a pointer to a DmiSetMultipleOUT structure containing the
following members:

DmiAddRow(3DMI)

Extended Library Functions 351

DmiErrorStatus_t error_status;

The rowData array describes the attributes to set, and contains the new attribute
values. Each element of rowData specifies a component, group, key list (for table
accesses), and attribute list to set. No data is returned from this function.

The DmiAddRow() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_VALUE_UNKNOWN
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_VALUE_UNKNOWN
DMIERR_UNABLE_TO_ADD_ROW

The DmiDeleteRow() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_ILLEGAL_TO_GET
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_ROW_NOT_FOUND
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_VALUE_UNKNOWN
DMIERR_UNABLE_TO_DELETE_ROW

The DmiGetAttribute() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_ILLEGAL_TO_GET
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_ROW_NOT_FOUND
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_FILE_ERROR
DMIERR_VALUE_UNKNOWN

The DmiGetMultiple() function returns the following possible values:

DmiAddRow(3DMI)

RETURN VALUES

352 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_RPC_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_ILLEGAL_TO_GET
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_ROW_NOT_FOUND
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_FILE_ERROR
DMIERR_VALUE_UNKNOWN

The DmiSetAttribute() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_ILLEGAL_TO_GET
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_ROW_NOT_FOUND
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_FILE_ERROR
DMIERR_VALUE_UNKNOWN

The DmiSetMultiple() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_ILLEGAL_KEYS
DMIERR_ILLEGAL_TO_SET
DMIERR_DIRECT_INTERFACE_NOT_REGISTERED
DMIERR_ROW_NOT_FOUND
DMIERR_UNKNOWN_CI_REGISTRY
DMIERR_FILE_ERROR
DMIERR_VALUE_UNKNOWN

DmiAddRow(3DMI)

Extended Library Functions 353

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Unsafe

attributes(5)

DmiAddRow(3DMI)

ATTRIBUTES

SEE ALSO

354 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

dmi_error – print error in string form

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/dmi_error.hh>

void dmi_error(DmiErrorStatus_t error_status);

For the given error_status, the dmi_error() function prints the corresponding error
in string form. The function prints "unknown dmi errors" if error_status is invalid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

libdmi(3LIB), attributes(5)

dmi_error(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 355

DmiGetConfig, DmiGetVersion, DmiRegister, DmiSetConfig, DmiUnregister –
Management Interface initialization functions

cc [flag ...] file ... -ldmimi -ldmi -lnsl -lrwtool [library ...]
#include <server.h>

#include <miapi.h>

bool_t DmiGetConfig(DmiGetConfigIN argin, DmiGetConfigOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiGetVersion(DmiGetVersionIN argin, DmiGetVersionOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiRegister(DmiRegisterIN argin, DmiRegisterOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiSetConfig(DmiSetConfigIN argin, DmiSetConfigOUT *result,
DmiRpcHandle *dmi_rpc_handle);

bool_t DmiUnregister(DmiUnregisterIN argin, DmiUnregisterOUT
*result, DmiRpcHandle *dmi_rpc_handle);

The Management Interface initialization functions enable you to register management
applications to the Service Provider. You may also retrieve information about the
Service Provider, get and set session configuration information for your session.

The DmiGetConfig() function retrieves the per-session configuration information.
The configuration information consists of a string describing the current language
being used for the session. The argin parameter is an instance of a DmiGetConfigIN
structure containing the following member:

DmiHandle_t handle; /* an open session handle */

The result parameter is a pointer to a DmiGetConfigOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiString_t *language; /* current session language */

The DmiGetVersion() function retrieves information about the Service Provider.
The management application uses the DmiGetVersion() procedure to determine the
DMI specification level supported by the Service Provider. This procedure also returns
the service provided description string, and may contain version information about
the Service Provider implementation. The argin parameter is an instance of a
DmiGetVersionIN structure containing the following member:

DmiHandle_t handle; /* an open session handle */

The result parameter is a pointer to a DmiGetVersionOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiString_t *dmiSpecLevel; /* DMI specification version */
DmiString_t *description; /* OS specific DMI SP version */
DmiFileTypeList_t *fileTypes; /* file types for MIF installation */

DmiGetConfig(3DMI)

NAME

SYNOPSIS

DESCRIPTION

356 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

The DmiRegister() function provides the management application with a unique
per-session handle. The Service Provider uses this procedure to initialize to an internal
state for subsequent procedure calls made by the application. This procedure must be
the first command executed by the management application. argin is an instance of a
DmiRegisterIN structure containing the following member:

DmiHandle_t handle; /* an open session handle */

The result parameter is a pointer to a DmiRegisterOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiHandle_t *handle; /* an open session handle */

The DmiSetConfig() function sets the per-session configuration information. The
configuration information consists of a string describing the language required by the
management application. The argin parameter is an instance of a DmiSetConfigIN
structure containing the following member:

DmiHandle_t handle; /* an open session handle */
DmiString_t *language; /* current language required */

The result parameter is a pointer to a DmiSetConfigOUT structure containing the
following member:

DmiErrorStatus_t error_status;

The DmiUnregister() function is used by the Service Provider to perform
end-of-session cleanup actions. On return from this function, the session handle is no
longer valid. This function must be the last DMI command executed by the
management application. The argin parameter is an instance of a DmiUnregisterIN
structure containing the following member:

DmiHandle_t handle; /* an open session handle */

The result parameter is a pointer to a DmiUnregisterOUT structure containing the
following members:

DmiErrorStatus_t error_status;

The DmiGetConfig() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE

The DmiGetVersion() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_SP_INACTIVE

The DmiRegister() function returns the following possible values:

DmiGetConfig(3DMI)

RETURN VALUES

Extended Library Functions 357

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_SP_INACTIVE

The DmiSetConfig() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ILLEGAL_TO_SET

The DmiUnRegister() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Unsafe

attributes(5)

DmiGetConfig(3DMI)

ATTRIBUTES

SEE ALSO

358 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DmiListAttributes, DmiListClassNames, DmiListComponents,
DmiListComponentsByClass, DmiListGroups, DmiListLanguages – Management
Interface listing functions

cc [flag ...] file ... -ldmimi -ldmi -lnsl -lrwtool [library ...]
#include <server.h>

#include <miapi.h>

bool_t DmiListAttributes(DmiListAttributesIN argin,
DmiListAttributesOUT *result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiListClassNames(DmiListClassNamesIN argin,
DmiListClassNamesOUT *result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiListComponents(DmiListComponentsIN argin,
DmiListComponentsOUT *result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiListComponentsByClass(DmiListComponentsByClassIN argin,
DmiListComponentsByClassOUT *result, DmiRpcHandle
*dmi_rpc_handle);

bool_t DmiListGroups(DmiListGroupsIN argin, DmiListGroupsOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiListLanguages(DmiListLanguagesIN argin,
DmiListLanguagesOUT *result, DmiRpcHandle *dmi_rpc_handle);

The listing functions enables you to retrieve the names and the description of
components in a system. You may also list components by class that match a specified
criteria. The listing functions retrieve the set of language mappings installed for a
specified component, retrieve class name strings for all groups in a component,
retrieve a list of groups within a component, and retrieve the properties for one or
more attributes in a group.

The DmiListComponents() function retrieves the name and (optionally) the
description of components in a system. Use this to interrogate a system to determine
what components are installed. The argin parameter is an instance of a
DmiListComponentsIN structure containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiRequestMode_t requestMode; /* Unique, first, or next */
DmiUnsigned_t maxCount; /* maximum number to return,

0 for all */
DmiBoolean_t getPragma; /* get optional pragma string */
DmiBoolean_t getDescription; /* get optional component

description */
DmiId_t compId; /* component ID to start with */

The result parameter is a pointer to a DmiListComponentsOUT structure containing
the following members:

DmiErrorStatus_t error_status;
DmiComponentList_t *reply; /* list of components */

DmiListAttributes(3DMI)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 359

An enumeration accesses a specific component or may be used to sequentially access
all components in a system. The caller may choose not to retrieve the component
description by setting the value getDescription to false. The caller may choose not
to retrieve the pragma string by setting the value of gutta-percha to false. The
maxCount, requestMode, and compId parameters allow the caller to control the
information returned by the Service Provider. When the requestMode is
DMI_UNIQUE, compId specifies the first component requested (or only component if
maxCount is one). When the requestMode is DMI_NEXT, compId specifies the
component just before the one requested. When requestMode is DMI_FIRST,
compId is unused.

To control the amount of information returned, the caller sets maxCount to something
other than zero. The service provider must honor this limit on the amount of
information returned. When maxCount is 0 the service provider returns information
for all components, subject to the constraints imposed by requestMode and compId.

The DmiListComponentsByClass() function lists components that match specified
criteria. Use this function to determine if a component contains a certain group or a
certain row in a table. A filter condition may be that a component contains a specified
group class name or that it contains a specific row in a specific group. As with
DmiListComponents(), the description and pragma strings are optional return
values. argin is an instance of a DmiListComponentsByClassIN structure
containing the following members:

DmiHandle_t handle; /* an open session handle */
DmiRequestMode_t requestMode; /* Unique, first or next */
DmiUnsigned_t maxCount; /* maximum number to return,

or 0 for all */
DmiBoolean_t getPragma; /* get the optional pragma

string */
DmiBoolean_t getDescription; /* get optional component

description */
DmiId_t compId; /* component ID to start with */
DmiString_t *className; /* group class name string

to match*/
DmiAttributeValues_t *keyList; /* group row keys to match */

The result parameter is a pointer to a DmiListComponentsbyClassOUT structure
containing the following members:

DmiErrorStatus_t error_status;
DmiComponentList_t *reply; /* list of components */

The DmiListLanguages() function retrieves the set of language mappings installed
for the specified component. The argin parameter is an instance of a
DmiListLanguagesIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiUnsigned_t maxCount; /* maximum number to return,

or 0 for all */
DmiId_t compId; /* Component to access */

The result parameter is a pointer to a DmiListLanguagesOUT structure containing
the following members:

DmiListAttributes(3DMI)

360 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DmiErrorStatus_t error_status;
DmiStringList_t *reply; /* List of language strings */

The DmiListClassNames() function retrieves the class name strings for all groups
in a component. This enables the management application to easily determine if a
component contains a specific group, or groups. The argin parameter is an instance of
a DmiListClassNamesIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiUnsigned_t maxCount; /* maximum number to return,

or 0 for all */
DmiId_t compId; /* Component to access */

The result parameter is a pointer to a DmiListClassNamesOUT structure containing
the following members:

DmiErrorStatus_t error_status;
DmiClassNameList_t *reply; /* List of class names and

group IDs */

The DmiListGroups() function retrieves a list of groups within a component. With
this function you can access a specific group or sequentially access all groups in a
component. All enumerations of groups occur within the specified component and do
not span components. The argin parameter is an instance of a DmiListGroupsIN
structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiRequestMode_t requestMode; /* Unique, first or next group */
DmiUnsigned_t maxCount; /* Maximum number to return,

or 0 for all */
DmiBoolean_t getPragma; /* Get the optional pragma string */
DmiBoolean_t getDescription; /* Get optional group description */
DmiId_t compId; /* Component to access */
DmiId_t groupId; /* Group to start with, refer to

requestMode */

The result parameter is a pointer to a DmiListGroupsOUT structure containing the
following members:

DmiErrorStatus_t error_status;
DmiGroupList_t *reply;

The caller may choose not to retrieve the group description by setting the value
getDescription to false. The caller may choose not to retrieve the pragma string by
setting the value of getPragma to false. The maxCount, requestMode, and
groupId parameters allow the caller to control the information returned by the
Service Provider. When the requestMode is DMI_UNIQUE, groupId specifies the
first group requested (or only group if maxCount is one). When the requestMode is
DMI_NEXT, groupId specifies the group just before the one requested. When
requestMode is DMI_FIRST, groupId is unused. To control the amount of
information returned, the caller sets maxCount to something other than zero. The
service provider must honor this limit on the amount of information returned. When
maxCount is zero the service provider returns information for all groups, subject to
the constraints imposed by requestMode and groupId.

DmiListAttributes(3DMI)

Extended Library Functions 361

The DmiListAttributes() function retrieves the properties for one or more
attributes in a group. All enumerations of attributes occur within the specified group,
and do not span groups. The argin parameter is an instance of a
DmiListAttributesIN structure containing the following members:

DmiHandle_t handle; /* An open session handle */
DmiRequestMode_t requestMode; /* Unique, first or next group */
DmiUnsigned_t maxCount; /* Maximum number to return,

or 0 for all */
DmiBoolean_t getPragma; /* Get the optional pragma string */
DmiBoolean_t getDescription; /* Get optional group description */
DmiId_t compId; /* Component to access */
DmiId_t groupId; /* Group to access */
DmiId_t attribId; /* Attribute to start with, refer

to requestMode */

The result parameter is a pointer to a DmiListAttributesOUT structure containing
the following members:

DmiErrorStatus_t error_status;
DmiAttributeList_t *reply; /* List of attrbutes */

You may choose not to retrieve the description string by setting the value of
getDescription to false. Likewise, you may choose not to retrieve the pragma
string by setting the value of getPragma to false. The maxCount, requestMode, and
attribId parameters allow you to control the information returned by the Service
Provider. When the requestMode is DMI_UNIQUE, attribId specifies the first
attribute requested (or only attribute if maxCount is one). When the requestMode is
DMI_NEXT, attribId specifies the attribute just before the one requested. When
requestMode is DMI_FIRST, attribId is unused. To control the amount of
information returned, the caller sets maxCount to something other than zero. The
Service Provider must honor this limit on the amount of information returned. When
maxCount is zero the service provider returns information for all attributes, subject to
the constraints imposed by requestMode and attribId.

The DmiListAttributes() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_FILE_ERROR

The DmiListClassNames() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

DmiListAttributes(3DMI)

RETURN VALUES

362 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

The DmiListComponents() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

The DmiListComponentsByClass() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

The DmiListGroups() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_FILE_ERROR

The DmiListLanguages() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_RPC_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_PARAMETER
DMIERR_SP_INACTIVE
DMIERR_COMPONENT_NOT_FOUND
DMIERR_FILE_ERROR

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Unsafe

attributes(5)

DmiListAttributes(3DMI)

ATTRIBUTES

SEE ALSO

Extended Library Functions 363

DmiRegisterCi, DmiUnregisterCi, DmiOriginateEvent – Service Provider functions for
components

cc [flag...] file... -lci -ldmi -lnsl -lrwtool [library...]
#include <server.h>

#include <ciapi.h>

extern bool_t DmiRegisterCi(DmiRegisterCiIN argin,
DmiRegisterCiOUT *result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiUnregisterCi(DmiUnregisterCiIN argin, DmiUnregisterCiOUT
*result, DmiRpcHandle *dmi_rpc_handle);

bool_t DmiOriginateEvent(DmiOriginateEventIN argin,
DmiOriginateEventOUT *result, DmiRpcHandle *dmi_rpc_handle);

These functions provide component communication with the DMI through the
Component Interface (CI).

Component instrumentation code may register with the Service Provider to override
its current mechanism for the registered attributes. Instead of manipulating the data in
the MIF database or invoking programs, the Service Provider calls the entry points
provided in the registration call. Once the component unregisters, the Service Provider
returns to a normal method of processing requests for the data as defined in the MIF.
Component instrumentation can temporarily interrupt normal processing to perform
special functions.

Registering attributes through the direct interface overrides atttributes that are already
being served through the direct interface. RPC is used for communication from the
Service Provider to the component instrumentation.

For all three functions, argin is the parameter passed to initiate an RPC call, result is the
result of the RPC call, and dmi_rpc_handle is an open session RPC handle.

The DmiRegisterCi() function registers a callable interface for components that
have resident instrumentation code and/or to get the version of the Service Provider.

The DmiUnregisterCi() function communicates to the Service Provider to remove
a direct component instrumentation interface from the Service Provider table of
registered interfaces.

The DmiOriginateEvent() function originates an event for filtering and delivery.
Any necessary indication filtering is performed by this function (or by subsequent
processing) before the event is forwarded to the management applications.

A component ID value of zero (0) specifies the event was generated by something that
has not been installed as a component, and has no component ID.

The DmiRegisterCi() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_HANDLE
DMIERR_OUT_OF_MEMORY

DmiRegisterCi(3DMI)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

364 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_SP_INACTIVE
DMIERR_ATTRIBUTE_NOT_FOUND
DMIERR_COMPONENT_NOT_FOUND
DMIERR_GROUP_NOT_FOUND
DMIERR_DATABASE_CORRUPT
DMIERR_OUT_OF_MEMORY
DMIERR_ILLEGAL_DMI_LEVEL

The DmiUnregisterCi() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_SP_INACTIVE
DMIERR_UNKNOWN_CI_REGISTRY

The DmiOriginateEvent() function returns the following possible values:

DMIERR_NO_ERROR
DMIERR_ILLEGAL_HANDLE
DMIERR_OUT_OF_MEMORY
DMIERR_INSUFFICIENT_PRIVILEGES
DMIERR_SP_INACTIVE
DMIERR_UNKNOWN_CI_REGISTRY

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Unsafe

attributes(5)

DmiRegisterCi(3DMI)

ATTRIBUTES

SEE ALSO

Extended Library Functions 365

ea_error – error interface to extended accounting library

cc [flag...] file... -lexacct [library ...]

#include <exacct.h>

int ea_error(void);

The ea_error() function returns the error value of the last failure recorded by the
invocation of one of the functions of the extended accounting library, libexacct.

EXR_CORRUPT_FILE A function failed because the file was not a valid exacct
file.

EXR_EOF A function detected the end of the file, either when
reading forwards or backwards through the file.

EXR_INVALID_BUF When unpacking an object, an invalid unpack buffer
was specified.

EXR_INVALID_OBJ The object type passed to the function is not valid for
the requested operation, for example passing a group
object to ea_set_item(3EXACCT).

EXR_NO_CREATOR When creating a new file no creator was specified, or
when opening a file for reading the creator value did
not match the value in the file.

EXR_NOTSUPP An unsupported type of access was attempted, for
example attempting to write to a file that was opened
read-only.

EXR_OK The function completed successfully.

EXR_SYSCALL_FAIL A system call invoked by the function failed. The
errno variable contains the error value set by the
underlying call.

EXR_UNKN_VERSION The file referred to by name uses an exacct file
version that cannot be processed by this library.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

read(2), libexacct(3LIB), attributes(5)

ea_error(3EXACCT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

366 man pages section 3: Extended Library Functions • Last Revised 29 Nov 2001

ea_open, ea_close – open or close exacct files

cc [flag...] file... -lexacct [library...]

#include <exacct.h>

int ea_open(ea_file_t *ef, char *name, char *creator, int aflags, int
oflags, mode_t mode);

int ea_close(ea_file_t *ef);

The ea_open() function provides structured access to exacct files. The aflags
argument contains the appropriate exacct flags necessary to describe the file. The
oflags and mode arguments contain the appropriate flags and mode to open the file; see
<fcntl.h>. If ea_open() is invoked with EO_HEAD specified in aflags, the resulting
file is opened with the object cursor located at the first object of the file. If ea_open()
is invoked with EO_TAIL specified in aflags, the resulting file is opened with the object
cursor positioned beyond the last object in the file. If EO_NO_VALID_HDR is set in
aflags along with EO_HEAD, the initial header record will be returned as the first item
read from the file. When creating a file, the creator argument should be set (system
generated files use the value "SunOS"); when reading a file, this argument should be
set to NULL if no validation is required; otherwise it should be set to the expected
value in the file.

The ea_close() function closes an open exacct file.

Upon successful completion, ea_open() and ea_close() return 0. Otherwise they
return −1 and call ea_error(3EXACCT) to return the extended accounting error
value describing the error.

The ea_open() and ea_close() functions may fail if:

EXR_SYSCALL_FAIL A system call invoked by the function failed. The
errno variable contains the error value set by the
underlying call.

The ea_open() function may fail if:

EXR_CORRUPT_FILE The file referred to by name is not a valid exacct file.

EXR_NO_CREATOR In the case of file creation, the creator argument was
NULL. In the case of opening an existing file, a creator
argument was not NULL and does not match the
creator item of the exacct file.

EXR_UNKN_VERSION The file referred to by name uses an exacct file version
that cannot be processed by this library.

The exacct file format can be used to represent data other than that in the extended
accounting format. By using a unique creator type in the file header, application
writers can develop their own format suited to the needs of their application.

ea_open(3EXACCT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Extended Library Functions 367

EXAMPLE 1 Open and close exacct file.

The following example opens the extended accounting data file for processes. The
exacct file is then closed.

#include <exacct.h>

ea_file_t ef;
if (ea_open(&ef, "/var/adm/exacct/proc", NULL, EO_HEAD,

O_RDONLY, 0) == -1)
exit(1);

(void) ea_close(&ef);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ea_error(3EXACCT), ea_pack_object(3EXACCT), ea_set_item(3EXACCT),
libexacct(3LIB), attributes(5)

ea_open(3EXACCT)

EXAMPLES

ATTRIBUTES

SEE ALSO

368 man pages section 3: Extended Library Functions • Last Revised 29 Nov 2001

ea_pack_object, ea_unpack_object, ea_get_creator, ea_get_hostname, ea_next_object,
ea_previous_object, ea_get_object, ea_write_object, ea_copy_object,
ea_copy_object_tree, ea_get_object_tree – construct, read, and write extended
accounting records

cc [flag...] file... -lexacct [library...]

#include <exacct.h>

size_t ea_pack_object(ea_object_t *obj, void *buf, size_t bufsize);

ea_object_type_t ea_unpack_object(ea_object_t **objp, int flag,
void *buf, size_t bufsize);

const char *ea_get_creator(ea_file_t *ef);

const char *ea_get_hostname(ea_file_t *ef);

ea_object_type_t ea_next_object(ea_file_t *ef, ea_object_t *obj);

ea_object_type_t ea_previous_object(ea_file_t *ef, ea_object_t
*obj);

ea_object_type_t ea_get_object(ea_file_t *ef, ea_object_t *obj);

int ea_write_object(ea_file_t *ef, ea_object_t *obj);

ea_object_type_t *ea_copy_object(const ea_object_t *src);

ea_object_type_t *ea_copy_object_tree(const ea_object_t *src);

ea_object_type_t *ea_get_object_tree(ea_file_t *ef, uint32_tnobj);

The ea_pack_object() function converts exacct objects from their in-memory
representation to their file representation. It is passed an object pointer that points to
the top of an exacct object hierarchy representing one or more exacct records. It
returns the size of the buffer required to contain the packed buffer representing the
object hierarchy. To obtain the correct size of the required buffer, the buf and bufsize
parameters can be set to NULL and 0 respectively, and the required buffer size will be
returned. The resulting packed record can be passed to putacct(2) or to
ea_set_item(3EXACCT) when constructing an object of type
EXT_EXACCT_OBJECT.

The ea_unpack_object() function reverses the packing process performed by
ea_pack_object(). A packed buffer passed to ea_unpack_object() is unpacked
into the original hierarchy of objects. If the unpack operation fails (for example, due to
a corrupted or incomplete buffer), it returns EO_ERROR; otherwise, the object type of
the first object in the hierarchy is returned. If ea_unpack_object() is invoked with
flag equal to EUP_ALLOC, it allocates memory for the variable-length data in the
included objects. Otherwise, with flag equal to EUP_NOALLOC, it sets the variable
length data pointers within the unpacked object structures to point within the buffer
indicated by buf. In both cases, ea_unpack_object() allocates all the necessary
exacct objects to represent the unpacked record. The resulting object hierarchy can
be freed using ea_free_object(3EXACCT) with the same flag value.

ea_pack_object(3EXACCT)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 369

The ea_get_creator() function returns a pointer to a string representing the
recorded creator of the exacct file. The ea_get_hostname() function returns a
pointer to a string representing the recorded hostname on which the exacct file was
created. These functions will return NULL if their respective field was not recorded in
the exacct file header.

The ea_next_object() function reads the basic fields (eo_catalog and eo_type)
into the ea_object_t indicated by obj from the exacct file referred to by ef and
rewinds to the head of the record. If the read object is corrupted, ea_next_object()
returns EO_ERROR and records the extended accounting error code, accessible with
ea_error(3EXACCT). If end-of-file is reached, EO_ERROR is returned and the
extended accounting error code is set to EXR_EOF.

The ea_previous_object() function skips back one object in the file and reads its
basic fields (eo_catalog and eo_type) into the indicated ea_object_t. If the read
object is corrupted, ea_previous_object() returns EO_ERROR and records the
extended accounting error code, accessible with ea_error(3EXACCT). If end-of-file is
reached, EO_ERROR is returned and the extended accounting error code is set to
EXR_EOF.

The ea_get_object() function reads the value fields into the ea_object_t
indicated by obj, allocating memory as necessary, and advances to the head of the next
record. Once a record group object is retrieved using ea_get_object(), subsequent
calls to ea_get_object() and ea_next_object() will track through the objects
within the record group, and on reaching the end of the group, will return the next
object at the same level as the group from the file. If the read object is corrupted,
ea_get_object() returns EO_ERROR and records the extended accounting error
code, accessible with ea_error(3EXACCT). If end-of-file is reached, EO_ERROR is
returned and the extended accounting error code is set to EXR_EOF.

The ea_write_object() function appends the given object to the open exacct file
indicated by ef and returns 0. If the write fails, ea_write_object() returns −1 and
sets the extended accounting error code to indicate the error, accessible with
ea_error(3EXACCT).

The ea_copy_object() function copies an ea_object_t. If the source object is
part of a chain, only the current object is copied. If the source object is a group, only
the group object is copied without its list of members and the eg_nobjs and
eg_objs fields are set to 0 and NULL, respectively. Use ea_copy_tree() to copy
recursively a group or a list of items.

The ea_copy_object_tree() function recursively copies an ea_object_t. All
elements in the eo_next list are copied, and any group objects are recursively copied.
The returned object can be completely freed with ea_free_object(3EXACCT) by
specifying the EUP_ALLOC flag.

The ea_get_object_tree() function reads in nobj top-level objects from the file,
returning the same data structure that would have originally been passed to
ea_write_object(). On encountering a group object, the ea_get_object()

ea_pack_object(3EXACCT)

370 man pages section 3: Extended Library Functions • Last Revised 29 Nov 2001

function reads only the group header part of the group, whereas
ea_get_object_tree() reads the group and all its member items, recursing into
sub-records if necessary. The returned object data structure can be completely freed
with ea_free_object() by specifying the EUP_ALLOC flag.

The ea_pack_object() function returns the number of bytes required to hold the
exacct object being operated upon. If the returned size exceeds bufsize, the pack
operation does not complete and the function returns (size_t) –1 and sets the
extended accounting error code to indicate the error.

The ea_get_object() function returns the ea_object_type of the object if the
object was retrieved successfully. Otherwise, it returns EO_ERROR and sets the
extended accounting error code to indicate the error.

The ea_next_object() function returns the ea_object_type of the next exacct
object in the file. It returns EO_ERROR if the exacct file is corrupted sets the extended
accounting error code to indicate the error.

The ea_unpack_object() function returns the ea_object_type of the first
exacct object unpacked from the buffer. It returns EO_ERROR if the exacct file is
corrupted, and sets the extended accounting error code to indicate the error.

The ea_write_object() function returns 0 on success. Otherwise it returns −1 and
sets the extended accounting error code to indicate the error.

The ea_copy_object() and ea_copy_object_tree() functions return the
copied object on success. Otherwise they return NULL and set the extended accounting
error code to indicate the error.

The ea_get_object_tree() function returns the list of objects read from the file on
success. Otherwise it returns NULL and sets the extended accounting error code to
indicate the error.

The extended account error code can be retrieved using ea_error(3EXACCT).

These functions may fail if:

EXR_SYSCALL_FAIL A system call invoked by the function failed. The
errno variable contains the error value set by the
underlying call.

EXR_CORRUPT_FILE The file referred to by name is not a valid exacct file,
or is unparsable, and therefore appears corrupted. This
error is also used by ea_unpack_buffer() to
indicate a corrupted buffer.

EXR_NO_MEMORY A memory allocation required to complete the
operation failed.

EXR_EOF The end of the file has been reached. In the case of
ea_previous_record(), the previous record could
not be reached, either because the head of the file was

ea_pack_object(3EXACCT)

RETURN VALUES

ERRORS

Extended Library Functions 371

encountered or because the previous record could not
be skipped over.

The exacct file format can be used to represent data other than that in the extended
accounting format. By using a unique creator type in the file header, application
writers can develop their own format suited to the needs of their application.

EXAMPLE 1 Open and close exacct file.

The following example opens the extended accounting data file for processes. The
exacct file is then closed.

#include <stdio.h>
#include <exacct.h>

ea_file_t ef;
ea_object_t *obj;

...

ea_open(&ef, "foo", O_RDONLY, ...);

while ((obj = ea_get_object_tree(&ef, 1)) != NULL) {
if (obj->eo_type == EO_ITEM) {

/* handle item */
} else {

/* handle group */
}
ea_free_object(obj, EUP_ALLOC);

}

if (ea_error() != EXR_EOF) {
/* handle error */

}

ea_close(&ef);

EXAMPLE 2 Construct an exacct file consisting of a single object containing the current
process ID.

#include <sys/types.h>
#include <unistd.h>
#include <exacct.h>

...

ea_file_t ef;
ea_object_t obj;
pid_t my_pid;

ea_open(&ef, "foo", O_CREAT | O_WRONLY, ...);

my_pid = getpid();
ea_set_item(&obj, EXT_UINT32 | EXC_DEFAULT | EXT_PROC_PID, &my_pid, 0);
(void) ea_write_object(&ef, &obj);

ea_pack_object(3EXACCT)

USAGE

EXAMPLES

372 man pages section 3: Extended Library Functions • Last Revised 29 Nov 2001

EXAMPLE 2 Construct an exacct file consisting of a single object containing the current
process ID. (Continued)

ea_close(&ef);

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

read(2), ea_error(3EXACCT), ea_open(3EXACCT), ea_set_item(3EXACCT),
libexacct(3LIB), attributes(5)

ea_pack_object(3EXACCT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 373

ea_set_item, ea_alloc, ea_strdup, ea_set_group, ea_match_object_catalog,
ea_attach_to_object, ea_attach_to_group, ea_free, ea_strfree, ea_free_item,
ea_free_object – create, destroy and manipulate exacct objects

cc [flag...] file... -lexacct [library...]
#include <exacct.h>

int ea_set_item(ea_object_t *obj, ea_catalog_t tag, void *value,
size_t valsize);

void *ea_alloc(size_t size);

char *ea_strdup(char *ptr);

int ea_set_group(ea_object_t *obj, ea_catalog_t tag);

int ea_match_object_catalog(ea_object_t *obj, ea_catalog_t
catmask);

void ea_attach_to_object(ea_object_t *head_obj, ea_object_t *obj);

void ea_attach_to_group(ea_object_t *group_obj, ea_object_t *obj);

void ea_free(void *ptr, size_t size);

void ea_strfree(char *ptr);

int ea_free_item(ea_object_t *obj, int flag);

void ea_free_object(ea_object_t *obj, int flag);

The ea_alloc() function allocates a block of memory of the requested size. This
block can be safely passed to libexacct functions, and can be safely freed by any of
the ea_free() functions.

The ea_strdup() function can be used to duplicate a string that is to be stored inside
an ea_object_t structure.

The ea_set_item() function assigns the given exacct object to be a data item with
value set according to the remaining arguments. For buffer-based data values
(EXT_STRING, EXT_EXACCT_OBJECT, and EXT_RAW), a copy of the passed buffer is
taken. In the case of EXT_EXACCT_OBJECT, the passed buffer should be a packed
exacct object as returned by ea_pack_object(3EXACCT). Any item assigned with
ea_set_item() should be freed with ea_free_item() specifying a flag value of
EUP_ALLOC when the item is no longer needed.

The ea_match_object_catalog() function returns TRUE if the exacct object
specified by obj has a catalog tag that matches the mask specified by catmask.

The ea_attach_to_object() function attaches an object to the given object. The
ea_attach_to_group() function attaches a chain of objects as member items of the
given group. Objects are inserted at the end of the list of any previously attached
objects.

The ea_free() function frees a block of memory previously allocated by
ea_alloc().

ea_set_item(3EXACCT)

NAME

SYNOPSIS

DESCRIPTION

374 man pages section 3: Extended Library Functions • Last Revised 28 Nov 2001

The ea_strfree() function frees a string previously copied by ea_strdup().

The ea_free_item() function frees the value fields in the ea_object_t indicated
by obj, if EUP_ALLOC is specified. The object itself is not freed. The
ea_free_object() function frees the specified object and any attached hierarchy of
objects. If the flag argument is set to EUP_ALLOC, ea_free_object() will also free
any variable-length data in the object hierarchy; if set to EUP_NOALLOC,
ea_free_object() will not free variable-length data. In particular, these flags
should correspond to those specified in calls to ea_unpack_object(3EXACCT).

The ea_match_object_catalog() function returns 0 if the object’s catalog tag
does not match the given mask, and 1 if there is a match.

Other integer-valued functions return 0 if successful. Otherwise these functions return
-1 and set the extended accounting error code appropriately. Pointer-valued functions
return a valid pointer if successful and NULL otherwise, setting the extended
accounting error code appropriately. The extended accounting error code can be
examined with ea_error(3EXACCT).

The ea_set_item(), ea_set_group(), and ea_match_object_catalog()
functions may fail if:

EXR_SYSCALL_FAIL A system call invoked by the function failed. The
errno variable contains the error value set by the
underlying call.

EXR_INVALID_OBJECT The passed object is of an incorrect type, for example
passing a group object to ea_set_item().

The exacct file format can be used to represent data other than that in the extended
accounting format. By using a unique creator type in the file header, application
writers can develop their own format suited to the needs of their application.

EXAMPLE 1 Open and close exacct file.

Construct an exacct file consisting of a single object containing the current process ID.

#include <sys/types.h>
#include <unistd.h>
#include <exacct.h>

...

ea_file_t ef;
ea_object_t obj;
pid_t my_pid;

my_pid = getpid();
ea_set_item(&obj, EXT_UINT32 | EXC_DEFAULT | EXT_PROC_PID,

&my_pid, sizeof(my_pid));

...

ea_set_item(3EXACCT)

RETURN VALUES

ERRORS

USAGE

EXAMPLES

Extended Library Functions 375

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

read(2), ea_error(3EXACCT), ea_open(3EXACCT), ea_pack_object(3EXACCT),
libexacct(3LIB), attributes(5)

ea_set_item(3EXACCT)

ATTRIBUTES

SEE ALSO

376 man pages section 3: Extended Library Functions • Last Revised 28 Nov 2001

ef_expand_file, del_ExpandFile, ef_last_error, ef_list_expansions, new_ExpandFile –
expand filename and wildcard expressions

cc [flag...] file... -ltecla [library...]
#include <libtecla.h>

ExpandFile *ef_expand_file(void);

ExpandFile *del_ExpandFile(ExpandFile *ef);

FileExpansion *ef_last_error(ExpandFile *ef, const char *path, int
pathlen);

int ef_list_expansions(FileExpansion *result, FILE *fp, int
term_width);

const char *new_ExpandFile(ExpandFile *ef);

The ef_expand_file() function is part of the libtecla(3LIB) library. It expands a
specified filename, converting ~user/ and ~/ expressions at the start of the filename to
the corresponding home directories, replacing $envvar with the value of the
corresponding environment variable, and then, if there are any wildcards, matching
these against existing filenames. Backslashes in the input filename are interpreted as
escaping any special meanings of the characters that follow them. Only backslashes
that are themselves preceded by backslashes are preserved in the expanded filename.

In the presence of wildcards, the returned list of filenames includes only the names of
existing files which match the wildcards. Otherwise, the original filename is returned
after expansion of tilde and dollar expressions, and the result is not checked against
existing files. This mimics the file-globbing behavior of the UNIX tcsh shell.

The supported wildcards and their meanings are:

* Match any sequence of zero or more characters.

? Match any single character.

[chars] Match any single character that appears in chars. If chars contains an
expression of the form a-b, then any character between a and b, including a
and b, matches. The ’-’ character loses its special meaning as a range
specifier when it appears at the start of the sequence of characters. The ’]’
character also looses its significance as the terminator of the range
expression if it appears immediately after the opening ’[’, at which point it
is treated one of the characters of the range. If you want both ’-’ and ’]’ to
be part of the range, the ’-’ should come first and the ’]’ second.

[^chars] The same as [chars] except that it matches any single character that does not
appear in chars.

Note that wildcards never match the initial dot in filenames that start with ’.’. The
initial ’.’ must be explicitly specified in the filename. This again mimics the globbing
behavior of most UNIX shells, and its rational is based in the fact that in UNIX, files
with names that start with ’.’ are usually hidden configuration files, which are not
listed by default by the ls(1) command.

ef_expand_file(3TECLA)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 377

The new_ExpandFile() function creates the resources used by the
ef_expand_file() function. In particular, it maintains the memory that is used to
record the array of matching file names that is returned by ef_expand_file(). This
array is expanded as needed, so there is no builtin limit to the number of files that can
be matched.

The del_ExpandFile() function deletes the resources that were returned by a
previous call to new_ExpandFile(). It always returns NULL (that is, a deleted
object). It does nothing if the ef argument is NULL.

The ef_expand_file() function performs filename expansion. Its first argument is
a resource object returned by new_ExpandFile(). A pointer to the start of the
filename to be matched is passed by the path argument. This must be a normal
null-terminated string, but unless a length of -1 is passed in pathlen, only the first
pathlen characters will be used in the filename expansion. If the length is specified as
-1, the whole of the string will be expanded. A container of the following type is
returned by ef_expand_file().

typedef struct {
int exists; /* True if the files in files[] exist */
int nfile; /* The number of files in files[] */
char **files; /* An array of ’nfile’ filenames. */

} FileExpansion;

The ef_expand_file() function returns a pointer to a container whose contents are
the results of the expansion. If there were no wildcards in the filename, the nfile
member will be 1, and the exists member should be queried if it is important to know
if the expanded file currently exists. If there were wild cards, then the contained files[]
array will contain the names of the nfile existing files that matched the wild-carded
filename, and the exists member will have the value 1. Note that the returned container
belongs to the specified ef object, and its contents will change on each call, so if you
need to retain the results of more than one call to ef_expand_file(), you should
either make a private copy of the returned results, or create multiple file-expansion
resource objects with multiple calls to new_ExpandFile().

On error, NULL is returned, and an explanation of the error can be determined by
calling ef_last_error(ef).

The ef_last_error() function returns the message which describes the error that
occurred on the last call to ef_expand_file(), for the given (ExpandFile *ef)
resource object.

ef_expand_file(3TECLA)

378 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

The ef_list_expansions() function provides a convenient way to list the
filename expansions returned by ef_expand_file(). Like the ls utility, it arranges
the filenames into equal width columns, each column having the width of the largest
file. The number of columns used is thus determined by the length of the longest
filename, and the specified terminal width. Beware that filenames that are longer than
the specified terminal width are printed without being truncated, so output longer
than the specified terminal width can occur. The list is written to the stdio stream
specified by the fp argument.

It is safe to use the facilities of this module in multiple threads, provided that each
thread uses a separately allocated ExpandFile object. In other words, if two threads
want to do file expansion, they should each call new_ExpandFile() to allocate their
own file-expansion objects.

EXAMPLE 1 Use of file expansion function.

The following is a complete example of how to use the file expansion function.

#include <stdio.h>
#include <libtecla.h>

int main(int argc, char *argv[])
{

ExpandFile *ef; /* The expansion resource object */
char *filename; /* The filename being expanded */
FileExpansion *expn; /* The results of the expansion */
int i;

ef = new_ExpandFile();
if(!ef)

return 1;

for(arg = *(argv++); arg; arg = *(argv++)) {
if((expn = ef_expand_file(ef, arg, -1)) == NULL) {

fprintf(stderr, "Error expanding %s (%s).\n", arg,
ef_last_error(ef));

} else {
printf("%s matches the following files:\n", arg);
for(i=0; i<expn->nfile; i++)

printf(" %s\n", expn->files[i]);
}

}

ef = del_ExpandFile(ef);
return 0;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

ef_expand_file(3TECLA)

Thread Safety

EXAMPLES

ATTRIBUTES

Extended Library Functions 379

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cpl_complete_word(3TECLA), gl_get_line(3TECLA), libtecla(3LIB),
pca_lookup_file(3TECLA), attributes(5)

ef_expand_file(3TECLA)

SEE ALSO

380 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

efi_alloc_and_init, efi_alloc_and_read, efi_free, efi_write – manipulate a disk’s EFI
Partition Table

cc [flag ...] file... -lefi [library ...]
#include <sys/vtoc.h>

#include <sys/efi_partition.h>

int efi_alloc_and_init(int fd, uint32_t nparts, dk_gpt_t **vtoc);

int efi_alloc_and_read(int fd, dk_gpt_t **vtoc);

void efi_free(dk_gpt_t *vtoc);

int efi_write(int fd, dk_gpt_t *vtoc);

The efi_alloc_and_init() function initializes the dk_gpt_t structure specified
by vtoc in preparation for a call to efi_write(). It calculates and initializes the
efi_version, efi_lbasize, efi_nparts, efi_first_u_lba, efi_last_lba,
and efi_last_u_lba members of this sturcture. The caller can then set the
efi_nparts member.

The efi_alloc_and_read() function allocates memory and returns the partition
table.

The efi_free() function frees the memory allocated by efi_alloc_and_init()
and efi_alloc_and_read().

The efi_write() function writes the EFI partition table.

The fd argument refers to any slice on a raw disk, opened with O_NDELAY. See
open(2).

The nparts argument specifies the number of desired partitions.

The vtoc argument is a dk_gpt_t structure that describes an EFI partition table and
contains at least the following members:

uint_t efi_version; /* set to EFI_VERSION_CURRENT */
uint_t efi_nparts; /* number of partitions in efi_parts */
uint_t efi_lbasize; /* size of block in bytes */
diskaddr_t efi_last_lba; /* last block on the disk */
diskaddr_t efi_first_u_lba; /* first block after labels */
diskaddr_t efi_last_u_lba; /* last block before backup labels */
struct dk_part efi_parts[]; /* array of partitions */

Upon successful completion, efi_alloc_and_init() returns 0. Otherwise it
returns VT_EIO if an I/O operation to the disk fails.

Upon successful completion, efi_alloc_and_read() returns a positive integer
indicating the slice index associated with the open file descriptor. Otherwise, it returns
a negative integer to indicate one of the following:

VT_EIO An I/O error occurred.

VT_ERROR An unknown error occurred.

efi_alloc_and_init(3EXT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 381

VT_EINVAL An EFI label was not found.

Upon successful completion, efi_write() returns 0. Otherwise, it returns a negative
integer to indicate one of the following:

VT_EIO An I/O error occurred.

VT_ERROR An unknown error occurred.

VT_EINVAL The label contains incorrect data.

The EFI label is used on disks with more than 132-1 blocks. For compatibility reasons,
the read_vtoc(3EXT) and write_vtoc() functions should be used on smaller
disks. The application should attempt the read_vtoc() or write_vtoc() call,
check for an error of VT_ENOTSUP, then call the analogous EFI function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

fmthard(1M), format(1M), prtvtoc(1M), ioctl(2), open(2), libefi(3LIB),
read_vtoc(3EXT), attributes(5), dkio(7I)

efi_alloc_and_init(3EXT)

USAGE

ATTRIBUTES

SEE ALSO

382 man pages section 3: Extended Library Functions • Last Revised 23 Jul 2002

elf32_checksum, elf64_checksum – return checksum of elf image

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

long elf32_checksum(Elf *elf);

long elf64_checksum(Elf *elf);

The elf32_checksum() function returns a simple checksum of selected sections of
the image identified by elf. The value is typically used as the .dynamic tag
DT_CHECKSUM, recorded in dynamic executables and shared objects.

Selected sections of the image are used to calcluate the checksum in order that its
value is not affected by utilities such as strip(1).

For the 64−bit class, replace 32 with 64 as appropriate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf_version(3ELF), gelf(3ELF), libelf(3LIB), attributes(5)

elf32_checksum(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 383

elf32_fsize, elf64_fsize – return the size of an object file type

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

size_t elf32_fsize(Elf_Type type, size_t count, unsigned ver);

size_t elf64_fsize(Elf_Type type, size_t count, unsigned ver);

elf32_fsize() gives the size in bytes of the 32-bit file representation of count data
objects with the given type. The library uses version ver to calculate the size. See
elf(3ELF) and elf_version(3ELF).

Constant values are available for the sizes of fundamental types:

Elf_Type File Size Memory Size
ELF_T_ADDR ELF32_FSZ_ADDR sizeof(Elf32_Addr)
ELF_T_BYTE 1 sizeof(unsigned char)
ELF_T_HALF ELF32_FSZ_HALF sizeof(Elf32_Half)
ELT_T_OFF ELF32_FSZ_OFF sizeof(Elf32_Off)
ELF_T_SWORD ELF32_FSZ_SWORD sizeof(Elf32_Sword)
ELF_T_WORD ELF32_FSZ_WORD sizeof(Elf32_Word)

elf32_fsize() returns 0 if the value of type or ver is unknown. See
elf32_xlatetof(3ELF) for a list of the type values.

For the 64−bit class, replace 32 with 64 as appropriate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_xlatetof(3ELF), elf_version(3ELF), libelf(3LIB),
attributes(5)

elf32_fsize(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

384 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf32_getehdr, elf32_newehdr, elf64_getehdr, elf64_newehdr – retrieve class-dependent
object file header

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf32_Ehdr *elf32_getehdr(Elf *elf);

Elf32_Ehdr *elf32_newehdr(Elf *elf);

Elf64_Ehdr *elf64_getehdr(Elf *elf);

Elf64_Ehdr *elf64_newehdr(Elf *elf);

For a 32-bit class file, elf32_getehdr() returns a pointer to an ELF header, if one is
available for the ELF descriptor elf. If no header exists for the descriptor,
elf32_newehdr() allocates a clean one, but it otherwise behaves the same as
elf32_getehdr(). It does not allocate a new header if one exists already. If no
header exists for elf32_getehdr(), one cannot be created for elf32_newehdr(),
a system error occurs, the file is not a 32-bit class file, or elf is NULL, both functions
return a null pointer.

For the 64−bit class, replace 32 with 64 as appropriate.

The header includes the following members:

unsigned char e_ident[EI_NIDENT];
Elf32_Half e_type;
Elf32_Half e_machine;
Elf32_Word e_version;
Elf32_Addr e_entry;
Elf32_Off e_phoff;
Elf32_Off e_shoff;
Elf32_Word e_flags;
Elf32_Half e_ehsize;
Elf32_Half e_phentsize;
Elf32_Half e_phnum;
Elf32_Half e_shentsize;
Elf32_Half e_shnum;

Elf32_Half e_shstrndx;

The elf32_newehdr() function automatically sets the ELF_F_DIRTY bit. See
elf_flagdata(3ELF).

An application can use elf_getident() to inspect the identification bytes from a
file.

An application can use elf_getshnum() and elf_getshstrndx() to obtain
section header information. The location of this section header information differs
between standard ELF files to those that require Extended Sections.

elf32_getehdr(3ELF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 385

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf_begin(3ELF), elf_flagdata(3ELF), elf_getident(3ELF),
elf_getshnum(3ELF), elf_getshstrndx(3ELF), libelf(3LIB), attributes(5)

elf32_getehdr(3ELF)

ATTRIBUTES

SEE ALSO

386 man pages section 3: Extended Library Functions • Last Revised 19 Jun 2002

elf32_getphdr, elf32_newphdr, elf64_getphdr, elf64_newphdr – retrieve
class-dependent program header table

cc [flag ...] file... -lelf [library ...]

#include <libelf.h>

Elf32_Phdr *elf32_getphdr(Elf *elf);

Elf32_Phdr *elf32_newphdr(Elf *elf, size_t count);

Elf64_Phdr *elf64_getphdr(Elf *elf);

Elf64_Phdr *elf64_newphdr(Elf *elf, size_t count);

For a 32-bit class file, elf32_getphdr() returns a pointer to the program execution
header table, if one is available for the ELF descriptor elf.

elf32_newphdr() allocates a new table with count entries, regardless of whether one
existed previously, and sets the ELF_F_DIRTY bit for the table. See
elf_flagdata(3ELF). Specifying a zero count deletes an existing table. Note this
behavior differs from that of elf32_newehdr() allowing a program to replace or
delete the program header table, changing its size if necessary. See
elf32_getehdr(3ELF).

If no program header table exists, the file is not a 32-bit class file, an error occurs, or elf
is NULL, both functions return a null pointer. Additionally, elf32_newphdr()
returns a null pointer if count is 0.

The table is an array of Elf32_Phdr structures, each of which includes the following
members:

Elf32_Word p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
Elf32_Word p_filesz;
Elf32_Word p_memsz;
Elf32_Word p_flags;
Elf32_Word p_align;

The Elf64_Phdr structures include the following members:

Elf64_Word p_type;
Elf64_Word p_flags;
Elf64_Off p_offset;
Elf64_Addr p_vaddr;
Elf64_Addr p_paddr;
Elf64_Xword p_filesz;
Elf64_Xword p_memsz;
Elf64_Xword p_align;

For the 64−bit class, replace 32 with 64 as appropriate.

elf32_getphdr(3ELF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 387

The ELF header’s e_phnum member tells how many entries the program header table
has. See elf32_getehdr(3ELF). A program may inspect this value to determine the
size of an existing table; elf32_newphdr() automatically sets the member’s value to
count. If the program is building a new file, it is responsible for creating the file’s ELF
header before creating the program header table.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF), elf_flagdata(3ELF),
libelf(3LIB), attributes(5)

elf32_getphdr(3ELF)

ATTRIBUTES

SEE ALSO

388 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf32_getshdr, elf64_getshdr – retrieve class-dependent section header

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf32_Shdr *elf32_getshdr(Elf_Scn *scn);

Elf64_Shdr *elf64_getshdr(Elf_Scn *scn);

For a 32-bit class file, elf32_getshdr() returns a pointer to a section header for the
section descriptor scn. Otherwise, the file is not a 32-bit class file, scn was NULL, or an
error occurred; elf32_getshdr() then returns NULL.

The elf32_getshdr header includes the following members:

Elf32_Word sh_name;
Elf32_Word sh_type;
Elf32_Word sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
Elf32_Word sh_size;
Elf32_Word sh_link;
Elf32_Word sh_info;
Elf32_Word sh_addralign;
Elf32_Word sh_entsize;

while the elf64_getshdr header includes the following members:

Elf64_Word sh_name;
Elf64_Word sh_type;
Elf64_Xword sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
Elf64_Xword sh_size;
Elf64_Word sh_link;
Elf64_Word sh_info;
Elf64_Xword sh_addralign;
Elf64_Xword sh_entsize;

For the 64−bit class, replace 32 with 64 as appropriate.

If the program is building a new file, it is responsible for creating the file’s ELF header
before creating sections.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf_flagdata(3ELF), elf_getscn(3ELF), elf_strptr(3ELF),
libelf(3LIB), attributes(5)

elf32_getshdr(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 389

elf32_xlatetof, elf32_xlatetom, elf64_xlatetof, elf64_xlatetom – class-dependent data
translation

cc [flag ...] file... -lelf [library ...]

#include <libelf.h>

Elf_Data *elf32_xlatetof(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf32_xlatetom(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf64_xlatetof(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *elf64_xlatetom(Elf_Data *dst, const Elf_Data *src,
unsigned encode);

elf32_xlatetom() translates various data structures from their 32-bit class file
representations to their memory representations; elf32_xlatetof() provides the
inverse. This conversion is particularly important for cross development
environments. src is a pointer to the source buffer that holds the original data; dst is a
pointer to a destination buffer that will hold the translated copy. encode gives the byte
encoding in which the file objects are to be represented and must have one of the
encoding values defined for the ELF header’s e_ident[EI_DATA] entry (see
elf_getident(3ELF)). If the data can be translated, the functions return dst.
Otherwise, they return NULL because an error occurred, such as incompatible types,
destination buffer overflow, etc.

elf_getdata(3ELF) describes the Elf_Data descriptor, which the translation
routines use as follows:

d_buf Both the source and destination must have valid buffer pointers.

d_type This member’s value specifies the type of the data to which d_buf
points and the type of data to be created in the destination. The
program supplies a d_type value in the source; the library sets
the destination’s d_type to the same value. These values are
summarized below.

d_size This member holds the total size, in bytes, of the memory occupied
by the source data and the size allocated for the destination data. If
the destination buffer is not large enough, the routines do not
change its original contents. The translation routines reset the
destination’s d_size member to the actual size required, after the
translation occurs. The source and destination sizes may differ.

d_version This member holds the version number of the objects (desired) in
the buffer. The source and destination versions are independent.

Translation routines allow the source and destination buffers to coincide. That is,
dst→d_buf may equal src→d_buf. Other cases where the source and destination
buffers overlap give undefined behavior.

elf32_xlatetof(3ELF)

NAME

SYNOPSIS

DESCRIPTION

390 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

Elf_Type 32-Bit Memory Type
ELF_T_ADDR Elf32_Addr
ELF_T_BYTE unsigned char
ELF_T_DYN Elf32_Dyn
ELF_T_EHDR Elf32_Ehdr
ELF_T_HALF Elf32_Half
ELT_T_OFF Elf32_Off
ELF_T_PHDR Elf32_Phdr
ELF_T_REL Elf32_Rel
ELF_T_RELA Elf32_Rela
ELF_T_SHDR Elf32_Shdr
ELF_T_SWORD Elf32_Sword
ELF_T_SYM Elf32_Sym
ELF_T_WORD Elf32_Word

Translating buffers of type ELF_T_BYTE does not change the byte order.

For the 64−bit class, replace 32 with 64 as appropriate.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_fsize(3ELF), elf_getdata(3ELF), elf_getident(3ELF),
libelf(3LIB), attributes(5)

elf32_xlatetof(3ELF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 391

elf – object file access library

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Functions in the ELF access library let a program manipulate ELF (Executable and
Linking Format) object files, archive files, and archive members. The header provides
type and function declarations for all library services.

Programs communicate with many of the higher-level routines using an ELF descriptor.
That is, when the program starts working with a file, elf_begin(3ELF) creates an
ELF descriptor through which the program manipulates the structures and
information in the file. These ELF descriptors can be used both to read and to write
files. After the program establishes an ELF descriptor for a file, it may then obtain
section descriptors to manipulate the sections of the file (see elf_getscn(3ELF)).
Sections hold the bulk of an object file’s real information, such as text, data, the symbol
table, and so on. A section descriptor ‘‘belongs’’ to a particular ELF descriptor, just as a
section belongs to a file. Finally, data descriptors are available through section
descriptors, allowing the program to manipulate the information associated with a
section. A data descriptor ‘‘belongs’’ to a section descriptor.

Descriptors provide private handles to a file and its pieces. In other words, a data
descriptor is associated with one section descriptor, which is associated with one ELF
descriptor, which is associated with one file. Although descriptors are private, they
give access to data that may be shared. Consider programs that combine input files,
using incoming data to create or update another file. Such a program might get data
descriptors for an input and an output section. It then could update the output
descriptor to reuse the input descriptor’s data. That is, the descriptors are distinct, but
they could share the associated data bytes. This sharing avoids the space overhead for
duplicate buffers and the performance overhead for copying data unnecessarily.

ELF provides a framework in which to define a family of object files, supporting
multiple processors and architectures. An important distinction among object files is
the class, or capacity, of the file. The 32-bit class supports architectures in which a
32-bit object can represent addresses, file sizes, and so on, as in the following:

Name Purpose

Elf32_Addr Unsigned address

Elf32_Half Unsigned medium integer

Elf32_Off Unsigned file offset

Elf32_Sword Signed large integer

Elf32_Word Unsigned large integer

unsigned char Unsigned small integer

elf(3ELF)

NAME

SYNOPSIS

DESCRIPTION

File Classes

392 man pages section 3: Extended Library Functions • Last Revised 23 Jul 2001

The 64−bit class works the same as the 32−bit class, substituting 64 for 32 as necessary.
Other classes will be defined as necessary, to support larger (or smaller) machines.
Some library services deal only with data objects for a specific class, while others are
class-independent. To make this distinction clear, library function names reflect their
status, as described below.

Conceptually, two parallel sets of objects support cross compilation environments.
One set corresponds to file contents, while the other set corresponds to the native
memory image of the program manipulating the file. Type definitions supplied by the
headers work on the native machine, which may have different data encodings (size,
byte order, and so on) than the target machine. Although native memory objects
should be at least as big as the file objects (to avoid information loss), they may be
bigger if that is more natural for the host machine.

Translation facilities exist to convert between file and memory representations. Some
library routines convert data automatically, while others leave conversion as the
program’s responsibility. Either way, programs that create object files must write
file-typed objects to those files; programs that read object files must take a similar
view. See elf32_xlatetof(3ELF) and elf32_fsize(3ELF) for more information.

Programs may translate data explicitly, taking full control over the object file layout
and semantics. If the program prefers not to have and exercise complete control, the
library provides a higher-level interface that hides many object file details.
elf_begin() and related functions let a program deal with the native memory
types, converting between memory objects and their file equivalents automatically
when reading or writing an object file.

Object file versions allow ELF to adapt to new requirements. Three independent versions
can be important to a program. First, an application program knows about a particular
version by virtue of being compiled with certain headers. Second, the access library
similarly is compiled with header files that control what versions it understands.
Third, an ELF object file holds a value identifying its version, determined by the ELF
version known by the file’s creator. Ideally, all three versions would be the same, but
they may differ.

If a program’s version is newer than the access library, the program might use
information unknown to the library. Translation routines might not work properly,
leading to undefined behavior. This condition merits installing a new library.

The library’s version might be newer than the program’s and the file’s. The library
understands old versions, thus avoiding compatibility problems in this case.

Finally, a file’s version might be newer than either the program or the library
understands. The program might or might not be able to process the file properly,
depending on whether the file has extra information and whether that information can
be safely ignored. Again, the safe alternative is to install a new library that
understands the file’s version.

To accommodate these differences, a program must use elf_version(3ELF) to pass
its version to the library, thus establishing the working version for the process. Using
this, the library accepts data from and presents data to the program in the proper

elf(3ELF)

Data
Representation

ELF Versions

Extended Library Functions 393

representations. When the library reads object files, it uses each file’s version to
interpret the data. When writing files or converting memory types to the file
equivalents, the library uses the program’s working version for the file data.

As mentioned above, elf_begin() and related routines provide a higher-level
interface to ELF files, performing input and output on behalf of the application
program. These routines assume a program can hold entire files in memory, without
explicitly using temporary files. When reading a file, the library routines bring the
data into memory and perform subsequent operations on the memory copy. Programs
that wish to read or write large object files with this model must execute on a machine
with a large process virtual address space. If the underlying operating system limits
the number of open files, a program can use elf_cntl(3ELF) to retrieve all necessary
data from the file, allowing the program to close the file descriptor and reuse it.

Although the elf_begin() interfaces are convenient and efficient for many
programs, they might be inappropriate for some. In those cases, an application may
invoke the elf32_xlatetom(3ELF) or elf32_xlatetof(3ELF) data translation
routines directly. These routines perform no input or output, leaving that as the
application’s responsibility. By assuming a larger share of the job, an application
controls its input and output model.

Names associated with the library take several forms.

elf_name These class-independent names perform some service,
name, for the program.

elf32_name Service names with an embedded class, 32 here,
indicate they work only for the designated class of files.

Elf_Type Data types can be class-independent as well,
distinguished by Type.

Elf32_Type Class-dependent data types have an embedded class
name, 32 here.

ELF_C_CMD Several functions take commands that control their
actions. These values are members of the Elf_Cmd
enumeration; they range from zero through
ELF_C_NUM−1.

ELF_F_FLAG Several functions take flags that control library status
and/or actions. Flags are bits that may be combined.

ELF32_FSZ_TYPE These constants give the file sizes in bytes of the basic
ELF types for the 32-bit class of files. See
elf32_fsize() for more information.

ELF_K_KIND The function elf_kind() identifies the KIND of file
associated with an ELF descriptor. These values are
members of the Elf_Kind enumeration; they range
from zero through ELF_K_NUM−1.

elf(3ELF)

System Services

Library Names

394 man pages section 3: Extended Library Functions • Last Revised 23 Jul 2001

ELF_T_TYPE When a service function, such as elf32_xlatetom()
or elf32_xlatetof(), deals with multiple types,
names of this form specify the desired TYPE. Thus, for
example, ELF_T_EHDR is directly related to
Elf32_Ehdr. These values are members of the
Elf_Type enumeration; they range from zero through
ELF_T_NUM−1.

EXAMPLE 1 An interpretation of elf file.

The basic interpretation of an ELF file consists of:

� opening an ELF object file
� obtaining an ELF descriptor
� analyzing the file using the descriptor.

The following example opens the file, obtains the ELF descriptor, and prints out the
names of each section in the file.

#include <fcntl.h>
#include <stdio.h>
#include <libelf.h>
#include <stdlib.h>
#include <string.h>
static void failure(void);
void
main(int argc, char ** argv)
{

Elf32_Shdr * shdr;
Elf32_Ehdr * ehdr;
Elf * elf;
Elf_Scn * scn;
Elf_Data * data;
int fd;
unsigned int cnt;

/* Open the input file */
if ((fd = open(argv[1], O_RDONLY)) == -1)

exit(1);

/* Obtain the ELF descriptor */
(void) elf_version(EV_CURRENT);
if ((elf = elf_begin(fd, ELF_C_READ, NULL)) == NULL)

failure();

/* Obtain the .shstrtab data buffer */
if (((ehdr = elf32_getehdr(elf)) == NULL) ||

((scn = elf_getscn(elf, ehdr->e_shstrndx)) == NULL) ||
((data = elf_getdata(scn, NULL)) == NULL))
failure();

/* Traverse input filename, printing each section */
for (cnt = 1, scn = NULL; scn = elf_nextscn(elf, scn); cnt++) {

if ((shdr = elf32_getshdr(scn)) == NULL)
failure();

elf(3ELF)

EXAMPLES

Extended Library Functions 395

EXAMPLE 1 An interpretation of elf file. (Continued)

(void) printf("[%d] %s\n", cnt,
(char *)data->d_buf + shdr->sh_name);

}
} /* end main */

static void
failure()
{

(void) fprintf(stderr, "%s\n", elf_errmsg(elf_errno()));
exit(1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

ar.h(3HEAD), elf32_checksum(3ELF), elf32_fsize(3ELF),
elf32_getshdr(3ELF), elf32_xlatetof(3ELF), elf_begin(3ELF),
elf_cntl(3ELF), elf_errmsg(3ELF), elf_fill(3ELF), elf_getarhdr(3ELF),
elf_getarsym(3ELF), elf_getbase(3ELF), elf_getdata(3ELF),
elf_getident(3ELF), elf_getscn(3ELF), elf_hash(3ELF), elf_kind(3ELF),
elf_memory(3ELF), elf_rawfile(3ELF), elf_strptr(3ELF), elf_update(3ELF),
elf_version(3ELF), gelf(3ELF), libelf(3LIB), attributes(5), lfcompile(5)

ANSI C Programmer’s Guide

a.out(4)

Information in the ELF headers is separated into common parts and processor-specific
parts. A program can make a processor’s information available by including the
appropriate header: <sys/elf_NAME.h> where NAME matches the processor name
as used in the ELF file header.

Name Processor

M32 AT&T WE 32100

SPARC SPARC

386 Intel 80386, 80486, Pentium

Other processors will be added to the table as necessary.

To illustrate, a program could use the following code to ‘‘see’’ the processor-specific
information for the SPARC based system.

elf(3ELF)

ATTRIBUTES

SEE ALSO

SPARC only

NOTES

396 man pages section 3: Extended Library Functions • Last Revised 23 Jul 2001

#include <libelf.h>
#include <sys/elf_SPARC.h>

Without the <sys/elf_SPARC.h> definition, only the common ELF information
would be visible.

A program could use the following code to ‘‘see’’ the processor-specific information
for the Intel 80386:

#include <libelf.h>
#include <sys/elf_386.h>

Without the <sys/elf_386.h> definition, only the common ELF information would
be visible.

Although reading the objects is rather straightforward, writing/updating them can
corrupt the shared offsets among sections. Upon creation, relationships are established
among the sections that must be maintained even if the object’s size is changed.

elf(3ELF)

Extended Library Functions 397

elf_begin, elf_end, elf_memory, elf_next, elf_rand – process ELF object files

cc [flag...] file ... -lelf [library ...]

#include <libelf.h>

Elf *elf_begin(int fildes, Elf_Cmd cmd, Elf *ref);

int elf_end(Elf *elf);

Elf *elf_memory(char *image, size_t sz);

Elf_Cmd elf_next(Elf *elf);

size_t elf_rand(Elf *elf, size_t offset);

The elf_begin(), elf_end(), elf_memory(), elf_next(), and elf_rand()
functions work together to process Executable and Linking Format (ELF) object files,
either individually or as members of archives. After obtaining an ELF descriptor from
elf_begin() or elf_memory(), the program can read an existing file, update an
existing file, or create a new file. The fildes argument is an open file descriptor that
elf_begin() uses for reading or writing. The elf argument is an ELF descriptor
previously returned from elf_begin(). The initial file offset (see lseek(2)) is
unconstrained, and the resulting file offset is undefined.

The cmd argument can take the following values:

ELF_C_NULL When a program sets cmd to this value, elf_begin() returns a
null pointer, without opening a new descriptor. ref is ignored for
this command. See the examples below for more information.

ELF_C_READ When a program wants to examine the contents of an existing file,
it should set cmd to this value. Depending on the value of ref, this
command examines archive members or entire files. Three cases
can occur.

� If ref is a null pointer, elf_begin() allocates a new ELF
descriptor and prepares to process the entire file. If the file
being read is an archive, elf_begin() also prepares the
resulting descriptor to examine the initial archive member on
the next call to elf_begin(), as if the program had used
elf_next() or elf_rand() to ‘‘move’’ to the initial member.

� If ref is a non-null descriptor associated with an archive file,
elf_begin() lets a program obtain a separate ELF descriptor
associated with an individual member. The program should
have used elf_next() or elf_rand() to position ref
appropriately (except for the initial member, which
elf_begin() prepares; see the example below). In this case,
fildes should be the same file descriptor used for the parent
archive.

elf_begin(3ELF)

NAME

SYNOPSIS

DESCRIPTION

398 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

� If ref is a non-null ELF descriptor that is not an archive,
elf_begin() increments the number of activations for the
descriptor and returns ref, without allocating a new descriptor
and without changing the descriptor’s read/write permissions.
To terminate the descriptor for ref, the program must call
elf_end() once for each activation. See the examples below
for more information.

ELF_C_RDWR This command duplicates the actions of ELF_C_READ and
additionally allows the program to update the file image (see
elf_update(3ELF)). Using ELF_C_READ gives a read-only view
of the file, while ELF_C_RDWR lets the program read and write the
file. ELF_C_RDWR is not valid for archive members. If ref is
non-null, it must have been created with the ELF_C_RDWR
command.

ELF_C_WRITE If the program wants to ignore previous file contents, presumably
to create a new file, it should set cmd to this value. ref is ignored for
this command.

The elf_begin() function operates on all files (including files with zero bytes),
providing it can allocate memory for its internal structures and read any necessary
information from the file. Programs reading object files can call elf_kind(3ELF) or
elf32_getehdr(3ELF) to determine the file type (only object files have an ELF
header). If the file is an archive with no more members to process, or an error occurs,
elf_begin() returns a null pointer. Otherwise, the return value is a non-null ELF
descriptor.

Before the first call to elf_begin(), a program must call elf_version() to
coordinate versions.

The elf_end() function is used to terminate an ELF descriptor, elf, and to deallocate
data associated with the descriptor. Until the program terminates a descriptor, the data
remain allocated. A null pointer is allowed as an argument, to simplify error handling.
If the program wants to write data associated with the ELF descriptor to the file, it
must use elf_update() before calling elf_end().

Calling elf_end() removes one activation and returns the remaining activation
count. The library does not terminate the descriptor until the activation count reaches
0. Consequently, a 0 return value indicates the ELF descriptor is no longer valid.

The elf_memory() function returns a pointer to an ELF descriptor. The ELF image
has read operations enabled (ELF_C_READ). The image argument is a pointer to an
image of the Elf file mapped into memory. The sz argument is the size of the ELF
image. An ELF image that is mapped in with elf_memory() can be read and
modified, but the ELF image size cannot be changed.

elf_begin(3ELF)

Extended Library Functions 399

The elf_next() function provides sequential access to the next archive member.
Having an ELF descriptor, elf, associated with an archive member, elf_next()
prepares the containing archive to access the following member when the program
calls elf_begin(). After successfully positioning an archive for the next member,
elf_next() returns the value ELF_C_READ. Otherwise, the open file was not an
archive, elf was NULL, or an error occurred, and the return value is ELF_C_NULL. In
either case, the return value can be passed as an argument to elf_begin(),
specifying the appropriate action.

The elf_rand() function provides random archive processing, preparing elf to
access an arbitrary archive member. The elf argument must be a descriptor for the
archive itself, not a member within the archive. The offset argument specifies the byte
offset from the beginning of the archive to the archive header of the desired member.
See elf_getarsym(3ELF) for more information about archive member offsets. When
elf_rand() works, it returns offset. Otherwise, it returns 0, because an error
occurred, elf was NULL, or the file was not an archive (no archive member can have a
zero offset). A program can mix random and sequential archive processing.

When processing a file, the library decides when to read or write the file, depending
on the program’s requests. Normally, the library assumes the file descriptor remains
usable for the life of the ELF descriptor. If, however, a program must process many
files simultaneously and the underlying operating system limits the number of open
files, the program can use elf_cntl() to let it reuse file descriptors. After calling
elf_cntl() with appropriate arguments, the program can close the file descriptor
without interfering with the library.

All data associated with an ELF descriptor remain allocated until elf_end()
terminates the descriptor’s last activation. After the descriptors have been terminated,
the storage is released; attempting to reference such data gives undefined behavior.
Consequently, a program that deals with multiple input (or output) files must keep the
ELF descriptors active until it finishes with them.

EXAMPLE 1 A sample program of calling the elf_begin() function.

A prototype for reading a file appears on the next page. If the file is a simple object
file, the program executes the loop one time, receiving a null descriptor in the second
iteration. In this case, both elf and arf will have the same value, the activation count
will be 2, and the program calls elf_end() twice to terminate the descriptor. If the
file is an archive, the loop processes each archive member in turn, ignoring those that
are not object files.

if (elf_version(EV_CURRENT) == EV_NONE)
{

/* library out of date */
/* recover from error */

}
cmd = ELF_C_READ;
arf = elf_begin(fildes, cmd, (Elf *)0);
while ((elf = elf_begin(fildes, cmd, arf)) != 0)
{

elf_begin(3ELF)

System Services

EXAMPLES

400 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

EXAMPLE 1 A sample program of calling the elf_begin() function. (Continued)

if ((ehdr = elf32_getehdr(elf)) != 0)
{

/* process the file . . . */
}
cmd = elf_next(elf);
elf_end(elf);

}
elf_end(arf);

Alternatively, the next example illustrates random archive processing. After
identifying the file as an archive, the program repeatedly processes archive members
of interest. For clarity, this example omits error checking and ignores simple object
files. Additionally, this fragment preserves the ELF descriptors for all archive
members, because it does not call elf_end() to terminate them.

elf_version(EV_CURRENT);
arf = elf_begin(fildes, ELF_C_READ, (Elf *)0);
if (elf_kind(arf) != ELF_K_AR)
{

/* not an archive */
}
/* initial processing */
/* set offset = . . . for desired member header */
while (elf_rand(arf, offset) == offset)
{

if ((elf = elf_begin(fildes, ELF_C_READ, arf)) == 0)
break;

if ((ehdr = elf32_getehdr(elf)) != 0)
{

/* process archive member . . . */
}
/* set offset = . . . for desired member header */

}

An archive starts with a ‘‘magic string’’ that has SARMAG bytes; the initial archive
member follows immediately. An application could thus provide the following
function to rewind an archive (the function returns −1 for errors and 0 otherwise).

#include <ar.h>
#include <libelf.h>
int
rewindelf(Elf *elf)
{

if (elf_rand(elf, (size_t)SARMAG) == SARMAG)
return 0;

return −1;
}

The following outline shows how one might create a new ELF file. This example is
simplified to show the overall flow.

elf_begin(3ELF)

Extended Library Functions 401

EXAMPLE 1 A sample program of calling the elf_begin() function. (Continued)

elf_version(EV_CURRENT);
fildes = open("path/name", O_RDWR|O_TRUNC|O_CREAT, 0666);
if ((elf = elf_begin(fildes, ELF_C_WRITE, (Elf *)0)) == 0)

return;
ehdr = elf32_newehdr(elf);
phdr = elf32_newphdr(elf, count);
scn = elf_newscn(elf);
shdr = elf32_getshdr(scn);
data = elf_newdata(scn);
elf_update(elf, ELF_C_WRITE);
elf_end(elf);

Finally, the following outline shows how one might update an existing ELF file. Again,
this example is simplified to show the overall flow.

elf_version(EV_CURRENT);
fildes = open("path/name", O_RDWR);
elf = elf_begin(fildes, ELF_C_RDWR, (Elf *)0);
/* add new or delete old information */
. . .
/* ensure that the memory image of the file is complete */
elf_update(elf, ELF_C_NULL);
elf_update(elf, ELF_C_WRITE); /* update file */
elf_end(elf);

Notice that both file creation examples open the file with write and read permissions.
On systems that support mmap(2), the library uses it to enhance performance, and
mmap(2) requires a readable file descriptor. Although the library can use a write-only
file descriptor, the application will not obtain the performance advantages of mmap(2).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

creat(2), lseek(2), mmap(2), open(2), ar.h(3HEAD), elf(3ELF),
elf32_getehdr(3ELF), elf_cntl(3ELF), elf_getarhdr(3ELF),
elf_getarsym(3ELF), elf_getbase(3ELF), elf_getdata(3ELF),
elf_getscn(3ELF), elf_kind(3ELF), elf_rawfile(3ELF), elf_update(3ELF),
elf_version(3ELF), libelf(3LIB), attributes(5)

elf_begin(3ELF)

ATTRIBUTES

SEE ALSO

402 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_cntl – control an elf file descriptor

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

int elf_cntl(Elf *elf, Elf_Cmd cmd);

elf_cntl() instructs the library to modify its behavior with respect to an ELF
descriptor, elf. As elf_begin(3ELF) describes, an ELF descriptor can have multiple
activations, and multiple ELF descriptors may share a single file descriptor. Generally,
elf_cntl() commands apply to all activations of elf. Moreover, if the ELF descriptor
is associated with an archive file, descriptors for members within the archive will also
be affected as described below. Unless stated otherwise, operations on archive
members do not affect the descriptor for the containing archive.

The cmd argument tells what actions to take and may have the following values:

ELF_C_FDDONE This value tells the library not to use the file descriptor associated
with elf. A program should use this command when it has
requested all the information it cares to use and wishes to avoid
the overhead of reading the rest of the file. The memory for all
completed operations remains valid, but later file operations, such
as the initial elf_getdata() for a section, will fail if the data are
not in memory already.

ELF_C_FDREAD This command is similar to ELF_C_FDDONE, except it forces the
library to read the rest of the file. A program should use this
command when it must close the file descriptor but has not yet
read everything it needs from the file. After elf_cntl()
completes the ELF_C_FDREAD command, future operations, such
as elf_getdata(), will use the memory version of the file
without needing to use the file descriptor.

If elf_cntl() succeeds, it returns 0. Otherwise elf was NULL or an error occurred,
and the function returns −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf_begin(3ELF), elf_getdata(3ELF), elf_rawfile(3ELF),
libelf(3LIB), attributes(5)

elf_cntl(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 403

If the program wishes to use the ‘‘raw’’ operations (see elf_rawdata(), which
elf_getdata(3ELF) describes, and elf_rawfile(3ELF)) after disabling the file
descriptor with ELF_C_FDDONE or ELF_C_FDREAD, it must execute the raw
operations explicitly beforehand. Otherwise, the raw file operations will fail. Calling
elf_rawfile() makes the entire image available, thus supporting subsequent
elf_rawdata() calls.

elf_cntl(3ELF)

NOTES

404 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_errmsg, elf_errno – error handling

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

const char *elf_errmsg(int err);

int elf_errno(void);

If an ELF library function fails, a program can call elf_errno() to retrieve the
library’s internal error number. As a side effect, this function resets the internal error
number to 0, which indicates no error.

The elf_errmsg() function takes an error number, err, and returns a null-terminated
error message (with no trailing new-line) that describes the problem. A zero err
retrieves a message for the most recent error. If no error has occurred, the return value
is a null pointer (not a pointer to the null string). Using err of −1 also retrieves the
most recent error, except it guarantees a non-null return value, even when no error has
occurred. If no message is available for the given number, elf_errmsg() returns a
pointer to an appropriate message. This function does not have the side effect of
clearing the internal error number.

EXAMPLE 1 A sample program of calling the elf_errmsg() function.

The following fragment clears the internal error number and checks it later for errors.
Unless an error occurs after the first call to elf_errno(), the next call will return 0.

(void)elf_errno();
/* processing . . . */
while (more_to_do)
{

if ((err = elf_errno()) != 0)
{

/* print msg */
msg = elf_errmsg(err);

}
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), libelf(3LIB), attributes(5)

elf_errmsg(3ELF)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 405

elf_fill – set fill byte

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

void elf_fill(int fill);

Alignment constraints for ELF files sometimes require the presence of ‘‘holes.’’ For
example, if the data for one section are required to begin on an eight-byte boundary,
but the preceding section is too ‘‘short,’’ the library must fill the intervening bytes.
These bytes are set to the fill character. The library uses zero bytes unless the
application supplies a value. See elf_getdata(3ELF) for more information about
these holes.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf_flagdata(3ELF), elf_getdata(3ELF), elf_update(3ELF),
libelf(3LIB), attributes(5)

An application can assume control of the object file organization by setting the
ELF_F_LAYOUT bit (see elf_flagdata(3ELF)). When this is done, the library does
not fill holes.

elf_fill(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

406 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_flagdata, elf_flagehdr, elf_flagelf, elf_flagphdr, elf_flagscn, elf_flagshdr –
manipulate flags

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

unsigned elf_flagdata(Elf_Data *data, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagehdr(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagelf(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagphdr(Elf *elf, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagscn(Elf_Scn *scn, Elf_Cmd cmd, unsigned flags);

unsigned elf_flagshdr(Elf_Scn *scn, Elf_Cmd cmd, unsigned flags);

These functions manipulate the flags associated with various structures of an ELF file.
Given an ELF descriptor (elf), a data descriptor (data), or a section descriptor (scn), the
functions may set or clear the associated status bits, returning the updated bits. A null
descriptor is allowed, to simplify error handling; all functions return 0 for this
degenerate case.

cmd may have the following values:

ELF_C_CLR The functions clear the bits that are asserted in flags. Only the
non-zero bits in flags are cleared; zero bits do not change the status
of the descriptor.

ELF_C_SET The functions set the bits that are asserted in flags. Only the
non-zero bits in flags are set; zero bits do not change the status of
the descriptor.

Descriptions of the defined flags bits appear below:

ELF_F_DIRTY When the program intends to write an ELF file, this flag asserts the
associated information needs to be written to the file. Thus, for
example, a program that wished to update the ELF header of an
existing file would call elf_flagehdr() with this bit set in flags
and cmd equal to ELF_C_SET. A later call to elf_update()
would write the marked header to the file.

ELF_F_LAYOUT Normally, the library decides how to arrange an output file. That
is, it automatically decides where to place sections, how to align
them in the file, etc. If this bit is set for an ELF descriptor, the
program assumes responsibility for determining all file positions.
This bit is meaningful only for elf_flagelf() and applies to the
entire file associated with the descriptor.

When a flag bit is set for an item, it affects all the subitems as well. Thus, for example,
if the program sets the ELF_F_DIRTY bit with elf_flagelf(), the entire logical file
is ‘‘dirty.’’

elf_flagdata(3ELF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 407

EXAMPLE 1 A sample display of calling the elf_flagdata() function.

The following fragment shows how one might mark the ELF header to be written to
the output file:

/* dirty ehdr . . . */
ehdr = elf32_getehdr(elf);
elf_flagehdr(elf, ELF_C_SET, ELF_F_DIRTY);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_getdata(3ELF), elf_update(3ELF),
attributes(5)

elf_flagdata(3ELF)

EXAMPLES

ATTRIBUTES

SEE ALSO

408 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_getarhdr – retrieve archive member header

cc [flag ...] file ... -lelf [library...]

#include <libelf.h>

Elf_Arhdr *elf_getarhdr(Elf *elf);

elf_getarhdr() returns a pointer to an archive member header, if one is available
for the ELF descriptor elf. Otherwise, no archive member header exists, an error
occurred, or elf was null; elf_getarhdr() then returns a null value. The header
includes the following members.

char *ar_name;
time_t ar_date;
uid_t ar_uid;
gid_t ar_gid;
mode_t ar_mode;
off_t ar_size;
char *ar_rawname;

An archive member name, available through ar_name, is a null-terminated string,
with the ar format control characters removed. The ar_rawname member holds a
null-terminated string that represents the original name bytes in the file, including the
terminating slash and trailing blanks as specified in the archive format.

In addition to ‘‘regular’’ archive members, the archive format defines some special
members. All special member names begin with a slash (/), distinguishing them from
regular members (whose names may not contain a slash). These special members have
the names (ar_name) defined below.

/ This is the archive symbol table. If present, it will be the first archive
member. A program may access the archive symbol table through
elf_getarsym(). The information in the symbol table is useful for
random archive processing (see elf_rand() on elf_begin(3ELF)).

// This member, if present, holds a string table for long archive member
names. An archive member’s header contains a 16-byte area for the name,
which may be exceeded in some file systems. The library automatically
retrieves long member names from the string table, setting ar_name to the
appropriate value.

Under some error conditions, a member’s name might not be available. Although this
causes the library to set ar_name to a null pointer, the ar_rawname member will be
set as usual.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

elf_getarhdr(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

Extended Library Functions 409

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ar.h(3HEAD), elf(3ELF), elf_begin(3ELF), elf_getarsym(3ELF), libelf(3LIB),
attributes(5)

elf_getarhdr(3ELF)

SEE ALSO

410 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_getarsym – retrieve archive symbol table

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Arsym *elf_getarsym(Elf *elf, size_t *ptr);

The elf_getarsym() function returns a pointer to the archive symbol table, if one is
available for the ELF descriptor elf. Otherwise, the archive doesn’t have a symbol
table, an error occurred, or elf was null; elf_getarsym() then returns a null value.
The symbol table is an array of structures that include the following members.

char *as_name;
size_t as_off;
unsigned long as_hash;

These members have the following semantics:

as_name A pointer to a null-terminated symbol name resides here.

as_off This value is a byte offset from the beginning of the archive to the
member’s header. The archive member residing at the given offset
defines the associated symbol. Values in as_off may be passed as
arguments to elf_rand(). See elf_begin(3ELF) to access the
desired archive member.

as_hash This is a hash value for the name, as computed by elf_hash().

If ptr is non-null, the library stores the number of table entries in the location to which
ptr points. This value is set to 0 when the return value is NULL. The table’s last entry,
which is included in the count, has a null as_name, a zero value for as_off, and
~0UL for as_hash.

The hash value returned is guaranteed not to be the bit pattern of all ones (~0UL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

ar.h(3HEAD), elf(3ELF), elf_begin(3ELF), elf_getarhdr(3ELF),
elf_hash(3ELF), libelf(3LIB), attributes(5)

elf_getarsym(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 411

elf_getbase – get the base offset for an object file

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

off_t elf_getbase(Elf *elf);

The elf_getbase() function returns the file offset of the first byte of the file or
archive member associated with elf, if it is known or obtainable, and −1 otherwise. A
null elf is allowed, to simplify error handling; the return value in this case is −1. The
base offset of an archive member is the beginning of the member’s information, not the
beginning of the archive member header.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

ar.h(3HEAD), elf(3ELF), elf_begin(3ELF), libelf(3LIB), attributes(5)

elf_getbase(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

412 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_getdata, elf_newdata, elf_rawdata – get section data

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Data *elf_getdata(Elf_Scn *scn, Elf_Data *data);

Elf_Data *elf_newdata(Elf_Scn *scn);

Elf_Data *elf_rawdata(Elf_Scn *scn, Elf_Data *data);

These functions access and manipulate the data associated with a section descriptor,
scn. When reading an existing file, a section will have a single data buffer associated
with it. A program may build a new section in pieces, however, composing the new
data from multiple data buffers. For this reason, the data for a section should be
viewed as a list of buffers, each of which is available through a data descriptor.

The elf_getdata() function lets a program step through a section’s data list. If the
incoming data descriptor, data, is null, the function returns the first buffer associated
with the section. Otherwise, data should be a data descriptor associated with scn, and
the function gives the program access to the next data element for the section. If scn is
null or an error occurs, elf_getdata() returns a null pointer.

The elf_getdata() function translates the data from file representations into
memory representations (see elf32_xlatetof(3ELF)) and presents objects with
memory data types to the program, based on the file’s class (see elf(3ELF)). The
working library version (see elf_version(3ELF)) specifies what version of the
memory structures the program wishes elf_getdata() to present.

The elf_newdata() function creates a new data descriptor for a section, appending
it to any data elements already associated with the section. As described below, the
new data descriptor appears empty, indicating the element holds no data. For
convenience, the descriptor’s type (d_type below) is set to ELF_T_BYTE, and the
version (d_version below) is set to the working version. The program is responsible
for setting (or changing) the descriptor members as needed. This function implicitly
sets the ELF_F_DIRTY bit for the section’s data (see elf_flagdata(3ELF)). If scn is
null or an error occurs, elf_newdata() returns a null pointer.

The elf_rawdata() function differs from elf_getdata() by returning only
uninterpreted bytes, regardless of the section type. This function typically should be
used only to retrieve a section image from a file being read, and then only when a
program must avoid the automatic data translation described below. Moreover, a
program may not close or disable (see elf_cntl(3ELF)) the file descriptor associated
with elf before the initial raw operation, because elf_rawdata() might read the data
from the file to ensure it doesn’t interfere with elf_getdata(). See
elf_rawfile(3ELF) for a related facility that applies to the entire file. When
elf_getdata() provides the right translation, its use is recommended over
elf_rawdata(). If scn is null or an error occurs, elf_rawdata() returns a null
pointer.

The Elf_Data structure includes the following members:

elf_getdata(3ELF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 413

void *d_buf;
Elf_Type d_type;
size_t d_size;
off_t d_off;
size_t d_align;
unsigned d_version;

These members are available for direct manipulation by the program. Descriptions
appear below.

d_buf A pointer to the data buffer resides here. A data element with no
data has a null pointer.

d_type This member’s value specifies the type of the data to which d_buf
points. A section’s type determines how to interpret the section
contents, as summarized below.

d_size This member holds the total size, in bytes, of the memory occupied
by the data. This may differ from the size as represented in the file.
The size will be zero if no data exist. (See the discussion of
SHT_NOBITS below for more information.)

d_off This member gives the offset, within the section, at which the
buffer resides. This offset is relative to the file’s section, not the
memory object’s.

d_align This member holds the buffer’s required alignment, from the
beginning of the section. That is, d_off will be a multiple of this
member’s value. For example, if this member’s value is 4, the
beginning of the buffer will be four-byte aligned within the
section. Moreover, the entire section will be aligned to the
maximum of its constituents, thus ensuring appropriate alignment
for a buffer within the section and within the file.

d_version This member holds the version number of the objects in the buffer.
When the library originally read the data from the object file, it
used the working version to control the translation to memory
objects.

As mentioned above, data buffers within a section have explicit alignment constraints.
Consequently, adjacent buffers sometimes will not abut, causing ‘‘holes’’ within a
section. Programs that create output files have two ways of dealing with these holes.

First, the program can use elf_fill() to tell the library how to set the intervening
bytes. When the library must generate gaps in the file, it uses the fill byte to initialize
the data there. The library’s initial fill value is 0, and elf_fill() lets the application
change that.

elf_getdata(3ELF)

Data Alignment

414 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

Second, the application can generate its own data buffers to occupy the gaps, filling
the gaps with values appropriate for the section being created. A program might even
use different fill values for different sections. For example, it could set text sections’
bytes to no-operation instructions, while filling data section holes with zero. Using this
technique, the library finds no holes to fill, because the application eliminated them.

The elf_getdata() function interprets sections’ data according to the section type,
as noted in the section header available through elf32_getshdr(). The following
table shows the section types and how the library represents them with memory data
types for the 32-bit file class. Other classes would have similar tables. By implication,
the memory data types control translation by elf32_xlatetof(3ELF)

Section Type Elf_Type 32-bit Type

SHT_DYNAMIC ELF_T_DYN Elf32_Dyn

SHT_DYNSYM ELF_T_SYM Elf32_Sym

SHT_FINI_ARRAY ELF_T_ADDR Elf32_Addr

SHT_GROUP ELF_T_WORD Elf32_Word

SHT_HASH ELF_T_WORD Elf32_Word

SHT_INIT_ARRAY ELF_T_ADDR Elf32_Addr

SHT_NOBITS ELF_T_BYTE unsigned char

SHT_NOTE ELF_T_NOTE unsigned char

SHT_NULL none none

SHT_PREINIT_ARRAY ELF_T_ADDR Elf32_Addr

SHT_PROGBITS ELF_T_BYTE unsigned char

SHT_REL ELF_T_REL Elf32_Rel

SHT_RELA ELF_T_RELA Elf32_Rela

SHT_STRTAB ELF_T_BYTE unsigned char

SHT_SYMTAB ELF_T_SYM Elf32_Sym

SHT_SUNW_comdat ELF_T_BYTE unsigned char

SHT_SUNW_move ELF_T_MOVE Elf32_Move (sparc)

SHT_SUNW_move ELF_T_MOVEP Elf32_Move (ia32)

SHT_SUNW_syminfo ELF_T_SYMINFO Elf32_Syminfo

SHT_SUNW_verdef ELF_T_VDEF Elf32_Verdef

SHT_SUNW_verneed ELF_T_VNEED Elf32_Verneed

elf_getdata(3ELF)

Section and
Memory Types

Extended Library Functions 415

Section Type Elf_Type 32-bit Type

SHT_SUNW_versym ELF_T_HALF Elf32_Versym

other ELF_T_BYTE unsigned char

The elf_rawdata() function creates a buffer with type ELF_T_BYTE.

As mentioned above, the program’s working version controls what structures the
library creates for the application. The library similarly interprets section types
according to the versions. If a section type belongs to a version newer than the
application’s working version, the library does not translate the section data. Because
the application cannot know the data format in this case, the library presents an
untranslated buffer of type ELF_T_BYTE, just as it would for an unrecognized section
type.

A section with a special type, SHT_NOBITS, occupies no space in an object file, even
when the section header indicates a non-zero size. elf_getdata() and
elf_rawdata() work on such a section, setting the data structure to have a null
buffer pointer and the type indicated above. Although no data are present, the d_size
value is set to the size from the section header. When a program is creating a new
section of type SHT_NOBITS, it should use elf_newdata() to add data buffers to the
section. These empty data buffers should have the d_size members set to the desired
size and the d_buf members set to NULL.

EXAMPLE 1 A sample program of calling elf_getdata().

The following fragment obtains the string table that holds section names (ignoring
error checking). See elf_strptr(3ELF) for a variation of string table handling.

ehdr = elf32_getehdr(elf);
scn = elf_getscn(elf, (size_t)ehdr->e_shstrndx);
shdr = elf32_getshdr(scn);
if (shdr->sh_type != SHT_STRTAB)
{
/* not a string table */
}
data = 0;
if ((data = elf_getdata(scn, data)) == 0 || data->d_size == 0)
{
/* error or no data */
}

The e_shstrndx member in an ELF header holds the section table index of the string
table. The program gets a section descriptor for that section, verifies it is a string table,
and then retrieves the data. When this fragment finishes, data->d_buf points at the
first byte of the string table, and data->d_size holds the string table’s size in bytes.

elf_getdata(3ELF)

EXAMPLES

416 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf64_getehdr(3ELF),
elf32_getshdr(3ELF), elf64_getshdr(3ELF), elf32_xlatetof(3ELF),
elf64_xlatetof(3ELF), elf_cntl(3ELF), elf_fill(3ELF),
elf_flagdata(3ELF), elf_getscn(3ELF), elf_rawfile(3ELF),
elf_strptr(3ELF), elf_version(3ELF), libelf(3LIB), attributes(5)

elf_getdata(3ELF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 417

elf_getident, elf_getshnum, elf_getshstrndx – retrieve ELF header data

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

char * elf_getident(Elf *elf, size_t *dst);

int elf_getshnum(Elf *elf, size_t *dst);

int elf_getshstrndx(Elf *elf, size_t *dst);

As elf(3ELF) explains, ELF provides a framework for various classes of files, where
basic objects may have 32 bits, 64 bits, etc. To accommodate these differences, without
forcing the larger sizes on smaller machines, the initial bytes in an ELF file hold
identification information common to all file classes. Every ELF header’s e_ident has
EI_NIDENT bytes with the following interpretation:

e_ident Index Value Purpose

EI_MAG0 ELFMAG0 File identification

EI_MAG1 ELFMAG1

EI_MAG2 ELFMAG2

EI_MAG3 ELFMAG3

EI_CLASS ELFCLASSNONE File class

ELFCLASS32

ELFCLASS64

EI_DATA ELFDATANONE Data encoding

ELFDATA2LSB

ELFDATA2MSB

EI_VERSION EV_CURRENT File version

7-15 0 Unused, set to zero

Other kinds of files (see elf_kind(3ELF)) also may have identification data, though
they would not conform to e_ident.

elf_getident(3ELF)

NAME

SYNOPSIS

DESCRIPTION

418 man pages section 3: Extended Library Functions • Last Revised 20 Jun 2002

elf_getident() returns a pointer to the file’s ‘‘initial bytes.’’ If the library
recognizes the file, a conversion from the file image to the memory image may occur.
In any case, the identification bytes are guaranteed not to have been modified, though
the size of the unmodified area depends on the file type. If dst is non-null, the library
stores the number of identification bytes in the location to which dst points. If no data
are present, elf is null, or an error occurs, the return value is a null pointer, with 0
stored through dst, if dst is non-null.

The elf_getshnum() function obtains the number of sections recorded in the ELF
file. The number of sections in a file is typically recorded in the e_shnum field of the
ELF header, though a file that requires ELF Extended Sections records the value 0 in
the e_shnum field and records the number of sections in the sh_size field of section
header 0. See USAGE. dst points to the location where the number of sections will be
stored. If a call to elf_newscn(3ELF) using the same elf descriptor has been
performed, then the value obtained by elf_getshnum() is only valid after a
successful call to elf_update(3ELF). If elf is NULL or an error occurs,
elf_getshnum() returns -1.

The elf_getshstrndx() function obtains the section index of the string table
associated with the section headers in the ELF file. The section header string table
index is typically recorded in the e_shstrndx field of the ELF header, though a file
that requires ELF Extended Sections records the value SHN_XINDEX in the
e_shstrndx field and records the string table index in the sh_link field of section
header 0. See USAGE. The dst argument points to the location where the section
header string table index is stored. If elf is NULL or an error occurs,
elf_getshstrndx() returns -1.

ELF Extended Sections are employed to allow an ELF file to contain more than
0xff00 (SHN_LORESERVE) section. See the Linker and Libraries Guide for more
information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF), elf_kind(3ELF),
elf_newscn(3ELF), elf_rawfile(3ELF), elf_update(3ELF), libelf(3LIB),
attributes(5)

Linker and Libraries Guide

elf_getident(3ELF)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 419

elf_getscn, elf_ndxscn, elf_newscn, elf_nextscn – get section information

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Scn *elf_getscn(Elf *elf, size_t index);

size_t elf_ndxscn(Elf_Scn *scn);

Elf_Scn *elf_newscn(Elf *elf);

Elf_Scn *elf_nextscn(Elf *elf, Elf_Scn *scn);

These functions provide indexed and sequential access to the sections associated with
the ELF descriptor elf. If the program is building a new file, it is responsible for
creating the file’s ELF header before creating sections; see elf32_getehdr(3ELF).

The elf_getscn() function returns a section descriptor, given an index into the file’s
section header table. Note that the first ‘‘real’’ section has an index of 1. Although a
program can get a section descriptor for the section whose index is 0 (SHN_UNDEF, the
undefined section), the section has no data and the section header is ‘‘empty’’ (though
present). If the specified section does not exist, an error occurs, or elf is NULL,
elf_getscn() returns a null pointer.

The elf_newscn() function creates a new section and appends it to the list for elf.
Because the SHN_UNDEF section is required and not ‘‘interesting’’ to applications, the
library creates it automatically. Thus the first call to elf_newscn() for an ELF
descriptor with no existing sections returns a descriptor for section 1. If an error occurs
or elf is NULL, elf_newscn() returns a null pointer.

After creating a new section descriptor, the program can use elf32_getshdr() to
retrieve the newly created, ‘‘clean’’ section header. The new section descriptor will
have no associated data (see elf_getdata(3ELF)). When creating a new section in
this way, the library updates the e_shnum member of the ELF header and sets the
ELF_F_DIRTY bit for the section (see elf_flagdata(3ELF)). If the program is
building a new file, it is responsible for creating the file’s ELF header (see
elf32_getehdr(3ELF)) before creating new sections.

The elf_nextscn() function takes an existing section descriptor, scn, and returns a
section descriptor for the next higher section. One may use a null scn to obtain a
section descriptor for the section whose index is 1 (skipping the section whose index is
SHN_UNDEF). If no further sections are present or an error occurs, elf_nextscn()
returns a null pointer.

The elf_ndxscn() function takes an existing section descriptor, scn, and returns its
section table index. If scn is null or an error occurs, elf_ndxscn() returns
SHN_UNDEF.

EXAMPLE 1 A sample of calling elf_getscn() function.

An example of sequential access appears below. Each pass through the loop processes
the next section in the file; the loop terminates when all sections have been processed.

elf_getscn(3ELF)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

420 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

EXAMPLE 1 A sample of calling elf_getscn() function. (Continued)

scn = 0;
while ((scn = elf_nextscn(elf, scn)) != 0)
{

/* process section */
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf32_getshdr(3ELF), elf_begin(3ELF),
elf_flagdata(3ELF), elf_getdata(3ELF), libelf(3LIB), attributes(5)

elf_getscn(3ELF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 421

elf_hash – compute hash value

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

unsigned long elf_hash(const char *name);

The elf_hash() function computes a hash value, given a null terminated string,
name. The returned hash value, h, can be used as a bucket index, typically after
computing h mod x to ensure appropriate bounds.

Hash tables may be built on one machine and used on another because elf_hash()
uses unsigned arithmetic to avoid possible differences in various machines’ signed
arithmetic. Although name is shown as char* above, elf_hash() treats it as
unsigned char* to avoid sign extension differences. Using char* eliminates type
conflicts with expressions such as elf_hash(name).

ELF files’ symbol hash tables are computed using this function (see
elf_getdata(3ELF) and elf32_xlatetof(3ELF)). The hash value returned is
guaranteed not to be the bit pattern of all ones (~0UL).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_xlatetof(3ELF), elf_getdata(3ELF), libelf(3LIB),
attributes(5)

elf_hash(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

422 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_kind – determine file type

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

Elf_Kind elf_kind(Elf *elf);

This function returns a value identifying the kind of file associated with an ELF
descriptor (elf). Defined values are below:

ELF_K_AR The file is an archive [see ar.h(3HEAD)]. An ELF descriptor may
also be associated with an archive member, not the archive itself,
and then elf_kind() identifies the member’s type.

ELF_K_COFF The file is a COFF object file. elf_begin(3ELF) describes the
library’s handling for COFF files.

ELF_K_ELF The file is an ELF file. The program may use elf_getident() to
determine the class. Other functions, such as elf32_getehdr(),
are available to retrieve other file information.

ELF_K_NONE This indicates a kind of file unknown to the library.

Other values are reserved, to be assigned as needed to new kinds of files. elf should be
a value previously returned by elf_begin(). A null pointer is allowed, to simplify
error handling, and causes elf_kind() to return ELF_K_NONE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

ar.h(3HEAD), elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF),
elf_getident(3ELF), libelf(3LIB), attributes(5)

elf_kind(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 423

elf_rawfile – retrieve uninterpreted file contents

cc [flag...] file ... -lelf [library ...]

#include <libelf.h>

char *elf_rawfile(Elf *elf, size_t *ptr);

The elf_rawfile() function returns a pointer to an uninterpreted byte image of the
file. This function should be used only to retrieve a file being read. For example, a
program might use elf_rawfile() to retrieve the bytes for an archive member.

A program may not close or disable (see elf_cntl(3ELF)) the file descriptor
associated with elf before the initial call to elf_rawfile() , because
elf_rawfile() might have to read the data from the file if it does not already have
the original bytes in memory. Generally, this function is more efficient for unknown
file types than for object files. The library implicitly translates object files in memory,
while it leaves unknown files unmodified. Thus, asking for the uninterpreted image of
an object file may create a duplicate copy in memory.

elf_rawdata() is a related function, providing access to sections within a file. See
elf_getdata(3ELF).

If ptr is non-null, the library also stores the file’s size, in bytes, in the location to which
ptr points. If no data are present, elf is null, or an error occurs, the return value is a null
pointer, with 0 stored through ptr, if ptr is non-null.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getehdr(3ELF), elf_begin(3ELF), elf_cntl(3ELF),
elf_getdata(3ELF), elf_getident(3ELF), elf_kind(3ELF), libelf(3LIB),
attributes(5)

A program that uses elf_rawfile() and that also interprets the same file as an
object file potentially has two copies of the bytes in memory. If such a program
requests the raw image first, before it asks for translated information (through such
functions as elf32_getehdr(), elf_getdata(), and so on), the library ‘‘freezes’’
its original memory copy for the raw image. It then uses this frozen copy as the source
for creating translated objects, without reading the file again. Consequently, the
application should view the raw file image returned by elf_rawfile() as a
read-only buffer, unless it wants to alter its own view of data subsequently translated.
In any case, the application may alter the translated objects without changing bytes
visible in the raw image.

Multiple calls to elf_rawfile() with the same ELF descriptor return the same
value; the library does not create duplicate copies of the file.

elf_rawfile(3ELF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

424 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

elf_strptr – make a string pointer

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

char *elf_strptr(Elf *elf, size_t section, size_t offset);

The elf_strptr() function converts a string section offset to a string pointer. elf
identifies the file in which the string section resides, and section identifies the section
table index for the strings. elf_strptr() normally returns a pointer to a string, but
it returns a null pointer when elf is null, section is invalid or is not a section of type
SHT_STRTAB, the section data cannot be obtained, offset is invalid, or an error occurs.

EXAMPLE 1 A sample program of calling elf_strptr() function.

A prototype for retrieving section names appears below. The file header specifies the
section name string table in the e_shstrndx member. The following code loops
through the sections, printing their names.

/* handle the error */
if ((ehdr = elf32_getehdr(elf)) == 0) {

return;
}
ndx = ehdr->e_shstrndx;
scn = 0;
while ((scn = elf_nextscn(elf, scn)) != 0) {

char *name = 0;
if ((shdr = elf32_getshdr(scn)) != 0)

name = elf_strptr(elf, ndx, (size_t)shdr->sh_name);
printf("’%s’\n", name? name: "(null)");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_getshdr(3ELF), elf32_xlatetof(3ELF), elf_getdata(3ELF),
libelf(3LIB), attributes(5)

A program may call elf_getdata() to retrieve an entire string table section. For
some applications, that would be both more efficient and more convenient than using
elf_strptr().

elf_strptr(3ELF)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 425

elf_update – update an ELF descriptor

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

off_t elf_update(Elf *elf, Elf_Cmd cmd);

The elf_update() function causes the library to examine the information associated
with an ELF descriptor, elf, and to recalculate the structural data needed to generate
the file’s image.

The cmd argument can have the following values:

ELF_C_NULL This value tells elf_update() to recalculate various values,
updating only the ELF descriptor’s memory structures. Any
modified structures are flagged with the ELF_F_DIRTY bit. A
program thus can update the structural information and then
reexamine them without changing the file associated with the ELF
descriptor. Because this does not change the file, the ELF
descriptor may allow reading, writing, or both reading and writing
(see elf_begin (3ELF)).

ELF_C_WRITE If cmd has this value, elf_update() duplicates its ELF_C_NULL
actions and also writes any ‘‘dirty’’ information associated with
the ELF descriptor to the file. That is, when a program has used
elf_getdata(3ELF) or the elf_flagdata(3ELF) facilities to
supply new (or update existing) information for an ELF descriptor,
those data will be examined, coordinated, translated if necessary
(see elf32_xlatetof(3ELF)), and written to the file. When
portions of the file are written, any ELF_F_DIRTY bits are reset,
indicating those items no longer need to be written to the file (see
elf_flagdata(3ELF)). The sections’ data are written in the order
of their section header entries, and the section header table is
written to the end of the file. When the ELF descriptor was created
with elf_begin(), it must have allowed writing the file. That is,
the elf_begin() command must have been either ELF_C_RDWR
or ELF_C_WRITE.

If elf_update() succeeds, it returns the total size of the file image (not the memory
image), in bytes. Otherwise an error occurred, and the function returns −1.

When updating the internal structures, elf_update() sets some members itself.
Members listed below are the application’s responsibility and retain the values given
by the program.

The following table shows ELF Header members:

Member Notes

elf_update(3ELF)

NAME

SYNOPSIS

DESCRIPTION

426 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

e_ident[EI_DATA] Library controls other e_ident values

e_type

e_machine

e_version

e_entry

e_phoff Only when ELF_F_LAYOUT asserted

e_shoff Only when ELF_F_LAYOUT asserted

e_flags

e_shstrndx

The following table shows the Program Header members:

Member Notes

p_type The application controls all

p_offset program header entries

p_vaddr

p_paddr

p_filesz

p_memsz

p_flags

p_align

The following table shows the Section Header members:

Member Notes

sh_name

sh_type

sh_flags

elf_update(3ELF)

Extended Library Functions 427

sh_addr

sh_offset Only when ELF_F_LAYOUT asserted

sh_size Only when ELF_F_LAYOUT asserted

sh_link

sh_info

sh_addralign Only when ELF_F_LAYOUT asserted

sh_entsize

The following table shows the Data Descriptor members:

Member Notes

d_buf

d_type

d_size

d_off Only when ELF_F_LAYOUT asserted

d_align

d_version

Note that the program is responsible for two particularly important members (among
others) in the ELF header. The e_version member controls the version of data
structures written to the file. If the version is EV_NONE, the library uses its own
internal version. The e_ident[EI_DATA] entry controls the data encoding used in
the file. As a special case, the value may be ELFDATANONE to request the native data
encoding for the host machine. An error occurs in this case if the native encoding
doesn’t match a file encoding known by the library.

Further note that the program is responsible for the sh_entsize section header
member. Although the library sets it for sections with known types, it cannot reliably
know the correct value for all sections. Consequently, the library relies on the program
to provide the values for unknown section types. If the entry size is unknown or not
applicable, the value should be set to 0.

When deciding how to build the output file, elf_update() obeys the alignments of
individual data buffers to create output sections. A section’s most strictly aligned data
buffer controls the section’s alignment. The library also inserts padding between
buffers, as necessary, to ensure the proper alignment of each buffer.

elf_update(3ELF)

428 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_fsize(3ELF), elf32_getehdr(3ELF), elf32_getshdr(3ELF),
elf32_xlatetof(3ELF), elf_begin(3ELF), elf_flagdata(3ELF),
elf_getdata(3ELF), libelf(3LIB), attributes(5)

As mentioned above, the ELF_C_WRITE command translates data as necessary, before
writing them to the file. This translation is not always transparent to the application
program. If a program has obtained pointers to data associated with a file (for
example, see elf32_getehdr(3ELF) and elf_getdata(3ELF)), the program should
reestablish the pointers after calling elf_update().

elf_update(3ELF)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 429

elf_version – coordinate ELF library and application versions

cc [flag ...] file ... -lelf [library ...]

#include <libelf.h>

unsigned elf_version(unsigned ver);

As elf(3ELF) explains, the program, the library, and an object file have independent
notions of the latest ELF version. elf_version() lets a program query the ELF
library’s internal version. It further lets the program specify what memory types it uses
by giving its own working version, ver, to the library. Every program that uses the ELF
library must coordinate versions as described below.

The header <libelf.h> supplies the version to the program with the macro
EV_CURRENT. If the library’s internal version (the highest version known to the
library) is lower than that known by the program itself, the library may lack semantic
knowledge assumed by the program. Accordingly, elf_version() will not accept a
working version unknown to the library.

Passing ver equal to EV_NONE causes elf_version() to return the library’s internal
version, without altering the working version. If ver is a version known to the library,
elf_version() returns the previous (or initial) working version number. Otherwise,
the working version remains unchanged and elf_version() returns EV_NONE.

EXAMPLE 1 A sample display of using the elf_version() function.

The following excerpt from an application program protects itself from using an older
library:

if (elf_version(EV_CURRENT) == EV_NONE) {
/* library out of date */
/* recover from error */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

elf(3ELF), elf32_xlatetof(3ELF), elf_begin(3ELF), libelf(3LIB),
attributes(5)

The working version should be the same for all operations on a particular ELF
descriptor. Changing the version between operations on a descriptor will probably not
give the expected results.

elf_version(3ELF)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

430 man pages section 3: Extended Library Functions • Last Revised 11 Jul 2001

erf, erff, erfl – error function

cc [flag...] file... -lm [library...]

#include <math.h>

double erf(double x);

float erff(float x);

long double erfl(long double x);

These functions compute the error function of their argument x, defined as:

Upon successful completion, these functions return the value of the error function.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is ±Inf, ±1 is returned.

If x is subnormal, 2/sqrt(π) * 2 is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

erfc(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M),
math.h(3HEAD), attributes(5), standards(5)

erf(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 431

erfc, erfcf, erfcl – complementary error function

cc [flag...] file... -lm [library...]

#include <math.h>

double erfc(double x);

float erfcf(float x);

long double erfcl(long double x);

These function compute the complementary error function 1.0 − erf(x).

Upon successful completion, these functions return the value of the complementary
error function.

If x is NaN, a NaN is returned.

If x is ±0, +1 is returned.

If x is −Inf, +2 is returned.

If x is +Inf, 0 is returned.

No errors are defined.

The erfc() function is provided because of the extreme loss of relative accuracy if
erf(x) is called for large x and the result subtracted from 1.0.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

erf(3M), isnan(3M), math.h(3HEAD), attributes(5), standards(5)

erfc(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

432 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

Exacct – exacct system calls and error handling

use Sun::Solaris::Exacct qw(:EXACCT_ALL);

my $ea_rec = getacct(P_PID, $$);

This module provides access to the ea_error(3EXACCT) function and for all the
extended accounting system calls. Constants from the various libexacct(3LIB)
header files are also provided.

The P_PID, P_TASKID, P_PROJID and all the EW_*, EP_*, EXR_* macros are
provided as Perl constants.

getacct($idtype, $id)
The $idtype parameter must be either P_TASKID or P_PID and $id must be a
corresponding task or process ID. This function returns an object of type
Sun::Solaris::Exacct::Object, representing the unpacked accounting buffer
returned by the underlying getacct(2) system call. In the event of error, undef is
returned.

putacct($idtype, $id, $record)
The $idtype parameter must be either P_TASKID or P_PID and $id must be a
corresponding task or process ID. If $record is of type Sun::Solaris::Exacct::Object, it
is converted to the corresponding packed libexacct object and passed to the
putacct(2) system call. If $record is not of type
Sun::Solaris::Exacct::Object it is converted to a string using the normal
Perl conversion rules and stored as a raw buffer. For predictable and
endian-independent results, any raw buffers should be constructed using the Perl
pack() function. This function returns true on success and false on failure.

wracct($idtype, $id, $flags)
The $idtype parameter must be either P_TASKID or P_PID and $id must be a
corresponding task or process ID. The $flags parameter must be either
EW_INTERVAL or EW_PARTIAL. The parameters are passed directly to the
underlying wracct(2) system call. This function returns true on success and false
on failure.

ea_error()
This function provides access to the ea_error(3EXACCT) function. It returns a
double-typed scalar that becomes one of the EXR_* constants. In a string context it
becomes a descriptive error message. This is the exacct equivalent to the
$!(errno) Perl variable.

ea_error_str()
This function returns a double-typed scalar that in a numeric context will be one of
the EXR_* constants as returned by ea_error. In a string context it describes the
value returned by ea_error. If ea_error returns EXR_SYSCALL_FAIL, the string
value returned is the value returned by strerror(3C). This function is provided as
a convenience so that repeated blocks of code like the following can be avoided:

if (ea_error() == EXR_SYSCALL_FAIL) {
print("error: $!\n");

} else {

Exacct(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Constants

Functions

Extended Library Functions 433

print("error: ", ea_error(), "\n");

}

ea_register_catalog($cat_pfx, $catalog_id, $export, @idlist)
This convenience function is a wrapper around the
Sun::Solaris::Exacct::Catalog->register() method.

ea_new_catalog($integer)
ea_new_catalog($cat_obj)
ea_new_catalog($type, $catalog, $id)

These convenience functions are wrappers around the
Sun::Solaris::Exacct::Catalog->new() method. See
Exacct::Catalog(3PERL).

ea_new_file($name, $oflags, creator => $creator, aflags =>
$aflags, mode => $mode)

This convenience function is a wrapper around the
Sun::Solaris::Exacct::File->new() method. See Exacct::File(3PERL).

ea_new_item($catalog, $value)
This convenience function is a wrapper around the
Sun::Solaris::Exacct::Object::Item->new() method. See
Exacct::Object::Item(3PERL).

ea_new_group($catalog, @objects)
This convenience function is a wrapper around the
Sun::Solaris::Exacct::Object::Group->new() method. See
Exacct::Object::Group(3PERL).

ea_dump_object($object, $filehandle)
This convenience function is a wrapper around the
Sun::Solaris::Exacct::Object->dump() method. See
Exacct::Object(3PERL).

None.

None.

By default nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module:

:SYSCALLS getacct(), putacct(), and wracct()

:LIBCALLS ea_error() and ea_error_str()

:CONSTANTS P_PID, P_TASKID, P_PROJID, EW_*, EP_*, and
EXR_*

:SHORTHAND ea_register_catalog(), ea_new_catalog(),
ea_new_file(), ea_new_item(), and
ea_new_group()

:ALL :SYSCALLS, :LIBCALLS, :CONSTANTS, and
:SHORTHAND

Exacct(3PERL)

Class methods

Object methods

Exports

434 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

:EXACCT_CONSTANTS :CONSTANTS, plus the :CONSTANTS tags for
Sun::Solaris::Catalog, Sun::Solaris::File,
and Sun::Solaris::Object

:EXACCT_ALL :ALL, plus the :ALL tags for
Sun::Solaris::Catalog, Sun::Solaris::File,
and Sun::Solaris::Object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u

Interface Stability Evolving

getacct(2), putacct(2), wracct(2), ea_error(3EXACCT),
Exacct::Catalog(3PERL), Exacct::File(3PERL), Exacct::Object(3PERL),
Exacct::Object::Group(3PERL), Exacct::Object::Item(3PERL),
libexacct(3LIB), attributes(5)

The modules described in the section 3PERL manual pages make extensive use of the
Perl "double-typed scalar" facility. This facility allows a scalar value to behave either as
an integer or as a string, depending upon context. It is the same behavior as exhibited
by the $! Perl variable (errno). It is useful because it avoids the need to map from an
integer value to the corresponding string to display a value. Some examples are
provided below:

Assume $obj is a Sun::Solaris::Item
my $type = $obj->type();

Print "2 EO_ITEM"
printf("%d %s\n", $type, $type);

Behave as an integer, $i == 2
my $i = 0 + $type;

Behave as a string, $s = "abc EO_ITEM xyx"

my $s = "abc $type xyz";

Wherever a function or method is documented as returning a double-typed scalar, the
returned value exhibits this type of behavior.

Exacct(3PERL)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 435

Exacct::Catalog – exacct catalog tag manipulation

use Sun::Solaris::Exacct::Catalog qw(:ALL);
my $ea_cat = Sun::Solaris::Exacct::Catalog->new(

&EXT_UINT64 | &EXC_DEFAULT | &EXD_PROC_PID);

This class provides a wrapper around the 32-bit integer used as a catalog tag. The
catalog tag is represented as a Perl object blessed into the
Sun::Solaris::Exacct::Catalog class so that methods can be used to
manipulate fields in a catalog tag.

All the EXT_*, EXC_*, and EXD_* macros are provided as constants. Constants passed
to the methods below can either be the integer value such as EXT_UINT8 or the string
representation such as "EXT_UINT8".

None.

register($cat_pfx, $catalog_id, $export, @idlist)
This method is used to register application-defined libexacct(3LIB) catalogs with
the exacct Perl library. See </usr/include/sys/exacct_catalog.h> for
details of the catalog tag format. This method allows symbolic names and strings to
be used for manipulating application-defined catalogs. The first two parameters
define the catalog prefix and associated numeric catalog ID. If the $export
parameter is true, the constants are exported into the caller’s package. The final
parameter is a list of (id, name) pairs that identify the required constants. The
constants created by this method are formed by appending $cat_pfx and "_" to
each name in the list, replacing any spaces with underscore characters and
converting the resulting string to uppercase characters. The $catalog_name value
is also created as a constant by prefixing it with EXC_ and converting it to
uppercase characters. Its value becomes that of $catalog_id shifted left by 24
bits. For example, the following call:

Sun::Solaris::Exacct::Catalog->ea_register("MYCAT", 0x01, 1,

FIRST => 0x00000001, SECOND => 0x00000010);

results in the definition of the following constants:

EXC_MYCAT 0x01 << 24
MYCAT_FIRST 0x00000001

MYCAT_SECOND 0x00000010

Only the catalog ID value of 0x01 is available for application use (EXC_LOCAL). All
other values are reserved. While it is possible to use values other than 0x01, they
might conflict with future extensions to the libexacct file format.

If any errors are detected during this method, a string is returned containing the
appropriate error message. If the call is sucessful, undef is returned.

new($integer)
new($cat_obj)
new($type, $catalog, $id)

This method creates and returns a new Catalog object, which is a wrapper around a
32-bit integer catalog tag. Three possible argument lists can be given. The first

Exacct::Catalog(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Constants

Functions

Class methods

436 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

variant is to pass an integer formed by bitwise-inclusive OR of the appropriate
EX[TCD]_* constants. The second variant is to pass an existing Catalog object that
will be copied. The final variant is to pass in the type, catalog and ID fields as
separate values. Each of these values can be either an appropriate integer constant
or the string representation of the constant.

value()
This method allows the value of the catalog tag to be queried. In a scalar context it
returns the 32-bit integer representing the tag. In a list context it returns a (type,
catalog, id) triplet, where each member of the triplet is a dual-typed scalar.

type()
This method returns the type field of the catalog tag as a dual-typed scalar.

catalog()
This method returns the catalog field of the catalog tag as a dual-typed scalar.

id()
This method returns the id field of the catalog tag as a dual-typed scalar.

type_str()
catalog_str()
id_str()

These methods return string representations of the appropriate value. These
methods can be used for textual output of the various catalog fields. The string
representations of the constants are formed by removing the EXT_, EXC_, or EXD_
prefix, replacing any underscore characters with spaces, and converting the
remaining string to lowercase characters.

By default nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module:

:CONSTANTS EXT_*, EXC_*, and EXD_*

:ALL :CONSTANTS

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u

Interface Stability Evolving

Exacct(3PERL), Exacct::File(3PERL), Exacct::Object(3PERL),
Exacct::Object::Group(3PERL), Exacct::Object::Item(3PERL),
libexacct(3LIB), attributes(5)

Exacct::Catalog(3PERL)

Object methods

Exports

ATTRIBUTES

SEE ALSO

Extended Library Functions 437

Exacct::File – exacct file manipulation

use Sun::Solaris::Exacct::File qw(:ALL);
my $ea_file = Sun::Solaris::Exacct::File->new($myfile, &O_RDONLY);

my $ea_obj = $ea_file->get();

This module provides access to the libexacct(3LIB) functions that manipulate
accounting files. The interface is object-oriented and allows the creation and reading of
libexacct files. The C library calls wrapped by this module are
ea_open(3EXACCT), ea_close(3EXACCT), ea_next_object(3EXACCT),
ea_previous_object(3EXACCT), ea_write_object(3EXACCT),
ea_get_object(3EXACCT), ea_get_creator(3EXACCT), and
ea_get_hostname(3EXACCT). The file read and write methods all operate on
Sun::Solaris::Exacct::Object objects and perform all the necessary memory
management, packing, unpacking, and structure conversions that are required.

EO_HEAD, EO_TAIL, EO_NO_VALID_HDR, EO_POSN_MSK, and EO_VALIDATE_MSK.
Other constants needed by the new() method below are in the standard Perl Fcntl
module.

None.

new($name, $oflags, creator => $creator,
This method opens a libexacct file as specified by the mandatory parameters
$name and $oflags, and returns a Sun::Solaris::Exacct::File object, or
undef if an error occurs. The parameters $creator, $aflags, and $mode are
optional and are passed as (name => value) pairs. The only valid values for
$oflags are the combinations of O_RDONLY, O_WRONLY, O_RDWR, and O_CREAT
described below.

The $creator parameter is a string describing the creator of the file. If it is
required (for instance, when writing to a file) but absent, it is set to the string
representation of the caller’s UID. The $aflags parameter describes the required
positioning in the file for O_RDONLY access: either EO_HEAD or EO_TAIL are
allowed. If absent, EO_HEAD is assumed. The $mode parameter is the file creation
mode and is ignored unless O_CREAT is specified in $oflags. If $mode is
unspecified, the file creation mode is set to 0666 (octal). If an error occurs, it can be
retrieved with the Sun::Solaris::Exacct::ea_error() function. See
Exacct(3PERL).

$oflags $aflags Action

O_RDONLY Absent or EO_HEAD Open for reading at the start
of the file.

O_RDONLY EO_TAIL Open for reading at the end
of the file.

Exacct::File(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Constants

Functions

Class methods

438 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

O_WRONLY Ignored File must exist, open for
writing at the end of the file.

O_WRONLY | O_CREAT Ignored Create file if it does not exist,
otherwise truncate and open
for writing.

O_RDWR Ignored File must exist, open for
reading/writing, positioned
at the end of the file.

O_RDWR | O_CREAT Ignored Create file if it does not exist,
otherwise truncate and open
for reading/writing.

There is no explicit close() method for a Sun::Solaris::Exacct::File. The
file is closed when the file handle object is undefined or reassigned.

creator()
This method returns a string containing the creator of the file or undef if the file
does not contain the information.

hostname()
This method returns a string containing the hostname on which the file was
created, or undef if the file does not contain the information.

next()
This method reads the header information of the next record in the file. In a scalar
context the value of the type field is returned as a dual-typed scalar that will be one
of EO_ITEM, EO_GROUP, or EO_NONE. In a list context it returns a two-element list
containing the values of the type and catalog fields. The type element is a
dual-typed scalar. The catalog element is blessed into the
Sun::Solaris::Exacct::Catalog class. If an error occurs, undef or (undef,
undef) is returned depending upon context. The status can be accessed with the
Sun::Solaris::Exacct::ea_error() function.See Exacct(3PERL).

previous()
This method reads the header information of the previous record in the file. In a
scalar context it returns the type field. In a list context it returns the two-element list
containing the values of the type and catalog fields, in the same manner as the
next() method. Error are also returned in the same manner as the next()
method.

get()
This method reads in the libexacct record at the current position in the file and
returns a Sun::Solaris::Exacct::Object containing the unpacked data from
the file. This object can then be further manipulated using its methods. In case of
error undef is returned and the error status is made available with the
Sun::Solaris::Exacct::ea_error() function. After this operation, the
position in the file is set to the start of the next record in the file.

Exacct::File(3PERL)

Object methods

Extended Library Functions 439

write(@ea_obj)
This method converts the passed list of Sun::Solaris::Exacct::Objects into
libexacct file format and appends them to the libexacct file, which must be
open for writing. This method returns true if successful and false otherwise. On
failure the error can be examined with the Sun::Solaris::Exacct::ea_error
() function.

By default nothing is exported from this module. The following tags can be used to
selectively import constants defined in this module:

:CONSTANTS EO_HEAD, EO_TAIL, EO_NO_VALID_HDR, EO_POSN_MSK, and
EO_VALIDATE_MSK

:ALL :CONSTANTS, Fcntl(:DEFAULT).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u

Interface Stability Evolving

ea_close(3EXACCT), ea_get_creator(3EXACCT),
ea_get_hostname(3EXACCT), ea_get_object(3EXACCT),
ea_next_object(3EXACCT), ea_open(3EXACCT),
ea_previous_object(3EXACCT), ea_write_object(3EXACCT),
Exacct(3PERL), Exacct::Catalog(3PERL), Exacct::Object(3PERL),
Exacct::Object::Group(3PERL), Exacct::Object::Item(3PERL),
libexacct(3LIB), attributes(5)

Exacct::File(3PERL)

Exports

ATTRIBUTES

SEE ALSO

440 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

Exacct::Object – exacct object manipulation

use Sun::Solaris::Exacct::Object qw(:ALL);

print($ea_obj->value(), "\n");

This module is used as a parent of the two possible types of Perl exacct objects: Items
and Groups. An Item is either a single data value such as the number of seconds of
user CPU time consumed by a process, an embedded Perl exacct object, or a block of
raw data. A Group is an ordered collection of Perl exacct Items such as all of the
resource usage values for a particular process or task. If Groups need to be nested
within each other, the inner Groups can be stored as embedded Perl exacct objects
inside the enclosing Group.

This module contains methods that are common to both Perl exacct Items and Groups.
The attributes of Sun::Solaris::Exacct::Object and all classes derived from it
are read-only after initial creation with new(). This behavior prevents the inadvertent
modification of the attributes that could produce inconsistent catalog tags and data
values. The only exception is the array used to store the Items inside a Group object,
which can be modified using the normal Perl array operators. See the value()
method below.

EO_ERROR, EO_NONE, EO_ITEM, and EO_GROUP.

None.

dump($object, $filehandle)
This method dumps formatted text representation of a Perl exacct object to the
supplied file handle. If no file handle is specified, the text representation is dumped
to STDOUT. See EXAMPLES below for sample output.

type()
This method returns the type field of the Perl exacct object. The value of the type
field is returned as a dual-typed scalar and is either EO_ITEM, EO_GROUP, or
EO_NONE.

catalog()
This method returns the catalog field of the Perl exacct object. The value is returned
as a Sun::Solaris::Exacct::Catalog object.

match_catalog($catalog)
This method matches the passed catalog tag against the object. True is returned of a
match occurs. Otherwise false is returned. This method has the same behavior as
the underlying ea_match_object_catalog(3EXACCT) function.

value()
This method returns the value of the Perl exacct object. In the case of an Item, this
object will normally be a Perl scalar, either a number or string. For raw Items, the
buffer contained inside the object is returned as a Perl string that can be
manipulated with the Perl unpack() function. If the Item contains either a nested
Item or a nested Group, the enclosed Item is returned as a reference to an object of
the appropriate subtype of the Sun::Solaris::Exacct::Object class.

Exacct::Object(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Constants

Functions

Class methods

Object methods

Extended Library Functions 441

For Group objects, if value() is called in a scalar context, the return value is a
reference to the underlying array used to store the component Items of the Group.
Since this array can be manipulated with the normal Perl array indexing syntax and
array operators, the objects inside the Group can be manipulated. All objects in the
array must be derived from the Sun::Solaris::Exacct::Object class. Any
attempt to insert something else into the array will generate a fatal runtime error
that can be caught with an eval { } block.

If value() is called in a list context for a Group object, it returns a list of all the
objects in the Group. Unlike the array reference returned in a scalar context, this list
cannot be manipulated to add or delete Items from a Group. This mechanism is
considerably faster than the array mechanism described above and is the preferred
mechanism if a Group is being examined in a read-only manner.

By default nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module:

:CONSTANTS EO_ERROR, EO_NONE, EO_ITEM, and EO_GROUP

:ALL :CONSTANTS

EXAMPLE 1 Output of the dump() method for a Perl exacct Group object.

The following is an example of output of the dump() method for a Perl exacct Group
object.

GROUP
Catalog = EXT_GROUP|EXC_DEFAULT|EXD_GROUP_PROC_PARTIAL
ITEM

Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_PID
Value = 3

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_UID
Value = 0

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_GID
Value = 0

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_PROJID
Value = 0

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_TASKID
Value = 0

ITEM
Catalog = EXT_STRING|EXC_DEFAULT|EXD_PROC_COMMAND
Value = fsflush

ENDGROUP

See attributes(5) for descriptions of the following attributes:

Exacct::Object(3PERL)

Exports

EXAMPLES

ATTRIBUTES

442 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u

Interface Stability Evolving

ea_match_object_catalog(3EXACCT), Exacct(3PERL),
Exacct::Catalog(3PERL), Exacct::File(3PERL),
Exacct::Object::Group(3PERL), Exacct::Object::Item(3PERL),
libexacct(3LIB), attributes(5)

Exacct::Object(3PERL)

SEE ALSO

Extended Library Functions 443

Exacct::Object::Group – exacct group manipulation

use Sun::Solaris::Exacct::Object;
my $ea_grp = Sun::Solaris::Exacct::Object::Group->new(

& EXT_GROUP | &EXC_DEFAULT | &EXD_GROUP_PROC);

This module is used for manipulating libexacct(3LIB) Group objects. A libexacct
Group object is represented as an opaque reference blessed into the
Sun::Solaris::Exacct::Object::Group class, which is a subclass of the
Sun::Solaris::Exacct::Object class. The Items within a Group are stored
inside a Perl array. A reference to the array can be accessed with the inherited
value() method. The individual Items within a Group can be manipulated with the
normal Perl array syntax and operators. All data elements of the array must be
derived from the Sun::Solaris::Exacct::Object class. Group objects can also
be nested inside each other simply by adding an existing Group as a data Item.

None.

None.

Class methods include those inherited from the Sun::Solaris::Exacct::Object
base class, plus the following:

new($catalog, @objects)
This method creates and returns a new
Sun::Solaris::Exacct::Object::Group. The catalog tag can be either an
integer or a Sun::Solaris::Exacct::Catalog. The catalog tag should be a
valid catalog tag for a Perl exacct Group object. The @objects parameter is a list of
Sun::Solaris::Exacct::Object to be stored inside the Group. A copy of all
the passed Items is taken and any Group objects are recursively copied. The
contents of the returned Group object can be accessed with the array returned by
the value method.

as_hash()
This method returns the contents of the group as a hash reference. It uses the string
value of each item’s catalog ID as the hash entry key and the scalar value returned
by value() as the hash entry value. This form should be used if there are no
duplicate catalog tags in the group.

This method and its companion as_hashlist() are the fastest ways to access the
contents of a Group.

as_hashlist()
This method returns the contents of the group as a hash reference. It uses the string
value of each item’s catalog id as the hash entry key and an array of the scalar
values returned by value() as the hash entry value for all the items that share a
common key. This form should be used if there might be duplicate catalog tags in
the group.

This method and its companion as_hash() are the fastest ways to access the
contents of a Group.

Exacct::Object::Group(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Constants

Functions

Class methods

Object methods

444 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

None.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u

Interface Stability Evolving

Exacct(3PERL), Exacct::Catalog(3PERL), Exacct::File(3PERL),
Exacct::Object(3PERL), Exacct::Object::Item(3PERL), libexacct(3LIB),
attributes(5)

Exacct::Object::Group(3PERL)

Exports

ATTRIBUTES

SEE ALSO

Extended Library Functions 445

Exacct::Object::Item – exacct item manipulation

use Sun::Solaris::Exacct::Object;
my $ea_item = Sun::Solaris::Exacct::Object::Item->new(

&EXT_UINT64 | &EXC_DEFAULT | &EXD_PROC_PID, $$);

This module is used for manipulating libexacct(3LIB) data Items. A libexacct
Item is represented as an opaque reference blessed into the
Sun::Solaris::Exacct::Object::Item class, which is a subclass of the
Sun::Solaris::Exacct::Object class. The underlying libexacct data types
are mapped onto Perl types as follows:

libexacct type Perl internal type

EXT_UINT8 IV (integer)

EXT_UINT16 IV (integer)

EXT_UINT32 IV (integer)

EXT_UINT64 IV (integer)

EXT_DOUBLE NV (double)

EXT_STRING PV (string)

EXT_RAW PV (string)

EXT_EXACCT_OBJECT Sun::Solaris::Exacct::Object
subclass

None.

None.

Class methods include those inherited from the Sun::Solaris::Exacct::Object
base class, plus the following:

new($catalog, $value)
This method creates and returns a new
Sun::Solaris::Exacct::Object::Item. The catalog tag can be either an
integer or a Sun::Solaris::Exacct::Catalog. This catalog tag controls the
conversion of the Perl value to the corresponding Perl exacct data type as described
in the table above. If the catalog tag has a type field of EXT_EXACCT_OBJECT, the
value must be a reference to either an Item or a Group object and the passed object
is recursively copied and stored inside the new Item. Because the returned Item is
constant, it is impossible, for example, to create an Item representing CPU seconds
and subsequently modify its value or change its catalog value. This behavior is
intended to prevent mismatches between the catalog tag and the data value.

Object methods are those inherited from the Sun::Solaris::Exacct::Object.

None.

Exacct::Object::Item(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Constants

Functions

Class methods

Object methods

Exports

446 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u

Interface Stability Evolving

Exacct(3PERL), Exacct::Catalog(3PERL), Exacct::File(3PERL),
Exacct::Object(3PERL), Exacct::Object::Group(3PERL), libexacct(3LIB),
attributes(5)

Exacct::Object::Item(3PERL)

ATTRIBUTES

SEE ALSO

Extended Library Functions 447

exp2, exp2f, exp2l – exponential base 2 functions

cc [flag...] file... -lm [library...]

#include <math.h>

double exp2(double x);

float exp2f(float x);

long double exp2l(long double x);

These functions compute the base-2 exponential of x.

Upon successful completion, these functions return 2x.

If the correct value would cause overflow, a range error occurs and exp2(), exp2f(),
and exp2l() return the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

If x is NaN, a NaN is returned.

If x is ±0, 1 is returned.

If x is −Inf, +0 is returned.

If x is +Inf, x is returned.

These functions will fail if:

Range Error The result overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception will be raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exp(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M), log(3M),
math.h(3HEAD), attributes(5), standards(5)

exp2(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

448 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

exp, expf, expl – exponential function

cc [flag...] file... -lm [library...]

#include <math.h>

double exp(double x);

float expf(float x);

long double expl(long double x);

These functions compute the base-e exponential of x.

Upon successful completion, these functions return the exponential value of x.

If the correct value would cause overflow, a range error occurs and exp(), expf(),
and expl() return HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If x is NaN, a NaN is returned.

If x is ±0, 1 is returned.

If x is +Inf, x is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by exp() as
specified by SVID3 and XPG3. See standards(5).

These functions will fail if:

Range Error The result overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception is raised.

The exp() function sets errno to ERANGE if the result overflows.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling exp(). On return, if errno is
non-zero, an error has occurred. The expf() and expl() functions do not set errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

exp(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Extended Library Functions 449

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), isnan(3M), log(3M), math.h(3HEAD),
matherr(3M), mp(3MP), attributes(5), standards(5)

exp(3M)

SEE ALSO

450 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

expm1, expm1f, expm1l – compute exponential function

cc [flag...] file... -lm [library...]

#include <math.h>

double expm1(double x);

float expm1f(float x);

long double expm1l(long double x);

These functions compute ex−1.0.

Upon successful completion, these functions return ex−1.0.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is −Inf, −1 is returned.

If x is +Inf, x is returned.

These functions will fail if:

Range Error The result overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception is raised.

The value of expm1(x) can be more accurate than exp(x)−1.0 for small values of x.

The expm1() and log1p(3M) functions are useful for financial calculations of
((1+x)n−1)/x, namely:

expm1(n * log1p(x)) / x

when x is very small (for example, when performing calculations with a small daily
interest rate). These functions also simplify writing accurate inverse hyperbolic
functions.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

expm1(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Extended Library Functions 451

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exp(3M), feclearexcept(3M), fetestexcept(3M), ilogb(3M), log1p(3M),
math.h(3HEAD), attributes(5), standards(5)

expm1(3M)

SEE ALSO

452 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

fabs, fabsf, fabsl – absolute value function

cc [flag...] file... -lm [library...]

#include <math.h>

double fabs(double x);

float fabsf(float x);

long double fabsl(long double x);

These functions compute the absolute value of x, |x|.

Upon successful completion, these functions return the absolute value of x.

If x is NaN, a NaN is returned.

If x is ±0, +0 is returned.

If x is ±Inf, +Inf is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

isnan(3M), math.h(3HEAD), attributes(5), standards(5)

fabs(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 453

fdim, fdimf, fdiml – compute positive difference between two floating-point numbers

cc [flag...] file... -lm [library...]

#include <math.h>

double fdim(double x, double y);

float fdimf(float x, float y);

long double fdiml(long double x, long double y);

These functions determine the positive difference between their arguments. If x is
greater than y, x−y is returned. If x is less than or equal to y, +0 is returned.

Upon successful completion, these functions return the positive difference value.

If x−y is positive and overflows, a range error occurs and fdim(), fdimf(), and
fdiml() returns the value of the macro HUGE_VAL, HUGE_VALF, and HUGE_VALL,
respectively.

If x or y is NaN, a NaN is returned.

These functions will fail if:

Range Error The result overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception will be raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), fmax(3M), fmin(3M), math.h(3HEAD),
attributes(5), standards(5)

fdim(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

454 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

feclearexcept – clear floating-point exception

cc [flag...] file... -lm [library...]

#include <fenv.h>

int feclearexcept(int excepts);

The feclearexcept() function attempts to clear the supported floating-point
exceptions represented by excepts.

If excepts is 0 or if all the specified exceptions were successfully cleared,
feclearexcept() returns 0. Otherwise, it returns a non-zero value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fenv.h(3HEAD), fegetexceptflag(3M), feraiseexcept(3M),
fesetexceptflag(3M), fetestexcept(3M), attributes(5), standards(5)

feclearexcept(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 455

fegetenv, fesetenv – get and set current floating-point environment

cc [flag...] file... -lm [library...]

#include <fenv.h>

int fegetenv(fenv_t *envp);

int fesetenv(const fenv_t *envp);

The fegetenv() function attempts to store the current floating-point environment in
the object pointed to by envp.

The fesetenv() function attempts to establish the floating-point environment
represented by the object pointed to by envp. The envp argument points to an object set
by a call to fegetenv() or feholdexcept(3M), or equals a floating-point
environment macro. The fesetenv() function does not raise floating-point
exceptions, but only installs the state of the floating-point status flags represented
through its argument.

If the representation was successfully stored, fegetenv returns 0. Otherwise, it returns
a non-zero value.

If the environment was successfully established, fesetenv returns 0. Otherwise, it
returns a non-zero value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feholdexcept(3M), fenv.h(3HEAD), feupdateenv(3M), attributes(5),
standards(5)

In a multithreaded program, the fegetenv() and fegetenv() functions affect the
floating point environment only for the calling thread.

These functions automatically install and deinstall SIGFPE handlers and set and clear
the trap enable mode bits in the floating point status register as needed. If a program
uses these functions and attempts to install a SIGFPE handler or control the trap
enable mode bits independently, the resulting behavior is not defined.

As described in fex_set_handling(3M), when a handling function installed in
FEX_CUSTOM mode is invoked, all exception traps are disabled (and will not be
reenabled while SIGFPE is blocked). Thus, attempting to change the environment
from within a handler by calling fesetenv or feupdateenv(3M) might not produce
the expected results.

fegetenv(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

456 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

fegetexceptflag, fesetexceptflag – get and set floating-point status flags

cc [flag...] file... -lm [library...]

#include <fenv.h>

int fegetexceptflag(fexcept_t *flagp, int excepts);

int fesetexceptflag(const fexcept_t *flagp, int excepts);

The fegetexceptflag() function attempts to store an implementation-defined
representation of the states of the floating-point status flags indicated by the excepts
argument in the object pointed to by the flagp argument.

The fesetexceptflag() function attempts to set the floating-point status flags
indicated by the excepts argument to the states stored in the object pointed to by flagp.
The value pointed to by flagp will have been set by a previous call to
fegetexceptflag() whose second argument represented at least those
floating-point exceptions represented by the excepts argument. This function does not
raise floating-point exceptions but only sets the state of the flags.

If the representation was successfully stored, fegetexceptflag() returns 0.
Otherwise, it returns a non-zero value.

If the excepts argument is 0 or if all the specified exceptions were successfully set,
fesetexceptflag() returns 0. Otherwise, it returns a non-zero value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fenv.h(3HEAD), feclearexcept(3M), feraiseexcept(3M),
fesetexceptflag(3M), attributes(5), standards(5)

fegetexceptflag(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 457

fegetround, fesetround – get and set current rounding direction

cc [flag...] file... -lm [library...]

#include <fenv.h>

int fegetround(void);

int fesetround(int round);

The fegetround function gets the current rounding direction.

The fesetround function establishes the rounding direction represented by its
argument round. If the argument is not equal to the value of a rounding direction
macro, the rounding direction is not changed.

The fegetround function returns the value of the rounding direction macro
representing the current rounding direction, or a negative value if there is no such
rounding direction macro or the current rounding direction is not determinable.

The fesetround function returns a 0 value if and only if the requested rounding
direction was established.

No errors are defined.

The following example saves, sets, and restores the rounding direction, reporting an
error and aborting if setting the rounding direction fails:

EXAMPLE 1 Save, set, and restore the rounding direction.

#include <fenv.h>
#include <assert.h>
void f(int round_dir)
{

#pragma STDC FENV_ACCESS ON
int save_round;
int setround_ok;
save_round = fegetround();
setround_ok = fesetround(round_dir);
assert(setround_ok == 0);
/* ... */
fesetround(save_round);
/* ... */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fenv.h(3HEAD), attributes(5), standards(5)

fegetround(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

458 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

feholdexcept – save current floating-point environment

cc [flag...] file... -lm [library...]

#include <fenv.h>

int feholdexcept(fenv_t *envp);

The feholdexcept() function saves the current floating-point environment in the
object pointed to by envp, clears the floating-point status flags, and then installs a
non-stop (continue on floating-point exceptions) mode, if available, for all
floating-point exceptions.

The feholdexcept() function returns 0 if and only if non-stop floating-point
exception handling was successfully installed.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fegetenv(3M), fenv.h(3HEAD), feupdateenv(3M), attributes(5),
standards(5)

In a multithreaded program, the feholdexcept() function affects the floating point
environment only for the calling thread.

The feholdexcept() function automatically installs and deinstalls SIGFPE handlers
and sets and clears the trap enable mode bits in the floating point status register as
needed. If a program uses these functions and attempts to install a SIGFPE handler or
control the trap enable mode bits independently, the resulting behavior is not defined.

feholdexcept(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 459

feraiseexcept – raise floating-point exception

cc [flag...] file... -lm [library...]

#include <fenv.h>

int feraiseexcept(int excepts);

The feraiseexcept() function attempts to raise the supported floating-point
exceptions represented by the excepts argument. The order in which these
floating-point exceptions are raised is unspecified.

If excepts is 0 or if all the specified exceptions were successfully raised,
feraiseexcept() returns 0. Otherwise, it returns a non-zero value.

No errors are defined.

The effect is intended to be similar to that of floating-point exceptions raised by
arithmetic operations. Hence, enabled traps for floating-point exceptions raised by this
function are taken.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fegetexceptflag(3M), fenv.h(3HEAD),
fetestexcept(3M), attributes(5), standards(5)

feraiseexcept(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

460 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

fesetprec, fegetprec – control floating point rounding precision modes

cc [flag...] file... -lm [library...]

#include <fenv.h>

int fesetprec(int prec);

int fegetprec(void);

The IEEE 754 standard defines rounding precision modes for systems that always
deliver intermediate results to destinations in extended double precision format. These
modes allow such systems to deliver correctly rounded single and double precision
results (in the absence of underflow and overflow) with only one rounding.

The fesetprec() function sets the current rounding precision to the precision
specified by prec, which must be one of the following values defined in <fenv.h>:

FE_FLTPREC round to single precision

FE_DBLPREC round to double precision

FE_LDBLPREC round to extended double precision

The default rounding precision when a program starts is FE_LDBLPREC.

The fegetprec() function returns the current rounding precision.

The fesetprec() function returns a non-zero value if the requested rounding
precision is established and 0 otherwise.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture Intel (see below)

Availability SUNWlibms

Interface Stability Stable

MT-Level MT-Safe

These functions are not available on SPARC systems because SPARC processors
deliver intermediate results to destinations in single or double format as determined
by each floating point instruction.

fegetenv(3M), fesetround(3M), attributes(5)

Numerical Computation Guide

fesetprec(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 461

fetestexcept – test floating-point exception flags

cc [flag...] file... -lm [library...]

#include <fenv.h>

int fetestexcept(int excepts);

The fetestexcept() function determines which of a specified subset of the
floating-point exception flags are currently set. The excepts argument specifies the
floating-point status flags to be queried.

The fetestexcept() function returns the value of the bitwise-inclusive OR of the
floating-point exception macros corresponding to the currently set floating-point
exceptions included in excepts.

No errors are defined.

EXAMPLE 1 Example using fetestexcept()

The following example calls function f() if an invalid exception is set, and then
function g() if an overflow exception is set:

#include <fenv.h>
/* ... */
{
pragma STDC FENV_ACCESS ON

int set_excepts;
feclearexcept(FE_INVALID | FE_OVERFLOW);
// maybe raise exceptions
set_excepts = fetestexcept(FE_INVALID | FE_OVERFLOW);
if (set_excepts & FE_INVALID) f();
if (set_excepts & FE_OVERFLOW) g();
/* ... */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fegetexceptflag(3M), fenv.h(3HEAD), attributes(5),
standards(5)

fetestexcept(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

462 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

feupdateenv – update floating-point environment

cc [flag...] file... -lm [library...]

#include <fenv.h>

int feupdateenv(const fenv_t *envp);

The feupdateenv() function attempts to save the currently raised floating-point
exceptions in its automatic storage, attempts to install the floating-point environment
represented by the object pointed to by envp, and then attempts to raise the saved
floating-point exceptions. The envp argument points to an object set by a call to
fegetenv(3M) or feholdexcept(3M), or equals a floating-point environment
macro.

The feupdateenv() function returns 0 if and only if all the required actions were
successfully carried out.

No errors are defined.

The following example demonstrates sample code to hide spurious underflow
floating-point exceptions:

EXAMPLE 1 Hide spurious underflow floating-point exceptions.

#include <fenv.h>
double f(double x)
{
pragma STDC FENV_ACCESS ON

double result;
fenv_t save_env;
feholdexcept(&save_env);
// compute result
if (/* test spurious underflow */)
feclearexcept(FE_UNDERFLOW);
feupdateenv(&save_env);
return result;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fegetenv(3M), feholdexcept(3M), fenv.h(3HEAD), attributes(5),
standards(5)

In a multithreaded program, the feupdateenv() function affects the floating point
environment only for the calling thread.

feupdateenv(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 463

When the FEX_CUSTOM handling mode is in effect for an exception, raising that
exception using feupdateenv() causes the handling function to be invoked. The
handling function can then modify the exception flags to be set as described in
fex_set_handling(3M). Any result value the handler supplies will be ignored.

The feupdateenv() function automatically installs and deinstalls SIGFPE handlers
and sets and clears the trap enable mode bits in the floating point status register as
needed. If a program uses these functions and attempts to install a SIGFPE handler or
control the trap enable mode bits independently, the resulting behavior is not defined.

As described in fex_set_handling(3M), when a handling function installed in
FEX_CUSTOM mode is invoked, all exception traps are disabled (and will not be
reenabled while SIGFPE is blocked). Thus, attempting to change the environment
from within a handler by calling fesetenv(3M) or feupdateenv might not produce
the expected results.

feupdateenv(3M)

464 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

fex_merge_flags – manage the floating point environment

cc [flag...] file... -lm [library...]

#include <fenv.h>

void fex_merge_flags(const fenv_t *envp);

The fex_merge_flags() function copies into the current environment those
exception flags that are set in the environment represented by the object pointed to by
envp. The argument envp must point to an object set by a call to feholdexcept(3M)
or fegetenv(3M) or equal to the macro FE_DFL_ENV. The fex_merge_flags()
function does not raise any exceptions, but only sets its flags.

The fex_merge_flags function does not return a value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlibms, SUNWlmsx

Interface Stability Stable

MT-Level MT-Safe

feclearexcept(3M), fegetenv(3M), fesetround(3M), fesetprec(3M),
fex_set_handling(3M), fex_set_log(3M), attributes(5)

Numerical Computation Guide

In a multithreaded program, the fex_merge_flags() function affects the floating
point environment only for the calling thread.

The fex_merge_flags() function automatically installs and deinstalls SIGFPE
handlers and sets and clears the trap enable mode bits in the floating point status
register as needed. If a program uses these functions and attempts to install a SIGFPE
handler or control the trap enable mode bits independently, the resulting behavior is
not defined.

fex_merge_flags(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 465

fex_set_handling, fex_get_handling, fex_getexcepthandler, fex_setexcepthandler –
control floating point exception handling modes

cc [flag...] file... -lm [library...]

#include <fenv.h>

int fex_set_handling(int ex, int mode, void(*handler);

int fex_get_handling(int ex);

void fex_getexcepthandler(fex_handler_t *buf, int ex);

void fex_setexcepthandler(const fex_handler_t *buf, int ex);

These functions provide control of floating point exception handling modes. For each
function, the ex argument specifies one or more exceptions indicated by a bitwise-OR
of any of the following values defined in <fenv.h>:

FEX_INEXACT

FEX_UNDERFLOW

FEX_OVERFLOW

FEX_DIVBYZERO division by zero

FEX_INV_ZDZ 0/0 invalid operation

FEX_INV_IDI infinity/infinity invalid operation

FEX_INV_ISI infinity–infinity invalid operation

FEX_INV_ZMI 0*infinity invalid operation

FEX_INV_SQRT square root of negative operand

FEX_INV_SNAN signaling NaN

FEX_INV_INT invalid integer conversion

FEX_INV_CMP invalid comparison

For convenience, the following combinations of values are also defined:

FEX_NONE no exceptions

FEX_INVALID all invalid operation exceptions

FEX_COMMON overflow, division by zero, and invalid operation

FEX_ALL all exceptions

The fex_set_handling() function establishes the specified mode for handling the
floating point exceptions identified by ex. The selected mode determines the action to
be taken when one of the indicated exceptions occurs. It must be one of the following
values:

FEX_NOHANDLER Trap but do not otherwise handle the exception,
evoking instead whatever ambient behavior would

fex_set_handling(3M)

NAME

SYNOPSIS

DESCRIPTION

466 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

normally be in effect. This is the default behavior when
the exception’s trap is enabled. The handler parameter
is ignored.

FEX_NONSTOP Provide the IEEE 754 default result for the operation
that caused the exception, set the exception’s flag, and
continue execution. This is the default behavior when
the exception’s trap is disabled. The handler parameter
is ignored.

FEX_ABORT Call abort(3C). The handler parameter is ignored.

FEX_SIGNAL Invoke the function *handler with the parameters
normally supplied to a signal handler installed with
sigfpe(3C).

FEX_CUSTOM Invoke the function *handler as described in the next
paragraph.

In FEX_CUSTOM mode, when a floating point exception occurs, the handler function is
invoked as though its prototype were:

#include <fenv.h>

void handler(int ex, fex_info_t *info);

On entry, ex is the value (of the first twelve listed above) corresponding to the
exception that occurred, info->op indicates the operation that caused the exception,
info->op1 and info->op2 contain the values of the operands, info->res contains
the default untrapped result value, and info->flags reflects the exception flags that
the operation would have set had it not been trapped. If the handler returns, the value
contained in info->res on exit is substituted for the result of the operation, the flags
indicated by info->flags are set, and execution resumes at the point where the
exception occurred. The handler might modify info->res and info->flags to
supply any desired result value and flags. Alternatively, if the exception is underflow
or overflow, the hander might set

info->res.type = fex_nodata;

which causes the exponent-adjusted result specified by IEEE 754 to be substituted. If
the handler does not modify info->res or info->flags, the effect is the same as if
the exception had not been trapped.

Although the default untrapped result of an exceptional operation is always available
to a FEX_CUSTOM handler, in some cases, one or both operands may not be. In these
cases, the handler may be invoked with info->op1.type == fex_nodata or
info->op2.type == fex_nodata to indicate that the respective data structures do
not contain valid data. (For example, info->op2.type == fex_nodata if the
exceptional operation is a unary operation.) Before accessing the operand values, a
custom handler should always examine the type field of the operand data structures
to ensure that they contain valid data in the appropriate format.

fex_set_handling(3M)

Extended Library Functions 467

The fex_get_handling() function returns the current handling mode for the
exception specified by ex, which must be one of the first twelve exceptions listed
above.

The fex_getexcepthandler() function saves the current handling modes and
associated data for the exceptions specified by ex in the data structure pointed to by
buf. The type fex_handler_t is defined in <fenv.h>.

The fex_setexcepthandler() function restores the handling modes and
associated data for the exceptions specified by ex from the data structure pointed to by
buf. This data structure must have been set by a previous call to
fex_getexcepthandler(). Otherwise the effect on the indicated modes is
undefined.

The fex_set_handling() function returns a non-zero value if the requested
exception handling mode is established. Otherwise, it returns 0.

The following example demonstrates how to substitute a predetermined value for the
result of a 0/0 invalid operation.

#include <math.h>
#include <fenv.h>

double k;

void presub(int ex, fex_info_t *info) {
info->res.type = fex_double;
info->res.val.d = k;

}

int main() {
double x, w;
int i;
fex_handler_t buf;

/*
* save current 0/0 handler
*/

(void) fex_getexcepthandler(&buf, FEX_INV_ZDZ);
/*
* set up presubstitution handler for 0/0
*/

(void) fex_set_handling(FEX_INV_ZDZ, FEX_CUSTOM, presub);
/*
* compute (k*x)/sin(x) for k=2.0, x=0.5, 0.4, ..., 0.1, 0.0
*/

k = 2.0;
(void) printf("Evaluating f(x) = (k*x)/sin(x)\n\n");
for (i = 5; i >= 0; i--) {

x = (double) i * 0.1;
w = (k * x) / sin(x);
(void) printf("\tx=%3.3f\t f(x) = % 1.20e\n", x, w);

}
/*
* restore old 0/0 handler

fex_set_handling(3M)

RETURN VALUES

EXAMPLES

468 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

*/
(void) fex_setexcepthandler(&buf, FEX_INV_ZDZ);
return 0;

}

The output from the preceding program reads:

Evaluating f(x) = (k*x)/sin(x)

x=0.500 f(x) = 2.08582964293348816000e+00
x=0.400 f(x) = 2.05434596443822626000e+00
x=0.300 f(x) = 2.03031801709447368000e+00
x=0.200 f(x) = 2.01339581906893761000e+00
x=0.100 f(x) = 2.00333722632695554000e+00

x=0.000 f(x) = 2.00000000000000000000e+00

When x = 0, f(x) is computed as 0/0 and an invalid operation exception occurs. In this
example, the value 2.0 is substituted for the result.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlibms, SUNWlmxs

Interface Stability Stable

MT-Level MT-Safe (see Notes)

sigfpe(3C), feclearexcept(3M), fegetenv(3M), fex_set_log(3M),
attributes(5)

Numerical Computation Guide

In a multithreaded application, the preceding functions affect exception handling
modes only for the calling thread.

The functions described on this page automatically install and deinstall SIGFPE
handlers and set and clear the trap enable mode bits in the floating point status
register as needed. If a program uses these functions and attempts to install a SIGFPE
handler or control the trap enable mode bits independently, the resulting behavior is
not defined.

All traps are disabled before a handler installed in FEX_CUSTOM mode is invoked.
When the SIGFPE signal is blocked, as it is when such a handler is invoked, the
floating point environment, exception flags, and retrospective diagnostic functions
described in feclearexcept(3M), fegetenv(3M), and fex_set_log(3M) do not
re-enable traps. Thus, the handler itself always runs in FEX_NONSTOP mode with
logging of retrospective diagnostics disabled. Attempting to change these modes
within the handler may not produce the expected results.

fex_set_handling(3M)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 469

fex_set_log, fex_get_log, fex_set_log_depth, fex_get_log_depth, fex_log_entry – log
retrospective diagnostics for floating point exceptions

cc [flag...] file... -lm [library...]

#include <fenv.h>

int fex_set_log(FILE *fp);

FILE *fex_get_log(void);

int fex_set_log_depth(int depth);

int fex_get_log_depth(void);

void fex_log_entry(const char *msg);

The fex_set_log() function enables logging of retrospective diagnostic messages
regarding floating point exceptions to the file specified by fp. If fp is NULL, logging is
disabled. When a program starts, logging is initially disabled.

The occurrence of any of the twelve exceptions listed in fex_set_handling(3M)
constitutes an event that can be logged. To prevent the log from becoming
exhorbitantly long, the logging mechanism eliminates redundant entries by two
methods. First, each exception is associated with a site in the program. The site is
identified by the address of the instruction that caused the exception together with a
stack trace. Only the first exception of a given type to occur at a given site will be
logged. Second, when FEX_NONSTOP handling mode is in effect for some exception,
only those occurrences of that exception that set its previously clear flag are logged.
Clearing a flag using feclearexcept() allows the next occurrence of the exception
to be logged provided it does not occur at a site at which it was previously logged.

Each of the different types of invalid operation exceptions can be logged at the same
site. Because all invalid operation exceptions share the same flag, however, of those
types for which FEX_NONSTOP mode is in effect, only the first exception to set the flag
will be logged. When the invalid operation exception is raised by a call to
feraiseexcept(3M) or feupdateenv(3M), which type of invalid operation is
logged depends on the implementation.

If an exception results in the creation of a log entry, the entry is created at the time the
exception occurs and before any exception handling actions selected with
fex_set_handling() are taken. In particular, the log entry is available even if the
program terminates as a result of the exception. The log entry shows the type of
exception, the address of the instruction that caused it, how it will be handled, and the
stack trace. If symbols are available, the address of the excepting instruction and the
addresses in the stack trace are followed by the names of the corresponding symbols.

The fex_get_log() function returns the current log file.

The fex_set_log_depth() sets the maximum depth of the stack trace recorded
with each exception to depth stack frames. The default depth is 100.

Thefex_get_log_depth() function returns the current maximum stack trace depth.

fex_set_log(3M)

NAME

SYNOPSIS

DESCRIPTION

470 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

The fex_log_entry() function adds a user-supplied entry to the log. The entry
includes the string pointed to by msg and the stack trace. Like entries for floating point
exceptions, redundant user-supplied entries are eliminated: only the first
user-supplied entry with a given msg to be requested from a given site will be logged.
For the purpose of a user-supplied entry, the site is defined only by the stack trace,
which begins with the function that called fex_log_entry().

The fex_set_log() function returns a non-zero value if logging is enabled or
disabled accordingly and returns 0 otherwise. The fex_set_log_depth() returns a
non-zero value if the requested stack trace depth is established (regardless of whether
logging is enabled) and returns 0 otherwise.

The following example demonstrates the output generated when a floating point
overflow occurs in sscanf(3C).

#include <fenv.h>

int
main() {

double x;
/*
* enable logging of retrospective diagnostics
*/

(void) fex_set_log(stdout);
/*
* establish default handling for overflows
*/

(void) fex_set_handling(FEX_OVERFLOW, FEX_NONSTOP, NULL);
/*
* trigger an overflow in sscanf
*/

(void) sscanf("1.0e+400", "%lf", &x);
return 0;

}

The output from the preceding program reads:

Floating point overflow at 0xef71cac4 __base_conversion_set_exception, nonstop mode
0xef71cacc __base_conversion_set_exception
0xef721820 _decimal_to_double
0xef75aba8 number
0xef75a94c __doscan_u
0xef75ecf8 sscanf

0x00010f20 main

Recompiling the program or running it on another system can produce different text
addresses from those shown above.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

fex_set_log(3M)

RETURN VALUES

EXAMPLES

ATTRIBUTES

Extended Library Functions 471

Availability SUNWlibms, SUNWlmxs

Interface Stability Stable

MT-Level MT-Safe (see NOTES)

feclearexcept(3M), fegetenv(3M), feraiseexcept(3M), feupdateenv(3M),
fex_set_handling(3M), attributes(5)

Numerical Computation Guide

All threads in a process share the same log file. Each call to fex_set_log()
preempts the previous one.

In addition to the log file itself, two additional file descriptors are used during the
creation of a log entry in order to obtain symbol names from the executable and any
shared objects it uses. These file descriptors are relinquished once the log entry is
written. If the file descriptors cannot be allocated, symbols names are omitted from the
stack trace.

The functions described on this page automatically install and deinstall SIGFPE
handlers and set and clear the trap enable mode bits in the floating point status
register as needed. If a program uses these functions and attempts to install a SIGFPE
handler or control the trap enable mode bits independently, the resulting behavior is
not defined.

As described in fex_set_handling(), when a handling function installed in
FEX_CUSTOM mode is invoked, all exception traps are disabled (and will not be
reenabled while SIGFPE is blocked). Thus, retrospective diagnostic messages are not
logged for exceptions that occur within such a handler.

fex_set_log(3M)

SEE ALSO

NOTES

472 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

floor, floorf, floorl – floor function

cc [flag...] file... -lm [library...]

#include <math.h>

double floor(double x);

float floorf(float x);

long double floorl(long double x);

These functions compute the largest integral value not greater than x.

Upon successful completion, these functions return the largest integral value not
greater than x, expressed as a double, float, or long double, as appropriate for
the return type of the function.

If x is NaN, a NaN is returned.

If x is ±Inf or ±0, x is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

ceil(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M),
math.h(3HEAD), attributes(5), standards(5)

floor(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 473

fma, fmaf, fmal – floating-point multiply-add

cc [flag...] file... -lm [library...]

#include <math.h>

double fma(double x, double y, double z);

float fmaf(float x, float y, float z);

long double fmal(long double x, long double y, long double z);

These functions compute (x * y) + z, rounded as one ternary operation. They compute
the value (as if) to infinite precision and round once to the result format, according to
the rounding mode characterized by the value of FLT_ROUNDS.

Upon successful completion, these functions return (x * y) + z, rounded as one ternary
operation.

If x or y are NaN, a NaN is returned.

If x multiplied by y is an exact infinity and z is also an infinity but with the opposite
sign, a domain error occurs and a NaN is returned.

If one of x and y is infinite, the other is 0, and z is not a NaN, a domain error occurs
and a NaN is returned.

If x*y is not 0*Inf nor Inf*0 and z is a NaN, a NaN is returned.

These functions will fail if:

Domain Error The value of x*y+z is invalid or the value x*y is invalid.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception will be raised.

Range Error The result overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception will be raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

fma(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

474 man pages section 3: Extended Library Functions • Last Revised 20 Sep 2004

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), math.h(3HEAD), attributes(5),
standards(5)

fma(3M)

SEE ALSO

Extended Library Functions 475

fmax, fmaxf, fmaxl – determine maximum numeric value of two floating-point
numbers

cc [flag...] file... -lm [library...]

#include <math.h>

double fmax(double x, double y);

float fmaxf(float x, float y);

long double fmaxl(long double x, long double y);

These functions determine the maximum numeric value of their arguments. NaN
arguments are treated as missing data: if one argument is a NaN and the other
numeric, these functions choose the numeric value.

Upon successful completion, these functions return the maximum numeric value of
their arguments.

If just one argument is a NaN, the other argument is returned.

If x and y are NaN, a NaN is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fdim(3M), fmin(3M), math.h(3HEAD), attributes(5), standards(5)

fmax(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

476 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

fmin, fminf, fminl – determine minimum numeric value of two floating-point numbers

cc [flag...] file... -lm [library...]

#include <math.h>

double fmin(double x, double y);

float fminf(float float x, float y);

long double fminl(long double x, long double y);

These functions determine the minimum numeric value of their arguments. NaN
arguments are treated as missing data: if one argument is a NaN and the other
numeric, these functions choose the numeric value.

Upon successful completion, these functions return the minimum numeric value of
their arguments.

If just one argument is a NaN, the other argument is returned.

If x and y are NaN, a NaN is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fdim(3M), fmax(3M), math.h(3HEAD), attributes(5), standards(5)

fmin(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 477

fmod, fmodf, fmodl – floating-point remainder value function

cc [flag...] file... -lm [library...]

#include <math.h>

double fmod(double x, double y);

float fmodf(float x, float y);

long double fmodl(long double x, long double y);

These functions return the floating-point remainder of the division of x by y.

These functions return the value x − i * y, for some integer i such that, if y is non-zero,
the result has the same sign as x and magnitude less than the magnitude of y.

If x or y is NaN, a NaN is returned.

If y is 0, a domain error occurs and a NaN is returned.

If x is infinite, a domain error occurs and a NaN is returned.

If x is ±0 and y is not 0, ±0 is returned.

If x is not infinite and y is ±Inf, x is returned.

These functions will fail if:

Domain Error The x argument is infinite or y is 0.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), isnan(3M), math.h(3HEAD),
attributes(5), standards(5)

fmod(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

478 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

fpclassify – classify real floating type

cc [flag...] file... -lm [library...]

#include <math.h>

int fpclassify(real-floating x);

The fpclassify() macro classifies its argument value as NaN, infinite, normal,
subnormal, or zero. First, an argument represented in a format wider than its semantic
type is converted to its semantic type. Then classification is based on the type of the
argument.

The fpclassify() macro returns the value of the number classification macro
appropriate to the value of its argument.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

isfinite(3M), isinf(3M), isnan(3M), isnormal(3M), math.h(3HEAD),
signbit(3M), attributes(5), standards(5)

fpclassify(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 479

freeDmiString – free dynamic memory allocated for input DmiString structure

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

void freeDmiString(DmiString_t *dstr);

The freeDmiString() function frees dynamic memory allocated for the input
DmiString structure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

newDmiString(3DMI), libdmi(3LIB), attributes(5)

freeDmiString(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

480 man pages section 3: Extended Library Functions • Last Revised 12 Oct 1998

frexp, frexpf, frexpl – extract mantissa and exponent from a floating-point number

cc [flag...] file... -lm [library...]

#include <math.h>

double frexp(double num, int *exp);

float frexpf(float num, int *exp);

long double frexpl(long double num, int *exp);

These functions break a floating-point number into a normalized fraction and an
integral power of 2. They store the integer exponent in the int object pointed to by
exp.

For finite arguments, these functions return the value x, such that x is a double with
magnitude in the interval [½, 1) or 0, and num equals x times 2 raised to the power
*exp.

If num is NaN, NaN is returned and the value of *exp is unspecified.

If num is ± 0, ± 0 is returned and the value of *exp is 0.

If num is ±Inf, num is returned and the value of *exp is unspecified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

isnan(3M), ldexp(3M), modf(3M), attributes(5), standards(5)

frexp(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 481

gelf, gelf_checksum, gelf_fsize, gelf_getcap, gelf_getclass, gelf_getdyn, gelf_getehdr,
gelf_getmove, gelf_getphdr, gelf_getrel, gelf_getrela, gelf_getshdr, gelf_getsym,
gelf_getsyminfo, gelf_getsymshndx, gelf_newehdr, gelf_newphdr, gelf_update_cap,
gelf_update_dyn, gelf_update_ehdr, gelf_update_getmove, gelf_update_move,
gelf_update_phdr, gelf_update_rel, gelf_update_rela, gelf_update_shdr,
gelf_update_sym, gelf_update_symshndx, gelf_update_syminfo, gelf_xlatetof,
gelf_xlatetom – generic class-independent ELF interface

cc [flag...] file... −lelf [library...]

#include <gelf.h>

long gelf_checksum(Elf *elf);

size_t gelf_fsize(Elf *elf, Elf_Type type, size_t cnt, unsigned ver);

int gelf_getcap(Elf_Data *src, int ndx, GElf_Cap *dst);

int gelf_getclass(Elf *elf);

GElf_Dyn *gelf_getdyn(Elf_Data *src, int ndx, GElf_Dyn *dst);

GElf_Ehdr *gelf_getehdr(Elf *elf, GElf_Ehdr *dst);

GElf_Move *gelf_getmove(Elf_Data *src, int ndx, GElf_Move *dst);

GElf_Phdr *gelf_getphdr(Elf *elf, int ndx, GElf_Phdr *dst);

GElf_Rel *gelf_getrel(Elf_Data *src, int ndx, GElf_Rel *dst);

GElf_Rela *gelf_getrela(Elf_Data *src, int ndx, GElf_Rela *dst);

GElf_Shdr *gelf_getshdr(Elf_Scn *scn, GElf_Shdr *dst);

GElf_Sym *gelf_getsym(Elf_Data *src, int ndx, GElf_Sym *dst);

GElf_Syminfo *gelf_getsyminfo(Elf_Data *src, int ndx, GElf_Syminfo
*dst);

GElf_Sym *gelf_getsymshndx(Elf_Data *symsrc, Elf_Data *shndxsrc, int
ndx, GElf_Sym *symdst, Elf32_Word *shndxdst);

unsigned long gelf_newehdr(Elf *elf, int class);

unsigned long gelf_newphdr(Elf *elf, size_t phnum);

int gelf_update_cap(Elf_Data *dst, int ndx, GElf_Cap *src);

int gelf_update_dyn(Elf_Data *dst, int ndx, GElf_Dyn *src);

int gelf_update_ehdr(Elf *elf, GElf_Ehdr *src);

int gelf_update_move(Elf_Data *dst, int ndx, GElf_Move *src);

int gelf_update_phdr(Elf *elf, int ndx, GElf_Phdr *src);

int gelf_update_rel(Elf_Data *dst, int ndx, GElf_Rel *src);

int gelf_update_rela(Elf_Data *dst, int ndx, GElf_Rela *src);

int gelf_update_shdr(Elf_Scn *dst, GElf_Shdr *src);

gelf(3ELF)

NAME

SYNOPSIS

482 man pages section 3: Extended Library Functions • Last Revised 8 June 2004

int gelf_update_sym(Elf_Data *dst, int ndx, GElf_Sym *src);

int gelf_update_syminfo(Elf_Data *dst, int ndx, GElf_Syminfo *src);

int gelf_update_symshndx(Elf_Data *symdst, Elf_Data *shndxdst, int
ndx, GElf_Sym *symsrc, Elf32_Word shndxsrc);

Elf_Data *gelf_xlatetof(Elf *elf, Elf_Data *dst, const Elf_Data *src,
unsigned encode);

Elf_Data *gelf_xlatetom(Elf *elf, Elf_Data *dst, const Elf_Data *src,
unsigned encode);

GElf is a generic, ELF class-independent API for manipulating ELF object files. GElf
provides a single, common interface for handling 32–bit and 64–bit ELF format object
files. GElf is a translation layer between the application and the class-dependent parts
of the ELF library. Thus, the application can use GElf, which in turn, will call the
corresponding elf32_ or elf64_ functions on behalf of the application. The data
structures returned are all large enough to hold 32–bit and 64–bit data.

GElf provides a simple, class-independent layer of indirection over the
class-dependent ELF32 and ELF64 API’s. GElf is stateless, and may be used along
side the ELF32 and ELF64 API’s.

GElf always returns a copy of the underlying ELF32 or ELF64 structure, and
therefore the programming practice of using the address of an ELF header as the base
offset for the ELF’s mapping into memory should be avoided. Also, data accessed by
type-casting the Elf_Data buffer to a class-dependent type and treating it like an
array, for example, a symbol table, will not work under GElf, and the gelf_get
functions must be used instead. See the EXAMPLE section.

Programs that create or modify ELF files using libelf(3LIB) need to perform an
extra step when using GElf. Modifications to GElf values must be explicitly flushed
to the underlying ELF32 or ELF64 structures by way of the gelf_update_
interfaces. Use of elf_update or elf_flagelf and the like remains the same.

The sizes of versioning structures remain the same between ELF32 and ELF64. The
GElf API only defines types for versioning, rather than a functional API. The
processing of versioning information will stay the same in the GElf environment as it
was in the class-dependent ELF environment.

gelf_checksum() An analog to elf32_checksum(3ELF) and
elf64_checksum(3ELF).

gelf_fsize() An analog to elf32_fsize(3ELF) and
elf64_fsize(3ELF).

gelf_getcap() Retrieves the Elf32_Cap or Elf64_Cap information
from the capability table at the given index. dst points
to the location where the GElf_Cap capability entry is
stored.

gelf(3ELF)

DESCRIPTION

List of Functions

Extended Library Functions 483

gelf_getclass() Returns one of the constants ELFCLASS32,
ELFCLASS64 or ELFCLASSNONE.

gelf_getdyn() Retrieves the Elf32_Dyn or Elf64_Dyn information
from the dynamic table at the given index. dst points
to the location where the GElf_Dyn dynamic entry is
stored.

gelf_getehdr() An analog to elf32_getehdr(3ELF) and
elf64_getehdr(3ELF). dst points to the location
where the GElf_Ehdr header is stored.

gelf_getmove() Retrieves the Elf32_Move or Elf64_Move
information from the move table at the given index.
dst points to the location where the GElf_Move move
entry is stored.

gelf_getphdr() An analog toelf32_getphdr(3ELF) and
elf64_getphdr(3ELF). dst points to the location
where the GElf_Phdr program header is stored.

gelf_getrel() Retrieves the Elf32_Rel or Elf64_Rel information
from the relocation table at the given index. dst points
to the location where the GElf_Rel relocation entry is
stored.

gelf_getrela() Retrieves the Elf32_Rela or Elf64_Rela
information from the relocation table at the given
index. dst points to the location where the
GElf_Rela relocation entry is stored.

gelf_getshdr() An analog to elf32_getshdr(3ELF) and
elf64_getshdr(3ELF). dst points to the location
where the GElf_Shdr section header is stored.

gelf_getsym() Retrieves the Elf32_Sym or Elf64_Sym information
from the symbol table at the given index. dst points to
the location where the GElf_Sym symbol entry is
stored.

gelf_getsyminfo() Retrieves the Elf32_Syminfo or Elf64_Syminfo
information from the relocation table at the given
index. dst points to the location where the
GElf_Syminfo symbol information entry is stored.

gelf_getsymshndx() Provides an extension to gelf_getsym() that
retrieves the Elf32_Sym or Elf64_Sym information,
and the section index from the symbol table at the
given index ndx.

gelf(3ELF)

484 man pages section 3: Extended Library Functions • Last Revised 8 June 2004

The symbols section index is typically recorded in the
st_shndx field of the symbols structure. However, a
file that requires ELF Extended Sections may record an
st_shndx of SHN_XINDEX indicating that the section
index must be obtained from an associated
SHT_SYMTAB_SHNDX section entry. If xshndx and
shndxdata are non-null, the value recorded at index ndx
of the SHT_SYMTAB_SHNDX table pointed to by
shndxdata is returned in xshndx. See USAGE.

gelf_newehdr() An analog to elf32_newehdr(3ELF) and
elf64_newehdr(3ELF).

gelf_newphdr() An analog to elf32_newphdr(3ELF) and
elf64_newphdr(3ELF).

gelf_update_cap() Copies the GElf_Cap information back into the
underlying Elf32_Cap or Elf64_Cap structure at the
given index.

gelf_update_dyn() Copies the GElf_Dyn information back into the
underlying Elf32_Dyn or Elf64_Dyn structure at the
given index.

gelf_update_ehdr() Copies the contents of the GElf_Ehdr ELF header to
the underlying Elf32_Ehdr or Elf64_Ehdr
structure.

gelf_update_move() Copies the GElf_Move information back into the
underlying Elf32_Move or Elf64_Move structure at
the given index.

gelf_update_phdr() Copies of the contents of GElf_Phdr program header
to underlying the Elf32_Phdr or Elf64_Phdr
structure.

gelf_update_rel() Copies the GElf_Rel information back into the
underlying Elf32_Rel or Elf64_Rel structure at the
given index.

gelf_update_rela() Copies the GElf_Rela information back into the
underlying Elf32_Rela or Elf64_Rela structure at
the given index.

gelf_update_shdr() Copies of the contents of GElf_Shdr section header to
underlying the Elf32_Shdr or Elf64_Shdr
structure.

gelf_update_sym() Copies the GElf_Sym information back into the
underlying Elf32_Sym or Elf64_Sym structure at the
given index.

gelf(3ELF)

Extended Library Functions 485

gelf_update_syminfo() Copies the GElf_Syminfo information back into the
underlying Elf32_Syminfo or Elf64_Syminfo
structure at the given index.

gelf_update_symshndx
()

Provides an extension to gelf_update_sym() that
copies the GElf_Sym information back into the
Elf32_Sym or Elf64_Sym structure at the given index
ndx, and copies the extended xshndx section index into
the Elf32_Word at the given index ndx in the buffer
described by shndxdata. See USAGE.

gelf_xlatetof() An analog to elf32_xlatetof(3ELF) and
elf64_xlatetof(3ELF)

gelf_xlatetom() An analog to elf32_xlatetom(3ELF) and
elf64_xlatetom(3ELF)

Upon failure, all GElf functions return 0 and set elf_errno. See elf_errno(3ELF)

EXAMPLE 1 Printing the ELF Symbol Table

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <libelf.h>
#include <gelf.h>

void
main(int argc, char **argv)
{

Elf *elf;
Elf_Scn *scn = NULL;
GElf_Shdr shdr;
Elf_Data *data;
int fd, ii, count;

elf_version(EV_CURRENT);

fd = open(argv[1], O_RDONLY);
elf = elf_begin(fd, ELF_C_READ, NULL);

while ((scn = elf_nextscn(elf, scn)) != NULL) {
gelf_getshdr(scn, &shdr);
if (shdr.sh_type == SHT_SYMTAB) {

/* found a symbol table, go print it. */
break;

}
}

data = elf_getdata(scn, NULL);
count = shdr.sh_size / shdr.sh_entsize;

/* print the symbol names */
for (ii = 0; ii < count; ++ii) {

gelf(3ELF)

RETURN VALUES

EXAMPLES

486 man pages section 3: Extended Library Functions • Last Revised 8 June 2004

EXAMPLE 1 Printing the ELF Symbol Table (Continued)

GElf_Sym sym;
gelf_getsym(data, ii, &sym);
printf("%s\n", elf_strptr(elf, shdr.sh_link, sym.st_name));

}
elf_end(elf);
close(fd);

}

ELF Extended Sections are employed to allow an ELF file to contain more than
0xff00 (SHN_LORESERVE) section. See the Linker and Libraries Guide for more
information.

/lib/libelf.so.1 shared object

/lib/64/libelf.so.1 64–bit shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT Level MT-Safe

elf(3ELF), elf32_checksum(3ELF), elf32_fsize(3ELF), elf32_getehdr(3ELF),
elf32_newehdr(3ELF), elf32_getphdr(3ELF), elf32_newphdr(3ELF),
elf32_getshdr(3ELF), elf32_xlatetof(3ELF), elf32_xlatetom(3ELF),
elf_errno(3ELF), libelf(3LIB), attributes(5)

Linker and Libraries Guide

gelf(3ELF)

USAGE

FILES

ATTRIBUTES

SEE ALSO

Extended Library Functions 487

getacinfo, getacdir, getacflg, getacmin, getacna, setac, endac – get audit control file
information

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]

#include <bsm/libbsm.h>

int getacdir(char *dir, int len);

int getacmin(int *min_val);

int getacflg(char *auditstring, int len);

int getacna(char *auditstring, int len);

void setac(void);

void endac(void);

When first called, getacdir() provides information about the first audit directory in
the audit_control file; thereafter, it returns the next directory in the file. Successive
calls list all the directories listed in audit_control(4) The parameter len specifies the
length of the buffer dir. On return, dir points to the directory entry.

getacmin() reads the minimum value from the audit_control file and returns the
value in min_val. The minimum value specifies how full the file system to which the
audit files are being written can get before the script audit_warn(1M) is invoked.

getacflg() reads the system audit value from the audit_control file and returns
the value in auditstring. The parameter len specifies the length of the buffer auditstring.

getacna() reads the system audit value for non-attributable audit events from the
audit_control file and returns the value in auditstring. The parameter len specifies
the length of the buffer auditstring. Non-attributable events are events that cannot be
attributed to an individual user. inetd(1M) and several other daemons record
non-attributable events.

Calling setac rewinds the audit_control file to allow repeated searches.

Calling endac closes the audit_control file when processing is complete.

/etc/security/audit_control contains default parameters read by the
audit daemon, auditd(1M)

getacdir(), getacflg(), getacna() and getacmin() return:

0 on success.

−2 on failure and set errno to indicate the error.

getacmin() and getacflg() return:

1 on EOF.

getacdir() returns:

−1 on EOF.

getacinfo(3BSM)

NAME

SYNOPSIS

DESCRIPTION

FILES

RETURN VALUES

488 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

2 if the directory search had to start from the beginning because one of the
other functions was called between calls to getacdir().

These functions return:

−3 if the directory entry format in the audit_control file is incorrect.

getacdir(), getacflg() and getacna() return:

−3 if the input buffer is too short to accommodate the record.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe.

audit_warn(1M), bsmconv(1M), inetd(1M), audit_control(4), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

getacinfo(3BSM)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 489

getauclassent, getauclassnam, setauclass, endauclass, getauclassnam_r, getauclassent_r
– get audit_class entry

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_class_ent *getauclassnam(const char *name);

struct au_class_ent *getauclassnam_r(au_class_ent_t *class_int,
const char *name);

struct au_class_ent *getauclassent(void);

struct au_class_ent *getauclassent_r(au_class_ent_t *class_int);

void setauclass(void);

void endauclass(void);

getauclassent() and getauclassnam() each return an audit_class entry.

getauclassnam() searches for an audit_class entry with a given class name name.

getauclassent() enumerates audit_class entries: successive calls to
getauclassent() will return either successive audit_class entries or NULL.

setauclass() ‘‘rewinds’’ to the beginning of the enumeration of audit_class entries.
Calls to getauclassnam() may leave the enumeration in an indeterminate state, so
setauclass() should be called before the first getauclassent().

endauclass() may be called to indicate that audit_class processing is complete; the
system may then close any open audit_class file, deallocate storage, and so forth.

getauclassent_r() and getauclassnam_r() both return a pointer to an
audit_class entry as do their similarly named counterparts. They each take an
additional argument, a pointer to pre-allocated space for an au_class_ent_t, which
is returned if the call is successful. To assure there is enough space for the information
returned, the applications programmer should be sure to allocate
AU_CLASS_NAME_MAX and AU_CLASS_DESC_MAX bytes for the ac_name and ac_desc
elements of the au_class_ent_t data structure.

The internal representation of an audit_user entry is an au_class_ent structure
defined in <bsm/libbsm.h> with the following members:

char *ac_name;
au_class_t ac_class;

char *ac_desc;

getauclassnam() and getauclassnam_r() return a pointer to a struct
au_class_ent if they successfully locate the requested entry; otherwise they return
NULL.

getauclassent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

490 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

getauclassent() and getauclassent_r() return a pointer to a struct
au_class_ent if they successfully enumerate an entry; otherwise they return NULL,
indicating the end of the enumeration.

/etc/security/audit_class Maps audit class numbers to audit class
names

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

All of the functions described in this man-page are MT-Safe except
getauclassent() and getauclassnam. The two functions, getauclassent_r()
and getauclassnam_r() have the same functionality as the unsafe functions, but
have a slightly different function call interface in order to make them MT-Safe.

bsmconv(1M), audit_class(4), audit_event(4), attributes(5)

All information is contained in a static area, so it must be copied if it is to be saved.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

getauclassent(3BSM)

FILES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 491

getauditflags, getauditflagsbin, getauditflagschar – convert audit flag specifications

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/libbsm.h>

int getauditflagsbin(char *auditstring, au_mask_t *masks);

int getauditflagschar(char *auditstring, au_mask_t *masks, int
verbose);

getauditflagsbin() converts the character representation of audit values pointed
to by auditstring into au_mask_t fields pointed to by masks. These fields indicate
which events are to be audited when they succeed and which are to be audited when
they fail. The character string syntax is described in audit_control(4).

getauditflagschar() converts the au_mask_t fields pointed to by masks into a
string pointed to by auditstring. If verbose is zero, the short (2-character) flag names are
used. If verbose is non-zero, the long flag names are used. auditstring should be large
enough to contain the ASCII representation of the events.

auditstring contains a series of event names, each one identifying a single audit class,
separated by commas. The au_mask_t fields pointed to by masks correspond to
binary values defined in <bsm/audit.h>, which is read by <bsm/libbsm.h>.

getauditflagsbin() and getauditflagschar(): −1 is returned on error and 0
on success.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe.

bsmconv(1M), audit.log(4), audit_control(4), attributes(5)

This is not a very extensible interface.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

getauditflags(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

BUGS

NOTES

492 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

getauevent, getauevnam, getauevnum, getauevnonam, setauevent, endauevent,
getauevent_r, getauevnam_r, getauevnum_r – get audit_event entry

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_event_ent *getauevent(void);

struct au_event_ent *getauevnam(char *name);

struct au_event_ent *getauevnum(au_event_t event_number);

au_event_t *getauevnonam(char *event_name);

void setauevent(void);

void endauevent(void);

struct au_event_ent *getauevent_r(au_event_ent_t *e);

struct au_event_ent *getauevnam_r(au_event_ent_t *e, char *name);

struct au_event_ent *getauevnum_r(au_event_ent_t *e, au_event_t
event_number);

These interfaces document the programming interface for obtaining entries from the
audit_event(4) file. getauevent(), getauevnam(), getauevnum(),
getauevent(), getauevnam(), and getauevnum() each return a pointer to an
audit_event structure.

getauevent() and getauevent_r() enumerate audit_event entries; successive
calls to these functions will return either successive audit_event entries or NULL.

getauevnam() and getauevnam_r() search for an audit_event entry with a
given event_name.

getauevnum() and getauevnum_r() search for an audit_event entry with a
given event_number.

getauevnonam() searches for an audit_event entry with a given event_name and
returns the corresponding event number.

setauevent() ‘‘rewinds’’ to the beginning of the enumeration of audit_event
entries. Calls to getauevnam(), getauevnum(), getauevnonum(),
getauevnam_r(), or getauevnum_r() may leave the enumeration in an
indeterminate state; setauevent() should be called before the first getauevent()
or getauevent_r().

endauevent() may be called to indicate that audit_event processing is complete;
the system may then close any open audit_event file, deallocate storage, and so
forth.

getauevent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 493

The three functions getauevent_r(), getauevnam_r(), and getauevnum_r()
each take an argument e which is a pointer to an au_event_ent_t. This pointer is
returned on a successful function call. To assure there is enough space for the
information returned, the applications programmer should be sure to allocate
AU_EVENT_NAME_MAX and AU_EVENT_DESC_MAX bytes for the ae_name and
ac_desc elements of the au_event_ent_t data structure.

The internal representation of an audit_event entry is an struct au_event_ent
structure defined in <bsm/libbsm.h> with the following members:

au_event_t ae_number
char *ae_name;
char *ae_desc*;

au_class_t ae_class;

getauevent(), getauevnam(), getauevnum(), getauevent_r(),
getauevnam_r(), and getauevnum_r() return a pointer to a struct
au_event_ent if the requested entry is successfully located; otherwise it returns
NULL.

getauevnonam() returns an event number of type au_event_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating it could not find the
requested event name.

/etc/security/audit_event Maps audit event numbers to audit event
names.

/etc/passwd Stores user-ID to username mappings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions.

The functions getauevent(), getauevnam(), and getauevnum() are not MT-Safe;
however, there are equivalent functions: getauevent_r(), getauevnam_r(), and
getauevnum_r() — all of which provide the same functionality and a MT-Safe
function call interface.

bsmconv(1M), getauclassent(3BSM), getpwnam(3C), audit_class(4),
audit_event(4), passwd(4), attributes(5)

All information for the functions getauevent(), getauevnam(), and
getauevnum() is contained in a static area, so it must be copied if it is to be saved.

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

getauevent(3BSM)

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

NOTES

494 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

getauthattr, getauthnam, free_authattr, setauthattr, endauthattr, chkauthattr – get
authorization entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <auth_attr.h>

#include <secdb.h>

authattr_t *getauthattr(void);

authattr_t *getauthnam(const char *name);

void free_authattr(authattr_t *auth);

void setauthattr(void);

void endauthattr(void);

int chkauthattr(const char *authname, const char *username);

The getauthattr() and getauthnam() functions each return an auth_attr(4)
entry. Entries can come from any of the sources specified in the nsswitch.conf(4)
file.

The getauthattr() function enumerates auth_attr entries. The getauthnam()
function searches for an auth_attr entry with a given authorization name name.
Successive calls to these functions return either successive auth_attr entries or
NULL.

Th internal representation of an auth_attr entry is an authattr_t structure
defined in <auth_attr.h> with the following members:

char name; /* name of the authorization */
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char short_desc; /* short description */
char long_desc; /* long description */

kva_t *attr; /* array of key-value pair attributes */

The setauthattr() function “rewinds” to the beginning of the enumeration of
auth_attr entries. Calls to getauthnam() can leave the enumeration in an
indeterminate state. Therefore, setauthattr() should be called before the first call
to getauthattr().

The endauthattr() function may be called to indicate that auth_attr processing
is complete; the system may then close any open auth_attr file, deallocate storage,
and so forth.

The chkauthattr() function verifies whether or not a user has a given
authorization. It first reads the AUTHS_GRANTED key in the
/etc/security/policy.conf file and returns 1 if it finds a match for the given
authorization. If chkauthattr() does not find a match, it reads the
PROFS_GRANTED key in /etc/security/policy.conf and returns 1 if the given
authorization is in any profiles specified with the PROFS_GRANTED keyword. If a
match is not found from the default authorizations and default profiles,

getauthattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 495

chkauthattr() reads the user_attr(4) database. If it does not find a match in
user_attr, it reads the prof_attr(4) database, using the list of profiles assigned to
the user, and checks if any of the profiles assigned to the user has the given
authorization. The chkauthattr() function returns 0 if it does not find a match in
any of the three sources.

A user is considered to have been assigned an authorization if either of the following
are true:

� The authorization name matches exactly any authorization assigned in the
user_attr or prof_attr databases (authorization names are case-sensitive).

� The authorization name suffix is not the key word grant and the authorization
name matches any authorization up to the asterisk (*) character assigned in the
user_attr or prof_attr databases.

The examples in the following table illustrate the conditions under which a user is
assigned an authorization.

/etc/security/policy.conf or Is user

Authorization name user_attr or prof_attr entry authorized?

solaris.printer.postscript solaris.printer.postscript Yes

solaris.printer.postscript solaris.printer.* Yes

solaris.printer.grant solaris.printer.* No

The free_authattr() function releases memory allocated by the getauthnam()
and getauthattr() functions.

The getauthattr() function returns a pointer to an authattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getauthnam() function returns a pointer to an authattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

The chkauthattr() function returns 1 if the user is authorized and 0 otherwise.

The getauthattr() and getauthnam() functions both allocate memory for the
pointers they return. This memory should be de-allocated with the
free_authattr() call.

Individual attributes in the attr structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/nsswitch.conf configuration file lookup information for
the name server switch

getauthattr(3SECDB)

RETURN VALUES

USAGE

WARNINGS

FILES

496 man pages section 3: Extended Library Functions • Last Revised 25 Mar 2004

/etc/user_attr extended user attributes

/etc/security/auth_attr authorization attributes

/etc/security/policy.conf policy definitions

/etc/security/prof_attr profile information

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getexecattr(3SECDB), getprofattr(3SECDB), getuserattr(3SECDB),
auth_attr(4), nsswitch.conf(4), prof_attr(4), user_attr(4), attributes(5),
rbac(5)

getauthattr(3SECDB)

ATTRIBUTES

SEE ALSO

Extended Library Functions 497

getauusernam, getauuserent, setauuser, endauuser, getauusernam_r, getauuserent_r –
get audit_user entry

cc [flag...] file... -lbsm -lsocket -lnsl -lintl [library...]
#include <sys/param.h>

#include <bsm/libbsm.h>

struct au_user_ent *getauusernam(const char *name);

struct au_user_ent *getauuserent(void);

void setauuser(void);

void endauuser(void);

struct au_user_ent *getauusernam_r(au_user_ent_t *u, const char
*name);

struct au_user_ent *getauuserent_r(au_user_ent_t *u);

The getauuserent(), getauusernam(), getauuserent_r(), and
getauusernam_r() functions each return an audit_user entry. Entries can come
from any of the sources specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The getauusernam() and getauusernam_r() functions search for an
audit_user entry with a given login name name.

The getauuserent() and getauuserent_r() functions enumerate audit_user
entries; successive calls to these functions will return either successive audit_user
entries or NULL.

The setauuser() function “rewinds” to the beginning of the enumeration of
audit_user entries. Calls to getauusernam() and getauusernam_r() may leave
the enumeration in an indeterminate state, so setauuser() should be called before
the first call to getauuserent() or getauuserent_r().

The endauuser() function may be called to indicate that audit_user processing is
complete; the system may then close any open audit_user file, deallocate storage,
and so forth.

The getauuserent_r() and getauusernam_r() functions both take as an
argument a pointer to an au_user_ent that is returned on successful function calls.

The internal representation of an audit_user entry is an au_user_ent structure
defined in <bsm/libbsm.h> with the following members:

char *au_name;
au_mask_t au_always;

au_mask_t au_never;

The getauusernam() function returns a pointer to a struct au_user_ent if it
successfully locates the requested entry; otherwise it returns NULL.

getauusernam(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

498 man pages section 3: Extended Library Functions • Last Revised 12 Aug 1999

The getauuserent() function returns a pointer to a struct au_user_ent if it
successfully enumerates an entry; otherwise it returns NULL, indicating the end of the
enumeration.

The functionality described in this manual page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

/etc/security/audit_user stores per-user audit event mask

/etc/passwd stores user-id to username mappings

/etc/security/audit_user stores per-user audit event mask

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe with exceptions

bsmconv(1M), getpwnam(3C), audit_user(4), nsswitch.conf(4), passwd(4),
attributes(5)

All information for the getauuserent() and getauusernam() functions is
contained in a static area, so it must be copied if it is to be saved.

The getauusernam() and getauuserent() functions are Unsafe in multithreaded
applications. The getauusernam_r() and getauuserent_r() functions provide
the same functionality with interfaces that are MT-Safe.

getauusernam(3BSM)

USAGE

FILES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 499

getddent, getddnam, setddent, endddent, setddfile – get device_deallocate entry

cc [flag…] file… -lbsm [library…]

#include <bsm/devices.h>

devdealloc_t *getddent(void);

devdealloc_t *getddnam(char *name);

void setddent(void);

void endddent(void);

void setddfile(char *file);

The getddent() and getddnam() functions each return a device_deallocate
entry. The getddent() function enumerates all device_deallocate entries.
Successive calls to this function return either successive device_deallocate entries
or NULL. The getddnam() function searches for a device_deallocate entry with a
given device name.

The internal representation of a device_deallocate entry is a devdealloc_t
structure defined in <bsm/devices.h> with the following members:

char *dd_devname; /* device allocation name */
char *dd_logout; /* deallocation action on user logout */

char *dd_boot; /* deallocation action on system boot */

The setddent() function “rewinds” to the beginning of the enumeration of
device_deallocate entries. Calls to getddnam() may leave the enumeration in an
indeterminate state, so setddent() should be called before the first call to
getddent().

The endddent() function can be called to indicate that device_deallocate
processing is complete. The library can then close any opendevice_deallocate file,
deallocate any internal storage, and so forth.

The setddfile() function changes the pathname used by the other functions for
opening the device_deallocate file, allowing use of device_deallocate files
other than the default file, /etc/security/device_deallocate.

The getddent() function returns a pointer to a devdealloc_t if it successfully
enumerates an entry. Otherwise it returns NULL, indicating the end of the
enumeration.

The getddnam() function returns a pointer to a devdealloc_t if it successfully
locates the requested entry. Otherwise it returns NULL.

/etc/security/device_deallocate
Administrative file defining parameters for device deallocation.

getddent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

500 man pages section 3: Extended Library Functions • Last Revised 11 Jan 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

free(3C), attributes(5)

The getddent() and getddnam() functions allocate memory for the pointers they
return. This memory can be deallocated with the free(3C) function.

getddent(3BSM)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 501

getdmapent, getdmapnam, getdmaptype, getdmaptdev, setdmapent, enddmapent,
setdmapfile – get device_maps entry

cc [flag…] file… -lbsm [library…]

#include <bsm/devices.h>

devmap_t *getdmapent(void);

devmap_t *getdmapnam(char *name);

devmap_t *getdmapdev(char *name);

devmap_t *getdmaptype(char *type);

void setdmapent(void);

void enddmapent(void);

void setdmapfile(char *file);

The getdmapent(), getdmapnam(), getdmapdev(), and getdmaptype()
functions each return a device_deallocate entry. The getdmapent() function
enumerates all device_maps entries. The getdmaptype() function enumerates
device_maps entries with a given device type. Successive calls to these functions
return either successive device_maps entries or NULL. The getdmapnam() function
searches for a device_maps entry with a given device allocation name. The
getdmapdev() function searches for a device_maps entry containing a given device
special file.

The internal representation of a device_maps entry is a devmap_t structure defined
in <bsm/devices.h> with the following members:

char *dmap_devname; /* device allocation name */
char *dmap_devtype; /* generic device type */

char *dmap_devlist; /* list of associated device special files */

The setdmapent() function “rewinds” to the beginning of the enumeration of
device_maps entries. Calls to getdmapnam() may leave the enumeration in an
indeterminate state, so setdmapent() should be called before the first call to
getdmapent() or getdmaptype().

The enddmapent() function can be called to indicate that device_maps processing
is complete. The library can then close any open device_maps file, deallocate any
internal storage, and so forth.

The setdmapfile() function changes the pathname used by the other functions for
opening the device_maps file, allowing use of device_maps files other than the
default file, /etc/security/device_maps.

The getdmapent() and getdmaptype() functions return a pointer to a devmap_t
if they successfully enumerate an entry. Otherwise they return NULL, indicating the
end of the enumeration.

getdmapent(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

502 man pages section 3: Extended Library Functions • Last Revised 11 Jan 2001

The getdmapnam() function returns a pointer to a devmap_t if it successfully locates
the requested entry. Otherwise it returns NULL.

/etc/security/device_maps
Administrative file defining the mapping of device special files to allocatable device
names.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

allocate(1), free(3C), device_maps(4), attributes(5)

The getdmapent(), getdmapnam(), getdmapdev(), and getdmaptype()
functions allocate memory for the pointers they return. This memory can be
deallocated with the free(3C) function.

getdmapent(3BSM)

FILES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 503

getexecattr, free_execattr, setexecattr, endexecattr, getexecuser, getexecprof,
match_execattr – get execution profile entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]
#include <exec_attr.h>

#include <secdb.h>

execattr_t *getexecattr(void);

void free_execattr(execattr_t *ep);

void setexecattr(void);

void endexecattr(void);

execattr_t *getexecuser(const char *username, const char *type,
const char *id, int search_flag);

execattr_t *getexecprof(const char *profname, const char *type,
const char *id, int search_flag);

execattr_t *match_execattr(execattr_t *ep, char *profname, char
*type, char *id);

The getexecattr() function returns a single exec_attr(4) entry. Entries can come
from any of the sources specified in the nsswitch.conf(4) file.

Successive calls to getexecattr() return either successive exec_attr entries or
NULL. Because getexecattr() always returns a single entry, the next pointer in the
execattr_t data structure points to NULL.

The internal representation of an exec_attr entry is an execattr_t structure
defined in <exec_attr.h> with the following members:

char name; /* name of the profile */
char type; /* type of profile */
char policy; /* policy under which the attributes are */

/* relevant*/
char res1; /* reserved for future use */
char res2; /* reserved for future use */
char id; /* unique identifier */
kva_t attr; /* attributes */

struct execattr_s next; /* optional pointer to next profile */

The free_execattr() function releases memory. It follows the next pointers in the
execattr_t structure so that the entire linked list is released.

The setexecattr() function “rewinds” to the beginning of the enumeration of
exec_attr entries. Calls to getexecuser() can leave the enumeration in an
indeterminate state. Therefore, setexecattr() should be called before the first call
to getexecattr().

The endexecattr() function can be called to indicate that exec_attr processing is
complete; the library can then close any open exec_attr file, deallocate any internal
storage, and so forth.

getexecattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

504 man pages section 3: Extended Library Functions • Last Revised 5 Apr 2004

The getexecuser() function returns a linked list of entries that match the type and
id arguments and have a profile that has been assigned to the user specified by
username, as described in passwd(4). Profiles for the user are obtained from the list of
default profiles in /etc/security/policy.conf (see policy.conf(4)) and the
user_attr(4) database. Only entries in the name service scope for which the
corresponding profile entry is found in the prof_attr(4) database are returned.

The getexecprof() function returns a linked list of entries that match the type and
id arguments and have the profile specified by the profname argument. Only entries in
the name service scope for which the corresponding profile entry is found in the
prof_attr database are returned.

Using getexecuser() and getexecprof(), programmers can search for any type
argument, such as the manifest constant KV_COMMAND. The arguments are logically
AND-ed together so that only entries exactly matching all of the arguments are
returned. Wildcard matching applies if there is no exact match for an ID. Any
argument can be assigned the NULL value to indicate that it is not used as part of the
matching criteria. The search_flag controls whether the function returns the first match
(GET_ONE), setting the next pointer to NULL or all matching entries (GET_ALL), using
the next pointer to create a linked list of all entries that meet the search criteria. See
EXAMPLES.

Once a list of entries is returned by getexecuser() or getexecprof(), the
convenience function match_execattr() can be used to identify an individual
entry. It returns a pointer to the individual element with the same profile name (
profname), type name (type), and id. Function parameters set to NULL are not used as
part of the matching criteria. In the event that multiple entries meet the matching
criteria, only a pointer to the first entry is returned. The kva_match(3SECDB)
function can be used to look up a key in a key-value array.

Those functions returning data only return data related to the active policy. The
getexecattr() function returns a pointer to a execattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getexecattr(), getexecuser(), and getexecprof() functions all allocate
memory for the pointers they return. This memory should be deallocated with the
free_execattr() call. The match_execattr()(function does not allocate any
memory. Therefore, pointers returned by this function should not be deallocated.

Individual attributes may be referenced in the attr structure by calling the
kva_match(3SECDB) function.

EXAMPLE 1 The following finds all profiles that have the ping command.
if ((execprof=getexecprof(NULL, KV_COMMAND, "/usr/sbin/ping",

GET_ONE)) == NULL) {
/* do error */

}

EXAMPLE 2 The following finds the entry for the ping command in the Network
Administration Profile.
if ((execprof=getexecprof("Network Administration", KV_COMMAND,

"/usr/sbin/ping", GET_ALL))==NULL) {

getexecattr(3SECDB)

RETURN VALUES

USAGE

EXAMPLES

Extended Library Functions 505

EXAMPLE 2 The following finds the entry for the ping command in the Network
Administration Profile. (Continued)

/* do error */

}

EXAMPLE 3 The following tells everything that can be done in the Filesystem Security profile.

if ((execprof=getexecprof("Filesystem Security", KV_NULL, NULL,
GET_ALL))==NULL)) {

/* do error */

}

EXAMPLE 4 The following tells if the tar command is in a profile assigned to user wetmore.
If there is no exact profile entry, the wildcard (*), if defined, is returned.

if ((execprof=getexecuser("wetmore", KV_COMMAND, "/usr/bin/tar",
GET_ONE))==NULL) {

/* do error */

}

/etc/nsswitch.conf configuration file lookup information for
the name server switch

/etc/user_attr extended user attributes

/etc/security/exec_attr execution profiles

/etc/security/policy.conf policy definitions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getuserattr(3SECDB), kva_match(3SECDB),
exec_attr(4), passwd(4), policy.conf(4), prof_attr(4), user_attr(4),
attributes(5)

getexecattr(3SECDB)

FILES

ATTRIBUTES

SEE ALSO

506 man pages section 3: Extended Library Functions • Last Revised 5 Apr 2004

getfauditflags – generates the process audit state

cc [flag ...] file ... -lbsm -lsocket -lnsl -lintl [library ...]
#include <sys/param.h>

#include <bsm/libbsm.h>

int getfauditflags(au_mask_t *usremasks, au_mask_t *usrdmasks,
au_mask_t *lastmasks);

getfauditflags() generates a process audit state by combining the audit masks
passed as parameters with the system audit masks specified in the
audit_control(4) file. getfauditflags() obtains the system audit value by
calling getacflg() (see getacinfo(3BSM)).

usremasks points to au_mask_t fields which contains two values. The first value
defines which events are always to be audited when they succeed. The second value
defines which events are always to be audited when they fail.

usrdmasks also points to au_mask_t fields which contains two values. The first value
defines which events are never to be audited when they succeed. The second value
defines which events are never to be audited when they fail.

The structures pointed to by usremasks and usrdmasks may be obtained from the
audit_user(4) file by calling getauusernam() which returns a pointer to a
strucure containing all audit_user(4) fields for a user.

The output of this function is stored in lastmasks which is a pointer of type au_mask_t
as well. The first value defines which events are to be audited when they succeed and
the second defines which events are to be audited when they fail.

Both usremasks and usrdmasks override the values in the system audit values.

−1 is returned on error and 0 on success.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe.

bsmconv(1M), getacinfo(3BSM), getauditflags(3BSM), getauusernam(3BSM),
audit.log(4), audit_control(4), audit_user(4), attributes(5)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

getfauditflags(3BSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 507

getprofattr, getprofnam, free_profattr, setprofattr, endprofattr, getproflist, free_proflist
– get profile description and attributes

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]

#include <prof_attr.h>

profattr_t *getprofattr(void);

profattr_t *getprofnam(const char *name);

void free_profattr(profattr_t *pd);

void setprofattr(void);

void endprofattr(void);

void getproflist(const char *profname, char **proflist, int *profcnt);

void free_proflist(char **proflist, int profcnt);

The getprofattr() and getprofnam() functions each return a prof_attr entry.
Entries can come from any of the sources specified in the nsswitch.conf(4) file.

The getprofattr() function enumerates prof_attr entries. The getprofnam()
function searches for a prof_attr entry with a given name. Successive calls to these
functions return either successive prof_attr entries or NULL.

The internal representation of a prof_attr entry is a profattr_t structure defined
in <prof_attr.h> with the following members:

char name; /* Name of the profile */
char res1; /* Reserved for future use */
char res2; /* Reserved for future use */
char desc; /* Description/Purpose of the profile */

kva_t attr; /* Profile attributes */

The free_profattr() function releases memory allocated by the getprofattr()
and getprofnam() functions.

The setprofattr() function “rewinds” to the beginning of the enumeration of
prof_attr entries. Calls to getprofnam() can leave the enumeration in an
indeterminate state. Therefore, setprofattr() should be called before the first call
to getprofattr().

The endprofattr() function may be called to indicate that prof_attr processing
is complete; the system may then close any open prof_attr file, deallocate storage,
and so forth.

The getproflist() function searches for the list of sub-profiles found in the given
profname and allocates memory to store this list in proflist. The given profname will be
included in the list of sub-profiles. The profcnt argument indicates the number of items
currently valid in proflist. Memory allocated by getproflist() should be freed
using the free_proflist() function.

getprofattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

508 man pages section 3: Extended Library Functions • Last Revised 5 Apr 2004

The free_proflist() function frees memory allocated by the getproflist()
function. The profcnt argument specifies the number of items to free from the proflist
argument.

The getprofattr() function returns a pointer to a profattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

The getprofnam() function returns a pointer to a profattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

Individual attributes in the prof_attr_t structure can be referred to by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, any code must be written to ignore
unknown key-value pairs without error.

The getprofattr() and getprofnam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_profattr()
function.

/etc/security/prof_attr profiles and their descriptions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

auths(1), profiles(1), getexecattr(3SECDB), getauthattr(3SECDB),
prof_attr(4)

getprofattr(3SECDB)

RETURN VALUES

USAGE

FILES

ATTRIBUTES

SEE ALSO

Extended Library Functions 509

getprojent, getprojbyname, getprojbyid, getdefaultproj, inproj, getprojidbyname,
setprojent, endprojent, fgetprojent – project database entry functions

cc [flag...] file... −lproject [library...]

#include <project.h>

struct project *getprojent(struct project *proj, void *buffer, size_t
bufsize);

struct project *getprojbyname(const char *name, struct project
*proj, void *buffer, size_t bufsize);

struct project *getprojbyid(projid_t projid, struct project *proj,
void *buffer, size_t bufsize);

struct project *getdefaultproj(const char *username, struct
project *proj, void *buffer, size_t bufsize);

int inproj(const char *username, const char *projname, void *buffer,
size_t bufsize);

projid_t getprojidbyname(const char *name);

void setprojent(void);

void endprojent(void);

struct project *fgetprojent(FILE *f, struct project *proj, void
*buffer, size_t bufsize);

These functions are used to obtain entries describing user projects. Entries can come
from any of the sources for a project specified in the /etc/nsswitch.conf file (see
nsswitch.conf(4)).

The setprojent(), getprojent(), and endprojent() functions are used to
enumerate project entries from the database.

The setprojent() function effectively rewinds the project database to allow
repeated searches. It sets (or resets) the enumeration to the beginning of the set of
project entries. This function should be called before the first call to getprojent().

The getprojent() function returns a pointer to a structure containing the
broken-out fields of an entry in the project database. When first called,
getprojent() returns a pointer to a project structure containing the first project
structure in the project database. Successive calls can be used to read the entire
database.

The endprojent() function closes the project database and deallocates resources
when processing is complete. It is permissible, though possibly less efficient, for the
process to call more project functions after calling endprojent().

The getprojbyname() function searches the project database for an entry with the
project name specified by the character string name.

getprojent(3PROJECT)

NAME

SYNOPSIS

DESCRIPTION

510 man pages section 3: Extended Library Functions • Last Revised 5 Apr 2004

The getprojbyid() function searches the project database for an entry with the
(numeric) project ID specified by projid.

The getdefaultproj() function first looks up the project key word in the
user_attr database used to define user attributes in restricted Solaris environments.
If the database is available and the keyword is present, the function looks up the
named project, returning NULL if it cannot be found or if the user is not a member of
the named project. If absent, the function looks for a match in the project database for
the special project user.username. If no match is found, or if the user is excluded from
project user.username, the function looks at the default group entry of the passwd
database for the user, and looks for a match in the project database for the special
name group.groupname, where groupname is the default group associated with the
password entry corresponding to the given username. If no match is found, or if the
user is excluded from project group.groupname, the function returns NULL. A special
project entry called ’default’ can be looked up and used as a last resort, unless the user
is excluded from project ’default’. On successful lookup, this function returns a pointer
to the valid project structure. By convention, the user must have a default project
defined on a system to be able to log on to that system.

The inproj() function checks if the user specified by username is able to use the
project specified by projname. This function returns 1 if the user belongs to the list of
project’s users, if there is a project’s group that contains the specified user, if project is
a user’s default project, or if project’s user or group list contains "*" wildcard. In all
other cases it returns 0.

The getprojidbyname() function searches the project database for an entry with
the project name specified by the character string name. This function returns the
project ID if the requested entry is found; otherwise it returns −1.

The fgetprojent() function, unlike the other functions described above, does not
use nsswitch.conf; it reads and parses the next line from the stream f, which is
assumed to have the format of the project(4) file. This function returns the same
values as getprojent().

The getprojent(), getprojbyname(), getprojbyid(), getdefaultproj(),
and inproj() functions are reentrant interfaces for operations with the project
database. These functions use buffers supplied by the caller to store returned results
and are safe for use in both single-threaded and multithreaded applications.

Reentrant interfaces require the additional arguments proj, buffer, and bufsize. The proj
argument must be a pointer to a struct project structure allocated by the caller.
On successful completion, the function returns the project entry in this structure.
Storage referenced by the project structure is allocated from the memory provided
with the buffer argument, which is bufsize bytes in size. The content of the memory
buffer could be lost in cases when these functions return errors.

For enumeration in multithreaded applications, the position within the enumeration is
a process-wide property shared by all threads. The setprojent() function can be
used in a multithreaded application but resets the enumeration position for all

getprojent(3PROJECT)

Extended Library Functions 511

threads. If multiple threads interleave calls to getprojent(), the threads will
enumerate disjoint subsets of the project database. The inproj(),
getprojbyname(), getprojbyid(), and getdefaultproj() functions leave the
enumeration position in an indeterminate state.

Project entries are represented by the struct project structure defined in
<project.h>.

struct project {
char *pj_name; /* name of the project */
projid_t pj_projid; /* numerical project id */
char *pj_comment; /* project comment */
char **pj_users; /* vector of pointers to project

user names */
char **pj_groups; /* vector of pointers to project

group names */
char *pj_attr; /* project attributes */

};

The getprojbyname() and getprojbyid() functions each return a pointer to a
struct project if they successfully locate the requested entry; otherwise they
return NULL.

The getprojent() function returns a pointer to a struct project if it
successfully enumerates an entry; otherwise it returns NULL, indicating the end of the
enumeration.

The getprojidbyname() function returns the project ID if the requsted entry is
found; otherwise it returns −1 and sets errno to indicate the error.

When the pointer returned by the reentrant functions getprojbyname(),
getprojbyid(), and getprojent() is non-null, it is always equal to the proj
pointer that was supplied by the caller.

Upon failure, NULL is returned and errno is set to indicate the error.

The getprojent(), getprojbyname(), getprojbyid(), inproj(),
getprojidbyname(), fgetprojent(), and getdefaultproj() functions will
fail if:

EINTR A signal was caught during the operation.

EIO An I/O error has occurred.

EMFILE There are OPEN_MAX file descriptors currently open in the calling
process.

ENFILE The maximum allowable number of files is currently open in the
system.

ERANGE Insufficient storage was supplied by buffer and bufsize to contain
the data to be referenced by the resulting project structure.

getprojent(3PROJECT)

RETURN VALUES

ERRORS

512 man pages section 3: Extended Library Functions • Last Revised 5 Apr 2004

These functions can also fail if the name service switch does not specify valid
project(4) name service sources. In the case of an incompletely configurated name
service switch configuration, getprojbyid() and other functions can return error
values other than those documented above. These conditions usually occur when the
nsswitch.conf file indicates that one or more name services is providing entries for
the project database when that name service does not actually make a project table
available.

When compiling multithreaded applications, see intro(3), Notes On Multithreaded
Applications.

Use of the enumeration interface getprojent() is discouraged. Enumeration is
supported for the project file, NIS, and LDAP but in general is not efficient. The
semantics of enumeration are discussed further in nsswitch.conf(4).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level See "Reentrant Interfaces" in Description

intro(3), sysconf(3C), nsswitch.conf(4), project(4), attributes(5)

getprojent(3PROJECT)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 513

getuserattr, getusernam, getuseruid, free_userattr, setuserattr, enduserattr, fgetuserattr
– get user_attr entry

cc [flag...] file... –lsecdb –lsocket –lnsl –lintl [library...]

#include <user_attr.h>

userattr_t *getuserattr(void);

userattr_t *getusernam(const char *name);

userattr_t *getuseruid(uid_t uid);

void free_userattr(userattr_t *userattr);

void setuserattr(void);

void enduserattr(void);

userattr_t *fgetuserattr(FILE *f);

The getuserattr(), getusernam(), and getuseruid() functions each return a
user_attr(4) entry. Entries can come from any of the sources specified in the
nsswitch.conf(4) file. The getuserattr() function enumerates user_attr
entries. The getusernam() function searches for a user_attr entry with a given
user name name. The getuseruid() function searches for a user_attr entry with a
given user ID uid. Successive calls to these functions return either successive
user_attr entries or NULL.

The fgetuserattr() function does not use nsswitch.conf but reads and parses
the next line from the stream f. This stream is assumed to have the format of the
user_attr files.

The free_userattr() function releases memory allocated by the getusernam(),
getuserattr(), and fgetuserattr() functions.

The internal representation of a user_attr entry is a userattr_t structure defined
in <user_attr.h> with the following members:

char name; /* name of the user */
char qualifier; /* reserved for future use */
char res1; /* reserved for future use */
char res2; /* reserved for future use */

kva_t attr; /* list of attributes */

The setuserattr() function “rewinds” to the beginning of the enumeration of
user_attr entries. Calls to getusernam() may leave the enumeration in an
indeterminate state, so setuserattr() should be called before the first call to
getuserattr().

The enduserattr() function may be called to indicate that user_attr processing
is complete; the library may then close any open user_attr file, deallocate any
internal storage, and so forth.

The getuserattr() function returns a pointer to a userattr_t if it successfully
enumerates an entry; otherwise it returns NULL, indicating the end of the enumeration.

getuserattr(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

514 man pages section 3: Extended Library Functions • Last Revised 5 Apr 2004

The getusernam() function returns a pointer to a userattr_t if it successfully
locates the requested entry; otherwise it returns NULL.

The getuserattr() and getusernam() functions both allocate memory for the
pointers they return. This memory should be deallocated with the free_userattr()
function.

Individual attributes can be referenced in the attr structure by calling the
kva_match(3SECDB) function.

Because the list of legal keys is likely to expand, code must be written to ignore
unknown key-value pairs without error.

/etc/user_attr extended user attributes

/etc/nsswitch.conf configuration file lookup information for
the name server switch

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
user_attr(4), attributes(5)

getuserattr(3SECDB)

USAGE

WARININGS

FILES

ATTRIBUTES

SEE ALSO

Extended Library Functions 515

gl_get_line, new_GetLine, del_GetLine, gl_customize_completion,
gl_change_terminal, gl_configure_getline, gl_load_history, gl_save_history,
gl_group_history, gl_show_history, gl_watch_fd, gl_inactivity_timeout,
gl_terminal_size, gl_set_term_size, gl_resize_history, gl_limit_history, gl_clear_history,
gl_toggle_history, gl_lookup_history, gl_state_of_history, gl_range_of_history,
gl_size_of_history, gl_echo_mode, gl_replace_prompt, gl_prompt_style,
gl_ignore_signal, gl_trap_signal, gl_last_signal, gl_completion_action,
gl_register_action, gl_display_text, gl_return_status, gl_error_message,
gl_catch_blocked, gl_list_signals, gl_bind_keyseq, gl_erase_terminal,
gl_automatic_history, gl_append_history, gl_query_char, gl_read_char – allow the user
to compose an input line

cc [flag...] file... -ltecla [library...]
#include <stdio.h>

#include <libtecla.h>

GetLine *new_GetLine(size_t linelen, size_t histlen);

GetLine *del_GetLine(GetLine *gl);

char *gl_get_line(GetLine *gl, const char *prompt, const char
*start_line, int start_pos);

int gl_query_char(GetLine *gl, const char *prompt, char defchar);

int gl_read_char(GetLine *gl);

int gl_customize_completion(GetLine *gl, void *data, CplMatchFn
*match_fn);

int gl_change_terminal(GetLine *gl, FILE *input_fp, FILE *output_fp,
const char *term);

int gl_configure_getline(GetLine *gl, const char *app_string, const
char *app_file, const char *user_file);

int gl_bind_keyseq(GetLine *gl, GlKeyOrigin origin, const char
*keyseq, const char *action);

int gl_save_history(GetLine *gl, const char *filename, const char
*comment, int max_lines);

int gl_load_history(GetLine *gl, const char *filename, const char
*comment);

int gl_watch_fd(GetLine *gl, int fd, GlFdEvent event, GlFdEventFn
*callback, void *data);

int gl_inactivity_timeout(GetLine *gl, GlTimeoutFn *callback, void
*data, unsigned long sec, unsigned long nsec);

int gl_group_history(GetLine *gl, unsigned stream);

int gl_show_history(GetLine *gl, FILE *fp, const char *fmt, int
all_groups, int max_lines);

int gl_resize_history(GetLine *gl, size_t bufsize);

gl_get_line(3TECLA)

NAME

SYNOPSIS

516 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

void gl_limit_history(GetLine *gl, int max_lines);

void gl_clear_history(GetLine *gl, int all_groups);

void gl_toggle_history(GetLine *gl, int enable);

GlTerminalSize gl_terminal_size(GetLine *gl, int def_ncolumn, int
def_nline);

int gl_set_term_size(GetLine *gl, int ncolumn, int nline);

int gl_lookup_history(GetLine *gl, unsigned long id, GlHistoryLine
*hline);

void gl_state_of_history(GetLine *gl, GlHistoryState *state);

void gl_range_of_history(GetLine *gl, GlHistoryRange *range);

void gl_size_of_history(GetLine *gl, GlHistorySize *size);

void gl_echo_mode(GetLine *gl, int enable);

void gl_replace_prompt(GetLine *gl, const char *prompt);

void gl_prompt_style(GetLine *gl, GlPromptStyle style);

int gl_ignore_signal(GetLine *gl, int signo);

int gl_trap_signal(GetLine *gl, int signo, unsigned flags,
GlAfterSignal after, int errno_value);

int gl_last_signal(GetLine *gl);

int gl_completion_action(GetLine *gl, void *data, CplMatchFn
*match_fn, int list_only, const char *name, const char *keyseq);

int gl_register_action(GetLine *gl, void *data, GlActionFn *fn,
const char *name, const char *keyseq);

int gl_display_text(GetLine *gl, int indentation, const char *prefix,
const char *suffix, int fill_char, int def_width, int start, const char
*string);

GlReturnStatus gl_return_status(GetLine *gl, char *buff, size_t n);

const char *gl_error_message(GetLine *gl,);

void gl_catch_blocked(GetLine *gl);

int gl_list_signals(GetLine *gl, sigset_t *set);

int gl_append_history(GetLine *gl, const char *line);

int gl_automatic_history(GetLine *gl, int enable);

int gl_erase_terminal(GetLine *gl);

The gl_get_line() function is part of the libtecla(3LIB) library. If the user is
typing at a terminal, each call prompts them for an line of input, then provides
interactive editing facilities, similar to those of the UNIX tcsh shell. In addition to

gl_get_line(3TECLA)

DESCRIPTION

Extended Library Functions 517

simple command-line editing, it supports recall of previously entered command lines,
TAB completion of file names, and in-line wild-card expansion of filenames.
Documentation of both the user-level command-line editing features and all user
configuration options can be found on the tecla(5) manual page.

The following shows a complete example of how to use the gl_get_line() function
to get input from the user:

#include <stdio.h>
#include <locale.h>
#include <libtecla.h>

int main(int argc, char *argv[])
{

char *line; /* The line that the user typed */
GetLine *gl; /* The gl_get_line() resource object */

setlocale(LC_CTYPE, ""); /* Adopt the user’s choice */
/* of character set. */

gl = new_GetLine(1024, 2048);
if(!gl)

return 1;
while((line=gl_get_line(gl, "$ ", NULL, -1)) != NULL &&

strcmp(line, "exit\n") != 0)
printf("You typed: %s\n", line);

gl = del_GetLine(gl);
return 0;

}

In the example, first the resources needed by the gl_get_line() function are
created by calling new_GetLine(). This allocates the memory used in subsequent
calls to the gl_get_line() function, including the history buffer for recording
previously entered lines. Then one or more lines are read from the user, until either an
error occurs, or the user types exit. Then finally the resources that were allocated by
new_GetLine(), are returned to the system by calling del_GetLine(). Note the
use of the NULL return value of del_GetLine() to make gl NULL. This is a safety
precaution. If the program subsequently attempts to pass gl to gl_get_line(), said
function will complain, and return an error, instead of attempting to use the deleted
resource object.

The new_GetLine() function creates the resources used by the gl_get_line()
function and returns an opaque pointer to the object that contains them. The
maximum length of an input line is specified by the linelen argument, and the number
of bytes to allocate for storing history lines is set by the histlen argument. History lines
are stored back-to-back in a single buffer of this size. Note that this means that the
number of history lines that can be stored at any given time, depends on the lengths of
the individual lines. If you want to place an upper limit on the number of lines that
can be stored, see the description of the gl_limit_history() function. If you do
not want history at all, specify histlen as zero, and no history buffer will be allocated.

On error, a message is printed to stderr and NULL is returned.

gl_get_line(3TECLA)

An Example

The Functions
Used In The

Example

518 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

The del_GetLine() function deletes the resources that were returned by a previous
call to new_GetLine(). It always returns NULL (for example, a deleted object). It does
nothing if the gl argument is NULL.

The gl_get_line() function can be called any number of times to read input from
the user. The gl argument must have been previously returned by a call to
new_GetLine(). The prompt argument should be a normal null-terminated string,
specifying the prompt to present the user with. By default prompts are displayed
literally, but if enabled with the gl_prompt_style() function, prompts can contain
directives to do underlining, switch to and from bold fonts, or turn highlighting on
and off.

If you want to specify the initial contents of the line for the user to edit, pass the
desired string with the start_line argument. You can then specify which character of
this line the cursor is initially positioned over by using the start_pos argument. This
should be -1 if you want the cursor to follow the last character of the start line. If you
do not want to preload the line in this manner, send start_line as NULL, and set
start_pos to -1.

The gl_get_line() function returns a pointer to the line entered by the user, or
NULL on error or at the end of the input. The returned pointer is part of the specified gl
resource object, and thus should not be freed by the caller, or assumed to be
unchanging from one call to the next. When reading from a user at a terminal, there
will always be a newline character at the end of the returned line. When standard
input is being taken from a pipe or a file, there will similarly be a newline unless the
input line was too long to store in the internal buffer. In the latter case you should call
gl_get_line() again to read the rest of the line. Note that this behavior makes
gl_get_line() similar to fgets(3C). When stdin is not connected to a terminal,
gl_get_line() simply calls fgets().

The gl_get_line() function has two possible return values: a pointer to the
completed input line, or NULL. Additional information about what caused
gl_get_line() to return is available both by inspecting errno and by calling the
gl_return_status() function.

The following are the possible enumerated values returned by gl_return_status
():

GLR_NEWLINE The last call to gl_get_line() successfully returned a
completed input line.

GLR_BLOCKED The gl_get_line() function was in non-blocking server mode,
and returned early to avoid blocking the process while waiting for
terminal I/O. The gl_pending_io() function can be used to see
what type of I/O gl_get_line() was waiting for. See the
gl_io_mode(3TECLA).

GLR_SIGNAL A signal was caught by gl_get_line() that had an after-signal
disposition of GLS_ABORT. See gl_trap_signal().

gl_get_line(3TECLA)

The Return Status
Of

gl_get_line()

Extended Library Functions 519

GLR_TIMEOUT The inactivity timer expired while gl_get_line() was waiting
for input, and the timeout callback function returned
GLTO_ABORT. See gl_inactivity_timeout() for information
about timeouts.

GLR_FDABORT An application I/O callback returned GLFD_ABORT. Ssee
gl_watch_fd().

GLR_EOF End of file reached. This can happen when input is coming from a
file or a pipe, instead of the terminal. It also occurs if the user
invokes the list-or-eof or del-char-or-list-or-eof actions at the start
of a new line.

GLR_ERROR An unexpected error caused gl_get_line() to abort (consult
errno and/or gl_error_message() for details.

When gl_return_status() returns GLR_ERROR and the value of errno is not
sufficient to explain what happened, you can use the gl_error_message() function
to request a description of the last error that occurred.

The return value of gl_error_message() is a pointer to the message that occurred.
If the buff argument is NULL, this will be a pointer to a buffer within gl whose value
will probably change on the next call to any function associated with
gl_get_line(). Otherwise, if a non-null buff argument is provided, the error
message, including a ’\0’ terminator, will be written within the first n elements of this
buffer, and the return value will be a pointer to the first element of this buffer. If the
message will not fit in the provided buffer, it will be truncated to fit.

Whereas by default the prompt string that you specify is displayed literally without
any special interpretation of the characters within it, the gl_prompt_style()
function can be used to enable optional formatting directives within the prompt.

The style argument, which specifies the formatting style, can take any of the following
values:

GL_FORMAT_PROMPT In this style, the formatting directives described below,
when included in prompt strings, are interpreted as
follows:

%B Display subsequent characters with a bold
font.

%b Stop displaying characters with the bold
font.

%F Make subsequent characters flash.

%f Turn off flashing characters.

%U Underline subsequent characters.

%u Stop underlining characters.

gl_get_line(3TECLA)

Optional Prompt
Formatting

520 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

%P Switch to a pale (half brightness) font.

%p Stop using the pale font.

%S Highlight subsequent characters (also
known as standout mode).

%s Stop highlighting characters.

%V Turn on reverse video.

%v Turn off reverse video.

%% Display a single % character.

For example, in this mode, a prompt string like
"%UOK%u$ " would display the prompt "OK$ ", but
with the OK part underlined.

Note that although a pair of characters that starts with
a % character, but does not match any of the above
directives is displayed literally, if a new directive is
subsequently introduced which does match, the
displayed prompt will change, so it is better to always
use %% to display a literal %.

Also note that not all terminals support all of these text
attributes, and that some substitute a different attribute
for missing ones.

GL_LITERAL_PROMPT In this style, the prompt string is printed literally. This
is the default style.

By default users have the option of configuring the behavior of gl_get_line() with
a configuration file called .teclarc in their home directories. The fact that all
applications share this same configuration file is both an advantage and a
disadvantage. In most cases it is an advantage, since it encourages uniformity, and
frees the user from having to configure each application separately. In some
applications, however, this single means of configuration is a problem. This is
particularly true of embedded software, where there’s no filesystem to read a
configuration file from, and also in applications where a radically different choice of
keybindings is needed to emulate a legacy keyboard interface. To cater for such cases,
the gl_configure_getline() function allows the application to control where
configuration information is read from.

gl_get_line(3TECLA)

Alternate
Configuration

Sources

Extended Library Functions 521

The gl_configure_getline() function allows the configuration commands that
would normally be read from a user’s ~/.teclarc file, to be read from any or none
of, a string, an application specific configuration file, and/or a user-specific
configuration file. If this function is called before the first call to gl_get_line(), the
default behavior of reading ~/.teclarc on the first call to gl_get_line() is
disabled, so all configurations must be achieved using the configuration sources
specified with this function.

If app_string != NULL, then it is interpreted as a string containing one or more
configuration commands, separated from each other in the string by embedded
newline characters. If app_file != NULL then it is interpreted as the full pathname of an
application-specific configuration file. If user_file != NULL then it is interpreted as the
full path name of a user-specific configuration file, such as ~/.teclarc. For example,
in the call

gl_configure_getline(gl, "edit-mode vi \
nobeep",

"/usr/share/myapp/teclarc", "~/.teclarc");

The app_string argument causes the calling application to start in vi(1) edit-mode,
instead of the default emacs mode, and turns off the use of the terminal bell by the
library. It then attempts to read system-wide configuration commands from an
optional file called /usr/share/myapp/teclarc, then finally reads user-specific
configuration commands from an optional .teclarc file in the user’s home directory.
Note that the arguments are listed in ascending order of priority, with the contents of
app_string being potentially over riden by commands in app_file, and commands in
app_file potentially being overriden by commands in user_file.

You can call this function as many times as needed, the results being cumulative, but
note that copies of any file names specified with the app_file and user_file arguments
are recorded internally for subsequent use by the read-init-files key-binding function,
so if you plan to call this function multiple times, be sure that the last call specifies the
filenames that you want re-read when the user requests that the configuration files be
re-read.

Individual key sequences can also be bound and unbound using the
gl_bind_keyseq() function. The origin argument specifies the priority of the
binding, according to whom it is being established for, and must be one of the
following two values.

GL_USER_KEY The user requested this key-binding.

GL_APP_KEY This is a default binding set by the application.

When both user and application bindings for a given key sequence have been
specified, the user binding takes precedence. The application’s binding is subsequently
reinstated if the user’s binding is later unbound with either another call to this
function, or a call to gl_configure_getline().

gl_get_line(3TECLA)

522 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

The keyseq argument specifies the key sequence to be bound or unbound, and is
expressed in the same way as in a ~/.teclarc configuration file. The action
argument must either be a string containing the name of the action to bind the key
sequence to, or it must be NULL or "" to unbind the key sequence.

If in your application you would like to have TAB completion complete other things in
addition to or instead of filenames, you can arrange this by registering an alternate
completion callback function with a call to the gl_customize_completion()
function.

The data argument provides a way for your application to pass arbitrary,
application-specific information to the callback function. This is passed to the callback
every time that it is called. It might for example point to the symbol table from which
possible completions are to be sought. The match_fn argument specifies the callback
function to be called. The CplMatchFn function type is defined in <libtecla.h>, as is
a CPL_MATCH_FN() macro that you can use to declare and prototype callback
functions. The declaration and responsibilities of callback functions are described in
depth on the cpl_complete_word(3TECLA) manual page.

The callback function is responsible for looking backwards in the input line from the
point at which the user pressed TAB, to find the start of the word being completed. It
then must lookup possible completions of this word, and record them one by one in
the WordCompletion object that is passed to it as an argument, by calling the
cpl_add_completion() function. If the callback function wants to provide filename
completion in addition to its own specific completions, it has the option of itself
calling the builtin filename completion callback. This also is documented on the
cpl_complete_word(3TECLA) manual page.

If you would like gl_get_line() to return the current input line when a successful
completion is been made, you can arrange this when you call cpl_add_completion
() by making the last character of the continuation suffix a newline character. The
input line will be updated to display the completion, together with any contiuation
suffix up to the newline character, and gl_get_line() will return this input line.

If your callback function needs to write something to the terminal, it must call
gl_normal_io() before doing so. This will start a new line after the input line that is
currently being edited, reinstate normal terminal I/O, and notify gl_get_line()
that the input line will need to be redrawn when the callback returns.

In the previous section the ability to customize the behavior of the only default
completion action, complete-word, was described. In this section the ability to install
additional action functions, so that different types of word completion can be bound to
different key sequences, is described. This is achieved by using the
gl_completion_action() function.

gl_get_line(3TECLA)

Customized Word
Completion

Adding
Completion

Actions

Extended Library Functions 523

The data and match_fn arguments are as described on the
cpl_complete_word(3TECLA) manual page, and specify the callback function that
should be invoked to identify possible completions. The list_only argument determines
whether the action that is being defined should attempt to complete the word as far as
possible in the input line before displaying any possible ambiguous completions, or
whether it should simply display the list of possible completions without touching the
input line. The former option is selected by specifying a value of 0, and the latter by
specifying a value of 1. The name argument specifies the name by which configuration
files and future invocations of this function should refer to the action. This must either
be the name of an existing completion action to be changed, or be a new unused name
for a new action. Finally, the keyseq argument specifies the default key sequence to
bind the action to. If this is NULL, no new key sequence will be bound to the action.

Beware that in order for the user to be able to change the key sequence that is bound
to actions that are installed in this manner, you shouldcall gl_completion_action
() to install a given action for the first time between calling new_GetLine() and the
first call to gl_get_line(). Otherwise, when the user’s configuration file is read on
the first call to gl_get_line(), the name of the your additional action will not be
known, and any reference to it in the configuration file will generate an error.

As discussed for gl_customize_completion(), if your callback function needs to
write anything to the terminal, it must call gl_normal_io() before doing so.

Although the built-in key-binding actions are sufficient for the needs of most
applications, occasionally a specialized application may need to define one or more
custom actions, bound to application-specific key sequences. For example, a sales
application would benefit from having a key sequence that displayed the part name
that corresponded to a part number preceding the cursor. Such a feature is clearly
beyond the scope of the built-in action functions. So for such special cases, the
gl_register_action() function is provided.

The gl_register_action() function lets the application register an external
function, fn, that will thereafter be called whenever either the specified key sequence,
keyseq, is entered by the user, or the user enters any other key sequence that the user
subsequently binds to the specified action name, name, in their configuration file. The
data argument can be a pointer to anything that the application wants to have passed
to the action function, fn, whenever that function is invoked.

The action function, fn, should be declared using the GL_ACTION_FN() macro, which
is defined in <libtecla.h>.

#define GL_ACTION_FN(fn) GlAfterAction (fn)(GetLine *gl, \
void *data, int count, size_t curpos, \

const char *line)

The gl and data arguments are those that were previously passed to
gl_register_action() when the action function was registered. The count
argument is a numeric argument which the user has the option of entering using the
digit-argument action, before invoking the action. If the user does not enter a number,

gl_get_line(3TECLA)

Defining Custom
Actions

524 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

then the count argument is set to 1. Nominally this argument is interpreted as a repeat
count, meaning that the action should be repeated that many times. In practice
however, for some actions a repeat count makes little sense. In such cases, actions can
either simply ignore the count argument, or use its value for a different purpose.

A copy of the current input line is passed in the read-only line argument. The current
cursor position within this string is given by the index contained in the curpos
argument. Note that direct manipulation of the input line and the cursor position is
not permitted because the rules dictated by various modes (such as vi mode versus
emacs mode, no-echo mode, and insert mode versus overstrike mode) make it too
complex for an application writer to write a conforming editing action, as well as
constrain future changes to the internals of gl_get_line(). A potential solution to
this dilemma would be to allow the action function to edit the line using the existing
editing actions. This is currently under consideration.

If the action function wishes to write text to the terminal without this getting mixed
up with the displayed text of the input line, or read from the terminal without having
to handle raw terminal I/O, then before doing either of these operations, it must
temporarily suspend line editing by calling the gl_normal_io() function. This
function flushes any pending output to the terminal, moves the cursor to the start of
the line that follows the last terminal line of the input line, then restores the terminal
to a state that is suitable for use with the C stdio facilities. The latter includes such
things as restoring the normal mapping of \n to \r\n, and, when in server mode,
restoring the normal blocking form of terminal I/O. Having called this function, the
action function can read from and write to the terminal without the fear of creating a
mess. It is not necessary for the action function to restore the original editing
environment before it returns. This is done automatically by gl_get_line() after
the action function returns. The following is a simple example of an action function
which writes the sentence "Hello world" on a new terminal line after the line being
edited. When this function returns, the input line is redrawn on the line that follows
the "Hello world" line, and line editing resumes.

static GL_ACTION_FN(say_hello_fn)
{

if(gl_normal_io(gl)) /* Temporarily suspend editing */
return GLA_ABORT;

printf("Hello world\n");
return GLA_CONTINUE;

}

Action functions must return one of the following values, to tell gl_get_line()
how to proceed.

GLA_ABORT Cause gl_get_line() to return NULL.

GLA_RETURN Cause gl_get_line() to return the completed input line

GLA_CONTINUE Resume command-line editing.

gl_get_line(3TECLA)

Extended Library Functions 525

Note that the name argument of gl_register_action() specifies the name by
which a user can refer to the action in their configuration file. This allows them to
re-bind the action to an alternate key-seqeunce. In order for this to work, it is
necessary to call gl_register_action() between calling new_GetLine() and the
first call to gl_get_line().

To save the contents of the history buffer before quitting your application and
subsequently restore them when you next start the application, the
gl_save_history() and gl_load_history() functions are provided.

The filename argument specifies the name to give the history file when saving, or the
name of an existing history file, when loading. This may contain home directory and
environment variable expressions, such as ~/.myapp_history or
$HOME/.myapp_history.

Along with each history line, additional information about it, such as its nesting level
and when it was entered by the user, is recorded as a comment preceding the line in
the history file. Writing this as a comment allows the history file to double as a
command file, just in case you wish to replay a whole session using it. Since comment
prefixes differ in different languages, the comment argument is provided for
specifying the comment prefix. For example, if your application were a UNIX shell,
such as the Bourne shell, you would specify "#" here. Whatever you choose for the
comment character, you must specify the same prefix to gl_load_history() that
you used when you called gl_save_history() to write the history file.

The max_lines argument must be either -1 to specify that all lines in the history list be
saved, or a positive number specifying a ceiling on how many of the most recent lines
should be saved.

Both fuctions return non-zero on error, after writing an error message to stderr. Note
that gl_load_history() does not consider the non-existence of a file to be an error.

If your application uses a single GetLine object for entering many different types of
input lines, you might want gl_get_line() to distinguish the different types of
lines in the history list, and only recall lines that match the current type of line. To
support this requirement, gl_get_line() marks lines being recorded in the history
list with an integer identifier chosen by the application. Initially this identifier is set to
0 by new_GetLine(), but it can be changed subsequently by calling
gl_group_history().

The integer identifier ID can be any number chosen by the application, but note that
gl_save_history() and gl_load_history() preserve the association between
identifiers and historical input lines between program invocations, so you should
choose fixed identifiers for the different types of input line used by your application.

Whenever gl_get_line() appends a new input line to the history list, the current
history identifier is recorded with it, and when it is asked to recall a historical input
line, it only recalls lines that are marked with the current identifier.

gl_get_line(3TECLA)

History Files

Multiple History
Lists

526 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

The history list can be displayed by calling gl_show_history(). This function
displays the current contents of the history list to the stdio output stream fp. If the
max_lines argument is greater than or equal to zero, then no more than this number of
the most recent lines will be displayed. If the all_groups argument is non-zero, lines
from all history groups are displayed. Otherwise only those of the currently selected
history group are displayed. The format string argument, fmt, determines how the line
is displayed. This can contain arbitrary characters which are written verbatim,
interleaved with any of the following format directives:

%D The date on which the line was originally entered, formatted like
2001-11-20.

%T The time of day when the line was entered, formatted like 23:59:59.

%N The sequential entry number of the line in the history buffer.

%G The number of the history group which the line belongs to.

%% A literal % character.

%H The history line itself.

Thus a format string like "%D %T %H0 would output something like:

2001-11-20 10:23:34 Hello world

Note the inclusion of an explicit newline character in the format string.

The gl_lookup_history() function allows the calling application to look up lines
in the history list.

The id argument indicates which line to look up, where the first line that was entered
in the history list after new_GetLine() was called is denoted by 0, and subsequently
entered lines are denoted with successively higher numbers. Note that the range of
lines currently preserved in the history list can be queried by calling the
gl_range_of_history() function. If the requested line is in the history list, the
details of the line are recorded in the variable pointed to by the hline argument, and 1
is returned. Otherwise 0 is returned, and the variable pointed to by hline is left
unchanged.

Beware that the string returned in hline->line is part of the history buffer, so it must not
be modified by the caller, and will be recycled on the next call to any function that
takes gl as its argument. Therefore you should make a private copy of this string if you
need to keep it.

By default, whenever a line is entered by the user, it is automatically appended to the
history list, just before gl_get_line() returns the line to the caller. This is
convenient for the majority of applications, but there are also applications that need
finer-grained control over what gets added to the history list. In such cases, the
automatic addition of entered lines to the history list can be turned off by calling the
gl_automatic_history() function.

gl_get_line(3TECLA)

Displaying History

Looking Up
History

Manual History
Archival

Extended Library Functions 527

If this function is called with its enable argument set to 0, gl_get_line() will not
automatically archive subsequently entered lines. Automatic archiving can be
reenabled at a later time by calling this function again, with its enable argument set to
1. While automatic history archiving is disabled, the calling application can use the
gl_append_history() to append lines to the history list as needed.

The line argument specifies the line to be added to the history list. This must be a
normal ’\0 ’ terminated string. If this string contains any newline characters, the line
that gets archived in the history list will be terminated by the first of these. Otherwise
it will be terminated by the ’\0 ’ terminator. If the line is longer than the maximum
input line length that was specified when new_GetLine() was called, it will be
truncated to the actual gl_get_line() line length when the line is recalled.

If successful, gl_append_history() returns 0. Otherwise it returns non-zero and
sets errno to one of the following values.

EINVAL One of the arguments passed to gl_append_history() was
NULL.

ENOMEM The specified line was longer than the allocated size of the history
buffer (as specified when new_GetLine() was called), so it could
not be archived.

A textual description of the error can optionally be obtained by calling
gl_error_message(). Note that after such an error, the history list remains in a
valid state to receive new history lines, so there is little harm in simply ignoring the
return status of gl_append_history().

If you wish to change the size of the history buffer that was originally specified in the
call to new_GetLine(), you can do so with the gl_resize_history() function.

The histlen argument specifies the new size in bytes, and if you specify this as 0, the
buffer will be deleted.

As mentioned in the discussion of new_GetLine(), the number of lines that can be
stored in the history buffer, depends on the lengths of the individual lines. For
example, a 1000 byte buffer could equally store 10 lines of average length 100 bytes, or
20 lines of average length 50 bytes. Although the buffer is never expanded when new
lines are added, a list of pointers into the buffer does get expanded when needed to
accomodate the number of lines currently stored in the buffer. To place an upper limit
on the number of lines in the buffer, and thus a ceiling on the amount of memory used
in this list, you can call the gl_limit_history() function.

The max_lines should either be a positive number >= 0, specifying an upper limit on
the number of lines in the buffer, or be -1 to cancel any previously specified limit.
When a limit is in effect, only the max_lines most recently appended lines are kept in
the buffer. Older lines are discarded.

To discard lines from the history buffer, use the gl_clear_history() function.

gl_get_line(3TECLA)

Miscellaneous
History

Configuration

528 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

The all_groups argument tells the function whether to delete just the lines associated
with the current history group (see gl_group_history()) or all historical lines in
the buffer.

The gl_toggle_history() function allows you to toggle history on and off without
losing the current contents of the history list.

Setting the enable argument to 0 turns off the history mechanism, and setting it to 1
turns it back on. When history is turned off, no new lines will be added to the history
list, and history lookup key-bindings will act as though there is nothing in the history
buffer.

The configured state of the history list can be queried with the gl_history_state
() function. On return, the status information is recorded in the variable pointed to by
the state argument.

The gl_range_of_history() function returns the number and range of lines in the
history list. The return values are recorded in the variable pointed to by the range
argument. If the nlines member of this structure is greater than zero, then the oldest
and newest members report the range of lines in the list, and newest=oldest+nlines-1.
Otherwise they are both zero.

The gl_size_of_history() function returns the total size of the history buffer and
the amount of the buffer that is currently occupied.

On return, the size information is recorded in the variable pointed to by the size
argument.

The new_GetLine() constructor function assumes that input is to be read from
stdin and output written to stdout. The following function allows you to switch to
different input and output streams.

The gl argument is the object that was returned by new_GetLine(). The input_fp
argument specifies the stream to read from, and output_fp specifies the stream to be
written to. Only if both of these refer to a terminal, will interactive terminal input be
enabled. Otherwise gl_get_line() will simply call fgets() to read command
input. If both streams refer to a terminal, then they must refer to the same terminal,
and the type of this terminal must be specified with the term argument. The value of
the term argument is looked up in the terminal information database (terminfo or
termcap), in order to determine which special control sequences are needed to
control various aspects of the terminal. new_GetLine() for example, passes the
return value of getenv("TERM") in this argument. Note that if one or both of input_fp
and output_fp do not refer to a terminal, then it is legal to pass NULL instead of a
terminal type.

Note that if you want to pass file descriptors to gl_change_terminal(), you can
do this by creating stdio stream wrappers using the POSIX fdopen(3C) function.

gl_get_line(3TECLA)

Querying History
Information

Changing
Terminals

Extended Library Functions 529

By default, gl_get_line() does not return until either a complete input line has
been entered by the user, or an error occurs. In programs that need to watch for I/O
from other sources than the terminal, there are two options.

� Use the functions described in the gl_io_mode(3TECLA) manual page to switch
gl_get_line() into non-blocking server mode. In this mode, gl_get_line()
becomes a non-blocking, incremental line-editing function that can safely be called
from an external event loop. Although this is a very versatile method, it involves
taking on some responsibilities that are normally performed behind the scenes by
gl_get_line().

� While gl_get_line() is waiting for keyboard input from the user, you can ask it
to also watch for activity on arbitrary file descriptors, such as network sockets or
pipes, and have it call functions of your choosing when activity is seen. This works
on any system that has the select system call, which is most, if not all flavors of
UNIX.

Registering a file descriptor to be watched by gl_get_line() involves calling the
gl_watch_fd() function. If this returns non-zero, then it means that either your
arguments are invalid, or that this facility is not supported on the host system.

The fd argument is the file descriptor to be watched. The event argument specifies
what type of activity is of interest, chosen from the following enumerated values:

GLFD_READ Watch for the arrival of data to be read.

GLFD_WRITE Watch for the ability to write to the file descriptor without
blocking.

GLFD_URGENT Watch for the arrival of urgent out-of-band data on the file
descriptor.

The callback argument is the function to call when the selected activity is seen. It
should be defined with the following macro, which is defined in libtecla.h.

#define GL_FD_EVENT_FN(fn) GlFdStatus (fn)(GetLine *gl, \\

void *data, int fd, GlFdEvent event)

The data argument of the gl_watch_fd() function is passed to the callback function
for its own use, and can point to anything you like, including NULL. The file descriptor
and the event argument are also passed to the callback function, and this potentially
allows the same callback function to be registered to more than one type of event
and/or more than one file descriptor. The return value of the callback function should
be one of the following values.

GLFD_ABORT Tell gl_get_line() to abort. When this happens,
gl_get_line() returns NULL, and a following call to
gl_return_status() will return GLR_FDABORT. Note that if
the application needs errno always to have a meaningful value
when gl_get_line() returns NULL, the callback function should
set errno appropriately.

gl_get_line(3TECLA)

External Event
Handling

530 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

GLFD_REFRESH Redraw the input line then continue waiting for input. Return this
if your callback wrote to the terminal.

GLFD_CONTINUE Continue to wait for input, without redrawing the line.

Note that before calling the callback, gl_get_line() blocks most signals and leaves
its own signal handlers installed, so if you need to catch a particular signal you will
need to both temporarily install your own signal handler, and unblock the signal. Be
sure to re-block the signal (if it was originally blocked) and reinstate the original signal
handler, if any, before returning.

Your callback should not try to read from the terminal, which is left in raw mode as far
as input is concerned. You can write to the terminal as usual, since features like
conversion of newline to carriage-return/linefeed are re-enabled while the callback is
running. If your callback function does write to the terminal, be sure to output a
newline first, and when your callback returns, tell gl_get_line() that the input line
needs to be redrawn, by returning the GLFD_REFRESH status code.

To remove a callback function that you previously registered for a given file descriptor
and event, simply call gl_watch_fd() with the same fd and event arguments, but
with a callback argument of 0. The data argument is ignored in this case.

The gl_inactivity_timeout() function can be used to set or cancel an inactivity
timeout. Inactivity in this case refers both to keyboard input, and to I/O on any file
descriptors registered by prior and subsequent calls to gl_watch_fd().

The timeout is specified in the form of an integral number of seconds and an integral
number of nanoseconds, specified by the sec and nsec arguments, respectively.
Subsequently, whenever no activity is seen for this time period, the function specified
by the callback argument is called. The data argument of gl_inactivity_timeout
() is passed to this callback function whenever it is invoked, and can thus be used to
pass arbitrary application-specific information to the callback. The following macro is
provided in <libtecla.h> for applications to use to declare and prototype timeout
callback functions.

#define GL_TIMEOUT_FN(fn) GlAfterTimeout (fn)(GetLine *gl, void *data)

On returning, the application’s callback is expected to return one of the following
enumerators to tell gl_get_line() how to procede after the timeout has been
handled by the callback.

GLTO_ABORT Tell gl_get_line() to abort. When this happens,
gl_get_line() will return NULL, and a following
call to gl_return_status() will return
GLR_TIMEOUT. Note that if the application needs
errno always to have a meaningful value when
gl_get_line() returns NULL, the callback function
should set errno appropriately.

gl_get_line(3TECLA)

Setting An
Inactivity Timeout

Extended Library Functions 531

GLTO_REFRESH Redraw the input line, then continue waiting for input.
You should return this value if your callback wrote to
the terminal.

GLTO_CONTINUE In normal blocking-I/O mode, continue to wait for
input, without redrawing the user’s input line. In
non-blocking server I/O mode (see
gl_io_mode(3TECLA)), gl_get_line() acts as
though I/O blocked. This means that gl_get_line()
will immediately return NULL, and a following call to
gl_return_status() will return GLR_BLOCKED.

Note that before calling the callback, gl_get_line() blocks most signals and leaves
its own signal handlers installed, so if you need to catch a particular signal you will
need to both temporarily install your own signal handler and unblock the signal. Be
sure to re-block the signal (if it was originally blocked) and reinstate the original signal
handler, if any, before returning.

Your callback should not try to read from the terminal, which is left in raw mode as far
as input is concerned. You can however write to the terminal as usual, since features
like conversion of newline to carriage-return/linefeed are re-enabled while the
callback is running. If your callback function does write to the terminal, be sure to
output a newline first, and when your callback returns, tell gl_get_line() that the
input line needs to be redrawn, by returning the GLTO_REFRESH status code.

Finally, note that although the timeout arguments include a nanosecond component,
few computer clocks presently have resolutions that are finer than a few milliseconds,
so asking for less than a few milliseconds is equivalent to requesting zero seconds on
many systems. If this would be a problem, you should base your timeout selection on
the actual resolution of the host clock (for example, by calling sysconf
(_SC_CLK_TCK)).

To turn off timeouts, simply call gl_inactivity_timeout() with a callback
argument of 0. The data argument is ignored in this case.

By default, the gl_get_line() function intercepts a number of signals. This is
particularly important for signals that would by default terminate the process, since
the terminal needs to be restored to a usable state before this happens. This section
describes the signals that are trapped by default and how gl_get_line() responds
to them. Changing these defaults is the topic of the following section.

When the following subset of signals are caught, gl_get_line() first restores the
terminal settings and signal handling to how they were before gl_get_line() was
called, resends the signal to allow the calling application’s signal handlers to handle it,
then, if the process still exists, returns NULL and sets errno as specified below.

SIGINT This signal is generated both by the keyboard interrupt key
(usually ^C), and the keyboard break key. The errno value is
EINTR.

gl_get_line(3TECLA)

Signal Handling
Defaults

532 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

SIGHUP This signal is generated when the controlling terminal exits. The
errno value is ENOTTY.

SIGPIPE This signal is generated when a program attempts to write to a
pipe whose remote end is not being read by any process. This can
happen for example if you have called gl_change_terminal()
to redirect output to a pipe hidden under a pseudo terminal. The
errno value is EPIPE.

SIGQUIT This signal is generated by the keyboard quit key (usually ^\\).
The errno value is EINTR.

SIGABRT This signal is generated by the standard C, abort function. By
default it both terminates the process and generates a core dump.
The errno value is EINTR.

SIGTERM This is the default signal that the UNIX kill command sends to
processes. The errno value is EINTR.

Note that in the case of all of the above signals, POSIX mandates that by default the
process is terminated, with the addition of a core dump in the case of the SIGQUIT
signal. In other words, if the calling application does not override the default handler
by supplying its own signal handler, receipt of the corresponding signal will terminate
the application before gl_get_line() returns.

If gl_get_line() aborts with errno set to EINTR, you can find out what signal
caused it to abort, by calling the gl_last_signal() function. This returns the
numeric code (for example, SIGINT) of the last signal that was received during the
most recent call to gl_get_line(), or -1 if no signals were received.

On systems that support it, when a SIGWINCH (window change) signal is received,
gl_get_line() queries the terminal to find out its new size, redraws the current
input line to accomodate the new size, then returns to waiting for keyboard input
from the user. Unlike other signals, this signal is not resent to the application.

Finally, the following signals cause gl_get_line() to first restore the terminal and
signal environment to that which prevailed before gl_get_line() was called, then
resend the signal to the application. If the process still exists after the signal has been
delivered, then gl_get_line() then re-establishes its own signal handlers, switches
the terminal back to raw mode, redisplays the input line, and goes back to awaiting
terminal input from the user.

SIGCONT This signal is generated when a suspended process is resumed.

SIGPOLL On SVR4 systems, this signal notifies the process of an
asynchronous I/O event. Note that under 4.3+BSD, SIGIO and
SIGPOLL are the same. On other systems, SIGIO is ignored by
default, so gl_get_line() does not trap it by default.

SIGPWR This signal is generated when a power failure occurs (presumably
when the system is on a UPS).

gl_get_line(3TECLA)

Extended Library Functions 533

SIGALRM This signal is generated when a timer expires.

SIGUSR1 An application specific signal.

SIGUSR2 Another application specific signal.

SIGVTALRM This signal is generated when a virtual timer expires. See
setitimer(2).

SIGXCPU This signal is generated when a process exceeds its soft CPU time
limit.

SIGXFSZ This signal is generated when a process exceeds its soft file-size
limit.

SIGTSTP This signal is generated by the terminal suspend key, which is
usually ^Z, or the delayed terminal suspend key, which is usually
^Y.

SIGTTIN This signal is generated if the program attempts to read from the
terminal while the program is running in the background.

SIGTTOU This signal is generated if the program attempts to write to the
terminal while the program is running in the background.

Obviously not all of the above signals are supported on all systems, so code to support
them is conditionally compiled into the tecla library.

Note that if SIGKILL or SIGPOLL, which by definition cannot be caught, or any of the
hardware generated exception signals, such as SIGSEGV, SIGBUS, and SIGFPE, are
received and unhandled while gl_get_line() has the terminal in raw mode, the
program will be terminated without the terminal having been restored to a usable
state. In practice, job-control shells usually reset the terminal settings when a process
relinquishes the controlling terminal, so this is only a problem with older shells.

The previous section listed the signals that gl_get_line() traps by default, and
described how it responds to them. This section describes how to both add and
remove signals from the list of trapped signals, and how to specify how
gl_get_line() should respond to a given signal.

If you do not need gl_get_line() to do anything in response to a signal that it
normally traps, you can tell to gl_get_line() to ignore that signal by calling
gl_ignore_signal().

The signo argument is the number of the signal (for example, SIGINT) that you want
to have ignored. If the specified signal is not currently one of those being trapped, this
function does nothing.

The gl_trap_signal() function allows you to either add a new signal to the list
that gl_get_line() traps or modify how it responds to a signal that it already traps.

gl_get_line(3TECLA)

Customized Signal
Handling

534 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

The signo argument is the number of the signal that you want to have trapped. The
flags argument is a set of flags that determine the environment in which the
application’s signal handler is invoked. The after argument tells gl_get_line()
what to do after the application’s signal handler returns. The errno_value tells
gl_get_line() what to set errno to if told to abort.

The flags argument is a bitwise OR of zero or more of the following enumerators:

GLS_RESTORE_SIG Restore the caller’s signal environment while handling
the signal.

GLS_RESTORE_TTY Restore the caller’s terminal settings while handling the
signal.

GLS_RESTORE_LINE Move the cursor to the start of the line following the
input line before invoking the application’s signal
handler.

GLS_REDRAW_LINE Redraw the input line when the application’s signal
handler returns.

GLS_UNBLOCK_SIG Normally, if the calling program has a signal blocked
(see sigprocmask(2)), gl_get_line() does not trap
that signal. This flag tells gl_get_line() to trap the
signal and unblock it for the duration of the call to
gl_get_line().

GLS_DONT_FORWARD If this flag is included, the signal will not be forwarded
to the signal handler of the calling program.

Two commonly useful flag combinations are also enumerated as follows:

GLS_RESTORE_ENV GLS_RESTORE_SIG | GLS_RESTORE_TTY
|GLS_REDRAW_LINE

GLS_SUSPEND_INPUT GLS_RESTORE_ENV | GLS_RESTORE_LINE

If your signal handler, or the default system signal handler for this signal, if you have
not overridden it, never either writes to the terminal, nor suspends or terminates the
calling program, then you can safely set the flags argument to 0.

� The cursor does not get left in the middle of the input line.

� So that the user can type in input and have it echoed.

� So that you do not need to end each output line with \r\n, instead of just \n.

The GL_RESTORE_ENV combination is the same as GL_SUSPEND_INPUT, except that
it does not move the cursor. If your signal handler does not read or write anything to
the terminal, the user will not see any visible indication that a signal was caught. This
can be useful if you have a signal handler that only occasionally writes to the terminal,
where using GL_SUSPEND_LINE would cause the input line to be unnecessarily
duplicated when nothing had been written to the terminal. Such a signal handler,

gl_get_line(3TECLA)

Extended Library Functions 535

when it does write to the terminal, should be sure to start a new line at the start of its
first write, by writing a new line before returning. If the signal arrives while the user is
entering a line that only occupies a signal terminal line, or if the cursor is on the last
terminal line of a longer input line, this will have the same effect as
GL_SUSPEND_INPUT. Otherwise it will start writing on a line that already contains
part of the displayed input line. This does not do any harm, but it looks a bit ugly,
which is why the GL_SUSPEND_INPUT combination is better if you know that you are
always going to be writting to the terminal.

The after argument, which determines what gl_get_line() does after the
application’s signal handler returns (if it returns), can take any one of the following
values:

GLS_RETURN Return the completed input line, just as though the
user had pressed the return key.

GLS_ABORT Cause gl_get_line() to abort. When this happens,
gl_get_line() returns NULL, and a following call to
gl_return_status() will return GLR_SIGNAL.
Note that if the application needs errno always to
have a meaningful value when gl_get_line()
returns NULL, the callback function should set errno
appropriately.

GLS_CONTINUE Resume command line editing.

The errno_value argument is intended to be combined with the GLS_ABORT option,
telling gl_get_line() what to set the standard errno variable to before returning
NULL to the calling program. It can also, however, be used with the GL_RETURN
option, in case you want to have a way to distinguish between an input line that was
entered using the return key, and one that was entered by the receipt of a signal.

Signal handling is suprisingly hard to do reliably without race conditions. In
gl_get_line() a lot of care has been taken to allow applications to perform reliable
signal handling around gl_get_line(). This section explains how to make use of
this.

As an example of the problems that can arise if the application is not written correctly,
imagine that one’s application has a SIGINT signal handler that sets a global flag.
Now suppose that the application tests this flag just before invoking
gl_get_line(). If a SIGINT signal happens to be received in the small window of
time between the statement that tests the value of this flag, and the statement that calls
gl_get_line(), then gl_get_line() will not see the signal, and will not be
interrupted. As a result, the application will not be able to respond to the signal until
the user gets around to finishing entering the input line and gl_get_line() returns.
Depending on the application, this might or might not be a disaster, but at the very
least it would puzzle the user.

The way to avoid such problems is to do the following.

gl_get_line(3TECLA)

Reliable Signal
Handling

536 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

1. If needed, use the gl_trap_signal() function to configure gl_get_line() to
abort when important signals are caught.

2. Configure gl_get_line() such that if any of the signals that it catches are
blocked when gl_get_line() is called, they will be unblocked automatically
during times when gl_get_line() is waiting for I/O. This can be done either on
a per signal basis, by calling the gl_trap_signal() function, and specifying the
GLS_UNBLOCK attribute of the signal, or globally by calling the
gl_catch_blocked() function. This function simply adds the GLS_UNBLOCK
attribute to all of the signals that it is currently configured to trap.

3. Just before calling gl_get_line(), block delivery of all of the signals that
gl_get_line() is configured to trap. This can be done using the POSIX
sigprocmask function in conjunction with the gl_list_signals() function. This
function returns the set of signals that it is currently configured to catch in the set
argument, which is in the form required by sigprocmask(2).

4. In the example, one would now test the global flag that the signal handler sets,
knowing that there is now no danger of this flag being set again until
gl_get_line() unblocks its signals while performing I/O.

5. Eventually gl_get_line() returns, either because a signal was caught, an error
occurred, or the user finished entering their input line.

6. Now one would check the global signal flag again, and if it is set, respond to it, and
zero the flag.

7. Use sigprocmask() to unblock the signals that were blocked in step 3.

The same technique can be used around certain POSIX signal-aware functions, such as
sigsetjmp(3C) and sigsuspend(2), and in particular, the former of these two
functions can be used in conjunction with siglongjmp(3C) to implement
race-condition free signal handling around other long-running system calls. The
gl_get_line() function manages to reliably trap signals around calls to functions
like read(2) and select(3C) without race conditions.

The gl_get_line() function first uses the POSIX sigprocmask() function to
block the delivery of all of the signals that it is currently configured to catch. This is
redundant if the application has already blocked them, but it does no harm. It undoes
this step just before returning.

Whenever gl_get_line() needs to call read or select to wait for input from the user,
it first calls the POSIX sigsetjmp() function, being sure to specify a non-zero value
for its savemask argument.

If sigsetjmp() returns zero, gl_get_line() then does the following.

1. It uses the POSIX sigaction(2) function to register a temporary signal handler to
all of the signals that it is configured to catch. This signal handler does two things.

a. It records the number of the signal that was received in a file-scope variable.

gl_get_line(3TECLA)

Extended Library Functions 537

b. It then calls the POSIX siglongjmp() function using the buffer that was
passed to sigsetjmp() for its first argument and a non-zero value for its
second argument.

When this signal handler is registered, the sa_mask member of the struct
sigaction act argument of the call to sigaction() is configured to contain all
of the signals that gl_get_line() is catching. This ensures that only one signal
will be caught at once by our signal handler, which in turn ensures that multiple
instances of our signal handler do not tread on each other’s toes.

2. Now that the signal handler has been set up, gl_get_line() unblocks all of the
signals that it is configured to catch.

3. It then calls the read() or select() function to wait for keyboard input.

4. If this function returns (that is, no signal is received), gl_get_line() blocks
delivery of the signals of interest again.

5. It then reinstates the signal handlers that were displaced by the one that was just
installed.

Alternatively, if sigsetjmp() returns non-zero, this means that one of the signals
being trapped was caught while the above steps were executing. When this happens,
gl_get_line() does the following.

First, note that when a call to siglongjmp() causes sigsetjmp() to return,
provided that the savemask argument of sigsetjmp() was non-zero, the signal
process mask is restored to how it was when sigsetjmp() was called. This is the
important difference between sigsetjmp() and the older problematic setjmp(3C),
and is the essential ingredient that makes it possible to avoid signal handling race
conditions. Because of this we are guaranteed that all of the signals that we blocked
before calling sigsetjmp() are blocked again as soon as any signal is caught. The
following statements, which are then executed, are thus guaranteed to be executed
without any further signals being caught.

1. If so instructed by the gl_get_line() configuration attributes of the signal that
was caught, gl_get_line() restores the terminal attributes to the state that they
had when gl_get_line() was called. This is particularly important for signals
that suspend or terminate the process, since otherwise the terminal would be left in
an unusable state.

2. It then reinstates the application’s signal handlers.

3. Then it uses the C standard-library raise(3C) function to re-send the application
the signal that was caught.

4. Next it unblocks delivery of the signal that we just sent. This results in the signal
that was just sent by raise() being caught by the application’s original signal
handler, which can now handle it as it sees fit.

5. If the signal handler returns (that is, it does not terminate the process),
gl_get_line() blocks delivery of the above signal again.

gl_get_line(3TECLA)

538 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

6. It then undoes any actions performed in the first of the above steps and redisplays
the line, if the signal configuration calls for this.

7. gl_get_line() then either resumes trying to read a character, or aborts,
depending on the configuration of the signal that was caught.

What the above steps do in essence is to take asynchronously delivered signals and
handle them synchronously, one at a time, at a point in the code where
gl_get_line() has complete control over its environment.

On most systems the combination of the TIOCGWINSZ ioctl and the SIGWINCH signal
is used to maintain an accurate idea of the terminal size. The terminal size is newly
queried every time that gl_get_line() is called and whenever a SIGWINCH signal
is received.

On the few systems where this mechanism is not available, at startup
new_GetLine() first looks for the LINES and COLUMNS environment variables. If
these are not found, or they contain unusable values, then if a terminal information
database like terminfo or termcap is available, the default size of the terminal is
looked up in this database. If this too fails to provide the terminal size, a default size
of 80 columns by 24 lines is used.

Even on systems that do support ioctl(TIOCGWINSZ), if the terminal is on the other
end of a serial line, the terminal driver generally has no way of detecting when a
resize occurs or of querying what the current size is. In such cases no SIGWINCH is
sent to the process, and the dimensions returned by ioctl(TIOCGWINSZ) are not
correct. The only way to handle such instances is to provide a way for the user to enter
a command that tells the remote system what the new size is. This command would
then call the gl_set_term_size() function to tell gl_get_line() about the
change in size.

The ncolumn and nline arguments are used to specify the new dimensions of the
terminal, and must not be less than 1. On systems that do support ioctl(TIOCGWINSZ),
this function first calls ioctl(TIOCSWINSZ) to tell the terminal driver about the change
in size. In non-blocking server-I/O mode, if a line is currently being input, the input
line is then redrawn to accomodate the changed size. Finally the new values are
recorded in gl for future use by gl_get_line().

The gl_terminal_size() function allows you to query the current size of the
terminal, and install an alternate fallback size for cases where the size is not available.
Beware that the terminal size will not be available if reading from a pipe or a file, so
the default values can be important even on systems that do support ways of finding
out the terminal size.

This function first updates gl_get_line()’s fallback terminal dimensions, then
records its findings in the return value.

gl_get_line(3TECLA)

The Terminal Size

Extended Library Functions 539

The def_ncolumn and def_nline arguments specify the default number of terminal
columns and lines to use if the terminal size cannot be determined by
ioctl(TIOCGWINSZ) or environment variables.

When entering sensitive information, such as passwords, it is best not to have the text
that you are entering echoed on the terminal. Furthermore, such text should not be
recorded in the history list, since somebody finding your terminal unattended could
then recall it, or somebody snooping through your directories could see it in your
history file. With this in mind, the gl_echo_mode() function allows you to toggle on
and off the display and archival of any text that is subsequently entered in calls to
gl_get_line().

The enable argument specifies whether entered text should be visible or not. If it is 0,
then subsequently entered lines will not be visible on the terminal, and will not be
recorded in the history list. If it is 1, then subsequent input lines will be displayed as
they are entered, and provided that history has not been turned off with a call to
gl_toggle_history(), then they will also be archived in the history list. Finally, if
the enable argument is -1, then the echoing mode is left unchanged, which allows you
to non-destructively query the current setting through the return value. In all cases,
the return value of the function is 0 if echoing was disabled before the function was
called, and 1 if it was enabled.

When echoing is turned off, note that although tab completion will invisibly complete
your prefix as far as possible, ambiguous completions will not be displayed.

Using gl_get_line() to query the user for a single character reply, is inconvenient
for the user, since they must hit the enter or return key before the character that they
typed is returned to the program. Thus the gl_query_char() function has been
provided for single character queries like this.

This function displays the specified prompt at the start of a new line, and waits for the
user to type a character. When the user types a character, gl_query_char() displays
it to the right of the prompt, starts a newline, then returns the character to the calling
program. The return value of the function is the character that was typed. If the read
had to be aborted for some reason, EOF is returned instead. In the latter case, the
application can call the previously documented gl_return_status(), to find out
what went wrong. This could, for example, have been the reception of a signal, or the
optional inactivity timer going off.

If the user simply hits enter, the value of the defchar argument is substituted. This
means that when the user hits either newline or return, the character specified in
defchar, is displayed after the prompt, as though the user had typed it, as well as being
returned to the calling application. If such a replacement is not important, simply pass
’\n’ as the value of defchar.

If the entered character is an unprintable character, it is displayed symbolically. For
example, control-A is displayed as ^A, and characters beyond 127 are displayed in
octal, preceded by a backslash.

gl_get_line(3TECLA)

Hiding What You
Type

Single Character
Queries

540 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

As with gl_get_line(), echoing of the entered character can be disabled using the
gl_echo_mode() function.

If the calling process is suspended while waiting for the user to type their response,
the cursor is moved to the line following the prompt line, then when the process
resumes, the prompt is redisplayed, and gl_query_char() resumes waiting for the
user to type a character.

Note that in non-blocking server mode, if an incomplete input line is in the process of
being read when gl_query_char() is called, the partial input line is discarded, and
erased from the terminal, before the new prompt is displayed. The next call to
gl_get_line() will thus start editing a new line.

Whereas the gl_query_char() function visibly prompts the user for a character,
and displays what they typed, the gl_read_char() function reads a signal character
from the user, without writing anything to the terminal, or perturbing any
incompletely entered input line. This means that it can be called not only from
between calls to gl_get_line(), but also from callback functions that the
application has registered to be called by gl_get_line().

On success, the return value of gl_read_char() is the character that was read. On
failure, EOF is returned, and the gl_return_status() function can be called to find
out what went wrong. Possibilities include the optional inactivity timer going off, the
receipt of a signal that is configured to abort gl_get_line(), or terminal I/O
blocking, when in non-blocking server-I/O mode.

Beware that certain keyboard keys, such as function keys, and cursor keys, usually
generate at least three characters each, so a single call to gl_read_char() will not be
enough to identify such keystrokes.

The calling program can clear the terminal by calling gl_erase_terminal(). In
non-blocking server-I/O mode, this function also arranges for the current input line to
be redrawn from scratch when gl_get_line() is next called.

Between calls to gl_get_line(), the gl_display_text() function provides a
convenient way to display paragraphs of text, left-justified and split over one or more
terminal lines according to the constraints of the current width of the terminal.
Examples of the use of this function may be found in the demo programs, where it is
used to display introductions. In those examples the advanced use of optional
prefixes, suffixes and filled lines to draw a box around the text is also illustrated.

If gl is not currently connected to a terminal, for example if the output of a program
that uses gl_get_line() is being piped to another program or redirected to a file,
then the value of the def_width parameter is used as the terminal width.

The indentation argument specifies the number of characters to use to indent each line
of ouput. The fill_char argument specifies the character that will be used to perform
this indentation.

gl_get_line(3TECLA)

Reading Raw
Characters

Clearing The
Terminal

Displaying Text
Dynamically

Extended Library Functions 541

The prefix argument can be either NULL or a string to place at the beginning of each
new line (after any indentation). Similarly, the suffix argument can be either NULL or a
string to place at the end of each line. The suffix is placed flush against the right edge
of the terminal, and any space between its first character and the last word on that line
is filled with the character specified by the fill_char argument. Normally the
fill-character is a space.

The start argument tells gl_display_text() how many characters have already
been written to the current terminal line, and thus tells it the starting column index of
the cursor. Since the return value of gl_display_text() is the ending column
index of the cursor, by passing the return value of one call to the start argument of the
next call, a paragraph that is broken between more than one string can be composed
by calling gl_display_text() for each successive portion of the paragraph. Note
that literal newline characters are necessary at the end of each paragraph to force a
new line to be started.

On error, gl_display_text() returns -1.

Unless otherwise stated, callback functions such as tab completion callbacks and event
callbacks should not call any functions in this module. The following functions,
however, are designed specifically to be used by callback functions.

Calling the gl_replace_prompt() function from a callback tells gl_get_line()
to display a different prompt when the callback returns. Except in non-blocking server
mode, it has no effect if used between calls to gl_get_line(). In non-blocking
server mode, when used between two calls to gl_get_line() that are operating on
the same input line, the current input line will be re-drawn with the new prompt on
the following call to gl_get_line().

Since libtecla(3LIB) version 1.4.0, gl_get_line() has been 8-bit clean. This
means that all 8-bit characters that are printable in the user’s current locale are now
displayed verbatim and included in the returned input line. Assuming that the calling
program correctly contains a call like the following,

setlocale(LC_CTYPE, "")

then the current locale is determined by the first of the environment variables
LC_CTYPE, LC_ALL, and LANG that is found to contain a valid locale name. If none of
these variables are defined, or the program neglects to call setlocale(3C), then the
default C locale is used, which is US 7-bit ASCII. On most UNIX-like platforms, you
can get a list of valid locales by typing the command:

locale -a

at the shell prompt. Further documentation on how the user can make use of this to
enter international characters can be found in the tecla(5) man page.

gl_get_line(3TECLA)

Callback Function
Facilities

International
Character Sets

542 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

Unfortunately neither terminfo nor termcap were designed to be reentrant, so you
cannot safely use the functions of the getline module in multiple threads (you can use
the separate file-expansion and word-completion modules in multiple threads, see the
corresponding man pages for details). However due to the use of POSIX reentrant
functions for looking up home directories, it is safe to use this module from a single
thread of a multi-threaded program, provided that your other threads do not use any
termcap or terminfo functions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

cpl_complete_word(3TECLA)ef_expand_file(3TECLA),
gl_io_mode(3TECLA), libtecla(3LIB), pca_lookup_file(3TECLA),
attributes(5), tecla(5)

gl_get_line(3TECLA)

Thread Safety

ATTRIBUTES

SEE ALSO

Extended Library Functions 543

gl_io_mode, gl_raw_io, gl_normal_io, gl_tty_signals, gl_abandon_line,
gl_handle_signal, gl_pending_io – use gl_get_line() from an external event loop

cc [flag...] file... -ltecla [library...]

#include <libtecla.h>

int gl_io_mode(GetLine *gl, GlIOMode mode);

int gl_raw_io(GetLine *gl);

int gl_normal_io(GetLine *gl);

int gl_tty_signals(void (*term_handler)(int), void
(*susp_handler)(int), void (*cont_handler)(int), void
(*size_handler)(int));

void gl_abandon_line(GetLine *gl);

void gl_handle_signal(int signo, GetLine *gl, int ngl);

GlPendingIO gl_pending_io(GetLine *gl);

The gl_get_line(3TECLA) function supports two different I/O modes. These are
selected by calling the gl_io_mode() function. The mode argument of
gl_io_mode() specifies the new I/O mode and must be one of the following.

GL_NORMAL_MODE Select the normal blocking-I/O mode. In this mode
gl_get_line() does not return until either an error
occurs of the user finishes entering a new line.

GL_SERVER_MODE Select non-blocking server I/O mode. In this mode,
since non-blocking terminal I/O is used, the entry of
each new input line typically requires many calls to
gl_get_line() from an external I/O-driven event
loop.

Newly created GetLine objects start in normal I/O mode, so to switch to non-blocking
server mode requires an initial call to gl_io_mode().

In non-blocking server I/O mode, the application is required to have an event loop
that calls gl_get_line() whenever the terminal file descriptor can perform the type
I/O that gl_get_line() is waiting for. To determine which type of I/O
gl_get_line() is waiting for, the application calls the gl_pending_io() function.
The return value is one of the following two enumerated values.

GLP_READ gl_get_line() is waiting to write a character to the terminal.

GLP_WRITE gl_get_line() is waiting to read a character from the keyboad.

gl_io_mode(3TECLA)

NAME

SYNOPSIS

DESCRIPTION

Server I/O Mode

544 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

If the application is using either the select(3C) or poll(2) function to watch for I/O
on a group of file descriptors, then it should call the gl_pending_io() function
before each call to these functions to determine which direction of I/O it should tell
them to watch for, and configure their arguments accordingly. In the case of the
select() function, this means using the FD_SET() macro to add the terminal file
descriptor either to the set of file descriptors to be watched for readability or the set to
be watched for writability.

As in normal I/O mode, the return value of gl_get_line() is either a pointer to a
completed input line or NULL. However, whereas in normal I/O mode a NULL return
value always means that an error occurred, in non-blocking server mode, NULL is also
returned when gl_get_line() cannot read or write to the terminal without
blocking. Thus in non-blocking server mode, in order to determine when a NULL
return value signifies that an error occurred or not, it is necessary to call the
gl_return_status() function. If this function returns the enumerated value
GLR_BLOCKED, gl_get_line() is waiting for I/O and no error has occurred.

When gl_get_line() returns NULL and gl_return_status() indicates that this
is due to blocked terminal I/O, the application should call gl_get_line() again
when the type of I/O reported by gl_pending_io() becomes possible. The prompt,
start_line and start_pos arguments of gl_get_line() will be ignored on these calls. If
you need to change the prompt of the line that is currently being edited, you can call
the gl_replace_prompt(3TECLA) function between calls to gl_get_line().

A complication that is unique to non-blocking server mode is that it requires that the
terminal be left in raw mode between calls to gl_get_line(). If this were not the
case, the external event loop would not be able to detect individual key-presses, and
the basic line editing implemented by the terminal driver would clash with the editing
provided by gl_get_line(). When the terminal needs to be used for purposes other
than entering a new input line with gl_get_line(), it needs to be restored to a
usable state. In particular, whenever the process is suspended or terminated, the
terminal must be returned to a normal state. If this is not done, then depending on the
characteristics of the shell that was used to invoke the program, the user could end up
with a hung terminal. To this end, the gl_normal_io() function is provided for
switching the terminal back to the state that it was in when raw mode was last
established.

The gl_normal_io() function first flushes any pending output to the terminal, then
moves the cursor to the start of the terminal line which follows the end of the
incompletely entered input line. At this point it is safe to suspend or terminate the
process, and it is safe for the application to read and write to the terminal. To resume
entry of the input line, the application should call the gl_raw_io() function.

The gl_normal_io() function starts a new line, redisplays the partially completed
input line (if any), restores the cursor position within this line to where it was when
gl_normal_io() was called, then switches back to raw, non-blocking terminal mode
ready to continue entry of the input line when gl_get_line() is next called.

gl_io_mode(3TECLA)

Giving Up The
Terminal

Extended Library Functions 545

Note that in non-blocking server mode, if gl_get_line() is called after a call to
gl_normal_io(), without an intervening call to gl_raw_io(), gl_get_line()
will call gl_raw_mode() itself, and the terminal will remain in this mode when
gl_get_line() returns.

In the previous section it was pointed out that in non-blocking server mode, the
terminal must be restored to a sane state whenever a signal is received that either
suspends or terminates the process. In normal I/O mode, this is done for you by
gl_get_line(), but in non-blocking server mode, since the terminal is left in raw
mode between calls to gl_get_line(), this signal handling has to be done by the
application. Since there are many signals that can suspend or terminate a process, as
well as other signals that are important to gl_get_line(), such as the SIGWINCH
signal, which tells it when the terminal size has changed, the gl_tty_signals()
function is provided for installing signal handlers for all pertinent signals.

The gl_tty_signals() function uses gl_get_line()’s internal list of signals to
assign specified signal handlers to groups of signals. The arguments of this function
are as follows.

term_handler This is the signal handler that is used to trap signals that by
default terminate any process that receives them (for example,
SIGINT or SIGTERM).

susp_handler This is the signal handler that is used to trap signals that by
default suspend any process that receives them, (for example,
SIGTSTP or SIGTTOU).

cont_handler This is the signal handler that is used to trap signals that are
usually sent when a process resumes after being suspended
(usually SIGCONT). Beware that there is nothing to stop a user
from sending one of these signals at other times.

size_handler This signal handler is used to trap signals that are sent to processes
when their controlling terminals are resized by the user (for
example, SIGWINCH).

These arguments can all be the same, if so desired, and SIG_IGN (ignore this signal)
or SIG_DFL (use the system-provided default signal handler) can be specified instead
of a function where pertinent. In particular, it is rarely useful to trap SIGCONT, so the
cont_handler argument will usually be SIG_DFL or SIG_IGN.

The gl_tty_signals() function uses the POSIX sigaction(2) function to install
these signal handlers, and it is careful to use the sa_mask member of each sigaction
structure to ensure that only one of these signals is ever delivered at a time. This
guards against different instances of these signal handlers from simultaneously trying
to write to common global data, such as a shared sigsetjmp(3C) buffer or a
signal-received flag. The signal handlers installed by this function should call the
gl_handle_signal().

gl_io_mode(3TECLA)

Signal Handling

546 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

The signo argument tells this function which signal it is being asked to respond to, and
the gl argument should be a pointer to the first element of an array of ngl GetLine
objects. If your application has only one of these objects, pass its pointer as the gl
argument and specify ngl as 1.

Depending on the signal that is being handled, this function does different things.

If the signal that was caught is one of those that by default terminates any process that
receives it, then gl_handle_signal() does the following steps.

1. First it blocks the delivery of all signals that can be blocked (ie. SIGKILL and
SIGSTOP cannot be blocked).

2. Next it calls gl_normal_io() for each of the ngl GetLine objects. Note that this
does nothing to any of the GetLine objects that are not currently in raw mode.

3. Next it sets the signal handler of the signal to its default, process-termination
disposition.

4. Next it re-sends the process the signal that was caught.

5. Finally it unblocks delivery of this signal, which results in the process being
terminated.

If the default disposition of the signal is to suspend the process, the same steps are
executed as for process termination signals, except that when the process is later
resumed, gl_handle_signal() continues, and does the following steps.

1. It re-blocks delivery of the signal.

2. It reinstates the signal handler of the signal to the one that was displaced when its
default disposition was substituted.

3. For any of the GetLine objects that were in raw mode when gl_handle_signal
() was called, gl_handle_signal() then calls gl_raw_io(), to resume entry
of the input lines on those terminals.

4. Finally, it restores the signal process mask to how it was when
gl_handle_signal() was called.

Note that the process is suspended or terminated using the original signal that was
caught, rather than using the uncatchable SIGSTOP and SIGKILL signals. This is
important, because when a process is suspended or terminated, the parent of the
process may wish to use the status value returned by the wait system call to figure out
which signal was responsible. In particular, most shells use this information to print a
corresponding message to the terminal. Users would be rightly confused if when their
process received a SIGPIPE signal, the program responded by sending itself a
SIGKILL signal, and the shell then printed out the provocative statement, "Killed!".

gl_io_mode(3TECLA)

Process
termination

signals

Process suspension
signals

Extended Library Functions 547

If a signal is caught and handled when the application’s event loop is waiting in
select() or poll(), these functions will be aborted with errno set to EINTR.
When this happens the event loop should call gl_pending_io() before calling
select() or poll() again. It should then arrange for select() or poll() to wait
for the type of I/O that gl_pending_io() reports. This is necessary because any
signal handler that calls gl_handle_signal() will frequently change the type of
I/O that gl_get_line() is waiting for.

If a signal arrives between the statements that configure the arguments of select()
or poll() and the calls to these functions, the signal will not be seen by these
functions, which will then not be aborted. If these functions are waiting for keyboard
input from the user when the signal is received, and the signal handler arranges to
redraw the input line to accommodate a terminal resize or the resumption of the
process. This redisplay will be delayed until the user presses the next key. Apart from
puzzling the user, this clearly is not a serious problem. However there is a way, albeit
complicated, to completely avoid this race condition. The following steps illustrate
this.

1. Block all of the signals that gl_get_line() catches, by passing the signal set
returned by gl_list_signals() to sigprocmask(2).

2. Call gl_pending_io() and set up the arguments of select() or poll()
accordingly.

3. Call sigsetjmp(3C) with a non-zero savemask argument.

4. Initially this sigsetjmp() statement will return zero, indicating that control is not
resuming there after a matching call to siglongjmp(3C).

5. Replace all of the handlers of the signals that gl_get_line() is configured to
catch, with a signal handler that first records the number of the signal that was
caught, in a file-scope variable, then calls siglongjmp() with a non-zero val
argument, to return execution to the above sigsetjmp() statement. Registering
these signal handlers can conveniently be done using the gl_tty_signals()
function.

6. Set the file-scope variable that the above signal handler uses to record any signal
that is caught to -1, so that we can check whether a signal was caught by seeing if it
contains a valid signal number.

7. Now unblock the signals that were blocked in step 1. Any signal that was received
by the process in between step 1 and now will now be delivered, and trigger our
signal handler, as will any signal that is received until we block these signals again.

8. Now call select() or poll().

9. When select returns, again block the signals that were unblocked in step 7.

If a signal is arrived any time during the above steps, our signal handler will be
triggered and cause control to return to the sigsetjmp() statement, where this
time, sigsetjmp() will return non-zero, indicating that a signal was caught.
When this happens we simply skip the above block of statements, and continue
with the following statements, which are executed regardless of whether or not a

gl_io_mode(3TECLA)

Interrupting The
Event Loop

548 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

signal is caught. Note that when sigsetjmp() returns, regardless of why it
returned, the process signal mask is returned to how it was when sigsetjmp()
was called. Thus the following statements are always executed with all of our
signals blocked.

10. Reinstate the signal handlers that were displaced in step 5.

11. Check wether a signal was caught, by checking the file-scope variable that the
signal handler records signal numbers in.

12. If a signal was caught, send this signal to the application again and unblock only
this signal so that it invokes the signal handler which was just reinstated in step 10.

13. Unblock all of the signals that were blocked in step 7.

Since the application is expected to handle signals in non-blocking server mode,
gl_get_line() does not attempt to duplicate this when it is being called. If one of
the signals that it is configured to catch is sent to the application while
gl_get_line() is being called, gl_get_line() reinstates the caller’s signal
handlers, then immediately before returning, re-sends the signal to the process to let
the application’s signal handler handle it. If the process is not terminated by this
signal, gl_get_line() returns NULL, and a following call to gl_return_status
() returns the enumerated value GLR_SIGNAL.

Often, rather than letting it terminate the process, applications respond to the SIGINT
user-interrupt signal by aborting the current input line. This can be accomplished in
non-blocking server-I/O mode by not calling gl_handle_signal() when this
signal is caught, but by calling instead the gl_abandon_line() function. This
function arranges that when gl_get_line() is next called, it first flushes any
pending output to the terminal, discardes the current input line, outputs a new
prompt on the next line, and finally starts accepting input of a new input line from the
user.

Provided that certain rules are followed, the gl_normal_io(), gl_raw_io(),
gl_handle_signal(), and gl_abandon_line() functions can be written to be
safely callable from signal handlers. Other functions in this library should not be
called from signal handlers. For this to be true, all signal handlers that call these
functions must be registered in such a way that only one instance of any one of them
can be running at one time. The way to do this is to use the POSIX sigaction()
function to register all signal handlers, and when doing this, use the sa_mask member
of the corresponding sigaction structure to indicate that all of the signals whose
handlers invoke the above functions should be blocked when the current signal is
being handled. This prevents two signal handlers from operating on a GetLine object
at the same time.

To prevent signal handlers from accessing a GetLine object while gl_get_line()
or any of its associated public functions are operating on it, all public functions
associated with gl_get_line(), including gl_get_line() itself, temporarily
block the delivery of signals when they are accessing GetLine objects. Beware that

gl_io_mode(3TECLA)

Signals Caught By
gl_get_line()

Aborting Line
Input

Signal Safe
Functions

Extended Library Functions 549

the only signals that they block are the signals that gl_get_line() is currently
configured to catch, so be sure that if you call any of the above functions from signal
handlers, that the signals that these handlers are assigned to are configured to be
caught by gl_get_line(). See gl_trap_signal(3TECLA).

If instead of using select() or poll() to wait for I/O your application needs only
to get out of gl_get_line() periodically to briefly do something else before
returning to accept input from the user, use the gl_inactivity_timeout(3TECLA)
function in non-blocking server mode to specify that a callback function that returns
GLTO_CONTINUE should be called whenever gl_get_line() has been waiting for
I/O for more than a specified amount of time. When this callback is triggered,
gl_get_line() will return NULL and a following call to gl_return_status()
will return GLR_BLOCKED.

The gl_get_line() function will not return until the user has not typed a key for
the specified interval, so if the interval is long and the user keeps typing,
gl_get_line() might not return for a while. There is no guarantee that it will return
in the time specified.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

cpl_complete_word(3TECLA), ef_expand_file(3TECLA),
gl_get_line(3TECLA), libtecla(3LIB), pca_lookup_file(3TECLA),
attributes(5), tecla(5)

gl_io_mode(3TECLA)

Using Timeouts To
Poll

ATTRIBUTES

SEE ALSO

550 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

gmatch – shell global pattern matching

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

int gmatch(const char *str, const char *pattern);

gmatch() checks whether the null-terminated string str matches the null-terminated
pattern string pattern. See the sh(1), section File Name Generation, for a
discussion of pattern matching. A backslash (\) is used as an escape character in
pattern strings.

gmatch() returns non-zero if the pattern matches the string, zero if the pattern does
not.

EXAMPLE 1 Examples of gmatch() function.

In the following example, gmatch() returns non-zero (true) for all strings with “a” or
“-” as their last character.

char *s;
gmatch (s, "*[a\-]")

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sh(1), attributes(5)

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

gmatch(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 551

HBA_GetAdapterAttributes – retrieve attributes about a specific HBA

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_GetAdapterAttributes(HBA_HANDLE handle,
HBA_ADAPTERATTRIBUTES *hbaattributes);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

hbaattributes a pointer to an HBA_ADAPTERATTRIBUTES structure. Upon
successful completion, this structure contains the specified adapter
attributes.

The HBA_GetAdapterAttributes() function retrieves the adapter attributes
structure for a given HBA. The caller is responsible for allocating hbaattributes.

Upon successful completion, HBA_STATUS_OK is returned. Otherwise, an error value
is returned and the values in hbaattributes are undefined.

See libhbaapi(3LIB) for general error status values.

EXAMPLE 1 Return adapter attributes.

The following example returns the adapter attributes into hbaAttrs for the given
handle.

if ((status = HBA_GetAdapterAttributes(handle, &hbaAttrs)) !=
HBA_STATUS_OK) {

fprintf(stderr, "Unable to get adapter attributes for "
"HBA %d with name \"%s\".\n", hbaCount, adaptername);

HBA_CloseAdapter(handle);
continue;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_OpenAdapter(3HBAAPI), libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_GetAdapterAttributes(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

552 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

HBA_GetAdapterName – retrieve the name of a specific HBA

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_GetAdapterName(HBA_UINT32 adapterindex, char
*adaptername);

adapterindex the index of the adapter, between 0 and one less than the value
returned by HBA_GetNumberOfAdapters(3HBAAPI).

adaptername the buffer where the name of the adapter will be stored. The
recommended size is 256 bytes.

The HBA_GetAdapterName() function stores the name of the adapter specified by
adapterindex in the buffer pointed to by adaptername. The caller is responsible for
allocating space for the name.

Upon successful completion, HBA_STATUS_OK is returned. Otherwise, an error value
is returned and the content of adaptername is undefined.

See libhbaapi(3LIB) for general error status values.

EXAMPLE 1 Return adapter name.

Given an hbacount >= 0 and < total number of adapters on the system, the following
example returns the adaptername for that adapter.

if ((status = HBA_GetAdapterName(hbaCount, adaptername)) !=
HBA_STATUS_OK) {

fprintf(stderr, "HBA %d name not available for "
"reason %d\n", hbaCount, status);

continue;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_GetNumberOfAdapters(3HBAAPI), libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_GetAdapterName(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 553

http://www.t11.org

The HBA_GetAdapterName() function does not take a name length argument to
define how large the buffer is, yet the specification does not indicate a maximum name
length. Failure to pass in a large enough buffer will result in a buffer over-run, which
may lead to segmentation faults or other failures. Callers should be sure to allocate a
large buffer to ensure the Vendor library will not overrun during the copy.

HBA_GetAdapterName(3HBAAPI)

BUGS

554 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

HBA_GetAdapterPortAttributes, HBA_GetDiscoveredPortAttributes,
HBA_GetPortAttributesByWWN – retrieve Fibre Channel port attributes for a specific
device

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_GetAdapterPortAttributes(HBA_HANDLE handle,
HBA_UINT32 portindex, HBA_PORTATTRIBUTES *portattributes);

HBA_STATUS HBA_GetDiscoveredPortAttributes(HBA_HANDLE handle,
HBA_UINT32 portindex, HBA_UINT32 discoveredportindex,
HBA_PORTATTRIBUTES *portattributes);

HBA_STATUS HBA_GetPortAttributesByWWN(HBA_HANDLE handle, HBA_WWN
PortWWN, HBA_PORTATTRIBUTES *portattributes);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

portindex the index of a specific port on the HBA as returned by a call to
HBA_GetAdapterAttributes(3HBAAPI). The maximum value
specified should be
(HBA_ADAPTERATTRIBUTES.NumberOfPorts - 1).

portattributes a pointer to an HBA_PORTATTRIBUTES structure. Upon successful
completion, this structure contains the specified port attributes.

discoveredportindex the index of a specific discovered port on the HBA as returned by
HBA_GetAdapterPortAttributes(3HBAAPI). The maximum
value specified should be
(HBA_PORTATTRIBUTES.NumberOfDiscoveredPorts - 1).

PortWWN the port WWN of the device for which port attributes are
retrieved.

The HBA_GetAdapterPortAttributes() function retrieves Port Attributes for a
specific port on the HBA.

The HBA_GetDiscoveredPortAttributes() function retrieves Port Attributes for
a specific discovered device connected to the HBA.

The HBA_GetPortAttributesByWWN() function retrieves Port Attributes for a
specific device based on the PortWWN argument.

Upon successful completion, HBA_STATUS_OK is returned. Otherwise, an error value
is returned from the underlying VSL and the values in hbaattributes are undefined.

See libhbaapi(3LIB) for general error status values.

EXAMPLE 1 Retrieve the port attributes for each port on the HBA.

The following example retrieves the port attributes for each port on the HBA.

HBA_GetAdapterPortAttributes(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

Extended Library Functions 555

EXAMPLE 1 Retrieve the port attributes for each port on the HBA. (Continued)

for (hbaPort = 0; hbaPort < hbaAttrs.NumberOfPorts; hbaPort++) {
if ((status = HBA_GetAdapterPortAttributes(handle,

hbaPort, &hbaPortAttrs)) != HBA_STATUS_OK) {
fprintf(stderr, "Unable to get adapter port %d "

"attributes for HBA %d with name \"%s\".\n",
hbaPort, hbaCount, adaptername);

HBA_CloseAdapter(handle);
continue;

}
memcpy(&wwn, hbaPortAttrs.PortWWN.wwn, sizeof (wwn));
printf(" Port %d: WWN=%016llx\n", hbaPort, wwn);

/* ... */

}

EXAMPLE 2 Retrieve the discovered port target attributes for each discovered target port on
the HBA.

The following example retrieves the discovered port target attributes for each
discovered target port on the HBA.

for (discPort = 0;
discPort < hbaPortAttrs.NumberofDiscoveredPorts;
discPort++) {

if ((status = HBA_GetDiscoveredPortAttributes(
handle, hbaPort, discPort,
&discPortAttrs)) != HBA_STATUS_OK) {

fprintf(stderr, "Unable to get "
"discovered port %d attributes for "
"HBA %d with name \"%s\".\n",
discPort, hbaCount, adaptername);

continue;
}
memcpy(&wwn, discPortAttrs.PortWWN.wwn,

sizeof (wwn));
printf(" Discovered Port %d: WWN=%016llx\n",

discPort, wwn);

/* ... */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_GetAdapterPortAttributes(3HBAAPI)

ATTRIBUTES

556 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

HBA_GetAdapterPortAttributes(3HBAAPI), HBA_OpenAdapter(3HBAAPI),
libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_GetAdapterPortAttributes(3HBAAPI)

SEE ALSO

Extended Library Functions 557

http://www.t11.org

HBA_GetBindingCapability, HBA_GetBindingSupport, HBA_SetBindingSupport –
return and sets binding capabilities on an HBA port

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_HANDLE HBA_GetBindingCapability(HBA_HANDLE handle, HBA_WWN
hbaPortWWN, HBA_BIND_CAPABILITY *pFlags);

HBA_STATUS HBA_GetBindingSupport(HBA_HANDLE handle, HBA_WWN
hbaPortWWN, HBA_BIND_CAPABILITY *pFlags);

void HBA_SetBindingSupport(HBA_HANDLE handle, HBA_WWN hbaPortWWN,
HBA_BIND_CAPABILITY Flags);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

hbaPortWWN the Port WWN of the local HBA through which the binding
capabilities implemented by the HBA is returned

pFlags a pointer to an HBA_BIND_CAPABILITY structure that returns the
persistent binding capabilites implemented by the HBA

Flags an HBA_BIND_CAPABILITY structure containing the persistent
binding capabilites to enable for the HBA

The HBA_GetBindingCapability() function returns the binding capabilities
implemented by the HBA.

The HBA_GetBindingSupport() function returns the currently enabled binding
capabilities for the HBA.

The HBA_SetBindingSupport() function sets the currently enabled binding
capabilites for the HBA to a subset of the binding capabilities implemented by the
HBA.

The HBA_GetBindingCapability() and HBA_GetBindingSupport() functions
return the following values:

HBA_STATUS_OK
Persistent binding capabilites have been returned.

HBA_STATUS_ERROR_ILLEGAL_WWN
Port WWN hbaPortWWN is not a WWN contained by the HBA referenced by
handle.

HBA_STATUS_ERROR_NOT_SUPPORTED
The HBA handle specified by handle does not support persistent binding.

HBA_STATUS_ERROR
An error occurred. The value of pFlags remains unchanged and points to the
persistent binding capabilites.

The HBA_SetBindingSupport() function returns:

HBA_GetBindingCapability(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

558 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

HBA_STATUS_OK
Persistent binding capabilites have been enabled.

HBA_STATUS_ERROR_ILLEGAL_WWN
Port WWN hbaPortWWN is not a WWN contained by the HBA referenced by
handle.

HBA_STATUS_ERROR_NOT_SUPPORTED
The HBA handle specified by handle does not support persistent binding.

HBA_STATUS_ERROR_INCAPABLE
The flags argument contains a capability not implemented by the HBA.

HBA_STATUS_ERROR
An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_GetBindingCapability(3HBAAPI)

ATTRIBUTES

SEE ALSO

Extended Library Functions 559

http://www.t11.org

HBA_GetEventBuffer – remove and return the next event from the HBA’s event queue

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_GetEventBuffer(HBA_HANDLE handle, HBA_EVENTINFO
*EventBuffer, HBA_UINT32 *EventBufferCount);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

EventBuffer a pointer to an HBA_EVENTINFO buffer

EventBufferCount a pointer to the maximum number of events that can be stored in
the HBA_EVENTINFO buffer. The value will be changed to the
actual number of events placed in the buffer on completion.

The HBA_GetEventBuffer() function retrieves events from the HBA’s event queue.
The number of events returned is the lesser of EventBufferCount and the number of
events on the queue. The returned events are removed from the queue.

Upon successful completion, HBA_STATUS_OK is returned. Otherwise, an error value
is returned and the value of EventBufferCount is undefined.

See libhbaapi(3LIB) for general error status values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_OpenAdapter(3HBAAPI), libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_GetEventBuffer(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

560 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

HBA_GetFcpPersistentBinding, HBA_GetPersistentBindingV2,
HBA_SetPersistentBindingV2, HBA_RemovePersistentBinding,
HBA_RemoveAllPersistentBindings – handle persistent bindings between FCP-2
discovered devices and operating system SCSI information

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_GetFcpPersistentBinding(HBA_HANDLE handle,
HBA_FCPBINDING *binding);

HBA_STATUS HBA_GetPersistentBindingV2(HBA_HANDLE handle, HBA_WWN
hbaPortWWN, HBA_FCPBINDING2 *binding);

HBA_STATUS HBA_SetPersistentBindingV2(HBA_HANDLE handle, HBA_WWN
hbaPortWWN, HBA_FCPBINDING2 *binding);

HBA_STATUS HBA_RemovePersistentBinding(HBA_HANDLE handle, HBA_WWN
hbaPortWWN, HBA_FCPBINDING2 *binding);

HBA_STATUS HBA_RemoveAllPersistentBindings(HBA_HANDLE handle,
HBA_WWN hbaPortWWN);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

binding

HBA_GetFcpPersistentBinding()
a buffer to store the binding entries in. The
binding->NumberOfEntries member must indicate the
maximum number of entries that fit within the buffer. On
completion, the binding->NumberOfEntries member will
indicate the actual number of binding entries for the HBA. This
value can be greater than the number of entries the buffer can
store.

HBA_GetPersistentBindingV2()
a pointer to a HBA_FCPBINDING2 structure. The
NumberOfEntries member will be the maximum number of
entries returned.

HBA_SetPersistentBindingV2()
a pointer to a HBA_FCPBINDING2 structure. The
NumberOfEntries member will be the number of bindings
requested in the structure.

HBA_RemovePersistentBinding()
a pointer to a HBA_FCPBINDING2 structure. The structure will
contain all the bindings to be removed. The NumberOfEntries
member will be the number of bindings being requested to be
removed in the structure.

HBA_GetFcpPersistentBinding(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

Extended Library Functions 561

hbaPortWWN

HBA_GetPersistentBindingV2()
The Port WWN of the local HBA through which persistent
bindings will be retrieved.

HBA_SetPersistentBindingV2()
The Port WWN of the local HBA through which persistent
bindings will be set.

HBA_RemovePersistentBinding()
HBA_RemoveAllPersistentBindings()

The Port WWN of the local HBA through which persistent
bindings will be removed.

The HBA_GetFcpPersistentBinding() function retrieves the set of mappings
between FCP LUNs and SCSI LUNs that are reestablished upon initialization or
reboot. The means of establishing the persistent bindings is vendor-specific and
accomplished outside the scope of the HBA API.

The HBA_GetPersistentBindingV2() function retrieves the set of persistent
bindings between FCP LUNs and SCSI LUNs for the specified HBA Port that are
reestablished upon initialization or reboot. The means of establishing the persistent
bindings is vendor-specific and accomplished outside the scope of the HBA API. The
binding information can contain bindings to Logical Unit Unique Device Identifiers.

The HBA_SetPersistentBindingV2() function sets additional persistent bindings
between FCP LUNs and SCSI LUNs for the specified HBA Port. It can also accept
bindings to Logical Unit Unique Device Identifiers. Bindings already set will remain
set. An error occurs if a request is made to bind to an OS SCSI ID which has already
been bound. Persistent bindings will not affect Target Mappings until the OS, HBA,
and/or Fabric has been reinitialized. Before then, the effects are not specified.

The HBA_RemovePersistentBinding() function removes one or more persistent
bindings. The persistent binding will only be removed if both the OS SCSI LUN and
the SCSI Lun match a binding specifed in the arguments. Persistent bindings removed
will not affect Target Mappings until the OS, HBA, and/or Fabric has been
reinitialized. Before then, the effects are not specified.

The HBA_RemoveAllPersistentBindings() function removes all persistent
bindings. Persistent bindings removed will not affect Target Mappings until the OS,
HBA, and/or Fabric has been reinitialized. Before then, the effects are not specified.

The HBA_GetFcpPersistentBinding() function returns the following values:

HBA_STATUS_OK
The HBA was able to retrieve information.

HBA_STATUS_ERROR_MORE_DATA
A a larger buffer is required. The value of binding->NumberOfEntries after the
call indicates the total number of entries available. The caller should reallocate a
larger buffer to accomodate the indicated number of entries and reissue the routine.

HBA_GetFcpPersistentBinding(3HBAAPI)

DESCRIPTION

RETURN VALUES

562 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

HBA_STATUS_ERROR_NOT_SUPPORTED
The HBA handle specified by handle does not support persistent binding.

In the event that other error codes are returned, the value of
binding->NumberOfEntries after the call should be checked, and if greater than the
value before the call, a larger buffer should be allocated for a retry of the routine.

The HBA_GetPersistentBindingV2() function returns the following values:

HBA_STATUS_OK
The HBA was able to retrieve information.

HBA_STATUS_ERROR_MORE_DATA
A a larger buffer is required. The value of binding->NumberOfEntries after the
call indicates the total number of entries available. The caller should reallocate a
larger buffer to accomodate the indicated number of entries and reissue the routine.

HBA_STATUS_ERROR_ILLEGAL_WWN
The Port WWN hbaPortWWN is not a WWN contained by the HBA referenced by
handle.

HBA_STATUS_ERROR_NOT_SUPPORTED
The HBA handle specified by handle does not support persistent binding.

The value of binding remains unchanged. The structure it points to contains binding
information. The number of entries returned is the minimum between the number of
entries specifed in the binding argument and the total number of bindings.

The HBA_SetPersistentBindingV2() function returns the following values.

HBA_STATUS_OK
The HBA was able to set bindings.

HBA_STATUS_ERROR_ILLEGAL_WWN
The Port WWN hbaPortWWN is not a WWN contained by the HBA referenced by
handle.

HBA_STATUS_ERROR_NOT_SUPPORTED
The HBA handle specified by handle does not support persistent binding.

The value of binding remains unchanged. The success or failure of each Persistent
binding set is indicated in the Status member of the HBA_FCPBINDINGENTRY2
structure.

The HBA_RemovePersistentBinding() function returns the following values:

HBA_STATUS_OK
The HBA was able to retrieve information.

HBA_STATUS_ERROR_ILLEGAL_WWN
The Port WWN hbaPortWWN is not a WWN contained by the HBA referenced by
handle.

HBA_STATUS_ERROR_NOT_SUPPORTED
The HBA handle specified by handle does not support persistent binding.

HBA_GetFcpPersistentBinding(3HBAAPI)

Extended Library Functions 563

The value of binding remains unchanged. The success or failure of each Persistent
binding set is indicated in the Status member of the HBA_FCPBINDINGENTRY2
structure.

The HBA_RemoveAllPersistentBindings() function returns the following
values:

HBA_STATUS_OK
The HBA was able to retrieve information.

HBA_STATUS_ERROR_ILLEGAL_WWN
The Port WWN hbaPortWWN is not a WWN contained by the HBA referenced by
handle.

HBA_STATUS_ERROR_NOT_SUPPORTED
The HBA handle specified by handle does not support persistent binding.

See libhbaapi(3LIB) for general error status values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_GetFcpTargetMapping(3HBAAPI), HBA_OpenAdapter(3HBAAPI),
libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

The HBA_GetFcpTargetMapping(3HBAAPI) and
HBA_GetFcpPersistentBinding() functions do not take a portindex to define to
which port of a multi-ported HBA the command should apply. The behavior on
multi-ported HBAs is vendor-specific and could result in mappings or bindings for all
ports being intermixed in the response buffer. SNIA version 2 defines a
HBA_GetFcpTargetMappingV2() that takes a Port WWN as an argument. This
fixes the bug with multi-ported HBAs in HBA_GetFcpTargetMapping().

HBA_GetFcpPersistentBinding(3HBAAPI)

ERRORS

ATTRIBUTES

SEE ALSO

BUGS

564 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

HBA_GetFcpTargetMapping, HBA_GetFcpTargetMappingV2 – retrieve mapping
between FCP-2 discovered devices and operating system SCSI information

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_GetFcpTargetMapping(HBA_HANDLE handle,
HBA_FCPTARGETMAPPING *mapping);

HBA_STATUS HBA_GetFcpTargetMappingV2(HBA_HANDLE handle, HBA_WWN
hbaPortWWN, HBA_FCPTARGETMAPPINGV2 *mapping);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

mapping a buffer in which to store the mapping entries. The
mapping->NumberOfEntries member must indicate the
maximum number of entries that will fit within the buffer. On
completion, the mapping->NumberOfEntries member indicates
the actual number of mapping entries for the HBA. This value can
be greater than the number of entries the buffer can store.

hbaPortWWN the Port Name of the local HBA Port for which the caller is
requesting target mappings.

The HBA_GetFcpTargetMapping() function retrieves the current set of mappings
between FCP LUNs and SCSI LUNs for a given HBA port.

The HBA_GetFcpTargetMappingV2() function retrieves the current set of
mappings between FCP LUNs and SCSI LUNs for a given HBA. The mapping also
includes a Logical Unit Unique Identifier for each logical unit.

The HBA_GetFcpTargetMappingV2() function returns the following values:

HBA_STATUS_ERROR_ILLEGAL_WWN
The port WWN specified by hbaPortWWN is not a valid port WWN on the specified
HBA

HBA_STATUS_ERROR_NOT_SUPPORTED
Target mappings are not supported on the HBA.

HBA_STATUS_ERROR
An error occurred.

The HBA_GetFcpTargetMapping() and HBA_GetFcpTargetMappingV2()
functions return the following values:

HBA_STATUS_OK
The HBA was able to retrieve information.

HBA_STATUS_ERROR_MORE_DATA
A larger buffer is required. The value of mapping->NumberOfEntries after the call
indicates the total number of entries available. The caller should reallocate the
buffer large enough to accomodate the indicated number of entries and reissue the
routine.

HBA_GetFcpTargetMapping(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

Extended Library Functions 565

In the event that other error values are returned, the value of
mapping->NumberOfEntries after the call should be checked, and if greater than the
value before the call, a larger buffer should be allocated for a retry of the routine.

See libhbaapi(3LIB) for general error status values.

EXAMPLE 1 Return target mapping data.

The following example returns target mapping data. It initially allocates space for one
target mapping. If the number of entries returned is greater than the allocated space, a
new buffer with sufficient space is allocated and HBA_GetFcpTargetMapping() is
called again.

map = (HBA_FCPTARGETMAPPING *)calloc(1,
sizeof (HBA_FCPTARGETMAPPING));

status = HBA_GetFcpTargetMapping(handle, map);
if (map->NumberOfEntries > 0) {

HBA_UINT32 noe = map->NumberOfEntries;
free(map);
map = (HBA_FCPTARGETMAPPING *)calloc (1,

sizeof (HBA_FCPTARGETMAPPING) +
(sizeof (HBA_FCPSCSIENTRY)*(noe - 1)));

map->NumberOfEntries = noe;
if ((status = HBA_GetFcpTargetMapping(handle, map)) !=

HBA_STATUS_OK) {
fprintf(stderr, " Failed to get target "

"mappings %d", status);
free(map);

} else {
printf(" FCP Mapping entries: \n");
for (cntr = 0;

cntr < map->NumberOfEntries;
cntr ++) {

printf(" Path(%d): \"%s\"\n", cntr,
map->entry[cntr].ScsiId.OSDeviceName);
}

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_OpenAdapter(3HBAAPI), libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

The HBA_GetFcpTargetMapping() routine does not take a portindex to define
which port of a multi-ported HBA the command should apply to. The behavior on
multi-ported HBAs is vendor specific, and may result in mappings or bindings for all

HBA_GetFcpTargetMapping(3HBAAPI)

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

BUGS

566 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

ports being intermixed in the response buffer. SNIA version 2 defines a
HBA_GetFcpTargetMappingV2() which takes a Port WWN as an argument. This
fixes the bug with multi-ported HBAs in HBA_GetFcpTargetMapping().

HBA_GetFcpTargetMapping(3HBAAPI)

Extended Library Functions 567

HBA_GetNumberOfAdapters – report the number of HBAs known to the Common
Library

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_UINT32 HBA_GetNumberOfAdapters(void);

The HBA_GetNumberOfAdapters() function report the number of HBAs known to
the Common Library. This number is the sum of the number of HBAs reported by
each VSL loaded by the Common Library.

The HBA_GetNumberOfAdapters() function returns the number of adapters known
to the Common Library will be returned.

EXAMPLE 1 Using HBA_GetNumberOfAdapters()

numberOfAdapters = HBA_GetNumberOfAdapters();
for (hbaCount = 0; hbaCount < numberOfAdapters; hbaCount++) {

/* ... */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_GetNumberOfAdapters(3HBAAPI)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

568 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

HBA_GetPortStatistics, HBA_GetFC4Statistics, HBA_GetFCPStatistics,
HBA_ResetStatistics – Access Port statistics for a specific HBA port.

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_GetPortStatistics(HBA_HANDLE handle, HBA_UINT32
portindex, HBA_PORTSTATISTICS *portstatistics);

HBA_STATUS HBA_GetFC4Statistics(HBA_HANDLE handle, HBA_WWN
portWWN, HBA_UINT8 FC4type, HBA_FC4STATISTICS * statistics);

HBA_STATUS HBA_GetFCPStatistics(HBA_HANDLE handle, const
HBA_SCSIID * lunid, HBA_FC4STATISTICS * statistics);

void HBA_ResetStatistics(HBA_HANDLE handle, HBA_UINT32 portindex);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

portindex the index of a specific port on the HBA as returned by a call to
HBA_GetAdapterAttributes(3HBAAPI). The maximum value
specified should be
(HBA_ADAPTERATTRIBUTES.NumberOfPorts - 1).

portstatistics a pointer to an HBA_PORTSTATISTICS structure. Upon successful
completion, this structure contains the specified port attributes.

portWWN the Port WWN of the local HBA for which FC-4 statistics is being
returned

FC4type FC-4 protocol Data Structure Type as defined in FC-FS for which
statistics are being requested

statistics a pointer to an HBA_FC4STATISTICS structure where the
specified statistics is being returned

lunid a pointer to an HBA_SCSIID structure specifying the OS SCSI
logical unit where statistics are being requested

The HBA_GetPortStatistics() function retrieves the statistical information from
a given HBA port.

The HBA_GetFC4Statistics() function retrieves the traffic statistics for a specific
FC-4 protocol.

The HBA_GetFCPStatistics() function retrieves the traffic statistics for a specific
FC-4 protocol on the specified OS SCSI logical unit through that port.

The HBA_ResetStatistics() function sesets the statistical counters to zero for a
given HBA port.

HBA_GetPortStatistics(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 569

Upon successful completion, HBA_GetPortStatistics() returns
HBA_STATUS_OK. Otherwise, an error value is returned from the underlying VSL and
the values in portstatistics are undefined. If the VSL does not support a specific statistic,
that statistic will have every bit set to 1.

Upon successful completion, HBA_GetFC4Statistics() and
HBA_GetFCPStatistics() return HBA_STATUS_OK. Otherwise, an error value is
returned from the underlying VSL and the values in statistics are undefined. If the VSL
does not support a specific statistic, that statistic will have every bit set to 1.

See libhbaapi(3LIB) for general error status values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_GetAdapterAttributes(3HBAAPI), HBA_OpenAdapter(3HBAAPI),
libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_GetPortStatistics(3HBAAPI)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

570 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

HBA_GetVersion – determine the version of the API supported by the Common
Library

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_UINT32 HBA_GetVersion(void);

The HBA_GetVersion() function returns the version of the API that the Common
Library supports.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_GetVersion(3HBAAPI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 571

http://www.t11.org

HBA_GetWrapperLibraryAttributes, HBA_GetVendorLibraryAttributes – return
details about the implementation of the wrapper library and the vendor specific
library

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_UINT32 HBA_GetWrapperLibraryAttributes(HBA_LIBRARYATTRIBUTES
*attributes);

HBA_UINT32 HBA_GetVendorLibraryAttributes(HBA_UINT32 adapter_index,
HBA_LIBRARYATTRIBUTES *attributes);

attributes

HBA_GetWrapperLibraryAttributes()
a pointer to a HBA_LIBRARYATTRIBUTES structure where the
wrapper library information is returned

HBA_GetVendorLibraryAttributes()
a pointer to a HBA_LIBRARYATTRIBUTES structure where the
vendor-specific library information is returned

adapter_index index of the HBA. The value ust be withing the range of 1 and the
value returned by HBA_GetNumberOfAdapters(3HBAAPI).

The HBA_GetWrapperLibraryAttributes() function returns details about the
wrapper library.

The HBA_GetVendorLibraryAttributes() function returns details about the
vendor specific library. The vendor-specific library selected is based on the
adapter_index.

The HBA_GetWrapperLibraryAttributes() and
HBA_GetVendorLibraryAttributes() functions return the version of the HBA
API specification.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_GetNumberOfAdapters(3HBAAPI), libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_GetWrapperLibraryAttributes(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

572 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

HBA_LoadLibrary, HBA_FreeLibrary – load and free the resources used by the HBA
Common Library

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_LoadLibrary(void);

HBA_STATUS HBA_FreeLibrary(void);

The HBA_LoadLibrary() function loads the Common Library, which in turn loads
each VSL specified in the hba.conf(4) file.

The HBA_FreeLibrary() function releases resources held by the Common Library
and each loaded VSL.

Upon successful completion, HBA_LoadLibrary() and HBA_FreeLibrary()
return HBA_STATUS_OK. Otherwise, an error value is returned.

See libhbaapi(3LIB) for general error status values.

EXAMPLE 1 Load the common library and each VSL.

The following example loads the common library and each VSL.

if ((status = HBA_LoadLibrary()) != HBA_STATUS_OK) {
fprintf(stderr, "HBA_LoadLibrary failed: %d\\\

", status);
return;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

libhbaapi(3LIB), hba.conf(4), attributes(5)

T11 FC-MI Specification

HBA_LoadLibrary(3HBAAPI)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 573

http://www.t11.org

HBA_OpenAdapter, HBA_OpenAdapterByWWN, HBA_CloseAdapter – open and
close a specific adapter

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_HANDLE HBA_OpenAdapter(char *adaptername);

HBA_STATUS HBA_OpenAdapterByWWN(HBA_HANDLE *handle, HBA_WWN wwn);

void HBA_CloseAdapter(HBA_HANDLE handle);

adaptername the name of the adapter to open, as returned by
HBA_GetAdapterName(3HBAAPI)

handle

HBA_OpenAdapterByWWN()
a pointer to an HBA_HANDLE

HBA_CloseAdapter()
the open handle of the adapter to close, as returned by
HBA_OpenAdapter(3HBAAPI)

wwn the WWN to match the Node WWN or Port WWN of the HBA to
open

The HBA_OpenAdapter() function opens the adapter specified by adaptername and
returns a handle used for subsequent operations on the HBA.

The HBA_OpenAdapterByWWN() function opens a handle to the HBA whose Node or
Port WWN matches the wwn argument.

The HBA_CloseAdapter() function closes the open handle.

Upon successful completion, HBA_OpenAdapter() returns a valid HBA_HANDLE with
a numeric value greater than 0. Otherwise, 0 is returned.

The HBA_OpenAdapterByWWN() function returns the following values:

HBA_STATUS_OK
The handle argument contains a valid HBA handle.

HBA_STATUS_ERROR_ILLEGAL_WWN
The wwn argument is not a valid port WWN on the specified HBA.

HBA_STATUS_ERROR_AMBIGUOUS_WWN
The WWN is matched to multiple adapters.

HBA_STATUS_ERROR
An error occurred while opening the adapter.

EXAMPLE 1 Open an adapter.

The following example opens the specified adapter.

HBA_OpenAdapter(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

EXAMPLES

574 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

EXAMPLE 1 Open an adapter. (Continued)

handle = HBA_OpenAdapter(adaptername);
if (handle == 0) {

fprintf(stderr, "Unable to open HBA %d with name "
"\"%s\".\n", hbaCount, adaptername);

continue;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_GetAdapterName(3HBAAPI), HBA_OpenAdapter(3HBAAPI),
libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_OpenAdapter(3HBAAPI)

ATTRIBUTES

SEE ALSO

Extended Library Functions 575

http://www.t11.org

HBA_RefreshInformation, HBA_RefreshAdapterConfiguration – refresh information
for a specific HBA

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

void HBA_RefreshInformation(HBA_HANDLE handle);

void HBA_RefreshAdapterConfiguration(void);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

The HBA_RefreshInformation() function requests that the underlying VSL reload
all information about the given HBA. This function should be called whenever any
function returns HBA_STATUS_ERROR_STALE_DATA, or if an index that was
previously valid returns HBA_STATUS_ERROR_ILLEGAL_INDEX. Because the
underlying VSL can reset all indexes relating to the HBA, all old index values must be
discarded by the caller.

The HBA_RefreshAdapterConfiguration() function updates information about
the HBAs present on the system. This function does not change any of the
relationships between the HBA API and adapters that have not been reconfigured.
HBA handles continue to refer to the same HBA even if it is no longer installed. The
HBA name or index assigned by the library remains assigned to the same HBA even if
it has been removed and reinstalled, as long as the bus position, WWN, and OS device
have not changed. Adapter that have been removed and not replaced cannot have
their HBA handles, HBA names, and HBA indexes reassigned. Calls to these adapters
will generate HBA_STATUS_ERROR_UNAVAILABLE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_OpenAdapter(3HBAAPI), libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_RefreshInformation(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

ATTRIBUTES

SEE ALSO

576 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

HBA_RegisterForAdapterEvents, HBA_RegisterForAdapterAddEvents,
HBA_RegisterForAdapterPortEvents, HBA_RegisterForAdapterPortStatEvents,
HBA_RegisterForTargetEvents, HBA_RegisterForLinkEvents, HBA_RemoveCallback –
SNIA event handling functions

cc [flag...] file... -lHBAAPI [library...]
#include <hbaapi.h>

HBA_STATUS HBA_RegisterForAdapterEvents(void (*pCallback) (void
*pData, HBA_WWN PortWWN, HBA_UINT32 eventType), void *pUserData,
HBA_HANDLE handle, HBA_CALLBACKHANDLE *pCallbackHandle);

HBA_STATUS HBA_RegisterForAdapterAddEvents(void (*pCallback) (void
*pData, HBA_WWN PortWWN, HBA_UINT32 eventType), void *pUserData,
HBA_CALLBACKHANDLE *pCallbackHandle);

HBA_STATUS HBA_RegisterForAdapterPortEvents(void (*pCallback) (void
*pData, HBA_WWN PortWWN, HBA_UINT32 eventType, HBA_UINT32
fabricPortID), void *pUserData, HBA_HANDLE handle, HBA_WWN PortWWN,
HBA_CALLBACKHANDLE *pCallbackHandle);

HBA_STATUS HBA_RegisterForAdapterPortStatEvents(void (*pCallback)
(void *pData, HBA_WWN PortWWN, HBA_UINT32 eventType), void
*pUserData, HBA_HANDLE handle, HBA_WWN PortWWN,
HBA_PortStatistics stats, HBA_UINT32 statType,
HBA_CALLBACKHANDLE *pCallbackHandle);

HBA_STATUS HBA_RegisterForTargetEvents(void (*pCallback) (void
*pData, HBA_WWN hbaPortWWN, HBA_WWN
discoveredPortWWN, HBA_UINT32 eventType), void * pUserData,
HBA_HANDLE handle, HBA_WWN hbaPortWWN, HBA_WWN discoveredPortWWN,
HBA_CALLBACKHANDLE *pCallbackHandle, HBA_UINT32 allTargets);

HBA_STATUS HBA_RegisterForLinkEvents(void (*pCallback) (void *pData,
HBA_WWN adapterWWN, HBA_UINT32 eventType, void * pRLIRBuffer,
HBA_UINT32 RLIRBufferSize), void *pUserData, void *PLIRBuffer,
HBA_UINT32 RLIRBufferSize, HBA_HANDLE handle, HBA_CALLBACKHANDLE
*pCallbackHandle);

HBA_STATUS HBA_RemoveCallback(HBA_CALLBACKHANDLE *pCallbackHandle);

pCallback A pointer to the entry of the callback routine.

pData
the pUserData that is passed in from registration. This parameter
can be used to correlate the event with the source of its event
registration.

PortWWN
The Port WWN of the HBA for which the event is being
reported.

hbaPortWWN
The Port WWN of the HBA for which the target event is being
reported.

HBA_RegisterForAdapterEvents(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

Extended Library Functions 577

discoveredPortWWN
The Port WWN of the target for which the target event is being
reported.

adapterWWN
The Port WWN of the of the HBA for which the link event is
being reported.

eventType
a value indicating the type of event that has occured.

HBA_RegisterForAdapterEvents()
Possible values are HBA_EVENT_ADAPTER_REMOVE and
HBA_EVENT_ADAPTER_CHANGE.

HBA_RegisterForAdaterAddEvents()
The only possible value is HBA_EVENT_ADAPTER_ADD.

HBA_RegisterForAdaterPortEvents()
Possible values are HBA_EVENT_PORT_OFFLINE,
HBA_EVENT_PORT_ONLINE,
HBA_EVENT_PORT_NEW_TARGETS,
HBA_EVENT_PORT_FABRIC, and
HBA_EVENT_PORT_UNKNOWN.

HBA_RegisterForAdapterPortStatEvents()
Possible values are HBA_EVENT_PORT_STAT_THRESHOLD
and HBA_EVENT_PORT_STAT_GROWTH.

HBA_RegisterForTargetEvents()
If the value is HBA_EVENT_LINK_INCIDENT, RLIR has
occured and information is in the RLIRBuffer. If the value is
HBA_EVENT_LINK_UNKNOWN, a fabric link or topology
change has occured and was not detected by RLIR. The
RLIRBuffer is ignored

HBA_RegisterForLinkEvents()
Possible values are HBA_EVENT_TARGET_OFFLINE,
HBA_EVENT_TARGET_ONLINE,
HBA_EVENT_TARGET_REMOVED, and
HBA_EVENT_TARGET_UNKNOWN.

fabricPortID
If the event is of type HBA_EVENT_PORT_FABRIC, this
parameter will be the RSCN-affected Port ID page as defined in
FC-FS. It is ignored for all other event types.

pRLIRBuffer
A pointer to a buffer where RLIR data may be passed to the
callback function. The buffer will be overwritten for each fabric
link callback function, but will not be overwritten within a
single call to the callback function.

HBA_RegisterForAdapterEvents(3HBAAPI)

578 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

RLIRBufferSize
Size in bytes of the RLIRBuffer.

pUserData a pointer passed with each event to the callback routine that can be
used to correlate the event with the source of its event registration

pRLIRBuffer A pointer to a buffer where RLIR data may be passed to the
callback function. The buffer will be overwritten for each fabric
link callback function, but will not be overwritten within a single
call to the callback function.

RLIRBufferSize Size in bytes of the RLIRBuffer.

handle a handle to the HBA that event callbacks are being requested

PortWWN The Port WWN of the HBA for which the event is being reported.

hbaPortWWN The Port WWN of the HBA of which the event callbacks are being
requested.

stats an HBA_PortStatistics structure which indicates the counters to be
monitored. If statType is HBA_EVENT_PORT_STAT_THRESHOLD,
any non-null values are thresholds for which to watch. If statType
is HBA_EVET_PORT_STAT_GROWTH, any non-null values are
growth rate numbers over 1 minute.

statType A value either HBA_EVENT_PORT_STAT_TRHESHOLD or
HBA_EVENT_PORT_STAT_GROWTH used to determine whether
counters registered are for threshold crossing or growth rate.

discoveredPortWWNThe Port WWN of the target that the event callbacks are being
requested of.

pCallbackHandle A pointer to structure in which an opaque identifier is returned
that is used to deregister the callback. To deregister this event, call
HBA_RemoveCallback() with this pCallbackHandle as an
argument.

allTargets If value is non-zero, discoveredPortWWN is ignored. Events for all
discovered targets will be registered by this call. If value is zero,
only events for discoveredPortWWN will be registered.

pcallbackHandle A handle returned by the event registration function of the routine
that is to be removed.

The HBA_RegisterForAdapterEvents() function registers an application-defined
function that is called when an HBA category asynchronous event occurs. An HBA
catetory event can have one of the following event types:
HBA_EVENT_ADAPTER_REMOVE or HBA_EVENT_ADAPTER_CHANGE. If either of these
events occur, the callback function is called, regardless of whether the HBA handle
specified at registration is open. The HBA_RemoveCallback() function must be
called to end event delivery.

HBA_RegisterForAdapterEvents(3HBAAPI)

DESCRIPTION

Extended Library Functions 579

The HBA_RegisterForAdapterAddEvents() function registers an
application-defined function that is called whenever an HBA add category
asynchronous event occurs. The callback function is called when a new HBA is added
to the local system. The HBA_RemoveCallback() function must be called to end
event delivery.

The HBA_RegisterForAdapterPortEvents() function registers an
application-defined function that is called on the specified HBA whenever a port
category asynchronous event occurs. A port catetory event can be one of the following
event types: HBA_EVENT_PORT_OFFLINE, HBA_EVENT_PORT_ONLINE,
HBA_EVENT_PORT_NEW_TARGETS, HBA_EVENT_PORT_FABRIC, or
HBA_EVENT_PORT_UNKNOWN. The handle need not be open for callbacks to occur. The
HBA_RemoveCallback() function must be called to end event delivery.

The HBA_RegisterForAdapterPortStatEvents() function defines conditions
that would cause an HBA port statistics asynchronous event and registers an
application-defined function that is called whenever one of these events occur. An
HBA port statistics asynchronous event can be one of the following event types:
HBA_EVENT_PORT_STAT_THRESHOLD or HBA_EVENT_PORT_STAT_GROWTH. More
than one statistic can be registered with one call by setting multiple statistics in the
stats argument. For threshold events, once a specific threshold has been crossed, the
callback is automatically deregistered for that statistic. The handle need not be open
for callbacks to occur. The HBA_RemoveCallback() function must be called to end
event delivery.

The HBA_RegisterForTargetEvents() function registers an application-defined
function that is called on the specified HBA whenever a target category asynchronous
event occurs. A Target category event can be one of the following event types:
HBA_EVENT_TARGET_OFFLINE, HBA_EVENT_TARGET_ONLINE,
HBA_EVENT_TARGET_REMOVED, HBA_EVENT_TARGET_UNKNOWN. The handle need
not be open for callbacks to occur. The HBA_RemoveCallback() function must be
called to end event delivery.

The HBA_RegisterForLinkEvents() function registers an application defined
function that is called on the specified HBA whenever a link category asynchronous
event occurs. A link category event can be one of the following event types:
HBA_EVENT_LINK_INCIDENT or HBA_EVENT_LINK_UNKNOWN. RLIR ELS is the only
fabric link event type and the callback function is called whenever is it detected by the
HBA. The handle need not be open for callbacks to occur. The HBA_RemoveCallback
() function must be called to end event delivery.

The HBA_RemoveCallback() function removes the HBA_CALLBACKHANDLE
instance of the callback routine.

HBA_RegisterForAdapterEvents(3HBAAPI)

580 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

Upon successful completion, HBA_RegisterForAdapterEvents(),
HBA_RegisterForAdapterAddEvents(),
HBA_RegisterForAdapterPortEvents(),
HBA_RegisterForAdapterPortStatEvents(),
HBA_RegisterForTargetEvents(), and HBA_RegisterForLinkEvents()
return HBA_STATUS_OK and pCallbackHandle may be used to deregister the callback.
Otherwise, an error value is returned and pCallbackHandle is not valid.

Upon successful completion, HBA_RemoveCallback() returns HBA_STATUS_OK.
Otherwise, an error value is returned.

See libhbaapi(3LIB) for general error status values.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_RegisterForAdapterEvents(3HBAAPI)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 581

http://www.t11.org

HBA_SendCTPassThru, HBA_SendCTPassThruV2 – end a Fibre Channel Common
Transport request to a Fabric

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_SendCTPassThru(HBA_HANDLE handle, void *pReqBuffer,
HBA_UINT32 ReqBufferSize, void *pRspBuffer, HBA_UINT32 RspBufferSize);

HBA_STATUS HBA_SendCTPassThruV2(HBA_HANDLE handle, HBA_WWN
hbaPortWWN, void *pReqBuffer, HBA_UINT32 ReqBufferSize, void
*pRspBuffer, HBA_UINT32 *RspBufferSize);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

hbaPortWWN the Port Name of the local HBA Port through which the caller is
issuing the CT request

pReqBuffer a pointer to a CT_IU request. The contents of the buffer must be in
big-endian byte order

ReqBufferSize the length of the CT_IU request buffer pReqBuffer

pRspBuffer a pointer to a CT_IU response buffer. The response received from
the fabric is copied into this buffer in big-endian byte order.
Success of the function need not imply success of the command.
The CT_IU Command/Response field should be checked for the
Accept Response code.

RspBufferSize

HBA_SendCTPassThru()
the length of the CT_IU accept response buffer pRspBuffer.

HBA_SendCTPassThruV2()
a Pointer to the length of the CT_IU accept response buffer
pRspBuffer.

The HBA_SendCTPassThru() and HBA_SendCTPassThruV2() functions provide
access to the standard in-band fabric management interface. The pReqBuffer argument
is interpreted as a CT_IU request, as defined by the T11 specification FC-GS-3, and is
routed in the fabric based on the GS_TYPE field.

Upon successful transport and receipt of a CT_IU response, HBA_SendCTPassThru
() returns HBA_STATUS_OK. The CT_IU payload indicates whether the command was
accepted by the fabric based on the Command/Response code returned. Otherwise,
an error value is returned from the underlying VSL and the values in pRspBuffer are
undefined.

HBA_SendCTPassThru(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

582 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

Upon successful transport and receipt of a CT_IU response,
HBA_SendCTPassThruV2() returns HBA_STATUS_OK. The CT_IU payload indicates
whether the command was accepted by the fabric based on the Command/Response
code returned. Otherwise, an error code is returned from the underlying VSL, and the
values in pRspBuffer are undefined. The HBA_SendCTPassThruV2() function returns
the following values:

HBA_STATUS_ERROR_ILLEGAL_WWN
The value of hbaPortWWN is not a valid port WWN on the specified HBA.

HBA_STATUS_ERROR
An error occurred.

See libhbaapi(3LIB) for general error status values.

EXAMPLE 1 Data structures for the GIEL command.

struct ct_iu_preamble {
uint32_t ct_rev : 8,

ct_inid : 24;
uint32_t ct_fcstype : 8,

ct_fcssubtype : 8,
ct_options : 8,
ct_reserved1 : 8;

uint32_t ct_cmdrsp : 16,
ct_aiusize : 16;

uint32_t ct_reserved2 : 8,
ct_reason : 8,
ct_expln : 8,
ct_vendor : 8;

};
struct gs_ms_ic_elem {

uchar_t elem_name[8];
uint32_t reserved1 : 24,

elem_type : 8;
};
struct gs_ms_giel_rsp {

struct ct_iu_preamble ct_header;
uint32_t num_elems;

struct gs_ms_ic_elem elem_list[1];
};

#define MAX_PAYLOAD_LEN 65536 /* 64K */

EXAMPLE 2 Send an GIEL Management Service command through the given HBA handle.

The following example sends an GIEL Management Service command through the
given HBA handle.

req.ct_rev = 0x01;
req.ct_fcstype = 0xFA; /* Management Service */
req.ct_fcssubtype = 0x01; /* Config server */
req.ct_cmdrsp = 0x0101; /* GIEL command */
req.ct_aiusize = MAX_PAYLOAD_LEN / 4 -

sizeof (struct ct_iu_preamble) / 4;
if ((status = HBA_SendCTPassThru(handle, &req, sizeof (req),

HBA_SendCTPassThru(3HBAAPI)

ERRORS

EXAMPLES

Extended Library Functions 583

EXAMPLE 2 Send an GIEL Management Service command through the given HBA
handle. (Continued)

rsp, MAX_PAYLOAD_LEN)) != HBA_STATUS_OK) {
fprintf(stderr, "Unable to issue CT command on \\"%s\\""

" for reason %d\
", adaptername, status);
} else {

giel = (struct gs_ms_giel_rsp *)rsp;
if (giel->ct_header.ct_cmdrsp != 0x8002) {

fprintf(stderr, "CT command rejected on HBA "
"\\"%s\\"\

", adaptername);
} else {

for (cntr = 0; cntr < giel->num_elems; cntr++) {
memcpy(&wwn, giel->elem_list[cntr].elem_name, 8);
printf(" Fabric element name: %016llx\

", wwn);
}

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_OpenAdapter(3HBAAPI), libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

The HBA_SendCTPassThru() function does not take a portindex to define through
which port of a multi-ported HBA to send the command. The behavior on
multi-ported HBAs is vendor specific, and can result in the command always being
sent on port 0 of the HBA. SNIA version 2 defines HBA_SendCTPassThruV2()
which takes a Port WWN as an argument. This fixes the bug with multi-ported HBAs
in HBA_SendCTPassThru().

HBA_SendCTPassThru(3HBAAPI)

ATTRIBUTES

SEE ALSO

BUGS

584 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

HBA_SendRLS, HBA_SendRPL, HBA_SendRPS, HBA_SendSRL, HBA_SendLIRR –
issue an Extended Link Service through the local HBA Port

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_SendRLS(HBA_HANDLE handle, HBA_WWN hbaPortWWN,
HBA_WWN destWWN, void * pRspBuffer, HBA_UINT32 *pRspBufferSize);

HBA_STATUS HBA_SendRPL(HBA_HANDLE handle, HBA_WWN hbaPortWWN,
HBA_WWN agentWWN, HBA_UINT32 agent_domain, HBA_UINT32 portIndex,
void * pRspBuffer, HBA_UINT32 *pRspBufferSize);

HBA_STATUS HBA_SendRPS(HBA_HANDLE handle, HBA_WWN hbaPortWWN,
HBA_WWN agentWWN, HBA_UINT32 agent_domain, HBA_WWN object_wwn,
HBA_UINT32 object_port_number, void * pRspBuffer, HBA_UINT32
*pRspBufferSize);

HBA_STATUS HBA_SendSRL(HBA_HANDLE handle, HBA_WWN hbaPortWWN,
HBA_WWN wwn, HBA_UINT32 domain, void * pRspBuffer, HBA_UINT32
*pRspBufferSize);

HBA_STATUS HBA_SendLIRR(HBA_HANDLE handle, HBA_WWN hbaPortWWN,
HBA_WWN destWWN, HBA_UINT8 function, HBA_UINT8 type, void *
pRspBuffer, HBA_UINT32 *pRspBufferSize);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

hbaPortWWN

HBA_SendRLS()
the Port WWN of the local HBA through which to send the RLS

HBA_SendRPL()
the Port WWN of the local HBA through which to send the RPL

HBA_SendRPS()
the Port WWN of the local HBA through which to send the RPS

HBA_SendSRL()
the Port WWN of the local HBA through which to send the SRL

HBA_SendLIRR()
the Port WWN of the local HBA through which to send the
LIRR

destWWN

HBA_SendRLS()
the Port WWN of the remote Target to which the RLS is sent

HBA_SendLIRR()
he Port WWN of the remote Target to which the LIRR is sent

wwn If non-zero, wwn is the port WWN to be scanned. If wwn is zero, it
is ignored.

HBA_SendRLS(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

Extended Library Functions 585

domain If wwn is zero, domain is the domain number for which loops will
be scanned. If wwn is non-zero, domain is ignored.

agent_wwn If non-zero, agent_wwn is the port WWN for which the port list is
requested. If agent_wwn is zero, it is ignored.

agent_domain If agent_wwn is non-zero, agent_domain is the domain number and
the domain controller for which the port list is requested. If
agent_wwn is zero, it is ignored.

port_index index of the first FC_Port returned in the response list

object_wwn If non-zero, object_wwn is the port WWN for which the Port Status
is requested. If object_wwn is zero, it is ignored.

object_port_number If object_wwn is zero, object_port_number is the relative port number
of the FC_Port for which the Port Status is requested. If object_wwn
is non-zero, object_port_number is ignored.

function the registration function to be performed

type If type is non-zero, the type is the FC-4 device TYPE for which
specific link incident information requested is requested. If type is
zero, only common link incident information is requested.

pRspBuffer

HBA_SendRLS()
a pointer to a buffer into which the RLS response is copied

HBA_SendRPL()
a pointer to a buffer into which the RPL response is copied

HBA_SendRPS()
a pointer to a buffer into which the RPS response is copied

HBA_SendSRL()
a pointer to a buffer into which the SRL response is copied

HBA_SendLIRR()
A pointer to a buffer into which the LIRRresponse is copied.

RspBufferSize a pointer to the size of the buffer

HBA_SendRLS()
HBA_SendLIRR()

A size of 28 is sufficient for the largest response.

HBA_SendRPS()
A size of 58 is sufficient for the largest response.

HBA_SendSRL()
A size of 8 is sufficient for the largest response.

HBA_SendRLS(3HBAAPI)

586 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

The HBA_SendRLS() function returns the Link Error Status Block associated with the
agent WWN or agent-domain. For more information see "Read Link Status Block
(RLS)" in FC-FS.

The HBA_SendRPL() function returns the Read Port List associated with the agent
WWN or agent-domain. For more information see "Read Port List (RPL)" in FC-FS.

The HBA_SendRPS() function returns the Read Port Status Block associated with the
agent WWN or agent-domain. For more information see "Read Port Status Block(RPS)"
in FC-FS.

The HBA_SendSRL() function returns the Scan Remote Loop associated with the
agent WWN or agent-domain. For more information see "Scan Remote Loop(SRL)" in
FC-FS.

The HBA_SendLIRR() function returns the Link Incident Record Registration
associated with the destportWWN. For more information see "Link Incident Record
Registration (LIRR) in FC-FS.

These functions return the following values:

HBA_STATUS_OK
The LS_ACC for the ELS has been returned.

HBA_STATUS_ERROR_ELS_REJECT
The ELS has been rejeced by the local HBA Port.

HBA_STATUS_ERROR_ILLEGAL_WWN
The value of hbaPortWWN is not a valid port WWN on the specified HBA.

HBA_STATUS_ERROR
An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_OpenAdapter(3HBAAPI), libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_SendRLS(3HBAAPI)

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 587

http://www.t11.org

HBA_SendScsiInquiry, HBA_ScsiInquiryV2, HBA_SendReportLUNs,
HBA_ScsiReportLUNsV2, HBA_SendReadCapacity, HBA_ScsiReadCapacityV2 –
gather SCSI information from discovered ports

cc [flag...] file... -lHBAAPI [library...]

#include <hbaapi.h>

HBA_STATUS HBA_SendScsiInquiry(HBA_HANDLE handle, HBA_WWN PortWWN,
HBA_UINT64 fcLUN, HBA_UINT8 EVPD, HBA_UINT32 PageCode, void
*pRspBuffer, HBA_UINT32 RspBufferSize, void *pSenseBuffer, HBA_UINT32
SenseBufferSize);

HBA_STATUS HBA_ScsiInquiryV2(HBA_HANDLE handle, HBA_WWN
hbaPortWWN, HBA_WWN discoveredPortWWN, HBA_UINT64 fcLUN,
HBA_UINT8 CDB_BYTE1, HBA_UINT8 CDB_BYTE2, void *pRspBuffer,
HBA_UINT32 *pRspBufferSize, HBA_UINT8 *pScsiStatus, void *pSenseBuffer,
HBA_UINT32 *pSenseBufferSize);

HBA_STATUS HBA_SendReportLUNs(HBA_HANDLE handle, HBA_WWN PortWWN,
void *pRspBuffer, HBA_UINT32 RspBufferSize, void *pSenseBuffer,
HBA_UINT32 SenseBufferSize);

HBA_STATUS HBA_ScsiReportLUNsV2(HBA_HANDLE handle, HBA_WWN
hbaPortWWN, HBA_WWN discoveredPortWWN, void *pRspBuffer,
HBA_UINT32 *pRspBufferSize, HBA_UINT8 *pScsiStatus, void *pSenseBuffer,
HBA_UINT32 *pSenseBufferSize);

HBA_STATUS HBA_SendReadCapacity(HBA_HANDLE handle, HBA_WWN
PortWWN, HBA_UINT64 fcLUN, void *pRspBuffer, HBA_UINT32
RspBufferSize, void *pSenseBuffer, HBA_UINT32 SenseBufferSize);

HBA_STATUS HBA_ScsiReadCapacityV2(HBA_HANDLE handle, HBA_WWN
hbaPortWWN, HBA_WWN discoveredPortWWN, HBA_UINT64 fcLUN, void
*pRspBuffer, HBA_UINT32 *pRspBufferSize, HBA_UINT8 *pScsiStatus, void
*pSenseBuffer, HBA_UINT32 *pSenseBufferSize);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

PortWWN the port WWN of the discovered remote device to which the
command is sent

hbaPortWWN

HBA_ScsiInquiryV2()
the Port WWN of the local HBA through which the SCSI
INQUIRY command is issued

HBA_ScsiReportLUNsV2()
the Port WWN of the local HBA through which the SCSI
REPORT LUNS command is issued

HBA_ScsiReadCapacityV2()
the Port WWN of a local HBA through which the SCSI READ
CAPACITY command is issued

HBA_SendScsiInquiry(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

588 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

discoveredPortWWN

HBA_ScsiInquiryV2()
the Remote Port WWN to which the SCSI INQUIRY command
is being sent

HBA_ScsiReportLUNsV2()
the Remote Port WWN to which the SCSI REPORT LUNS
command is sent

HBA_ScsiReadCapacityV2()
the Remote Port WWN to which the SCSI READ CAPACITY
command is sent

fcLUN the FCP LUN as defined in the T10 specification SAM-2 to which
the command is sent

EVPD If set to 0, indicates a Standard Inquiry should be returned. If set to
1, indicates Vital Product Data should be returned.

PageCode If EVPD is set to 1, PageCode indicates which Vital Product Data
page should be returned.

CDB_Byte1 the second byte of the CDB for the SCSI INQUIRY command

CDB_Byte2 the third byte of the CDB for the SCSI INQUIRY command

pRspBuffer a buffer in which to store the response payload

RspBufferSize the size of the response buffer

pRspBufferSize a pointer to the size of the response buffer

pScsiStatus a buffer to receive SCSI sense data

pSenseBuffer a buffer in which to store any SCSI sense data

SenseBufferSize the size of the sense buffer

pSenseBufferSize a pointer to the size of the sense buffer

The HBA_SendScsiInquiry() and HBA_SendScsiInquiryV2() functions send a
SCSI Inquiry command as defined in the T10 specification SPC-2 to a remote FCP port.

The HBA_SendReportLUNs() and HBA_SendReportLUNsV2() functions send a
SCSI Report LUNs command as defined in the T10 specification SPC-2 to a remote
FCP port.

The HBA_SendReadCapacity() and HBA_SendReadCapacityV2() functions end
a SCSI Read Capacity command as defined in the T10 specification SBC-2 to a remote
FCP port.

The HBA_SendScsiInquiry() function returns the following value:

HBA_SendScsiInquiry(3HBAAPI)

DESCRIPTION

RETURN VALUES

Extended Library Functions 589

HBA_STATUS_OK
The command has completed. Success or failure should be determined by verifying
that the sense data does not contain a check-condition. If a check-condition is
present, the content of pRspBuffer is undefined.

The HBA_ScsiInquiryV2() function returns the following values:

HBA_STATUS_OK
The command has completed. The complete payload of the SCSI INQUIRY
command is returned in pRspBuffer.

HBA_STATUS_ERROR_ILLEGAL_WWN
The port WWN hbaPortWWN is not a WWN contained by the HBA specified by
handle.

HBA_STATUS_ERROR_NOT_A_TARGET
The identified remote Port does not have SCSI Target functionality.

HBA_STATUS_ERROR_TARGET_BUSY
The command cannot be sent due to a SCSI overlapped command condition.

HBA_STATUS_ERROR
An error occurred.

The HBA_SendReportLUNs() function returns the following values:

HBA_STATUS_OK
The command has completed. Success or failure should be determined by verifying
the sense data does not contain a check-condition. If a check-condition is present,
the content of pRspBuffer is undefined.

HBA_STATUS_SCSI_CHECK_CONDITION
The HBA detected a check-condition state. Details are present in the pSenseBuffer
payload. The content of pRspBuffer is undefined. Not all VSLs support this error
condition.

Other error values indicate the content of pRspBuffer is undefined. In some cases, the
pSenseBuffer can contain sense data.

The HBA_SendReportLUNsV2() function returns the following values:

HBA_STATUS_OK
The command has completed. Sense data must be verified to ensure that it does not
contain a check-condition to determine success. If a check-condition is present, the
content of pRspBuffer is undefined.

HBA_STATUS_ERROR_ILLEGAL_WWN
The port WWN hbaPortWWN is not a WWN contained by the HBA specified by
handle.

HBA_STATUS_ERROR_NOT_A_TARGET
The identified remote Port does not have SCSI Target functionality.

HBA_STATUS_ERROR_TARGET_BUSY
The command cannot be sent due to a SCSI overlapped command condition.

HBA_SendScsiInquiry(3HBAAPI)

590 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

HBA_STATUS_ERROR
An error occurred.

The HBA_SendReadCapacity() function returns the following values:

HBA_STATUS_OK
The command has completed. Success or failure should be determined by verifying
that the sense data does not contain a check-condition. If a check-condition is
present, the content of pRspBuffer is undefined.

HBA_STATUS_SCSI_CHECK_CONDITION
The HBA detected a check-condition state. Details are present in the pSenseBuffer
payload. The content of pRspBuffer is undefined. Not all VSLs support this error
condition.

Other error values indicate the content of pRspBuffer is undefined. In some cases, the
pSenseBuffer can contain sense data.

The HBA_ScsiReadCapacityV2() function returns the following values:

HBA_STATUS_OK
The command has completed. Sense data must be verified to ensure that it does not
contain a check-condition to determine success. If a check-condition is present, the
content of pRspBuffer is undefined.

HBA_STATUS_ERROR_ILLEGAL_WWN
The port WWN hbaPortWWN is not a WWN contained by the HBA specified by
handle.

HBA_STATUS_ERROR_NOT_A_TARGET
The identified remote Port does not have SCSI Target functionality.

HBA_STATUS_ERROR_TARGET_BUSY
The command cannot be sent due to a SCSI overlapped command condition.

HBA_STATUS_ERROR
An error occurred.

Other error values indicate the content of pRspBuffer is undefined. In some cases, the
pSenseBuffer can contain sense data.

See libhbaapi(3LIB) for general error status values.

EXAMPLE 1 Send a SCSI inquiry to the given discovered Target port WWN.

The following example sends a SCSI inquiry to the given discovered Target port
WWN.

memset(&inq, 0, sizeof (inq));
memset(&sense, 0, sizeof (sense));
if ((status = HBA_SendScsiInquiry(handle,

discPortAttrs.PortWWN, 0, 0, 0, &inq,
sizeof (inq), &sense, sizeof (sense))) !=
HBA_STATUS_OK) {

HBA_SendScsiInquiry(3HBAAPI)

ERRORS

EXAMPLES

Extended Library Functions 591

EXAMPLE 1 Send a SCSI inquiry to the given discovered Target port WWN. (Continued)

fprintf(stderr, "Unable to send SCSI "
"inquiry, reason %d\n", status);

continue;
}
printf(" Vendor: %.*s\n", 8, inq.inq_vid);

printf(" Model: %.*s\n", 16, inq.inq_pid);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_OpenAdapter(3HBAAPI), libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

The HBA_SendScsiInquiry(), HBA_SendReportLUNs(), and
HBA_SendReadCapacity() functions do not take a portindex to define through
which port of a multi-ported HBA the command should be sent. The behavior on
multi-ported HBAs is vendor-specific and can result in the command being sent
through the first HBA port, the first HBA port the given PortWWN is connected to, or
other vendor-specific behavior. SNIA version 2 defines HBA_ScsiInquiryV2(),
HBA_ScsiReportLUNs(), and HBA_ScsiReadCapacity() to take a Port WWN as
an argument. This fixes the bug with multi-ported HBAs in HBA_ScsiInquiry(),
HBA_SendReportLUNs(), and HBA_SendReadCapacity().

HBA_SendScsiInquiry(3HBAAPI)

ATTRIBUTES

SEE ALSO

BUGS

592 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

HBA_SetRNIDMgmtInfo, HBA_GetRNIDMgmtInfo, HBA_SendRNID,
HBA_SendRNIDV2 – access Fibre Channel Request Node Identification Data (RNID)

cc [flag...] file... -lHBAAPI [library...]
#include <hbaapi.h>

HBA_STATUS HBA_SetRNIDMgmtInfo(HBA_HANDLE handle, HBA_MGMTINFO
*pInfo);

HBA_STATUS HBA_GetRNIDMgmtInfo(HBA_HANDLE handle, HBA_MGMTINFO
*pInfo);

HBA_STATUS HBA_SendRNID(HBA_HANDLE handle, HBA_WWN wwn ,
HBA_WWNTYPE wwntype , void *pRspBuffer , HBA_UINT32 *RspBufferSize);

HBA_STATUS HBA_SendRNIDV2(HBA_HANDLE handle, HBA_WWN hbaPortWWN ,
HBA_WWN destWWN , HBA_UINT32 destFCID , HBA_UINT32
NodeIdDataFormat , void *pRspBuffer , HBA_UINT32 *RspBufferSize);

handle an open handle returned from HBA_OpenAdapter(3HBAAPI)

pInfo

HBA_SetRNIDMgmtInfo()
a pointer to a HBA_MGMTINFO structure containing the new
RNID

HBA_GetRNIDMgmtInfo()
a pointer to a HBA_MGMTINFO structure into which the RNID
is copied

wwn the discovered port WWN to which the request is sent

wwntype deprecated

hbaPortWWN the Port WWN of the local HBA through which to send the ELS

destWWN the Port WWN of the remote Target to which the ELS is sent

destFCID If destFCID is non-zero, destFCID is the address identifier of the
remote target to which the ELS is sent. If destFCID is 0, destFCID is
ignored.

NodeIdDataFormat the Node Identification Data Fromat value as defined in FC-FS

pRspBuffer A pointer to a buffer into which the RNID response is copied . The
data will be in Big Endian format.

RspBufferSize A pointer to the size of the buffer. On completion it will contain the
size of the actual response payload copied into the buffer.

These functions access Fibre Channel Request Node Identification Data (RNID) as
defined in the T11 specification FC-FS.

The HBA_SetRNIDMgmtInfo() function sets the RNID returned from by HBA.

The HBA_GetRNIDMgmtInfo() function retrieves the stored RNID from the HBA.

HBA_SetRNIDMgmtInfo(3HBAAPI)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 593

The HBA_SendRNID() function sends an RNID request to a discovered port. The
Node Identification Data format is always set to 0xDF for General Topology Discovery
Format as defined in the T11 specification FC-FS.

The HBA_SendRNIDV2() function sends an RNID request to a discovered port
requesting a specified Node Identification Data format.

Upon successful completion, HBA_SetRNIDMgmtInfo() returns HBA_STATUS_OK
and sets the RNID.

Upon successful completion, HBA_GetRNIDMgmtInfo() returns HBA_STATUS_OK.
Otherwise, an error value is returned and the content of pInfo is undefined.

Upon successful completion, HBA_SendRNID() returns HBA_STATUS_OK. Otherwise,
an error value is returned and the content of pRspBuffer is undefined.

The HBA_SendRNIDV2() returns the following values:

HBA_STATUS_OK
The RNID ELS has been successfully returned.

HBA_STATUS_ERROR_ELS_REJECT
The RNID ELS was rejected by the HBA Port.

HBA_STATUS_ERROR_ILLEGAL_WWN
The value of hbaPortWWN is not a valid port WWN on the specified HBA.

HBA_STATUS_ERROR_ILLEGAL_FCID
The destWWN/destFCID pair conflicts with a discovered Port Name/address
identifier pair known by the HBA.

HBA_STATUS_ERROR_ILLEGAL_FCID
The N_Port WWN in the RNID response does not match destWWN.

HBA_STATUS_ERROR
An error occurred.

See attributes(5) for general error status values.

See libhbaapi(3LIB) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

MT-Level Safe

HBA_OpenAdapter(3HBAAPI), libhbaapi(3LIB), attributes(5)

T11 FC-MI Specification

HBA_SetRNIDMgmtInfo(3HBAAPI)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

594 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2003

http://www.t11.org

The HBA_SetRNIDMgmtInfo() and HBA_GetRNIDMgmtInfo() functions do not
take a portindex to define to which port of a multi-ported HBA the command should
apply. The behavior on multi-ported HBAs is vendor-specific and can result in all
ports being set to the same value.

The HBA_SetRNIDMgmtInfo() and HBA_GetRNIDMgmtInfo() functions allow
only 0xDF (General Topology Discovery Format).

The HBA_SendRNID() function does not take a portindex to define through which
port of a multi-ported HBA to send the command. The behavior on multi-ported
HBAs is vendor-specific and can result in the command being sent through the first
port.

The HBA_SendRNID() function does not take an argument to specify the Node
Identification Data Format. It always assumes that 0xDF (General Topology Discovery
Format) is desired. SNIA version 2 defines HBA_SendRNIDV2() to take a Port WWN
and a Node Data Format. This fixes the bugs with multi-ported HBAs of allowing
only0xDF (General Topology Discovery Format) in HBA_SendRNID().

HBA_SetRNIDMgmtInfo(3HBAAPI)

BUGS

Extended Library Functions 595

hypot, hypotf, hypotl – Euclidean distance function

cc [flag...] file... -lm [library...]

#include <math.h>

double hypot(double x, double y);

float hypotf(float x, float y);

long double hypotl(long double x, long double y);

These functions compute the length of the square root of x2 + y2 without undue
overflow or underflow.

Upon successful completion, these functions return the length of the hypotenuse of a
right angled triangle with sides of length x2 and y2.

If the correct value would cause overflow, a range error occurs and hypot(),
hypotf(), and hypotl() return the value of the macro HUGE_VAL, HUGE_VALF, and
HUGE_VALL, respectively.

If x or y is ±Inf, +Inf is returned even if one of x or y is NaN.

If x or y is NaN and the other is not ±Inf, a NaN is returned.

These functions will fail if:

Range Error The result overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception is raised.

hypot(x,y), hypot(y,x), and hypot(x, −y) are equivalent.

hypot(x, ±0) is equivalent to fabs(x).

These functions takes precautions against underflow and overflow during
intermediate steps of the computation.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

hypot(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

596 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

fabs(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M),
math.h(3HEAD), sqrt(3M), attributes(5), standards(5)

hypot(3M)

SEE ALSO

Extended Library Functions 597

idn_decodename, idn_decodename2, idn_enable, idn_encodename, idn_nameinit –
IDN (Internationalized Domain Name) conversion functions

cc [flag...] file... -lidnkit [library...]

#include <idn/api.h>

idn_result_t idn_decodename(int actions, const char *from, char *to,
size_t tolen);

idn_result_t idn_decodename2(int actions, const char *from, char *to,
size_t tolen, const char *auxencoding);

idn_result_t idn_encodename(int actions, const char *from, char *to,
size_t tolen);

void idn_enable(int on_off);

idn_result_t idn_nameinit(int load_file);

The idn_nameinit() function initializes the library. It also sets default configuration
if load_file is 0, otherwise it tries to read a configuration file. If idn_nameinit() is
called more than once, the library initialization will take place only at the first call
while the actual configuration procedure will occur at every call.

If there are no errors, idn_nameinit() returns idn_success. Otherwise, the
returned value indicates the cause of the error. See the section RETURN VALUES
below for the error codes.

It is usually not necessary to call this function explicitly because it is implicitly called
when idn_encodename(), idn_decodename(), or idn_decodename2() is first
called without prior calling of idn_nameinit().

The idn_encodename() function performs name preparation and encoding
conversion on the internationalized domain name specified by from, and stores the
result to to, whose length is specified by tolen. The actions argument is a bitwise-OR of
the following macros, specifying which subprocesses in the encoding process are to be
employed.

IDN_LOCALCONV Local encoding to UTF-8 conversion

IDN_DELIMMAP Delimiter mapping

IDN_LOCALMAP Local mapping

IDN_NAMEPREP NAMEPREP mapping, normalization, prohibited
character check, and bidirectional string check

IDN_UNASCHECK NAMEPREP unassigned codepoint check

IDN_ASCCHECK ASCII range character check

IDN_IDNCONV UTF-8 to IDN encoding conversion

IDN_LENCHECK Label length check

Details of this encoding process can be found in the section Name Encoding

idn_decodename(3EXT)

NAME

SYNOPSIS

DESCRIPTION

598 man pages section 3: Extended Library Functions • Last Revised 15 Aug 2003

For convenience, also IDN_ENCODE_QUERY, IDN_ENCODE_APP, and
IDN_ENCODE_STORED macros are provided. IDN_ENCODE_QUERY is used to encode a
‘‘query string’’ (see the IDNA specification). It is equal to:

(IDN_LOCALCONV | IDN_DELIMMAP | IDN_LOCALMAP | IDN_NAMEPREP |

IDN_IDNCONV | IDN_LENCHECK)

IDN_ENCODE_APP is used for ordinary application to encode a domain name. It
performs IDN_ASCCHECK in addition with IDN_ENCODE_QUERY.
IDN_ENCODE_STORED is used to encode a ‘‘stored string’’ (see the IDNA
specification). It performs IDN_ENCODE_APP plus IDN_UNASCHECK.

The idn_decodename() function performs the reverse of idn_encodename(). It
converts the internationalized domain name given by from, which is represented in a
special encoding called ACE (ASCII Compatible Encoding), to the application’s local
codeset and stores in to, whose length is specified by tolen. As in idn_encodename(),
actions is a bitwise-OR of the following macros.

IDN_DELIMMAP Delimiter mapping

IDN_NAMEPREP NAMEPREP mapping, normalization, prohibited
character check and bidirectional string check

IDN_UNASCHECK NAMEPREP unassigned codepoint check

IDN_IDNCONV UTF-8 to IDN encoding conversion

IDN_RTCHECK Round trip check

IDN_ASCCHECK ASCII range character check

IDN_LOCALCONV Local encoding to UTF-8 conversion

Details of this decoding process can be found in the section Name Decoding.

For convenience, IDN_DECODE_QUERY, IDN_DECODE_APP, and
IDN_DECODE_STORED macros are also provided. IDN_DECODE_QUERY is used to
decode a ‘‘query string’’ (see the IDNA specification). It is equal to

(IDN_DELIMMAP | IDN_NAMEPREP | IDN_IDNCONV | IDN_RTCHECK | IDN_LOCALCONV)

IDN_DECODE_APP is used for ordinary application to decode a domain name. It
performs IDN_ASCCHECK in addition to IDN_DECODE_QUERY. IDN_DECODE_STORED
is used to decode a ‘‘stored string’’ (see the IDNA specification). It performs
IDN_DECODE_APP plus IDN_UNASCHECK.

The idn_decodename2() function provides the same functionality as
idn_decodename() except that character encoding of from is supposed to be
auxencoding. If IDN encoding is Punycode and auxencoding is ISO8859-2, for
example, it is assumed that the Punycode string stored in from is written in ISO8859-2.

idn_decodename(3EXT)

Extended Library Functions 599

In the IDN decode procedure, IDN_NAMEPREP is done before IDN_IDNCONV, and
some non-ASCII characters are converted to ASCII characters as the result of
IDN_NAMEPREP. Therefore, ACE string specified by from might contains those
non-ASCII characters. That is the reason docode_name2() exists.

All of thsee functions return an error value of type idn_result_t. All values other
than idn_success indicates some kind of failure.

Name encoding is a process that transforms the specified internationalized domain
name to a certain string suitable for name resolution. For each label in a given domain
name, the encoding processor performs:

1. Convert to UTF-8 (IDN_LOCALCONV)

Convert the encoding of the given domain name from application’s local encoding
(for example, ISO8859-1) to UTF-8.

2. Delimiter mapping (IDN_DELIMMAP)

Map domain name delimiters to ‘.’ (U+002E). The reco- ginzed delimiters are:
U+3002 (ideographic full stop), U+FF0E (fullwidth full stop), U+FF61 (halfwidth
ideographic full stop).

3. Local mapping (IDN_LOCALMAP)

Apply character mapping whose rule is determined by the top-level domain name.

4. NAMEPREP (IDN_NAMEPREP, IDN_UNASCHECK)

Perform name preparation (NAMEPREP), which is a standard process for name
canonicalizaion of internationalized domain names.

NAMEPREP consists of 5 steps: mapping, normalization, prohibited character check,
bidirectional text check, and unassigned codepoint check. The first four steps are
done by IDN_NAMEPREP, and the last step is done by IDN_UNASCHECK.

5. ASCII range character check (IDN_ASCCHECK)

Checks if the domain name contains non-LDH ASCII characters (not letter, digit, or
hyphen characters), or it begins or end with hyphen.

6. Convert to ACE (IDN_IDNCONV)

Convert the NAMEPREPed name to a special encoding designed for representing
internationalized domain names.

The encoding is known as ACE (ASCII Compatible Encoding) since a string in the
encoding is just like a traditional ASCII domain name consisting of only letters,
digits and hyphens.

7. Label length check (IDN_LENCHECK)

For each label, check the number of characters in it. It must be in the range of 1 to
63.

idn_decodename(3EXT)

Name Encoding

600 man pages section 3: Extended Library Functions • Last Revised 15 Aug 2003

Name decoding is a reverse process of the name encoding. It transforms the specified
internationalized domain name in a special encoding suitable for name resolution to
the normal name string in the application’s current codeset. However, name encoding
and name decoding are not symmetric.

For each label in a given domain name, the decoding processor performs:

1. Delimiter mapping (IDN_DELIMMAP)

Map domain name delimiters to ‘.’ (U+002E). The recoginzed delimiters are:
U+3002 (ideographic full stop), U+FF0E (fullwidth full stop), U+FF61 (halfwidth
ideographic full stop).

2. NAMEPREP (IDN_NAMEPREP, IDN_UNASCHECK)

Perform name preparation (NAMEPREP), which is a standard process for name
canonicalizaion of internationalized domain names.

3. Convert to UTF-8 (IDN_IDNCONV)

Convert the encoding of the given domain name from ACE to UTF-8.

4. Round trip check (IDN_RTCHECK)

Encode the result of (3) using the Name Encoding scheme, and then compare it
with the result of the step (2). If they are different, the check is failed. If
IDN_UNASCHECK, IDN_ASCCHECK or both are specified, they are also done in the
encoding processes.

5. Convert to local encoding

Convert the result of (3) from UTF-8 to the application’s local encoding (for
example, ISO8859-1).

If prohibited character check, unassigned codepoint check or bidirectional text check
at step (2) failed, or if round trip check at step (4) failed, the original input label is
returned.

If your application should always disable internationalized domain name support for
some reason, call

(void) idn_enable(0);

before performing encoding/decoding. Afterward, you can enable the support by
calling

(void) idn_enable(1);

These functions return values of type idn_result_t to indicate the status of the call.
The following is a complete list of the status codes.

idn_success Not an error. The call succeeded.

idn_notfound Specified information does not exist.

idn_invalid_encoding The encoding of the specified string is
invalid.

idn_decodename(3EXT)

Name Decoding

Disabling IDN

RETURN VALUES

Extended Library Functions 601

idn_invalid_syntax There is a syntax error in internal
configuration file(s).

idn_invalid_name The specified name is not valid.

idn_invalid_message The specified message is not valid.

idn_invalid_action The specified action contains invalid flags.

idn_invalid_codepoint The specified Unicode code point value is
not valid.

idn_invalid_length The number of characters in an ACE label is
not in the range of 1 to 63.

idn_buffer_overflow The specified buffer is too small to hold the
result.

idn_noentry The specified key does not exist in the hash
table.

idn_nomemory Memory allocation using malloc failed.

idn_nofile The specified file could not be opened.

idn_nomapping Some characters do not have the mapping
to the target character set.

idn_context_required Context information is required.

idn_prohibited The specified string contains some
prohibited characters.

idn_failure Generic error which is not covered by the
above codes.

EXAMPLE 1 Get the address of an internationalized domain name.

To get the address of an internationalized domain name in the application’s local
codeset, use idn_encodename() to convert the name to the format suitable for
passing to resolver functions.

#include <idn/api.h>
#include <sys/socket.h>
#include <netdb.h>

...

idn_result_t r;
char ace_name[256];
struct hostent *hp;
int error_num;

...

r = idn_encodename(IDN_ENCODE_APP, name, ace_name,
sizeof(ace_name));

idn_decodename(3EXT)

EXAMPLES

602 man pages section 3: Extended Library Functions • Last Revised 15 Aug 2003

EXAMPLE 1 Get the address of an internationalized domain name. (Continued)

if (r != idn_success) {
fprintf(stderr, gettext("idn_encodename failed.\n"));
exit(1);

}

hp = getipnodebyname(ace_name, AF_INET6, AI_DEFAULT, &error_num);

...

EXAMPLE 2 Decode the internationalized domain name.

To decode the internationalized domain name returned from a resolver function, use
idn_decodename().

#include <idn/api.h>
#include <sys/socket.h>
#include <netdb.h>

...

idn_result_t r;
char local_name[256];
struct hostent *hp;
int error_num;

...

hp = getipnodebyname(name, AF_INET, AI_DEFAULT, &error_num);
if (hp != (struct hostent *)NULL) {

r = idn_decodename(IDN_DECODE_APP, hp->h_name, local_name,
sizeof(local_name));

if (r != idn_success) {
fprintf(stderr, gettext("idn_decodename failed.\n"));
exit(1);

}
printf(gettext("name: %s\n"), local_name);

}

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWidnl, SUNWidnd

CSI Enabled

Interface Stability Evolving

MT-Level Unsafe

idn_decodename(3EXT)

ATTRIBUTES

Extended Library Functions 603

intro(3), libidnkit(3LIB), setlocale(3C), hosts(4), attributes(5),
environ(5)

RFC 3490 Internationalizing Domain Names in Applications (IDNA)

RFC 3491 Nameprep: A Stringprep Profile for Internationalized Domain
Names (IDN)

RFC 3492 Punycode: A Bootstring encoding of Unicode for Internationalized
Domain Names in Applications (IDNA)

RFC 3454 Preparation of Internationalized Strings ("stringprep")

RFC 952 DoD Internet Host Table Specification

RFC 921 Domain Name System Implementation Schedule - Revised

STD 3, RFC 1122 Requirements for Internet Hosts -- Communication Layers

STD 3, RFC 1123 Requirements for Internet Hosts -- Applications and Support

Unicode Standard Annex #15: Unicode Normalization Forms, Version 3.2.0.
http://www.unicode.org/unicode/reports/tr15/tr15-22.html

International Language Environments Guide (for this version of Solaris)

Copyright (c) 2000-2002 Japan Network Information Center. All rights reserved.

By using this file, you agree to the terms and conditions set forth bellow.

LICENSE TERMS AND CONDITIONS

The following License Terms and Conditions apply, unless a different license is
obtained from Japan Network Information Center ("JPNIC"), a Japanese association,
Kokusai-Kougyou-Kanda Bldg 6F, 2-3-4 Uchi-Kanda, Chiyoda-ku, Tokyo 101-0047,
Japan.

1. Use, Modification and Redistribution (including distribution of any modified or
derived work) in source and/or binary forms is permitted under this License
Terms and Conditions.

2. Redistribution of source code must retain the copyright notices as they appear in
each source code file, this License Terms and Conditions.

3. Redistribution in binary form must reproduce the Copyright Notice, this License
Terms and Conditions, in the documentation and/or other materials provided with
the distribution. For the purposes of binary distribution the "Copyright Notice"
refers to the following language: "Copyright (c) 2000-2002 Japan Network
Information Center. All rights reserved."

4. The name of JPNIC may not be used to endorse or promote products derived from
this Software without specific prior written approval of JPNIC.

idn_decodename(3EXT)

SEE ALSO

COPYRIGHT
AND LICENSE

604 man pages section 3: Extended Library Functions • Last Revised 15 Aug 2003

http://www.unicode.org/unicode/reports/tr15/tr15-22.hhml

5. Disclaimer/Limitation of Liability: THIS SOFTWARE IS PROVIDED BY JPNIC "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL JPNIC BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The idn_nameinit() function checks internal system configuration files such as
/etc/idn/idn.conf and /etc/idn/idnalias.conf if they are in the proper
access mode and owership. If they are not in the proper access mode or ownership,
the function will not read and use the configurations defined in the files but use
default values. In this case the function will also issue a warning message such as:

idn_nameinit: warning: config file (/etc/idn/idn.conf) not in proper

access mode or ownership - the file ignored.

The proper access mode and the ownership are described in the package prototype file
of SUNWidnl. It is also recommended not to change the system configuration files.

idn_decodename(3EXT)

NOTES

Extended Library Functions 605

IFDHCloseChannel – close the communication channel with an IFD

#include <smartcard/ifdhandler.h>

RESPONSECODE IFDHCloseChannel(DWORD Lun);

The IFDHCloseChannel() function takes the following parameters:

Lun Logical Unit Number

The IFDHCloseChannel() function closes the communication channel for the
Interface Device (IFD) specified by Lun. If a smart card is present in the slot, it must be
powered down. All internal resources (such as file descriptors) associated with this
IFD can be freed with this function.

The following values are returned:

IFD_SUCCESS Successful completion.

IFD_COMMUNICATION_ERROR An error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

IFDHCreateChannelByName(3SMARTCARD), attributes(5)

This manual page is derived from the MUSCLE PC/SC IFD Driver Developer Kit
documentation. License terms and attribution and copyright information for this
interface are available at the default location
/var/sadm/pkg/SUNWocfh/install/copyright. If the Solaris Operating
Environment has been installed anywhere other than the default location, modify the
path to access the file at the installed location.

IFDHCloseChannel(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Input

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

606 man pages section 3: Extended Library Functions • Last Revised 4 Dec 2002

IFDHControl – send control information to an IFD

#include <smartcard/ifdhandler.h>

RESPONSECODE IFDHControl(DWORD Lun, PUCHAR TxBuffer, DWORD TxLength,
PUCHAR RxBuffer, PDWORD RxLength);

The IFDHControl() function takes the following parameters:

Lun Logical Unit Number

TxBuffer Control bytes to send

TxLength Length of bytes to send

RxLength Expected length of response

RxBuffer Buffer to receive response

RxLength Length of response received

The IFDHControl() performs control information exchange with some types of
readers such as PIN pads, biometrics, and LCD panels according to the MCT and
CTBCS specification. This function does not exchange data with the card.

The following values are returned:

IFD_SUCCESS Successful completion.

IFD_RESPONSE_TIMEOUT The response has timed out.

IFD_COMMUNICATION_ERROR An error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

IFDHCreateChannelByName(3SMARTCARD), attributes(5)

This manual page is derived from the MUSCLE PC/SC IFD Driver Developer Kit
documentation. License terms and attribution and copyright information for this
interface are available at the default location
/var/sadm/pkg/SUNWocfh/install/copyright. If the Solaris Operating
Environment has been installed anywhere other than the default location, modify the
path to access the file at the installed location.

IFDHControl(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Input

Output

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 607

IFDHCreateChannel – create a communication channel with an IFD

#include <smartcard/ifdhandler.h>

RESPONSECODE IFDHCreateChannel(DWORD Lun, DWORD Channel);

The IFDHCreateChannel() function takes the following parameters:

Lun Logical Unit Number

Channel Channel ID

The IFDHCreateChannel() function is similar to
IFDHCreateChannelByName(3SMARTCARD). It takes Channel (a number) as an
argument instead of the device name string. The Channel argument is typically passed
from configuration information by the smart card framework server/daemon (the
caller) to the IFD handler. The IFD handler can use this Channel appropriately to create
a communication channel to the card terminal.

The following values are returned:

IFD_SUCCESS Successful completion.

IFD_COMMUNICATION_ERROR An error has occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

IFDHCreateChannelByName(3SMARTCARD), attributes(5)

This manual page is derived from the MUSCLE PC/SC IFD Driver Developer Kit
documentation. License terms and attribution and copyright information for this
interface are available at the default location
/var/sadm/pkg/SUNWocfh/install/copyright. If the Solaris Operating
Environment has been installed anywhere other than the default location, modify the
path to access the file at the installed location.

IFDHCreateChannel(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Input

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

608 man pages section 3: Extended Library Functions • Last Revised 4 Dec 2002

IFDHCreateChannelByName – create a communication channel with an IFD

#include <smartcard/ifdhandler.h>

RESPONSECODE IFDHCreateChannelByName(DWORD Lun, LPSTR devicename);

The IFDHCreateChannelByName() function takes the following parameters:

Lun Logical Unit Number

devicename Device name path

The IFDHCreateChannelByName() function opens a communication channel with
a card terminal specified by devicename. This function can use open(2) or other system
call to open the device and establish a communication path. The caller of this function
(smart card framework) assigns a logical unit number Lun per card terminal and slot
and passes this value to IFDHCreateChannelByName(). If the IFD handler supports
multiple terminals with one instance of the handler (as indicated by capability
TAG_IFD_SIMULTANEOUS_ACCESS), it communicates with the card terminal
corresponding to this Lun.

If the IFD handler supports only one terminal with one slot per instance, it can choose
to ignore the Lun.

The Logical Unit Number, Lun is encoded as 0xXXXXYYYY, where

YYYY represents the lower 16 bits that correspond to the slot number for
terminals with multiple slots. Most of the readers have only one slot, in
which case YYYY is 0.

XXXX represents the next 16 bits that correspond to the card terminal and can
range between 0 and a number returned by
TAG_IFD_SUMULTANEOUS_ACCESS.

The following values are returned:

IFD_SUCCESS Successful completion.

IFD_COMMUNICATION_ERROR An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

attributes(5)

IFDHCreateChannelByName(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Input

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 609

This manual page is derived from the MUSCLE PC/SC IFD Driver Developer Kit
documentation. License terms and attribution and copyright information for this
interface are available at the default location
/var/sadm/pkg/SUNWocfh/install/copyright. If the Solaris Operating
Environment has been installed anywhere other than the default location, modify the
path to access the file at the installed location.

IFDHCreateChannelByName(3SMARTCARD)

NOTES

610 man pages section 3: Extended Library Functions • Last Revised 4 Dec 2002

IFDHGetCapabilities – get IFD capabilities

#include <smartcard/ifdhandler.h>

RESPONSECODE IFDHGetCapabilities(DWORD Lun, DWORD Tag, PDWORD
Length, PUCHAR Value);

The IFDHGetCapabilities() function takes the following parameters:

Lun Logical Unit Number

Tag Tag of the desired data value

Length Maximum length of the desired data value

Length Length of the data returned

Value Value of the desired data

The IFDHGetCapabilities() function retrieves the terminal or card capabilities for
the terminal or card specified by Lun.

The Tag parameter can have one of the following values:

TAG_IFD_ATR Return the ATR (Answer To Reset). This is
the default value.

TAG_IFD_SIMULTANEOUS_ACCESS Return the number of sessions the driver
can handle. This value is used for multiple
terminals sharing the same IFD handler.

TAG_IFD_SLOTS_NUMBER Return the number of slots in this terminal.

If the TAG_IFD_SIMULTANEOUS_ACCESS and TAG_IFD_SLOTS_NUMBER tags are not
supported, the error value IFD_ERROR_TAG must be returned.

The following values are returned:

IFD_SUCCESS Successful completion.

IFD_ERROR_TAG An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

IFDHCreateChannelByName(3SMARTCARD), attributes(5)

IFDHGetCapabilities(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Input

Output

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 611

This manual page is derived from the MUSCLE PC/SC IFD Driver Developer Kit
documentation. License terms and attribution and copyright information for this
interface are available at the default location
/var/sadm/pkg/SUNWocfh/install/copyright. If the Solaris Operating
Environment has been installed anywhere other than the default location, modify the
path to access the file at the installed location.

IFDHGetCapabilities(3SMARTCARD)

NOTES

612 man pages section 3: Extended Library Functions • Last Revised 4 Dec 2002

IFDHICCPresence – check for the presence of a smart card

#include <smartcard/ifdhandler.h>

RESPONSECODE IFDHICCPresence(DWORD Lun);

The IFDHICCPresence() function takes the following parameter:

Lun Logical Unit Number

The IFDHICCPresence() function checks for the presence of an ICC (smart card) in
the reader or slot specified by Lun.

The following values are returned:

IFD_ICC_PRESENT ICC is present.

IFD_ICC_NOT_PRESENT ICC is not present.

IFD_COMMUNICATION_ERROR An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

IFDHCreateChannelByName(3SMARTCARD), attributes(5)

This manual page is derived from the MUSCLE PC/SC IFD Driver Developer Kit
documentation. License terms and attribution and copyright information for this
interface are available at the default location
/var/sadm/pkg/SUNWocfh/install/copyright. If the Solaris Operating
Environment has been installed anywhere other than the default location, modify the
path to access the file at the installed location.

IFDHICCPresence(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Input

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 613

IFDHPowerICC – power up or power down the smart card

#include <smartcard/ifdhandler.h>

RESPONSECODE IFDHPowerICC(DWORD Lun, DWORD Action, PUCHAR Atr,
PDWORD AtrLength);

The IFDHPowerICC() takes the following parameters:

Lun Logical Unit Number

Action Action to be taken

AtrLength Maximum length of the ATR

Atr Answer to Reset (ATR) value of the inserted card

AtrLength Actual length of the ATR

The IFDHPowerICC() function controls the power and reset signals of the ICC (smart
card) at the reader or slot specified by Lun. The Action parameter can take one of the
following values:

IFD_POWER_UP Power and reset the card. Return the ATR and its
length.

IFD_POWER_DOWN Power down the card. The Atr and AtrLength
parameters are set to 0.

IFD_RESET Perform a quick reset on the card. Return the ATR and
its length.

The IFD handler caches the ATR during a power up or reset and returns the ATR and
its length in a call to IFDHGetCapabilities(3SMARTCARD).

Memory cards without an ATR return IFD_SUCCESS on power up or reset but Atr
and AtrLength are set to 0.

The following values are returned:

IFD_SUCCESS Successful completion.

IFD_ERROR_POWER_ACTION An error occurred while powering up or
resetting the card.

IFD_NOT_SUPPORTED The action specified by Action is not
supported.

IFD_COMMUNICATION_ERROR An error occurred.

See attributes(5) for descriptions of the following attributes:

IFDHPowerICC(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Input

Output

DESCRIPTION

RETURN VALUES

ATTRIBUTES

614 man pages section 3: Extended Library Functions • Last Revised 4 Dec 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

IFDHCreateChannelByName(3SMARTCARD),
IFDHGetCapabilities(3SMARTCARD), attributes(5)

This manual page is derived from the MUSCLE PC/SC IFD Driver Developer Kit
documentation. License terms and attribution and copyright information for this
interface are available at the default location
/var/sadm/pkg/SUNWocfh/install/copyright. If the Solaris Operating
Environment has been installed anywhere other than the default location, modify the
path to access the file at the installed location.

IFDHPowerICC(3SMARTCARD)

SEE ALSO

NOTES

Extended Library Functions 615

IFDHSetCapabilities – set slot or card capabilities

#include <smartcard/ifdhandler.h>

RESPONSECODE IFDHSetCapabilities(DWORD Lun, DWORD Tag, DWORD
Length, PUCHAR Value);

The IFDHSetCapabilities() function takes the following parameters:

Lun Logical Unit Number

Tag Tag of the desired data value

Length Maximum length of the desired data value

Value Value of the desired data

The IFDHSetCapabilities() function sets the slot or card capabilities for the slot
or card specified by Lun.

The following values are returned:

IFD_SUCCESS Successful completion.

IFD_ERROR_TAG The tag is invalid.

IFD_ERROR_SET_FAILURE The value of the data could not be set.

IFD_COMMUNICATION_ERROR An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

IFDHCreateChannelByName(3SMARTCARD),
IFDHGetCapabilities(3SMARTCARD), attributes(5)

This manual page is derived from the MUSCLE PC/SC IFD Driver Developer Kit
documentation. License terms and attribution and copyright information for this
interface are available at the default location
/var/sadm/pkg/SUNWocfh/install/copyright. If the Solaris Operating
Environment has been installed anywhere other than the default location, modify the
path to access the file at the installed location.

IFDHSetCapabilities(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Input

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

616 man pages section 3: Extended Library Functions • Last Revised 4 Dec 2002

IFDHSetProtocolParameters – set protocol parameters

#include <smartcard/ifdhandler.h>

RESPONSECODE IFDHSetProtocolParameters(DWORD Lun, DWORD Protocol,
UCHAR Flags, UCHAR PTS1, UCHAR PTS2, UCHAR PTS3);

The IFDHSetProtocolParameters() function takes the following parameters:

Lun Logical Unit Number

Protocol Desired protocol

Flags The bitwise-inclusive OR of the flags

PTS1 1st PTS Value

PTS2 2nd PTS Value

PTS3 3rd PTS Value

The IFDHSetProtocolParameters() function sets the Protocol Type Selection
(PTS) of the slot or card using the three PTS values as defined in ISO 7816.

The Protocol parameter can take an integer value between 0 and 14, inclusive,
corresponding to the protocol T=0, T=1, ..., T=14.

The Flags parameter can have the value of one of the following or the bitwise-inclusive
OR of two or more of the following:

IFD_NEGOTIATE_PTS1 Use the PTS1 value.

IFD_NEGOTIATE_PTS2 Use the PTS2 value.

IFD_NEGOTIATE_PTS3 Use the PTS3 value.

The following values are returned:

IFD_SUCCESS Successful completion.

IFD_COMMUNICATION_ERROR An error occurred.

IFD_ERROR_PTS_FAILURE The PTS value could not be set.

IFD_PROTOCOL_NOT_SUPPORTED The protocol is not supported.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

IFDHCreateChannelByName(3SMARTCARD), attributes(5)

IFDHSetProtocolParameters(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Input

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 617

This manual page is derived from the MUSCLE PC/SC IFD Driver Developer Kit
documentation. License terms and attribution and copyright information for this
interface is available at the default location
/var/sadm/pkg/SUNWocfh/install/copyright. If the Solaris Operating
Environment has been installed anywhere other than the default location, modify the
path to access the file at the installed location.

IFDHSetProtocolParameters(3SMARTCARD)

NOTES

618 man pages section 3: Extended Library Functions • Last Revised 4 Dec 2002

IFDHTransmitToICC – transmit APDU to a smart card

#include <smartcard/ifdhandler.h>

RESPONSECODE IFDHTransmitToICC(DWORD Lun, SCARD_IO_HEADER SendPci,
PUCHAR TxBuffer, DWORD TxLength, PUCHAR RxBuffer, PDWORD RxLength,
PSCARD_IO_HEADER RecvPci);

The IFDHTransmitToICC() function takes the following parameters:

Lun Logical Unit Number

SendPci Send-Protocol structure

TxBuffer Buffer containing the APDU to be sent

TxLength Length of sent APDU

RxBuffer Received buffer for response APDU

RxLength Length of APDU-response

RecvPci Receive-Protocol structure

The IFDHTransmitToICC() function performs an Application Protocol Data Unit
(APDU) exchange with the card or slot specified by Lun. The IFD handler is
responsible for performing any protocol-specific (such as T0/T1) APDU exchanges
with the card.

The Protocol structure SCARD_IO_HEADER contains the following members:

Protocol Values range from 0 through 14, inclusive, indicating protocol T=0,
T=1, ..., T=14.

Length Not used.

The following values are returned:

IFD_SUCCESS Successful completion.

IFD_RESPONSE_TIMEOUT The response timed out.

IFD_ICC_NOT_PRESENT The card is not present.

IFD_PROTOCOL_NOT_SUPPORTED The protocol is not supported

IFD_COMMUNICATION_ERROR An error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

IFDHCreateChannelByName(3SMARTCARD), attributes(5)

IFDHTransmitToICC(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Input

Output

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 619

This manual page is derived from the MUSCLE PC/SC IFD Driver Developer Kit
documentation. License terms and attribution and copyright information for this
interface are available at the default location
/var/sadm/pkg/SUNWocfh/install/copyright. If the Solaris Operating
Environment has been installed anywhere other than the default location, modify the
path to access the file at the installed location.

IFDHTransmitToICC(3SMARTCARD)

NOTES

620 man pages section 3: Extended Library Functions • Last Revised 4 Dec 2002

ilogb, ilogbf, ilogbl – return an unbiased exponent

cc [flag...] file... -lm [library...]

#include <math.h>

int ilogb(double x);

int ilogbf(float x);

int ilogbl(long double x);

These functions return the exponent part of their argument x. Formally, the return
value is the integral part of logr| x | as a signed integral value, for non-zero x, where
r is the radix of the machine’s floating point arithmetic, , which is the value of
FLT_RADIX defined in <float.h>.

Upon successful completion, these functions return the exponent part of x as a signed
integer value. They are equivalent to calling the corresponding logb(3M) function
and casting the returned value to type int.

If x is 0, the value FP_ILOGB0 is returned. For SUSv3–conforming applications (see
standards(5)), a domain error occurs.

If x is ±Inf, the value INT_MAX is returned. For SUSv3–conforming applications, a
domain error occurs.

If x is NaN, the value FP_ILOGBNAN is returned. For SUSv3–conforming applications,
a domain error occurs.

These functions will fail if:

Domain Error The x argument is zero, NaN, or ±Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception is raised.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), limits.h(3HEAD), logb(3M),
math.h(3HEAD), scalb(3M), attributes(5), standards(5)

ilogb(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 621

isencrypt – determine whether a buffer of characters is encrypted

cc [flag…] [file…] -lgen [library…]

#include<libgen.h>

int isencrypt(const char *fbuf, size_t ninbuf);

isencrypt() uses heuristics to determine whether a buffer of characters is
encrypted. It requires two arguments: a pointer to an array of characters and the
number of characters in the buffer.

isencrypt() assumes that the file is not encrypted if all the characters in the first
block are ASCII characters. If there are non-ASCII characters in the first ninbuf
characters, and if the setlocale() LC_CTYPE category is set to C or ascii,
isencrypt() assumes that the buffer is encrypted

If the LC_CTYPE category is set to a value other than C or ascii, then isencrypt()
uses a combination of heuristics to determine if the buffer is encrypted. If ninbuf has at
least 64 characters, a chi-square test is used to determine if the bytes in the buffer have
a uniform distribution; if it does, then isencrypt() assumes the buffer is encrypted.
If the buffer has less than 64 characters, a check is made for null characters and a
terminating new-line to determine whether the buffer is encrypted.

If the buffer is encrypted, 1 is returned; otherwise, zero is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

setlocale(3C), attributes(5)

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

isencrypt(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

622 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

isfinite – test for finite value

#include <math.h>

int isfinite(real-floating x);

The isfinite() macro determines whether its argument has a finite value (zero,
subnormal, or normal, and not infinite or NaN). First, an argument represented in a
format wider than its semantic type is converted to its semantic type. Then
determination is based on the type of the argument.

The isfinite() macro returns a non-zero value if and only if its argument has a
finite value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fpclassify(3M), isinf(3M), isnan(3M), isnormal(3M), math.h(3HEAD),
signbit(3M), attributes(5), standards(5)

isfinite(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 623

isgreater – test if x greater than y

#include <math.h>

int isgreater(real-floating x, real-floating y);

The isgreater() macro determines whether its first argument is greater than its
second argument. The value of isgreater(x, y) is equal to (x) > (y); however, unlike
(x) > (y), isgreater(x, y) does not raise the invalid floating-point exception when x
and y are unordered.

Upon successful completion, the isgreater() macro returns the value of (x) > (y).

If x or y is NaN, 0 is returned.

No errors are defined.

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values, exactly one of the
relationships (less, greater, and equal) is true. Relational operators can raise the invalid
floating-point exception when argument values are NaNs. For a NaN and a numeric
value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates
writing efficient code that accounts for quiet NaNs without suffering the invalid
floating-point exception. In the SYNOPSIS section, real-floating indicates that the
argument is an expression of real-floating type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

isgreaterequal(3M), isless(3M), islessequal(3M), islessgreater(3M),
isunordered(3M), math.h(3HEAD), attributes(5), standards(5)

isgreater(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

624 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

isgreaterequal – test if x greater than or equal to y

#include <math.h>

int isgreaterequal(real-floating x, real-floating y);

The isgreaterequal() macro determines whether its first argument is greater than
or equal to its second argument. The value of isgreaterequal(x, y) is equal to (x) ≥
(y); however, unlike (x) ≥ (y), isgreaterequal(x, y) does not raise the invalid
floating-point exception when x and y are unordered.

Upon successful completion, the isgreaterequal() macro returns the value of (x) ≥
(y).

If x or y is NaN, 0 is returned.

No errors are defined.

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values, exactly one of the
relationships (less, greater, and equal) is true. Relational operators can raise the invalid
floating-point exception when argument values are NaNs. For a NaN and a numeric
value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates
writing efficient code that accounts for quiet NaNs without suffering the invalid
floating-point exception. In the SYNOPSIS section, real-floating indicates that the
argument is an expression of real-floating type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

isgreater(3M), isless(3M), islessequal(3M), islessgreater(3M),
isunordered(3M), math.h(3HEAD), attributes(5), standards(5)

isgreaterequal(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 625

isinf – test for infinity

#include <math.h>

int isinf(real-floating x);

The isinf() macro determines whether its argument value is an infinity (positive or
negative). First, an argument represented in a format wider than its semantic type is
converted to its semantic type. Then determination is based on the type of the
argument.

The isinf() macro returns a non-zero value if and only if its argument has an
infinite value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fpclassify(3M), isfinite(3M), isnan(3M), isnormal(3M), math.h(3HEAD),
signbit(3M), attributes(5), standards(5)

isinf(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

626 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

isless – test if x is less than y

#include <math.h>

int isless(real-floating x, real-floating y);

The isless() macro determines whether its first argument is less than its second
argument. The value of isless(x, y) is equal to (x) < (y); however, unlike (x) < (y),
isless(x, y) does not raise the invalid floating-point exception when x and y are
unordered.

Upon successful completion, the isless() macro returns the value of (x) < (y).

If x or y is NaN, 0 is returned.

No errors are defined.

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values, exactly one of the
relationships (less, greater, and equal) is true. Relational operators can raise the invalid
floating-point exception when argument values are NaNs. For a NaN and a numeric
value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates
writing efficient code that accounts for quiet NaNs without suffering the invalid
floating-point exception. In the SYNOPSIS section, real-floating indicates that the
argument is an expression of real-floating type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

isgreater(3M), isgreaterequal(3M), islessequal(3M), islessgreater(3M),
isunordered(3M), math.h(3HEAD), attributes(5), standards(5)

isless(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 627

islessequal – test if x is less than or equal to y

#include <math.h>

int islessequal(real-floating x, real-floating y);

The islessequal() macro determines whether its first argument is less than or
equal to its second argument. The value of islessequal(x, y) is equal to (x) ≤ (y);
however, unlike (x) ≤ (y), islessequal(x, y) does not raise the invalid floating-point
exception when x and y are unordered.

Upon successful completion, the islessequal() macro returns the value of (x) ≤ (y).

If x or y is NaN, 0 is returned.

No errors are defined.

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values, exactly one of the
relationships (less, greater, and equal) is true. Relational operators can raise the invalid
floating-point exception when argument values are NaNs. For a NaN and a numeric
value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates
writing efficient code that accounts for quiet NaNs without suffering the invalid
floating-point exception. In the SYNOPSIS section, real-floating indicates that the
argument is an expression of real-floating type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

isgreater(3M), isgreaterequal(3M), isless(3M), islessgreater(3M),
isunordered(3M), math.h(3HEAD), attributes(5), standards(5)

islessequal(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

628 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

islessgreater – test if x is less than or greater than y

#include <math.h>

int islessgreater(real-floating x, real-floating y);

The islessgreater() macro determines whether its first argument is less than or
greater than its second argument. The islessgreater(x, y) macro is similar to (x) <
(y) || (x) > (y); however, islessgreater(x, y) does not raise the invalid
floating-point exception when x and y are unordered (nor does it evaluate x and y
twice).

Upon successful completion, the islessgreater() macro returns the value of (x) <
(y) || (x) > (y).

If x or y is NaN, 0 is returned.

No errors are defined.

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values, exactly one of the
relationships (less, greater, and equal) is true. Relational operators can raise the invalid
floating-point exception when argument values are NaNs. For a NaN and a numeric
value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates
writing efficient code that accounts for quiet NaNs without suffering the invalid
floating-point exception. In the SYNOPSIS section, real-floating indicates that the
argument is an expression of real-floating type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

isgreater(3M), isgreaterequal(3M), isless(3M), islessequal(3M),
isunordered(3M), math.h(3HEAD), attributes(5), standards(5)

islessgreater(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 629

isnan – test for NaN

cc [flag...] file... -lm [library...]

#include <math.h>

int isnan(double x);

#include <math.h>

int isnan(real—floating x);

In C90 mode, the isnan() function tests whether x is NaN.

In C99 mode, the isnan() macro determines whether its argument value is NaN.
First, an argument represented in a format wider than its semantic type is converted to
its semantic type. The determination is then based on the type of the argument.

Both the isnan() function and macro return non-zero if and only if x is NaN.

No errors are defined.

In C99 mode, the practice of explicitly supplying a prototype for isnan() after the
line

#include <math.h>

is obsolete and will no longer work.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fpclassify(3M), isfinite(3M), isinf(3M), isnormal(3M), math.h(3HEAD),
signbit(3M), attributes(5), standards(5)

isnan(3M)

NAME

SYNOPSIS

C90 Mode

C99 Mode

DESCRIPTION

RETURN VALUES

ERRORS

WARNINGS

ATTRIBUTES

SEE ALSO

630 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2003

isnormal – test for a normal value

#include <math.h>

int isnormal(real-floating x);

The isnormal() macro determines whether its argument value is normal (neither
zero, subnormal, infinite, nor NaN). First, an argument represented in a format wider
than its semantic type is converted to its semantic type. Then determination is based
on the type of the argument.

The isnormal() macro returns a non-zero value if and only if its argument has a
normal value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fpclassify(3M), isfinite(3M), isinf(3M), isnan(3M), math.h(3HEAD),
signbit(3M), attributes(5), standards(5)

isnormal(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 631

isunordered – test if arguments are unordered

#include <math.h>

int isunordered(real-floating x, real-floating y);

The isunordered() macro determines whether its arguments are unordered.

Upon successful completion, the isunordered() macro returns 1 if its arguments are
unordered and 0 otherwise.

No errors are defined.

The relational and equality operators support the usual mathematical relationships
between numeric values. For any ordered pair of numeric values, exactly one of the
relationships (less, greater, and equal) is true. Relational operators can raise the invalid
floating-point exception when argument values are NaNs. For a NaN and a numeric
value, or for two NaNs, just the unordered relationship is true. This macro is a quiet
(non-floating-point exception raising) version of a relational operator. It facilitates
writing efficient code that accounts for quiet NaNs without suffering the invalid
floating-point exception. In the SYNOPSIS section, real-floating indicates that the
argument shall be an expression of real-floating type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

isgreater(3M), isgreaterequal(3M), isless(3M), islessequal(3M),
islessgreater(3M), math.h(3HEAD), attributes(5), standards(5)

isunordered(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

632 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

j0, j0f, j0l, j1, j1f, j1l, jn, jnf, jnl – Bessel functions of the first kind

cc [flag...] file... -lm [library...]

#include <math.h>

double j0(double x);

float j0f(float x);

long double j0l(long double x);

double j1(double x);

float j1f(float x);

long double j1l(long double x);

double jn(int n, double x);

float jnf(int n, float x);

long double jnl(int n, long double x);

These functions compute Bessel functions of x of the first kind of orders 0, 1 and n
respectively.

Upon successful completion, these functions return the relevant Bessel value of x of
the first kind.

If x is NaN, a NaN is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

The j0(), j1(), and jn() functions are Standard. The j0f(), j0l(), j1f(),
j1l(), jnf(), and jnl() functions are Stable.

isnan(3M), y0(3M), math.h(3HEAD), attributes(5), standards(5)

j0(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 633

kstat – kernel statistics facility

The kstat facility is a general-purpose mechanism for providing kernel statistics to
users.

The kernel maintains a linked list of statistics structures, or kstats. Each kstat has a
common header section and a type-specific data section. The header section is defined
by the kstat_t structure:

typedef intkid_t; /* unique kstat id */

typedef struct kstat {
/*
* Fields relevant to both kernel and user
*/
hrtime_t ks_crtime; /* creation time */
struct kstat *ks_next; /* kstat chain linkage */
kid_t ks_kid; /* unique kstat ID */
char ks_module[KSTAT_STRLEN]; /* module name */
uchar_t ks_resv; /* reserved */
int ks_instance; /* module’s instance */
char ks_name[KSTAT_STRLEN]; /* kstat name */
uchar_t ks_type; /* kstat data type */
char ks_class[KSTAT_STRLEN]; /* kstat class */
uchar_t ks_flags; /* kstat flags */
void *ks_data; /* kstat type-specific data */
uint_t ks_ndata; /* # of data records */
size_t ks_data_size; /* size of kstat data section */
hrtime_t ks_snaptime; /* time of last data snapshot */

/*
* Fields relevant to kernel only
*/
int(*ks_update)(struct kstat *, int);
void *ks_private;
int(*ks_snapshot)(struct kstat *, void *, int);
void *ks_lock;

} kstat_t;

The fields that are of significance to the user are:

ks_crtime The time the kstat was created. This allows you to compute the
rates of various counters since the kstat was created; "rate since
boot" is replaced by the more general concept of "rate since kstat
creation". All times associated with kstats (such as creation time,
last snapshot time, kstat_timer_t and kstat_io_t
timestamps, and the like) are 64-bit nanosecond values. The
accuracy of kstat timestamps is machine dependent, but the
precision (units) is the same across all platforms. See
gethrtime(3C) for general information about high-resolution
timestamps.

ks_next kstats are stored as a linked list, or chain. ks_next points to the
next kstat in the chain.

ks_kid A unique identifier for the kstat.

kstat(3KSTAT)

NAME

DESCRIPTION

The kstat model

kstat header

634 man pages section 3: Extended Library Functions • Last Revised 25 Apr 2002

ks_module,
ks_instance contain the name and instance of the module that created the kstat.

In cases where there can only be one instance, ks_instance is 0.

ks_name gives a meaningful name to a kstat. The full kstat namespace is
<ks_module,ks_instance,ks_name>, so the name only need be
unique within a module.

ks_type The type of data in this kstat. kstat data types are discussed below.

ks_class Each kstat can be characterized as belonging to some broad class
of statistics, such as disk, tape, net, vm, and streams. This field can
be used as a filter to extract related kstats. The following values are
currently in use: disk, tape, controller, net, rpc, vm, kvm,
hat, streams, kmem, kmem_cache, kstat, and misc. (The kstat
class encompasses things like kstat_types.)

ks_data,
ks_ndata,
ks_data_size ks_data is a pointer to the kstat’s data section. The type of data

stored there depends on ks_type. ks_ndata indicates the
number of data records. Only some kstat types support multiple
data records. Currently, KSTAT_TYPE_RAW, KSTAT_TYPE_NAMED
and KSTAT_TYPE_TIMER kstats support multiple data records.
KSTAT_TYPE_INTR and KSTAT_TYPE_IO kstats support only one
data record. ks_data_size is the total size of the data section, in
bytes.

ks_snaptime The timestamp for the last data snapshot. This allows you to
compute activity rates:

rate = (new_count - old_count) / (new_snaptime - old_snaptime);

The following types of kstats are currently available:

#define KSTAT_TYPE_RAW 0 /* can be anything */
#define KSTAT_TYPE_NAMED 1 /* name/value pairs */
#define KSTAT_TYPE_INTR 2 /* interrupt statistics */
#define KSTAT_TYPE_IO 3 /* I/O statistics */

#define KSTAT_TYPE_TIMER 4 /* event timers */

To get a list of all kstat types currently supported in the system, tools can read out the
standard system kstat kstat_types (full name spec is <‘‘unix’’, 0, ‘‘kstat_types’’>). This is
a KSTAT_TYPE_NAMED kstat in which the name field describes the type of kstat, and
the value field is the kstat type number (for example, KSTAT_TYPE_IO is type 3 -- see
above).

KSTAT_TYPE_RAW raw data

The "raw" kstat type is just treated as an array of bytes. This is generally used to
export well-known structures, like sysinfo.

kstat(3KSTAT)

kstat data types

Raw kstat

Extended Library Functions 635

KSTAT_TYPE_NAMED A list of arbitrary name=value statistics.

typedef struct kstat_named {
charname[KSTAT_STRLEN]; /* name of counter */
uchar_tdata_type; /* data type */
union {

charc[16]; /* enough for 128-bit ints */
struct {

union {
char *ptr; /* NULL-terminated string */

} addr;
uint32_t len; /* length of string */

} string;
int32_t i32;
uint32_t ui32;
int64_t i64;
uint64_t ui64;

/* These structure members are obsolete */

int32_t l;
uint32_t ul;
int64_t ll;
uint64_t ull;

} value; /* value of counter */
} kstat_named_t;

/* The following types are Stable

KSTAT_DATA_CHAR
KSTAT_DATA_INT32
KSTAT_DATA_LONG
KSTAT_DATA_UINT32
KSTAT_DATA_ULONG
KSTAT_DATA_INT64
KSTAT_DATA_UINT64

/* The following type is Evolving */

KSTAT_DATA_STRING

/* The following types are Obsolete */

KSTAT_DATA_LONGLONG
KSTAT_DATA_ULONGLONG
KSTAT_DATA_FLOAT
KSTAT_DATA_DOUBLE

Some devices need to publish strings that exceed the maximum value for
KSTAT_DATA_CHAR in length; KSTAT_DATA_STRING is a data type that allows
arbitrary-length strings to be associated with a named kstat. The macros below are the
supported means to read the pointer to the string and its length.

#define KSTAT_NAMED_STR_PTR(knptr) ((knptr)->value.string.addr.ptr)
#define KSTAT_NAMED_STR_BUFLEN(knptr) ((knptr)->value.string.len)

kstat(3KSTAT)

Name=value kstat

636 man pages section 3: Extended Library Functions • Last Revised 25 Apr 2002

KSTAT_NAMED_STR_BUFLEN() returns the number of bytes required to store the
string pointed to by KSTAT_NAMED_STR_PTR(); that is, strlen
(KSTAT_NAMED_STR_PTR()) + 1.

KSTAT_TYPE_INTR Interrupt statistics.

An interrupt is a hard interrupt (sourced from the hardware device itself), a soft
interrupt (induced by the system via the use of some system interrupt source), a
watchdog interrupt (induced by a periodic timer call), spurious (an interrupt entry
point was entered but there was no interrupt to service), or multiple service (an
interrupt was detected and serviced just prior to returning from any of the other
types).

#define KSTAT_INTR_HARD 0
#define KSTAT_INTR_SOFT 1
#define KSTAT_INTR_WATCHDOG 2
#define KSTAT_INTR_SPURIOUS 3
#define KSTAT_INTR_MULTSVC 4
#define KSTAT_NUM_INTRS 5

typedef struct kstat_intr {
uint_t intrs[KSTAT_NUM_INTRS]; /* interrupt counters */

} kstat_intr_t;

KSTAT_TYPE_TIMER Event timer statistics.

These provide basic counting and timing information for any type of event.

typedef struct kstat_timer {
char name[KSTAT_STRLEN]; /* event name */
uchar_t resv; /* reserved */
u_longlong_t num_events; /* number of events */
hrtime_t elapsed_time; /* cumulative elapsed time */
hrtime_t min_time; /* shortest event duration */
hrtime_t max_time; /* longest event duration */
hrtime_t start_time; /* previous event start time */
hrtime_t stop_time; /* previous event stop time */

} kstat_timer_t;

KSTAT_TYPE_IO I/O statistics.

typedef struct kstat_io {
/*
* Basic counters.
*/

u_longlong_t nread; /* number of bytes read */
u_longlong_t nwritten; /* number of bytes written */
uint_t reads; /* number of read operations */
uint_t writes; /* number of write operations */
/*
* Accumulated time and queue length statistics.
*
* Time statistics are kept as a running sum of "active" time.

kstat(3KSTAT)

Interrupt kstat

Event timer kstat

I/O kstat

Extended Library Functions 637

* Queue length statistics are kept as a running sum of the
* product of queue length and elapsed time at that length --
* that is, a Riemann sum for queue length integrated against time.
* ^

* | _________
* 8 | i4 |
* | | |
* Queue 6 | |
* Length | _________ | |
* 4 | i2 |_______| |
* | | i3 |
* 2_______| |
* | i1 |
* |_______________________________|
* Time-> t1 t2 t3 t4

*
* At each change of state (entry or exit from the queue),
* we add the elapsed time (since the previous state change)
* to the active time if the queue length was non-zero during
* that interval; and we add the product of the elapsed time
* times the queue length to the running length*time sum.
*
* This method is generalizable to measuring residency
* in any defined system: instead of queue lengths, think
* of "outstanding RPC calls to server X".
*
* A large number of I/O subsystems have at least two basic
* "lists" of transactions they manage: one for transactions
* that have been accepted for processing but for which processing
* has yet to begin, and one for transactions which are actively
* being processed (but not done). For this reason, two cumulative
* time statistics are defined here: pre-service (wait) time,
* and service (run) time.
*
* The units of cumulative busy time are accumulated nanoseconds.
* The units of cumulative length*time products are elapsed time
* times queue length.
*/
hrtime_t wtime; /* cumulative wait (pre-service) time */
hrtime_t wlentime; /* cumulative wait length*time product*/
hrtime_t wlastupdate; /* last time wait queue changed */
hrtime_t rtime; /* cumulative run (service) time */
hrtime_t rlentime; /* cumulative run length*time product */
hrtime_t rlastupdate; /* last time run queue changed */
uint_t wcnt; /* count of elements in wait state */
uint_t rcnt; /* count of elements in run state */
} kstat_io_t;

kstat(3KSTAT)

638 man pages section 3: Extended Library Functions • Last Revised 25 Apr 2002

The kstat library, libkstat, defines the user interface (API) to the system’s kstat
facility.

You begin by opening libkstat with kstat_open(3KSTAT), which returns a pointer to
a fully initialized kstat control structure. This is your ticket to subsequent libkstat
operations:

typedef struct kstat_ctl {
kid_t kc_chain_id; /* current kstat chain ID */
kstat_t *kc_chain; /* pointer to kstat chain */
int kc_kd; /* /dev/kstat descriptor */

} kstat_ctl_t;

Only the first two fields, kc_chain_id and kc_chain, are of interest to libkstat
clients. (kc_kd is the descriptor for /dev/kstat, the kernel statistics driver. libkstat
functions are built on top of /dev/kstat ioctl(2) primitives. Direct interaction with
/dev/kstat is strongly discouraged, since it is not a public interface.)

kc_chain points to your copy of the kstat chain. You typically walk the chain to find
and process a certain kind of kstat. For example, to display all I/O kstats:

kstat_ctl_t *kc;
kstat_t *ksp;
kstat_io_t kio;

kc = kstat_open();
for (ksp = kc->kc_chain; ksp != NULL; ksp = ksp->ks_next) {

if (ksp->ks_type == KSTAT_TYPE_IO) {
kstat_read(kc, ksp, &kio);

my_io_display(kio);
}

}

kc_chain_id is the kstat chain ID, or KCID, of your copy of the kstat chain. See
kstat_chain_update(3KSTAT) for an explanation of KCIDs.

/dev/kstat kernel statistics driver

/usr/include/kstat.h

/usr/include/sys/kstat.h

ioctl(2), gethrtime(3C), getloadavg(3C), kstat_chain_update(3KSTAT),
kstat_close(3KSTAT), kstat_data_lookup(3KSTAT), kstat_lookup(3KSTAT),
kstat_open(3KSTAT), kstat_read(3KSTAT), kstat_write(3KSTAT),
attributes(5)

kstat(3KSTAT)

Using libkstat

FILES

SEE ALSO

Extended Library Functions 639

Kstat – Perl tied hash interface to the kstat facility

use Sun::Solaris::Kstat;

Sun::Solaris::Kstat->new();
Sun::Solaris::Kstat->update();

Sun::Solaris::Kstat->{module}{instance}{name}{statistic}

Kernel statistics are categorized using a 3-part key consisting of the module, the
instance, and the statistic name. For example, CPU information can be found under
cpu_stat:0:cpu_stat0, as in the above example. The method
Sun::Solaris::Kstat->new() creates a new 3-layer tree of Perl hashes with the
same structure; that is, the statistic for CPU 0 can be accessed as
$ks->{cpu_stat}{0}{cpu_stat0}. The fourth and lowest layer is a tied hash
used to hold the individual statistics values for a particular system resource.

For performance reasons, the creation of a Sun::Solaris::Kstat object is not
accompanied by a following read of all possible statistics. Instead, the 3-layer structure
described above is created, but reads of a statistic’s values are done only when
referenced. For example, accessing $ks->{cpu_stat}{0}{cpu_stat0}{syscall}
will read in all the statistics for CPU 0, including user, system, and wait times, and the
other CPU statistics, as well as the number of system call entries. Once you have
accessed a lowest level statistics value, calling $ks->update will automatically
update all the individual values of any statistics you have accessed.

Note that there are two values of the lowest-level hash that can be read without
causing the full set of statistics to be read from the kernel. These are "class", which is
the kstat class of the statistics, and "crtime", which is the time that the kstat was
created. See kstat(3KSTAT) for full details of these fields.

new() Create a new kstat statistics hierarchy and return a reference to the
top-level hash. Use it like any normal hash to access the statistics.

update() Update all the statistics that have been accessed so far. In scalar
context, update() returns 1 if the kstat structure has changed,
and 0 otherwise. In list context, update() returns references to
two arrays: the first holds the keys of any kstats that have been
added, and the second holds the keys of any kstats that have been
deleted. Each key will be returned in the form
"module:instance:name".

EXAMPLE 1 Sun::Solaris::Kstat example

use Sun::Solaris::Kstat;

my $kstat = Sun::Solaris::Kstat->new();
my ($usr1, $sys1, $wio1, $idle1) =

@{$kstat->{cpu_stat}{0}{cpu_stat0}}{qw(user kernel wait idle)};
print("usr sys wio idle\n");
while (1) {

sleep 5;
if ($kstat->update()) {

Kstat(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Methods

EXAMPLES

640 man pages section 3: Extended Library Functions • Last Revised 14 Sep 1999

EXAMPLE 1 Sun::Solaris::Kstat example (Continued)

print("Configuration changed\n");
}
my ($usr2, $sys2, $wio2, $idle2) =

@{$kstat->{cpu_stat}{0}{cpu_stat0}}{qw(user kernel wait idle)};
printf(" %.2d %.2d %.2d %.2d\n",

($usr2 - $usr1) / 5, ($sys2 - $sys1) / 5,
($wio2 - $wio1) / 5, ($idle2 - $idle1) / 5);

$usr1 = $usr2;
$sys1 = $sys2;
$wio1 = $wio2;
$idle1 = $idle2;

}

perl(1), kstat(1M), kstat(3KSTAT), kstat_chain_update(3KSTAT),
kstat_close(3KSTAT), kstat_open(3KSTAT), kstat_read(3KSTAT)

As the statistics are stored in a tied hash, taking additional references of members of
the hash, such as

my $ref = \ks->{cpu_stat}{0}{cpu_stat0}{syscall};
print("$$ref\n");

will be recorded as a hold on that statistic’s value, preventing it from being updated
by refresh(). Copy the values explicitly if persistence is necessary.

Several of the statistics provided by the kstat facility are stored as 64-bit integer
values. Perl 5 does not yet internally support 64-bit integers, so these values are
approximated in this module. There are two classes of 64-bit value to be dealt with:

64-bit intervals and times These are the crtime and snaptime fields of all the
statistics hashes, and the wtime, wlentime,
wlastupdate, rtime, rlentime and rlastupdate
fields of the kstat I/O statistics structures. These are
measured by the kstat facility in nanoseconds,
meaning that a 32-bit value would represent
approximately 4 seconds. The alternative is to store the
values as floating-point numbers, which offer
approximately 53 bits of precision on present hardware.
64-bit intervals and timers as floating point values
expressed in seconds, meaning that time-related kstats
are being rounded to approximately microsecond
resolution.

64-bit counters It is not useful to store these values as 32-bit values. As
noted above, floating-point values offer 53 bits of
precision. Accordingly, all 64-bit counters are stored as
floating-point values.

Kstat(3PERL)

SEE ALSO

NOTES

Extended Library Functions 641

kstat_chain_update – update the kstat header chain

cc [flag...] file... -lkstat [library...]
#include <kstat.h>

kid_t kstat_chain_update(kstat_ctl_t *kc);

The kstat_chain_update() function brings the user’s kstat header chain in sync
with that of the kernel. The kstat chain is a linked list of kstat headers (kstat_t’s)
pointed to by kc->kc_chain, which is initialized by kstat_open(3KSTAT). This
chain constitutes a list of all kstats currently in the system.

During normal operation, the kernel creates new kstats and delete old ones as various
device instances are added and removed, thereby causing the user’s copy of the kstat
chain to become out of date. The kstat_chain_update() function detects this
condition by comparing the kernel’s current kstat chain ID (KCID), which is
incremented every time the kstat chain changes, to the user’s KCID,
kc->kc_chain_id. If the KCIDs match, kstat_chain_update() does nothing.
Otherwise, it deletes any invalid kstat headers from the user’s kstat chain, adds any
new ones, and sets kc->kc_chain_id to the new KCID. All other kstat headers in the
user’s kstat chain are unmodified.

Upon successful completion, kstat_chain_update() returns the new KCID if the
kstat chain has changed and 0 if it has not changed. Otherwise, it returns −1 and sets
errno to indicate the error.

The kstat_chain_update() function will fail if:

EAGAIN The kstat was temporarily unavailable for reading or writing.

ENOMEM Insufficient storage space is available.

ENXIO The given kstat could not be located for reading.

EOVERFLOW The data for the given kstat was too large to be stored in the
structure.

/dev/kstat kernel statistics driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Unsafe

kstat(3KSTAT), kstat_lookup(3KSTAT), kstat_open(3KSTAT),
kstat_read(3KSTAT), attributes(5)

kstat_chain_update(3KSTAT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

642 man pages section 3: Extended Library Functions • Last Revised 3 Aug 2004

kstat_lookup, kstat_data_lookup – find a kstat by name

cc [flag...] file... -lkstat [library...]
#include <kstat.h>

kstat_t *kstat_lookup(kstat_ctl_t *kc, char *ks_module, int
ks_instance, char *ks_name);

void *kstat_data_lookup(kstat_t *ksp, char *name);

The kstat_lookup() function traverses the kstat chain, kc->kc_chain, searching
for a kstat with the same ks_module, ks_instance, and ks_name fields; this triplet
uniquely identifies a kstat. If ks_module is NULL, ks_instance is -1, or ks_name is NULL,
those fields will be ignored in the search. For example, kstat_lookup(kc, NULL,
-1, "foo") will find the first kstat with name “foo”.

The kstat_data_lookup() function searches the kstat’s data section for the record
with the specified name. This operation is valid only for those kstat types that have
named data records: KSTAT_TYPE_NAMED and KSTAT_TYPE_TIMER.

The kstat_lookup() function returns a pointer to the requested kstat if it is found.
Otherwise it returns NULL and sets errno to indicate the error.

The kstat_data_lookup() function returns a pointer to the requested data record
if it is found. Otherwise it returns NULL and sets errno to indicate the error .

The kstat_lookup() and kstat_data_lookup() functions will fail if:

EINVAL An attempt was made to look up data for a kstat that was not of
type KSTAT_TYPE_NAMED or KSTAT_TYPE_TIMER.

ENOENT The requested kstat could not be found.

/dev/kstat kernel statistics driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Unsafe

kstat(3KSTAT), kstat_chain_update(3KSTAT), kstat_open(3KSTAT),
kstat_read(3KSTAT), attributes(5)

kstat_lookup(3KSTAT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

Extended Library Functions 643

kstat_open, kstat_close – initialize kernel statistics facility

cc[flag...] file... -lkstat [library...]
#include <kstat.h>

kstat_ctl_t *kstat_open(void);

int kstat_close(kstat_ctl_t *kc);

The kstat_open() function initializes a kstat control structure that provides access
to the kernel statistics library. It returns a pointer to this structure, which must be
supplied as the kc argument in subsequent libkstat function calls.

The kstat_close() function frees all resources that were associated with kc. This is
performed automatically on exit(2) and execve(2).

Upon successful completion, kstat_open() returns a pointer to a kstat control
structure. Otherwise, it returns NULL, no resources are allocated, and errno is set to
indicate the error.

Upon successful completion, kstat_close() returns 0. Otherwise, −1 is returned
and errno is set to indicate the error.

The kstat_open() function will fail if:

ENOMEM Insufficient storage space is available.

EAGAIN The kstat was temporarily unavailable for reading or writing.

ENXIO The given kstat could not be located for reading.

EOVERFLOW The data for the given kstat was too large to be stored in the
structure.

The kstat_open() function can also return the error values for open(2).

The kstat_close() function can also return the error values for close(2).

/dev/kstat kernel statistics driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Unsafe

close(2), execve(2), open(2), exit(2), kstat(3KSTAT),
kstat_chain_update(3KSTAT), kstat_lookup(3KSTAT), kstat_read(3KSTAT),
attributes(5)

kstat_open(3KSTAT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

644 man pages section 3: Extended Library Functions • Last Revised 3 Aug 2004

kstat_read, kstat_write – read or write kstat data

cc [flag...] file... -lkstat [library...]

#include <kstat.h>

kid_t kstat_read(kstat_ctl_t *kc, kstat_t *ksp, void *buf);

kid_t kstat_write(kstat_ctl_t *kc, kstat_t *ksp, void *buf);

The kstat_read() function gets data from the kernel for the kstat pointed to by ksp.
The ksp->ks_data field is automatically allocated (or reallocated) to be large enough
to hold all of the data. The ksp->ks_ndata field is set to the number of data fields,
ksp->ks_data_size is set to the total size of the data, and ksp->ks_snaptime is set
to the high-resolution time at which the data snapshot was taken. If buf is non-null, the
data is copied from ksp->ks_data to buf.

The kstat_write() function writes data from buf, or from ksp->ks_data if buf is
NULL, to the corresponding kstat in the kernel. Only the superuser can use
kstat_write().

Upon successful completion, kstat_read() and kstat_write() return the current
kstat chain ID (KCID). Otherwise, they return −1 and set errno to indicate the error.

The kstat_read() and kstat_write() functions will fail if:

EACCES An attempt was made to write to a non-writable kstat.

EAGAIN The kstat was temporarily unavailable for reading or writing.

EINVAL An attempt was made to write data to a kstat, but the number of
elements or the data size does not match.

ENOMEM Insufficient storage space is available.

ENXIO The given kstat could not be located for reading or writing.

EOVERFLOW The data for the given kstat was too large to be stored in the
structure.

EPERM An attempt was made to write to a kstat, but {PRIV_SYS_CONFIG}
was not asserted in the effective privilege set.

/dev/kstat kernel statistics driver

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Unsafe

kstat(3KSTAT), kstat_chain_update(3KSTAT), kstat_lookup(3KSTAT),
kstat_open(3KSTAT), attributes(5), privileges(5)

kstat_read(3KSTAT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

FILES

ATTRIBUTES

SEE ALSO

Extended Library Functions 645

kva_match – look up a key in a key-value array

cc [flag...] file...– lsecdb [library...]

#include <secdb.h>

char *kva_match(kva_t *kva, char *key);

The kva_match() function searches a kva_t structure, which is part of the
authattr_t, execattr_t, profattr_t, or userattr_t structures. The function
takes two arguments: a pointer to a key value array, and a key. If the key is in the
array, the function returns a pointer to the first corresponding value that matches that
key. Otherwise, the function returns NULL.

Upon successful completion, the function returns a pointer to the value sought.
Otherwise, it returns NULL.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB)

The kva_match() function returns a pointer to data that already exists in the
key-value array. It does not allocate its own memory for this pointer but obtains it
from the key-value array that is passed as its first argument.

kva_match(3SECDB)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

646 man pages section 3: Extended Library Functions • Last Revised 12 Aug 1999

kvm_getu, kvm_getcmd – get the u-area or invocation arguments for a process

cc [flag...] file... -lkvm [library...]
#include <kvm.h>
#include <sys/param.h>
#include <sys/user.h>

#include <sys/proc.h>

struct user *kvm_getu(kvm_t *kd, struct proc *proc);

int kvm_getcmd(kvm_t *kd, struct proc *proc, struct user *u, char
***arg, char ***env);

The kvm_getu() function reads the u-area of the process specified by proc to an area
of static storage associated with kd and returns a pointer to it. Subsequent calls to
kvm_getu() will overwrite this static area.

The kd argument is a pointer to a kernel descriptor returned by kvm_open(3KVM).
The proc argument is a pointer to a copy in the current process’s address space of a
proc structure, obtained, for instance, by a prior kvm_nextproc(3KVM) call.

The kvm_getcmd() function constructs a list of string pointers that represent the
command arguments and environment that were used to initiate the process specified
by proc.

The kd argument is a pointer to a kernel descriptor returned by kvm_open(3KVM).
The u argument is a pointer to a copy in the current process’s address space of a user
structure, obtained, for instance, by a prior kvm_getu() call. If arg is not NULL, the
command line arguments are formed into a null-terminated array of string pointers.
The address of the first such pointer is returned in arg. If env is not NULL, the
environment is formed into a null-terminated array of string pointers. The address of
the first of these is returned in env.

The pointers returned in arg and env refer to data allocated by malloc() and should
be freed by a call to free() when no longer needed. See malloc(3C). Both the string
pointers and the strings themselves are deallocated when freed.

Since the environment and command line arguments might have been modified by the
user process, there is no guarantee that it will be possible to reconstruct the original
command at all. The kvm_getcmd() function will make the best attempt possible,
returning −1 if the user process data is unrecognizable.

On success, kvm_getu() returns a pointer to a copy of the u-area of the process
specified by proc. On failure, it returns NULL.

The kvm_getcmd() function returns 0 on success and −1 on failure. If −1 is returned,
the caller still has the option of using the command line fragment that is stored in the
u-area.

kvm_getu(3KVM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 647

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Unsafe

kvm_nextproc(3KVM), kvm_open(3KVM), kvm_kread(3KVM), malloc(3C),
libkvm(3LIB), attributes (5)

On systems that support both 32-bit and 64-bit processes, the 64-bit implementation of
libkvm ensures that the arg and env pointer arrays for kvm_getcmd() are translated
to the same form as if they were 64-bit processes. Applications that wish to access the
raw 32-bit stack directly can use kvm_uread(). See kvm_read(3KVM).

kvm_getu(3KVM)

ATTRIBUTES

SEE ALSO

NOTES

648 man pages section 3: Extended Library Functions • Last Revised 2 May 2002

kvm_kread, kvm_kwrite, kvm_uread, kvm_uwrite – copy data to or from a kernel
image or running system

cc [flag...] file... -lkvm [library...]
#include <kvm.h>

ssize_t kvm_kread(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

ssize_t kvm_kwrite(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

ssize_t kvm_uread(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

ssize_t kvm_uwrite(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

The kvm_kread() function transfers data from the kernel address space to the
address space of the process. nbytes bytes of data are copied from the kernel virtual
address given by addr to the buffer pointed to by buf.

The kvm_kwrite() function is like kvm_kread(), except that the direction of the
transfer is reversed. To use this function, the kvm_open(3KVM) call that returned kd
must have specified write access.

The kvm_uread() function transfers data from the address space of the processes
specified in the most recent kvm_getu(3KVM) call. nbytes bytes of data are copied
from the user virtual address given by addr to the buffer pointed to by buf.

The kvm_uwrite() function is like kvm_uread(), except that the direction of the
transfer is reversed. To use this function, the kvm_open(3KVM) call that returned kd
must have specified write access. The address is resolved in the address space of the
process specified in the most recent kvm_getu(3KVM) call.

On success, these functions return the number of bytes actually transferred. On failure,
they return −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Unsafe

kvm_getu(3KVM), kvm_nlist(3KVM), kvm_open(3KVM), attributes(5)

kvm_kread(3KVM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 649

kvm_nextproc, kvm_getproc, kvm_setproc – read system process structures

cc [flag...] file... -lkvm [library...]
#include <kvm.h>
#include <sys/param.h>
#include <sys/time.h>

#include <sys/proc.h>

struct proc *kvm_nextproc(kvm_t *kd);

int kvm_setproc(kvm_t *kd);

struct proc *kvm_getproc(kvm_t *kd, pid_t pid);

The kvm_nextproc() function reads sequentially all of the system process structures
from the kernel identified by kd (see kvm_open(3KVM)). Each call to
kvm_nextproc() returns a pointer to the static memory area that contains a copy of
the next valid process table entry. There is no guarantee that the data will remain valid
across calls to kvm_nextproc(), kvm_setproc(), or kvm_getproc(). If the
process structure must be saved, it should be copied to non-volatile storage.

For performance reasons, many implementations will cache a set of system process
structures. Since the system state is liable to change between calls to
kvm_nextproc(), and since the cache may contain obsolete information, there is no
guarantee that every process structure returned refers to an active process, nor is it
certain that all processes will be reported.

The kvm_setproc() function rewinds the process list, enabling kvm_nextproc()
to rescan from the beginning of the system process table. This function will always
flush the process structure cache, allowing an application to re-scan the process table
of a running system.

The kvm_getproc() function locates the proc structure of the process specified by
pid and returns a pointer to it. Although this function does not interact with the
process table pointer manipulated by kvm_nextproc(), the restrictions regarding the
validity of the data still apply.

On success, kvm_nextproc() returns a pointer to a copy of the next valid process
table entry. On failure, it returns NULL.

On success, kvm_getproc() returns a pointer to the proc structure of the process
specified by pid. On failure, it returns NULL.

The kvm_setproc() function returns 0 on success and −1 on failure.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

kvm_nextproc(3KVM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

650 man pages section 3: Extended Library Functions • Last Revised 2 May 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

kvm_getu(3KVM), kvm_open(3KVM), kvm_kread(3KVM), attributes(5)

kvm_nextproc(3KVM)

SEE ALSO

Extended Library Functions 651

kvm_nlist – get entries from kernel symbol table

cc [flag...] file... -lkvm [library...]
#include <kvm.h>

#include <nlist.h>

int kvm_nlist(kvm_t *kd, struct nlist *nl);

The kvm_nlist() function examines the symbol table from the kernel image
identified by kd (see kvm_open(3KVM)) and selectively extracts a list of values and
puts them in the array of nlist structures pointed to by nl. The name list pointed to
by nl consists of an array of structures containing names, types and values. The
n_name field of each such structure is taken to be a pointer to a character string
representing a symbol name. The list is terminated by an entry with a null pointer (or
a pointer to a null string) in the n_name field. For each entry in nl, if the named
symbol is present in the kernel symbol table, its value and type are placed in the
n_value and n_type fields. If a symbol cannot be located, the corresponding
n_type field of nl is set to 0.

The kvm_nlist() functions returns the value of nlist(3UCB) or nlist(3ELF),
depending on the library used.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Unsafe

kvm_open(3KVM), kvm_kread(3KVM), nlist(3ELF), nlist(3UCB),
attributes(5)

Although the libkvm API is Stable, the symbol names and data values that can be
accessed through this set of interfaces are Private and are subject to ongoing change.

kvm_nlist(3KVM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

652 man pages section 3: Extended Library Functions • Last Revised 2 May 2002

kvm_open, kvm_close – specify a kernel to examine

cc [flag...] file... -lkvm [library...]
#include <kvm.h>

#include <fcntl.h>

kvm_t *kvm_open(char *namelist, char *corefile, char *swapfile, int flag,
char *errstr);

int kvm_close(kvm_t *kd);

The kvm_open() function initializes a set of file descriptors to be used in subsequent
calls to kernel virtual memory (VM) routines. It returns a pointer to a kernel identifier
that must be used as the kd argument in subsequent kernel VM function calls.

The namelist argument specifies an unstripped executable file whose symbol table will
be used to locate various offsets in corefile. If namelist is NULL, the symbol table of the
currently running kernel is used to determine offsets in the core image. In this case, it
is up to the implementation to select an appropriate way to resolve symbolic
references, for instance, using /dev/ksyms as a default namelist file.

The corefile argument specifies a file that contains an image of physical memory, for
instance, a kernel crash dump file (see savecore(1M)) or the special device
/dev/mem. If corefile is NULL, the currently running kernel is accessed, using
/dev/mem and /dev/kmem.

The swapfile argument specifies a file that represents the swap device. If both corefile
and swapfile are NULL, the swap device of the currently running kernel is accessed.
Otherwise, if swapfile is NULL, kvm_open() may succeed but subsequent
kvm_getu(3KVM) function calls may fail if the desired information is swapped out.

The flag function is used to specify read or write access for corefile and may have one of
the following values:

O_RDONLY open for reading

O_RDWR open for reading and writing

The errstr argument is used to control error reporting. If it is a null pointer, no error
messages will be printed. If it is non-null, it is assumed to be the address of a string
that will be used to prefix error messages generated by kvm_open. Errors are printed
to stderr. A useful value to supply for errstr would be argv[0]. This has the effect of
printing the process name in front of any error messages.

Applications using libkvm are dependent on the underlying data model of the kernel
image, that is, whether it is a 32−bit or 64−bit kernel.

The data model of these applications must match the data model of the kernel in order
to correctly interpret the size and offsets of kernel data structures. For example, a
32−bit application that uses the 32−bit version of the libkvm interfaces will fail to
open a 64−bit kernel image. Similarly, a 64−bit application that uses the 64−bit version
of the libkvm interfaces will fail to open a 32−bit kernel image.

kvm_open(3KVM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 653

The kvm_close() function closes all file descriptors that were associated with kd.
These files are also closed on exit(2) and execve() (see exec(2)). kvm_close()
also resets the proc pointer associated with kvm_nextproc(3KVM) and flushes any
cached kernel data.

The kvm_open() function returns a non-null value suitable for use with subsequent
kernel VM function calls. On failure, it returns NULL and no files are opened.

The kvm_close() function returns 0 on success and −1 on failure.

/dev/kmem

/dev/ksyms

/dev/mem

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Unsafe

savecore(1M), exec(2), exit(2), pathconf(2), getloadavg(3C), kstat(3KSTAT),
kvm_getu(3KVM), kvm_nextproc(3KVM), kvm_nlist(3KVM),
kvm_kread(3KVM), libkvm(3LIB),sysconf(3C), proc(4), attributes(5),
lfcompile(5)

Kernel core dumps should be examined on the platform on which they were created.
While a 32-bit application running on a 64-bit kernel can examine a 32-bit core dump,
a 64-bit application running on a 64-bit kernel cannot examine a kernel core dump
from the 32-bit system.

On 32-bit systems, applications that use libkvm to access the running kernel must be
32-bit applications. On systems that support both 32-bit and 64-bit applications,
applications that use the libkvm interfaces to access the running kernel must
themselves be 64-bit applications.

Although the libkvm API is Stable, the symbol names and data values that can be
accessed through this set of interfaces are Private and are subject to ongoing change.

Applications using libkvm are likely to be platform- and release-dependent.

Most of the traditional uses of libkvm have been superseded by more stable
interfaces that allow the same information to be extracted more efficiently, yet
independent of the kernel data model. For examples, see sysconf(3C), proc(4),
kstat(3KSTAT), getloadavg(3C), and pathconf(2).

kvm_open(3KVM)

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

NOTES

654 man pages section 3: Extended Library Functions • Last Revised 2 May 2002

kvm_read, kvm_write – copy data to or from a kernel image or running system

cc [flag...] file... -lkvm [library...]
#include <kvm.h>

ssize_t kvm_read(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

ssize_t kvm_write(kvm_t *kd, uintptr_t addr, void *buf, size_t
nbytes);

The kvm_read() function transfers data from the kernel image specified by kd (see
kvm_open(3KVM)) to the address space of the process. nbytes bytes of data are copied
from the kernel virtual address given by addr to the buffer pointed to by buf.

The kvm_write() function is like kvm_read(), except that the direction of data
transfer is reversed. To use this function, the kvm_open(3KVM) call that returned kd
must have specified write access. If a user virtual address is given, it is resolved in the
address space of the process specified in the most recent kvm_getu(3KVM) call.

The kvm_read() and kvm_write() functions are obsolete and might be removed in
a future release. The functions described on the kvm_kread(3KVM) manual page
should be used instead.

On success, these functions return the number of bytes actually transferred. On failure,
they return −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

MT-Level Unsafe

kvm_getu(3KVM), kvm_kread(3KVM)kvm_nlist(3KVM), kvm_open(3KVM),
attributes(5)

kvm_read(3KVM)

NAME

SYNOPSIS

DESCRIPTION

USAGE

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 655

ldexp, ldexpf, ldexpl – load exponent of a floating point number

cc [flag...] file... -lm [library...]

#include <math.h>

double ldexp(double x, int exp);

float ldexpf(float x, int exp);

long double ldexpl(long double x, int exp);

These functions computes the quantity x * 2exp.

Upon successful completion, these functions return x multiplied by 2 raised to the
power exp.

If these functions would cause overflow, a range error occurs and ldexp(),
ldexpf(), and ldexpl() return ±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL
(according to the sign of x), respectively.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If exp is 0, x is returned.

These functions will fail if:

Range Error The result overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception is raised.

The ldexp() function sets errno to ERANGE if the result
overflows.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling ldexp(). On return, if errno is
non-zero, an error has occurred. The ldexpf() and ldexpl() functions do not set
errno.

See attributes(5) for descriptions of the following attributes:

ldexp(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

656 man pages section 3: Extended Library Functions • Last Revised 16 Aug 2004

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

frexp(3M), isnan(3M), modf(3M), attributes(5), standards(5)

ldexp(3M)

SEE ALSO

Extended Library Functions 657

ld_support, ld_atexit, ld_atexit64, ld_file, ld_file64, ld_input_done, ld_input_section,
ld_input_section64, ld_section, ld_section64, ld_start, ld_start64, ld_version –
link-editor support functions

void ld_atexit(int status);

void ld_atexit64(int status);

void ld_file(const char *name, const Elf_Kind kind, int flags, Elf
*elf);

void ld_file64(const char *name, const Elf_Kind kind, int flags, Elf
*elf);

void ld_input_done(uint_t *flags);

void ld_input_section(const char *name, Elf32_Shdr **shdr,
Elf32_Word sndx, Elf_Data *data, Elf *elf, uint_t *flags);

void ld_input_section64(const char *name, Elf64_Shdr **shdr,
Elf64_Word sndx, Elf_Data *data, Elf *elf, uint_t *flags);

void ld_section(const char *name, Elf32_Shdr shdr, Elf32_Word sndx,
Elf_Data *data, Elf *elf);

void ld_section64(const char *name, Elf64_Shdr shdr, Elf64_Word
sndx, Elf_Data *data, Elf *elf);

void ld_start(const char *name, const Elf32_Half type, const char
*caller);

void ld_start64(const char *name, const Elf64_Half type, const char
*caller);

void ld_version(uint_t version);

A link-editor support library is a user-created shared object offering one or more of
these interfaces that are called by the link-editor ld(1) at various stages of the
link-editing process. See the Linker and Libraries Guide for a full description of the
link-editor support mechanism.

ld(1)

Linker and Libraries Guide

ld_support(3EXT)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

658 man pages section 3: Extended Library Functions • Last Revised 29 Oct 2001

lgamma, lgammaf, lgammal, lgamma_r, lgammaf_r, lgammal_r, gamma, gammaf,
gammal, gamma_r, gammaf_r, gammal_r – log gamma function

cc [flag...] file... -lm [library...]
#include <math.h>

extern int signgam;

double lgamma(double x);

float lgammaf(float x);

long double lgammal(long double x);

double gamma(double x);

float gammaf(float x);

long double gammal(long double x);

double lgamma_r(double x, int *signgamp);

float lgammaf_r(float x, int *signgamp);

long double lgammal_r(long double x, int *signgamp);

double gamma_r(double x, int *signgamp);

float gammaf_r(float x, int *signgamp);

long double gammal_r(long double x, int *signgamp);

These functions return

where

for x > 0 and

for x < 1.

lgamma(3M)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 659

These functions use the external integer signgam to return the sign of |~(x) while
lgamma_r() and gamma_r() use the user-allocated space addressed by signgamp.

Upon successful completion, these functions return the logarithmic gamma of x.

If x is a non-positive integer, a pole error occurs and these functions return
+HUGE_VAL, +HUGE_VALF, and +HUGE_VALL, respectively.

If x is NaN, a NaN is returned.

If x is 1 or 2, +0 shall be returned.

If x is ±Inf, +Inf is returned.

These functions will fail if:

Pole Error The x argument is a negative integer or 0.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

In the case of lgamma(), do not use the expression signgam*exp(lgamma(x)) to
compute

Instead compute lgamma() first:

lg = lgamma(x); g = signgam*exp(lg);

only after lgamma() has returned can signgam be correct. Note that |~(x) must
overflow when x is large enough, underflow when −x is large enough, and generate a
division by 0 exception at the singularities x a nonpositive integer.

See attributes(5) for descriptions of the following attributes:

lgamma(3M)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

660 man pages section 3: Extended Library Functions • Last Revised 26 Jul 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level See below.

The lgamma(), lgammaf(), lgammal(), and gamma() functions are Standard. The
lgamma_r(), lgammaf_r(), lgammal_r(), gamma_r(), gammaf_r(), and
gammal_r(), functions are Stable.

The lgamma(), lgammaf(), lgammal(), gamma(), gammaf(), and gammal()
functions are Unsafe in multithreaded applications. The lgamma_r(), lgammaf_r(),
lgammal_r(), gamma_r(), gammaf_r(), and gammal_r() functions are MT-Safe
and should be used instead.

exp(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M), math.h(3HEAD),
attributes(5), standards(5)

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

lgamma(3M)

SEE ALSO

NOTES

Extended Library Functions 661

lgrp_affinity_get, lgrp_affinity_set – get of set lgroup affinity

cc [flag ...] file... -llgrp [library ...]

#include <sys/lgrp_user.h>

lgrp_affinity_t lgrp_affinity_get(idtype_t idtype, id_t id,
lgrp_id_t lgrp);

int lgrp_affinity_set(idtype_t idtype, id_t id, lgrp_id_t lgrp,
lgrp_affinity_t affinity);

The lgrp_affinity_get() function returns the affinity that the LWP or set of LWPs
specified by the idtype and id arguments have for the given lgroup.

The lgrp_affinity_set() function sets the affinity that the LWP or set of LWPs
specified by idtype and id have for the given lgroup. The lgroup affinity can be set to
LGRP_AFF_STRONG, LGRP_AFF_WEAK, or LGRP_AFF_NONE.

If the idtype is P_PID, the affinity is retrieved for one of the LWPs in the process or set
for all the LWPs of the process with process ID (PID) id. The affinity is retrieved or set
for the LWP of the current process with LWP ID id if idtype is P_LWPID. If id is
P_MYID, then the current LWP or process is specified.

The operating system uses the lgroup affinities as advice on where to run a thread and
allocate its memory and factors this advice in with other constraints. Processor
binding and processor sets can restrict which lgroups a thread can run on, but do not
change the lgroup affinities.

Each thread can have an affinity for an lgroup in the system such that the thread will
tend to be scheduled to run on that lgroup and allocate memory from there whenever
possible. If the thread has affinity for more than one lgroup, the operating system will
try to run the thread and allocate its memory on the lgroup for which it has the
strongest affinity, then the next strongest, and so on up through some small,
system-dependent number of these lgroup affinities. When multiple lgroups have the
same affinity, the order of preference among them is unspecified and up to the
operating system to choose. The lgroup with the strongest affinity that the thread can
run on is known as its "home lgroup" (see lgrp_home(3LGRP)) and is usually the
operating system’s first choice of where to run the thread and allocate its memory.

There are different levels of affinity that can be specified by a thread for a particuliar
lgroup. The levels of affinity are the following from strongest to weakest:

LGRP_AFF_STRONG /* strong affinity */
LGRP_AFF_WEAK /* weak affinity */

LGRP_AFF_NONE /* no affinity */

The LGRP_AFF_STRONG affinity serves as a hint to the operating system that the
calling thread has a strong affinity for the given lgroup. If this is the thread’s home
lgroup, the operating system will avoid rehoming it to another lgroup if possible.
However, dynamic reconfiguration, processor offlining, processor binding, and
processor set binding and manipulation are examples of events that can cause the
operating system to change the thread’s home lgroup for which it has a strong affinity.

lgrp_affinity_get(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

662 man pages section 3: Extended Library Functions • Last Revised 16 Apr 2003

The LGRP_AFF_WEAK affinity is a hint to the operating system that the calling thread
has a weak affinity for the given lgroup. If a thread has a weak affinity for its home
lgroup, the operating system interpets this to mean that thread does not mind whether
it is rehomed, unlike LGRP_AFF_STRONG. Load balancing, dynamic reconfiguration,
processor binding, or processor set binding and manipulation are examples of events
that can cause the operating system to change a thread’s home lgroup for which it has
a weak affinity.

The LGRP_AFF_NONE affinity signifies no affinity and can be used to remove a thread’s
affinity for a particuliar lgroup. Initially, each thread has no affinity to any lgroup. If a
thread has no lgroup affinities set, the operating system chooses a home lgroup for the
thread with no affinity set.

Upon successful completion, lgrp_affinity_get() returns the affinity for the
given lgroup.

Upon successful completion, lgrp_affinity_set() return 0.

Otherwise, both functions return −1 and set errno to indicate the error.

The lgrp_affinity_get() and lgrp_affinity_set() functions will fail if:

EINVAL The specified lgroup, affinity, or ID type is not valid.

EPERM The effective user of the calling process does not have appropriate
privileges, and its real or effective user ID does not match the real
or effective user ID of one of the LWPs.

ESRCH The specified lgroup or LWP(s) was not found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_home(3LGRP), liblgrp(3LIB), attributes(5)

lgrp_affinity_get(3LGRP)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 663

lgrp_children – get children of given lgroup

cc [flag ...] file... -llgrp [library ...]

#include <sys/lgrp_user.h>

int lgrp_children(lgrp_cookie_t cookie, lgrp_id_t parent, lgrp_id_t
*lgrp_array, uint_t lgrp_array_size);

The lgrp_children() function takes a cookie representing a snapshot of the lgroup
hierarchy retrieved from lgrp_init(3LGRP) and returns the number of lgroups that
are children of the specified lgroup. If the lgrp_array and lgrp_array_size arguments are
non-null, the array is filled with as many of the children lgroup IDs as will fit, given
the size of the array.

− returns the number of child lgroup IDs. Otherwise, it returns −1 and sets errno to
indicate the error.

The lgrp_children() function will fail if:

EINVAL The specified lgroup ID is not valid or the cookie is invalid.

ESRCH The specified lgroup ID was not found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_init(3LGRP), lgrp_nlgrps(3LGRP), lgrp_parents(3LGRP),
liblgrp(3LIB), attributes(5)

lgrp_children(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

664 man pages section 3: Extended Library Functions • Last Revised 16 Apr 2003

lgrp_cookie_stale – determine whether snapshot of lgroup hierarchy is stale

cc [flag ...] file... -llgrp [library ...]

#include <sys/lgrp_user.h>

int lgrp_cookie_stale(lgrp_cookie_t cookie);

The lgrp_cookie_stale() function takes a cookie representing the snapshot of the
lgroup hierarchy obtained from lgrp_init(3LGRP) and returns whether it is stale.
The snapshot can become out-of-date for a number of reasons depending on its view.
If the snapshot was taken with LGRP_VIEW_OS, changes in the lgroup hierarchy from
dynamic reconfiguration, CPU on/offline, or other conditions can cause the snapshot
to become out-of-date. A snapshot taken with LGRP_VIEW_CALLER can be affected by
the caller’s processor set binding and changes in its processor set itself, as well as
changes in the lgroup hierarchy.

If the snapshot needs to be updated, lgrp_fini(3LGRP) should be called with the
old cookie and lgrp_init() should be called to obtain a new snapshot.

Upon successful completion, lgrp_cookie_stale() returns whether the cookie is
stale. Otherwise, it returns −1 and sets errno to indicate the error.

The lgrp_cookie_stale() function will fail if:

EINVAL The cookie is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_init(3LGRP), lgrp_fini(3LGRP), lgrp_view(3LGRP), liblgrp(3LIB),
attributes(5)

lgrp_cookie_stale(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 665

lgrp_cpus – get CPU IDs contained in specified lgroup

cc [flag...] file... -llgrp [library...]

#include <sys/lgrp_user.h>

int lgrp_cpus(lgrp_cookie_t cookie, lgrp_id_t lgrp, processorid_t
*cpuids, uint_t count, int content);

The lgrp_cpus() function takes a cookie representing a snapshot of the lgroup
hierarchy obtained from lgrp_init(3LGRP) and returns the number of CPUs in the
lgroup specified by lgrp. If both the cpuids[] argument is non-null and the count is
non-zero, lgrp_cpus() stores up to the specified count of CPU IDs into the cpuids[]
array.

The content argument should be set to one of the following values to specify whether
the direct contents or everything in this lgroup including its children should be
returned:

LGRP_CONTENT_HIERARCHY /* everything within this hierarchy */

LGRP_CONTENT_DIRECT /* directly contained in lgroup */

Upon successful completion, the number of CPUs in the given lgroup is returned.
Otherwise, −1 is returned and errno is set to indicate the error.

The lgrp_cpus() function will fail if:

EINVAL The specified cookie, lgroup ID, or one of the flags is not valid.

ESRCH The specified lgroup ID was not found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_init(3LGRP), lgrp_mem_size(3LGRP), liblgrp(3LIB), attributes(5)

lgrp_cpus(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

666 man pages section 3: Extended Library Functions • Last Revised 16 Apr 2003

lgrp_fini – finished using lgroup interface

cc [flag...] file... -llgrp [library...]

#include <sys/lgrp_user.h>

int lgrp_fini(lgrp_cookie_t cookie);

The lgrp_fini() function takes a cookie, frees the snapshot of the lgroup hierarchy
created by lgrp_init(3LGRP), and cleans up anything else set up by lgrp_init().
After this function is called, any memory allocated and returned by the lgroup
interface might no longer be valid and should not be used.

Upon successful completion, 0 is returned. Otherwise, −1 is returned and errno is set
to indicate the error.

The lgrp_fini() function will fail if:

EINVAL The cookie is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_init(3LGRP), lgrp_cookie_stale(3LGRP), liblgrp(3LIB),
attributes(5)

lgrp_fini(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 667

lgrp_home – get home lgroup

cc [flag...] file... -llgrp [library...]

#include <sys/lgrp_user.h>

lgrp_id_t lgrp_home(idtype_t idtype, id_t id);

The lgrp_home() function returns the ID of the home lgroup for the given process or
thread. A thread can have an affinity for an lgroup in the system such that the thread
will tend to be scheduled to run on that lgroup and allocate memory from there
whenever possible. The lgroup with the strongest affinity that the thread can run on is
known as the "home lgroup" of the thread. If the thread has no affinity for any lgroup
that it can run on, the operating system will choose a home for it.

The idtype argument should be P_PID to specify a process and the id argument should
be its process ID. Otherwise, the idtype argument should be P_LWPID to specify a
thread and the id argument should be its LWP ID. The value P_MYID can be used for
the id argument to specify the current process or thread.

Upon successful completion, lgrp_home() returns the ID of the home lgroup of the
specified process or thread. Otherwise, −1 is returned and errno is set to indicate the
error.

The lgrp_home() function will fail if:

EINVAL The ID type is not valid.

EPERM The effective user of the calling process does not have appropriate
privileges, and its real or effective user ID does not match the real
or effective user ID of one of the threads.

ESRCH The specified process or thread was not found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_affinity_get(3LGRP), lgrp_init(3LGRP), attributes(5)

lgrp_home(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

668 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2003

lgrp_init – initialize lgroup interface

cc [flag ...] file... -llgrp [library ...]

#include <sys/lgrp_user.h>

lgrp_cookie_t lgrp_init(lgrp_view_t view);

The lgrp_init() function initializes the lgroup interface and takes a snapshot of the
lgroup hierarchy with the given view. If the given view is LGRP_VIEW_CALLER, the
snapshot contains only the resources that are available to the caller (for example, with
respect to processor sets). When the view is LGRP_VIEW_OS, the snapshot contains
what is available to the operating system.

Given the view, lgrp_init() returns a cookie representing this snapshot of the
lgroup hierarchy. This cookie should be used with other routines in the lgroup
interface needing the lgroup hierarchy. The lgrp_fini(3LGRP) function should be
called with the cookie when it is no longer needed.

The lgroup hierarchy consists of a root lgroup, which is the maximum bounding
locality group of the system. It contains all the CPU and memory resources of the
machine and can contain other locality groups that contain CPUs and memory within
a smaller locality.

Upon successful completion, lgrp_init() returns a cookie. Otherwise it returns
LGRP_COOKIE_NONE and sets errno to indicate the error.

The lgrp_init() function will fail if:

EINVAL The view is not valid.

ENOMEM There was not enough memory to allocate the snapshot of the
lgroup hierarchy.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_children(3LGRP), lgrp_cookie_stale(3LGRP), lgrp_cpus(3LGRP),
lgrp_fini(3LGRP), lgrp_mem_size(3LGRP), lgrp_nlgrps(3LGRP),
lgrp_parents(3LGRP), lgrp_root(3LGRP), lgrp_view(3LGRP), liblgrp(3LIB),
attributes(5)

lgrp_init(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 669

lgrp_latency – get latency between two lgroups

cc [flag...] file... -llgrp [library...]

#include <sys/lgrp_user.h>

int lgrp_latency(lgrp_id_t from, lgrp_id_t to);

The lgrp_latency() function returns the latency value between a CPU in the from
lgroup to the memory in the to lgroup. If from is the same lgroup as to, the latency
value within that lgroup is returned.

The latency value is defined by the operating system and is platform-specific. It can be
used only for relative comparison of lgroups on the running system. It does not
necessarily represent the actual latency between hardware devices, and it might not be
applicable across platforms.

Upon successful completion, the latency value is returned. Otherwise −1 is returned
and errno is set to indicate the error.

The lgrp_latency() function will fail if:

EINVAL The specified lgroup ID is not valid.

ESRCH The specified lgroup ID was not found, the from lgroup does not
contain any CPUs, or the to lgroup does not have any memory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_init(3LGRP), lgrp_parents(3LGRP), lgrp_children(3LGRP),
liblgrp(3LIB), attributes(5)

lgrp_latency(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

670 man pages section 3: Extended Library Functions • Last Revised 16 Apr 2003

lgrp_mem_size – return the memory size of the given lgroup

cc [flag...] file... -llgrp [library...]

#include <sys/lgrp_user.h>

lgrp_mem_size_t lgrp_mem_size(lgrp_cookie_t cookie, lgrp_id_t lgrp,
int type, int content);

The lgrp_mem_size() function takes a cookie representing a snapshot of the lgroup
hierarchy. The cookie was obtained by calling lgrp_init(3LGRP). The
lgrp_mem_size() function returns the memory size of the given lgroup in bytes.
The type argument should be set to one of the following values:

LGRP_MEM_SZ_FREE /* free memory */

LGRP_MEM_SZ_INSTALLED /* installed memory */

The content argument should be set to one of the following values to specify whether
the direct contents or everything in this lgroup including its children should be
returned:

LGRP_CONTENT_HIERARCHY /* everything within this hierarchy */

LGRP_CONTENT_DIRECT /* directly contained in lgroup */

The total sizes include all the memory in the lgroup including its children, while the
others reflect only the memory contained directly in the given lgroup.

Upon successful completion, the size in bytes is returned. Otherwise, −1 is returned
and errno is set to indicate the error.

The lgrp_mem_size() function will fail if:

EINVAL The specified cookie, lgroup ID, or one of the flags is not valid.

ESRCH The specified lgroup ID was not found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_init(3LGRP), lgrp_cpus(3LGRP), liblgrp(3LIB), attributes(5)

lgrp_mem_size(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 671

lgrp_nlgrps – get number of lgroups

cc [flag ...] file... -llgrp [library ...]

#include <sys/lgrp_user.h>

int lgrp_nlgrps(lgrp_cookie_t cookie);

The lgrp_nlgrps() function takes a cookie representing a snapshot of the lgroup
hierarchy obtained from lgrp_init(3LGRP). It returns the number of lgroups in the
hierarchy where the number is always at least one.

Upon successful completion, lgrp_nlgrps() returns the number of lgroups in the
system. Otherwise, it returns −1 and sets errno to indicate the error.

The lgrp_nlgrps() function will fail if:

EINVAL The cookie is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_children(3LGRP), lgrp_init(3LGRP), lgrp_parents(3LGRP),
liblgrp(3LIB), attributes(5)

lgrp_nlgrps(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

672 man pages section 3: Extended Library Functions • Last Revised 16 Apr 2003

lgrp_parents – get parents of given lgroup

cc [flag ...] file... -llgrp [library ...]

#include <sys/lgrp_user.h>

int lgrp_parents(lgrp_cookie_t cookie, lgrp_id_t child, lgrp_id_t
*lgrp_array, uint_t lgrp_array_size);

The lgrp_parents() function takes a cookie representing a snapshot of the lgroup
hierarchy obtained from lgrp_init(3LGRP) and returns the number of parent
lgroups of the specified lgroup. If lgrp_array is non-null and the lgrp_array_size is
non-zero, the array is filled with as many of the parent lgroup IDs as will fit given the
size of the array. For the root lgroup, the number of parents returned is 0 and the
lgrp_array argument is not filled in.

Upon successful completion, lgrp_parents() returns the number of parent lgroup
IDs. Otherwise, −1 is returned and errno is set to indicate the error.

The lgrp_parents() function will fail if:

EINVAL The specified cookie or lgroup ID is not valid.

ESRCH The specified lgroup ID was not found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_children(3LGRP), lgrp_init(3LGRP), lgrp_nlgrps(3LGRP),
liblgrp(3LIB), attributes(5)

lgrp_parents(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 673

lgrp_root – return root lgroup ID

cc [flag ...] file... -llgrp [library ...]

#include <sys/lgrp_user.h>

lgrp_id_t lgrp_root(lgrp_cookie_t cookie);

The lgrp_root() function returns the root lgroup ID.

Upon successful completion, lgrp_root() returns the lgroup ID of the root lgroup.

The lgrp_root() function will fail if:

EINVAL The cookie is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_children(3LGRP), lgrp_init(3LGRP), lgrp_nlgrps(3LGRP),
lgrp_parents(3LGRP), liblgrp(3LIB), attributes(5)

lgrp_root(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

674 man pages section 3: Extended Library Functions • Last Revised 16 Apr 2003

lgrp_version – coordinate library and application versions

cc [flag ...] file... -llgrp [library ...]

#include <sys/lgrp_user.h>

int lgrp_version(const int version);

The lgrp_version() function takes an interface version number, version, as an
argument and returns an lgroup interface version. The version argument should be the
value of LGRP_VER_CURRENT bound to the application when it was compiled or
LGRP_VER_NONE to find out the current lgroup interface version on the running
system.

If version is still supported by the implementation, then lgrp_version() returns the
requested version. If LGRP_VER_NONE is returned, the implementation cannot support
the requested version. The application should be recompiled and might require further
changes.

If version is LGRP_VER_NONE, lgrp_version() returns the current version of the
library.

EXAMPLE 1 Test whether the version of the interface used by the caller is supported.

The following example tests whether the version of the interface used by the caller is
supported:

#include <sys/lgrp_user.h>

if (lgrp_version(LGRP_VER_CURRENT) != LGRP_VER_CURRENT) {
fprintf(stderr, "Built with unsupported lgroup interface %d\n",

LGRP_VER_CURRENT);
exit (1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_init(3LGRP), liblgrp(3LIB), attributes(5)

lgrp_version(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 675

lgrp_view – get view of lgroup hierarchy

cc [flag ...] file... -llgrp [library ...]

#include <sys/lgrp_user.h>

lgrp_view_t lgrp_view(lgrp_cookie_t cookie);

The lgrp_view() function takes a cookie representing the snapshot of the lgroup
hierarchy obtained from lgrp_init(3LGRP) and returns the snapshot’s view of the
lgroup hierarchy.

If the given view is LGRP_VIEW_CALLER, the snapshot contains only the resources
that are available to the caller (such as those with respect to processor sets). When the
view is LGRP_VIEW_OS, the snapshot contains what is available to the operating
system.

Upon succesful completion, lgrp_view() returns the view for the snapshot of the
lgroup hierarchy represented by the given cookie. Otherwise, −1 is returned and
errno is set to indicate the error.

The lgrp_view() function will fail if:

EINVAL The cookie is not valid.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

lgrp_cookie_stale(3LGRP), lgrp_fini(3LGRP), lgrp_init(3LGRP),
liblgrp(3LIB), attributes(5)

lgrp_view(3LGRP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

676 man pages section 3: Extended Library Functions • Last Revised 16 Apr 2003

libpicl – PICL interface library

cc [flag . . .] file . . . -lpicl [library . . .]

#include <picl.h>

The PICL interface is the platform-independent interface for clients to access the
platform information. The set of functions and data structures of this interface are
defined in the <picl.h> header.

The information published through PICL is organized in a tree, where each node is an
instance of a well-defined PICL class. The functions in the PICL interface allow the
clients to access the properties of the nodes.

The name of the base PICL class is picl, which defines a basic set of properties that
all nodes in the tree must possess. The following table shows the property set of a
picl class node.

Property Name Property Value

name The name of the node

_class The PICL class name of the node

_parent Node handle of the parent node

_child Node handle of the first child node

_peer Node handle of the next peer node

Property names with a a leading underscore (’_’) are reserved for use by the PICL
framework. The property names _class, _parent, _child, and _peer are reserved
names of the PICL framework, and are used to refer to a node’s parent, child, and peer
nodes, respectively. A client shall access a reserved property by their names only as
they do not have an associated handle. The property name is not a reserved property,
but a mandatory property for all nodes.

Properties are classified into different types. Properties of type integer,
unsigned-integer, and float have integer, unsigned integer, and floating-point values,
respectively. A table property type has the handle to a table as its value. A table is a
matrix of properties. A reference property type has a handle to a node in the tree as
its value. A reference property may be used to establish an association between any
two nodes in the tree. A timestamp property type has the value of time in seconds
since Epoch. A bytearray property type has an array of bytes as its value. A
charstring property type has a nul (’\0’) terminated sequence of ASCII characters.
The size of a property specifies the size of its value in bytes. A void property type
denotes a property that exists but has no value.

The following table lists the different PICL property types enumerated in
picl_prop_type_t.

libpicl(3PICL)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 677

Property Type Property Value

PICL_PTYPE_VOID None

PICL_PTYPE_INT Is an integer

PICL_PTYPE_UNSIGNED_INT Is an unsigned integer

PICL_PTYPE_FLOAT Is a floating-point number

PICL_PTYPE_REFERENCE Is a PICL node handle

Reference properties may be used by plug-ins to publish properties in nodes of
different classes. To make these property names unique, their names must be prefixed
by _picl_class_name_, where picl_class_name is the class name of the node referenced by
the property. Valid PICL class names are combinations of uppercase and lowercase
letters ’a’ through ’z’, digits ’0’ through ’9’, and ’-’ (minus) characters. The string that
follows the ’_picl_class_name_’ portion of a reference property name may be used to
indicate a specific property in the referenced class, when applicable.

The information about a node’s property that can be accessed by PICL clients is
defined by the picl_propinfo_t structure.

typedef struct {
picl_prop_type_t type; /* property type */
unsigned int accessmode; /* read, write */
size_t size; /* item size or string size */
char name[PICL_PROPNAMELEN_MAX];

} picl_propinfo_t;

The type member specifies the property value type and the accessmode specifies
the allowable access to the property. The plug-in module that adds the property to the
PICL tree also sets the access mode of that property. The volatile nature of a property
created by the plug-in is not visible to the PICL clients. The size member specifies the
number of bytes occupied by the property’s value. The maximum allowable size of
property value is PICL_PROPSIZE_MAX, which is set to 512KB.

The plug-in module may publish a property granting a combination of the following
access modes to the clients:

#define PICL_READ 0x1 /* read permission */
#define PICL_WRITE 0x2 /* write permission */

The maximum length of the name of any property is specified by
PICL_PROPNAMELEN_MAX.

The maximum length of a PICL class name is specified by
PICL_CLASSNAMELEN_MAX.

See attributes(5) for descriptions of the following attributes:

libpicl(3PICL)

Reference Property
Naming

Convention

Property
Information

Property Access
Modes

Property Names

Class Names

ATTRIBUTES

678 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicl(3LIB), attributes(5)

libpicl(3PICL)

SEE ALSO

Extended Library Functions 679

libpicltree – PTree and Plug-in Registration interface library

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

The PTree interface is the set of functions and data structures to access and manipulate
the PICL tree. The daemon and the plug-in modules use the PTree interface.

The Plug-in Registration interface is used by the plug-in modules to register
themselves with the daemon.

The plug-in modules create the nodes and properties of the tree. At the time of
creating a property, the plug-ins specify the property information in the
ptree_propinfo_t structure defined as:

typedef struct {
int version; /* version */
picl_propinfo_t piclinfo; /* info to clients */
int (*read)(ptree_rarg_t *arg, void *buf);

/* read access function for */
/* volatile prop */

int (*write)(ptree_warg_t *arg, const void *buf);
/* write access function for */
/* volatile prop */

} ptree_propinfo_t;

See libpicl(3PICL) for more information on PICL tree nodes and properties.

The maximum size of a property value cannot exceed PICL_PROPSIZE_MAX. It is
currently set to 512KB.

In addition to PICL_READ and PICL_WRITE property access modes, the plug-in
modules specify whether a property is volatile or not by setting the bit
PICL_VOLATILE.

#define PICL_VOLATILE 0x4

For a volatile property, the plug-in module provides the access functions to read
and/or write the property in the ptree_propinfo_t argument passed when
creating the property.

The daemon invokes the access functions of volatile properties when clients access
their values. Two arguments are passed to the read access functions. The first
argument is a pointer to ptree_rarg_t, which contains the handle of the node, the
handle of the accessed property and the credentials of the caller. The second argument
is a pointer to the buffer where the value is to be copied.

typedef struct {
picl_nodehdl_t nodeh;
picl_prophdl_t proph;
door_cred_t cred;

} ptree_rarg_t;

The prototype of the read access function for volatile property is:

int read(ptree_rarg_t *rarg, void *buf);

libpicltree(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

Volatile Properties

680 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

The read function returns PICL_SUCCESS to indicate successful completion.

Similarly, when a write access is performed on a volatile property, the daemon invokes
the write access function provided by the plug-in for that property and passes it two
arguments. The first argument is a pointer to ptree_warg_t, which contains the
handle to the node, the handle of the accessed property and the credentials of the
caller. The second argument is a pointer to the buffer containing the value to be
written.

typedef struct {
picl_nodehdl_t nodeh;
picl_prophdl_t proph;
door_cred_t cred;

} ptree_warg_t;

The prototype of the write access function for volatile property is:

int write(ptree_warg_t *warg, const void *buf);

The write function returns PICL_SUCCESS to indicate successful completion.

For all volatile properties, the ’size’ of the property must be specified to be the
maximum possible size of the value. The maximum size of the value cannot exceed
PICL_PROPSIZE_MAX. This allows a client to allocate a sufficiently large buffer before
retrieving a volatile property’s value

Plug-in modules are shared objects that are located in well-known directories for the
daemon to locate and load them. Plug-in module’s are located in the one of the
following plug-in directories depending on the plaform-specific nature of the data
they collect and publish.

/usr/platform/picl/plugins/‘uname -i‘/
/usr/platform/picl/plugins/‘uname -m‘/
/usr/lib/picl/plugins/

A plug-in module may specify its dependency on another plug-in module using the
-l linker option. The plug-ins are loaded by the PICL daemon using dlopen(3C)
according to the specified dependencies. Each plug-in module must define a .init
section, which is executed when the plug-in module is loaded, to register themselves
with the daemon. See picld_plugin_register(3PICLTREE) for more information
on plug-in registration.

The plug-in modules may use the picld_log(3PICLTREE) function to log their
messages to the system log file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicl(3PICL), libpicltree(3LIB), picld_log(3PICLTREE),
picld_plugin_register(3PICLTREE), attributes(5)

libpicltree(3PICLTREE)

Plug-in Modules

ATTRIBUTES

SEE ALSO

Extended Library Functions 681

libtecla_version – query libtecla version number

cc [flag...] file... -ltecla [library...]

#include <libtecla.h>

void libtecla_version(int *major, int *minor, int *micro);

The libtecla_version() function queries for the version number of the library.

On return, this function records the three components of the libtecla version number
in *major, *minor, *micro. The formal meaning of the three components is as follows:

major Incrementing this number implies that a change has been made to the
library’s public interface that makes it binary incompatible with programs
that were linked with previous shared versions of libtecla.

minor This number is incremented by one whenever additional functionality, such
as new functions or modules, are added to the library.

micro This number is incremented whenever modifications to the library are
made that make no changes to the public interface, but which fix bugs
and/or improve the behind-the-scenes implementation.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libtecla(3LIB), attributes(5)

libtecla_version(3TECLA)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

682 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

libtnfctl – library for TNF probe control in a process or the kernel

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

The libtnfctl library provides an API to control TNF ("Trace Normal Form") probes
within a process or the kernel. See tracing(3TNF) for an overview of the Solaris
tracing architecture. The client of libtnfctl controls probes in one of four modes:

internal mode The target is the controlling process itself; that is, the client
controls its own probes.

direct mode The target is a separate process; a client can either exec(2) a
program or attach to a running process for probe control. The
libtnfctl library uses proc(4) on the target process for probe
and process control in this mode, and additionally provides basic
process control features.

indirect mode The target is a separate process, but the controlling process is
already using proc(4) to control the target, and hence libtnfctl
cannot use those interfaces directly. Use this mode to control
probes from within a debugger. In this mode, the client must
provide a set of functions that libtnfctl can use to query and
update the target process.

kernel mode The target is the Solaris kernel.

A process is controlled "externally" if it is being controlled in either direct mode or
indirect mode. Alternatively, a process is controlled "internally" when it uses internal
mode to control its own probes.

There can be only one client at a time doing probe control on a given process.
Therefore, it is not possible for a process to be controlled internally while it is being
controlled externally. It is also not possible to have a process controlled by multiple
external processes. Similarly, there can be only one process at a time doing kernel
probe control. Note, however, that while a given target may only be controlled by one
libtnfctl client, a single client may control an arbitrary number of targets. That is,
it is possible for a process to simultaneously control its own probes, probes in other
processes, and probes in the kernel.

The following tables denotes the modes applicable to all libtnfctl interfaces (INT =
internal mode; D = direct mode; IND = indirect mode; K = kernel mode).

These interfaces create handles in the specified modes:

tnfctl_internal_open() INT

tnfctl_exec_open() D

tnfctl_pid_open() D

libtnfctl(3TNF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 683

tnfctl_indirect_open() IND

tnfctl_kernel_open() K

These interfaces are used with the specified modes:

tnfctl_continue() D

tnfctl_probe_connect() INT D IND

tnfctl_probe_disconnect_all () INT D IND

tnfctl_trace_attrs_get() INT D IND K

tnfctl_buffer_alloc() INT D IND K

tnfctl_register_funcs() INT D IND K

tnfctl_probe_apply() INT D IND K

tnfctl_probe_apply_ids() INT D IND K

tnfctl_probe_state_get () INT D IND K

tnfctl_probe_enable() INT D IND K

tnfctl_probe_disable() INT D IND K

tnfctl_probe_trace() INT D IND K

tnfctl_probe_untrace() INT D IND K

tnfctl_check_libs() INT D IND K

tnfctl_close() INT D IND K

tnfctl_strerror() INT D IND K

tnfctl_buffer_dealloc() K

tnfctl_trace_state_set() K

tnfctl_filter_state_set() K

tnfctl_filter_list_get() K

tnfctl_filter_list_add() K

tnfctl_filter_list_delete() K

When using libtnfctl, the first task is to create a handle for controlling probes. The
tnfctl_internal_open() function creates an internal mode handle for controlling
probes in the same process, as described above. The tnfctl_pid_open() and
tnfctl_exec_open() functions create handles in direct mode. The

libtnfctl(3TNF)

684 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

tnfctl_indirect_open() function creates an indirect mode handle, and the
tnfctl_kernel_open() function creates a kernel mode handle. A handle is
required for use in nearly all other libtnfctl functions. The tnfctl_close()
function releases the resources associated with a handle.

The tnfctl_continue() function is used in direct mode to resume execution of the
target process.

The tnfctl_buffer_alloc() function allocates a trace file or, in kernel mode, a
trace buffer.

The tnfctl_probe_apply() and tnfctl_probe_apply_ids() functions call a
specified function for each probe or for a designated set of probes.

The tnfctl_register_funcs() function registers functions to be called whenever
new probes are seen or probes have disappeared, providing an opportunity to do
one-time processing for each probe.

The tnfctl_check_libs() function is used primarily in indirect mode to check
whether any new probes have appeared, that is, they have been made available by
dlopen(3C), or have disappeared, that is, they have disassociated from the process by
dlclose(3C).

The tnfctl_probe_enable() and tnfctl_probe_disable() functions control
whether the probe, when hit, will be ignored.

The tnfctl_probe_trace() and tnfctl_probe_untrace() functions control
whether an enabled probe, when hit, will cause an entry to be made in the trace file.

The tnfctl_probe_connect() and tnfctl_probe_disconnect_all()
functions control which functions, if any, are called when an enabled probe is hit.

The tnfctl_probe_state_get() function returns information about the status of a
probe, such as whether it is currently enabled.

The tnfctl_trace_attrs_get() function returns information about the tracing
session, such as the size of the trace buffer or trace file.

The tnfctl_strerror() function maps a tnfctl error code to a string, for
reporting purposes.

The remaining functions apply only to kernel mode.

The tnfctl_trace_state_set() function controls the master switch for kernel
tracing. See prex(1) for more details.

The tnfctl_filter_state_set(), tnfctl_filter_list_get(),
tnfctl_filter_list_add(), and tnfctl_filter_list_delete() functions
allow a set of processes to be specified for which probes will not be ignored when hit.
This prevents kernel activity caused by uninteresting processes from cluttering up the
kernel’s trace buffer.

libtnfctl(3TNF)

Extended Library Functions 685

The tnfctl_buffer_dealloc() function deallocates the kernel’s internal trace
buffer.

Upon successful completion, these functions returnTNFCTL_ERR_NONE.

The error codes for libtnfctl are:

TNFCTL_ERR_ACCES Permission denied.

TNFCTL_ERR_NOTARGET The target process completed.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

TNFCTL_ERR_SIZETOOSMALL The requested trace size is too small.

TNFCTL_ERR_SIZETOOBIG The requested trace size is too big.

TNFCTL_ERR_BADARG Bad input argument.

TNFCTL_ERR_NOTDYNAMIC The target is not a dynamic executable.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so not linked in target.

TNFCTL_ERR_BUFBROKEN Tracing is broken in the target.

TNFCTL_ERR_BUFEXISTS A buffer already exists.

TNFCTL_ERR_NOBUF No buffer exists.

TNFCTL_ERR_BADDEALLOC Cannot deallocate buffer.

TNFCTL_ERR_NOPROCESS No such target process exists.

TNFCTL_ERR_FILENOTFOUND File not found.

TNFCTL_ERR_BUSY Cannot attach to process or kernel because
it is already tracing.

TNFCTL_ERR_INVALIDPROBE Probe no longer valid.

TNFCTL_ERR_USR1 Error code reserved for user.

TNFCTL_ERR_USR2 Error code reserved for user.

TNFCTL_ERR_USR3 Error code reserved for user.

TNFCTL_ERR_USR4 Error code reserved for user.

TNFCTL_ERR_USR5 Error code reserved for user.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

libtnfctl(3TNF)

RETURN VALUES

ERRORS

ATTRIBUTES

686 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

prex(1), exec(2), dlclose(3C), dlopen(3C), TNF_PROBE(3TNF),
tnfctl_buffer_alloc(3TNF), tnfctl_buffer_dealloc(3TNF),
tnfctl_check_libs(3TNF), tnfctl_close(3TNF), tnfctl_continue(3TNF),
tnfctl_internal_open(3TNF), tnfctl_exec_open(3TNF),
tnfctl_filter_list_add(3TNF), tnfctl_filter_list_delete(3TNF),
tnfctl_filter_list_get(3TNF), tnfctl_filter_state_set(3TNF),
tnfctl_kernel_open(3TNF), tnfctl_pid_open(3TNF),
tnfctl_probe_apply(3TNF), tnfctl_probe_apply_ids(3TNF),
tnfctl_probe_connect(3TNF), tnfctl_probe_disable(3TNF),
tnfctl_probe_enable(3TNF), tnfctl_probe_state_get(3TNF),
tnfctl_probe_trace(3TNF), tnfctl_probe_untrace(3TNF),
tnfctl_indirect_open(3TNF), tnfctl_register_funcs(3TNF),
tnfctl_strerror(3TNF), tnfctl_trace_attrs_get(3TNF),
tnfctl_trace_state_set(3TNF), libtnfctl(3LIB), proc(4), attributes(5)

Linker and Libraries Guide

This API is MT-Safe. Multiple threads may concurrently operate on independent
tnfctl handles, which is the typical behavior expected. The libtnfctl library does
not support multiple threads operating on the same tnfctl handle. If this is desired,
it is the client’s responsibility to implement locking to ensure that two threads that use
the same tnfctl handle are not simultaneously in a libtnfctl interface.

libtnfctl(3TNF)

SEE ALSO

NOTES

Extended Library Functions 687

llrint, llrintf, llrintl – round to nearest integer value using current rounding direction

cc [flag...] file... -lm [library...]

#include <math.h>

long long llrint(double x);

long long llrintf(float x);

long long llrintl(long double x);

These functions round their argument to the nearest integer value, rounding according
to the current rounding direction.

Upon successful completion, these functions return the rounded integer value.

If x is NaN, a domain error occurs and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is -Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, a domain
error occurs and an unspecified value is returned.

If the correct value is negative and too large to represent as a long long, a domain
error occurs and an unspecified value is returned.

These functions will fail if:

Domain Error The x argument is NaN or ±Inf, or the correct value is not
representable as an integer.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception will be raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

These functions provide floating-to-integer conversions. They round according to the
current rounding direction. If the rounded value is outside the range of the return
type, the numeric result is unspecified and the invalid floating-point exception is
raised. When they raise no other floating-point exception and the result differs from
the argument, they raise the inexact floating-point exception.

llrint(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

688 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), lrint(3M), math.h(3HEAD),
attributes(5), standards(5)

llrint(3M)

ATTRIBUTES

SEE ALSO

Extended Library Functions 689

llround, llroundf, llroundl – round to nearest integer value

cc [flag...] file... -lm [library...]

#include <math.h>

long long llround(double x);

long long llroundf(float x);

long long llroundl(long double x);

These functions rounds their argument to the nearest integer value, rounding halfway
cases away from 0 regardless of the current rounding direction.

Upon successful completion, these functions return the rounded integer value.

If x is NaN, a domain error occurs and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is -Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long long, a domain
error occurs and an unspecified value is returned.

If the correct value is negative and too large to represent as a long long, a domain
error occurs and an unspecified value is returned.

These functions will fail if:

Domain Error The x argument is NaN or ±Inf, or the correct value is not
representable as an integer.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception will be raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

These functions differ from the llrint(3M) functions in that the default rounding
direction for the llround() functions round halfway cases away from 0 and need not
raise the inexact floating-point exception for non-integer arguments that round to
within the range of the return type.

See attributes(5) for descriptions of the following attributes:

llround(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

690 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), llrint(3M), lrint(3M), lround(3M),
math.h(3HEAD), attributes(5), standards(5)

llround(3M)

SEE ALSO

Extended Library Functions 691

log10, log10f, log10l – base 10 logarithm function

cc [flag...] file... -lm [library...]

#include <math.h>

double log10(double x);

float log10f(float x);

long double log10l(long double x);

These functions compute the base 10 logarithm of x, log10(x).

Upon successful completion, log10() returns the base 10 logarithm of x.

If x is ±0, a pole error occurs and log10(), log10f(), and log10l() return
−HUGE_VAL, −HUGE_VALF, and −HUGE_VALL, respectively.

For finite values of x that are less than 0, or if x is −Inf, a domain error occurs and a
NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, x is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by log10()
as specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The finite value of x is negative, or x is -Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The log10() function sets errno to EDOM if the value of x is
negative.

Pole Error The value of x is 0.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the divide-by-zero floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

log10(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

692 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

An application can also set errno to 0 before calling log10(). On return, if errno is
non-zero, an error has occurred. The log10f() and log10l() functions do not set
errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), isnan(3M), log(3M), math.h(3HEAD),
matherr(3M), pow(3M), attributes(5), standards(5)

log10(3M)

ATTRIBUTES

SEE ALSO

Extended Library Functions 693

log1p, log1pf, log1pl – compute natural logarithm

cc [flag...] file... -lm [library...]

#include <math.h>

double log1p(double x);

float log1pf(float x);

long double log1pl(long double x);

These functions compute loge(1.0 + x).

Upon successful completion, these functions return the natural logarithm of 1.0 + x.

If x is −1, a pole error occurs and log1p(), log1pf(), and log1pl() return
−HUGE_VAL, −HUGE_VALF, and −HUGE_VALL, respectively.

For finite values of x that are less than −1, or if x is −Inf, a domain error occurs and a
NaN is returned.

If x is NaN, a NaN is returned.

If x is ±0 or +Inf, x is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by log1p()
as specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The finite value of x is less than −1, or x is -Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The log1p() function sets errno to EDOM if the value of x is less
than −1.

Pole Error The value of x is −1.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the divide-by-zero floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

log1p(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

694 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

An application can also set errno to 0 before calling log1p(). On return, if errno is
non-zero, an error has occurred. The log1pf() and log1pl() functions do not set
errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), log(3M), math.h(3HEAD),
matherr(3M), attributes(5), standards(5)

log1p(3M)

ATTRIBUTES

SEE ALSO

Extended Library Functions 695

log2, log2f, log2l – compute base 2 logarithm functions

cc [flag...] file... -lm [library...]

#include <math.h>

double log2(double x);

float log2f(float x);

long double log2l(long double x);

These functions compute the base 2 logarithm of their argument x, log2(x).

Upon successful completion, these functions return the base 2 logarithm of x.

If x is ±0, a pole error occurs and log2(), log2f(), and log2l() return
−HUGE_VAL, −HUGE_VALF, and −HUGE_VALL, respectively.

For finite values of x that are less than 0, or if x is −Inf a domain error occurs and a
NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, x is returned.

These functions will fail if:

Domain Error The finite value of x is less than 0, or x is −Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception is raised.

Pole Error The value of x is 0.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the divide-by-zero
floating-point exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

log2(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

696 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), log(3M), math.h(3HEAD),
attributes(5), standards(5)

log2(3M)

SEE ALSO

Extended Library Functions 697

log, logf, logl – natural logarithm function

cc [flag...] file... -lm [library...]

#include <math.h>

double log(double x);

float logf(float x);

long double logl(long double x);

These functions compute the natural logarithm of their argument x, loge(x).

Upon successful completion, log() returns the natural logarithm of x.

If x is ±0, a pole error occurs and log(), logf(), and logl() return −HUGE_VAL,
−HUGE_VALF, and −HUGE_VALL, respectively.

For finite values of x that are less than 0, or if x is −Inf, a domain error occurs and a
NaN is returned.

If x is NaN, a NaN is returned.

If x is 1, +0 is returned.

If x is +Inf, x is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by log() as
specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The finite value of x is negative, or x is -Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The log() function sets errno to EDOM if the value of x is
negative.

Pole Error The value of x is 0.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the divide-by-zero floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

log(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

698 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

An application can also set errno to 0 before calling log(). On return, if errno is
non-zero, an error has occurred. The logf() and logl() functions do not set errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

exp(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M), log10(3M),
log1p(3M), math.h(3HEAD), matherr(3M), attributes(5), standards(5)

log(3M)

ATTRIBUTES

SEE ALSO

Extended Library Functions 699

logb, logbf, logbl – radix-independent exponent

cc [flag...] file... -lm [library...]

#include <math.h>

double logb(double x);

float logbf(float x);

long double logbl(long double x);

These functions compute the exponent of x, which is the integral part of logr |x|, as a
signed floating point value, for non-zero x, where r is the radix of the machine’s
floating-point arithmetic, which is the value of FLT_RADIX defined in the <float.h>
header.

Upon successful completion, these functions return the exponent of x.

If x is subnormal:

� For SUSv3–conforming applications (see standards(5)), the exponent of x as if x
were normalized is returned.

� Otherwise, −1022, −126, and −16382 are returned for logb(), logbf(), and
logbl(), respectively.

If x is ±0, a pole error occurs and logb(), logbf(), and logbl() return
−HUGE_VAL, −HUGE_VALF, and −HUGE_VALL, respectively.

If x is NaN, a NaN is returned.

If x is ±Inf, +Inf is returned.

These functions will fail if:

Pole Error The value of x is ±0.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the divide-by-zero floating-point
exception is raised.

The logb() function sets errno to EDOM if the value of x is 0.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling logb(). On return, if errno is
non-zero, an error has occurred. The logbf() and logbl() functions do not set
errno.

logb(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

700 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), ilogb(3M), math.h(3HEAD),
matherr(3M), scalb(3M), attributes(5), standards(5)

logb(3M)

ATTRIBUTES

SEE ALSO

Extended Library Functions 701

lrint, lrintf, lrintl – round to nearest integer value using current rounding direction

cc [flag...] file... -lm [library...]

#include <math.h>

long lrint(double x);

long lrintf(float x);

long lrintl(long double x);

These functions round their argument to the nearest integer value, rounding according
to the current rounding direction.

Upon successful completion, these functions return the rounded integer value.

If x is NaN, a domain error occurs and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is −Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, a domain error
occurs and an unspecified value is returned.

If the correct value is negative and too large to represent as a long, a domain error
occurs and an unspecified value is returned.

These functions will fail if:

Domain Error The x argument is NaN or ±Inf, or the correct value is not
representable as an integer.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), llrint(3M), math.h(3HEAD),
attributes(5), standards(5)

lrint(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

702 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

lround, lroundf, lroundl – round to nearest integer value

cc [flag...] file... -lm [library...]

#include <math.h>

long lround(double x);

long lroundf(float x);

long lroundl(long double x);

These functions round their argument to the nearest integer value, rounding halfway
cases away from zero, regardless of the current rounding direction.

Upon successful completion, these functions return the rounded integer value.

If x is NaN, a domain error occurs and an unspecified value is returned.

If x is +Inf, a domain error occurs and an unspecified value is returned.

If x is −Inf, a domain error occurs and an unspecified value is returned.

If the correct value is positive and too large to represent as a long, a domain error
occurs and an unspecified value is returned.

If the correct value is negative and too large to represent as a long, a domain error
occurs and an unspecified value is returned.

These functions will fail if:

Domain Error The x argument is NaN or ±Inf, or the correct value is not
representable as an integer.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), llround(3M), math.h(3HEAD),
attributes(5), standards(5)

lround(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 703

maillock, mailunlock, touchlock – functions to manage lockfile(s) for user’s mailbox

cc [flag ...] file ... -lmail [library ...]

#include <maillock.h>

int maillock(const char *user, int retrycnt);

void mailunlock(void);

void touchlock(void);

The maillock() function attempts to create a lockfile for the user’s mailfile. If a
lockfile already exists, and it has not been modified in the last 5 minutes, maillock()
will remove the lockfile and set its own lockfile.

It is crucial that programs locking mail files refresh their locks at least every three
minutes to maintain the lock. Refresh the lockfile by calling the touchlock()
function with no arguments.

The algorithm used to determine the age of the lockfile takes into account clock drift
between machines using a network file system. A zero is written into the lockfile so
that the lock will be respected by systems running the standard version of System V.

If the lockfile has been modified in the last 5 minutes the process will sleep until the
lock is available. The sleep algorithm is to sleep for 5 seconds times the attempt
number. That is, the first sleep will be for 5 seconds, the next sleep will be for 10
seconds, etc. until the number of attempts reaches retrycnt.

When the lockfile is no longer needed, it should be removed by calling
mailunlock().

The user argument is the login name of the user for whose mailbox the lockfile will be
created. maillock() assumes that user’s mailfiles are in the ‘‘standard’’ place as
defined in <maillock.h>.

Upon successful completion, .maillock() returns 0. Otherwise it returns −1.

/var/mail/* user mailbox files

/var/mail/*.lock user mailbox lockfiles

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

libmail(3LIB),attributes(5)

maillock(3MAIL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

FILES

ATTRIBUTES

SEE ALSO

704 man pages section 3: Extended Library Functions • Last Revised 29 Mar 1999

The mailunlock() function will only remove the lockfile created from the most
previous call to maillock(). Calling maillock() for different users without
intervening calls to mailunlock() will cause the initially created lockfile(s) to
remain, potentially blocking subsequent message delivery until the current process
finally terminates.

maillock(3MAIL)

NOTES

Extended Library Functions 705

matherr – math library exception-handling function

#include <math.h>

int matherr(struct exception *exc);

The The System V Interface Definition, Third Edition (SVID3) specifies that certain
libm functions call matherr() when exceptions are detected. Users may define their
own mechanisms for handling exceptions, by including a function named matherr()
in their programs. The matherr() function is of the form described above. When an
exception occurs, a pointer to the exception structure exc will be passed to the
user-supplied matherr() function. This structure, which is defined in the <math.h>
header file, is as follows:

struct exception {
int type;
char *name;
double arg1, arg2, retval;

};

The type member is an integer describing the type of exception that has occurred,
from the following list of constants (defined in the header file):

DOMAIN argument domain exception

SING argument singularity

OVERFLOW overflow range exception

UNDERFLOW underflow range exception

TLOSS total loss of significance

PLOSS partial loss of significance

Both TLOSS and PLOSS reflect limitations of particular algorithms for trigonometric
functions that suffer abrupt declines in accuracy at definite boundaries. Since the
implementation does not suffer such abrupt declines, PLOSS is never signaled. TLOSS
is signaled for Bessel functions only to satisfy SVID3 requirements.

The name member points to a string containing the name of the function that incurred
the exception. The arg1 and arg2 members are the arguments with which the
function was invoked. retval is set to the default value that will be returned by the
function unless the user’s matherr() sets it to a different value.

If the user’s matherr() function returns non-zero, no exception message will be
printed and errno is not set.

When an application is built as a SVID3 conforming application (see standards(5)),
if matherr() is not supplied by the user, the default matherr exception-handling
mechanisms, summarized in the table below, are invoked upon exception:

DOMAIN 0.0 is usually returned, errno is set to EDOM and a message is
usually printed on standard error.

matherr(3M)

NAME

SYNOPSIS

DESCRIPTION

SVID3
STANDARD

CONFORMANCE

706 man pages section 3: Extended Library Functions • Last Revised 23 Sep 1997

SING The largest finite single-precision number, HUGE of appropriate
sign, is returned, errno is set to EDOM, and a message is printed
on standard error.

OVERFLOW The largest finite single-precision number, HUGE of appropriate
sign, is usually returned and errno is set to ERANGE.

UNDERFLOW 0.0 is returned and errno is set to ERANGE.

TLOSS 0.0 is returned, errno is set to ERANGE, and a message is printed
on standard error.

In general, errno is not a reliable error indicator because it can be unexpectedly set by
a function in a handler for an asynchronous signal.

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW TLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE

IEEE Exception Invalid
Operation

Division by
Zero

Overflow Underflow −

fp_exception_type fp_invalid fp_division fp_overflow fp_underflow −

ACOS, ASIN (|x| >
1):

Md, 0.0 − − − −

ACOSH (x < 1),
ATANH (|x| > 1):

NaN − − − −

ATAN2 (0,0): Md, 0.0 − − − −

COSH, SINH: − − ±HUGE − −

EXP: − − +HUGE 0.0 −

FMOD (x,0): x − − − −

HYPOT: − − +HUGE − −

J0, J1, JN (|x| >
X_TLOSS):

− − − − Mt, 0.0

LGAMMA:

usual cases − − +HUGE − −

(x = 0 or −integer) − Ms, +HUGE − − −

LOG, LOG10:

(x < 0) Md, −HUGE − − − −

(x = 0) − Ms, −HUGE − − −

POW:

matherr(3M)

SVID3 ERROR
HANDLING

PROCEDURES
(compile with cc

\-Xt)

Extended Library Functions 707

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW TLOSS

usual cases − − ±HUGE ±0.0 −

(x < 0) ** (y not an
integer)

Md, 0.0 − − − −

0 ** 0 Md, 0.0 − − − −

0 ** (y < 0) Md, 0.0 − − −

REMAINDER (x,0): NaN − − − −

SCALB: − − ±HUGE_VAL ±0.0 −

SQRT (x < 0): Md, 0.0 − − − −

Y0, Y1, YN:

(x < 0) Md, −HUGE − − − −

(x = 0) − Md, −HUGE − − −

(x > X_TLOSS) − − − − Mt, 0.0

Md Message is printed (DOMAIN error).

Ms Message is printed (SING error).

Mt Message is printed (TLOSS error).

NaN IEEE NaN result and invalid operation exception.

HUGE Maximum finite single-precision floating-point number.

HUGE_VAL IEEE ∞ result and division-by-zero exception.

X_TLOSS The value X_TLOSS is defined in <values.h>.

The interaction of IEEE arithmetic and matherr() is not defined when executing
under IEEE rounding modes other than the default round to nearest: matherr() is
not always called on overflow or underflow and can return results that differ from
those in this table.

The X/Open System Interfaces and Headers (XSH) Issue 3 and later revisions of that
specification no longer sanctions the use of the matherr interface. The following table
summarizes the values returned in the exceptional cases. In general, XSH dictates that
as long as one of the input argument(s) is a NaN, NaN is returned. In particular,
pow(NaN,0) = NaN.

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW TLOSS

errno EDOM EDOM ERANGE ERANGE ERANGE

matherr(3M)

Abbreviations

X/OPEN
COMMON

APPLICATION
ENVIRONMENT

(CAE)
SPECIFICATIONS
CONFORMANCE

CAE
SPECIFICATION

ERROR
HANDLING

PROCEDURES
(compile with cc

-Xa)

708 man pages section 3: Extended Library Functions • Last Revised 23 Sep 1997

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW TLOSS

ACOS,
ASIN (|x|
> 1):

0.0 − − − −

ATAN2 (0,0)
:

0.0 − − − −

COSH,
SINH:

− − {±HUGE_VAL} − −

EXP: − − {+HUGE_VAL} {0.0} −

FMOD (x,0): {NaN} − − − −

HYPOT: − − {+HUGE_VAL} − −

J0, J1,
JN (|x| >
X_TLOSS):

− − − − {0.0}

LGAMMA:

usual cases − − {+HUGE_VAL} − −

(x = 0 or
−integer)

− +HUGE_VAL − − −

LOG,
LOG10:

(x < 0) -HUGE_VAL − − − −

(x = 0) − -HUGE_VAL − − −

POW:

usual cases − − ±HUGE_VAL ±0.0 −

(x < 0) ** (y
not an
integer)

0.0 − − − −

0 ** 0 {1.0} − − − −

0 ** (y < 0) {-HUGE_VAL} − − − −

SQRT (x <
0):

0.0 − − − −

Y0, Y1, YN:

(x < 0) {-HUGE_VAL} − − − −

(x = 0) − {-HUGE_VAL} − − −

matherr(3M)

Extended Library Functions 709

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW TLOSS

(x >
X_TLOSS)

− − − − 0.0

{...} errno is not to be relied upon in all braced cases.

NaN IEEE NaN result and invalid operation exception.

HUGE_VAL IEEE ∞ result and division-by-zero exception.

X_TLOSS The value X_TLOSS is defined in <values.h>.

The ANSI/ISO-C standard covers a small subset of the CAE specification.

The following table summarizes the values returned in the exceptional cases.

<math.h> type DOMAIN SING OVERFLOW UNDERFLOW

errno EDOM EDOM ERANGE ERANGE

ACOS,
ASIN (|x| > 1):

0.0 − − −

ATAN2 (0,0): 0.0 − − −

EXP: − − +HUGE_VAL 0.0

FMOD (x,0): NaN − − −

LOG, LOG10:

(x < 0) -HUGE_VAL − − −

(x = 0) − -HUGE_VAL − −

POW:

usual cases − − ±HUGE_VAL ±0.0

(x < 0) ** (y not
an integer)

0.0 − − −

0 ** (y < 0) -HUGE_VAL − − −

SQRT (x < 0): 0.0 − − −

NaN IEEE NaN result and invalid operation exception.

HUGE_VAL IEEE ∞ result and division-by-zero.

EXAMPLE 1 Example of matherr() function

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

matherr(3M)

Abbreviations

ANSI/ISO-C
STANDARD

CONFORMANCE

ANSI/ISO-C
ERROR

HANDLING
PROCEDURES

(compile with cc
-Xc)

ABBREVIATIONS

EXAMPLES

710 man pages section 3: Extended Library Functions • Last Revised 23 Sep 1997

EXAMPLE 1 Example of matherr() function (Continued)

int
matherr(struct exception *x) {

switch (x−>type) {
case DOMAIN:

/* change sqrt to return sqrt(−arg1), not NaN */
if (!strcmp(x−>name, "sqrt")) {
x−>retval = sqrt(−x−>arg1);
return (0); /* print message and set errno */
} /* FALLTHRU */
case SING:
/* all other domain or sing exceptions, print message and */
/* abort */
fprintf(stderr, "domain exception in %s\n", x−>name);
abort();
break;
}
return (0); /* all other exceptions, execute default procedure */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5), standards(5)

matherr(3M)

ATTRIBUTES

SEE ALSO

Extended Library Functions 711

m_create_layout – initialize a layout object

cc [flag...] file... –llayout [library...]

#include <sys/layout.h>

LayoutObject m_create_layout(const AttrObject attrobj, const
char* modifier);

The m_create_layout() function creates a LayoutObject associated with the
locale identified by attrobj.

The LayoutObject is an opaque object containing all the data and methods
necessary to perform the layout operations on context-dependent or directional
characters of the locale identified by the attrobj. The memory for the LayoutObject is
allocated by m_create_layout(). The LayoutObject created has default layout
values. If the modifier argument is not NULL, the layout values specified by the modifier
overwrite the default layout values associated with the locale. Internal states
maintained by the layout transformation function across transformations are set to
their initial values.

The attrobj argument is or may be an amalgam of many opaque objects. A locale object
is just one example of the type of object that can be attached to an attribute object. The
attrobj argument specifies a name that is usually associated with a locale category. If
attrobj is NULL, the created LayoutObject is associated with the current locale as set
by the setlocale(3C) function.

The modifier argument announces a set of layout values when the LayoutObject is
created.

Upon successful completion, the m_create_layout() function returns a
LayoutObject for use in subsequent calls to m_*_layout() functions. Otherwise
the m_create_layout() function returns (LayoutObject) 0 and sets errno to
indicate the error.

The m_create_layout() function may fail if:

EBADF The attribute object is invalid or the locale asssociated with the
attribute object is not available.

EINVAL The modifier string has a syntax error or it contains unknown
layout values.

EMFILE There are {OPEN_MAX} file descriptors currently open in the
calling process.

ENOMEM Insufficient storage space is available.

m_create_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

712 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

setlocale(3C), attributes(5)

m_create_layout(3LAYOUT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 713

md5, md5_calc, MD5Init, MD5Update, MD5Final – MD5 digest functions

cc [flag ...] file ... -lmd5 [library ...]

#include <md5.h>

void md5_calc(unsigned char *output, unsigned char *input, unsigned
int inlen);

void MD5Init(MD5_CTX *context);

void MD5Update(MD5_CTX *context, unsigned char *input, unsigned int
inlen);

void MD5Final(unsigned char *output, MD5_CTX *context);

These functions implement the MD5 message-digest algorithm, which takes as input a
message of arbitrary length and produces as output a 128-bit "fingerprint" or "message
digest" of the input. It is intended for digital signature applications, where large file
must be "compressed" in a secure manner before being encrypted with a private
(secret) key under a public-key cryptosystem such as RSA.

The md5_calc() function computes an MD5 digest on a single message block. The
inlen-byte block is pointed to by input, and the 16-byte MD5 digest is written to output.

The MD5Init(), MD5Update(), and MD5Final() functions allow an MD5 digest to
be computed over multiple message blocks; between blocks, the state of the MD5
computation is held in an MD5 context structure, allocated by the caller. A complete
digest computation consists of one call to MD5Init(), one or more calls to
MD5Update(), and one call to MD5Final(), in that order.

The MD5Init() function initializes the MD5 context structure pointed to by context.

The MD5Update() function computes a partial MD5 digest on the inlen-byte message
block pointed to by input, and updates the MD5 context structure pointed to by context
accordingly.

The MD5Final() function generates the final MD5 digest, using the MD5 context
structure pointed to by context; the 16-byte MD5 digest is written to output. After
calling MD5Final(), the state of the context structure is undefined; it must be
reinitialized with MD5Init() before being used again.

These functions do not return a value.

EXAMPLE 1 Authenticate a message found in multiple buffers

The following is a sample function that must authenticate a message that is found in
multiple buffers. The calling function provides an authentication buffer that will
contain the result of the MD5 digest.

int
AuthenticateMsg(unsigned char *auth_buffer, struct iovec

*messageIov, unsigned int num_buffers)
{

md5(3EXT)

NAME

SYNOPSIS

DESCRIPTION

md5_calc()

MD5Init(),
MD5Update(),
MD5Final()

RETURN VALUES

EXAMPLES

714 man pages section 3: Extended Library Functions • Last Revised 20 Sep 2001

EXAMPLE 1 Authenticate a message found in multiple buffers (Continued)

MD5_CTX md5_context;
unsigned int i;

MD5Init(&md5_context);

for(i=0, i<num_buffers; i++
{

MD5Update(&md5_context, messageIov->iov_base,
messageIov->iov_len);

messageIov += sizeof(struct iovec);
}

MD5Final(auth_buffer, &md5_context);

return 0;

}

EXAMPLE 2 Use md5_calc() to generate the MD5 digest

Since the buffer to be computed is contiguous, the md5_calc() function can be used
to generate the MD5 digest.

int AuthenticateMsg(unsigned char *auth_buffer, unsigned
char *buffer, unsigned int length)

{
md5_calc(buffer, auth_buffer, length);

return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

libmd5(3LIB)

Rivest, R., The MD5 Message-Digest Algorithm, RFC 1321, April 1992.

md5(3EXT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 715

m_destroy_layout – destroy a layout object

cc [flag...] file... –llayout [library...]

#include <sys/layout.h>

int m_destroy_layout(const LayoutObject layoutobject);

The m_destroy_layout() function destroys a LayoutObject by deallocating the
layout object and all the associated resources previously allocated by the
m_create_layout(3LAYOUT) function.

Upon successful completion, 0 is returned. Otherwise −1 is returned and errno is set
to indicate the error.

The m_destroy_layout() function may fail if:

EBADF The attribute object is erroneous.

EFAULT Errors occurred while processing the request.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

m_create_layout(3LAYOUT), attributes(5)

m_destroy_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

716 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

media_findname – convert a supplied name into an absolute pathname that can be
used to access removable media

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

char *media_findname(char *start);

media_findname() converts the supplied start string into an absolute pathname that
can then be used to access a particular piece of media.

The start parameter can be one of the following types of specifications:

/dev/ . . . An absolute pathname in /dev, such as
/dev/rdiskette0, in which case a copy of that string
is returned (see NOTES on this page).

/vol/ . . . An absolute Volume Management pathname, such as
/vol/dev/aliases/floppy0 or /vol/dsk/fred.
If this supplied pathname is not a symbolic link, then a
copy of that pathname is returned. If the supplied
pathname is a symbolic link then it is dereferenced and
a copy of that dereferenced pathname is returned.

volume_name The Volume Management volume name for a particular
volume, such as fred (see fdformat(1) for a
description of how to label floppies). In this case a
pathname in the Volume Management namespace is
returned.

volmgt_symname The Volume Management symbolic name for a device,
such as floppy0 or cdrom2 (see volfs(7FS) for more
information on Volume Management symbolic names),
in which case a pathname in the Volume Management
namespace is returned.

media_type The Volume Management generic media type name.
For example, floppy or cdrom. In this case
media_findname() looks for the first piece of media
that matches that media type, starting at 0 (zero) and
continuing on until a match is found (or some fairly
large maximum number is reached). In this case, if a
match is found, a copy of the pathname to the volume
found is returned.

Upon successful completion media_findname() returns a pointer to the pathname
found. In the case of an error a null pointer is returned.

media_findname(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 717

For cases where the supplied start parameter is an absolute pathname,
media_findname() can fail, returning a null string pointer, if an lstat(2) of that
supplied pathname fails. Also, if the supplied absolute pathname is a symbolic link,
media_findname() can fail if a readlink(2) of that symbolic link fails, or if a
stat(2) of the pathname pointed to by that symbolic link fails, or if any of the
following is true:

ENXIO The specified absolute pathname was not a character special
device, and it was not a directory with a character special device in
it.

EXAMPLE 1 Sample programs of the media_findname() function.

The following example attempts to find what the Volume Management pathname is to
a piece of media called fred. Notice that a volmgt_check() is done first (see the
NOTES section on this page).

(void) volmgt_check(NULL);
if ((nm = media_findname("fred")) != NULL) {

(void) printf("media named \"fred\" is at \"%s\"\n", nm);
} else {

(void) printf("media named \"fred\" not found\n");
}

This example looks for whatever volume is in the first floppy drive, letting
media_findname() call volmgt_check() if and only if no floppy is currently
known to be the first floppy drive.

if ((nm = media_findname("floppy0")) != NULL) {
(void) printf("path to floppy0 is \"%s\"\n", nm);

} else {
(void) printf("nothing in floppy0\n");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Unsafe

cc(1B), fdformat(1), vold(1M), lstat(2), readlink(2), stat(2), free(3C),
malloc(3C), volmgt_check(3VOLMGT), volmgt_inuse(3VOLMGT),
volmgt_root(3VOLMGT), volmgt_running(3VOLMGT),
volmgt_symname(3VOLMGT), attributes(5), volfs(7FS)

If media_findname() cannot find a match for the supplied name, it performs a
volmgt_check(3VOLMGT) and tries again, so it can be more efficient to perform
volmgt_check() before calling media_findname().

Upon success media_findname() returns a pointer to string which has been
allocated; this should be freed when no longer in use (see free(3C)).

media_findname(3VOLMGT)

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

718 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

media_getattr, media_setattr – get and set media attributes

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

char *media_getattr(char *vol_path, char *attr);

int media_setattr(char *vol_path, char *attr, char *value);

media_setattr() and media_getattr() respectively set and get attribute-value
pairs (called properties) on a per-volume basis.

Volume Management supports system properties and user properties. System
properties are ones that Volume Management predefines. Some of these system
properties are writable, but only by the user that owns the volume being specified,
and some system properties are read only:

Attribute Writable Value Description

s-access RO "seq", "rand" sequential or random access

s-density RO "low", "medium",
"high"

media density

s-parts RO comma separated
list of slice
numbers

list of partitions on this volume

s-location RO pathname Volume Management pathname to
media

s-mejectable RO "true", "false" whether or not media is manually
ejectable

s-rmoneject R/W "true", "false" should media access points be
removed from database upon ejection

s-enxio R/W "true", "false" if set return ENXIO when media
access attempted

Properties can also be defined by the user. In this case the value can be any string the
user wishes.

Upon successful completion media_getattr() returns a pointer to the value
corresponding to the specified attribute. A null pointer is returned if the specified
volume doesn’t exist, if the specified attribute for that volume doesn’t exist, if the
specified attribute is boolean and its value is false, or if malloc(3C) fails to allocate
space for the return value.

media_setattr() returns 1 upon success, and 0 upon failure.

media_getattr(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 719

Both media_getattr() and media_setattr() can fail returning a null pointer if
an open(2) of the specified vol_path fails, if an fstat(2) of that pathname fails, or if
that pathname is not a block or character special device.

media_getattr() can also fail if the specified attribute was not found, and
media_setattr() can also fail if the caller doesn’t have permission to set the
attribute, either because it’s is a system attribute, or because the caller doesn’t own the
specified volume.

Additionally, either routine can fail returning the following error values:

ENXIO The Volume Management daemon, vold, is not running

EINTR The routine was interrupted by the user before finishing

EXAMPLE 1 Using media_getattr()

The following example checks to see if the volume called fred that Volume
Management is managing can be ejected by means of software, or if it can only be
manually ejected:

if (media_getattr("/vol/rdsk/fred", "s-mejectable") != NULL) {
(void) printf("\"fred\" must be manually ejected\n");

} else {
(void) printf("software can eject \"fred\"\n");

}

This example shows setting the s-enxio property for the floppy volume currently in the
first floppy drive:

int res;
if ((res = media_setattr("/vol/dev/aliases/floppy0", "s-enxio",

"true")) == 0) {
(void) printf("can’t set s-enxio flag for floppy0\n");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), vold(1M), lstat(2), open(2), readlink(2), stat(2), free(3C), malloc(3C),
media_findname(3VOLMGT), volmgt_check(3VOLMGT),
volmgt_inuse(3VOLMGT), volmgt_root(3VOLMGT),
volmgt_running(3VOLMGT), volmgt_symname(3VOLMGT), attributes(5)

Upon success media_getattr() returns a pointer to a string which has been
allocated, and should be freed when no longer in use (see free(3C)).

media_getattr(3VOLMGT)

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

720 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

media_getid – return the id of a piece of media

cc [flag ...] file ...−lvolgmt [library ...]

#include <volmgt.h>

ulonglong_t media_getid(char *vol_path);

media_getid() returns the id of a piece of media. Volume Management must be
running. See volmgt_running(3VOLMGT).

vol_path Path to the block or character special device.

media_getid() returns the id of the volume. This value is unique for each volume. If
media_getid() returns 0, the path provided is not valid, for example, it is a block
or char device.

EXAMPLE 1 Using media_getid()

The following example first checks if Volume Management is running, then checks the
volume management name space for path, and then returns the id for the piece of
media.

char *path;

...

if (volmgt_running()) {
if (volmgt_ownspath(path)) {

(void) printf("id of %s is %lld\n",
path, media_getid(path));

}
}

If a program using media_getid() does not check whether or not Volume
Management is running, then any NULL return value will be ambiguous, as it could
mean that either Volume Management does not have path in its name space, or Volume
Management is not running.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Commitment Level Public

volmgt_ownspath(3VOLMGT),volmgt_running(3VOLMGT),attributes(5)

media_getid(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 721

m_getvalues_layout – query layout values of a LayoutObject

cc [flag...] file... –llayout [library...]

#include <sys/layout.h>

int m_getvalues_layout(const LayoutObject layout_object, LayoutValues
values, int *index_returned);

The m_getvalues_layout() function queries the current setting of layout values
within a LayoutObject.

The layout_object argument specifies a LayoutObject returned by the
m_create_layout(3LAYOUT) function.

The values argument specifies the list of layout values that are to be queried. Each
value element of a LayoutValueRec must point to a location where the layout value
is stored. That is, if the layout value is of type T, the argument must be of type T*. The
values are queried from the LayoutObject and represent its current state.

It is the user’s responsibility to manage the space allocation for the layout values
queried. If the layout value name has QueryValueSize OR-ed to it, instead of the
value of the layout value, only its size is returned. The caller can use this option to
determine the amount of memory needed to be allocated for the layout values
queried.

Upon successful completion, the m_getvalues_layout() function returns 0. If any
value cannot be queried, the index of the value causing the error is returned in
index_returned, −1 is returned and errno is set to indicate the error.

The m_getvalues_layout() function may fail if:

EINVAL The layout value specified by index_returned is unknown, its value
is invalid, or the layout_object argument is invalid. In the case of an
invalid layout_object argument, the value returned in index_returned
is −1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

m_create_layout(3LAYOUT), attributes(5)

m_getvalues_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

722 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

mkdirp, rmdirp – create or remove directories in a path

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

int mkdirp(const char *path, mode_t mode);

int rmdirp(char *dir, char *dir1);

The mkdirp() function creates all the missing directories in path with mode. See
chmod(2) for the values of mode.

The rmdirp() function removes directories in path dir. This removal begins at the
end of the path and moves backward toward the root as far as possible. If an error
occurs, the remaining path is stored in dir1.

If path already exists or if a needed directory cannot be created, mkdirp() returns −1
and sets errno to one of the error values listed for mkdir(2). It returns zero if all the
directories are created.

The rmdirp() function returns 0 if it is able to remove every directory in the path. It
returns −2 if a ‘‘.’’ or ‘‘..’’ is in the path and −3 if an attempt is made to remove the
current directory. Otherwise it returns −1.

EXAMPLE 1 Example of creating scratch directories.

The following example creates scratch directories.

/* create scratch directories */
if(mkdirp("/tmp/sub1/sub2/sub3", 0755) == −1) {

fprintf(stderr, "cannot create directory");
exit(1);

}
chdir("/tmp/sub1/sub2/sub3");
.
.
.
/* cleanup */
chdir("/tmp");

rmdirp("sub1/sub2/sub3");

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

chmod(2), mkdir(2), rmdir(2), malloc(3C), attributes(5)

The mkdirp() function uses malloc(3C) to allocate temporary space for the string.

mkdirp(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 723

modf, modff, modfl – decompose floating-point number

cc [flag...] file... -lm [library...]

#include <math.h>

double modf(double x, double *iptr);

float modff(float x, float *iptr);

long double modfl(long double x, long double *iptr);

These functions break the argument x into integral and fractional parts, each of which
has the same sign as the argument. It stores the integral part as a double for the
modf() function, a float for the modff() function, or a long double for themodfl()
function in the object pointed to by iptr.

Upon successful completion, these functions return the signed fractional part of x.

If x is NaN, a NaN is returned and *iptr is set to NaN.

If x is ±Inf, ±0 is returned and *iptr is set to ±Inf.

No errors are defined.

These functions compute the function result and *iptr such that:

a = modf(x, &iptr) ;

x == a+*iptr ;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

frexp(3M), isnan(3M), ldexp(3M), attributes(5), standards(5)

modf(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

724 man pages section 3: Extended Library Functions • Last Revised 16 Aug 2004

mp, mp_madd, mp_msub, mp_mult, mp_mdiv, mp_mcmp, mp_min, mp_mout,
mp_pow, mp_gcd, mp_rpow, mp_msqrt, mp_sdiv, mp_itom, mp_xtom, mp_mtox,
mp_mfree – multiple precision integer arithmetic

cc [flag...] file... -lmp [library...]

#include <mp.h>

void mp_madd(MINT *a, MINT *b, MINT *c);

void mp_msub(MINT *a, MINT *b, MINT *c);

void mp_mult(MINT *a, MINT *b, MINT *c);

void mp_mdiv(MINT *a, MINT *b, MINT *q, MINT *r);

int mp_mcmp(MINT *a, MINT *b);

int mp_min(MINT *a);

void mp_mout(MINT *a);

void mp_pow(MINT *a, MINT *b, MINT *c, MINT *d);

void mp_gcd(MINT *a, MINT *b, MINT *c);

void mp_rpow(MINT *a, short n, MINT *b);

int mp_msqrt(MINT *a, MINT *b, MINT *r);

void mp_sdiv(MINT *a, short n, MINT *q, short *r);

MINT * mp_itom(short n);

MINT * mp_xtom(char *a);

char * mp_mtox(MINT *a);

void mp_mfree(MINT *a);

These functions perform arithmetic on integers of arbitrary length. The integers are
stored using the defined type MINT. Pointers to a MINT should be initialized using the
function mp_itom(n), which sets the initial value to n. Alternatively, mp_xtom(a)
may be used to initialize a MINT from a string of hexadecimal digits. mp_mfree(a)
may be used to release the storage allocated by the mp_itom(a) and mp_xtom(a)
routines.

The mp_madd(a,b,c), mp_msub(a,b,c) and mp_mult(a,b,c) functions assign to their third
arguments the sum, difference, and product, respectively, of their first two arguments.
The mp_mdiv(a,b,q,r) function assigns the quotient and remainder, respectively, to its
third and fourth arguments. The mp_sdiv(a,n,q,r) function is similar to
mp_mdiv(a,b,q,r) except that the divisor is an ordinary integer. The mp_msqrt(a,b,r)
function produces the square root and remainder of its first argument. The
mp_mcmp(a,b) function compares the values of its arguments and returns 0 if the two
values are equal, a value greater than 0 if the first argument is greater than the second,
and a value less than 0 if the second argument is greater than the first. The
mp_rpow(a,n,b) function raises a to the nth power and assigns this value to b. The
mp_pow(a,b ,c,d) function raises a to the bth power, reduces the result modulo c and

mp(3MP)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 725

assigns this value to d. The mp_min(a) and mp_mout(a) functions perform decimal
input and output. The mp_gcd(a,b,c) function finds the greatest common divisor of the
first two arguments, returning it in the third argument. The mp_mtox(a) function
provides the inverse of mp_xtom(a). To release the storage allocated by mp_mtox(a)
use free() (see malloc(3C)).

Use the -lmp loader option to obtain access to these functions.

/usr/lib/libmp.so shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

exp(3M), malloc(3C), libmp(3LIB), attributes(5)

Illegal operations and running out of memory produce messages and core images.

The function pow() exists in both libmp and libm with widely differing semantics.
This is the reason libmp.so.2 exists. libmp.so.1 exists solely for reasons of
backward compatibility, and should not be used otherwise. Use the mp_*()
functions instead. See libmp(3LIB).

mp(3MP)

FILES

ATTRIBUTES

SEE ALSO

DIAGNOSTICS

WARNINGS

726 man pages section 3: Extended Library Functions • Last Revised 14 Nov 2002

m_setvalues_layout – set layout values of a LayoutObject

cc [flag...] file... –llayout [library...]

#include <sys/layout.h>

int m_setvalues_layout(LayoutObject layout_object, const LayoutValues
values, int *index_returned);

The m_setvalues_layout() function changes the layout values of a LayoutObject.

The layout_object argument specifies a LayoutObject returned by the
m_create_layout(3LAYOUT) function.

The values argument specifies the list of layout values that are to be changed. The
values are written into the LayoutObject and may affect the behavior of subsequent
layout functions. Some layout values do alter internal states maintained by a
LayoutObject.

The m_setvalues_layout() function can be implemented as a macro that
evaluates the first argument twice.

Upon successful completion, the requested layout values are set and 0 is returned.
Otherwise −1 is returned and errno is set to indicate the error. If any value cannot be
set, none of the layout values are changed and the (zero-based) index of the first value
causing the error is returned in index_returned.

The m_setvalues_layout() function may fail if:

EINVAL The layout value specified by index_returned is unknown, its value
is invalid, or the layout_object argument is invalid.

EMFILE There are {OPEN_MAX} file descriptors currently open in the
calling process.

Do not use expressions with side effects such as auto-increment or auto-decrement
within the first argument to the m_setvalues_layout() function.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

m_create_layout(3LAYOUT), attributes(5)

m_setvalues_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 727

m_transform_layout – layout transformation

cc [flag...] file... –llayout [library...]
#include <sys/layout.h>

int m_transform_layout(LayoutObject layout_object, const char *InpBuf,
const size_t ImpSize, const void *OutBuf, size_t *Outsize, size_t
*InpToOut, size_t *OutToInp, unsigned char *Property, size_t
*InpBufIndex);

The m_transform_layout() function performs layout transformations (reordering,
shaping, cell determination) or provides additional information needed for layout
transformation (such as the expected size of the transformed layout, the nesting level
of different segments in the text and cross-references between the locations of the
corresponding elements before and after the layout transformation). Both the input
text and output text are character strings.

The m_transform_layout() function transforms the input text in InpBuf according
to the current layout values in layout_object. Any layout value whose value type is
LayoutTextDescriptor describes the attributes of the InpBuf and OutBuf
arguments. If the attributes are the same for both InpBuf and OutBuf, a null
transformation is performed with respect to that specific layout value.

The InpBuf argument specifies the source text to be processed. The InpBuf may not be
NULL, unless there is a need to reset the internal state.

The InpSize argument is the number of bytes within InpBuf to be processed by the
transformation. Its value will not change after return from the transformation. InpSize
set to −1 indicates that the text in InpBuf is delimited by a null code element. If InpSize
is not set to −1, it is possible to have some null elements in the input buffer. This might
be used, for example, for a “one shot” transformation of several strings, separated by
nulls.

Output of this function may be one or more of the following depending on the setting
of the arguments:

OutBuf Any transformed data is stored in OutBuf, converted to
ShapeCharset.

Outsize The number of bytes in OutBuf.

InpToOut A cross-reference from each InpBuf code element to the
transformed data. The cross-reference relates to the data in InpBuf
starting with the first element that InpBufIndex points to (and not
necessarily starting from the beginning of the InpBuf).

OutToInp A cross-reference to each InpBuf code element from the
transformed data. The cross-reference relates to the data in InpBuf
starting with the first element that InpBufIndex points to (and not
necessarily starting from the beginning of the InpBuf).

Property A weighted value that represents peculiar input string
transformation properties with different connotations as explained

m_transform_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

728 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

below. If this argument is not a null pointer, it represents an array
of values with the same number of elements as the source
substring text before the transformation. Each byte will contain
relevant “property” information of the corresponding element in
InpBuf starting from the element pointed by InpBufIndex. The four
rightmost bits of each “property” byte will contain information for
bidirectional environments (when ActiveDirectional is True)
and they will mean “NestingLevels.” The possible value from 0
to 15 represents the nesting level of the corresponding element in
the InpBuf starting from the element pointed by InpBufIndex. If
ActiveDirectional is false the content of NestingLevel bits
will be ignored. The leftmost bit of each “property” byte will
contain a “new cell indicator” for composed character
environments, and will have a value of either 1 (for an element in
InpBuf that is transformed to the beginning of a new cell) or 0 (for
the “zero-length” composing character elements, when these are
grouped into the same presentation cell with a non-composing
character). Here again, each element of “property” pertains to the
elements in the InpBuf starting from the element pointed by
InpBufIndex. (Remember that this is not necessarily the beginning
of InpBuf). If none of the transformation properties is required, the
argument Property can be NULL. The use of “property” can be
enhanced in the future to pertain to other possible usage in other
environments.

The InpBufIndex argument is an offset value to the location of the transformed text.
When m_transform_layout() is called, InpBufIndex contains the offset to the
element in InpBuf that will be transformed first. (Note that this is not necessarily the
first element in InpBuf). At the return from the transformation, InpBufIndex contains
the offset to the first element in the InpBuf that has not been transformed. If the entire
substring has been transformed successfully, InpBufIndex will be incremented by the
amount defined by InpSize.

Each of these output arguments may be NULL to specify that no output is desired for
the specific argument, but at least one of them should be set to a non-null value to
perform any significant work.

The layout object maintains a directional state that keeps track of directional changes,
based on the last segment transformed. The directional state is maintained across calls
to the layout transformation functions and allows stream data to be processed with the
layout functions. The directional state is reset to its initial state whenever any of the
layout values TypeOfText, Orientation, or ImplicitAlg is modified by means
of a call to m_setvalues_layout().

The layout_object argument specifies a LayoutObject returned by the
m_create_layout() function.

m_transform_layout(3LAYOUT)

Extended Library Functions 729

The OutBuf argument contains the transformed data. This argument can be specified
as a null pointer to indicate that no transformed data is required.

The encoding of the OutBuf argument depends on the ShapeCharset layout value
defined in layout_object. If the ActiveShapeEditing layout value is not set (False),
the encoding of OutBuf is guaranteed to be the same as the codeset of the locale
associated with the LayoutObject defined by layout_object.

On input, the OutSize argument specifies the size of the output buffer in number of
bytes. The output buffer should be large enough to contain the transformed result;
otherwise, only a partial transformation is performed. If the ActiveShapeEditing
layout value is set (True) the OutBuf should be allocated to contain at least the InpSize
multiplied by ShapeCharsetSize.

On return, the OutSize argument is modified to the actual number of bytes placed in
OutBuf.

When the OutSize argument is specified as zero, the function calculates the size of an
output buffer large enough to contain the transformed text, and the result is returned
in this field. The content of the buffers specified by InpBuf and OutBuf, and the value
of InpBufIndex, remain unchanged. If OutSize = NULL, the EINVAL error condition
should be returned.

If the InpToOut argument is not a null pointer, it points to an array of values with the
same number of bytes in InpBuf starting with the one pointed by InpBufIndex and up
to the end of the substring in the buffer. On output, the nth value in InpToOut
corresponds to the nth byte in InpBuf. This value is the index (in units of bytes) in
OutBuf that identifies the transformed ShapeCharset element of the nth byte in
InpBuf. In the case of multibyte encoding, the index points (for each of the bytes of a
code element in the InpBuf) to the first byte of the transformed code element in the
OutBuf.

InpToOut may be specified as NULL if no index array from InpBuf to OutBuf is desired.

If the OutToInp argument is not a null pointer, it points to an array of values with the
same number of bytes as contained in OutBuf. On output, the nth value in OutToInp
corresponds to the nth byte in OutBuf This value is the index in InpBuf, starting with
the byte pointed to by InpBufIndex, that identifies the logical code element of the nth
byte in OutBuf. In the case of multibyte encoding, the index will point for each of the
bytes of a transformed code element in the OutBuf to the first byte of the code element
in the InpBuf.

OutToInp may be specified as NULL if no index array from OutBuf to InpBuf is desired.

To perform shaping of a text string without reordering of code elements, the
layout_object should be set with input and output layout value TypeOfText set to
TEXT_VISUAL and both in and out of Orientation set to the same value.

m_transform_layout(3LAYOUT)

730 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

If successful, the m_transform_layout() function returns 0. If unsuccessful, the
returned value is −1 and the errno is set to indicate the source of error. When the size
of OutBuf is not large enough to contain the entire transformed text, the input text
state at the end of the uncompleted transformation is saved internally and the error
condition E2BIG is returned in errno.

The m_transform_layout() function may fail if:

E2BIG The output buffer is full and the source text is not entirely
processed.

EBADF The layout values are set to a meaningless combination or the
layout object is not valid.

EILSEQ Transformation stopped due to an input code element that cannot
be shaped or is invalid. The InpBufIndex argument is set to indicate
the code element causing the error. The suspect code element is
either a valid code element but cannot be shaped into the
ShapeCharset layout value, or is an invalid code element not
defined by the codeset of the locale of layout_object. The mbtowc()
and wctomb() functions, when used in the same locale as the
LayoutObject, can be used to determine if the code element is
valid.

EINVAL Transformation stopped due to an incomplete composite sequence
at the end of the input buffer, or OutSize contains NULL.

ERANGE More than 15 embedding levels are in source text or InpBuf contain
unbalanced directional layout information (push/pop) or an
incomplete composite sequence has been detected in the input
buffer at the beginning of the string pointed to by InpBufIndex.

An incomplete composite sequence at the end of the input buffer is
not always detectable. Sometimes, the fact that the sequence is
incomplete will only be detected when additional character
elements belonging to the composite sequence are found at the
beginning of the next input buffer.

A LayoutObject will have a meaningful combination of default layout values.
Whoever chooses to change the default layout values is responsible for making sure
that the combination of layout values is meaningful. Otherwise, the result of
m_transform_layout() might be unpredictable or implementation-specific with
errno set to EBADF.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

m_transform_layout(3LAYOUT)

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Extended Library Functions 731

attributes(5)

m_transform_layout(3LAYOUT)

SEE ALSO

732 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

m_wtransform_layout – layout transformation for wide character strings

cc [flag...] file... –llayout [library...]
#include <sys/layout.h>

int m_wtransform_layout(LayoutObject layout_object, const wchar_t
*InpBuf, const size_t ImpSize, const void *OutBuf, size_t
*Outsize, size_t *InpToOut, size_t *OutToInp, unsignedchar
*Property, size_t *InpBufIndex);

The m_wtransform_layout() function performs layout transformations
(reordering, shaping, cell determination) or provides additional information needed
for layout transformation (such as the expected size of the transformed layout, the
nesting level of different segments in the text and cross-references between the
locations of the corresponding elements before and after the layout transformation).
Both the input text and output text are wide character strings.

The m_wtransform_layout() function transforms the input text in InpBuf
according to the current layout values in layout_object. Any layout value whose value
type is LayoutTextDescriptor describes the attributes of the InpBuf and OutBuf
arguments. If the attributes are the same for both InpBuf and OutBuf, a null
transformation is performed with respect to that specific layout value.

The InpBuf argument specifies the source text to be processed. The InpBuf may not be
NULL, unless there is a need to reset the internal state.

The InpSize argument is the number of bytes within InpBuf to be processed by the
transformation. Its value will not change after return from the transformation. InpSize
set to −1 indicates that the text in InpBuf is delimited by a null code element. If InpSize
is not set to −1, it is possible to have some null elements in the input buffer. This might
be used, for example, for a “one shot” transformation of several strings, separated by
nulls.

Output of this function may be one or more of the following depending on the setting
of the arguments:

OutBuf Any transformed data is stored in OutBuf, converted to
ShapeCharset.

Outsize The number of wide characters in OutBuf.

InpToOut A cross-reference from each InpBuf code element to the
transformed data. The cross-reference relates to the data in InpBuf
starting with the first element that InpBufIndex points to (and not
necessarily starting from the beginning of the InpBuf).

OutToInp A cross-reference to each InpBuf code element from the
transformed data. The cross-reference relates to the data in InpBuf
starting with the first element that InpBufIndex points to (and not
necessarily starting from the beginning of the InpBuf).

Property A weighted value that represents peculiar input string
transformation properties with different connotations as explained

m_wtransform_layout(3LAYOUT)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 733

below. If this argument is not a nullpointer, it represents an array
of values with the same number of elements as the source
substring text before the transformation. Each byte will contain
relevant “property” information of the corresponding element in
InpBuf starting from the element pointed by InpBufIndex. The four
rightmost bits of each “property” byte will contain information for
bidirectional environments (when ActiveDirectional is True)
and they will mean “NestingLevels.” The possible value from 0
to 15 represents the nesting level of the corresponding element in
the InpBuf starting from the element pointed by InpBufIndex. If
ActiveDirectional is false the content of NestingLevel bits
will be ignored. The leftmost bit of each “property” byte will
contain a “new cell indicator” for composed character
environments, and will have a value of either 1 (for an element in
InpBuf that is transformed to the beginning of a new cell) or 0 (for
the “zero-length” composing character elements, when these are
grouped into the same presentation cell with a non- composing
character). Here again, each element of “property” pertains to the
elements in the InpBuf starting from the element pointed by
InpBufIndex. (Remember that this is not necessarily the beginning
of InpBuf). If none of the transformation properties is required, the
argument Property can be NULL. The use of “property” can be
enhanced in the future to pertain to other possible usage in other
environments.

The InpBufIndex argument is an offset value to the location of the transformed text.
When m_wtransform_layout() is called, InpBufIndex contains the offset to the
element in InpBuf that will be transformed first. (Note that this is not necessarily the
first element in InpBuf). At the return from the transformation, InpBufIndex contains
the offset to the first element in the InpBuf that has not been transformed. If the entire
substring has been transformed successfully, InpBufIndex will be incremented by the
amount defined by InpSize.

Each of these output arguments may be null to specify that no output is desired for
the specific argument, but at least one of them should be set to a non-null value to
perform any significant work.

In addition to the possible outputs above, layout_object maintains a directional state
across calls to the transform functions. The directional state is reset to its initial state
whenever any of the layout values TypeOfText, Orientation, or ImplicitAlg is
modified by means of a call to m_setvalues_layout().

The layout_object argument specifies a LayoutObject returned by the
m_create_layout() function.

The OutBuf argument contains the transformed data. This argument can be specified
as a null pointer to indicate that no transformed data is required.

m_wtransform_layout(3LAYOUT)

734 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

The encoding of the OutBuf argument depends on the ShapeCharset layout value
defined in layout_object. If the ActiveShapeEditing layout value is not set (False),
the encoding of OutBuf is guaranteed to be the same as the codeset of the locale
associated with the LayoutObject defined by layout_object.

On input, the OutSize argument specifies the size of the output buffer in number of
wide characters. The output buffer should be large enough to contain the transformed
result; otherwise, only a partial transformation is performed. If the
ActiveShapeEditing layout value is set (True) the OutBuf should be allocated to
contain at least the InpSize multiplied by ShapeCharsetSize.

On return, the OutSize argument is modified to the actual number of code elements in
OutBuf.

When the OutSize argument is specified as zero, the function calculates the size of an
output buffer large enough to contain the transformed text, and the result is returned
in this field. The content of the buffers specified by InpBuf and OutBuf, and the value
of InpBufIndex, remain unchanged. If OutSize = NULL, the EINVAL error condition
should be returned.

If the InpToOut argument is not a null pointer, it points to an array of values with the
same number of wide characters in InpBuf starting with the one pointed by
InpBufIndex and up to the end of the substring in the buffer. On output, the nth value
in InpToOut corresponds to the nth byte in InpBuf. This value is the index (in units of
wide characters) in OutBuf that identifies the transformed ShapeCharset element of
the nth byte in InpBuf.

InpToOut may be specified as NULL if no index array from InpBuf to OutBuf is desired.

If the OutToInp argument is not a null pointer, it points to an array of values with the
same number of wide characters as contained in OutBuf. On output, the nth value in
OutToInp corresponds to the nth byte in OutBuf. This value is the index in InpBuf,
starting with wide character byte pointed to by InpBufIndex, that identifies the logical
code element of the nth wide character in OutBuf.

OutToInp may be specified as NULL if no index array from OutBuf to InpBuf is desired.

To perform shaping of a text string without reordering of code elements, the
layout_object should be set with input and output layout value TypeOfText set to
TEXT_VISUAL and both in and out of Orientation set to the same value.

If successful, the m_wtransform_layout() function returns 0. If unsuccessful, the
returned value is −1 and the errno is set to indicate the source of error. When the size
of OutBuf is not large enough to contain the entire transformed text, the input text
state at the end of the uncompleted transformation is saved internally and the error
condition E2BIG is returned in errno.

The m_wtransform_layout() function may fail if:

m_wtransform_layout(3LAYOUT)

RETURN VALUES

ERRORS

Extended Library Functions 735

E2BIG The output buffer is full and the source text is not entirely
processed.

EBADF The layout values are set to a meaningless combination or the
layout object is not valid.

EILSEQ Transformation stopped due to an input code element that cannot
be shaped or is invalid. The InpBufIndex argument is set to indicate
the code element causing the error. The suspect code element is
either a valid code element but cannot be shaped into the
ShapeCharset layout value, or is an invalid code element not
defined by the codeset of the locale of layout_object. The mbtowc()
and wctomb() functions, when used in the same locale as the
LayoutObject, can be used to determine if the code element is
valid.

EINVAL Transformation stopped due to an incomplete composite sequence
at the end of the input buffer, or OutSize contains NULL.

ERANGE More than 15 embedding levels are in source text or InpBuf contain
unbalanced directional layout information (push/pop) or an
incomplete composite sequence has been detected in the input
buffer at the beginning of the string pointed to by InpBufIndex.

An incomplete composite sequence at the end of the input buffer is
not always detectable. Sometimes the fact that the sequence is
incomplete will only be detected when additional character
elements belonging to the composite sequence are found at the
beginning of the next input buffer.

A LayoutObject will have a meaningful combination of default layout values.
Whoever chooses to change the default layout values is responsible for making sure
that the combination of layout values is meaningful. Otherwise, the result of
m_wtransform_layout() might be unpredictable or implementation-specific with
errno set to EBADF.

EXAMPLE 1 Shaping and reordering input string into output buffer

The following example illustrated what the different arguments of
m_wtransform_layout() look like when a string in InpBuf is shaped and reordered
into OutBuf. Upper-case letters in the example represent left-to-right letters while
lower-case letters represent right-to-left letters. xyz represents the shapes of cde.

Position: 0123456789
InpBuf: AB cde 12z

Position: 0123456789
OutBuf: AB 12 zyxZ

Position: 0123456789
OutToInp: 0127865439

m_wtransform_layout(3LAYOUT)

USAGE

EXAMPLES

736 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

EXAMPLE 1 Shaping and reordering input string into output buffer (Continued)

Position: 0123456789
Property.NestLevel: 0001111220

Property.CelBdry: 1111111111

The values (encoded in bianry) returned in the Property argument define the
directionality of each code element in the source text as defined by the type of
algorithm used within the layout_object. Whlie the algorithm may be implementation
dependent, the resulting values and levels are defined such as to allow a single
method to be used in determining the directionality of the sourece text. The base rules
are:

� Odd levels are always RTL.

� Even levels are always LTR.

� The Orientation layout value setting determines the initial level (0 or 1) used.

Within a Property array each increment in the level indicates the corresponding code
elements should be presented in the opposite direction. Callers of this function should
realize that the Property values for certain code elements is dependent on the context
of the given character and the layout values: Orientation and ImplicitAlg.
Callers should not assume that a given code element always has the same Property
value in all cases.

EXAMPLE 2 Algorithm to handle nesting

The following is an example of a standard presentation algorithm that handles nesting
correctly. The goal of this algorithm is ultimately to return to a zero nest level. Note
that more efficient algorithms do exist; the following is provided for clarity rather than
for efficiency.

1. Search for the highest next level in the string.

2. Reverse all surrounding code elements of the same level. Reduce the nest level of
these code elements by 1.

3. Repeat 1 and 2 until all code elements are of level 0.

The following shows the progression of the example from above:

Position: 0123456789 0123456789 0123456789
InpBuf: AB cde 12Z AB cde 21Z AB 12 edcZ
Property.NestLevel: 0001111220 0001111110 0000000000

Property.CellBdry: 1111111111 1111111111 1111111111

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

m_wtransform_layout(3LAYOUT)

ATTRIBUTES

Extended Library Functions 737

attributes(5)

m_wtransform_layout(3LAYOUT)

SEE ALSO

738 man pages section 3: Extended Library Functions • Last Revised 8 Jun 1999

nan, nanf, nanl – return quiet NaN

cc [flag...] file... -lm [library...]

#include <math.h>

double nan(const char *tagp);

float nanf(const char *tagp);

long double nanl(const char *tagp);

The function call nan("n-char-sequence") is equivalent to:

strtod("NAN(n-char-sequence)", (char **) NULL);

The function call nan(" ") is equivalent to:

strtod("NAN()", (char **) NULL)

If tagp does not point to an n-char sequence or an empty string, the function call is
equivalent to:

strtod("NAN", (char **) NULL)

Function calls to nanf() and nanl() are equivalent to the corresponding function
calls to strtof() and strtold(). See strtod(3C).

These functions return a quiet NaN.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

math.h(3HEAD), strtod(3C), attributes(5), standards(5)

nan(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 739

nearbyint, nearbyintf, nearbyintl – floating-point rounding functions

cc [flag...] file... -lm [library...]

#include <math.h>

double nearbyint(double x);

float nearbyintf(float x);

long double nearbyintl(long double x);

These functions round their argument to an integer value in floating-point format,
using the current rounding direction and without raising the inexact floating-point
exception.

Upon successful completion, these functions return the rounded integer value.

If x is NaN, a NaN is returned.

If x is ±0, ±0 is returned.

If x is ±Inf, x is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), math.h(3HEAD), attributes(5),
standards(5)

nearbyint(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

740 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

newDmiOctetString – create DmiOctetString in dynamic memory

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

DmiOctetString_t *newDmiOctetString(DmiOctetString_t *str);

The newDmiOctetString() function creates a DmiOctetString in dynamic
memory and returns a pointer to the newly created DmiOctetString. The function
returns NULL if no memory is available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

libdmi(3LIB), attributes(5)

newDmiOctetString(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 741

newDmiString – create DmiString in dynamic memory

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

DmiString_t *newDmiString(char *str);

The newDmiString() function creates a DmiString in dynamic memory and
returns a pointer to the newly created DmiString. The function returns NULL if no
memory is available.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

freeDmiString(3DMI), libdmi(3LIB), attributes(5)

newDmiString(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

742 man pages section 3: Extended Library Functions • Last Revised 12 Oct 1998

nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl – next
representable double-precision floating-point number

cc [flag...] file... -lm [library...]

#include <math.h>

double nextafter(double x, double y);

float nextafterf(float x, float y);

long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);

float nexttowardf(float x, long double y);

long double nexttowardl(long double x, long double y);

The nextafter(), nextafterf(), and nextafterl() functions compute the next
representable floating-point value following x in the direction of y. Thus, if y is less
than x, nextafter() returns the largest representable floating-point number less
than x. The nextafter(), nextafterf(), and nextafterl() functions return y if
x equals y.

The nexttoward(), nexttowardf(), and nexttowardl() functions are
equivalent to the corresponding nextafter() functions, except that the second
parameter has type long double and the functions return y converted to the type of
the function if x equals y.

Upon successful completion, these functions return the next representable
floating-point value following x in the direction of y.

If x == y, y (of the type x) is returned.

If x is finite and the correct function value would overflow, a range error occurs and
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) is returned as
appropriate for the return type of the function.

If x or y is NaN, a NaN is returned.

If x != y and the correct function value is subnormal, zero, or underflows, a range error
occurs and either the correct function value (if representable) or 0.0 is returned.

These functions will fail if:

Range Error The correct value overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception is raised.

The nextafter() function sets errno to ERANGE if the correct
value would overflow.

Range Error The correct value underflows.

nextafter(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 743

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the underflow floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling nextafter(). On return, if
errno is non-zero, an error has occurred. The nextafterf(), nextafterl().
nexttoward(), nexttowardf(), and nexttowardl() functions do not set errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), math.h(3HEAD), attributes(5),
standards(5)

nextafter(3M)

USAGE

ATTRIBUTES

SEE ALSO

744 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

nlist – get entries from name list

cc [flag...] file ... -lelf [library ...]

#include <nlist.h>

int nlist(const char *filename, struct nlist *nl);

nlist() examines the name list in the executable file whose name is pointed to by
filename, and selectively extracts a list of values and puts them in the array of nlist()
structures pointed to by nl. The name list nl consists of an array of structures
containing names of variables, types, and values. The list is terminated with a null
name, that is, a null string is in the name position of the structure. Each variable name
is looked up in the name list of the file. If the name is found, the type, value, storage
class, and section number of the name are inserted in the other fields. The type field
may be set to 0 if the file was not compiled with the -g option to cc(1B).

nlist() will always return the information for an external symbol of a given name if
the name exists in the file. If an external symbol does not exist, and there is more than
one symbol with the specified name in the file (such as static symbols defined in
separate files), the values returned will be for the last occurrence of that name in the
file. If the name is not found, all fields in the structure except n_name are set to 0.

This function is useful for examining the system name list kept in the file
/dev/ksyms. In this way programs can obtain system addresses that are up to date.

All value entries are set to 0 if the file cannot be read or if it does not contain a valid
name list.

nlist() returns 0 on success, −1 on error.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level Safe

cc(1B), elf(3ELF), kvm_nlist(3KVM), kvm_open(3KVM), libelf(3LIB), a.out(4),
attributes(5), ksyms(7D), mem(7D)

nlist(3ELF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 745

NOTE, _NOTE – annotate source code with info for tools

#include <note.h>

NOTE(NoteInfo);

or

#include<sys/note.h>

_NOTE(NoteInfo);

These macros are used to embed information for tools in program source. A use of one
of these macros is called an “annotation”. A tool may define a set of such annotations
which can then be used to provide the tool with information that would otherwise be
unavailable from the source code.

Annotations should, in general, provide documentation useful to the human reader. If
information is of no use to a human trying to understand the code but is necessary for
proper operation of a tool, use another mechanism for conveying that information to
the tool (one which does not involve adding to the source code), so as not to detract
from the readability of the source. The following is an example of an annotation which
provides information of use to a tool and to the human reader (in this case, which data
are protected by a particular lock, an annotation defined by the static lock analysis tool
lock_lint).

NOTE(MUTEX_PROTECTS_DATA(foo_lock, foo_list Foo))

Such annotations do not represent executable code; they are neither statements nor
declarations. They should not be followed by a semicolon. If a compiler or tool that
analyzes C source does not understand this annotation scheme, then the tool will
ignore the annotations. (For such tools, NOTE(x) expands to nothing.)

Annotations may only be placed at particular places in the source. These places are
where the following C constructs would be allowed:

� a top-level declaration (that is, a declaration not within a function or other
construct)

� a declaration or statement within a block (including the block which defines a
function)

� a member of a struct or union.

Annotations are not allowed in any other place. For example, the following are illegal:

x = y + NOTE(...) z ;

typedef NOTE(...) unsigned int uint ;

While NOTE and _NOTE may be used in the places described above, a particular type
of annotation may only be allowed in a subset of those places. For example, a
particular annotation may not be allowed inside a struct or union definition.

NOTE(3EXT)

NAME

SYNOPSIS

DESCRIPTION

746 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

Ordinarily, NOTE should be used rather than _NOTE, since use of _NOTE technically
makes a program non-portable. However, it may be inconvenient to use NOTE for this
purpose in existing code if NOTE is already heavily used for another purpose. In this
case one should use a different macro and write a header file similar to
/usr/include/note.h which maps that macro to _NOTE in the same manner. For
example, the following makes FOO such a macro:

#ifndef _FOO_H
#define _FOO_H
#define FOO _NOTE
#include <sys/note.h>

#endif

Public header files which span projects should use _NOTE rather than NOTE, since
NOTE may already be used by a program which needs to include such a header file.

The actual NoteInfo used in an annotation should be specified by a tool that deals with
program source (see the documentation for the tool to determine which annotations, if
any, it understands).

NoteInfo must have one of the following forms:

NoteName
NoteName(Args)

where NoteName is simply an identifier which indicates the type of annotation, and
Args is something defined by the tool that specifies the particular NoteName. The
general restrictions on Args are that it be compatible with an ANSI C tokenizer and
that unquoted parentheses be balanced (so that the end of the annotation can be
determined without intimate knowledge of any particular annotation).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

note(4), attributes(5)

NOTE(3EXT)

NOTE vs _NOTE

NoteInfo Argument

ATTRIBUTES

SEE ALSO

Extended Library Functions 747

nvlist_add_boolean, nvlist_add_boolean_value, nvlist_add_byte, nvlist_add_int8,
nvlist_add_uint8, nvlist_add_int16, nvlist_add_uint16, nvlist_add_int32,
nvlist_add_uint32, nvlist_add_int64, nvlist_add_uint64, nvlist_add_string,
nvlist_add_nvlist, nvlist_add_nvpair, nvlist_add_boolean_array,
nvlist_add_byte_array, nvlist_add_int8_array, nvlist_add_uint8_array,
nvlist_add_int16_array, nvlist_add_uint16_array, nvlist_add_int32_array,
nvlist_add_uint32_array, nvlist_add_int64_array, nvlist_add_uint64_array,
nvlist_add_string_array, nvlist_add_nvlist_array – add new name-value pair to
nvlist_t

cc [flag...] file... -lnvpair [library...]

#include <libnvpair.h>

int nvlist_add_boolean(nvlist_t *nvl, const char *name);

int nvlist_add_boolean_value(nvlist_t *nvl, const char *name,
boolean_t val);

int nvlist_add_byte(nvlist_t *nvl, const char *name, uchar_t val);

int nvlist_add_int8(nvlist_t *nvl, const char *name, int8_t val);

int nvlist_add_uint8(nvlist_t *nvl, const char *name, uint8_t val);

int nvlist_add_int16(nvlist_t *nvl, const char *name, int16_t val);

int nvlist_add_uint16(nvlist_t *nvl, const char *name, uint16_t
val);

int nvlist_add_int32(nvlist_t *nvl, const char *name, int32_t val);

int nvlist_add_uint32(nvlist_t *nvl, const char *name, uint32_t
val);

int nvlist_add_int64(nvlist_t *nvl, const char *name, int64_t val);

int nvlist_add_uint64(nvlist_t *nvl, const char *name, uint64_t
val);

int nvlist_add_string(nvlist_t *nvl, const char *name, const char
*val);

int nvlist_add_nvlist(nvlist_t *nvl, const char *name, nvlist_t
*val);

int nvlist_add_nvpair(nvlist_t *nvl, nvpair_t *nvp);

int nvlist_add_boolean_array(nvlist_t *nvl, const char *name,
boolean_t *val, uint_t nelem);

int nvlist_add_byte_array(nvlist_t *nvl, const char *name, uchar_t
*val, uint_t nelem);

int nvlist_add_int8_array(nvlist_t *nvl, const char *name, int8_t
*val, uint_t nelem);

int nvlist_add_uint8_array(nvlist_t *nvl, const char *name,
uint8_t *val, uint_t nelem);

nvlist_add_boolean(3NVPAIR)

NAME

SYNOPSIS

748 man pages section 3: Extended Library Functions • Last Revised 2 Feb 2004

int nvlist_add_int16_array(nvlist_t *nvl, const char *name,
int16_t *val, uint_t nelem);

int nvlist_add_uint16_array(nvlist_t *nvl, const char *name,
uint16_t *val, uint_t nelem);

int nvlist_add_int32_array(nvlist_t *nvl, const char *name,
int32_t *val, uint_t nelem);

int nvlist_add_uint32_array(nvlist_t *nvl, const char *name,
uint32_t *val, uint_t nelem);

int nvlist_add_int64_array(nvlist_t *nvl, const char *name,
int64_t *val, uint_t nelem);

int nvlist_add_uint64_array(nvlist_t *nvl, const char *name,
uint64_t *val, uint_t nelem);

int nvlist_add_string_array(nvlist_t *nvl, const char *name, char
*const *val, uint_t nelem);

int nvlist_add_nvlist_array(nvlist_t *nvl, const char *name,
nvlist_t **val, uint_t nelem);

nvl The nvlist_t (name-value pair list) to be processed.

nvp The nvpair_t (name-value pair) to be processed.

name Name of the nvpair (name-value pair).

nelem Number of elements in value (that is, array size).

val Value or starting address of the array value.

These functions add a new name-value pair to an nvlist_t. The uniqueness of
nvpair name and data types follows the nvflag argument specified for
nvlist_alloc(). See nvlist_alloc(3NVPAIR).

If NV_UNIQUE_NAME was specified for nvflag, existing nvpairs with matching names
are removed before the new nvpair is added.

If NV_UNIQUE_NAME_TYPE was specified for nvflag, existing nvpairs with matching
names and data types are removed before the new nvpair is added.

If neither was specified for nvflag, the new nvpair is unconditionally added at the
end of the list. The library preserves the order of the name-value pairs across packing,
unpacking, and duplication.

Multiple threads can simultaneously read the same nvlist_t, but only one thread
can actively change a given nvlist_t at a time. The caller is responsible for the
synchronization.

The nvlist_add_boolean() function is deprecated. The
nvlist_add_boolean_value() function should be used instead.

nvlist_add_boolean(3NVPAIR)

PARAMETERS

DESCRIPTION

Extended Library Functions 749

These functions return 0 on success and an error value on failure.

These functions will fail if:

EINVAL There is an invalid argument.

ENOMEM There is insufficient memory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3LIB), attributes(5)

nvlist_add_boolean(3NVPAIR)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

750 man pages section 3: Extended Library Functions • Last Revised 2 Feb 2004

nvlist_alloc, nvlist_free, nvlist_size, nvlist_pack, nvlist_unpack, nvlist_dup,
nvlist_merge, nvlist_xalloc, nvlist_xpack, nvlist_xunpack, nvlist_xdup,
nvlist_lookup_nv_alloc, nv_alloc_init, nv_alloc_reset, nv_alloc_fini – manage a
name-value pair list

cc [flag...] file... -lnvpair [library...]

#include <libnvpair.h>

int nvlist_alloc(nvlist_t **nvlp, uint_t nvflag, int flag);

int nvlist_xalloc(nvlist_t **nvlp, uint_t nvflag, nv_alloc_t * nva);

void nvlist_free(nvlist_t *nvl);

int nvlist_size(nvlist_t *nvl, size_t *size, int encoding);

int nvlist_pack(nvlist_t *nvl, char **bufp, size_t *buflen, int
encoding, int flag);

int nvlist_xpack(nvlist_t *nvl, char **bufp, size_t *buflen, int
encoding, nv_alloc_t * nva);

int nvlist_unpack(char *buf, size_t buflen, nvlist_t **nvlp, int
flag);

int nvlist_xunpack(char *buf, size_t buflen, nvlist_t **nvlp,
nv_alloc_t * nva);

int nvlist_dup(nvlist_t *nvl, nvlist_t **nvlp, int flag);

int nvlist_xdup(nvlist_t *nvl, nvlist_t **nvlp, nv_alloc_t * nva);

int nvlist_merge(nvlist_t *dst, nvlist_t *nvl, int flag);

nv_alloc_t * nvlist_lookup_nv_alloc(nvlist_t *nvl);

int nv_alloc_init(nv_alloc_t *nva, const nv_alloc_ops_t *nvo, /*
args */ ...);

void nv_alloc_reset(nv_alloc_t *nva);

void nv_alloc_fini(nv_alloc_t *nva);

nvlp Address of a pointer to nvlist_t.

nvflag Specify bit fields defining nvlist properties:

NV_UNIQUE_NAME The nvpair names are unique.

NV_UNIQUE_NAME_TYPE Name-data type combination is
unique.

flag Specify 0. Reserved for future use.

nvl The nvlist_t to be processed.

dst The destination nvlist_t.

size Pointer to buffer to contain the encoded size.

nvlist_alloc(3NVPAIR)

NAME

SYNOPSIS

PARAMETERS

Extended Library Functions 751

bufp Address of buffer to pack nvlist into. Must be 8-byte aligned. If
NULL, library will allocate memory.

buf Buffer containing packed nvlist.

buflen Size of buffer bufp or buf points to.

encoding Encoding method for packing.

nvo Pluggable allocator operations pointer (nv_alloc_ops_t).

nva A pointer to an nv_alloc_t structure to be used for the specified
nvlist_t.

The nvlist_alloc() function allocates a new name-value pair list and updates nvlp
to point to the handle. The nvflag argument specifies nvlist properties to remain
persistent across packing, unpacking, and duplication. If NV_UNIQUE_NAME was
specified for nvflag, existing nvpairs with matching names are removed before the new
nvpair is added. If NV_UNIQUE_NAME_TYPE was specified for nvflag, existing nvpairs
with matching names and data types are removed before the new nvpair is added. See
nvlist_add_byte(3NVPAIR) for more information.

The nvlist_xalloc() function is identical to nvlist_alloc() except that
nvlist_xalloc() can use a different allocator, as described in the Pluggable
Allocators section.

The nvlist_free() function frees a name-value pair list.

The nvlist_size() function returns the minimum size of a contiguous buffer large
enough to pack nvl. The encoding parameter specifies the method of encoding when
packing nvl. Supported encoding methods are:

NV_ENCODE_NATIVE Straight bcopy() as described in bcopy(3C).

NV_ENCODE_XDR Use XDR encoding, suitable for sending to another
host.

The nvlist_pack() function packs nvl into contiguous memory starting at *bufp.
The encoding parameter specifies the method of encoding (see above).

� If *bufp is not NULL, *bufp is expected to be a caller-allocated buffer of size *buflen.

� If *bufp is NULL, the library will allocate memory and update *bufp to point to the
memory and update *buflen to contain the size of the allocated memory.

The nvlist_xpack() function is identical to nvlist_pack() except that
nvlist_xpack() can use a different allocator.

The nvlist_unpack() function takes a buffer with a packed nvlist_t and
unpacks it into a searchable nvlist_t. The library allocates memory for nvlist_t.
The caller is responsible for freeing the memory by calling nvlist_free().

nvlist_alloc(3NVPAIR)

DESCRIPTION

List Manipulation

752 man pages section 3: Extended Library Functions • Last Revised 2 Feb 2004

The nvlist_xunpack() function is identical to nvlist_unpack() except that
nvlist_xunpack() can use a different allocator.

The nvlist_dup() function makes a copy of nvl and updates nvlp to point to the
copy.

The nvlist_xdup() function is identical to nvlist_dup() except that
nvlist_xdup() can use a different allocator.

The nvlist_merge() function adds copies of all name-value pairs from nvl to dst.
Name-value pairs in dst are replaced with name-value pairs from nvl that have
identical names (if dst has the type NV_UNIQUE_NAME) or identical names and types
(if dst has the type NV_UNIQUE_NAME_TYPE).

The nvlist_lookup_nv_alloc() function retrieves the pointer to the allocator that
was used when manipulating a name-value pair list.

Using Pluggable Allocators

The nv_alloc_init(), nv_alloc_reset() and nv_alloc_fini() functions
provide an interface to specify the allocator to be used when manipulating a
name-value pair list.

The nv_alloc_init() function determines the allocator properties and puts them
into the nva argument. The application must specify the nv_arg and nvo arguments and
an optional variable argument list. The optional arguments are passed to the
(*nv_ao_init()) function.

The nva argument must be passed to nvlist_xalloc(), nvlist_xpack(),
nvlist_xunpack() and nvlist_xdup().

The nv_alloc_reset() function is responsible for resetting the allocator properties
to the data specified by nv_alloc_init(). When no (*nv_ao_reset()) function is
specified, nv_alloc_reset() has no effect.

The nv_alloc_fini() function destroys the allocator properties determined by
nv_alloc_init(). When a (*nv_ao_fini()) function is specified, it is called from
nv_alloc_fini().

The disposition of the allocated objects and the memory used to store them is left to
the allocator implementation.

The nv_alloc_nosleep nv_alloc_t can be used with nvlist_xalloc() to
mimic the behavior of nvlist_alloc().

nvlist_alloc(3NVPAIR)

Pluggable
Allocators

Extended Library Functions 753

The nvpair allocator framework provides a pointer to the operation structure of a fixed
buffer allocator. This allocator, nv_fixed_ops, uses a pre-allocated buffer for
memory allocations. It is intended primarily for kernel use and is described on
nvlist_alloc(9F).

An example program that uses the pluggable allocator functionality is provided on
nvlist_alloc(9F).

Creating Pluggable Allocators

Any producer of name-value pairs can specify its own allocator functions. The
application must provide the following pluggable allocator operations:

int (*nv_ao_init)(nv_alloc_t *nva, va_list nv_valist);
void (*nv_ao_fini)(nv_alloc_t *nva);
void *(*nv_ao_alloc)(nv_alloc_t *nva, size_t sz);
void (*nv_ao_reset)(nv_alloc_t *nva);

void (*nv_ao_free)(nv_alloc_t *nva, void *buf, size_t sz);

The nva argument of the allocator implementation is always the first argument.

The optional (*nv_ao_init()) function is responsible for filling the data specified by
nv_alloc_init() into the nva_arg argument. The (*nv_ao_init()) function is
only called when nv_alloc_init() is executed.

The optional (*nv_ao_fini()) function is responsible for the cleanup of the allocator
implementation. It is called by nv_alloc_fini().

The required (*nv_ao_alloc()) function is used in the nvpair allocation framework
for memory allocation. The sz argument specifies the size of the requested buffer.

The optional (*nv_ao_reset()) function is responsible for resetting the nva_arg
argument to the data specified by nv_alloc_init().

The required (*nv_ao_free()) function is used in the nvpair allocator framework for
memory deallocation. The buf argument is a pointer to a block previously allocated by
the (*nv_ao_alloc()) function. The size argument sz must exactly match the
original allocation.

The disposition of the allocated objects and the memory used to store them is left to
the allocator implementation.

These functions return 0 on success and an error value on failure.

The nvlist_lookup_nv_alloc() function returns a pointer to an allocator.

These functions will fail if:

EINVAL There is an invalid argument.

nvlist_alloc(3NVPAIR)

RETURN VALUES

ERRORS

754 man pages section 3: Extended Library Functions • Last Revised 2 Feb 2004

The nvlist_alloc(), nvlist_dup(), nvlist_pack(), nvlist_unpack(),
nvlist_merge(), nvlist_xalloc(), nvlist_xdup(), nvlist_xpack(), and
nvlist_xunpack() functions will fail if:

ENOMEM There is insufficient memory.

The nvlist_pack(), nvlist_unpack(), nvlist_xpack(), and
nvlist_xunpack() functions will fail if:

EFAULT An encode/decode error occurs.

ENOTSUP An encode/decode method is not supported.

/*
* Program to create an nvlist.
*/
#include <stdio.h>
#include <sys/types.h>
#include <string.h>
#include <libnvpair.h>

/* generate a packed nvlist */
static int
create_packed_nvlist(char **buf, uint_t *buflen, int encode)
{

uchar_t bytes[] = {0xaa, 0xbb, 0xcc, 0xdd};
int32_t int32[] = {3, 4, 5};
char *strs[] = {"child0", "child1", "child2"};
int err;
nvlist_t *nvl;

err = nvlist_alloc(&nvl, NV_UNIQUE_NAME, 0); /* allocate list */
if (err) {

(void) printf("nvlist_alloc() failed\n");
return (err);

}

/* add a value of some types */
if ((nvlist_add_byte(nvl, "byte", bytes[0]) != 0) ||

(nvlist_add_int32(nvl, "int32", int32[0]) != 0) ||
(nvlist_add_int32_array(nvl, "int32_array", int32, 3) != 0) ||
(nvlist_add_string_array(nvl, "string_array", strs, 3) != 0)) {
nvlist_free(nvl);
return (-1);

}

err = nvlist_size(nvl, buflen, encode);
if (err) {

(void) printf("nvlist_size: %s\n", strerror(err));
nvlist_free(nvl);
return (err);

}

/* pack into contig. memory */
err = nvlist_pack(nvl, buf, buflen, encode, 0);
if (err)

(void) printf("nvlist_pack: %s\n", strerror(err));

nvlist_alloc(3NVPAIR)

EXAMPLES

Extended Library Functions 755

/* free the original list */
nvlist_free(nvl);
return (err);

}

/* selectively print nvpairs */
static void
nvlist_lookup_and_print(nvlist_t *nvl)
{

char **str_val;
int i, int_val;
uint_t nval;

if (nvlist_lookup_int32(nvl, "int32", &int_val) == 0)
(void) printf("int32 = %d\n", int_val);

if (nvlist_lookup_string_array(nvl, "string_array", &str_val, &nval)
== 0) {

(void) printf("string_array =");
for (i = 0; i < nval; i++)

(void) printf(" %s", str_val[i]);
(void) printf("\n");

}
}

/*ARGSUSED*/
int
main(int argc, char *argv[])
{

int err;
char *buf = NULL;
size_t buflen;
nvlist_t *nvl = NULL;

if (create_packed_nvlist(&buf, &buflen, NV_ENCODE_XDR) != 0) {
(void) printf("cannot create packed nvlist buffer\n");
return(-1);
}

/* unpack into an nvlist_t */
err = nvlist_unpack(buf, buflen, &nvl, 0);
if (err) {

(void) printf("nvlist_unpack(): %s\n", strerror(err));
return(-1);

}

/* selectively print out attributes */
nvlist_lookup_and_print(nvl);
return(0);

}

See attributes(5) for descriptions of the following attributes:

nvlist_alloc(3NVPAIR)

ATTRIBUTES

756 man pages section 3: Extended Library Functions • Last Revised 2 Feb 2004

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3LIB), attributes(5), nvlist_alloc(9F)

nvlist_alloc(3NVPAIR)

SEE ALSO

Extended Library Functions 757

nvlist_lookup_boolean, nvlist_lookup_boolean_value, nvlist_lookup_byte,
nvlist_lookup_int8, nvlist_lookup_uint8, nvlist_lookup_int16, nvlist_lookup_uint16,
nvlist_lookup_int32, nvlist_lookup_uint32, nvlist_lookup_int64, nvlist_lookup_uint64,
nvlist_lookup_string, nvlist_lookup_nvlist, nvlist_lookup_boolean_array,
nvlist_lookup_byte_array, nvlist_lookup_int8_array, nvlist_lookup_uint8_array,
nvlist_lookup_int16_array, nvlist_lookup_uint16_array, nvlist_lookup_int32_array,
nvlist_lookup_uint32_array, nvlist_lookup_int64_array, nvlist_lookup_uint64_array,
nvlist_lookup_nvlist_array, nvlist_lookup_string_array, nvlist_lookup_pairs – match
name and type indicated by the interface name and retrieve data value

cc [flag...] file... -lnvpair [library...]

#include <libnvpair.h>

int nvlist_lookup_boolean(nvlist_t *nvl, const char *name);

int nvlist_lookup_boolean_value(nvlist_t *nvl, const char *name,
boolean_t *val);

int nvlist_lookup_byte(nvlist_t *nvl, const char *name, uchar_t
*val);

int nvlist_lookup_int8(nvlist_t *nvl, const char *name, int8_t
*val);

int nvlist_lookup_uint8(nvlist_t *nvl, const char *name, uint8_t
*val);

int nvlist_lookup_int16(nvlist_t *nvl, const char *name, int16_t
*val);

int nvlist_lookup_uint16(nvlist_t *nvl, const char *name, uint16_t
*val);

int nvlist_lookup_int32(nvlist_t *nvl, const char *name, int32_t
*val);

int nvlist_lookup_uint32(nvlist_t *nvl, const char *name, uint32_t
*val);

int nvlist_lookup_int64(nvlist_t *nvl, const char *name, int64_t
*val);

int nvlist_lookup_uint64(nvlist_t *nvl, const char *name, uint64_t
*val);

int nvlist_lookup_string(nvlist_t *nvl, const char *name, char
**val);

int nvlist_lookup_nvlist(nvlist_t *nvl, const char *name, nvlist_t
**val);

int nvlist_lookup_boolean_array(nvlist_t *nvl, const char *name,
boolean_t **val, uint_t *nelem);

int nvlist_lookup_byte_array(nvlist_t *nvl, const char *name,
uchar_t **val, uint_t *nelem);

nvlist_lookup_boolean(3NVPAIR)

NAME

SYNOPSIS

758 man pages section 3: Extended Library Functions • Last Revised 2 Feb 2004

int nvlist_lookup_int8_array(nvlist_t *nvl, const char *name,
int8_t **val, uint_t *nelem);

int nvlist_lookup_uint8_array(nvlist_t *nvl, const char *name,
uint8_t **val, uint_t *nelem);

int nvlist_lookup_int16_array(nvlist_t *nvl, const char *name,
int16_t **val, uint_t *nelem);

int nvlist_lookup_uint16_array(nvlist_t *nvl, const char *name,
uint16_t **val, uint_t *nelem);

int nvlist_lookup_int32_array(nvlist_t *nvl, const char *name,
int32_t **val, uint_t *nelem);

int nvlist_lookup_uint32_array(nvlist_t *nvl, const char *name,
uint32_t **val, uint_t *nelem);

int nvlist_lookup_int64_array(nvlist_t *nvl, const char *name,
int64_t **val, uint_t *nelem);

int nvlist_lookup_uint64_array(nvlist_t *nvl, const char *name,
uint64_t **val, uint_t *nelem);

int nvlist_lookup_string_array(nvlist_t *nvl, const char *name,
char ***val, uint_t *nelem);

int nvlist_lookup_nvlist_array(nvlist_t *nvl, const char *name,
nvlist_t ***val, uint_t *nelem);

int nvlist_lookup_pairs(nvlist_t *nvl, int flag, ...);

nvl The nvlist_t to be processed.

name Name of the name-value pair to search.

nelem Address to store the number of elements in value.

val Address to store the starting address of the value.

flag Specify bit fields defining lookup behavior:

NV_FLAG_NOENTOKThe retrival function will not fail if no matching
name-value pair is found.

These functions find the nvpair (name-value pair) that matches the name and type as
indicated by the interface name. If one is found, nelem and val are modified to contain
the number of elements in value and the starting address of data, respectively.

These functions work for nvlists (lists of name-value pairs) allocated with
NV_UNIQUE_NAME or NV_UNIQUE_NAME_TYPE specified in nvlist_alloc(). (See
nvlist_alloc(3NVPAIR).) If this is not the case, the function returns ENOTSUP
because the list potentially contains multiple nvpairs with the same name and type.

nvlist_lookup_boolean(3NVPAIR)

PARAMETERS

DESCRIPTION

Extended Library Functions 759

Multiple threads can simultaneously read the same nvlist_t but only one thread
can actively change a given nvlist_t at a time. The caller is responsible for the
synchronization.

All memory required for storing the array elements, including string value, are
managed by the library. References to such data remain valid until nvlist_free() is
called on nvl.

The nvlist_lookup_pairs() function retrieves a set of nvpairs. The arguments are
a null-terminated list of pairs (data type DATA_TYPE_BOOLEAN), triples (non-array
data types) or quads (array data types). The interpretation of the arguments depends
on the value of type (see nvpair_type(3NVPAIR)) as follows:

name Name of the name-value pair to search.

type Data type (see nvpair_type(3NVPAIR)).

val Address to store the starting address of the value. When using data type
DATA_TYPE_BOOLEAN, the val argument is omitted.

nelem Address to store the number of elements in value. Non-array data types
have only one argument and nelem is omitted.

The order of the arguments is name, type, [val], [nelem].

When using NV_FLAG_NOENTOK and no matching name-value pair is found, the
memory pointed to by val and nelem is left untouched.

These functions return 0 on success and an error value on failure.

These functions will fail if:

EINVAL There is an invalid argument.

ENOENT No matching name-value pair is found

ENOTSUP An encode/decode method is not supported.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3LIB), nvpair_type(3NVPAIR), attributes(5)

nvlist_lookup_boolean(3NVPAIR)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

760 man pages section 3: Extended Library Functions • Last Revised 2 Feb 2004

nvlist_next_nvpair, nvpair_name, nvpair_type – return data regarding name-value
pairs

cc [flag...] file... -lnvpair [library...]

#include <libnvpair.h>

nvpair_t *nvlist_next_nvpair(nvlist_t *nvl, nvpair_t *nvpair);

char *nvpair_name(nvpair_t *nvpair);

data_type_t nvpair_type(nvpair_t *nvpair);

nvl The nvlist_t to be processed.

nvpair Handle to a name-value pair.

The nvlist_next_nvpair() function returns a handle to the next nvpair in the
list following nvpair. If nvpair is NULL, the first pair is returned. If nvpair is the
last pair in the nvlist, NULL is returned.

The nvpair_name() function returns a string containing the name of nvpair.

The nvpair_type() function retrieves the value of the nvpair in the form of
enumerated type data_type_t. This is used to determine the appropriate
nvpair_*() function to call for retrieving the value.

Upon successful completion, nvpair_name() returns a string containing the name of
the name-value pair.

Upon successful completion, nvpair_type() returns an enumerated data type
data_type_t. Possible values for data_type_t are as follows:

DATA_TYPE_BOOLEAN
DATA_TYPE_BOOLEAN_VALUE
DATA_TYPE_BYTE
DATA_TYPE_INT8
DATA_TYPE_UINT8
DATA_TYPE_INT16
DATA_TYPE_UINT16
DATA_TYPE_INT32
DATA_TYPE_UINT32
DATA_TYPE_INT64
DATA_TYPE_UINT64
DATA_TYPE_STRING
DATA_TYPE_NVLIST
DATA_TYPE_BOOLEAN_ARRAY
DATA_TYPE_BYTE_ARRAY
DATA_TYPE_INT8_ARRAY
DATA_TYPE_UINT8_ARRAY
DATA_TYPE_INT16_ARRAY
DATA_TYPE_UINT16_ARRAY

nvlist_next_nvpair(3NVPAIR)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

Extended Library Functions 761

DATA_TYPE_INT32_ARRAY
DATA_TYPE_UINT32_ARRAY
DATA_TYPE_INT64_ARRAY
DATA_TYPE_UINT64_ARRAY
DATA_TYPE_STRING_ARRAY
DATA_TYPE_NVLIST_ARRAY

Upon reaching the end of a list, nvlist_next_pair() returns NULL. Otherwise, the
function returns a handle to next nvpair in the list.

These and other libnvpair(3LIB) functions cannot manipulate nvpairs after they
have been removed from or replaced in an nvlist. Replacement can occur during pair
additions to nvlists created with NV_UNIQUE_NAME_TYPE and NV_UNIQUE_NAME.
See nvlist_alloc(3NVPAIR).

No errors are defined.

EXAMPLE 1 Example of usage of nvlist_next_nvpair().

/*
* usage of nvlist_next_nvpair()
*/
static int
edit_nvl(nvlist_t *nvl)
{

nvpair_t *curr = nvlist_next_nvpair(nvl, NULL);

while (curr != NULL) {
int err;
nvpair_t *next = nvlist_next_nvpair(nvl, curr);

if (!nvl_check(curr))
if ((err = nvlist_remove(nvl, nvpair_name(curr),

nvpair_type(curr))) != 0)
return (err);

curr = next;
}
return (0);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3LIB), nvlist_alloc(3NVPAIR), attributes(5)

nvlist_next_nvpair(3NVPAIR)

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

762 man pages section 3: Extended Library Functions • Last Revised 2 Feb 2004

The enumerated nvpair data types might not be an exhaustive list and new data types
can be added. An application using the data type enumeration, data_type_t, should
be written to expect or ignore new data types.

nvlist_next_nvpair(3NVPAIR)

NOTES

Extended Library Functions 763

nvlist_remove, nvlist_remove_all – remove name-value pairs

cc [flag...] file... -lnvpair [library...]

#include <libnvpair.h>

int nvlist_remove(nvlist_t *nvl, const char *name, data_type_t
type);

int nvlist_remove_all(nvlist_t *nvl, const char *name);

nvl The nvlist_t to be processed.

name Name of the name-value pair to be removed.

type Data type of the nvpair to be removed.

The nvlist_remove() function removes the first occurrence of nvpair that
matches the name and the type.

The nvlist_remove_all() function removes all occurrences of nvpair that match
the name, regardless of type.

Multiple threads can simultaneously read the same nvlist_t but only one thread
can actively change a given nvlist_t at a time. The caller is responsible for the
synchronization.

These functions return 0 on success and an error value on failure.

These functions will fail if:

EINVAL There is an invalid argument.

ENOENT No name-value pairs were found to match the criteria specified by
name and type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3LIB), attributes(5)

nvlist_remove(3NVPAIR)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

764 man pages section 3: Extended Library Functions • Last Revised 2 Feb 2004

nvpair_value_byte, nvpair_value_boolean_value, nvpair_value_int8,
nvpair_value_uint8, nvpair_value_int16, nvpair_value_uint16, nvpair_value_int32,
nvpair_value_uint32, nvpair_value_int64, nvpair_value_uint64, nvpair_value_string,
nvpair_value_nvlist, nvpair_value_boolean_array, nvpair_value_byte_array,
nvpair_value_int8_array, nvpair_value_uint8_array, nvpair_value_int16_array,
nvpair_value_uint16_array, nvpair_value_int32_array, nvpair_value_uint32_array,
nvpair_value_int64_array, nvpair_value_uint64_array, nvpair_value_string_array,
nvpair_value_nvlist_array – retrieve value from a name-value pair

cc [flag...] file... -lnvpair [library...]
#include <libnvpair.h>

int nvpair_value_byte(nvpair_t *nvpair, uchar_t *val);

int nvpair_value_boolean_value(nvpair_t *nvpair, boolean_t *val);

int nvpair_value_int8(nvpair_t *nvpair, int8_t *val);

int nvpair_value_uint8(nvpair_t *nvpair, uint8_t *val);

int nvpair_value_int16(nvpair_t *nvpair, int16_t *val);

int nvpair_value_uint16(nvpair_t *nvpair, uint16_t *val);

int nvpair_value_int32(nvpair_t *nvpair, int32_t *val);

int nvpair_value_uint32(nvpair_t *nvpair, uint32_t *val);

int nvpair_value_int64(nvpair_t *nvpair, int64_t *val);

int nvpair_value_uint64(nvpair_t *nvpair, uint64_t *val);

int nvpair_value_string(nvpair_t *nvpair, char **val);

int nvpair_value_nvlist(nvpair_t *nvpair, nvlist_t **val);

int nvpair_value_boolean_array(nvpair_t *nvpair, boolean_t **val,
uint_t *nelem);

int nvpair_value_byte_array(nvpair_t *nvpair, uchar_t **val, uint_t
*nelem);

int nvpair_value_int8_array(nvpair_t *nvpair, int8_t **val, uint_t
*nelem);

int nvpair_value_uint8_array(nvpair_t *nvpair, uint8_t **val,
uint_t *nelem);

int nvpair_value_int16_array(nvpair_t *nvpair, int16_t **val,
uint_t *nelem);

int nvpair_value_uint16_array(nvpair_t *nvpair, uint16_t **val,
uint_t *nelem);

int nvpair_value_int32_array(nvpair_t *nvpair, int32_t **val,
uint_t *nelem);

int nvpair_value_uint32_array(nvpair_t *nvpair, uint32_t **val,
uint_t *nelem);

nvpair_value_byte(3NVPAIR)

NAME

SYNOPSIS

Extended Library Functions 765

int nvpair_value_int64_array(nvpair_t *nvpair, int64_t **val,
uint_t *nelem);

int nvpair_value_uint64_array(nvpair_t *nvpair, uint64_t **val,
uint_t *nelem);

int nvpair_value_string_array(nvpair_t *nvpair, char ***val, uint_t
*nelem);

int nvpair_value_nvlist_array(nvpair_t *nvpair, nvlist_t ***val,
uint_t *nelem);

nvpair Name-value pair to be processed.

nelem Address to store the number of elements in value.

val Address to store the value or the starting address of the array
value.

These functions retrieve the value of nvpair. The data type of nvpair must match the
interface name for the call to be successful.

There is no nvpair_value_boolean(); the existence of the name implies the value
is true.

For array data types, including string, the memory containing the data is managed by
the library and references to the value remains valid until nvlist_free() is called
on the nvlist_t from which nvpair is obtained. See nvlist_free(3NVPAIR).

The value of an nvpair may not be retrieved after the nvpair has been removed from
or replaced in an nvlist. Replacement can occur during pair additions to nvlists
created with NV_UNIQUE_NAME_TYPE and NV_UNIQUE_NAME. See
nvlist_alloc(3NVPAIR).

These functions return 0 on success and an error value on failure.

These functions will fail if:

EINVAL Either one of the arguments is NULL or the type of nvpair does not
match the function name.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libnvpair(3LIB), nvlist_alloc(3NVPAIR), attributes(5)

nvpair_value_byte(3NVPAIR)

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

766 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

p2open, p2close – open, close pipes to and from a command

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

int p2open(const char *cmd, FILE *fp[2]);

int p2close(FILE *fp[2]);

p2open() forks and execs a shell running the command line pointed to by cmd. On
return, fp[0] points to a FILE pointer to write the command’s standard input and
fp[1] points to a FILE pointer to read from the command’s standard output. In this
way the program has control over the input and output of the command.

The function returns 0 if successful; otherwise, it returns −1.

p2close() is used to close the file pointers that p2open() opened. It waits for the
process to terminate and returns the process status. It returns 0 if successful;
otherwise, it returns −1.

A common problem is having too few file descriptors. p2close() returns −1 if the
two file pointers are not from the same p2open().

EXAMPLE 1 Example of file descriptors.

#include <stdio.h>
#include <libgen.h>

main(argc,argv)
int argc;
char **argv;
{

FILE *fp[2];
pid_t pid;
char buf[16];

pid=p2open("/usr/bin/cat", fp);
if (pid == −1) {
fprintf(stderr, "p2open failed\n");
exit(1);

}
write(fileno(fp[0]),"This is a test\n", 16);
if(read(fileno(fp[1]), buf, 16) <=0)

fprintf(stderr, "p2open failed\n");
else

write(1, buf, 16);
(void)p2close(fp);

}

See attributes(5) for descriptions of the following attributes:

p2open(3GEN)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

Extended Library Functions 767

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

fclose(3C), popen(3C), setbuf(3C), attributes(5)

Buffered writes on fp[0] can make it appear that the command is not listening.
Judiciously placed fflush() calls or unbuffering fp[0] can be a big help; see
fclose(3C).

Many commands use buffered output when connected to a pipe. That, too, can make it
appear as if things are not working.

Usage is not the same as for popen(), although it is closely related.

p2open(3GEN)

SEE ALSO

NOTES

768 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

pam – PAM (Pluggable Authentication Module)

#include <security/pam_appl.h>

cc [flag...] file ... -lpam [library ...]

The PAM framework, libpam, consists of an interface library and multiple
authentication service modules. The PAM interface library is the layer implementing
the Application Programming Interface (API). The authentication service modules are
a set of dynamically loadable objects invoked by the PAM API to provide a particular
type of user authentication. PAM gives system administrators the flexibility of
choosing any authentication service available on the system to perform authentication.
This framework also allows new authentication service modules to be plugged in and
made available without modifying the applications.

The PAM library interface consists of six categories of functions, the names for which
all start with the prefix pam_.

The first category contains functions for establishing and terminating an
authentication activity, which are pam_start(3PAM) and pam_end(3PAM). The
functions pam_set_data(3PAM) and pam_get_data(3PAM) maintain module
specific data. The functions pam_set_item(3PAM) and pam_get_item(3PAM)
maintain state information. pam_strerror(3PAM) is the function that returns error
status information.

The second category contains the functions that authenticate an individual user and
set the credentials of the user, pam_authenticate(3PAM) and
pam_setcred(3PAM).

The third category of PAM interfaces is account management. The function
pam_acct_mgmt(3PAM) checks for password aging and access-hour restrictions.

Category four contains the functions that perform session management after access to
the system has been granted. See pam_open_session(3PAM) and
pam_close_session(3PAM)

The fifth category consists of the function that changes authentication tokens,
pam_chauthtok(3PAM). An authentication token is the object used to verify the
identity of the user. In UNIX, an authentication token is a user’s password.

The sixth category of functions can be used to set values for PAM environment
variables. See pam_putenv(3PAM), pam_getenv(3PAM), and
pam_getenvlist(3PAM).

The pam_*() interfaces are implemented through the library libpam. For each of
the categories listed above, excluding categories one and six, dynamically loadable
shared modules exist that provides the appropriate service layer functionality upon
demand. The functional entry points in the service layer start with the pam_sm_
prefix. The only difference between the pam_sm_*() interfaces and their
corresponding pam_ interfaces is that all the pam_sm_*() interfaces require extra
parameters to pass service−specific options to the shared modules. Refer to
pam_sm(3PAM) for an overview of the PAM service module APIs.

pam(3PAM)

NAME

SYNOPSIS

DESCRIPTION

Interface Overview

Extended Library Functions 769

A sequence of calls sharing a common set of state information is referred to as an
authentication transaction. An authentication transaction begins with a call to
pam_start(). pam_start() allocates space, performs various initialization
activities, and assigns a PAM authentication handle to be used for subsequent calls to
the library.

After initiating an authentication transaction, applications can invoke
pam_authenticate() to authenticate a particular user, and pam_acct_mgmt() to
perform system entry management. For example, the application may want to
determine if the user’s password has expired.

If the user has been successfully authenticated, the application calls pam_setcred()
to set any user credentials associated with the authentication service. Within one
authentication transaction (between pam_start() and pam_end()), all calls to the
PAM interface should be made with the same authentication handle returned by
pam_start(). This is necessary because certain service modules may store
module-specific data in a handle that is intended for use by other modules. For
example, during the call to pam_authenticate(), service modules may store data
in the handle that is intended for use by pam_setcred().

To perform session management, applications call pam_open_session().
Specifically, the system may want to store the total time for the session. The function
pam_close_session() closes the current session.

When necessary, applications can call pam_get_item() and pam_set_item() to
access and to update specific authentication information. Such information may
include the current username.

To terminate an authentication transaction, the application simply calls pam_end(),
which frees previously allocated space used to store authentication information.

The authentication service in PAM does not communicate directly with the user;
instead it relies on the application to perform all such interactions. The application
passes a pointer to the function, conv(), along with any associated application data
pointers, through a pam_conv structure to the authentication service when it initiates
an authentication transaction, via a call to pam_start(). The service will then use the
function, conv(), to prompt the user for data, output error messages, and display text
information. Refer to pam_start(3PAM) for more information.

The PAM architecture enables authentication by multiple authentication services
through stacking. System entry applications, such as login(1), stack multiple service
modules to authenticate users with multiple authentication services. The order in
which authentication service modules are stacked is specified in the configuration file,
pam.conf(4). A system administrator determines this ordering, and also determines
whether the same password can be used for all authentication services.

The authentication library, /usr/lib/libpam.so.1, implements the framework
interface. Various authentication services are implemented by their own loadable
modules whose paths are specified through the pam.conf(4) file.

pam(3PAM)

Stateful Interface

Application−Authentication
Service Interactive

Interface

Stacking Multiple
Schemes

Administrative
Interface

770 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

The PAM functions may return one of the following generic values, or one of the
values defined in the specific man pages:

PAM_SUCCESS The function returned successfully.

PAM_OPEN_ERR dlopen() failed when dynamically loading a service
module.

PAM_SYMBOL_ERR Symbol not found.

PAM_SERVICE_ERR Error in service module.

PAM_SYSTEM_ERR System error.

PAM_BUF_ERR Memory buffer error.

PAM_CONV_ERR Conversation failure.

PAM_PERM_DENIED Permission denied.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level MT-Safe with exceptions

login(1), pam_authenticate(3PAM), pam_chauthtok(3PAM),
pam_open_session(3PAM), pam_set_item(3PAM), pam_setcred(3PAM),
pam_sm(3PAM), pam_start(3PAM), pam_strerror(3PAM), pam.conf(4),
attributes(5)

The interfaces in libpam() are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam(3PAM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 771

pam_acct_mgmt – perform PAM account validation procedures

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_acct_mgmt(pam_handle_t *pamh, int flags);

The pam_acct_mgmt() function is called to determine if the current user’s account is
valid. It checks for password and account expiration, and verifies access hour
restrictions. This function is typically called after the user has been authenticated with
pam_authenticate(3PAM).

The pamh argument is an authentication handle obtained by a prior call to
pam_start(). The following flags may be set in the flags field:

PAM_SILENT The account management service should
not generate any messages.

PAM_DISALLOW_NULL_AUTHTOK The account management service should
return PAM_NEW_AUTHTOK_REQD if
the user has a null authentication token.

Upon successful completion, PAM_SUCCESS is returned. In addition to the error return
values described in pam(3PAM), the following values may be returned:

PAM_USER_UNKNOWN User not known to underlying account
management module.

PAM_AUTH_ERR Authentication failure.

PAM_NEW_AUTHTOK_REQD New authentication token required. This is
normally returned if the machine security
policies require that the password should be
changed because the password is NULL or
has aged.

PAM_ACCT_EXPIRED User account has expired.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_start(3PAM), libpam(3LIB),
attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_acct_mgmt(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

772 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_authenticate – perform authentication within the PAM framework

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_authenticate(pam_handle_t *pamh, int flags);

The pam_authenticate() function is called to authenticate the current user. The
user is usually required to enter a password or similar authentication token depending
upon the authentication service configured within the system. The user in question
should have been specified by a prior call to pam_start() or pam_set_item().

The following flags may be set in the flags field:

PAM_SILENT Authentication service should not generate
any messages.

PAM_DISALLOW_NULL_AUTHTOK The authentication service should return
PAM_AUTH_ERROR if the user has a null
authentication token.

Upon successful completion, PAM_SUCCESS is returned. In addition to the error return
values described in pam(3PAM), the following values may be returned:

PAM_AUTH_ERR Authentication failure.

PAM_CRED_INSUFFICIENT Cannot access authentication data due to
insufficient credentials.

PAM_AUTHINFO_UNAVAIL Underlying authentication service cannot
retrieve authentication information.

PAM_USER_UNKNOWN User not known to the underlying
authentication module.

PAM_MAXTRIES An authentication service has maintained a
retry count which has been reached. No
further retries should be attempted.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_open_session(3PAM), pam_set_item(3PAM),
pam_setcred(3PAM), pam_start(3PAM), libpam(3LIB), attributes(5)

pam_authenticate(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 773

In the case of authentication failures due to an incorrect username or password, it is
the responsibility of the application to retry pam_authenticate() and to maintain
the retry count. An authentication service module may implement an internal retry
count and return an error PAM_MAXTRIES if the module does not want the application
to retry.

If the PAM framework cannot load the authentication module, then it will return
PAM_ABORT. This indicates a serious failure, and the application should not attempt to
retry the authentication.

For security reasons, the location of authentication failures is hidden from the user.
Thus, if several authentication services are stacked and a single service fails,
pam_authenticate() requires that the user re-authenticate each of the services.

A null authentication token in the authentication database will result in successful
authentication unless PAM_DISALLOW_NULL_AUTHTOK was specified. In such cases,
there will be no prompt to the user to enter an authentication token.

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_authenticate(3PAM)

NOTES

774 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_chauthtok – perform password related functions within the PAM framework

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_chauthtok(pam_handle_t *pamh, const intflags);

The pam_chauthtok() function is called to change the authentication token
associated with a particular user referenced by the authentication handle pamh.

The following flag may be passed in to pam_chauthtok():

PAM_SILENT The password service should not generate
any messages.

PAM_CHANGE_EXPIRED_AUTHTOK The password service should only update
those passwords that have aged. If this flag
is not passed, all password services should
update their passwords.

Upon successful completion of the call, the authentication token of the user will be
changed in accordance with the password service configured in the system through
pam.conf(4).

Upon successful completion, PAM_SUCCESS is returned. In addition to the error return
values described in pam(3PAM), the following values may be returned:

PAM_PERM_DENIED No permission.

PAM_AUTHTOK_ERR Authentication token manipulation error.

PAM_AUTHTOK_RECOVERY_ERR Authentication information cannot be
recovered.

PAM_AUTHTOK_LOCK_BUSY Authentication token lock busy.

PAM_AUTHTOK_DISABLE_AGING Authentication token aging disabled.

PAM_USER_UNKNOWN User unknown to password service.

PAM_TRY_AGAIN Preliminary check by password service
failed.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

login(1), passwd(1), pam(3PAM), pam_authenticate(3PAM), pam_start(3PAM),
attributes

pam_chauthtok(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 775

The flag PAM_CHANGE_EXPIRED_AUTHTOK is typically used by a login application
which has determined that the user’s password has aged or expired. Before allowing
the user to login, the login application may invoke pam_chauthtok() with this flag
to allow the user to update the password. Typically, applications such as passwd(1)
should not use this flag.

The pam_chauthtok() functions performs a preliminary check before attempting to
update passwords. This check is performed for each password module in the stack as
listed in pam.conf(4). The check may include pinging remote name services to
determine if they are available. If pam_chauthtok() returns PAM_TRY_AGAIN, then
the check has failed, and passwords are not updated.

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_chauthtok(3PAM)

NOTES

776 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_getenv – returns the value for a PAM environment name

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

char *pam_getenv(pam_handle_t *pamh, const char *name);

The pam_getenv() function searches the PAM handle pamh for a value associated
with name. If a value is present, pam_getenv() makes a copy of the value and
returns a pointer to the copy back to the calling application. If no such entry exists,
pam_getenv() returns NULL. It is the responsibility of the calling application to free
the memory returned by pam_getenv().

If successful, pam_getenv() returns a copy of the value associated with name in the
PAM handle; otherwise, it returns a NULL pointer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_getenvlist(3PAM), pam_putenv(3PAM), libpam(3LIB),
attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_getenv(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 777

pam_getenvlist – returns a list of all the PAM environment variables

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

char **pam_getenvlist(pam_handle_t *pamh);

The pam_getenvlist() function returns a list of all the PAM environment variables
stored in the PAM handle pamh. The list is returned as a null-terminated array of
pointers to strings. Each string contains a single PAM environment variable of the
form name=value. The list returned is a duplicate copy of all the environment variables
stored in pamh. It is the responsibility of the calling application to free the memory
returned by pam_getenvlist().

If successful, pam_getenvlist() returns in a null-terminated array a copy of all the
PAM environment variables stored in pamh. Otherwise, pam_getenvlist() returns
a null pointer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_getenv(3PAM), pam_putenv(3PAM), libpam(3LIB),
attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_getenvlist(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

778 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_get_user – PAM routine to retrieve user name

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_get_user(pam_handle_t *pamh, char **user, const char
*prompt);

The pam_get_user() function is used by PAM service modules to retrieve the
current user name from the PAM handle. If the user name has not been set with
pam_start() or pam_set_item(), the PAM conversation function will be used to
prompt the user for the user name with the string "prompt". If prompt is NULL, then
pam_get_item() is called and the value of PAM_USER_PROMPT is used for
prompting. If the value of PAM_USER_PROMPT is NULL, the following default prompt
is used:

Please enter user name:

After the user name is gathered by the conversation function, pam_set_item() is
called to set the value of PAM_USER. By convention, applications that need to prompt
for a user name should call pam_set_item() and set the value of
PAM_USER_PROMPT before calling pam_authenticate(). The service module’s
pam_sm_authenticate() function will then call pam_get_user() to prompt for
the user name.

Note that certain PAM service modules, such as a smart card module, may override
the value of PAM_USER_PROMPT and pass in their own prompt. Applications that call
pam_authenticate() multiple times should set the value of PAM_USER to NULL
with pam_set_item() before calling pam_authenticate(), if they want the user
to be prompted for a new user name each time. The value of user retrieved by
pam_get_user() should not be modified or freed. The item will be released by
pam_end().

Upon success, pam_get_user() returns PAM_SUCCESS; otherwise it returns an error
code. Refer to pam(3PAM) for information on error related return values.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_end(3PAM), pam_get_item(3PAM),
pam_set_item(3PAM), pam_sm(3PAM), pam_sm_authenticate(3PAM),
pam_start(3PAM), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_get_user(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 779

pam_open_session, pam_close_session – perform PAM session creation and
termination operations

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_open_session(pam_handle_t *pamh, int flags);

int pam_close_session(pam_handle_t *pamh, int flags);

The pam_open_session() function is called after a user has been successfully
authenticated. See pam_authenticate(3PAM) and pam_acct_mgmt(3PAM). It is
used to notify the session modules that a new session has been initiated. All programs
that use the pam(3PAM) library should invoke pam_open_session() when
beginning a new session. Upon termination of this activity, pam_close_session()
should be invoked to inform pam(3PAM) that the session has terminated.

The pamh argument is an authentication handle obtained by a prior call to
pam_start(). The following flag may be set in the flags field for
pam_open_session() and pam_close_session():

PAM_SILENT The session service should not generate any messages.

Upon successful completion, PAM_SUCCESS is returned. In addition to the return
values defined in pam(3PAM), the following value may be returned on error:

PAM_SESSION_ERR Cannot make or remove an entry for the specified
session.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

getutxent(3C), pam(3PAM), pam_acct_mgmt(3PAM), pam_authenticate(3PAM),
pam_start(3PAM), attributes(5)

In many instances, the pam_open_session() and pam_close_session() calls
may be made by different processes. For example, in UNIX the login process opens a
session, while the init process closes the session. In this case, UTMP/WTMP entries
may be used to link the call to pam_close_session() with an earlier call to
pam_open_session(). This is possible because UTMP/WTMP entries are uniquely
identified by a combination of attributes, including the user login name and device
name, which are accessible through the PAM handle, pamh. The call to
pam_open_session() should precede UTMP/WTMP entry management, and the
call to pam_close_session() should follow UTMP/WTMP exit management.

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_open_session(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

780 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_putenv – change or add a value to the PAM environment

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_putenv(pam_handle_t *pamh, const char *name_value);

The pam_putenv() function sets the value of the PAM environment variable name
equal to value either by altering an existing PAM variable or by creating a new one.

The name_value argument points to a string of the form name=value. A call to
pam_putenv() does not immediately change the environment. All name_value pairs
are stored in the PAM handle pamh. An application such as login(1) may make a call
to pam_getenv(3PAM) or pam_getenvlist(3PAM) to retrieve the PAM
environment variables saved in the PAM handle and set them in the environment if
appropriate. login will not set PAM environment values which overwrite the values
for SHELL, HOME, LOGNAME, MAIL, CDPATH, IFS, and PATH. Nor will login set PAM
environment values which overwrite any value that begins with LD_.

If name_value equals NAME=, then the value associated with NAME in the PAM handle
will be set to an empty value. If name_value equals NAME, then the environment
variable NAME will be removed from the PAM handle.

The pam_putenv() function may return one of the following values:

PAM_SUCCESS The function returned successfully.

PAM_OPEN_ERR dlopen() failed when dynamically loading a service
module.

PAM_SYMBOL_ERR Symbol not found.

PAM_SERVICE_ERR Error in service module.

PAM_SYSTEM_ERR System error.

PAM_BUF_ERR Memory buffer error.

PAM_CONV_ERR Conversation failure.

PAM_PERM_DENIED Permission denied.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

dlopen(3C), pam(3PAM), pam_getenv(3PAM), pam_getenvlist(3PAM),
libpam(3LIB), attributes(5)

pam_putenv(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 781

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_putenv(3PAM)

NOTES

782 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

pam_setcred – modify/delete user credentials for an authentication service

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_setcred(pam_handle_t *pamh, int flags);

The pam_setcred() function is used to establish, modify, or delete user credentials.
It is typically called after the user has been authenticated and after a session has been
opened. See pam_authenticate(3PAM), pam_acct_mgmt(3PAM), and
pam_open_session(3PAM).

The user is specified by a prior call to pam_start() or pam_set_item(), and is
referenced by the authentication handle, pamh. The following flags may be set in the
flags field. Note that the first four flags are mutually exclusive:

PAM_ESTABLISH_CRED Set user credentials for an authentication
service.

PAM_DELETE_CRED Delete user credentials associated with an
authentication service.

PAM_REINITIALIZE_CRED Reinitialize user credentials.

PAM_REFRESH_CRED Extend lifetime of user credentials.

PAM_SILENT Authentication service should not generate
any messages.

If no flag is set, PAM_ESTABLISH_CRED is used as the default.

Upon success, pam_setcred() returns PAM_SUCCESS. In addition to the error return
values described in pam(3PAM) the following values may be returned upon error:

PAM_CRED_UNAVAIL Underlying authentication service can not
retrieve user credentials unavailable.

PAM_CRED_EXPIRED User credentials expired.

PAM_USER_UNKNOWN User unknown to underlying authentication
service.

PAM_CRED_ERR Failure setting user credentials.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe with exceptions

pam_setcred(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

Extended Library Functions 783

pam(3PAM), pam_acct_mgmt(3PAM), pam_authenticate(3PAM),
pam_open_session(3PAM), pam_set_item(3PAM), pam_start(3PAM),
libpam(3LIB), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_setcred(3PAM)

SEE ALSO

NOTES

784 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_set_data, pam_get_data – PAM routines to maintain module specific state

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_set_data(pam_handle_t *pamh, const char *module_data_name,
void *data, void (*cleanup) (pam_handle_t *pamh, void *data, int
pam_end_status));

int pam_get_data(const pam_handle_t *pamh, const char
*module_data_name, const void **data);

The pam_set_data() and pam_get_data() functions allow PAM service modules
to access and update module specific information as needed. These functions should
not be used by applications.

The pam_set_data() function stores module specific data within the PAM handle
pamh. The module_data_name argument uniquely identifies the data, and the data
argument represents the actual data. The module_data_name argument should be
unique across all services.

The cleanup function frees up any memory used by the data after it is no longer
needed, and is invoked by pam_end(). The cleanup function takes as its arguments a
pointer to the PAM handle, pamh, a pointer to the actual data, data, and a status code,
pam_end_status. The status code determines exactly what state information needs to be
purged.

If pam_set_data() is called and module data already exists from a prior call to
pam_set_data() under the same module_data_name, then the existing data is replaced
by the new data, and the existing cleanup function is replaced by the new cleanup
function.

The pam_get_data() function retrieves module-specific data stored in the PAM
handle, pamh, identified by the unique name, module_data_name. The data argument is
assigned the address of the requested data. The data retrieved by pam_get_data()
should not be modified or freed. The data will be released by pam_end().

In addition to the return values listed in pam(3PAM), the following value may also be
returned:

PAM_NO_MODULE_DATA No module specific data is present.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_end(3PAM), libpam(3LIB), attributes(5)

pam_set_data(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 785

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_set_data(3PAM)

NOTES

786 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_set_item, pam_get_item – authentication information routines for PAM

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_set_item(pam_handle_t *pamh, int item_type, const void
*item);

int pam_get_item(const pam_handle_t *pamh, int item_type, void
**item);

The pam_get_item() and pam_set_item() functions allow applications and PAM
service modules to access and to update PAM information as needed. The information
is specified by item_type, and can be one of the following:

PAM_AUTHTOK The user authentication token.

PAM_CONV The pam_conv structure.

PAM_OLDAUTHTOK The old user authentication token.

PAM_RESOURCE A semicolon-separated list of key=value pairs that
represent the set of resource controls for application by
pam_setcred(3PAM) or pam_open_session(3PAM).
See the individual service module definitions, such as
pam_unix_cred(5), for interpretations of the keys and
values.

PAM_RHOST The remote host name.

PAM_RUSER The remote user name.

PAM_SERVICE The service name.

PAM_TTY The tty name.

PAM_USER The user name.

PAM_USER_PROMPT The default prompt used by pam_get_user().

PAM_REPOSITORY The repository that contains the authentication token
information.

The pam_repository structure is defined as:

struct pam_repository {
char *type; /* Repository type, e.g., files, */

/* nis, ldap */
void *scope; /* Optional scope information */
size_t scope_len; /* length of scope information */

};

The item_type PAM_SERVICE can be set only by pam_start() and is read-only to
both applications and service modules.

pam_set_item(3PAM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 787

For security reasons, the item_type PAM_AUTHTOK and PAM_OLDAUTHTOK are available
only to the module providers. The authentication module, account module, and
session management module should treat PAM_AUTHTOK as the current authentication
token and ignore PAM_OLDAUTHTOK. The password management module should treat
PAM_OLDAUTHTOK as the current authentication token and PAM_AUTHTOK as the new
authentication token.

The pam_set_item() function is passed the authentication handle, pamh, returned
by pam_start(), a pointer to the object, item, and its type, item_type. If successful,
pam_set_item() copies the item to an internal storage area allocated by the
authentication module and returns PAM_SUCCESS. An item that had been previously
set will be overwritten by the new value.

The pam_get_item() function is passed the authentication handle, pamh, returned
by pam_start(), an item_type, and the address of the pointer, item, which is assigned
the address of the requested object. The object data is valid until modified by a
subsequent call to pam_set_item() for the same item_type, or unless it is modified
by any of the underlying service modules. If the item has not been previously set,
pam_get_item() returns a null pointer. An item retrieved by pam_get_item()
should not be modified or freed. The item will be released by pam_end().

Upon success, pam_get_item() returns PAM_SUCCESS; otherwise it returns an error
code. Refer to pam(3PAM) for information on error related return values.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

The functions in libpam(3LIB) are MT-Safe only if each thread within the
multithreaded application uses its own PAM handle.

libpam(3LIB), pam(3PAM), pam_acct_mgmt(3PAM), pam_authenticate(3PAM),
pam_chauthtok(3PAM), pam_get_user(3PAM), pam_open_session(3PAM),
pam_setcred(3PAM), pam_start(3PAM), attributes(5), pam_unix_cred(5)

If the PAM_REPOSITORY item_type is set and a service module does not recognize the
type, the service module does not process any information, and returns PAM_IGNORE.
If the PAM_REPOSITORY item_type is not set, a service module performs its default
action.

pam_set_item(3PAM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

788 man pages section 3: Extended Library Functions • Last Revised 21 Jun 2004

pam_sm – PAM Service Module APIs

#include <security/pam_appl.h>
#include <security/pam_modules.h>

cc [flag ...] file ... -lpam [library ...]

PAM gives system administrators the flexibility of choosing any authentication service
available on the system to perform authentication. The framework also allows new
authentication service modules to be plugged in and made available without
modifying the applications.

The PAM framework, libpam, consists of an interface library and multiple
authentication service modules. The PAM interface library is the layer that implements
the Application Programming Interface (API). The authentication service modules are
a set of dynamically loadable objects invoked by the PAM API to provide a particular
type of user authentication.

This manual page gives an overview of the PAM APIs for the service modules.

The PAM service module interface consists of functions which can be grouped into
four categories. The names for all the authentication library functions start with
pam_sm. The only difference between the pam_*() interfaces and their corresponding
pam_sm_*() interfaces is that all the pam_sm_*() interfaces require extra parameters
to pass service-specific options to the shared modules. They are otherwise identical.

The first category contains functions to authenticate an individual user,
pam_sm_authenticate(3PAM), and to set the credentials of the user,
pam_sm_setcred(3PAM). These back-end functions implement the functionality of
pam_authenticate(3PAM) and pam_setcred(3PAM) respectively.

The second category contains the function to do account management:
pam_sm_acct_mgmt(3PAM). This includes checking for password aging and
access-hour restrictions. This back-end function implements the functionality of
pam_acct_mgmt(3PAM).

The third category contains the functions pam_sm_open_session(3PAM) and
pam_sm_close_session(3PAM) to perform session management after access to the
system has been granted. These back-end functions implement the functionality of
pam_open_session(3PAM) and pam_close_session(3PAM), respectively.

The fourth category consists a function to change authentication tokens
pam_sm_chauthtok(3PAM). This back-end function implements the functionality of
pam_chauthtok(3PAM).

A sequence of calls sharing a common set of state information is referred to as an
authentication transaction. An authentication transaction begins with a call to
pam_start(). pam_start() allocates space, performs various initialization
activities, and assigns an authentication handle to be used for subsequent calls to the
library. Note that the service modules do not get called or initialized when
pam_start() is called. The modules are loaded and the symbols resolved upon first
use of that function.

pam_sm(3PAM)

NAME

SYNOPSIS

DESCRIPTION

Interface Overview

Stateful Interface

Extended Library Functions 789

The PAM handle keeps certain information about the transaction that can be accessed
through the pam_get_item() API. Though the modules can also use
pam_set_item() to change any of the item information, it is recommended that
nothing be changed except PAM_AUTHTOK and PAM_OLDAUTHTOK.

If the modules want to store any module specific state information then they can use
the pam_set_data(3PAM) function to store that information with the PAM handle.
The data should be stored with a name which is unique across all modules and
module types. For example, SUNW_PAM_UNIX_AUTH_userid can be used as a name
by the UNIX module to store information about the state of user’s authentication.
Some modules use this technique to share data across two different module types.

Also, during the call to pam_authenticate(), the UNIX module may store the
authentication status (success or reason for failure) in the handle, using a unique name
such as SUNW_SECURE_RPC_DATA. This information is intended for use by
pam_setcred().

During the call to pam_acct_mgmt(), the account modules may store data in the
handle to indicate which passwords have aged. This information is intended for use
by pam_chauthtok().

The module can also store a cleanup function associated with the data. The PAM
framework calls this cleanup function, when the application calls pam_end() to close
the transaction.

The PAM service modules do not communicate directly with the user; instead they
rely on the application to perform all such interactions. The application passes a
pointer to the function, conv(), along with any associated application data pointers,
through the pam_conv structure when it initiates an authentication transaction (by
means of a call to pam_start(). The service module will then use the function,
conv(), to prompt the user for data, output error messages, and display text
information. Refer to pam_start(3PAM) for more information. The modules are
responsible for the localization of all messages to the user.

By convention, applications that need to prompt for a user name should call
pam_set_item() and set the value of PAM_USER_PROMPT before calling
pam_authenticate(). The service module’s pam_sm_authenticate() function
will then call pam_get_user() to prompt for the user name. Note that certain PAM
service modules (such as a smart card module) may override the value of
PAM_USER_PROMPT and pass in their own prompt.

Though the PAM framework enforces no rules about the module’s names, location,
options and such, there are certain conventions that all module providers are expected
to follow.

By convention, the modules should be located in the /usr/lib/security directory.
Additional modules may be located in /opt/<pkg>/lib.

pam_sm(3PAM)

Interaction with
the User

Conventions

790 man pages section 3: Extended Library Functions • Last Revised 23 Oct 2002

By convention, the modules are named
pam_<service_name>_<module_type>.so.1. If the given module implements
more than one module type (for example, pam_unix_auth.so.1 module), then the
module_type suffix should be dropped.

For every such module, there should be a corresponding manual page in section 5
which should describe the module_type it supports, the functionality of the module,
along with the options it supports. The dependencies should be clearly identified to
the system administrator. For example, it should be made clear whether this module is
a stand-alone module or depends upon the presence of some other module. One
should also specify whether this module should come before or after some other
module in the stack.

By convention, the modules should support the following options:

debug Syslog debugging information at LOG_DEBUG level. Be
careful as to not log any sensitive information such as
passwords.

nowarn Turn off warning messages such as "password is about
to expire."

In addition, the auth and the password modules should support the following options:

use_first_pass Instead of prompting the user for the password, use the
user’s initial password (entered when the user was
authenticated to the first authentication module in the
stack) for authentication. If the passwords do not
match, or if no password has been entered, return
failure and do not prompt the user for a password.
Support for this scheme allows the user to type only
one password for multiple schemes.

try_first_pass Instead of prompting the user for the password, use the
user’s initial password (entered when the user was
authenticated to the first authentication module in the
stack) for authentication. If the passwords do not
match, or if no password has been entered, prompt the
user for a password after identifying which type of
password (ie. UNIX, etc.) is being requested. Support
for this scheme allows the user to try to use only one
password for multiple schemes, and type multiple
passwords only if necessary.

If an unsupported option is passed to the modules, it should syslog the error at
LOG_ERR level.

The permission bits on the service module should be set such that it is not writable by
either "group" or "other." The PAM framework will not load the module if the above
permission rules are not followed.

pam_sm(3PAM)

Extended Library Functions 791

If there are any errors, the modules should log them using syslog(3C) at the
LOG_ERR level.

The PAM service module functions may return any of the PAM error numbers
specified in the specific man pages. It can also return a PAM_IGNORE error number to
mean that the PAM framework should ignore this module regardless of whether it is
required, optional or sufficient. This error number is normally returned when the
module does not want to deal with the given user at all.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_chauthtok(3PAM),
pam_get_user(3PAM), pam_open_session(3PAM), pam_setcred(3PAM),
pam_set_item(3PAM), pam_sm_authenticate(3PAM),
pam_sm_chauthtok(3PAM), pam_sm_open_session(3PAM),
pam_sm_setcred(3PAM), pam_start(3PAM), pam_strerror(3PAM), syslog(3C),
pam.conf(4), attributes(5), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

The pam_unix(5) module is no longer supported. Similar functionality is provided by
pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5),
pam_dhkeys(5), pam_passwd_auth(5), pam_unix_account(5),
pam_unix_auth(5), and pam_unix_session(5).

pam_sm(3PAM)

ERRORS

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

792 man pages section 3: Extended Library Functions • Last Revised 23 Oct 2002

pam_sm_acct_mgmt – service provider implementation for pam_acct_mgmt

cc [flag ...] file ... -lpam [library ...]
#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_acct_mgmt(pam_handle_t *pamh, int flags, int argc, const
char **argv);

In response to a call to pam_acct_mgmt(3PAM), the PAM framework calls
pam_sm_acct_mgmt() from the modules listed in the pam.conf(4) file. The account
management provider supplies the back-end functionality for this interface function.
Applications should not call this API directly.

The pam_sm_acct_mgmt() function determines whether or not the current user’s
account and password are valid. This includes checking for password and account
expiration, and valid login times. The user in question is specified by a prior call to
pam_start(), and is referenced by the authentication handle, pamh, which is passed
as the first argument to pam_sm_acct_mgmt(). The following flags may be set in the
flags field:

PAM_SILENT The account management service should
not generate any messages.

PAM_DISALLOW_NULL_AUTHTOK The account management service should
return PAM_NEW_AUTHTOK_REQD if
the user has a null authentication token.

The argc argument represents the number of module options passed in from the
configuration file pam.conf(4). argv specifies the module options, which are
interpreted and processed by the account management service. Please refer to the
specific module man pages for the various available options. If an unknown option is
passed to the module, an error should be logged through syslog(3C) and the option
ignored.

If an account management module determines that the user password has aged or
expired, it should save this information as state in the authentication handle, pamh,
using pam_set_data(). pam_chauthok() uses this information to determine
which passwords have expired.

If there are no restrictions to logging in, PAM_SUCCESS is returned. The following
error values may also be returned upon error:

PAM_USER_UNKNOWN User not known to underlying
authentication module.

PAM_NEW_AUTHTOK_REQD New authentication token required.

PAM_ACCT_EXPIRED User account has expired.

PAM_PERM_DENIED User denied access to account at this time.

pam_sm_acct_mgmt(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 793

PAM_IGNORE Ignore underlying account module
regardless of whether the control flag is
required, optional or sufficient.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_acct_mgmt(3PAM), pam_set_data(3PAM), pam_start(3PAM),
syslog(3C), libpam(3LIB), pam.conf(4), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

If the PAM_REPOSITORY item_type is set and a service module does not recognize the
type, the service module does not process any information, and returns PAM_IGNORE.
If the PAM_REPOSITORY item_type is not set, a service module performs its default
action.

pam_sm_acct_mgmt(3PAM)

ATTRIBUTES

SEE ALSO

NOTES

794 man pages section 3: Extended Library Functions • Last Revised 18 Nov 2003

pam_sm_authenticate – service provider implementation for pam_authenticate

cc [flag ...] file ... -lpam [library ...]
#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_authenticate(pam_handle_t *pamh, int flags, int argc,
const char **argv);

In response to a call to pam_authenticate(3PAM), the PAM framework calls
pam_sm_authenticate() from the modules listed in the pam.conf(4) file. The
authentication provider supplies the back-end functionality for this interface function.

The pam_sm_authenticate() function is called to verify the identity of the current
user. The user is usually required to enter a password or similar authentication token
depending upon the authentication scheme configured within the system. The user in
question is specified by a prior call to pam_start(), and is referenced by the
authentication handle pamh.

If the user is unknown to the authentication service, the service module should mask
this error and continue to prompt the user for a password. It should then return the
error, PAM_USER_UNKNOWN.

The following flag may be passed in to pam_sm_authenticate():

PAM_SILENT The authentication service should not
generate any messages.

PAM_DISALLOW_NULL_AUTHTOK The authentication service should return

PAM_AUTH_ERROR The user has a null authentication token.

The argc argument represents the number of module options passed in from the
configuration file pam.conf(4). argv specifies the module options, which are
interpreted and processed by the authentication service. Please refer to the specific
module man pages for the various available options. If any unknown option is passed
in, the module should log the error and ignore the option.

Before returning, pam_sm_authenticate() should call pam_get_item() and
retrieve PAM_AUTHTOK. If it has not been set before and the value is NULL,
pam_sm_authenticate() should set it to the password entered by the user using
pam_set_item().

An authentication module may save the authentication status (success or reason for
failure) as state in the authentication handle using pam_set_data(3PAM). This
information is intended for use by pam_setcred().

Upon successful completion, PAM_SUCCESS must be returned. In addition, the
following values may be returned:

PAM_MAXTRIES Maximum number of authentication
attempts exceeded.

pam_sm_authenticate(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 795

PAM_AUTH_ERR Authentication failure.

PAM_CRED_INSUFFICIENT Cannot access authentication data due to
insufficient credentials.

PAM_AUTHINFO_UNAVAIL Underlying authentication service can not
retrieve authentication information.

PAM_USER_UNKNOWN User not known to underlying
authentication module.

PAM_IGNORE Ignore underlying authentication module
regardless of whether the control flag is
required,optional, or sufficient1.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_get_item(3PAM),
pam_set_data(3PAM), pam_set_item(3PAM), pam_setcred(3PAM),
pam_start(3PAM), libpam(3LIB), pam.conf(4), attributes(5)

Modules should not retry the authentication in the event of a failure. Applications
handle authentication retries and maintain the retry count. To limit the number of
retries, the module can return a PAM_MAXTRIES error.

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

If the PAM_REPOSITORY item_type is set and a service module does not recognize the
type, the service module does not process any information, and returns PAM_IGNORE.
If the PAM_REPOSITORY item_type is not set, a service module performs its default
action.

pam_sm_authenticate(3PAM)

ATTRIBUTES

SEE ALSO

NOTES

796 man pages section 3: Extended Library Functions • Last Revised 18 Nov 2003

pam_sm_chauthtok – service provider implementation for pam_chauthtok

cc [flag ...] file ... -lpam [library ...]
#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_chauthtok(pam_handle_t *pamh, int flags, int argc, const
char **argv);

In response to a call to pam_chauthtok() the PAM framework calls
pam_sm_chauthtok(3PAM) from the modules listed in the pam.conf(4) file. The
password management provider supplies the back-end functionality for this interface
function.

The pam_sm_chauthtok() function changes the authentication token associated
with a particular user referenced by the authentication handle pamh.

The following flag may be passed to pam_chauthtok():

PAM_SILENT The password service should not generate
any messages.

PAM_CHANGE_EXPIRED_AUTHTOK The password service should only update
those passwords that have aged. If this flag
is not passed, the password service should
update all passwords.

PAM_PRELIM_CHECK The password service should only perform
preliminary checks. No passwords should
be updated.

PAM_UPDATE_AUTHTOK The password service should update
passwords.

Note that PAM_PRELIM_CHECK and PAM_UPDATE_AUTHTOK cannot be set at the same
time.

Upon successful completion of the call, the authentication token of the user will be
ready for change or will be changed, depending upon the flag, in accordance with the
authentication scheme configured within the system.

The argc argument represents the number of module options passed in from the
configuration file pam.conf(4). The argv argument specifies the module options,
which are interpreted and processed by the password management service. Please
refer to the specific module man pages for the various available options.

It is the responsibility of pam_sm_chauthtok() to determine if the new password
meets certain strength requirements. pam_sm_chauthtok() may continue to
re-prompt the user (for a limited number of times) for a new password until the
password entered meets the strength requirements.

pam_sm_chauthtok(3PAM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 797

Before returning, pam_sm_chauthtok() should call pam_get_item() and retrieve
both PAM_AUTHTOK and PAM_OLDAUTHTOK. If both are NULL, pam_sm_chauthtok
() should set them to the new and old passwords as entered by the user.

Upon successful completion, PAM_SUCCESS must be returned. The following values
may also be returned:

PAM_PERM_DENIED No permission.

PAM_AUTHTOK_ERR Authentication token manipulation error.

PAM_AUTHTOK_RECOVERY_ERR Old authentication token cannot be
recovered.

PAM_AUTHTOK_LOCK_BUSY Authentication token lock busy.

PAM_AUTHTOK_DISABLE_AGING Authentication token aging disabled.

PAM_USER_UNKNOWN User unknown to password service.

PAM_TRY_AGAIN Preliminary check by password service
failed.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

ping(1M), pam(3PAM), pam_chauthtok(3PAM), pam_get_data(3PAM),
pam_get_item(3PAM), pam_set_data(3PAM), libpam(3LIB), pam.conf(4),
attributes(5)

The PAM framework invokes the password services twice. The first time the modules
are invoked with the flag, PAM_PRELIM_CHECK. During this stage, the password
modules should only perform preliminary checks. For example, they may ping
remote name services to see if they are ready for updates. If a password module
detects a transient error such as a remote name service temporarily down, it should
return PAM_TRY_AGAIN to the PAM framework, which will immediately return the
error back to the application. If all password modules pass the preliminary check, the
PAM framework invokes the password services again with the flag,
PAM_UPDATE_AUTHTOK. During this stage, each password module should proceed to
update the appropriate password. Any error will again be reported back to
application.

If a service module receives the flag PAM_CHANGE_EXPIRED_AUTHTOK, it should
check whether the password has aged or expired. If the password has aged or expired,
then the service module should proceed to update the password. If the status indicates
that the password has not yet aged or expired, then the password module should
return PAM_IGNORE.

pam_sm_chauthtok(3PAM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

798 man pages section 3: Extended Library Functions • Last Revised 18 Nov 2003

If a user’s password has aged or expired, a PAM account module could save this
information as state in the authentication handle, pamh, using pam_set_data(). The
related password management module could retrieve this information using
pam_get_data() to determine whether or not it should prompt the user to update
the password for this particular module.

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

If the PAM_REPOSITORY item_type is set and a service module does not recognize the
type, the service module does not process any information, and returns PAM_IGNORE.
If the PAM_REPOSITORY item_type is not set, a service module performs its default
action.

pam_sm_chauthtok(3PAM)

Extended Library Functions 799

pam_sm_open_session, pam_sm_close_session – service provider implementation for
pam_open_session and pam_close_session

cc [flag ...] file ... -lpam [library ...]
#include <security/pam_appl.h>
#include <security/pam_modules.h>

int pam_sm_open_session(pam_handle_t *pamh, int flags, int argc,
const char **argv);

int pam_sm_close_session(pam_handle_t *pamh, int flags, int argc,
const char **argv);

In response to a call to pam_open_session(3PAM) and
pam_close_session(3PAM), the PAM framework calls pam_sm_open_session()
and pam_sm_close_session(), respectively from the modules listed in the
pam.conf(4) file. The session management provider supplies the back-end
functionality for this interface function.

The pam_sm_open_session() function is called to initiate session management.
Thepam_sm_close_session() function is invoked when a session has terminated.
The argument pamh is an authentication handle. The following flag may be set in the
flags field:

PAM_SILENT Session service should not generate any messages.

The argc argument represents the number of module options passed in from the
configuration file pam.conf(4). argv specifies the module options, which are
interpreted and processed by the session management service. If an unknown option
is passed in, an error should be logged through syslog(3C) and the option ignored.

Upon successful completion, PAM_SUCCESS should be returned. The following values
may also be returned upon error:

PAM_SESSION_ERR Cannot make or remove an entry for the specified
session.

PAM_IGNORE Ignore underlying session module regardless of
whether the control flag is required, optional or sufficient.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_open_session(3PAM), syslog(3C), libpam(3LIB), pam.conf(4),
attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_sm_open_session(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

800 man pages section 3: Extended Library Functions • Last Revised 13 Oct 1998

pam_sm_setcred – service provider implementation for pam_setcred

cc [flag ...] file ... -lpam [library ...]
#include <security/pam_appl.h>

#include <security/pam_modules.h>

int pam_sm_setcred(pam_handle_t *pamh, int flags, int argc, const
char **argv);

In response to a call to pam_setcred(3PAM), the PAM framework calls
pam_sm_setcred() from the modules listed in the pam.conf(4) file. The
authentication provider supplies the back-end functionality for this interface function.

The pam_sm_setcred() function is called to set the credentials of the current user
associated with the authentication handle, pamh. The following flags may be set in the
flags field. Note that the first four flags are mutually exclusive:

PAM_ESTABLISH_CRED Set user credentials for the authentication
service.

PAM_DELETE_CRED Delete user credentials associated with the
authentication service.

PAM_REINITIALIZE_CRED Reinitialize user credentials.

PAM_REFRESH_CRED Extend lifetime of user credentials.

PAM_SILENT Authentication service should not generate
messages

If no flag is set, PAM_ESTABLISH _CRED is used as the default.

The argc argument represents the number of module options passed in from the
configuration file pam.conf(4). argv specifies the module options, which are
interpreted and processed by the authentication service. If an unknown option is
passed to the module, an error should be logged and the option ignored.

If the PAM_SILENT flag is not set, then pam_sm_setcred() should print any failure
status from the corresponding pam_sm_authenticate() function using the
conversation function.

The authentication status (success or reason for failure) is saved as module-specific
state in the authentication handle by the authentication module. The status should be
retrieved using pam_get_data(), and used to determine if user credentials should
be set.

Upon successful completion, PAM_SUCCESS should be returned. The following values
may also be returned upon error:

PAM_CRED_UNAVAIL Underlying authentication service can not
retrieve user credentials.

PAM_CRED_EXPIRED User credentials have expired.

pam_sm_setcred(3PAM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 801

PAM_USER_UNKNOWN User unknown to the authentication service.

PAM_CRED_ERR Failure in setting user credentials.

PAM_IGNORE Ignore underlying authentication module
regardless of whether the control flag is
required,optional, or sufficient.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_authenticate(3PAM), pam_get_data(3PAM)
pam_setcred(3PAM), pam_sm_authenticate(3PAM), libpam(3LIB),
pam.conf(4), attributes(5)

The pam_sm_setcred() function is passed the same module options that are used
by pam_sm_authenticate().

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

If the PAM_REPOSITORY item_type is set and a service module does not recognize the
type, the service module does not process any information, and returns PAM_IGNORE.
If the PAM_REPOSITORY item_type is not set, a service module performs its default
action.

pam_sm_setcred(3PAM)

ATTRIBUTES

SEE ALSO

NOTES

802 man pages section 3: Extended Library Functions • Last Revised 18 Nov 2003

pam_start, pam_end – authentication transaction routines for PAM

cc [flag ...] file ... -lpam [library ...]

#include <security/pam_appl.h>

int pam_start(const char *service, const char *user, const struct
pam_conv *pam_conv, pam_handle_t **pamh);

int pam_end(pam_handle_t *pamh, int status);

The pam_start() function is called to initiate an authentication transaction.
pam_start() takes as arguments the name of the current service, service, the name of
the user to be authenticated, user, the address of the conversation structure, pam_conv,
and the address of a variable to be assigned the authentication handle pamh. Upon
successful completion, pamh refers to a PAM handle for use with subsequent calls to
the authentication library.

The pam_conv structure contains the address of the conversation function provided by
the application. The underlying PAM service module invokes this function to output
information to and retrieve input from the user. The pam_conv structure has the
following entries:

struct pam_conv {
int (*conv)(); /* Conversation function */
void *appdata_ptr; /* Application data */

};

int conv(int num_msg, const struct pam_message **msg,
struct pam_response **resp, void *appdata_ptr);

The conv() function is called by a service module to hold a PAM conversation with
the application or user. For window applications, the application can create a new
pop-up window to be used by the interaction.

The num_msg parameter is the number of messages associated with the call. The
parameter msg is a pointer to an array of length num_msg of the pam_message structure.

The pam_message structure is used to pass prompt, error message, or any text
information from the authentication service to the application or user. It is the
responsibility of the PAM service modules to localize the messages. The memory used
by pam_message has to be allocated and freed by the PAM modules. The
pam_message structure has the following entries:

struct pam_message{
int msg_style;
char *msg;

};

The message style, msg_style, can be set to one of the following values:

PAM_PROMPT_ECHO_OFF Prompt user, disabling echoing of response.

PAM_PROMPT_ECHO_ON Prompt user, enabling echoing of response.

PAM_ERROR_MSG Print error message.

pam_start(3PAM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 803

PAM_TEXT_INFO Print general text information.

The maximum size of the message and the response string is PAM_MAX_MSG_SIZE as
defined in <security/pam.appl.h>.

The structure pam_response is used by the authentication service to get the user’s
response back from the application or user. The storage used by pam_response has to be
allocated by the application and freed by the PAM modules. The pam_response structure
has the following entries:

struct pam_response{
char *resp;
int resp_retcode; /* currently not used, should be set to 0 */

};

It is the responsibility of the conversation function to strip off NEWLINE characters
for PAM_PROMPT_ECHO_OFF and PAM_PROMPT_ECHO_ON message styles, and to add
NEWLINE characters (if appropriate) for PAM_ERROR_MSG and PAM_TEXT_INFO
message styles.

The appdata_ptr argument is an application data pointer which is passed by the
application to the PAM service modules. Since the PAM modules pass it back through
the conversation function, the applications can use this pointer to point to any
application-specific data.

The pam_end() function is called to terminate the authentication transaction
identified by pamh and to free any storage area allocated by the authentication
module. The argument, status, is passed to the cleanup(|) function stored within
the pam handle, and is used to determine what module-specific state must be purged.
A cleanup function is attached to the handle by the underlying PAM modules through
a call to pam_set_data(3PAM) to free module-specific data.

Refer to pam(3PAM) for information on error related return values.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

libpam(3LIB), pam(3PAM), pam_acct_mgmt(3PAM), pam_authenticate(3PAM),
pam_chauthtok(3PAM), pam_open_session(3PAM), pam_setcred(3PAM),
pam_set_data(3PAM), pam_strerror(3PAM), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_start(3PAM)

RETURN VALUES

ATTRIBUTES

SEE ALSO

NOTES

804 man pages section 3: Extended Library Functions • Last Revised 25 Mar 2002

pam_strerror – get PAM error message string

cc [flag...] file... -lpam [library...]

#include <security/pam_appl.h>

const char *pam_strerror(pam_handle_t*pamh, int errnum);

The pam_strerror() function maps the PAM error number in errnum to a PAM
error message string, and returns a pointer to that string. The application should not
free or modify the string returned.

The pamh argument is the PAM handle obtained by a prior call to pam_start(). If
pam_start() returns an error, a null PAM handle should be passed.

The pam_strerror() function returns the string "Unknown error" if errnum is
out-of-range.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe with exceptions

pam(3PAM), pam_start(3PAM), attributes(5)

The interfaces in libpam are MT-Safe only if each thread within the multithreaded
application uses its own PAM handle.

pam_strerror(3PAM)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 805

pathfind – search for named file in named directories

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

char *pathfind(const char *path, const char *name, const char
*mode);

The pathfind() function searches the directories named in path for the file name. The
directories named in path are separated by colons (:). The mode argument is a string of
option letters chosen from the set [rwxfbcdpugks]:

Letter Meaning

r readable

w writable

x executable

f normal file

b block special

c character special

d directory

p FIFO (pipe)

u set user ID bit

g set group ID bit

k sticky bit

s size non-zero

Options read, write, and execute are checked relative to the real (not the effective) user
ID and group ID of the current process.

If name begins with a slash, it is treated as an absolute path name, and path is ignored.

An empty path member is treated as the current directory. A slash (/) character is not
prepended at the occurrence of the first match; rather, the unadorned name is returned.

EXAMPLE 1 Example of finding the ls command using the PATH environment variable.

To find the ls command using the PATH environment variable:

pathfind (getenv ("PATH"), "ls", "rx")

The pathfind() function returns a (char *) value containing static, thread-specific
data that will be overwritten upon the next call from the same thread.

pathfind(3GEN)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

RETURN VALUES

806 man pages section 3: Extended Library Functions • Last Revised 10 Mar 1999

If the file name with all characteristics specified by mode is found in any of the
directories specified by path, then pathfind() returns a pointer to a string containing
the member of path, followed by a slash character (/), followed by name.

If no match is found, pathname() returns a null pointer, ((char *) 0).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

sh(1), test(1), access(2), mknod(2), stat(2), getenv(3C), attributes(5)

The string pointed to by the returned pointer is stored in an area that is reused on
subsequent calls to pathfind(). The string should not be deallocated by the caller.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreadedapplications.

pathfind(3GEN)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 807

pca_lookup_file, del_PathCache, del_PcaPathConf, new_PathCache,
new_PcaPathConf, pca_last_error, pca_path_completions, pca_scan_path,
pca_set_check_fn, ppc_file_start, ppc_literal_escapes – lookup a file in a list of
directories

cc [flag...] file... -ltecla [library...]

#include <libtecla.h>

char *pca_lookup_file(PathCache *pc, const char *name, int name_len,
int literal);

PathCache *del_PathCache(PathCache *pc);

PcaPathConf *del_PcaPathConf(PcaPathConf *ppc);

PathCache *new_PathCache(void);

PcaPathConf *new_PcaPathConf(PathCache *pc);

const char *pca_last_error(PathCache *pc);

CPL_MATCH_FN(pca_path_completions);

int pca_scan_path(PathCache *pc, const char *path);

void pca_set_check_fn(PathCache *pc, CplCheckFn *check_fn, void
*data);

void ppc_file_start(PcaPathConf *ppc, int start_index);

void ppc_literal_escapes(PcaPathConf *ppc, int literal);

The PathCache object is part of the libtecla(3LIB) library. PathCache objects
allow an application to search for files in any colon separated list of directories, such
as the UNIX execution PATH environment variable. Files in absolute directories are
cached in a PathCache object, whereas relative directories are scanned as needed.
Using a PathCache object, you can look up the full pathname of a simple filename, or
you can obtain a list of the possible completions of a given filename prefix. By default
all files in the list of directories are targets for lookup and completion, but a versatile
mechanism is provided for only selecting specific types of files. The obvious
application of this facility is to provide Tab-completion and lookup of executable
commands in the UNIX PATH, so an optional callback which rejects all but executable
files, is provided.

Under UNIX, the following example program looks up and displays the full
pathnames of each of the command names on the command line.

#include <stdio.h>
#include <stdlib.h>
#include <libtecla.h>

int main(int argc, char *argv[])
{

int i;
/*
* Create a cache for executable files.

pca_lookup_file(3TECLA)

NAME

SYNOPSIS

DESCRIPTION

An Example

808 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

*/
PathCache *pc = new_PathCache();
if(!pc)

exit(1);
/*
* Scan the user’s PATH for executables.
*/
if(pca_scan_path(pc, getenv("PATH"))) {

fprintf(stderr, "%s\n", pca_last_error(pc));
exit(1);

}
/*
* Arrange to only report executable files.
*/
pca_set_check_fn(pc, cpl_check_exe, NULL);
/*
* Lookup and display the full pathname of each of the
* commands listed on the command line.
*/
for(i=1; i

for(i=1; i

The following is an example of what this does on a laptop under LINUX:

$./example less more blob
The full pathname of ’less’ is /usr/bin/less
The full pathname of ’more’ is /bin/more
The full pathname of ’blob’ is unknown

$

To use the facilities of this module, you must first allocate a PathCache object by
calling the new_PathCache() constructor function. This function creates the
resources needed to cache and lookup files in a list of directories. It returns NULL on
error.

Once you have created a cache, it needs to be populated with files. To do this, call the
pca_scan_path() function. Whenever this function is called, it discards the current
contents of the cache, then scans the list of directories specified in its path argument
for files. The path argument must be a string containing a colon-separated list of
directories, such as "/usr/bin:/home/mcs/bin:.". This can include directories
specified by absolute pathnames such as "/usr/bin", as well as sub-directories
specified by relative pathnames such as "." or "bin". Files in the absolute directories
are immediately cached in the specified PathCache object, whereas subdirectories,
whose identities obviously change whenever the current working directory is
changed, are marked to be scanned on the fly whenever a file is looked up.

On success this function return 0. On error it returns 1, and a description of the error
can be obtained by calling pca_last_error(pc).

Once the cache has been populated with files, you can look up the full pathname of a
file, simply by specifying its filename to pca_lookup_file().

To make it possible to pass this function a filename which is actually part of a longer
string, the name_len argument can be used to specify the length of the filename at the
start of the name[] argument. If you pass -1 for this length, the length of the string will

pca_lookup_file(3TECLA)

Function
Descriptions

Populating The
Cache

Looking Up Files

Extended Library Functions 809

be determined with strlen. If the name[] string might contain backslashes that escape
the special meanings of spaces and tabs within the filename, give the literal argument
the value 0. Otherwise, if backslashes should be treated as normal characters, pass 1
for the value of the literal argument.

Looking up the potential completions of a filename-prefix in the filename cache is
achieved by passing the provided pca_path_completions() callback function to
the cpl_complete_word(3TECLA) function.

This callback requires that its data argument be a pointer to a PcaPathConf object.
Configuration objects of this type are allocated by calling new_PcaPathConf().

This function returns an object initialized with default configuration parameters,
which determine how the cpl_path_completions() callback function behaves.
The functions which allow you to individually change these parameters are discussed
below.

By default, the pca_path_completions() callback function searches backwards for
the start of the filename being completed, looking for the first un-escaped space or the
start of the input line. If you wish to specify a different location, call
ppc_file_start() with the index at which the filename starts in the input line.
Passing start_index=-1 re-enables the default behavior.

By default, when pca_path_completions() looks at a filename in the input line,
each lone backslash in the input line is interpreted as being a special character which
removes any special significance of the character which follows it, such as a space
which should be taken as part of the filename rather than delimiting the start of the
filename. These backslashes are thus ignored while looking for completions, and
subsequently added before spaces, tabs and literal backslashes in the list of
completions. To have unescaped backslashes treated as normal characters, call
ppc_literal_escapes() with a non-zero value in its literal argument.

When you have finished with a PcaPathConf variable, you can pass it to the
del_PcaPathConf() destructor function to reclaim its memory.

If you are only interested in certain types or files, such as, for example, executable
files, or files whose names end in a particular suffix, you can arrange for the file
completion and lookup functions to be selective in the filenames that they return. This
is done by registering a callback function with your PathCache object. Thereafter,
whenever a filename is found which either matches a filename being looked up or
matches a prefix which is being completed, your callback function will be called with
the full pathname of the file, plus any application-specific data that you provide. If the
callback returns 1 the filename will be reported as a match. If it returns 0, it will be
ignored. Suitable callback functions and their prototypes should be declared with the
following macro. The CplCheckFn typedef is also provided in case you wish to
declare pointers to such functions

#define CPL_CHECK_FN(fn) int (fn)(void *data, const char *pathname)

typedef CPL_CHECK_FN(CplCheckFn);

pca_lookup_file(3TECLA)

Filename
Completion

Being Selective

810 man pages section 3: Extended Library Functions • Last Revised 1 Jun 2004

Registering one of these functions involves calling the pca_set_check_fn()
function. In addition to the callback function passed with the check_fn argument, you
can pass a pointer to anything with the data argument. This pointer will be passed on
to your callback function by its own data argument whenever it is called, providing a
way to pass application-specific data to your callback. Note that these callbacks are
passed the full pathname of each matching file, so the decision about whether a file is
of interest can be based on any property of the file, not just its filename. As an
example, the provided cpl_check_exe() callback function looks at the executable
permissions of the file and the permissions of its parent directories, and only returns 1
if the user has execute permission to the file. This callback function can thus be used to
lookup or complete command names found in the directories listed in the user’s PATH
environment variable. The example program above provides a demonstration of this.

Beware that if somebody tries to complete an empty string, your callback will get
called once for every file in the cache, which could number in the thousands. If your
callback does anything time consuming, this could result in an unacceptable delay for
the user, so callbacks should be kept short.

To improve performance, whenever one of these callbacks is called, the choice that it
makes is cached, and the next time the corresponding file is looked up, instead of
calling the callback again, the cached record of whether it was accepted or rejected is
used. Thus if somebody tries to complete an empty string, and hits tab a second time
when nothing appears to happen, there will only be one long delay, since the second
pass will operate entirely from the cached dispositions of the files. These cached
dipositions are discarded whenever pca_scan_path() is called, and whenever
pca_set_check_fn() is called with changed callback function or data arguments.

If pca_scan_path() reports that an error occurred by returning 1, you can obtain a
terse description of the error by calling pca_last_error(pc). This returns an internal
string containing an error message.

Once you have finished using a PathCache object, you can reclaim its resources by
passing it to the del_PathCache() destructor function. This takes a pointer to one of
these objects, and always returns NULL.

It is safe to use the facilities of this module in multiple threads, provided that each
thread uses a separately allocated PathCache object. In other words, if two threads
want to do path searching, they should each call new_PathCache() to allocate their
own caches.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

cpl_complete_word(3TECLA), ef_expand_file(3TECLA),
gl_get_line(3TECLA), libtecla(3LIB), attributes(5)

pca_lookup_file(3TECLA)

Error Handling

Cleaning Up

Thread Safety

ATTRIBUTES

SEE ALSO

Extended Library Functions 811

pctx_capture, pctx_create, pctx_run, pctx_release – process context library

cc [flag...] file... −lpctx [library...]

#include <libpctx.h>

typedef void (pctx_errfn_t)(const char *fn, const char *fmt,
va_list ap);

pctx_t *pctx_create(const char *filename, char *const *argv, void
*arg, int verbose, pctx_errfn_t *errfn);

pctx_t *pctx_capture(pid_t pid, void *arg, int verbose, pctx_errfn_t
*errfn);

int pctx_run(pctx_t *pctx, uint_t sample, uint_t nsamples, int
(*tick)(pctx *, pid_t, id_t, void *));

void pctx_release(pctx_t *pctx);

This family of functions allows a controlling process (the process that invokes them) to
create or capture controlled processes. The functions allow the occurrence of various
events of interest in the controlled process to cause the controlled process to be
stopped, and to cause callback routines to be invoked in the controlling process.

There are two ways a process can be acquired by the process context functions. First, a
named application can be invoked with the usual argv[] array using pctx_create(),
which forks the caller and execs the application in the child. Alternatively, an existing
process can be captured by its process ID using pctx_capture().

Both functions accept a pointer to an opaque handle, arg; this is saved and treated as a
caller-private handle that is passed to the other functions in the library. Both functions
accept a pointer to a printf(3C)-like error routine errfn; a default version is provided
if NULL is specified.

A freshly-created process is created stopped; similarly, a process that has been
successfully captured is stopped by the act of capturing it, thereby allowing the caller
to specify the handlers that should be called when various events occur in the
controlled process. The set of handlers is listed on the pctx_set_events(3CPC)
manual page.

Once the callback handlers have been set with pctx_set_events(), the application
can be set running using pctx_run(). This function starts the event handling loop; it
returns only when either the process has exited, the number of time samples has
expired, or an error has occurred (for example, if the controlling process is not
privileged, and the controlled process has exec-ed a setuid program).

Every sample milliseconds the process is stopped and the tick() routine is called so
that, for example, the performance counters can be sampled by the caller. No periodic
sampling is performed if sample is 0.

pctx_capture(3CPC)

NAME

SYNOPSIS

DESCRIPTION

pctx_create()
and

pctx_capture()

pctx_run()

812 man pages section 3: Extended Library Functions • Last Revised 13 May 2003

Once pctx_run() has returned, the process can be released and the underlying
storage freed using pctx_release(). Releasing the process will either allow the
controlled process to continue (in the case of an existing captured process and its
children) or kill the process (if it and its children were created using
pctx_create()).

Upon successful completion, pctx_capture() and pctx_create() return a valid
handle. Otherwise, the functions print a diagnostic message and return NULL.

Upon successful completion, pctx_run() returns 0 with the controlled process either
stopped or exited (if the controlled process has invoked exit(2).) If an error has
occurred (for example, if the controlled process has exec–ed a set-ID executable, if
certain callbacks have returned error indications, or if the process was unable to
respond to proc(4) requests) an error message is printed and the function returns −1.

Within an event handler in the controlling process, the controlled process can be made
to perform various system calls on its behalf. No system calls are directly supported in
this version of the API, though system calls are executed by the cpc_pctx family of
interfaces in libcpc such as cpc_pctx_bind_event(3CPC). A specially created
agent LWP is used to execute these system calls in the controlled process. See proc(4)
for more details.

While executing the event handler functions, the library arranges for the signals
SIGTERM, SIGQUIT, SIGABRT, and SIGINT to be blocked to reduce the likelihood of
a keyboard signal killing the controlling process prematurely, thereby leaving the
controlled process permanently stopped while the agent LWP is still alive inside the
controlled process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

fork(2), cpc(3CPC), pctx_set_events(3CPC), libpctx(3LIB), proc(4),
attributes(5)

pctx_capture(3CPC)

pctx_release()

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 813

pctx_set_events – associate callbacks with process events

cc [flag...] file... −lpctx [library...]
#include <libpctx.h>

typedef enum {
PCTX_NULL_EVENT = 0,
PCTX_SYSC_EXEC_EVENT,
PCTX_SYSC_FORK_EVENT,
PCTX_SYSC_EXIT_EVENT,
PCTX_SYSC_LWP_CREATE_EVENT,
PCTX_INIT_LWP_EVENT,
PCTX_FINI_LWP_EVENT,
PCTX_SYSC_LWP_EXIT_EVENT

} pctx_event_t;

typedef int pctx_sysc_execfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
char *cmd, void *arg);

typedef void pctx_sysc_forkfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
pid_t child, void *arg);

typedef void pctx_sysc_exitfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

typedef int pctx_sysc_lwp_createfn_t(pctx_t *pctx, pid_t pid, id_t
lwpid, void *arg);

typedef int pctx_init_lwpfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

typedef int pctx_fini_lwpfn_t(pctx_t *pctx, pid_t pid, id_t lwpid,
void *arg);

typedef int pctx_sysc_lwp_exitfn_t(pctx_t *pctx, pid_t pid, id_t
lwpid, void *arg);

int pctx_set_events(pctx_t *pctx, ...);

The pctx_set_events() function allows the caller (the controlling process) to
express interest in various events in the controlled process. See pctx_capture(3CPC)
for information about how the controlling process is able to create, capture and
manipulate the controlled process.

The pctx_set_events() function takes a pctx_t handle, followed by a variable
length list of pairs of pctx_event_t tags and their corresponding handlers,
terminated by a PCTX_NULL_EVENT tag.

pctx_set_events(3CPC)

NAME

SYNOPSIS

DESCRIPTION

814 man pages section 3: Extended Library Functions • Last Revised 13 May 2003

Most of the events correspond closely to various classes of system calls, though two
additional pseudo-events (init_lwp and fini_lwp) are provided to allow callers to
perform various housekeeping tasks. The init_lwp handler is called as soon as the
library identifies a new LWP, while fini_lwp is called just before the LWP disappears.
Thus the classic "hello world" program would see an init_lwp event, a fini_lwp event
and (process) exit event, in that order. The table below displays the interactions
between the states of the controlled process and the handlers executed by users of the
library.

System Calls and pctx Handlers

System call Handler Comments

exec, execve fini_lwp Invoked serially on all lwps in the process.

exec Only invoked if the exec() system call succeeded.

init_lwp If the exec succeeds, only invoked on lwp 1. If the exec
fails, invoked serially on all lwps in the process.

fork, vfork,
fork1

fork Only invoked if the fork() system call succeeded.

exit fini_lwp Invoked on all lwps in the process.

exit Invoked on the exiting lwp.

Each of the handlers is passed the caller’s opaque handle, a pctx_t handle, the pid,
and lwpid of the process and lwp generating the event. The lwp_exit, and (process)
exit events are delivered before the underlying system calls begin, while the exec,
fork, and lwp_create events are only delivered after the relevant system calls complete
successfully. The exec handler is passed a string that describes the command being
executed. Catching the fork event causes the calling process to fork(2), then capture
the child of the controlled process using pctx_capture() before handing control to
the fork handler. The process is released on return from the handler.

Upon successful completiion, pctx_set_events() returns 0. Otherwise, the function
returns –1.

EXAMPLE 1 HandleExec example.

This example captures an existing process whose process identifier is pid, and arranges
to call the HandleExec routine when the process performs an exec(2).

static void
HandleExec(pctx_t *pctx, pid_t pid, id_t lwpid, char *cmd, void *arg)
{

(void) printf("pid %d execed ’%s’\n", (int)pid, cmd);
}
int
main()
{

pctx_set_events(3CPC)

RETURN VALUES

EXAMPLES

Extended Library Functions 815

EXAMPLE 1 HandleExec example. (Continued)

...
pctx = pctx_capture(pid, NULL, 1, NULL);
(void) pctx_set_events(pctx,

PCTX_SYSC_EXEC_EVENT, HandleExec,
...
PCTX_NULL_EVENT);

(void) pctx_run(pctx, 0, 0, NULL);
pctx_release(pctx);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Unsafe

exec(2), exit(2), fork(2), vfork(2), fork1(2), cpc(3CPC), libpctx(3LIB), proc(4),
attributes(5)

pctx_set_events(3CPC)

ATTRIBUTES

SEE ALSO

816 man pages section 3: Extended Library Functions • Last Revised 13 May 2003

picld_log – log a message in system log

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

void picld_log(const char *msg);

The picld_log() function logs the message specified in msg to the system log file
using syslog(3C). This function is used by the PICL daemon and the plug-in
modules to log messages to inform users of any error or warning conditions.

This function does not return a value.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

syslog(3C), attributes(5)

picld_log(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 817

picld_plugin_register – register plug-in with the daemon

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int picld_plugin_register(picld_plugin_reg_t *regp);

The picld_plugin_register() function is the function used by a plug-in module
to register itself with the PICL daemon upon initialization. The plug-in provides its
name and the entry points of the initialization and cleanup routines in the regp
argument.

typedef struct {
int version; /* PICLD_PLUGIN_VERSION */
int critical; /* is plug-in critical? */
char *name; /* name of the plugin module */
void (*plugin_init)(void); /* init/reinit function */
void (*plugin_fini)(void); /* fini/cleanup function */

} picld_plugin_reg_t;

The plug-in module also specifies whether it is a critical module for the proper system
operation. The critical field in the registration information is set to
PICLD_PLUGIN_NON_CRITICAL by plug-in modules that are not critical to system
operation, and is set to PICLD_PLUGIN_CRITICAL by plug-in modules that are
critical to the system operation. An environment control plug-in module is an example
for a PICLD_PLUGIN_CRITICAL type of plug-in module.

The PICL daemon saves the information passed during registration in regp in the order
in which the plug-ins registered.

Upon initialization, the PICL daemon invokes the plugin_init() routine of each of
the registered plug-in modules in the order in which they registered. In their
plugin_init() routines, the plug-in modules collect the platform configuration
data and add it to the PICL tree using PICLTREE interfaces (3PICLTREE).

On reinitialization, the PICL daemon invokes the plugin_fini() routines of the
registered plug-in modules in the reverse order of registration. Then, the
plugin_init() entry points are invoked again in the order in which the plug-ins
registered.

Upon successful completion, 0 is returned. On failure, a negative value is returned.

PICL_NOTSUPPORTED Version not supported

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

picld_plugin_register(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

818 man pages section 3: Extended Library Functions • Last Revised 19 Sep 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicltree(3PICLTREE), attributes(5)

picld_plugin_register(3PICLTREE)

SEE ALSO

Extended Library Functions 819

picl_find_node – find node with given property and value

cc [flag...] file... -l [library...]

#include <picl.h>

int picl_find_node(picl_nodehdl_trooth, char *pname,
picl_prop_type_t ptype, void *pval, size_t valsize, picl_nodehdl_t
*retnodeh);

The picl_find_node() function visits the nodes in the subtree under the node
specified by rooth. The handle of the node that has the property whose name, type,
and value matches the name, type, and value specified in pname, ptype, and pval
respectively, is returned in the location given by retnodeh. The valsize argument
specifies the size of the value in pval. The first valsize number of bytes of the property
value is compared with pval.

Upon successful completion, 0 is returned. Otherwise a non-negative integer is
returned to indicate an error.

The value PICL_NODENOTFOUND is returned if no node that matches the property
criteria can be found.

PICL_FAILURE General system failure

PICL_INVALIDHANDLE Invalid handle

PICL_NODENOTFOUND Node not found

PICL_NOTNODE Not a node

PICL_STALEHANDLE Stale handle

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

picl_get_propinfo(3PICL), picl_get_propval(3PICL),
picl_get_propval_by_name(3PICL), picl_get_prop_by_name(3PICL),
attributes(5)

picl_find_node(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

820 man pages section 3: Extended Library Functions • Last Revised 5 Feb 2004

picl_get_first_prop, picl_get_next_prop – get a property handle of a node

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_get_first_prop(picl_nodehdl_t nodeh, piclprop_hdl_t
*proph);

int picl_get_next_prop(picl_prophdl_t proph, picl_prophdl_t
*nextprop);

The picl_get_first_prop() function gets the handle of the first property of the
node specified by nodeh and copies it into the location given by proph.

The picl_get_next_prop() function gets the handle of the next property after the
one specified by proph from the property list of the node, and copies it into the location
specified by nextprop.

If there are no more properties, this function returns PICL_ENDOFLIST.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_ENDOFLIST is returned to indicate that there are no more properties.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTNODE Not a node

PICL_NOTPROP Not a property

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

PICL_ENDOFLIST End of list

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_get_prop_by_name(3PICL), attributes(5)

picl_get_first_prop(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 821

picl_get_frutree_parent – get frutree parent node for a given device node

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_get_frutree_parent(picl_nodehdl_t devh, picl_nodehdl_t
*frutreeh);

The devices under the /platform subtree of the PICLTREE are linked to their FRU
containers represented in the /frutree using PICL reference properties. The
picl_get_frutree_parent() function returns the handle of the node in the
/frutree subtree that is the FRU parent or container of the the device specified by
the node handle, devh. The handle is returned in the frutreeh argument.

Upon successful completion, 0 is returned. Otherwise a non-negative integer is
returned to indicate an error.

PICL_FAILURE General system failure

PICL_INVALIDHANDLE Invalid handle

PICL_PROPNOTFOUND Property not found

PICL_STALEHANDLE Stale handle

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

picl_get_propinfo(3PICL), picl_get_propval(3PICL),
picl_get_propval_by_name(3PICL), picl_get_prop_by_name(3PICL),
attributes(5)

picl_get_frutree_parent(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

822 man pages section 3: Extended Library Functions • Last Revised 5 Feb 2004

picl_get_next_by_row, picl_get_next_by_col – access a table property

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_get_next_by_row(picl_prophdl_t proph, picl_prophdl_t
*colh);

int picl_get_next_by_col(picl_prophdl_t proph, picl_prophdl_t
*colh);

The picl_get_next_by_row() function copies the handle of the property that is in
the next column of the table and on the same row as the property proph. The handle is
copied into the location given by rowh.

The picl_get_next_by_col() function copies the handle of the property that is in
the next row of the table and on the same column as the property proph. The handle is
copied into the location given by colh.

If there are no more rows or columns, this function returns the value
PICL_ENDOFLIST.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTTABLE Not a table

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

PICL_ENDOFLIST General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_get_propval(3PICL), attributes(5)

picl_get_next_by_row(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 823

picl_get_node_by_path – get handle of node specified by PICL tree path

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_get_node_by_path(const char *piclpath, picl_nodehdl_t
*nodeh);

The picl_get_node_by_path() function copies the handle of the node in the PICL
tree specified by the path given in piclpath into the location nodeh.

The syntax of a PICL tree path is:

[<def_propname>:]/[<def_propval>[<match_cond>]...]

where the <def_propname> prefix is a shorthand notation to specify the name of the
property whose value is specified in <def_propval>, and the <match_cond> expression
specifies the matching criteria for that node in the form of one or more pairs of
property names and values such as

[@<address>][?<prop_name>[=<prop_val>]...]

where ’@’ is a shorthand notation to refer to the device address or a FRU’s location
label and is followed by <address>, which gives the device address or the location
label.

For nodes under the /platform tree, the address value is matched with the value of
the property bus-addr, if it exists. If no bus-addr property exists, the address value
is matched with the value of the property UnitAddress. To explicitly limit the
comparison to bus-addr or UnitAddress property, use the ’?’ notation described
below.

For nodes under the /frutree tree, the <address> value is matched with the value of
the Label property.

The expression following ’?’ specifies matching property name and value pairs, where
<prop_name> specifies the property name and <prop_val> specifies the property value
for properties not of type PICL_PTYPE_VOID. The values for properties of type
PICL_PTYPE_TABLE, PICL_PTYPE_BYTEARRAY, and PICL_PTYPE_REFERENCE
cannot be specified in the <match_cond> expression.

A _class property value of picl can be used to match nodes of any PICL classes.
The class picl is the base class of all the classes in PICL.

All valid paths must begin at the root node denoted by ’/’.

If no prefix is specified for the path, the prefix defaults to the name property.

Upon successful completion, 0 is returned. Otherwise a non-negative integer is
returned to indicate an error.

The value PICL_NOTNODE is returned if there is no node corresponding to the
specified path.

picl_get_node_by_path(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

824 man pages section 3: Extended Library Functions • Last Revised 5 Feb 2004

PICL_FAILURE General system failure

PICL_INVALIDARG Invalid argument

PICL_NOTNODE Not a node

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

picl_get_propval_by_name(3PICL), attributes(5)

picl_get_node_by_path(3PICL)

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 825

picl_get_prop_by_name – get the handle of the property by name

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_get_prop_by_name(picl_nodehdl_t nodeh, char *name,
picl_prophdl_t *proph);

The picl_get_prop_by_name() function gets the handle of the property of node
nodeh whose name is specified in name. The handle is copied into the location specified
by proph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_PROPNOTFOUND is returned if the property of the specified name does not exist.

PICL_RESERVEDNAME is returned if the property name specified is one of the
reserved property names.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTNODE Not a node

PICL_PROPNOTFOUND Property not found

PICL_RESERVEDNAME Reserved property name specified

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

picl_get_prop_by_name(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

826 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_get_propinfo – get the information about a property

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_get_propinfo(picl_prophdl_t proph, picl_propinfo_t
*pinfo);

The picl_get_propinfo() function gets the information about the property
specified by handle proph and copies it into the location specified by pinfo. The
property information includes the property type, access mode, size, and the name of
the property as described on libpicl(3PICL) manual page.

The maximum size of a property value is specified by PICL_PROPSIZE_MAX. It is
currently set to 512KB.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTPROP Not a property

PICL_INVALIDHANDLE Invalid handle specified

PICL_STALEHANDLE Stale handle specifie

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicl(3PICL), picl_get_propval(3PICL),
picl_get_propval_by_name(3PICL), attributes(5)

picl_get_propinfo(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 827

picl_get_propinfo_by_name – get property information and handle of named property

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_get_propinfo_by_name(picl_nodehdl_t nodeh, const char
*pname, picl_propinfo_t *pinfo, picl_prophdl_t *proph);

The picl_get_propinfo_by_name() function copies the property information of
the property specified by pname in the node nodeh into the location given by pinfo. The
handle of the property is returned in the location proph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_PROPNOTFOUND is returned if the property of the specified name does not exist.

PICL_RESERVEDNAME is returned if the property name specified is one of the
reserved property names.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTNODE Not a node

PICL_PROPNOTFOUND Property not found

PICL_RESERVEDNAME Reserved property name specified

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_get_propinfo(3PICL), picl_get_prop_by_name(3PICL), attributes(5)

picl_get_propinfo_by_name(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

828 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

picl_get_propval, picl_get_propval_by_name – get the value of a property

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_get_propval(picl_prophdl_t proph, void *valbuf, size_t
nbytes);

int picl_get_propval_by_name(picl_nodehdl_t nodeh, char *propname,
void *valbuf, size_t nbytes);

The picl_get_propval() function copies the value of the property specified by the
handle proph into the buffer location given by valbuf. The size of the buffer valbuf in
bytes is specified in nbytes.

The picl_get_propval_by_name() function gets the value of property named
propname of the node specified by handle nodeh. The value is copied into the buffer
location given by valbuf. The size of the buffer valbuf in bytes is specified in nbytes.

The picl_get_propval_by_name() function is used to get a reserved property’s
value. An example of a reserved property is "_parent". Please refer to
libpicl(3PICL) for a complete list of reserved property names.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_PROPNOTFOUND is returned if the property of the specified name does not exist.

PICL_PERMDENIED is returned if the client does not have sufficient permission to
access the property.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_PERMDENIED Insufficient permission

PICL_VALUETOOBIG Value too big for buffer

PICL_NOTPROP Not a property

PICL_PROPNOTFOUND Property node found

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle specified

PICL_STALEHANDLE Stale handle specified

picl_get_propval(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 829

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicl(3PICL), picl_get_propinfo(3PICL), attributes(5)

picl_get_propval(3PICL)

ATTRIBUTES

SEE ALSO

830 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_get_root – get the root handle of the PICL tree

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_get_root(picl_nodehdl_t *nodehandle);

The picl_get_root() function gets the handle of the root node of the PICL tree and
copies it into the location given by nodehandle.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_initialize(3PICL), picl_shutdown(3PICL), attributes(5)

picl_get_root(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 831

picl_initialize – initiate a session with the PICL daemon

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_initialize(void);

The picl_initialize() function opens the daemon door file and initiates a session
with the PICL daemon running on the system.

Upon successful completion, 0 is returned. On failure, this function returns a
non-negative integer, PICL_FAILURE.

PICL_NOTSUPPORTED Version not supported

PICL_FAILURE General system failure

PICL_NORESPONSE Daemon not responding

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_shutdown(3PICL), attributes(5)

picl_initialize(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

832 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_set_propval, picl_set_propval_by_name – set the value of a property to the
specified value

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_set_propval(picl_prophdl_t proph, void *valbuf, size_t
nbytes);

int picl_set_propval_by_name(picl_nodehdl_t nodeh, const char
*pname, void *valbuf, size_t nbytes);

The picl_set_propval() function sets the value of the property specified by the
handle proph to the value contained in the buffer valbuf. The argument nbytes specifies
the size of the buffer valbuf.

The picl_set_propval_by_name() function sets the value of the property named
pname of the node specified by the handle nodeh to the value contained in the buffer
valbuf. The argument nbytes specifies the size of the buffer valbuf.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_PERMDENIED is returned if the client does not have sufficient permission to
access the property.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_PERMDENIED Insufficient permission

PICL_NOTWRITABLE Property is read-only

PICL_VALUETOOBIG Value too big

PICL_NOTPROP Not a property

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle specified

PICL_STALEHANDLE Stale handle specified

PICL_FAILURE General system failure

picl_set_propval(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 833

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

picl_set_propval(3PICL)

ATTRIBUTES

SEE ALSO

834 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_shutdown – shutdown the session with the PICL daemon

cc [flag...] file... -lpicl [library...]

#include <picl.h>

void picl_shutdown(void);

The picl_shutdown() function terminates the session with the PICL daemon and
frees up any resources allocated.

The picl_shutdown() function does not return a value.

PICL_NOTINITIALIZED Session not initialized

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_initialize(3PICL), attributes(5)

picl_shutdown(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 835

picl_strerror – get error message string

cc [flag ...] file ... -lpicl [library ...]
#include <picl.h>

char *picl_strerror(int errnum);

The picl_strerror() function maps the error number in errnum to an error
message string, and returns a pointer to that string. The returned string should not be
overwritten.

The picl_strerror() function returns NULL if errnum is out-of-range.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicl(3PICL), attributes(5)

picl_strerror(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

836 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

picl_wait – wait for PICL tree to refresh

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_wait(int to_secs);

The picl_wait() function blocks the calling thread until the PICL tree is refreshed.
The to_secs argument specifies the timeout for the call in number of seconds. A value
of −1 for to_secs specifies no timeout.

The picl_wait() function returns 0 to indicate that PICL tree has refreshed.
Otherwise, a non-negative integer is returned to indicate error.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_TIMEDOUT Timed out waiting for refresh

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

attributes(5)

picl_wait(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 837

picl_walk_tree_by_class – walk subtree by class

cc [flag...] file... -lpicl [library...]

#include <picl.h>

int picl_walk_tree_by_class(picl_nodehdl_t rooth, const char
*classname, void *c_args, int (*callback)(picl_nodehdl_t nodeh, void
*c_args));

The picl_walk_tree_by_class() function visits all the nodes of the subtree
under the node specified by rooth. The PICL class name of the visited node is
compared with the class name specified by classname. If the class names match, then
the callback function specified by callback is called with the matching node handle and
the argument provided in c_args. If the class name specified in classname is NULL, then
the callback function is invoked for all the nodes.

The return value from the callback function is used to determine whether to continue
or terminate the tree walk. The callback function returns PICL_WALK_CONTINUE or
PICL_WALK_TERMINATE to continue or terminate the tree walk.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed. This error
may be returned for a previously valid handle if the daemon was brought down and
restarted. When this occurs a client must revalidate any saved handles.

PICL_NOTINITIALIZED Session not initialized

PICL_NORESPONSE Daemon not responding

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle specified

PICL_STALEHANDLE Stale handle specified

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

picl_get_propval_by_name(3PICL), attributes(5)

picl_walk_tree_by_class(3PICL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

838 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

pool_associate, pool_create, pool_destroy, pool_dissociate, pool_info,
pool_query_pool_resources – resource pool manipulation functions

cc [flag...] file... -lpool [library ...]

#include <pool.h>

int pool_associate(pool_conf_t *conf, pool_t *pool, pool_resource_t
*resource);

pool_t *pool_create(pool_conf_t *conf, const char *name);

int pool_destroy(pool_conf_t *conf, pool_t *pool);

int pool_dissociate(pool_conf_t *conf, pool_t *pool,
pool_resource_t *resource);

const char *pool_info(pool_conf_t *conf, pool_t *pool, int flags);

pool_resource_t *pool_query_pool_resources(pool_conf_t *conf,
pool_t *pool, uint_t *nelem, pool_value_t **properties);

These functions provide mechanisms for constructing and modifying pools entries
within a target pools configuration. The conf argument for each function refers to the
target configuration to which the operation applies.

The pool_associate() function associates the specified resource with pool. A
resource can be associated with multiple pools at the same time. Any resource of this
type that was formerly associated with this pool is no longer associated with the pool.
The new association replaces the earlier one.

The pool_create() function creates a new pool with the supplied name with its
default properties initialized, and associated with the default resource of each type.

The pool_destroy function() destroys the given pool association. Associated
resources are not modified.

The pool_dissociate() function removes the association between the given
resource and pool. On successful completion, the pool is associated with the default
resource of the same type.

The pool_info() function returns a string describing the given pool. The string is
allocated with malloc(3C). The caller is reponsible for freeing the returned string. If
the flags option is non-zero, the string returned also describes the associated resources
of the pool.

The pool_query_pool_resources() function returns a null-terminated array of
resources currently associated with the pool. The return value must be freed by the
caller. The nelem argument is set to be the length of the array returned.

Upon successful completion, pool_create() returns a new initialized pool.
Otherwise it returns NULL and pool_error(3POOL) returns the pool-specific error
value.

pool_associate(3POOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 839

Upon successful completion, pool_associate(), pool_destroy(), and
pool_dissociate() return 0. Otherwise, they return -1 and pool_error()
returns the pool-specific error value.

Upon successful completion, pool_info() returns a string describing the given pool.
Otherwise it returns NULL and pool_error() returns the pool-specific error value.

Upon successful completion, pool_query_pool_resources() returns a
null-terminated array of resources. Otherwise it returns NULL and pool_error()
returns the pool-specific error value.

The pool_create() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or name is already in use.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

POE_INVALID_CONF The pool element could not be created because the
configuration would be invalid.

POE_PUTPROP One of the supplied properties could not be set.

The pool_destroy() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

The pool_associate() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or the parameters are supplied from a different
configuration.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_disassociate() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or the parameters are supplied from a different
configuration.

POE_INVALID_CONF No resources could be located for the supplied
configuration or the supplied configuration is not valid
(for example, more than one default for a resource type
was found.)

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_info() function will fail if:

pool_associate(3POOL)

ERRORS

840 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or the flags paramter is neither 0 or 1.

POE_INVALID_CONF The configuration is invalid.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_query_pool_resources() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

POE_INVALID_CONF The configuration is invalid.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

Pool names are unique across pools in a given configuration file. It is an error to
attempt to create a pool with a name that is currently used by another pool within the
same configuration.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Unstable

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_associate(3POOL)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 841

pool_component_info, pool_get_owning_resource – resource pool component
functions

cc [flag...] file... -lpool [library...]

#include <pool.h>

const char *pool_component_info(pool_conf_t *conf,
pool_component_t *component, int flags);

pool_resource_t *pool_get_owning_resource(pool_conf_t *conf,
pool_component_t *component);

Certain resources, such as processor sets, are composed of resource components.
Informational and ownership attributes of resource components are made available
with the pool_component_info() and pool_get_owning_resource()
functions. The conf argument for each function refers to the target configuration to
which the operation applies.

The pool_component_info() function returns a string describing component. The
string is allocated with malloc(3C). The caller is reponsible for freeing the returned
string. The flags argument is ignored.

The pool_get_owning_resource() function returns the resource currently
containing component. Every component is contained by a resource.

Upon successful completion, pool_component_info() returns a string. Otherwise
it returns NULL and pool_error(3POOL) returns the pool-specific error value.

Upon successful completion, pool_get_owning_resource() returns the owning
resource. Otherwise it returns NULL and pool_error() returns the pool-specific
error value.

The pool_component_info() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or the flags paramter is neither 0 or 1.

POE_INVALID_CONF The configuration is invalid.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_get_owning_resource() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

pool_component_info(3POOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

842 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Unstable

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_component_info(3POOL)

SEE ALSO

Extended Library Functions 843

pool_component_to_elem, pool_to_elem, pool_conf_to_elem, pool_resource_to_elem –
resource pool element-related functions

cc [flag...] file... -lpool [library...]

#include <pool.h>

pool_elem_t *pool_component_to_elem(pool_conf_t *conf,
pool_component_t *component);

pool_elem_t *pool_conf_to_elem(pool_conf_t *conf);

pool_elem_t *pool_resource_to_elem(pool_conf_t *conf,
pool_resource_t *resource);

pool_elem_t *pool_to_elem(pool_conf_t *conf, pool_t *pool);

A pool element, as represented by a pool_elem_t, is a common abstraction for any
libpool entity that contains properties. All such types can be converted to the
opaque pool_elem_t type using the appropriate conversion functions prototyped
above. The conf argument for each function refers to the target configuration to which
the operation applies.

Upon successful completion, these functions return a pool_elem_t corresponding to
the argument passed in. Otherwise they return NULL and pool_error(3POOL)
returns the pool-specific error value.

These function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Unstable

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_component_to_elem(3POOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

844 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

pool_conf_alloc, pool_conf_close, pool_conf_commit, pool_conf_export,
pool_conf_free, pool_conf_info, pool_conf_location, pool_conf_open,
pool_conf_remove, pool_conf_rollback, pool_conf_status, pool_conf_update,
pool_conf_validate – manipulate resource pool configurations

cc [flag...] file... -lpool [library ...]

#include <pool.h>

pool_conf_t *pool_conf_alloc(void);

int pool_conf_close(pool_conf_t *conf);

int pool_conf_commit(pool_conf_t *conf, int active);

int pool_conf_export(pool_conf_t *conf, const char *location,
pool_export_format_t format);

void pool_conf_free(pool_conf_t *conf);

char *pool_conf_info(const pool_conf_t *conf, int flags);

const char *pool_conf_location(pool_conf_t *conf);

int pool_conf_open(pool_conf_t *conf, const char *location, int flags);

int pool_conf_remove(pool_conf_t *conf);

int pool_conf_rollback(pool_conf_t *conf);

pool_conf_state_t pool_conf_status(const pool_conf_t *conf);

int pool_conf_update(const pool_conf_t *conf, int *changed);

int pool_conf_validate(pool_conf_t *conf, pool_valid_level_t level);

These functions enable the access and creation of configuration files associated with
the pools facility. Since the pool configuration is an opaque type, an initial
configuration is obtained with pool_conf_alloc() and released with
pool_conf_free() when the configuration is no longer of interest. The conf
argument for each function refers to the target configuration to which the operation
applies.

The pool_conf_close() function closes the given configuration, releasing
associated resources.

The pool_conf_commit() function commits changes made to the given
pool_conf_t to permanent storage. If the active flag is non-zero, the state of the
system will be configured to match that described in the supplied pool_conf_t. If
configuring the system fails, pool_conf_commit() will attempt to restore the
system to its previous state.

The pool_conf_export() function saves the given configuration to the specified
location. The only currently supported value of format is POX_NATIVE, which is the
format native to libpool, the output of which can be used as input to
pool_conf_open().

pool_conf_alloc(3POOL)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 845

The pool_conf_info() function returns a string describing the entire configuration.
The string is allocated with malloc(3C). The caller is reponsible for freeing the
returned string. If the flags option is non-zero, the string returned also describes the
sub-elements (if any) contained in the configuration.

The pool_conf_location() function returns the location string provided to
pool_conf_open() for the given pool_conf_t.

The pool_conf_open() function creates a pool_conf_t given a location at which
the configuration is stored. The valid flags are a bitmap of the following:

PO_RDONLY Open for reading only.

PO_RDWR Open read-write.

PO_CREAT Create a configuration at the given location if it does not exist. If it
does, truncate it.

PO_DISCO Perform ‘discovery’. This option only makes sense when used in
conjunction with PO_CREAT, and causes the returned
pool_conf_t to contain the resources and components currently
active on the system.

The use of this flag is deprecated. PO_CREAT always performs
discovery. If supplied, this flag is ignored.

PO_UPDATE Use when opening the dynamic state file, which is the
configuration at pool_dynamic_location(3POOL), to ensure
that the contents of the dynamic state file are updated to represent
the current state of the system.

The use of this flag is deprecated. The dynamic state is always
current and does not require updating. If supplied, this flag is
ignored.

The pool_conf_remove() function removes the configuration’s permanent storage.
If the configuration is still open, it is first closed.

The pool_conf_rollback() function restores the configuration state to that held in
the configuration’s permanent storage. This will either be the state last successfully
committed (using pool_conf_commit()) or the state when the configuration was
opened if there have been no successfully committed changes since then.

The pool_conf_status() function returns the status of a configuration, which can
be one of the following values:

POF_INVALID The configuration is not in a suitable state for use.

POF_VALID The configuration is in a suitable state for use.

pool_conf_alloc(3POOL)

846 man pages section 3: Extended Library Functions • Last Revised 19 Apr 2004

The pool_conf_update() function updates the library snapshot of kernel state. If
changed is non-null, it is updated to identify which types of configuration elements
changed during the update. To check for change, treat the changed value as a bitmap of
possible element types.

A change is defined for the different element classes as follows:

POU_SYSTEM A property on the system element has been created, modified, or
removed.

POU_POOL A property on a pool element has been created, modified, or
removed. A pool has changed a resource association.

POU_PSET A property on a pset element has been created, modified, or
removed. A pset’s resource composition has changed.

POU_CPU A property on a CPU element has been created, modified, or
removed.

The pool_conf_validate() function checks the validity of the contents of the
given configuration. The validation can be at several (increasing) levels of strictness:

POV_LOOSE Performs basic internal syntax validation.

POV_STRICT Performs a more thorough syntax validation and internal
consistency checks.

POV_RUNTIME Performs an estimate of whether attempting to commit the given
configuration on the system would succeed or fail. It is optimistic
in that a successful validation does not guarantee a subsequent
commit operation will be successful; it is conservative in that a
failed validation indicates that a subsequent commit operation on
the current system will always fail.

Upon successful completion, pool_conf_alloc() returns an initialized pool_conf_t
pointer. Otherwise it returns NULL and pool_error(3POOL) returns the pool-specific
error value.

Upon successful completion, pool_conf_close(), pool_conf_commit(),
pool_conf_export(), pool_conf_open(), pool_conf_remove(),
pool_conf_rollback(), pool_conf_update(), and pool_conf_validate()
return 0. Otherwise they return -1 and pool_error() returns the pool-specific error
value.

The pool_conf_status() function returns either POF_INVALID or POF_VALID.

The pool_conf_alloc() function will fail if:

POE_SYSTEM There is not enough memory available to allocate the
configuration. Check errno for the specific system
error code.

pool_conf_alloc(3POOL)

RETURN VALUES

ERRORS

Extended Library Functions 847

POE_INVALID_CONF The configuration is invalid.

The pool_conf_close() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

POE_SYSTEM The configuration’s permanent store cannot be closed.
Check errno for the specific system error code.

The pool_conf_commit() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or the active flag is non-zero and the system could not
be modified.

POE_SYSTEM The permanent store could not be updated. Check
errno for the specific system error code.

POE_INVALID_CONF The configuration is not valid for this system.

POE_ACCESS The configuration was not opened with the correct
permissions.

POE_DATASTORE The update of the permanent store has failed and the
contents could be corrupted. Check for a .bak file at
the datastore location if manual recovery is required.

The pool_conf_export() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or the requested export format is not supported.

POE_DATASTORE The creation of the export file failed. A file might have
been created at the specified location but the contents
of the file might not be correct.

The pool_conf_info() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or flags is neither 0 nor 1.

POE_SYSTEM There is not enough memory available to allocate the
buffer used to build the information string. Check
errno for the specific system error code.

POE_INVALID_CONF The configuration is invalid.

The pool_conf_location() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

The pool_conf_open() function will fail if:

POE_BADPARAM The supplied configuration’s status is already
POF_VALID.

pool_conf_alloc(3POOL)

848 man pages section 3: Extended Library Functions • Last Revised 19 Apr 2004

POE_SYSTEM There is not enough memory available to store the
supplied location. Check errno for the specific system
error code.

POE_INVALID_CONF The configuration to be opened is at
pool_dynamic_location(3POOL) and the
configuration is not valid for this system.

The pool_conf_remove() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

POE_SYSTEM The configuration’s permanent storage could not be
removed. Check errno for the specific system error
code.

The pool_conf_rollback() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

POE_SYSTEM The permanent store could not be accessed. Check
errno for the specific system error code.

The pool_conf_update() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or the configuration is not the dynamic configuration.

POE_DATASTORE The kernel snapshot cannot be correctly unpacked.

POE_INVALID_CONF The configuration contains uncommitted transactions.

POE_SYSTEM A system error occurred during snapshot retrieval and
update.

The pool_conf_validate() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

POE_INVALID_CONF The configuration is invalid.

EXAMPLE 1 Create the configuration at the specified location.

#include <pool.h>
#include <stdio.h>

...

pool_conf_t *pool_conf;
pool_conf = pool_conf_alloc();
char *input_location = "/tmp/poolconf.example";

if (pool_conf_open(pool_conf, input_location, PO_RDONLY) < 0) {
fprintf(stderr, "Opening pool configuration %s failed\n", input_location);

}

pool_conf_alloc(3POOL)

EXAMPLES

Extended Library Functions 849

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Unstable

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_conf_alloc(3POOL)

ATTRIBUTES

SEE ALSO

850 man pages section 3: Extended Library Functions • Last Revised 19 Apr 2004

pool_dynamic_location, pool_static_location, pool_version, pool_get_status,
pool_set_status, pool_resource_type_list – resource pool framework functions

cc [flag...] file... -lpool [library...]

#include <pool.h>

const char *pool_dynamic_location(void);

const char *pool_static_location(void);

uint_t pool_version(uint_t ver);

int pool_get_status(int *state);

int pool_set_status(int state);

int pool_resource_type_list(const char **reslist, uint_t *numres);

The pool_dynamic_location() function returns the location used by the pools
framework to store the dynamic configuration.

The pool_static_location() function returns the location used by the pools
framework to store the default configuration used for pools framework instantiation.

The pool_version() function can be used to inquire about the version number of
the library by specifying POOL_VER_NONE. The current (most capable) version is
POOL_VER_CURRENT. The user can set the version used by the library by specifying
the required version number. If this is not possible, the version returned will be
POOL_VER_NONE.

The pool_get_status() function retrieves the current state of the pools facility. If
state is non-null, then on successful completion the state of the pools facility is stored
in the location pointed to by state.

The pool_set_status() function modifies the current state of the pools facility. On
successful completion the state of the pools facility is changed to match the value
supplied in state. Only two values are valid for state, POOL_DISABLED and
POOL_ENABLED, both of which are defined in <pool.h>.

The pool_resource_type_list() function enumerates the resource types
supported by the pools framework on this platform. If numres and reslist are both
non-null, reslist points to a buffer where a list of resource types in the system is to be
stored, and numres points to the maximum number of resource types the buffer can
hold. On successful completion, the list of resource types up to the maximum buffer
size is stored in the buffer pointed to by reslist.

The pool_dynamic_location() function returns the location used by the pools
framework to store the dynamic configuration.

The pool_static_location() function returns the location used by the pools
framework to store the default configuration used for pools framework instantiation.

The pool_version() function returns the version number of the library or
POOL_VER_NONE.

pool_dynamic_location(3POOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 851

Upon successful completion, pool_get_status(), pool_set_status(), and
pool_resource_type_list() all return 0. Otherwise, −1 is returned and
pool_error(3POOL) returns the pool specific error.

No errors are defined for pool_dynamic_location(), pool_static_location
(), and pool_version().

The pool_get_status() function will fail if:

POE_SYSTEM A system error occurred when accessing the kernel pool state.

The pool_set_status() function will fail if:

POE_SYSTEM A system error occurred when modifying the kernel pool state.

The pool_resource_type_list() function will fail if:

POE_BADPARAM The numres parameter was NULL.

EXAMPLE 1 Get the static location used by the pools framework.

#include sys/types.h>
#include <unistd.h>
#include <pool.h>

...

const char *location = pool_dynamic_location();

...

(void) fprintf(stderr, "pool dynamic location is %s\n",

location);

EXAMPLE 2 Enable the pools facility.

#include <stdio.h>
#include <pool.h>

...

if (pool_set_status(POOL_ENABLED) != 0) {
(void) fprintf(stderr, "pools could not be enabled %s\n",

pool_strerror(pool_error()));
exit(2);

}

...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

pool_dynamic_location(3POOL)

ERRORS

EXAMPLES

ATTRIBUTES

852 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Unstable

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_dynamic_location(3POOL)

SEE ALSO

Extended Library Functions 853

pool_error, pool_strerror – error interface to resource pools library

cc [flag...] file... -lpool [library...]

#include <pool.h>

int pool_error(void);

const char *pool_strerror(int perr);

The pool_error() function returns the error value of the last failure recorded by the
invocation of one of the functions of the resource pool configuration library, libpool.

The pool_strerror() function returns a descriptive null-terminated string for each
of the valid pool error codes.

The following error codes can be returned by pool_error():

The pool_error() function returns the current pool error value for the calling
thread from among the following:

POE_ACCESS The operation could not be performed because the
configuration was not opened with the correct opening
permissions.

POE_BADPARAM A bad parameter was supplied.

POE_BAD_PROP_TYPE An incorrect property type was submitted or
encountered during the pool operation.

POE_DATASTORE An error occurred within permanent storage.

POE_INVALID_CONF The pool configuration presented for the operation is
invalid.

POE_INVALID_SEARCH A query whose outcome set was empty was attempted.

POE_NOTSUP An unsupported operation was attempted.

POE_PUTPROP An attempt to write a read-only property was made.

POE_OK The previous pool operation succeeded.

POE_SYSTEM An underlying system call or library function failed;
errno(3C) is preserved where possible.

The pool_strerror() function returns a pointer to the string corresponding to the
requested error value. If the error value has no corresponding string, −1 is returned
and errno is set to indicate the error.

The pool_strerror() function will fail if:

ESRCH The specified error value is not defined by the pools error facility.

pool_error(3POOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

854 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Unstable

MT-Level Safe

errno(3C), libpool(3LIB), pool_error(3POOL), attributes(5)

pool_error(3POOL)

ATTRIBUTES

SEE ALSO

Extended Library Functions 855

pool_get_binding, pool_set_binding, pool_get_resource_binding – set and query
process to resource pool bindings

cc [flag...] file... -lpool [library ...]

#include <pool.h>

char *pool_get_binding(pid_t pid);

int pool_set_binding(const char *pool, idtype_t idtype, id_t id);

char *pool_get_resource_binding(const char *type, pid_t pid);

The pool_get_binding() function returns the name of the pool on the running
system that contains the set of resources to which the given process is bound. If no
such pool exists on the system or the search returns more than one pool (since the set
of resources is referred to by more than one pool), NULL is returned and the pool error
value is set to POE_INVALID_SEARCH.

It is possible that one of the resources to which the given process is bound is not
associated with a pool. This could occur if a processor set was created with one of the
pset_() functions and the process was then bound to that set. It could also occur if
the process was bound to a resource set not currently associated with a pool, since
resources can exist that are not associated with a pool.

The pool_set_binding() function binds the processes matching idtype and id to
the resources associated with pool on the running system. This function requires the
privilege required by the underlying resource types referenced by the pool; generally,
this requirement is equivalent to requiring superuser privilege.

The idtype parameter can be of the following types:

P_PID The id parameter is a pid.

P_TASKID The id parameter is a taskid.

P_PROJID The id parameter is a project ID. All currently running processes
belonging to the given project will be bound to the pool’s
resources.

The pool_get_resource_binding() function returns the name of the resource of
the supplied type to which the supplied process is bound.

The application must explicity free the memory allocated for the return values for
pool_get_binding() and pool_get_resource_binding().

Upon successful completion, pool_get_binding() returns the name of the pool to
which the process is bound. Otherwise it returns NULL and pool_error(3POOL)
returns the pool-specific error value.

Upon successful completion, pool_set_binding() returns PO_SUCCESS.
Otherwise, it returns PO_FAIL and pool_error() returns the pool-specific error
value.

pool_get_binding(3POOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

856 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

Upon successful completion, pool_get_resource_binding() returns the name of
the resource of the specified type to which the process is bound. Otherwise it returns
NULL and pool_error() returns the pool-specific error value.

The pool_get_binding() function will fail if:

POE_INVALID_CONF The configuration is invalid.

POE_INVALID_SEARCH It is not possible to determine the binding for this
target due to the overlapping nature of the pools
configured for this system, or the pool could not be
located.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_set_binding() function will fail if:

POE_BADPARAM The pool could not be found.

POE_INVALID_CONF The configuration is invalid.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_get_resource_binding() function will fail if:

POE_INVALID_CONF The configuration is invalid.

POE_INVALID_SEARCH The target is not bound to a resource of the specified
type.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

EXAMPLE 1 Bind the current process to the pool named "target".

#include <sys/types.h>
#include <pool.h>
#include <unistd.h>

...

id_t pid = getpid();

...

if (pool_set_binding("target", P_PID, pid) == PO_FAIL) \\{
(void) fprintf(stderr, "pool binding failed (\\%d)\\B{}n",

pool_error());

\\}

pool_get_binding(3POOL)

ERRORS

EXAMPLES

Extended Library Functions 857

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Unstable

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_get_binding(3POOL)

ATTRIBUTES

SEE ALSO

858 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

pool_get_pool, pool_get_resource, pool_query_components, pool_query_pools,
pool_query_resources – retrieve resource pool configuration elements

cc [flag]... file... -lpool [library...]

#include <pool.h>

pool_t *pool_get_pool(pool_conf_t *conf, const char *name);

pool_resource_t *pool_get_resource(pool_conf_t *conf, const char
*type, const char *name);

pool_component_t **pool_query_components(pool_conf_t *conf, uint_t
*nelem, pool_value_t **props);

pool_t **pool_query_pools(pool_conf_t *conf, uint_t *nelem,
pool_value_t **props);

pool_component_t **pool_query_resources(pool_conf_t *conf, uint_t
*nelem, pool_value_t **props);

These functions provide a means for querying the contents of the specified
configuration. The conf argument for each function refers to the target configuration to
which the operation applies.

The pool_get_pool() function returns the pool with the given name from the
provided configuration.

The pool_get_resource() function returns the resource with the given name and
type from the provided configuration.

The pool_query_components() function retrieves all resource components that
match the given list of properties. If the list of properties is NULL, all components are
returned. The number of elements returned is stored in the location pointed to by
nelem. The value returned by pool_query_components() is allocated with
malloc(3C) and must be explicitly freed.

The pool_query_pools() function behaves similarly to
pool_query_components() and returns the list of pools that match the given list of
properties. The value returned must be freed by the caller.

The pool_query_resources() function similarly returns the list of resources that
match the given list of properties. The return value must be freed by the caller.

The pool_get_pool() and pool_get_resource() functions return the matching
pool and resource, respectively. Otherwise, they return -1 and pool_error(3POOL)
returns the pool-specific error value.

The pool_query_components(), pool_query_pools(), and
pool_query_resources() functions return a null-terminated array of components,
pools, and resources, respectively. If the query was unsuccessful or there were no
matches, NULL is returned and pool_error() returns the pool-specific error value.

The pool_get_pool() will fail if:

pool_get_pool(3POOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 859

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

The pool_get_resource() will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

POE_SYSTEM There is not enough memory available to allocate
working buffers. Check errno for the specific system
error code.

The pool_query_components(), pool_query_pools(), and
pool_query_resources() will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

POE_INVALID_CONF The query generated results that were not of the correct
type. The configuration is invalid.

POE_SYSTEM There is not enough memory available to allocate
working buffers. Check errno for the specific system
error code.

EXAMPLE 1 Retrieve the pool named "foo" from a given configuration.

#include <pool.h>
#include <stdio.h>

...

pool_conf_t *conf;
pool_t *pool;

...

if ((pool = pool_get_pool(conf, "foo")) == NULL) {
(void) fprintf(stderr, "Cannot retrieve pool named
’foo’\\B{}n");
...

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Unstable

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_get_pool(3POOL)

EXAMPLES

ATTRIBUTES

SEE ALSO

860 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

pool_get_property, pool_put_property, pool_rm_property, pool_walk_properties –
resource pool element property manipulation

cc [flag...] file... -lpool [library...]

#include <pool.h>

pool_value_class_t pool_get_property(pool_conf_t *conf, const
pool_elem_t *elem, const char *name, pool_value_t *property);

int pool_put_property(pool_conf_t *conf, pool_elem_t *elem, const
char *name, const pool_value_t *value);

int pool_rm_property(pool_conf_t *conf, pool_elem_t *elem, const
char *name);

int pool_walk_properties(pool_conf_t *conf, pool_elem_t *elem, void
*arg, int (*callback)(pool_conf_t *, pool_elem_t *, const char *,
pool_value_t *, void *));

The various pool types are converted to the common pool element type
(pool_elem_t) before property manipulation. A pool_value_t is an opaque type
that contains a property value of one of the following types:

POC_UINT unsigned 64-bit integer

POC_INT signed 64-bit integer

POC_DOUBLE signed double-precision floating point value

POC_BOOL boolean value: 0 is false, non-zero is true

POC_STRING null-terminated string of characters

The conf argument for each function refers to the target configuration to which the
operation applies.

The pool_get_property() function attempts to retrieve the value of the named
property from the element. If the property is not found or an error occurs, the value
POC_INVAL is returned to indicate error. Otherwise the type of the value retrieved is
returned.

The pool_put_property() function attempts to set the named property on the
element to the specified value. Attempting to set a property that does not currently
exist on the element will cause the property with the given name and value to be
created on the element and will not cause an error. An attempt to overwrite an existing
property with a new property of a different type is an error.

The pool_rm_property() function attempts to remove the named property from
the element. If the property does not exist or is not removable, -1 is returned and
pool_error(3POOL) reporst an error of POE_PUTPROP.

The pool_walk_properties() function invokes callback on all properties defined
for the given element. The callback is called with the element itself, the name of the
property, the value of the property, and the caller-provided opaque argument.

pool_get_property(3POOL)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 861

A number of special properties are reserved for internal use and cannot be set or
removed. Attempting to do so will fail. These properties are documented on the
libpool(3LIB) manual page.

Upon successful completion, pool_get_property() returns the type of the
property. Otherwise it returns POC_INVAL and pool_error() returns the
pool-specific error value.

Upon successful completion, pool_put_property(), pool_rm_property(), and
pool_walk_properties() return 0. Otherwise they return −1 and pool_error()
returns the pool-specific error value.

The pool_get_property() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID,
the supplied conf does not contain the supplied elem, or
the property is restricted and cannot be accessed by the
library.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_put_property() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID,
the supplied conf does not contain the supplied elem,
the property name is not in the correct format, or the
property already exists and the supplied type does not
match the existing type.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

POE_PUTPROP The property name is reserved by libpool and not
available for use.

POE_INVALID_CONF The configuration is invalid.

The pool_rm_property() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID,
the supplied conf does not contain the supplied elem,
or the property is reserved by libpool and cannot be
removed.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

POE_PUTPROP The property name is reserved by libpool and not
available for use.

The pool_walk_properties() function will fail if:

pool_get_property(3POOL)

RETURN VALUES

ERRORS

862 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Unstable

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_get_property(3POOL)

ATTRIBUTES

SEE ALSO

Extended Library Functions 863

pool_resource_create, pool_resource_destroy, pool_resource_info,
pool_query_resource_components, pool_resource_transfer, pool_resource_xtransfer –
resource pool resource manipulation functions

cc [flag...] file... -lpool [library...]
#include <pool.h>

pool_resource_t *pool_resource_create(pool_conf_t *conf, const
char *type, const char *name);

int pool_resource_destroy(pool_conf_t *conf, pool_resource_t
*resource);

const char *pool_resource_info(pool_conf_t *conf, pool_resource_t
*resource, int flags);

pool_component_t **pool_query_resource_components(pool_conf_t
*conf, pool_resource_t *resource, uint_t *nelem, pool_value_t
**props);

int pool_resource_transfer(pool_conf_t *conf, pool_resource_t
*source, pool_resource_t *target, uint64_t size);

int pool_resource_xtransfer(pool_conf_t *conf, pool_resource_t
*source, pool_resource_t *target, pool_component_t **components);

The pool_resource_create() function creates and returns a new resource of the
given name and type in the provided configuration. If there is already a resource of the
given name, the operation will fail.

The pool_resource_destroy() function removes the specified resource from its
configuration file.

The pool_resource_info() function returns a string describing the given resource.
The string is allocated with malloc(3C). The caller is reponsible for freeing the
returned string. If the flags argument is non-zero, the string returned also describes the
components (if any) contained in the resource.

The pool_query_resource_components() function returns a null-terminated
array of the components (if any) that comprise the given resource.

The pool_resource_transfer() function transfers size basic units from the source
resource to the target. Both resources must be of the same type for the operation to
succeed. Transferring component resources, such as processors, is always performed
as series of pool_resource_xtransfer() operations, since discrete resources must
be identified for transfer.

The pool_resource_xtransfer() function transfers the specific components from
the source resource to the target. Both resources must be of the same type, and of a type
that contains components (such as processor sets). The components argument is a
null-terminated list of pool_component_t.

The conf argument for each function refers to the target configuration to which the
operation applies.

pool_resource_create(3POOL)

NAME

SYNOPSIS

DESCRIPTION

864 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

Upon successful completion, pool_resource_create() returns a new
pool_resource_t with default properties initialized. Otherwise, NULL is returned
and pool_error(3POOL) returns the pool-specific error value.

Upon successful completion, pool_resource_destroy() returns 0. Otherwise, -1 is
returned and pool_error() returns the pool-specific error value.

Upon successful completion, pool_resource_info() returns a string describing
the given resource (and optionally its components). Otherwise, NULL is returned and
pool_error() returns the pool-specific error value.

Upon successful completion, pool_query_resource_components() returns a
null-terminated array of pool_component_t * that match the provided
null-terminated property list and are contained in the given resource. Otherwise, NULL
is returned and pool_error() returns the pool-specific error value.

Upon successful completion, pool_resource_transfer() and
pool_resource_xtransfer() return 0. Otherwise -1 is returned and
pool_error() returns the pool-specific error value.

The pool_resource_create() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or name is in use for this resource type.

POE_INVALID_CONF The resource element could not be created because the
configuration would be invalid.

POE_PUTPROP One of the supplied properties could not be set.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_resource_destroy() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

The pool_resource_info() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID
or the flags paramter is neither 0 nor 1.

POE_INVALID_CONF The configuration is invalid.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_query_resource_components() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

POE_INVALID_CONF The configuration is invalid.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

pool_resource_create(3POOL)

RETURN VALUES

ERRORS

Extended Library Functions 865

The pool_resource_transfer() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID,
the two resources are not of the same type, or the
transfer would cause either of the resources to exceed
their min and max properties.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_resource_xtransfer() function will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID,
the two resources are not of the same type, or the
supplied resources do not belong to the source.

POE_INVALID_CONF The transfer operation failed and the configuration may
be invalid.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

EXAMPLE 1 Create a new resource of type pset named foo.

#include <pool.h>
#include <stdio.h>

...

pool_conf_t *conf;
pool_resource_t *resource;
...

if ((resource = pool_resource_create(conf, "pset", "foo")) == NULL) {
(void) fprintf(stderr, "Cannot create resource\\B{}n");
...

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Unstable

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_resource_create(3POOL)

EXAMPLES

ATTRIBUTES

SEE ALSO

866 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

pool_value_alloc, pool_value_free, pool_value_get_bool, pool_value_get_double,
pool_value_get_int64, pool_value_get_name, pool_value_get_string,
pool_value_get_type, pool_value_get_uint64, pool_value_set_bool,
pool_value_set_double, pool_value_set_int64, pool_value_set_name,
pool_value_set_string, pool_value_set_uint64 – resource pool property value
manipulation functions

cc [flag...] file... -lpool [library...]

#include <pool.h>

pool_value_t *pool_value_alloc(void);

void pool_value_free(pool_value_t *value);

pool_value_class_t pool_value_get_type(const pool_value_t *value);

int pool_value_get_bool(const pool_value_t *value, uchar_t *bool);

int pool_value_get_double(const pool_value_t *value, double *d);

int pool_value_get_int64(const pool_value_t *value, int64_t *i64);

int pool_value_get_string(const pool_value_t *value, const char
**strp);

int pool_value_get_uint64(const pool_value_t *value, uint64_t
*ui64);

void pool_value_set_bool(const pool_value_t *value, uchar_t bool);

void pool_value_set_double(const pool_value_t *value, double d);

void pool_value_set_int64(const pool_value_t *value, int64_t i64);

int pool_value_set_string(const pool_value_t *value, const char
*strp);

void pool_value_set_uint64(const pool_value_t *value, uint64_t
ui64);

const char *pool_value_get_name(const pool_value_t *value);

int pool_value_set_name(const pool_value_t *value, const char
*name);

A pool_value_t is an opaque type representing the typed value portion of a pool
property. For a list of the types supported by a pool_value_t, see
pool_get_property(3POOL).

The pool_value_alloc() function allocates and returns an opaque container for a
pool property value. The pool_value_free() function must be called explicitly for
allocated property values.

The pool_value_get_bool(), pool_value_get_double(),
pool_value_get_int64(), pool_value_get_string(), and
pool_value_get_uint64() functions retrieve the value contained in the

pool_value_alloc(3POOL)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 867

pool_value_t pointed to by value to the location pointed to by the second argument.
If the type of the value does not match that expected by the function, an error value is
returned. The string retrieved by pool_value_get_string() is freed by the library
when the value is overwritten or pool_value_free() is called on the pool property
value.

The pool_value_get_type() function returns the type of the data contained by a
pool_value_t. If the value is unused then a type of POC_INVAL is returned.

The pool_value_set_bool(), pool_value_set_double(),
pool_value_set_int64(), pool_value_set_string(), and
pool_value_set_uint64() functions set the value and type of the property value
to the provided values. The pool_value_set_string() function copies the string
passed in and returns -1 if the memory allocation fails.

Property values can optionally have names. These names are used to describe
properties as name=value pairs in the various query functions (see
pool_query_resources(3POOL)). A copy of the string passed to
pool_value_set_name() is made by the library, and the value returned by
pool_value_get_name() is freed when the pool_value_t is deallocated or
overwritten.

Upon successful completion, pool_value_alloc() returns a pool property value
with type initialized to PVC_INVAL. Otherwise, NULL is returned and pool_error()
returns the pool-specific error value.

Upon successful completion, pool_value_get_type() returns the type contained
in the property value passed in as an argument. Otherwise, POC_INVAL is returned
and pool_error() returns the pool-specific error value.

Upon successful completion, pool_value_get_bool(),
pool_value_get_double(), pool_value_get_int64(),
pool_value_get_string(), and pool_value_get_uint64() return 0.
Otherwise -1 is returned and pool_error(3POOL) returns the pool-specific error
value.

Upon successful completion, pool_value_set_string() and
pool_value_set_name() return 0. If the memory allocation failed, -1 is returned
and pool_error() returns the pool-specific error value.

The pool_value_alloc() function will fail if:

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_value_get_bool(), pool_value_get_double(),
pool_value_get_int64(), pool_value_get_string(), and
pool_value_get_uint64() functions will fail if:

POE_BADPARAM The supplied value does not match the type of the
requested operation.

pool_value_alloc(3POOL)

RETURN VALUES

ERRORS

868 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

The pool_value_set_string() function will fail if:

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

The pool_value_set_name() function will fail if:

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Unstable

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_value_alloc(3POOL)

ATTRIBUTES

SEE ALSO

Extended Library Functions 869

pool_walk_components, pool_walk_pools, pool_walk_resources – walk objects within
resource pool configurations

cc [flag...] file... -lpool [library...]

#include <pool.h>

int pool_walk_components(pool_conf_t *conf, pool_resource_t
*resource, void *arg, int (*callback)(pool_conf_t *,
pool_component_t *, void *));

int pool_walk_pools(pool_conf_t *conf, void *arg, int
(*callback)(pool_conf_t *, pool_component_t *, void *));

int pool_walk_resources(pool_conf_t *conf, pool_t *pool, void *arg,
int (*callback)(pool_conf_t *, pool_component_t *, void *));

The walker functions provided with libpool(3LIB) visit each associated entity of the
given type, and call the caller-provided callback function with a user-provided
additional opaque argument. There is no implied order of visiting nodes in the walk.
If the callback function returns a non-zero value at any of the nodes, the walk is
terminated, and an error value of -1 returned. The conf argument for each function
refers to the target configuration to which the operation applies.

The pool_walk_components() function invokes callback on all components
contained in the resource.

The pool_walk_pools() function invokes callback on all pools defined in the
configuration.

The pool_walk_resources() function invokes callback function on all resources
associated with pool.

Upon successful completion of the walk, these functions return 0. Otherwise -1 is
returned and pool_error(3POOL) returns the pool-specific error value.

These functions will fail if:

POE_BADPARAM The supplied configuration’s status is not POF_VALID.

POE_INVALID_CONF The configuration is invalid.

POE_SYSTEM A system error has occurred. Check the system error
code for more details.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Unstable

pool_walk_components(3POOL)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

870 man pages section 3: Extended Library Functions • Last Revised 23 Sep 2003

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libpool(3LIB), pool_error(3POOL), attributes(5)

pool_walk_components(3POOL)

SEE ALSO

Extended Library Functions 871

pow, powf, powl – power function

cc [flag...] file... -lm [library...]

#include <math.h>

double pow(double x, double y);

float powf(float x, float y);

long double powl(long double x, long double y);

These functions compute the value of x raised to the power y, xy. If x is negative, y
must be an integer value.

Upon successful completion, these functions return the value of x raised to the power
y.

For finite values of x < 0, and finite non-integer values of y, a domain error occurs and
either a NaN (if representable), or an implementation-defined value shall be returned.

If the correct value would cause overflow, a range error occurs and pow(), powf(),
and powl() return HUGE_VAL, HUGE_VALF, and HUGE_VALL, respectively.

If x or y is a NaN, a NaN is returned unless:

� For any finite value of y, if x is +1 and y is either ±Inf or NaN and the application is
SUSv3–conforming (see standards(5)), 1.0 is returned.

� For any value of x (including NaN), if y is ±0, 1.0 is returned.

For any odd integer value of y > 0, if x is ±0, ±0 is returned.

For y > 0 and not an odd integer, if x is ±0, +0 is returned.

If x is −1, and y is ±Inf, 1.0 is returned.

For |x| < 1, if y is −Inf, +Inf is returned.

For |x| > 1, if y is −Inf, +0 is returned.

For |x| < 1, if y is +Inf, +0 is returned.

For |x| > 1, if y is +Inf, +Inf is returned.

For y an odd integer < 0, if x is −Inf, −0 is returned.

For y < 0 and not an odd integer, if x is −Inf, +0 is returned.

For y an odd integer > 0, if x is −Inf, −Inf is returned.

For y > 0 and not an odd integer, if x is −Inf, +Inf is returned.

For y < 0, if x is +Inf, +0 is returned.

For y > 0, if x is +Inf, +Inf is returned.

pow(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

872 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

For y an odd integer < 0, if x is ±0, a pole error occurs and ±HUGE_VAL, ±HUGE_VALF,
and ±HUGE_VALL are returned for pow(), powf(), and powl(), respectively.

For y < 0 and not an odd integer, if x is ±0, a pole error occurs and HUGE_VAL,
HUGE_VALF, and HUGE_VALL are returned for pow(), powf(), and powl(),
respectively.

For exceptional cases, matherr(3M) tabulates the values to be returned by pow() as
specified by SVID3 and XPG3.

These functions will fail if:

Domain Error The value of x is negative and y is a finite non-integer.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The pow() function sets errno to EDOM if the value of x is
negative and y is non-integral.

Pole Error The value of x is 0 and y is negative.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the divide-by-zero floating-point
exception is raised.

Range Error The result overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception is raised.

The pow() function sets errno to EDOM if the value to be returned
would cause overflow.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling pow(). On return, if errno is
non-zero, an error has occurred. The powf() and powl() functions do not set errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

pow(3M)

ERRORS

USAGE

ATTRIBUTES

Extended Library Functions 873

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

exp(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M), math.h(3HEAD),
matherr(3M), attributes(5), standards(5)

Prior to Solaris 2.6, there was a conflict between the pow function in this library and
the pow function in the libmp library. This conflict was resolved by prepending mp_
to all functions in the libmp library. See mp(3MP) for details.

pow(3M)

SEE ALSO

NOTES

874 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

printDmiAttributeValues – print data in input DmiAttributeValues list

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

void printDmiAttributeValues(DmiAttributeValues_t *values);

The printDmiAttributeValues() function prints the data in the input
DmiAttributeValues list. The function prints "unknown data" for those values that
contain invalid data.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

libdmi(3LIB), attributes(5)

printDmiAttributeValues(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 875

printDmiDataUnion – print data in input data union

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

void printDmiDataUnion(DmiDataUnion_t *data);

The printDmiDataUnion() function prints the data in the input data union. The
output depends on the type of DMI data in the union.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

libdmi(3LIB), attributes(5)

printDmiDataUnion(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

876 man pages section 3: Extended Library Functions • Last Revised 12 Oct 1998

printDmiString – print a DmiString

cc [flag ...] file ... -ldmi -lnsl -lrwtool [library ...]

#include <dmi/util.hh>

void printDmiString(DmiString_t *dstr);

The printDmiString() function prints a DmiString.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level MT-Safe

newDmiString(3DMI), libdmi(3LIB), attributes(5)

printDmiString(3DMI)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 877

Privilege – Perl interface to Privileges

use Sun::Solaris::Privilege qw(:ALL);

This module provides wrappers for the Privilege-related system and library calls. Also
provided are constants from the various Privilege-related headers and
dynamically-generated constants for all the privileges and privilege sets.

PRIV_STR_SHORT, PRIV_STR_LIT, PRIV_STR_PORT, PRIV_ON, PRIV_OFF,
PRIV_SET, PRIV_AWARE, and PRIV_DEBUG.

getppriv($which)
This function returns the process privilege set specified by $which.

setppriv($op, $which, $set)
This function modified the privilege set specified by $which in the as specified by
the $op and $set arguments. If $op is PRIV_ON, the privileges in $set are added
to the set specified. If $op is PRIV_OFF, the privileges in $set are removed from
the set specified. If $op is PRIV_SET, the specified set is made equal to $set.

getpflags($flag)
This function returns the value associated with process $flag or undef on error.
Possible values for $flag are PRIV_AWARE and PRIV_DEBUG.

setppflags($flag, $val)
This function sets the process flag $flag to $val.

priv_fillset()
This function returns a new privilege set with all privileges set.

priv_emptyset()
This function returns a new empty privilege set.

priv_isemptyset($set)
This function returns whether or not $set is empty.

priv_isfullset($set)
This function returns whether or not $set is full.

priv_isequalset($a, $b)
This function returns whether sets $a and $b are equal.

priv_issubset($a, $b)
This function returns whether set $a is a subset of $b.

priv_ismember($set, $priv)
This function returns whether $priv is a member of $set.

priv_ineffect($priv)
This function returned whether $priv is in the process’s effective set.

priv_intersect($a, $b)
This function returns a new privilege set which is the intersection of $a and $b.

priv_union($a, $b)
This function returns a new privilege set which is the union of $a and $b.

Privilege(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Constants

Functions

878 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

priv_inverse($a)
This function returns a new privilege set which is the inverse of $a.

priv_addset($set, $priv)
This functon adds the privilege $priv to $set.

priv_copyset($a)
This function returns a copy of the privilege set $a.

priv_delset($set, $priv)
This function remove the privilege $priv from $set.

None.

None.

By default nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module:

:SYSCALLS getppriv(), setppriv()

:LIBCALLS priv_addset(), priv_copyset(), priv_delset(),
priv_emptyset(), priv_fillset(), priv_intersect(),
priv_inverse(), priv_isemptyset(), priv_isequalset
(), priv_isfullset(), priv_ismember(),
priv_issubset(), priv_gettext(), priv_union(),
priv_set_to_str(), priv_str_to_set()

:CONSTANTS PRIV_STR_SHORT, PRIV_STR_LIT, PRIV_STR_PORT, PRIV_ON,
PRIV_OFF, PRIV_SET, PRIV_AWARE, PRIV_DEBUG, plus
constants for all privileges and privilege sets.

:VARIABLES %PRIVILEGES, %PRIVSETS

:ALL :SYSCALLS, :LIBCALLS, :CONSTANTS, :VARIABLES

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u

Interface Stability Evolving

getpflags(2), getppriv(2), priv_addset(3C), priv_set(3C),
priv_str_to_set(3C), attributes(5), privileges(5)

Privilege(3PERL)

Class methods

Object methods

Exports

ATTRIBUTES

SEE ALSO

Extended Library Functions 879

Project – Perl interface to Projects

use Sun::Solaris::Project qw(:ALL);

my $projid = getprojid();

This module provides wrappers for the Project-related system calls and the
libproject(3LIB) library. Also provided are constants from the various
Project-related headers.

MAXPROJID, PROJNAME_MAX, PROJF_PATH, PROJECT_BUFSZ, SETPROJ_ERR_TASK,
and SETPROJ_ERR_POOL.

getprojid()
This function returns the numeric project ID of the calling process or undef if the
underlying getprojid(2) system call is unsuccessful.

setproject($project, $user, $flags)
If $user is a member of the project specified by $project, setproject()
creates a new task and associates the appropriate resource controls with the
process, task, and project. This function returns 0 on success. If the underlying task
creation fails, SETPROJ_ERR_TASK is returned. If pool assignment fails,
SETPROJ_ERR_POOL is returned. If any resource attribute assignments fail, an
integer value corresponding to the offset of the failed attribute assignment in the
project database is returned. See setproject(3PROJECT).

activeprojects()
This function returns a list of the currently active projects on the system. Each value
in the list is the numeric ID of a currently active project.

getprojent()
This function returns the next entry from the project database. When called in a
scalar context, getprojent() returns only the name of the project. When called in
a list context, getprojent() returns a 6-element list consisting of:

($name, $projid, $comment, \@users, \@groups, $attr)

\@users and \@groups are returned as arrays containing the appropriate user or
project lists. On end-of-file undef is returned.

setprojent()
This function rewinds the project database to the beginning of the file.

endprojent()
This function closes the project database.

getprojbyname($name)
This function searches the project database for an entry with the specified nam. It
returns a 6-element list as returned by getprojent() if the entry is found and
undef if it cannot be found.

getprojbyid($id)
This function searches the project database for an entry with the specified ID. It
returns a 6-element list as returned by getprojent() if the entry is found or
undef if it cannot be found.

Project(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Constants

Functions

880 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

getdefaultproj($user)
This function returns the default project entry for the specified user in the same
format as getprojent(). It returns undef if the user cannot be found. See
getdefaultproj(3PROJECT) for information about the lookup process.

fgetprojent($filehandle)
This function returns the next project entry from $filehandle, a Perl file handle
that must refer to a previously opened file in project(4) format. Return values are
the same as for getprojent().

inproj($user, $project)
This function checks whether the specified user is able to use the project. This
function returns true if the user can use the project and false otherwise. See
inproj(3PROJECT).

getprojidbyname($project)
This function searches the project database for the specified project. It returns the
project ID if the project is found and undef if it is not found.

None.

None.

By default nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module:

:SYSCALLS getprojid()

:LIBCALLS setproject(), activeprojects(), getprojent(),
setprojent(), endprojent(), getprojbyname(),
getprojbyid(), getdefaultproj(), fgetprojent(),
inproj(), and getprojidbyname()

:CONSTANTS MAXPROJID, PROJNAME_MAX, PROJF_PATH, PROJECT_BUFSZ,
SETPROJ_ERR_TASK, and SETPROJ_ERR_POOL

:ALL :SYSCALLS, :LIBCALLS, and :CONSTANTS

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u

Interface Stability Evolving

getprojid(2), getdefaultproj(3PROJECT), inproj(3PROJECT),
libproject(3LIB), setproject(3PROJECT), project(4), attributes(5)

Project(3PERL)

Class methods

Object methods

Exports

ATTRIBUTES

SEE ALSO

Extended Library Functions 881

project_walk – visit active project IDs on current system

cc [flag ...] file... -lproject [library ...]

#include <project.h>

int project_walk(int (*callback)(const projid_t project, void
*walk_data), void *init_data);

The project_walk() function provides a mechanism for the application author to
examine all active projects on the current system. The callback function provided by the
application is given the ID of an active project at each invocation and can use the
walk_data to record its own state. The callback function should return non-zero if it
encounters an error condition or attempts to terminate the walk prematurely;
otherwise the callback function should return 0.

Upon successful completion, project_walk() returns 0. It returns −1 if the callback
function returned a non-zero value or if the walk encountered an error, in which case
errno is set to indicate the error.

The project_walk() function will fail if:

ENOMEM There is insufficient memory available to set up the initial data for
the walk.

Other returned error values are presumably caused by the callback function.

EXAMPLE 1 Count the number of projects available on the system.

The following example counts the number of projects available on the system.

#include <sys/types.h>
#include <project.h>
#include <stdio.h>

typedef struct wdata {
uint_t count;

} wdata_t;

wdata_t total_count;

int
simple_callback(const projid_t p, void *pvt)
{

wdata_t *w = (wdata_t *)pvt;
w->count++;
return (0);

}

...

total_count.count = 0;
errno = 0;
if ((n = project_walk(simple_callback, &total_count)) >= 0)

(void) printf("count = %u\n", total_count.count);

project_walk(3PROJECT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

882 man pages section 3: Extended Library Functions • Last Revised 7 Oct 2003

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

getprojid(2), settaskid(2), attributes(5)

project_walk(3PROJECT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 883

ptree_add_node, ptree_delete_node – add or delete node to or from tree

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_add_node(picl_nodehdl_t parh, picl_nodehdl_t chdh);

int ptree_delete_node(ptree_delete_node nodeh);

The ptree_add_node() function adds the node specified by handle chdh as a child
node to the node specified by the handle parh. PICL_CANTPARENT is if the child node
already has a parent.

The ptree_delete_node() function deletes the node specified by handle nodeh and
all its descendant nodes from the tree.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTNODE Node a node

PICL_CANTPARENT Already has a parent

PICL_TREEBUSY PICL tree is busy

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

attributes(5)

ptree_add_node(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

884 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ptree_add_prop, ptree_delete_prop – add or delete a property

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_add_prop(picl_nodehdl_t nodeh, picl_prophdl_t proph);

int ptree_delete_prop(picl_prophdl_t proph);

The ptree_add_prop() function adds the property specified by the handle proph to
the list of properties of the node specified by handle nodeh.

The ptree_delete_prop() function deletes the property from the property list of
the node. For a table property, the entire table is deleted.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTTABLE Not a table

PICL_NOTPROP Not a property

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_PROPEXISTS Property already exists

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_create_prop(3PICLTREE), attributes(5)

ptree_add_prop(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 885

ptree_create_and_add_node – create and add node to tree and return node handle

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_create_and_add_node(picl_nodehdl_t parh, const char
*name, const char *classname, picl_nodehdl_t *nodeh);

The ptree_create_and_add_node() function creates a node with the name and
PICL class specified by name and classname respectively. It then adds the node as a a
child to the node specified by parh. The handle of the new node is returned in nodeh.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_INVALIDARG Invalid argument

PICL_VALUETOOBIG Value exceeds maximum size

PICL_NOTSUPPORTED Property version not supported

PICL_CANTDESTROY Attempting to destroy before delete

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_create_node(3PICLTREE), ptree_add_node(3PICLTREE), attributes(5)

ptree_create_and_add_node(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

886 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

ptree_create_and_add_prop – create and add property to node and return property
handle

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_create_and_add_prop(picl_nodehdl_t nodeh,
ptree_propinfo_t *infop, void *vbuf, picl_prophdl_t *proph);

The ptree_create_and_add_prop() function creates a property using the
property information specified in infop and the value buffer vbuf and adds the property
to the node specified by nodeh. If proph is not NULL, the handle of the property added
to the node is returned in proph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTSUPPORTED Property version not supported

PICL_VALUETOOBIG Value exceeds maximum size

PICL_NOTPROP Not a property

PICL_NOTTABLE Not a table

PICL_PROPEXISTS Property already exists

PICL_RESERVEDNAME Property name is reserved

PICL_INVREFERENCE Invalid reference property value

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_create_prop(3PICLTREE), ptree_add_prop(3PICLTREE), attributes(5)

ptree_create_and_add_prop(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 887

ptree_create_node, ptree_destroy_node – create or destroy a node

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_create_node(char *name, char *clname, picl_nodehdl_t
*nodeh);

int ptree_destroy_node(picl_nodehdl_t nodeh);

The ptree_create_node() function creates a node and sets the "name" property
value to the string specified in name and the "class" property value to the string
specified in clname. The handle of the new node is copied into the location given by
nodeh.

The ptree_destroy_node() function destroys the node specified by nodeh and
frees up any allocated space. The node to be destroyed must have been previously
deleted by ptree_delete_node (see ptree_add_node(3PICLTREE)). Otherwise,
PICL_CANTDESTROY is returned.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_INVALIDARG Invalid argument

PICL_VALUETOOBIG Value exceeds maximum size

PICL_NOTSUPPORTED Property version not supported

PICL_CANTDESTROY Attempting to destroy before delete

PICL_TREEBUSY PICL tree is busy

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_add_node(3PICLTREE), attributes(5)

ptree_create_node(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

888 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ptree_create_prop, ptree_destroy_prop – create or destroy a property

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_create_prop(ptree_propinfo_t *pinfo, void *valbuf,
picl_prophdl_t *proph);

int ptree_destroy_prop(picl_prophdl_t proph);

The ptree_create_prop() function creates a property using the information
specified in pinfo, which includes the name, type, access mode, and size of the
property, as well as the read access function for a volatile property. The value of the
property is specified in the buffer valbuf, which may be NULL for volatile properties.
The handle of the property created is copied into the location given by proph. See
libpicltree(3PICLTREE) for more information on the structure of
ptree_propinfo_t structure.

The ptree_destroy_prop() function destroys the property specified by the handle
proph. For a table property, the entire table is destroyed. The property to be destroyed
must have been previously deleted.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTSUPPORTED Property version not supported

PICL_VALUETOOBIG Value exceeds maximum size

PICL_NOTPROP Not a property

PICL_CANTDESTROY Attempting to destroy before delete

PICL_RESERVEDNAME Property name is reserved

PICL_INVREFERENCE Invalid reference property value

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

ptree_create_prop(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 889

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

libpicltree(3PICLTREE), ptree_add_prop(3PICLTREE), attributes(5)

ptree_create_prop(3PICLTREE)

SEE ALSO

890 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ptree_create_table, ptree_add_row_to_table – create a table object

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_create_table(picl_prophdl_t *tbl_hdl);

int ptree_add_row_to_table(picl_prophdl_t tbl_hdl, int nprops,
picl_prophdl_t *proph);

The ptree_create_table() function creates a table object and returns the handle
of the table in tbl_hdl.

The ptree_add_row_to_table() function adds a row of properties to the table
specified by tbl_hdl. The handles of the properties of the row are specified in the proph
array and nprops specifies the number of handles in the array. The number of columns
in the table is determined from the first row added to the table. If extra column values
are specified in subsequent rows, they are ignored. The row is appended to the end of
the table.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_INVALIDARG Invalid argument

PICL_NOTPROP Not a property

PICL_NOTTABLE Not a table

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

attributes(5)

ptree_create_table(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 891

ptree_find_node – find node with given property and value

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_find_node(picl_nodehdl_t rooth, char *pname,
picl_prop_type_t ptype, void *pval, size_t valsize, picl_nodehdl_t
*retnodeh);

The ptree_find_node() function visits the nodes in the subtree under the node
specified by rooth. The handle of the node that has the property whose name, type,
and value matches the name, type, and value specified in pname, ptype, and pval
respectively, is returned in the location given by retnodeh. The argument valsize gives
the size of the value in pval. The first valsize number of bytes of the property value is
compared with pval.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_NODENOTFOUND is returned if there is no node that matches the property
criteria can be found.

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_PROPNOTFOUND Property not found

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_get_prop_by_name(3PICLTREE), ptree_get_propinfo(3PICLTREE),
ptree_get_propval(3PICLTREE), ptree_get_propval_by_name(3PICLTREE),
attributes(5)

ptree_find_node(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

892 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

ptree_get_first_prop, ptree_get_next_prop – get a property handle of the node

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_get_first_prop(picl_nodehdl_t nodeh, picl_prophdl_t
*proph);

int ptree_get_next_prop(picl_prophdl_t proph, picl_prophdl_t
*nextproph);

The ptree_get_first_prop() function gets the handle of the first property of the
node specified by nodeh and copies it into the location specified by proph.

The ptree_get_next_prop() function gets the handle of the next property after
the one specified by proph from the list of properties of the node and copies it into the
location specified by nextproph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTPROP Not a property

PICL_NOTNODE Not a node

PICL_ENDOFLIST End of list

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_get_prop_by_name(3PICLTREE), attributes(5)

ptree_get_first_prop(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 893

ptree_get_frutree_parent – get frutree parent node for a given device node

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_get_frutree_parent(picl_nodehdl_t devh, picl_nodehdl_t
*frutreeh);

The devices under the /platform subtree of the PICLTREE are linked to their FRU
containers represented in the /frutree using PICL reference properties. The
ptree_get_frutree_parent() function returns the handle of the node in the
/frutree subtree that is the FRU parent or container of the the device specified by
the node handle, devh. The handle is returned in the frutreeh argument.

Upon successful completion, 0 is returned. Otherwise a non-negative integer is
returned to indicate an error.

PICL_FAILURE General system failure

PICL_INVALIDHANDLE Invalid handle

PICL_PROPNOTFOUND Property not found

PICL_STALEHANDLE Stale handle

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_get_propinfo(3PICLTREE), ptree_get_propval(3PICLTREE),
ptree_get_propval_by_name(3PICLTREE),
ptree_get_prop_by_name(3PICLTREE), attributes(5)

ptree_get_frutree_parent(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

894 man pages section 3: Extended Library Functions • Last Revised 5 Feb 2004

ptree_get_next_by_row, ptree_get_next_by_col – access a table property

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_get_next_by_row(picl_prophdl_t proph, picl_prophdl_t
*rowh);

int ptree_get_next_by_col(picl_prophdl_t proph, picl_prophdl_t
*colh);

The ptree_get_next_by_row() function copies the handle of the property that is
in the next column of the table and on the same row as the property proph. The handle
is copied into the location given by rowh.

The ptree_get_next_by_col() function copies the handle of the property that is
in the next row of the table and on the same column as the property proph. The handle
is copied into the location given by colh.

If there are no more rows or columns, this function returns the value
PICL_ENDOFLIST.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTTABLE Not a table

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_ENDOFLIST End of list

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_create_table(3PICLTREE), attributes(5)

ptree_get_next_by_row(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 895

ptree_get_node_by_path – get handle of node specified by PICL tree path

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_get_node_by_path(const char *ptreepath, picl_nodehdl_t
*nodeh);

The ptree_get_node_by_path() function copies the handle of the node in the
PICL tree specified by the path given in ptreepath into the location nodeh.

The syntax of a PICL tree path is:

[def_propname:]/[def_propval[match_cond] ...]

where def_propname prefix is a shorthand notation to specify the name of the property
whose value is specified in def_propval, and the match_cond expression specifies the
matching criteria for that node in the form of one or more pairs of property names and
values such as

[@address][?prop_name[=prop_val] ...]

where ’@’ is a shorthand notation to refer to the device address, which is followed by
the device addres value address. The address value is matched with the value of the
property "bus-addr" if it exists. If no "bus-addr" property exists, then it is matched
with the value of the property "UnitAddress". Use the ’?’ notation to limit explicitly
the comparison to "bus-addr" or "UnitAddress" property. The expression following ’?’
specifies matching property name and value pairs, where prop_name gives the
property name and prop_val gives the property value for non PICL_PTYPE_VOID
properties. The values for properties of type PICL_PTYPE_TABLE,
PICL_PTYPE_BYTEARRAY, and PICL_PTYPE_REFERENCE cannot be specified in the
match_cond expression.

A "_class" property value of "picl" may be used to match nodes of all PICL classes.

All valid paths must start at the root node denoted by ’/’.

If no prefix is specified for the path, then the prefix defaults to the "name" property.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_NOTNODE is returned if there is no node corresponding to the specified path.

PICL_INVALIDARG Invalid argument

PICL_NOTNODE Not a node

PICL_FAILURE General system failure

ptree_get_node_by_path(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

896 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_get_propval_by_name(3PICLTREE), attributes(5)

ptree_get_node_by_path(3PICLTREE)

ATTRIBUTES

SEE ALSO

Extended Library Functions 897

ptree_get_prop_by_name – get a property handle by name

cc [flag] file... -lpicltree [library...]

#include <picltree.h>

int ptree_get_prop_by_name(picl_nodehdl_t nodeh, char *name,
picl_prophdl_t *proph);

The ptree_get_prop_by_name() function gets the handle of the property, whose
name is specified in name, of the node specified by the handle nodeh. The property
handle is copied into the location specified by proph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_RESERVEDNAME is returned if the name specified is a PICL reserved name
property. Reserved name properties do not have an associated property handle. Use
ptree_get_propval_by_name(3PICLTREE) to get the value of a reserved property.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_NOTNODE Not a node

PICL_RESERVEDNAME Property name is reserved

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_PROPNOTFOUND Property not found

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_get_first_prop(3PICLTREE),
ptree_get_propval_by_name(3PICLTREE), attributes(5)

ptree_get_prop_by_name(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

898 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ptree_get_propinfo – get property information

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_get_propinfo(picl_prophdl_t proph, ptree_propinfo_t
*pi);

The ptree_get_propinfo() function gets the information about the property
specified by handle proph and copies it into the location specified by pi. See
libpicltree(3PICLTREE) for more information about ptree_propinfo_t
structure.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_NOTPROP Not a property

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libpicltree(3PICLTREE), ptree_create_prop(3PICLTREE), attributes(5)

ptree_get_propinfo(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 899

ptree_get_propinfo_by_name – get property information and handle of named
property

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_get_propinfo_by_name(picl_nodehdl_t nodeh, const char
*pname, ptree_propinfo_t *pinfo, picl_prophdl_t *proph);

The ptree_get_propinfo_by_name() function copies the property information of
the property specified by pname in the node nodeh into the location given by pinfo. The
handle of the property is returned in the location proph.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_NOTNODE Not a node

PICL_PROPNOTFOUND Property not found

PICL_RESERVEDNAME Reserved property name specified

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

picl_get_propinfo(3PICL), picl_get_prop_by_name(3PICL), attributes(5)

ptree_get_propinfo_by_name(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

900 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

ptree_get_propval, ptree_get_propval_by_name – get the value of a property

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_get_propval(picl_prophdl_t proph, void *valbuf, size_t
nbytes);

int ptree_get_propval_by_name(picl_nodehdl_t nodeh, void *name,
void *valbuf, size_t nbytes);

The ptree_get_propval() function gets the value of the property specified by the
handle proph and copies it into the buffer specified by valbuf. The size of the buffer
valbuf is specifed in nbytes.

The ptree_get_propval_by_name() function gets the value of the property,
whose name is specified by name, from the node specified by handle nodeh. The value
is copied into the buffer specified by valbuf. The size of the buffer is specified by nbytes.

For volatile properties, the read access function provided by the plug-in publishing the
property is invoked.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_VALUETOOBIG Value too big

PICL_NOTPROP Not a property

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_PROPNOTFOUND Property not found

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_update_propval(3PICLTREE), attributes(5)

ptree_get_propval(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 901

ptree_get_root – get the root node handle

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_get_root(picl_nodehdl_t *nodeh);

The ptree_get_root() function copies the handle of the root node of the PICL tree
into the location specified by nodeh.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_INVALIDARG Invalid argument

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libpicltree(3PICLTREE), ptree_create_node(3PICLTREE), attributes(5)

ptree_get_root(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

902 man pages section 3: Extended Library Functions • Last Revised 28 Mar 2000

ptree_init_propinfo – initialize ptree_propinfo_t structure

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_init_propinfo(ptree_propinfo_t *infop, int version, int
ptype, int pmode, size_t psize, char *pname, int
(*readfn)(ptree_rarg_t *, void *), int (*writefn)(ptree_warg_t *,
const void *));

The ptree_init_propinfo() function initializes a ptree_propinfo_t property
information structure given by location infop with the values provided by the
arguments.

The version argument specifies the version of the ptree_propinfo_t structure.
PTREE_PROPINFO_VERSION gives the current version. The arguments ptype, pmode,
psize, and pname specify the property’s PICL type, access mode, size, and name. The
maximum size of a property name is defined by PICL_PROPNAMELEN_MAX. The
arguments readfn and writefn specify a volatile property’s read and write access
functions. For non-volatile properties, these are set to NULL.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_INVALIDARG Invalid argument

PICL_NOTSUPPORTED Property version not supported

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_get_propinfo(3PICLTREE), attributes(5)

ptree_init_propinfo(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 903

ptree_post_event – post a PICL event

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_post_event(const char *ename, const void *earg, size_t
size, void (*completion_handler)(char *ename, void *earg, size_t
size));

The ptree_post_event() function posts the specified event and its arguments to
the PICL framework. The argument ename specifies a pointer to a string containing the
name of the PICL event. The arguments earg and size specify a pointer to a buffer
containing the event arguments and size of that buffer, respectively. The argument
completion_handler specifies the completion handler to be called after the event has
been dispatched to all handlers. A NULL value for a completion handler indicates that
no handler should be called. The PICL framework invokes the completion handler of
an event with the ename, earg, and size arguments specified at the time of the posting of
the event.

PICL events are dispatched in the order in which they were posted. They are
dispatched by executing the handlers registered for that event. The handlers are
invoked in the order in which they were registered.

New events will not begin execution until all previous events have finished execution.
Specifically, an event posted from an event handler will not begin execution until the
current event has finished execution.

The caller may not reuse or reclaim the resources associated with the event name and
arguments until the invocation of the completion handler. The completion handlers
are normally used to reclaim any resources allocated for the posting of an event.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error, the event is not posted, and the completion handler is
not invoked.

PICL_INVALIDARG Invalid argument

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_register_handler(3PICLTREE),
ptree_unregister_handler(3PICLTREE), attributes(5)

ptree_post_event(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

904 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

ptree_register_handler – register a handler for the event

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_register_handler(const char *ename, void
(*evt_handler)(const char *ename, const void *earg, size_t size,
void *cookie), void *cookie);

The ptree_register_handler() function registers an event handler for a PICL
event. The argument ename specifies the name of the PICL event for which to register
the handler. The argument evt_handler specifies the event handler function. The
argument cookie is a pointer to caller-specific data to be passed as an argument to the
event handler when it is invoked.

The event handler function must be defined as

void evt_handler(const char *ename, const void *earg, \
size_t size, void *cookie)

where, ename, earg, size, and cookie are the arguments passed to the event handler when
it is invoked. The argument ename is the PICL event name for which the handler is
invoked. The arguments earg and size gives the pointer to the event argument buffer
and its size, respectively. The argument cookie is the pointer to the caller specific data
registered with the handler. The arguments ename and earg point to buffers that are
transient and shall not be modified by the event handler or reused after the event
handler finishes execution.

The PICL framework invokes the event handlers in the order in which they were
registered when dispatching an event. If the event handler execution order is required
to be the same as the plug-in dependency order, then a plug-in should register its
handlers from its init function. The handlers that do not have any ordering
dependencies on other plug-in handlers can be registered at any time.

The registered handler may be called at any time after this function is called.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error and the handler is not registered.

PICL_INVALIDARG Invalid argument

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_unregister_handler(3PICLTREE), attributes(5)

ptree_register_handler(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 905

ptree_unregister_handler – unregister the event handler for the event

cc [flag ...] file ... -lpicltree [library ...]
#include <picltree.h>

void ptree_register_handler(const char *ename, void
(*evt_handler)(const char *ename, const void *earg, size_t size,
void *cookie), void *cookie);

The ptree_unregister_handler() function unregisters the event handler for the
specified event. The argument ename specifies the name of the PICL event for which to
unregister the handler. The argument evt_handler specifies the event handler function.
The argument cookie is the pointer to the caller-specific data given at the time of
registration of the handler.

If the handler being unregistered is currently executing, then this function will block
until its completion. Because of this, locks acquired by the handlers should not be held
across the call to ptree_unregister_handler() or a deadlock may result.

The ptree_unregister_handler() function must not be invoked from the
handler that is being unregistered.

This function does not return a value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ptree_register_handler(3PICLTREE), attributes(5)

ptree_unregister_handler(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

906 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

ptree_update_propval, ptree_update_propval_by_name – update a property value

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_update_propval(picl_prophdl_t proph, void *valbuf, size_t
nbytes);

int ptree_update_propval_by_name(picl_nodehdl_t nodeh, char *name,
void *valbuf, size_t nbytes);

The ptree_update_propval() function updates the value of the property specified
by proph with the value specified in the buffer valbuf. The size of the buffer valbuf is
specified in nbytes.

The ptree_update_propval_by_name() function updates the value of the
property, whose name is specified by name, of the node specified by handle nodeh. The
new value is specified in the buffer valbuf, whose size is specified in nbytes.

For volatile properties, the write access function provided by the plug-in publishing
the property is invoked.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_STALEHANDLE is returned if the handle is no longer valid. This occurs if the
PICL tree was refreshed or reinitialized.

PICL_INVALIDHANDLE is returned if the specified handle never existed.

PICL_VALUETOOBIG Value too big

PICL_NOTPROP Not a property

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle

PICL_STALEHANDLE Stale handle

PICL_PROPNOTFOUND Property not found

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_get_propval(3PICLTREE), attributes(5)

ptree_update_propval(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 907

ptree_walk_tree_by_class – walk subtree by class

cc [flag...] file... -lpicltree [library...]

#include <picltree.h>

int ptree_walk_tree_by_class(picl_nodehdl_t rooth, const char
*classname, void *c_args, int (*callback)(picl_nodehdl_t nodeh, void
*c_args));

The ptree_walk_tree_by_class() function visits all the nodes of the subtree
under the node specified by rooth. The PICL class name of the visited node is
compared with the class name specified by classname. If the class names match, the
callback function specified by callback is called with the matching node handle and the
argument provided in c_args. If the class name specified in classname is NULL, then the
callback function is invoked for all the nodes.

The return value from the callback function is used to determine whether to continue
or terminate the tree walk. The callback function returns PICL_WALK_CONTINUE or
PICL_WALK_TERMINATE to continue or terminate the tree walk.

Upon successful completion, 0 is returned. On failure, a non-negative integer is
returned to indicate an error.

PICL_NOTNODE Not a node

PICL_INVALIDHANDLE Invalid handle specified

PICL_STALEHANDLE Stale handle specified

PICL_FAILURE General system failure

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

ptree_get_propval_by_name(3PICLTREE), attributes(5)

ptree_walk_tree_by_class(3PICLTREE)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

908 man pages section 3: Extended Library Functions • Last Revised 1 Aug 2000

read_vtoc, write_vtoc – read and write a disk’s VTOC

cc [flag ...] file ... -ladm [library ...]

#include <sys/vtoc.h>

int read_vtoc(int fd, struct vtoc *vtoc);

int write_vtoc(int fd, struct vtoc *vtoc);

The read_vtoc() function returns the VTOC (volume table of contents) structure
that is stored on the disk associated with the open file descriptor fd.

The write_vtoc() function stores the VTOC structure on the disk associated with
the open file descriptor fd.

The fd argument refers to any slice on a raw disk.

Upon successful completion, read_vtoc() returns a positive integer indicating the
slice index associated with the open file descriptor. Otherwise, it returns a negative
integer indicating one of the following errors:

VT_EIO An I/O error occurred.

VT_ENOTSUP This operation is not supported on this disk.

VT_ERROR An unknown error occurred.

Upon successful completion, write_vtoc() returns 0. Otherwise, it returns a
negative integer indicating one of the following errors:

VT_EINVAL The VTOC contains an incorrect field.

VT_EIO An I/O error occurred.

VT_ENOTSUP This operation is not supported on this disk.

VT_ERROR An unknown error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

fmthard(1M), format(1M), prtvtoc(1M), ioctl(2),
efi_alloc_and_init(3EXT), attributes(5), dkio(7I)

The write_vtoc() function cannot write a VTOC on an unlabeled disk. Use
format(1M) for this purpose.

read_vtoc(3EXT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

BUGS

Extended Library Functions 909

reg_ci_callback – provide a component instrumentation with a transient program
number

cc [flag ...] file ... -ldmici [library ...]

#include <dmi/ci_callback_svc.hh>

u_long reg_ci_callback();

The reg_ci_callback() function provides a component instrumentation with a
transient program number. The instrumentation uses this number to register its RPC
service provider. The prognum member of the DmiRegisterInfo structure is
populated with the return value of this function

Upon successful completion, the reg_ci_callback() function returns a transient
program number of type u_long.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-level Unafe

attributes(5)

reg_ci_callback(3DMI)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

910 man pages section 3: Extended Library Functions • Last Revised 13 Jul 1998

regexpr, compile, step, advance – regular expression compile and match routines

cc [flag…] [file…] -lgen [library…]

#include <regexpr.h>

char *compile(char *instring, char *expbuf, const char *endbuf);

int step(const char *string, const char *expbuf);

int advance(const char *string, const char *expbuf);

extern char *loc1, loc2, locs;

extern int nbra, regerrno, reglength;

extern char *braslist[], *braelist[];

These routines are used to compile regular expressions and match the compiled
expressions against lines. The regular expressions compiled are in the form used by
ed(1).

The parameter instring is a null-terminated string representing the regular expression.

The parameter expbuf points to the place where the compiled regular expression is to
be placed. If expbuf is NULL, compile() uses malloc(3C) to allocate the space for the
compiled regular expression. If an error occurs, this space is freed. It is the user’s
responsibility to free unneeded space after the compiled regular expression is no
longer needed.

The parameter endbuf is one more than the highest address where the compiled
regular expression may be placed. This argument is ignored if expbuf is NULL. If the
compiled expression cannot fit in (endbuf−expbuf) bytes, compile() returns NULL and
regerrno (see below) is set to 50.

The parameter string is a pointer to a string of characters to be checked for a match.
This string should be null-terminated.

The parameter expbuf is the compiled regular expression obtained by a call of the
function compile().

The function step() returns non-zero if the given string matches the regular
expression, and zero if the expressions do not match. If there is a match, two external
character pointers are set as a side effect to the call to step(). The variables set in
step() are loc1 and loc2. loc1 is a pointer to the first character that matched the
regular expression. The variable loc2 points to the character after the last character
that matches the regular expression. Thus if the regular expression matches the entire
line, loc1 points to the first character of string and loc2 points to the null at the end
of string.

The purpose of step() is to step through the string argument until a match is found
or until the end of string is reached. If the regular expression begins with ^, step()
tries to match the regular expression at the beginning of the string only.

regexpr(3GEN)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 911

The advance() function is similar to step(); but, it only sets the variable loc2 and
always restricts matches to the beginning of the string.

If one is looking for successive matches in the same string of characters, locs should
be set equal to loc2, and step() should be called with string equal to loc2. locs is
used by commands like ed and sed so that global substitutions like s/y*//g do not
loop forever, and is NULL by default.

The external variable nbra is used to determine the number of subexpressions in the
compiled regular expression. braslist and braelist are arrays of character
pointers that point to the start and end of the nbra subexpressions in the matched
string. For example, after calling step() or advance() with string sabcdefg and
regular expression \(abcdef\), braslist[0] will point at a and braelist[0]
will point at g. These arrays are used by commands like ed and sed for substitute
replacement patterns that contain the \n notation for subexpressions.

Note that it is not necessary to use the external variables regerrno, nbra, loc1,
loc2 locs, braelist, and braslist if one is only checking whether or not a string
matches a regular expression.

EXAMPLE 1 The following is similar to the regular expression code from grep:

#include<regexpr.h>
. . .
if(compile(*argv, (char *)0, (char *)0) == (char *)0)

regerr(regerrno);
. . .
if (step(linebuf, expbuf))

succeed();

If compile() succeeds, it returns a non-NULL pointer whose value depends on
expbuf. If expbuf is non-NULL, compile() returns a pointer to the byte after the last
byte in the compiled regular expression. The length of the compiled regular expression
is stored in reglength. Otherwise, compile() returns a pointer to the space
allocated by malloc(3C).

The functions step() and advance() return non-zero if the given string matches the
regular expression, and zero if the expressions do not match.

If an error is detected when compiling the regular expression, a NULL pointer is
returned from compile() and regerrno is set to one of the non-zero error numbers
indicated below:

ERROR MEANING

11 Range endpoint too large.

16 Bad Number.

25 "\digit" out or range.

regexpr(3GEN)

EXAMPLES

RETURN VALUES

ERRORS

912 man pages section 3: Extended Library Functions • Last Revised 29 Dec 1996

ERROR MEANING

36 Illegal or missing delimiter.

41 No remembered string search.

42 \(~\) imbalance.

43 Too many \(.

44 More than 2 numbers given in \]&~\}.

45 } expected after \.

46 First number exceeds second in \{~\}.

49 [] imbalance.

50 Regular expression overflow.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

ed(1), grep(1), sed(1), malloc(3C), attributes(5), regexp(5)

When compiling multi-threaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multi-threaded applications.

regexpr(3GEN)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 913

remainder, remainderf, remainderl – remainder function

cc [flag...] file... -lm [library...]

#include <math.h>

double remainder(double x, double y);

float remainderf(float x, float y);

long double remainderl(long double x, long double y);

These functions return the floating point remainder r = x − ny when y is non-zero. The
value n is the integral value nearest the exact value x/y. When |n − x/y | = ½, the
value n is chosen to be even.

The behavior of remainder() is independent of the rounding mode.

Upon successful completion, these functions return the floating point remainder r = x
− ny when y is non-zero.

If x or y is NaN, a NaN is returned.

If x is infinite or y is 0 and the other is non-NaN, a domain error occurs and a NaN is
returned.

These functions will fail if:

Domain Error The x argument is ±Inf, or the y argument is ±0 and the other
argument is non-NaN.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception is raised.

The remainder() function sets errno to EDOM if y argument is 0
or the x argument is positive or negative infinity.

An application wanting to check for error situations can set errno to 0 before calling
remainder(). On return, if errno is non-zero, an error has occurred. The
remainderf() and remainderl() functions do not set errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

abs(3C), div(3C), feclearexcept(3M), fetestexcept(3M), attributes(5),
standards(5)

remainder(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

914 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

remquo, remquof, remquol – remainder functions

cc [flag...] file... -lm [library...]

#include <math.h>

double remquo(double x, double y, int *quo);

float remquof(float x, float y, int *quo);

long double remquol(long double x, long double y, int *quo);

The remquo(), remquof(), and remquol() functions compute the same remainder
as the remainder(), remainderf(), and remainderl() functions, respectively.
See remainder(3M). In the object pointed to by quo, they store a value whose sign is
the sign of x/y and whose magnitude is congruent modulo 2n to the magnitude of the
integral quotient of x/y, where n is an integer greater than or equal to 3.

These functions return x REM y.

If x or y is NaN, a NaN is returned.

If x is ±Inf or y is 0 and the other argument is non-NaN, a domain error occurs and a
NaN is returned.

These functions will fail if:

Domain Error The x argument is Inf or the y argument is 0 and the other
argument is non-NaN.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), math.h(3HEAD), remainder(3M),
attributes(5), standards(5)

remquo(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 915

rint, rintf, rintl – round-to-nearest integral value

cc [flag...] file... -lm [library...]

#include <math.h>

double rint(double x);

float rintf(float x);

long double rintl(long double x);

These functions return the integral value (represented as a double) nearest x in the
direction of the current rounding mode.

If the current rounding mode rounds toward negative infinity, rint() is equivalent to
floor(3M). If the current rounding mode rounds toward positive infinity, rint() is
equivalent to ceil(3M).

These functions differ from the nearbyint(3M), nearbyintf(), and
nearbyintl() functions only in that they might raise the inexact floating-point
exception if the result differs in value from the argument.

Upon successful completion, these functions return the integer (represented as a
double precision number) nearest x in the direction of the current rounding mode.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

abs(3C), ceil(3M), feclearexcept(3M), fetestexcept(3M), floor(3M),
isnan(3M), math.h(3HEAD), nearbyint(3M), attributes(5), standards(5)

rint(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

916 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

round, roundf, roundl – round to nearest integer value in floating-point format

cc [flag...] file... -lm [library...]

#include <math.h>

double round(double x);

float roundf(float x);

long double roundl(long double x);

These functions round their argument to the nearest integer value in floating-point
format, rounding halfway cases away from 0, regardless of the current rounding
direction.

Upon successful completion, these functions return the rounded integer value.

If x is NaN, a NaN is returned.

If x is ±0 or ± Inf, x is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), math.h(3HEAD), attributes(5),
standards(5)

round(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 917

rsm_create_localmemory_handle, rsm_free_localmemory_handle – create or free local
memory handle

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_create_localmemory_handle(rsmapi_controller_handle_t
handle, rsm_localmemory_handle_t *l_handle, caddr_t local_vaddr,
size_t length);

int rsm_free_localmemory_handle(rsmapi_controller_handle_t handle,
rsm_localmemory_handle_t l_handle);

The rsm_create_localmemory_handle() and
rsm_free_localmemory_handle() functions are supporting functions for
rsm_memseg_import_putv(3RSM) and rsm_memseg_import_getv(3RSM).

The rsm_create_localmemory_handle() function creates a local memory handle
to be used in the I/O vector component of a scatter-gather list of subsequent
rsm_memseg_import_putv() and rsm_memseg_import_getv() calls. The handle
argument specifies the controller handle obtained from
rsm_get_controller(3RSM). The l_handle argument is a pointer to the location for
the function to return the local memory handle. The local_vaddr argument specifies the
local virtual address; it should be aligned at a page boundary. The length argument
specifies the length of memory spanned by the handle.

The rsm_free_localmemory_handle() function unlocks the memory range for
the local handle specified by l_handle and releases the associated system resources. The
handle argument specifies the controller handle. All handles created by a process are
freed when the process exits, but the process should call
rsm_free_localmemory_handle() as soon as possible to free the system
resources.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_create_localmemory_handle() and
rsm_free_localmemory_handle() functions can return the following errors:

RSMERR_BAD_CTLR_HNDL Invalid controller handle.

RSMERR_BAD_LOCALMEM_HNDL Invalid local memory handle.

The rsm_create_localmemory_handle() function can return the following
errors:

RSMERR_BAD_LENGTH Invalid length.

RSMERR_BAD_ADDRESS Invalid address.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

rsm_create_localmemory_handle(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

918 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_putv(3RSM), attributes(5)

rsm_create_localmemory_handle(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 919

rsm_get_controller, rsm_get_controller_attr, rsm_release_controller – get or release a
controller handle

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_get_controller(char *name, rsmapi_controller_handle_t
*controller);

int rsm_get_controller_attr(rsmapi_controller_handle_t chdl,
rsmapi_controller_attr_t *attr);

int rsm_release_controller(rsmapi_controller_handle_t chdl);

The controller functions provide mechanisms for obtaining access to a controller,
determining the characteristics of the controller, and releasing the controller.

The rsm_get_controller() function acquires a controller handle through the
controller argument. The name argument is the specific controller instance (for example,
"sci0" or "loopback"). This controller handle is used for subsequent RSMAPI calls.

The rsm_get_controller_attr() function obtains a controller’s attributes
through the attr argument. The chdl argument is the controller handle obtained by the
rsm_get_controller() call. The attribute structure is defined in the <rsmapi>
header.

The rsm_release_controller() function releases the resources associated with
the controller identified by the controller handle chdl, obtained by calling
rsm_get_controller(). Each rsm_release_controller() call must have a
corresponding rsm_get_controller() call. It is illegal to access a controller or
segments exported or imported using a released controller.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_get_controller(), rsm_get_controller_attr(), and
rsm_release_controller() functions can return the following errors:

RSMERR_BAD_CTLR_HNDL Invalid controller handle.

The rsm_get_controller() and rsm_get_controller_attr() functions can
return the following errors:

RSMERR_BAD_ADDR Bad address.

The rsm_get_controller() function can return the following errors:

RSMERR_CTLR_NOT_PRESENT Controller not present.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

RSMERR_BAD_LIBRARY_VERSION Invalid library version.

rsm_get_controller(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

920 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_export_create(3RSM), rsm_memseg_import_connect(3RSM),
attributes(5)

rsm_get_controller(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 921

rsm_get_interconnect_topology, rsm_free_interconnect_topology – get or free
interconnect topology

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_get_interconnect_topology(rsm_topology_t **topology_data);

void rsm_free_interconnect_topology(rsm_topology_t *topology_data);

The rsm_get_interconnect_topology(3RSM) and
rsm_free_interconnect_topology(3RSM) functions provide for access to the
interconnect controller and connection data. The key interconnect data required for
export and import operations includes the respective cluster nodeids and the
controller names. To facilitate applications in the establishment of proper and efficient
export and import policies, a delineation of the interconnect topology is provided by
this interface. The data provided includes local nodeid, local controller name, its
hardware address, and remote connection specification for each local controller. An
application component exporting memory can thus find the set of existing local
controllers and correctly assign controllers for the creation and publishing of
segments. Exported segments may also be efficiently distributed over the set of
controllers consistent with the hardware interconnect and application software. An
application component which is to import memory must be informed of the segment
id(s) and controller(s) used in the exporting of memory, this needs to be done using
some out-of-band mechanism. The topology data structures are defined in the
<rsmapi.h> header.

The rsm_get_interconnect_topology() returns a pointer to the topology data
in a location specified by the topology_data argument.

The rsm_free_interconnect_topology() frees the resources allocated by
rsm_get_interconnect_topology().

Upon successful completion, rsm_get_interconnect_topology() returns 0.
Otherwise, an error value is returned to indicate the error.

The rsm_get_interconnect_topology() function can return the following
errors:

RSMERR_BAD_TOPOLOGY_PTR Invalid topology pointer.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

RSMERR_BAD_ADDR Bad address.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

rsm_get_interconnect_topology(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

922 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

MT-Level MT-Safe

attributes(5)

rsm_get_interconnect_topology(3RSM)

SEE ALSO

Extended Library Functions 923

rsm_get_segmentid_range – get segment ID range

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_get_segmentid_range(const char *appid, rsm_memseg_id_t
*baseid, uint32_t *length);

RSM segment IDs can be either specified by the application or generated by the
system using the rsm_memseg_export_publish(3RSM) function. Applications that
specify segment IDs require a reserved range of segment IDs that they can use. This
can be achieved by using rsm_get_segmentid_range() and by reserving a range
of segment IDs in the segment ID configuration file, /etc/rsm/rsm.segmentid.
The rsm_get_segmentid_range() function can be used by applications to obtain
the segment ID range reserved for them. The appid argument is a null-terminated
string that identifies the application. The baseid argument points to the location where
the starting segment ID of the reserved range is returned. The length argument points
to the location where the number of reserved segment IDs is returned.

The application can use any value starting at baseid and less than baseid+length. The
application should use an offset within the range of reserved segment IDs to obtain a
segment ID such that if the baseid or length is modified, it will still be within its
reserved range.

It is the responsibility of the system administrator to make sure that the segment ID
ranges are properly administered (such that they are non-overlapping, the file on
various nodes of the cluster have identical entries, and so forth.) Entries in the
/etc/rsm/rsm.segmentid file are of the form:

#keyword appid baseid length

reserved SUNWfoo 0x600000 1000

The fields in the file are separated by tabs or blanks. The first string is a keyword
"reserve", followed by the application identifier (a string without spaces), the baseid
(the starting segment ID of the reserved range in hexadecimal), and the length (the
number of segmentids reserved). Comment lines contain a "#" in the first column. The
file should not contain blank or empty lines. Segment IDs reserved for the system are
defined in the </usr/include/rsm/rsm_common.h> header and cannot be used
by the applications.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_get_segmentid_range() function can return the following errors:

RSMERR_BAD_ADDR The address passed is invalid.

RSMERR_BAD_APPID The appid is not defined in configuration file.

RSMERR_BAD_CONF The configuration file is not present or not readable, or
the configuration file format is incorrect.

rsm_get_segmentid_range(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

924 man pages section 3: Extended Library Functions • Last Revised 8 May 2003

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Unstable

MT-Level MT-Safe

rsm_memseg_export_publish(3RSM), attributes(5)

rsm_get_segmentid_range(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 925

rsm_intr_signal_post, rsm_intr_signal_wait – signal or wait for an event

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_intr_signal_post(void *memseg, uint_t flags);

int rsm_intr_signal_wait(void *memseg, int timeout);

The rsm_intr_signal_post() and rsm_intr_signal_wait() functions are
event functions that allow synchronization between importer processes and exporter
processes. A process may block to wait for an event occurance by calling
rsm_intr_signal_wait(). A process can signal a waiting process when an event
occurs by calling rsm_intr_signal_post().

The rsm_intr_signal_post() function signals an event occurance. Either an
import segment handle (rsm_memseg_import_handle_t) or an export segment
handle (rsm_memseg_export_handle_t) may be type cast to a void pointer for the
memseg argument. If memseg refers to an import handle, the exporting process is
signalled. If memseg refers to an export handle, all importers of that segment are
signalled. The flags argument may be set to RSM_SIGPOST_NO_ACCUMULATE; this will
cause this event to be discarded if an event is already pending for the target segment.

The rsm_intr_signal_wait() function allows a process to block and wait for an
event occurance. Either an import segment handle
(rsm_memseg_import_handle_t) or an export segment handle
(rsm_memseg_export_handle_t) may be type cast to a void pointer for the memseg
argument. The process blocks for up to timeout milliseconds for an event to occur; if
the timeout value is -1, the process blocks until an event occurs or until interrupted.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_intr_signal_post() and rsm_intr_signal_wait() functions can
return the following error:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

The rsm_intr_signal_post() function can return the following error:

RSMERR_CONN_ABORTED Connection aborted.

RSMERR_REMOTE_NODE_UNREACHABL Remote node not reachable.

The rsm_intr_signal_wait() function can return the following errors:

RSMERR_INTERRUPTED Wait interrupted.

RSMERR_TIMEOUT Timer expired.

rsm_intr_signal_post(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

926 man pages section 3: Extended Library Functions • Last Revised 7 Nov 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_get_pollfd(3RSM), attributes(5)

rsm_intr_signal_post(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 927

rsm_intr_signal_wait_pollfd – wait for events on a list of file descriptors

cc [flag...] file... -lrsm [library ...]

#include <rsmapi.h>

int rsm_intr_signal_wait_pollfd(struct pollfd fds[], nfds_t nfds,
int timeout, int *numfdsp);

The rsm_intr_signal_wait_pollfd() function is similar to
rsm_intr_signal_wait(3RSM), except that it allows an application to multiplex
I/O over various types of file descriptors. Applications can use this function to wait
for interrupt signals on RSMAPI segments as well as poll for I/O events on other
non-RSMAPI file descriptors.

The fds argument is an array of pollfd structures that correspond to both RSMAPI
segments and other file descriptors. The rsm_memseg_get_pollfd(3RSM) is used to
obtain a pollfd structure corresponding to an RSMAPI segment.

The number of file descriptors that have events is returned in numfdsp. This parameter
can be set to NULL if the application is not interested in the number of file descriptors
that have events. See poll(2) for descriptions of the pollfd structure as well as the
nfds and timeout parameters.

It is the application’s responsibility to establish the validity of a pollfd structure
corresponding to an RSMAPI segment by ensuring that
rsm_memseg_release_pollfd(3RSM) has not been called on the segment or that
the segment has not been destroyed.

For file descriptors other than RSMAPI segments, the behavior of
rsm_intr_signal_wait_pollfd() is similar to poll().

Upon successful completion, rsm_intr_signal_wait_pollfd() returns 0 and the
revents member of the pollfd struct corresponding to an RSMAPI segment is set to
POLLRDNORM, indicating that an interrupt signal for that segment was received.
Otherwise, an error value is returned.

For file descriptors other than RSMAPI segments, the revents member of the
pollfd struct is identical to that returned by poll(2).

The rsm_intr_signal_wait_pollfd() function can return the following errors:

RSMERR_TIMEOUT Timeout has occured.

RSMERR_BAD_ARGS_ERRORS Invalid arguments passed.

RSMERR_BAD_ADDR An argument points to an illegal address.

RSMERR_INTERRUPTED The call was interrupted.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

rsm_intr_signal_wait_pollfd(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

928 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

poll(2), rsm_intr_signal_wait(3RSM), rsm_memseg_get_pollfd(3RSM),
rsm_memseg_release_pollfd(3RSM), attributes(5)

rsm_intr_signal_wait_pollfd(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 929

rsm_memseg_export_create, rsm_memseg_export_destroy,
rsm_memseg_export_rebind – resource allocation and management functions for
export memory segments

cc [flag...] file... -lrsm [library...]

#include <rsmapi.h>

int rsm_memseg_export_create(rsmapi_controller_handle_t controller,
rsm_memseg_export_handle_t *memseg, void *vaddr, size_t length,
uint_t flags);

int rsm_memseg_export_destroy(rsm_memseg_export_handle_t memseg);

int rsm_memseg_export_rebind(rsm_memseg_export_handle_t memseg,
void *vaddr, offset_t off, size_t length);

The rsm_memseg_export_create(), rsm_memseg_export_destroy(), and
rsm_memseg_export_rebind() functions provide for allocation and management
of resources supporting export memory segments. Exporting a memory segment
involves the application allocating memory in its virtual address space through the
System V shared memory interface or normal operating system memory allocation
functions. This is followed by the calls to create the export segment and bind physical
pages to back to allocated virtual address space.

The rsm_memseg_export_create() creates a new memory segment. Physical
memory pages are allocated and are associated with the segment. The segment
lifetime is the same as the lifetime of the creating process or until a destroy operation
is performed. The controller argument is the controller handle obtained from a prior
call to rsm_get_controller(3RSM). The export memory segment handle is
obtained through the memseg argument for use in subsequent operations. The vaddr
argument specifies the process virtual address for the segment. It must be aligned
according to the controller page size attribute. The length argument specifies the size of
the segment in bytes and must be in multiples of the controller page size. The flags
argument is a bitmask of flags. Possible values are:

RSM_ALLOW_REBIND
Unbind and rebind is allowed on the segment during its lifetime.

RSM_CREATE_SEG_DONTWAIT
The RSMAPI segment create operations rsm_memseg_export_create() and
rsm_memseg_export_publish(3RSM) should not block for resources and return
RSMERR_INSUFFICIENT_RESOURCES to indicate resource shortage.

RSM_LOCK_OPS
This segment can be used for lock operations.

The rsm_memseg_export_destroy() function deallocates the physical memory
pages associated with the segment and disconnects all importers of the segment. The
memseg argument is the export memory segment handle obtained by a call to
rsm_memseg_export_create().

rsm_memseg_export_create(3RSM)

NAME

SYNOPSIS

DESCRIPTION

930 man pages section 3: Extended Library Functions • Last Revised 8 Apr 2003

The rsm_memseg_export_rebind() function releases the current backing pages
associated with the segment and allocates new physical memory pages. This operation
is transparent to the importers of the segment. It is the responsibility of the application
to prevent data access to the export segment until the rebind operation has completed.
Segment data access during rebind does not cause a system failure but data content
results are undefined. The memseg argument is the export segment handle pointer
obtained from rsm_memseg_export_create(). The vaddr argument must be
aligned with respect to the page size attribute of the controller. The length argument
modulo controller page size must be 0. The off argument is currently unused.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_export_create(), rsm_memseg_export_destroy(), and
rsm_memseg_export_rebind() functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

The rsm_memseg_export_create() and rsm_memseg_export_rebind()
functions can return the following errors:

RSMERR_BAD_CTLR_HNDL Invalid controller handle.

RSMERR_CTLR_NOT_PRESENT Controller not present.

RSMERR_BAD_LENGTH Length zero or length exceeds controller
limits.

RSMERR_BAD_ADDR Invalid address.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

RSMERR_PERM_DENIED Permission denied.

RSMERR_NOT_CREATOR Not creator of segment.

RSMERR_REBIND_NOT_ALLOWED Rebind not allowed.

The rsm_memseg_export_create() function can return the following errors:

RSMERR_BAD_MEM_ALIGNMENT The address is not aligned on a page
boundary.

The rsm_memseg_export_rebind() function can return the following errors:

RSMERR_INTERRUPTED The operation was interrupted by a signal.

The rsm_memseg_export_destroy() function can return the following errors:

RSMERR_POLLFD_IN_USE Poll file descriptor in use.

rsm_memseg_export_create(3RSM)

RETURN VALUES

ERRORS

Extended Library Functions 931

Exporting a memory segment involves the application allocating memory in its virtual
address space through the System V Shared Memory interface or other normal
operating system memory allocation methods such as valloc() (see malloc(3C)) or
mmap(2). Memory for a file mapped with mmap() must be mapped MAP_PRIVATE.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Unstable

MT-Level MT-Safe

rsm_get_controller(3RSM), rsm_memseg_export_publish(3RSM),
attributes(5)

rsm_memseg_export_create(3RSM)

USAGE

ATTRIBUTES

SEE ALSO

932 man pages section 3: Extended Library Functions • Last Revised 8 Apr 2003

rsm_memseg_export_publish, rsm_memseg_export_unpublish,
rsm_memseg_export_republish – allow or disallow a memory segment to be imported
by other nodes

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_memseg_export_publish(rsm_memseg_export_handle_t memseg,
rsm_memseg_id_t *segment_id, rsmapi_access_entry_t access_list[],
uint_t access_list_length);

int rsm_memseg_export_unpublish(rsm_memseg_export_handle_t
memseg);

int rsm_memseg_export_republish(rsm_memseg_export_handle_t
memseg, rsmapi_access_entry_t access_list[], uint_t
access_list_length);

The rsm_memseg_export_publish(), rsm_memseg_export_unpublish(), and
rsm_memseg_export_republish() functions allow or disallow a memory
segment to be imported by other nodes.

The rsm_memseg_export_publish(3RSM) function allows the export segment
specified by the memseg argument to be imported by other nodes. It also assigns a
unique segment identifier to the segment and defines the access control list for the
segment. The segment_id argument is a pointer to an identifier which is unique on the
publishing node. It is the responsibility of the application to manage the assignment of
unique segment identifiers. The identifier can be optionally initialized to 0, in which
case the system will return a unique segment identifier value. The access_list argument
is composed of pairs of nodeid and access permissions. For each nodeid specified in
the list, the associated read/write permissions are provided by three octal digits for
owner, group, and other, as for Solaris file permissions. In the access control each octal
digit may have the following values:

2 write access

4 read only access

6 read and write access

An access permissions value of 0624 specifies: (1) an importer with the same uid as the
exporter has read and write access; (2) an importer with the same gid as the exporter
has write access only; and (3) all other importers have read access only. When an
access control list is provided, nodes not included in the list will be prevented from
importing the segment. However, if the access list is NULL (this will require the length
access_list_length to be specified as 0 as well), then no nodes will be excluded from
importing and the access permissions on all nodes will equal the owner-group-other
file creation permissions of the exporting process. Corresponding to the access_list
argument, the access_list_length argument specifies the number of entries in the
access_list array.

rsm_memseg_export_publish(3RSM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 933

The rsm_memseg_export_unpublish() function disallows the export segment
specified by memseg from being imported. All the existing import connections are
forcibly disconnected.

The rsm_memseg_export_republish() function changes the access control list for
the exported and published segment. Although the current import connections remain
unaffected by this call, new connections are constrained by the new access list.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_export_publish(), rsm_memseg_export_unpublish(), and
rsm_memseg_export_republish() functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

RSMERR_NOT_CREATOR Not creator of segment.

The rsm_memseg_export_publish() and rsm_memseg_export_republish()
functions can return the following errors, with the exception that only
rsm_memseg_export_publish() can return the errors related to the segment
identifier:

RSMERR_SEGID_IN_USE Segment identifier in use.

RSMERR_RESERVED_SEGID Segment identifier reserved.

RSMERR_BAD_SEGID Invalid segment identifier.

RSMERR_BAD_ACL Invalid access control list.

RSMERR_SEG_ALREADY_PUBLISHED Segment already published.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

RSMERR_LOCKS_NOT_SUPPORTED Locks not supported.

RSMERR_BAD_ADDR Bad address.

The rsm_memseg_export_republish() and rsm_memseg_export_unpublish
() functions can return the following errors:

RSMERR_SEG_NOT_PUBLISHED Segment not published.

RSMERR_INTERRUPTED The operation was interrupted by a signal.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

rsm_memseg_export_publish(3RSM)

RETURN VALUES

ERRORS

ATTRIBUTES

934 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

MT-Level MT-Safe

rsm_memseg_export_create(3RSM), attributes(5)

An attempt to publish a segment might block until sufficient resources become
available.

rsm_memseg_export_publish(3RSM)

SEE ALSO

NOTES

Extended Library Functions 935

rsm_memseg_get_pollfd, rsm_memseg_release_pollfd – get or release a poll descriptor

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_memseg_get_pollfd(void *memseg, struct pollfd *fd);

int rsm_memseg_release_pollfd(void *memseg);

The rsm_memseg_get_pollfd() and rsm_memseg_release_pollfd()
functions provide an alternative to rsm_intr_signal_wait(3RSM). The waiting
process can multiplex event waiting using the poll(2) function after first obtaining a
poll descriptor using rsm_memseg_get_pollfd(). The descriptor can subsequently
be released using rsm_memseg_release_pollfd().

As a result of a call rsm_memseg_get_pollfd(), the specified pollfd structure is
initialized with a descriptor for the specified segment (memseg) and the event
generated by rsm_intr_signal_post(3RSM). Either an export segment handle or
an import segment handle can be type cast to a void pointer. The pollfd argument can
subsequently be used with the rsm_intr_signal_wait_pollfd(3RSM) function to
wait for the event; it cannot be used with poll(). If memseg references an export
segment, the segment must be currently published. If memseg references an import
segment, the segment must be connected.

The rsm_memseg_reslease_pollfd() function decrements the reference count of
the pollfd structure associated with the specified segment. A segment unpublish,
destroy or unmap operation will fail if the reference count is non-zero.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_get_pollfd() and rsm_memseg_release_pollfd() function
can return the following error:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

poll(2), rsm_intr_signal_post(3RSM),
rsm_intr_signal_wait_pollfd(3RSM), attributes(5)

rsm_memseg_get_pollfd(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

936 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

rsm_memseg_import_connect, rsm_memseg_import_disconnect – create or break
logical commection between import and export segments

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_memseg_import_connect(rsmapi_controller_handle_t controller,
rsm_node_id_t nodeid, rsm_memseg_id_t segment_id,
rsm_permission_t perm, rsm_memseg_import_handle_t *memseg);

int rsm_memseg_import_disconnect(rsm_memseg_import_handle_t
memseg);

The rsm_memseg_import_connect() function provides a means of creating an
import segment called memseg and establishing a logical connection with an export
segment identified by the segment_id on the node specified by node_id. The controller
specified by controller must have a physical connection with the controller (see
rsm_get_interconnect_topology(3RSM)) used while exporting the segment
identified by segment_id on node specified by node_id. The perm argument specifies the
mode of access that the importer is requesting for this connection. In the connection
process, the mode of access and the importers userid and groupid are compared with
the access permissions specified by the exporter. If the request mode is not valid, the
connection request is denied. The perm argument is limited to the following octal
values:

0400 read mode

0200 write mode

0600 read/write mode

The rsm_memseg_import_disconnect() function breaks the logical connection
between the import segment and the exported segment and deallocates the resources
associated with the import segment handle memseg.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_connect() and rsm_memseg_import_disconnect()
functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

The rsm_memseg_import_connect() function can return the following errors:

RSMERR_BAD_CTLR_HNDL Invalid controller handle.

RSMERR_CTLR_NOT_PRESENT Controller not present.

RSMERR_PERM_DENIED Permission denied.

RSMERR_INSUFFICIENT_MEM Insufficient memory.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

rsm_memseg_import_connect(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 937

RSMERR_SEG_NOT_PUBLISHED_TO_NODE Segment not published to node.

RSMERR_SEG_NOT_PUBLISHED Segment not published at all.

RSMERR_BAD_ADDR Bad address.

RSMERR_REMOTE_NODE_UNREACHABLE Remote not not reachable.

RSMERR_INTERRUPTED Connection interrupted.

The rsm_memseg_import_disconnect() function can return the following errors:

RSMERR_SEG_STILL_MAPPED Segment still mapped, need to unmap
before disconnect.

RSMERR_POLLFD_IN_USE Poll file descriptor in use.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_map(3RSM), attributes(5)

rsm_memseg_import_connect(3RSM)

ATTRIBUTES

SEE ALSO

938 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

rsm_memseg_import_get, rsm_memseg_import_get8, rsm_memseg_import_get16,
rsm_memseg_import_get32, rsm_memseg_import_get64 – read from a segment

cc [flag...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_import_get(rsm_memseg_import_handle_t im_memseg,
off_t offset, void *dest_addr, size_t length);

int rsm_memseg_import_get8(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint8_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get16(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint16_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get32(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint32_t *datap, ulong_t rep_cnt);

int rsm_memseg_import_get64(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint64_t *datap, ulong_t rep_cnt);

When using interconnects that allow memory mapping (see
rsm_memseg_import_map(3RSM)), standard CPU memory operations may be used
for accessing memory of a segment. If a mapping is not provided, then explicitly
calling these functions facilitates reading from a segment. Depending on the attributes
of the extension library of the specific interconnect, these functions may involve
performing an implicit mapping before performing the data transfer. Applications can
be made interconnect-independent with respect to segment reads by using these
functions. The data access error detection is performed through the use of barriers (see
rsm_memseg_import_open_barrier(3RSM)). The default barrier operation mode
is RSM_BARRIER_MODE_IMPLICIT, meaning that around every get operation open
and close barrier are performed automatically. Alternatively, explicit error handling
may be set up for these functions (see rsm_memseg_import_set_mode(3RSM)). In
either case the barrier should be initialized prior to using these functions using
rsm_memseg_import_init_barrier(3RSM).

The rsm_memseg_import_get() function copies length bytes from the imported
segment im_memseg beginning at location offset from the start of the segment to a local
memory buffer pointed to by dest_addr.

The rsm_memseg_import_get8() function copies rep_cnt number of 8-bit quantities
from successive locations starting from offset in the imported segment to successive
local memory locations pointed to by datap.

The rsm_memseg_import_get16() functions copies rep_cnt number of 16-bit
quantities from successive locations starting from offset in the imported segment to
successive local memory locations pointed to by datap. The offset must be aligned at
half-word address boundary.

The rsm_memseg_import_get32() function copies rep_cnt number of 32-bit
quantities from successive locations starting from offset in the imported segment to
successive local memory locations pointed to by datap. The offset must be aligned at
word address boundary.

rsm_memseg_import_get(3RSM)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 939

The rsm_memseg_import_get64() function copies rep_cnt number of -bit
quantities from successive locations starting from offset in the imported segment to
successive local memory locations pointed to by datap. The offset must be aligned at
double-word address boundary.

The data transfer functions that transfer small quantities of data (that is, 8-, 16-, 32-,
and 64-bit quantities) perform byte swapping prior to the data transfer, in the event
that the source and destination have incompatible endian characteristics.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

These functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

RSMERR_BAD_ADDR Bad address.

RSMERR_BAD_MEM_ALIGNMENT Invalid memory alignment for pointer.

RSMERR_BAD_OFFSET Invalid offset.

RSMERR_BAD_LENGTH Invalid length.

RSMERR_PERM_DENIED Permission denied.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized.

RSMERR_BARRIER_FAILURE I/O completion error.

RSMERR_CONN_ABORTED Connection aborted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_init_barrier(3RSM),
rsm_memseg_import_open_barrier(3RSM),
rsm_memseg_import_set_mode(3RSM), attributes(5)

rsm_memseg_import_get(3RSM)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

940 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

rsm_memseg_import_init_barrier, rsm_memseg_import_destroy_barrier – create or
destroy barrier for imported segment

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_memseg_import_init_barrier(rsm_memseg_import_handle_t
memseg, rsm_barrier_type_t type, rsmapi_barrier_t *barrier);

int rsm_memseg_import_destroy_barrier(rsmapi_barrier_t *barrier);

The rsm_memseg_import_init_barrier() function creates a barrier for the
imported segment specified by memseg. The barrier type is specified by the type
argument. Currently, only RSM_BAR_DEFAULT is supported as a barrier type. A
handle to the barrier is obtained through the barrier argument and is used in
subsequent barrier calls.

The rsm_memseg_import_destroy_barrier() function deallocates all the
resources associated with the barrier.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_init_barrier() and
rsm_memseg_import_destroy_barrier() functions can return the following
errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer.

The rsm_memseg_import_init_barrier() function can return the following
errors:

RSMERR_INSUFFICIENT_MEM Insufficient memory.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_open_barrier(3RSM),
rsm_memseg_import_set_mode(3RSM), attributes(5)

rsm_memseg_import_init_barrier(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 941

rsm_memseg_import_map, rsm_memseg_import_unmap – map or unmap imported
segment

cc [flag...] file... –lrsm [library...]
#include <rsmapi.h>

int rsm_memseg_import_map(rsm_memseg_import_handle_t
im_memseg,void **address, rsm_attribute_t attr, rsm_permission_t
perm, off_t offset, size_t length);

int rsm_memseg_import_unmap(rsm_memseg_import_handle_t
im_memseg);

The rsm_memseg_import_map() and rsm_memseg_import_unmap() functions
provide for mapping and unmapping operations on imported segments. The mapping
operations are only available for native architecture interconnects such as Dolphin-SCI
or Sun Fire Link. Mapping a segment allows that segment to be accessed by CPU
memory operations, saving the overhead of calling the memory access primitives
described on the rsm_memseg_import_get(3RSM) and
rsm_memseg_import_put(3RSM) manual pages.

The rsm_memseg_import_map() function maps an import segment into caller’s
address space for the segment to be accessed by CPU memory operations. The
im_memseg argument represents the import segment that is being mapped. The
location where the process’s address space is mapped to the segment is pointed to by
the address argument. The attr argiment can be one fo the following:

RSM_MAP_NONE The system will choose available virtual address to map and
return its value in the address argument.

RSM_MAP_FIXED The import segment should be mapped at the requested virtual
address specified in the address argument.

The perm argument determines whether read, write or a combination of accesses are
permitted to the data being mapped. It can be either RSM_PERM_READ,
RSM_PERM_WRITE, or RSM_PERM_RDWR.

The offset argument is the byte offset location from the base of the segment being
mapped to address. The length argument indicates the number of bytes from offset to be
mapped.

The rsm_memseg_import_unmap() function unmaps a previously mapped import
segment.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_map() and rsm_memseg_import_unmap() functions
can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

The rsm_memseg_import_map() function can return the following errors:

rsm_memseg_import_map(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

942 man pages section 3: Extended Library Functions • Last Revised 13 Nov 2002

RSMERR_BAD_ADDR Invalid address.

RSMERR_BAD_LENGTH Invalid length.

RSMERR_BAD_MEM_ALIGNMENT The address is not aligned on a page
boundary.

RSMERR_BAD_OFFSET Invalid offset.

RSMERR_BAD_PERMS Invalid permissions.

RSMERR_CONN_ABORTED Connection aborted.

RSMERR_MAP_FAILED Map failure.

RSMERR_SEG_ALREADY_MAPPED Segment already mapped.

RSMERR_SEG_NOT_CONNECTED Segment not connected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_connect(3RSM), rsm_memseg_import_get(3RSM),
rsm_memseg_import_put(3RSM), rsm_memseg_get_pollfd(3RSM),
attributes(5)

rsm_memseg_import_map(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 943

rsm_memseg_import_open_barrier, rsm_memseg_import_order_barrier,
rsm_memseg_import_close_barrier – remote memory access error detection functions

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_memseg_import_open_barrier(rsmapi_barrier_t *barrier);

int rsm_memseg_import_order_barrier(rsmapi_barrier_t *barrier);

int rsm_memseg_import_close_barrier(rsmapi_barrier_t *barrier);

The rsm_memseg_import_open_barrier() and
rsm_memseg_import_close_barrier() functions provide a means of remote
memory access error detection when the barrier mode is set to
RSM_BARRIER_MODE_EXPLICIT. Open and close barrier operations define a
span-of-time interval for error detection. A successful close barrier guarantees that
remote memory access covered between the open barrier and close barrier have
completed successfully. Any individual failures which may have occured between the
open barrier and close barrier occur without any notification and the failure is not
reported until the close barrier.

The rsm_memseg_import_order_barrier() function imposes the order-of-write
completion whereby, with an order barrier, the write operations issued before the
order barrier are all completed before the operations after the order barrier. Effectively,
with the order barrier call, all writes within one barrier scope are ordered with respect
to those in another barrier scope.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_open_barrier(),
rsm_memseg_import_order_barrier(), and
rsm_memseg_import_close_barrier() functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle

RSMERR_BAD_BARRIER_PTR Invalid barrier pointer.

The rsm_memseg_close_barrier() and rsm_memseg_order_barrier()
functions can return the following errors:

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized.

RSMERR_BARRIER_NOT_OPENED Barrier not opened.

RSMERR_BARRIER_FAILURE Memory access error.

RSMERR_CONN_ABORTED Connection aborted.

rsm_memseg_import_open_barrier(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

944 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_init_barrier(3RSM),
rsm_memseg_import_set_mode(3RSM), attributes(5)

rsm_memseg_import_open_barrier(3RSM)

ATTRIBUTES

SEE ALSO

Extended Library Functions 945

rsm_memseg_import_put, rsm_memseg_import_put8, rsm_memseg_import_put16,
rsm_memseg_import_put32, rsm_memseg_import_put64 – write to a segment

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_memseg_import_put(rsm_memseg_import_handle_t im_memseg,
off_t offset, void *src_addr, size_t length);

int rsm_memseg_import_put8(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint8_t datap, ulong_t rep_cnt);

int rsm_memseg_import_put16(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint16_t datap, ulong_t rep_cnt);

int rsm_memseg_import_put32(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint32_t datap, ulong_t rep_cnt);

int rsm_memseg_import_put64(rsm_memseg_import_handle_t im_memseg,
off_t offset, uint64_t datap, ulong_t rep_cnt);

When using interconnects that allow memory mapping (see
rsm_memseg_import_map(3RSM)), standard CPU memory operations may be used
for accessing memory of a segment. If, however, a mapping is not provided, then
explicitly calling these functions facilitates writing to a segment. Depending on the
attributes of the extension library for the interconnect, these functions may involve
doing an implicit mapping before performing the data transfer. Applications can be
made interconnect-independent with respect to segment writes by using these
functions. The data access error detection is performed through the use of barriers (see
rsm_memseg_import_open_barrier(3RSM)). The default barrier operation mode
is RSM_BARRIER_MODE_IMPLICIT, which means that around every put operation
open and close barrier operations are performed automatically. Explicit error handling
may also be set up for these functions (see rsm_memseg_import_set_mode(3RSM)).

The rsm_memseg_import_put() function copies length bytes from local memory
with start address src_addr to the imported segment im_memseg beginning at location
offset from the start of the segment.

The rsm_memseg_import_put8() function copies rep_cnt number of 8-bit quantities
from successive local memory locations pointed to by datap to successive locations
starting from offset in the imported segment.

The rsm_memseg_import_put16() function copies rep_cnt number of 16-bit
quantities from successive local memory locations pointed to by datap to successive
locations starting from offset in the imported segment. The offset must be aligned at
half-word address boundary.

The rsm_memseg_import_put32() function copies rep_cnt number of 32-bit
quantities from successive local memory locations pointed to by datap to successive
locations starting from offset in the imported segment. The offset must be aligned at
word address boundary.

rsm_memseg_import_put(3RSM)

NAME

SYNOPSIS

DESCRIPTION

946 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

The rsm_memseg_import_put64() function copies rep_cnt number of 64-bit
quantities from successive local memory locations pointed to by datap to successive
locations starting from offset in the imported segment. The offset must be aligned at
double-word address boundary.

The data transfer functions that transfer small quantities of data (that is, 8-, 16-, 32-,
and 64-bit quantities) perform byte swapping prior to the data transfer, in the event
that the source and destination have incompatible endian characteristics.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

These functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

RSMERR_BAD_ADDR Bad address.

RSMERR_BAD_MEM_ALIGNMENT Invalid memory alignment for pointer.

RSMERR_BAD_OFFSET Invalid offset.

RSMERR_BAD_LENGTH Invalid length.

RSMERR_PERM_DENIED Permission denied.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

RSMERR_BARRIER_UNINITIALIZED Barrier not initialized.

RSMERR_BARRIER_FAILURE I/O completion error.

RSMERR_CONN_ABORTED Connection aborted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_get(3RSM), rsm_memseg_import_init_barrier(3RSM),
rsm_memseg_import_open_barrier(3RSM),
rsm_memseg_import_set_mode(3RSM), attributes(5)

rsm_memseg_import_put(3RSM)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 947

rsm_memseg_import_putv, rsm_memseg_import_getv – write to a segment using a
list of I/O requests

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_memseg_import_putv(rsm_scat_gath_t *sg_io);

int rsm_memseg_import_getv(rsm_scat_gath_t *sg_io);

The rsm_memseg_import_putv() and rsm_memseg_import_getv() functions
provide for using a list of I/O requests rather than a single source and destination
address as is done for thersm_memseg_import_put(3RSM) and
rsm_memseg_import_get(3RSM) functions.

The I/O vector component of the scatter-gather list (sg_io), allows specifying local
virtual addresses or local_memory_handles. When a local address range is used
repeatedly, it is efficient to use a handle because allocated system resources (that is,
locked down local memory) are maintained until the handle is freed. The supporting
functions for handles are rsm_create_localmemory_handle(3RSM) and
rsm_free_localmemory_handle(3RSM).

Virtual addresses or handles may be gathered into the vector for writing to a single
remote segment, or a read from a single remote segment may be scattered to the vector
of virtual addresses or handles.

Implicit mapping is supported for the scatter-gather type of access. The attributes of
the extension library for the specific interconnect are used to determine whether
mapping is necessary before any scatter-gather access. If mapping of the imported
segment is a prerequisite for scatter-gather access and the mapping has not already
been performed, an implicit mapping is performed for the imported segment. The I/O
for the vector is then initiated.

I/O for the entire vector is initiated before returning. The barrier mode attribute of the
import segment determines if the I/O has completed before the function returns. A
barrier mode attribute setting of IMPLICIT guarantees that the transfer of data is
completed in the order as entered in the I/O vector. An implicit barrier open and close
surrounds each list entry. If an error is detected, I/O for the vector is terminated and
the function returns immediately. The residual count indicates the number of entries
for which the I/O either did not complete or was not initiated.

The number of entries in the I/O vector component of the scatter-gather list is
specified in the io_request_count field of the rsm_scat_gath_t pointed to by
sg_io. The io_request_count is valid if greater than 0 and less than or equal to
RSM_MAX_SGIOREQS. If io_request_count is not in the valid range,
rsm_memseg_import_putv() and rsm_memseg_import_getv() returns
RSMERR_BAD_SGIO.

Optionally, the scatter-gather list allows support for an implicit signal post after the
I/O for the entire vector has completed. This alleviates the need to do an explicit
signal post after ever I/O transfer operation. The means of enabling the implicit signal

rsm_memseg_import_putv(3RSM)

NAME

SYNOPSIS

DESCRIPTION

948 man pages section 3: Extended Library Functions • Last Revised 12 Nov 2001

post involves setting the flags field within the scatter-gather list to
RSM_IMPLICIT_SIGPOST. The flags field may also be set to
RSM_SIG_POST_NO_ACCUMULATE, which will be passed on to the signal post
operation when RSM_IMPLICIT_SIGPOST is set.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_putv() and rsm_memseg_import_getv() functions
can return the following errors:

RSMERR_BAD_SGIO Invalid scatter-gather structure pointer.

RSMERR_BAD_SEG_HNDL Invalid segment handle.

RSMERR_BAD_CTLR_HNDL Invalid controller handle.

RSMERR_BAD_OFFSET Invalid offset.

RSMERR_BAD_LENGTH Invalid length.

RSMERR_BAD_ADDR Bad address.

RSMERR_INSUFFICIENT_RESOURCES Insufficient resources.

RSMERR_INTERRUPTED The operation was interrupted by a signal.

RSMERR_PERM_DENIED Permission denied.

RSMERR_BARRIER_FAILURE I/O completion error.

RSMERR_REMOTE_NODE_UNREACHABLE Remote node not reachable.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_create_localmemory_handle(3RSM),
rsm_free_localmemory_handle(3RSM), attributes(5)

rsm_memseg_import_putv(3RSM)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 949

rsm_memseg_import_set_mode, rsm_memseg_import_get_mode – set or get mode for
barrier scoping

cc [flag...] file... –lrsm [library...]

#include <rsmapi.h>

int rsm_memseg_import_set_mode(rsm_memseg_import_handle_t memseg,
rsm_barrier_mode_t mode);

int rsm_memseg_import_get_mode(rsm_memseg_import_handle_t memseg,
rsm_barrier_mode_t *mode);

The rsm_memseg_import_set_mode() function provides support for optional
explicit barrier scoping in the functions described on the
rsm_memseg_import_get(3RSM) and rsm_memseg_import_put(3RSM) manual
pages.. The two valid barrier modes are RSM_BARRIER_MODE_EXPLICIT and
RSM_BARRIER_MODE_IMPLICIT. By default, the barrier mode is set to
RSM_BARRIER_MODE_IMPLICIT. When the mode is
RSM_BARRIER_MODE_IMPLICIT, an implicit barrier open and barrier close is applied
to the put operation. Irrespective of the mode set, the barrier must be initialized using
the rsm_memseg_import_init_barrier(3RSM) function before any barrier
operations, either implicit or explicit, are used.

The rsm_memseg_import_get_mode() function obtains the current value of the
mode used for barrier scoping in put functions.

Upon successful completion, these functions return 0. Otherwise, an error value is
returned to indicate the error.

The rsm_memseg_import_set_mode() and rsm_memseg_import_get_mode()
functions can return the following errors:

RSMERR_BAD_SEG_HNDL Invalid segment handle.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

rsm_memseg_import_get(3RSM), rsm_memseg_import_init_barrier(3RSM),
rsm_memseg_import_put(3RSM), attributes(5)

rsm_memseg_import_set_mode(3RSM)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

950 man pages section 3: Extended Library Functions • Last Revised 8 Jun 2001

rtld_audit, la_activity, la_i86_pltenter, la_objsearch, la_objopen, la_objfilter, la_pltexit,
la_pltexit64, la_preinit, la_sparcv8_pltenter, la_sparcv9_pltenter, la_amd64_pltenter,
la_symbind32, la_symbind64, la_version – runtime linker auditing functions

void la_activity(uintptr_t *cookie, uint_t flag);

uintptr_t la_i86_pltenter(Elf32_Sym *sym, uint_t ndx, uintptr_t
*refcook, uintptr_t *defcook, La_i86_regs *regs, uint_t *flags);

char *la_objsearch(const char *name, uintptr_t *cookie, uint_t flag);

uint_t la_objopen(Link_map *lmp, Lmid_t lmid, uintptr_t *cookie);

int la_objfilter(uintptr_t *fltrcook, uintptr_t *fltecook, uint_t
*flags);

uintptr_t la_pltexit(Elf32_Sym *sym, uint_t ndx, uintptr_t *refcook,
uintptr_t *defcook, uintptr_t retval);

uintptr_t la_pltexit64(Elf64_Sym *sym, uint_t ndx, uintptr_t
*refcook, uintptr_t *defcook, uintptr_t retval, const char
*sym_name);

void la_preinit(uintptr_t *cookie);

uintptr_t la_sparcv8_pltenter(Elf32_Sym *sym, uint_t ndx,
uintptr_t *refcook, uintptr_t *defcook, La_amd64_regs *regs,
uint_t *flags);

uintptr_t la_sparcv9_pltenter(Elf64_Sym *sym, uint_t ndx,
uintptr_t *refcook, uintptr_t *defcook, La_sparcv8_regs *regs,
uint_t *flags, const char *sym_name);

uintptr_t la_amd64_pltenter(Elf32_Sym *sym, uint_t ndx, uintptr_t
*refcook, uintptr_t *defcook, La_sparcv8_regs *regs, uint_t *flags,
const char *sym_name);

uintptr_t la_symbind32(Elf32_Sym *sym, uint_t ndx, uintptr_t
*refcook, uintptr_t *defcook, uint_t *flags);

uintptr_t la_symbind64(Elf64_Sym *sym, uint_t ndx, uintptr_t
*refcook, uintptr_t *defcook, uint_t *flags, const char *sym_name);

uint_t la_version(uint_t version);

A runtime linker auditing library is a user-created shared object offering one or more
of these interfaces. The runtime linker ld.so.1(1), calls these interfaces during
process execution. See the Linker and Libraries Guide for a full description of the link
auditing mechanism.

ld.so.1(1)

Linker and Libraries Guide

rtld_audit(3EXT)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

Extended Library Functions 951

rtld_db, rd_delete, rd_errstr, rd_event_addr, rd_event_enable, rd_event_getmsg,
rd_init, rd_loadobj_iter, rd_log, rd_new, rd_objpad_enable, rd_plt_resolution, rd_reset
– runtime linker debugging functions

cc [flag ...] file ... -lrtld_db [library ...]
#include <proc_service.h>

#include <rtld_db.h>

void rd_delete(struct rd_agent *rdap);

char *rd_errstr(rd_err_e rderr);

rd_err_e rd_event_addr(rd_agent *rdap, rd_notify_t *notify);

rd_err_e rd_event_enable(struct rd_agent *rdap, int onoff);

rd_err_e rd_event_getmsg(struct rd_agent *rdap, rd_event_msg_t
*msg);

rd_err_e rd_init(int version);

typedef int rl_iter_f(const rd_loadobj_t *, void *);

rd_err_e rd_loadobj_iter(rd_agent_t *rap, rl_iter_f *cb, void
*clnt_data);

void rd_log(const int onoff);

rd_agent_t *rd_new(struct ps_prochandle *php);

rd_err_e rd_objpad_enable(struct rd_agent *rdap, size_t padsize);

rd_err_e rd_plt_resolution(rd_agent *rdap, paddr_t pc, lwpid_t
lwpid, paddr_t plt_base, rd_plt_info_t *rpi);

rd_err_e rd_reset(struct rd_agent *rdap);

The librtld_db library provides support for monitoring and manipulating runtime
linking aspects of a program. There are at least two processes involved, the controlling
process and one or more target processes. The controlling process is the librtld_db
client that links with librtld_db and uses librtld_db to inspect or modify
runtime linking aspects of one or more target processes. See the Linker and Libraries
Guide for a full description of the runtime linker debugger interface mechanism.

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

ld.so.1(1), libc_db(3LIB), librtld_db(3LIB), attributes(5)

Linker and Libraries Guide

rtld_db(3EXT)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

952 man pages section 3: Extended Library Functions • Last Revised 19 Apr 2002

scalb, scalbf, scalbl – load exponent of a radix-independent floating-point number

cc [flag...] file... -lm [library...]

#include <math.h>

double scalb(double x, double n);

float scalbf(float x, float n);

long double scalbl(long double x, long double n);

These functions compute x * rn, where r is the radix of the machine’s floating point
arithmetic. When r is 2, scalb() is equivalent to ldexp(3M). The value of r is
FLT_RADIX which is defined in <float.h>.

Upon successful completion, the scalb() function returns x * rn.

If x or n is NaN, a NaN is returned.

If n is 0, x is returned.

If x is ±Inf and n is not −Inf, x is returned.

If x is ±0 and n is not +Inf, x is returned.

If x is ±0 and n is +Inf, a domain error occurs and a NaN is returned.

If x is ±Inf and n is −Inf, a domain error occurs and a NaN is returned.

If the result would cause an overflow, a range error occurs and ±HUGE_VAL (according
to the sign of x) is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by scalb()
as specified by SVID3 and XPG3. See standards(5).

These functions will fail if:

Domain Error If x is 0 and n is +Inf, or x is Inf and n is −Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception is raised.

Range Error The result would overflow.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the overflow floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

scalb(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Extended Library Functions 953

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

MT-Level MT-Safe

The scalb() function is Standard. The scalbf() and scalbl() functions are
Stable.

feclearexcept(3M), fetestexcept(3M), ilogb(3M), ldexp(3M), logb(3M),
math.h(3HEAD), matherr(3M), scalbln(3M), attributes(5), standards(5)

scalb(3M)

ATTRIBUTES

SEE ALSO

954 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl – compute exponent using
FLT_RADIX

cc [flag...] file... -lm [library...]

#include <math.h>

double scalbln(double x, long n);

float scalblnf(float x, long n);

long double scalblnl(long double x, long n);

double scalbn(double x, int n);

float scalbnf(float x, int n);

long double scalbnl(long double x, int n);

These functions compute x * FLT_RADIXn efficiently, not normally by computing
FLT_RADIXn explicitly.

Upon successful completion, these functions return x * FLT_RADIXn.

If the result would cause overflow, a range error occurs and these functions return
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL (according to the sign of x) as
appropriate for the return type of the function.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

If x is 0, x is returned.

These functions will fail if:

Range Error The result overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the overflow floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

scalbln(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Extended Library Functions 955

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), math.h(3HEAD), scalb(3M),
attributes(5), standards(5)

scalbln(3M)

SEE ALSO

956 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

SCF_Card_exchangeAPDU – send a command APDU to a card and read the card’s
response

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Card_exchangeAPDU(SCF_Card_t card, const uint8_t
*sendBuffer, size_t sendLength, uint8_t *recvBuffer, size_t
*recvLength);

card The card (from SCF_Terminal_getCard(3SMARTCARD)) to
communicate with.

sendBuffer A pointer to a buffer containing the command APDU.

sendLength The number of bytes in the sendBuffer (that is, the size of the
command APDU).

recvBuffer A pointer to a buffer in which the card’s reply APDU should be
stored. This buffer can be the same as the sendBuffer to allow the
application to conserve memory usage. The buffer must be large
enough to store the expected reply.

recvLength The caller specifies the maximum size of the recvBuffer in
recvLength. The library uses this value to prevent overflowing the
buffer. When the reply is received, the library sets recvLength to the
actual size of the reply APDU that was stored in the recvBuffer.

The SCF_Card_exchangeAPDU() function sends a binary command to the card and
reads the reply. The application is responsible for constructing a valid command and
providing a receive buffer large enough to hold the reply. Generally, the command and
reply will be ISO7816-formatted APDUs (Application Protocol Data Units), but the
SCF library does not examine or verify the contents of the buffers.

If the caller needs to perform a multi-step transaction that must not be interrupted,
SCF_Card_lock(3SMARTCARD) should be used to prevent other applications from
communicating with the card during the transaction. Similarly, calls to
SCF_Card_exchangeAPDU() must be prepared to retry the call if
SCF_STATUS_CARDLOCKED is returned.

An ISO7816-formatted command APDU always begins with a mandatory 4 byte
header (CLA, INS, P1, and P2), followed by a variable length body (zero or more
bytes). For details on the APDUs supported by a specific card, consult the
documentation provided by the card manufacturer or applet vendor.

An ISO7816-formatted reply APDU consists of zero or more bytes of data, followed by
a manditory 2 byte status trailer (SW1 and SW2).

If the APDU is successfully sent and a reply APDU is successfully read,
SCF_STATUS_SUCCESS is returned with recvBuffer and recvLength set appropriately.
Otherwise, an error value is returned and both recvBuffer and recvLength remain
unaltered.

SCF_Card_exchangeAPDU(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

Extended Library Functions 957

The SCF_Card_exchangeAPDU() function will fail if:

SCF_STATUS_BADARGS Neither sendBuffer, recvBuffer, nor recvLength can be null
pointers. The value of recvLength must be at least 2.

SCF_STATUS_BADHANDLE The card has been closed or is invalid.

SCF_STATUS_CARDLOCKED The APDU cannot be sent because the card is locked by
another application.

SCF_STATUS_CARDREMOVED The card object cannot be used because the card
represented by the SCF_Card_t has been removed

SCF_STATUS_COMMERROR The connection to the server was closed.

SCF_STATUS_FAILED An internal error occurred.

SCF_STATUS_NOSPACE The specified size of recvBuffer is too small to hold the
complete reply APDU.

EXAMPLE 1 Send a command to the card.

SCF_Status_t status;
SCF_Card_t myCard;
uint8_t commandAPDU[] = {0x00, 0xa4, 0x00, 0x00, 0x02, 0x3f, 0x00};
uint8_t replyAPDU[256];
uint32_t commandSize = sizeof(commandAPDU);
uint32_t replySize = sizeof(replyAPDU);
/* (...call SCF_Terminal_getCard to open myCard...) */

/* Send the ISO7816 command to select the card’s MF. */
status = SCF_Card_exchangeAPDU(myCard, commandAPDU, commandSize,

replyAPDU, &replySize);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("Received a %d byte reply.\n", replySize);
printf("SW1=0x%02.2x SW2=0x%02.2x\n",

replyAPDU[replySize-2], replyAPDU[replySize-1]);

/* ... */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Card_lock(3SMARTCARD),
SCF_Terminal_getCard(3SMARTCARD), attributes(5)

SCF_Card_exchangeAPDU(3SMARTCARD)

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

958 man pages section 3: Extended Library Functions • Last Revised 15 May 2002

SCF_Card_lock, SCF_Card_unlock – perform mutex locking on a card

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Card_lock(SCF_Card_t card, unsigned int timeout);

SCF_Status_t SCF_Card_unlock(SCF_Card_t card);

card The card (from SCF_Terminal_getCard(3SMARTCARD)) to be
locked.

timeout The maximum number of seconds SCF_Card_lock() should
wait for a card locked by another application to become unlocked.
A value of 0 results in SCF_Card_lock() returning immediately
if a lock cannot be immediately obtained. A value of
SCF_TIMEOUT_MAX results in SCF_Card_lock() waiting forever
to obtain a lock.

Locking a card allows an application to perform a multi-APDU transaction (that is,
multiple calls to SCF_Card_exchangeAPDU(3SMARTCARD)) without interference
from other smartcard applications. The lock is enforced by the server, so that other
applications that attempt to call SCF_Card_exchangeAPDU() or
SCF_Card_reset(3SMARTCARD) will be denied access to the card. Applications
should restrict use of locks only to brief critical sections. Otherwise it becomes difficult
for multiple applications to share the same card.

When a lock is granted to a specific SCF_Card_t card object, only that object can be
used to access the card and subsquently release the lock. If a misbehaving application
holds a lock for an extended period, the lock can be broken by having the user remove
and reinsert the smartcard.

It is an error to attempt to lock a card when the caller already holds a lock on the card
(that is, calling SCF_Card_lock() twice in a succession). Unlocking a card that is not
locked (or was already unlocked) can be performed without causing an error.

An application might find that it is unable to lock the card, or communicate with it
because SCF_Card_exchangeAPDU() keeps returning SCF_STATUS_CARDLOCKED.
If this situation persists, it might indicate that another application has not released its
lock on the card. The user is able to forcably break a lock by removing the card and
reinserting it, after which the application must call
SCF_Terminal_getCard(3SMARTCARD) to access the "new" card. In this situation
an application should retry for a reasonable period of time, and then alert the user that
the operation could not be completed because the card is in use by another application
and that removing or reinserting the card will resolve the problem.

If the card is successfully locked or unlocked, SCF_STATUS_SUCCESS is returned.
Otherwise, the lock status of the card remains unchanged and an error value is
returned.

The SCF_Card_lock() and SCF_Card_lock() functions will fail if:

SCF_Card_lock(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 959

SCF_STATUS_BADHANDLE The specified card has been closed or is invalid.

SCF_STATUS_CARDLOCKED There is a lock present on the card, but it is not held by
the specified card object. For example, the caller is
attempting to unlock a card locked by another
application.

SCF_STATUS_CARDREMOVED The card object cannot be used because the card
represented by the SCF_Card_t has been removed.

SCF_STATUS_COMMERROR The connection to the server was lost.

SCF_STATUS_DOUBLELOCK The caller has already locked this card and is
attempting to lock it again.

SCF_STATUS_FAILED An internal error occured.

SCF_STATUS_TIMEOUT The timeout expired before the call was able to obtain
the lock.

EXAMPLE 1 Use a card lock.

SCF_Status_t status;
SCF_Card_t myCard;

/* (...call SCF_Terminal_getCard to open myCard...) */

status = SCF_Card_lock(myCard, 15);
if (status == SCF_STATUS_TIMEOUT) {

printf("Unable to get a card lock, someone else has a lock.\n");
exit(0);

}
else if (status != SCF_STATUS_SUCCESS) exit(1);

/* Send the first APDU */
SCF_Card_exchangeAPDU(myCard, ...);

/* Send the second APDU */
SCF_Card_exchangeAPDU(myCard, ...);

status = SCF_Card_unlock(myCard);

/* ... */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Card_exchangeAPDU(3SMARTCARD),
SCF_Card_reset(3SMARTCARD), SCF_Terminal_getCard(3SMARTCARD),
attributes(5)

SCF_Card_lock(3SMARTCARD)

EXAMPLES

ATTRIBUTES

SEE ALSO

960 man pages section 3: Extended Library Functions • Last Revised 15 May 2002

SCF_Card_reset – perform a reset of a smartcard

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Card_reset(SCF_Card_t card);

card The card (from SCF_Terminal_getCard(3SMARTCARD)) to be
reset

The SCF_Card_reset() function causes the specified smartcard to be reset by the
terminal.

A card can be reset only if it has not been locked (with
SCF_Card_lock(3SMARTCARD)) by another client. A client wishing to reset a card
should either first call SCF_Card_lock() to obtain the card lock, or be prepared to
retry the reset operation if it fails because another client holds the card lock.

When the card is reset, any SCF_Card_t object representing the card will continue to
remain valid after the reset. When the reset occurs, an SCF_EVENT_CARDRESET event
will be sent to all registered event listeners for the terminal (assuming they registered
for this event). This is the only notification of a reset provided to SCF clients. When a
client receives this event, it should be prepared to reinitialize any state on the card that
might have been interrupted by the reset. New information about the card (for
example, ATR, if it changed) can also be available from
SCF_Card_getInfo(3SMARTCARD).

If the card is successfully reset, SCF_STATUS_SUCCESS is returned. Otherwise, the
status of the card remains unchanged and an error value is returned.

The SCF_Card_reset() function will fail if:

SCF_STATUS_BADHANDLE The specified card has been closed or is invalid.

SCF_STATUS_CARDLOCKED The card cannot be reset because another client holds a
lock on the card.

SCF_STATUS_CARDREMOVED The card cannot be reset because the card represented
by the SCF_Card_t has been removed.

SCF_STATUS_COMMERROR The connection to the server was lost.

SCF_STATUS_FAILED An internal error occured.

EXAMPLE 1 Reset a card.

SCF_Status_t status;
SCF_Card_t myCard;

/* (...call SCF_Terminal_getCard to open myCard...) */

status = SCF_Card_lock(myCard, SCF_TIMEOUT_MAX);
if (status != SCF_STATUS_SUCCESS) exit(1);

SCF_Card_reset(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

Extended Library Functions 961

EXAMPLE 1 Reset a card. (Continued)

status = SCF_Card_reset(myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Card_unlock(myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/* ... */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Card_getInfo(3SMARTCARD),
SCF_Card_lock(3SMARTCARD),
SCF_Terminal_addEventListener(3SMARTCARD),
SCF_Terminal_getCard(3SMARTCARD), attributes(5)

SCF_Card_reset(3SMARTCARD)

ATTRIBUTES

SEE ALSO

962 man pages section 3: Extended Library Functions • Last Revised 28 Feb 2001

scf_entry_create, scf_entry_handle, scf_entry_destroy, scf_entry_destroy_children,
scf_entry_reset, scf_entry_add_value – create and manipulate transaction in the
Service Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_transaction_entry_t *scf_entry_create(scf_handle_t *handle);

scf_handle_t *scf_entry_handle(scf_transaction_entry_t *entry);

void scf_entry_destroy(scf_transaction_entry_t *entry);

void scf_entry_destroy_children(scf_transaction_entry_t *entry);

void scf_entry_reset(scf_transaction_entry_t *entry);

int scf_entry_add_value(scf_transaction_entry_t *entry,
scf_value_t *value);

The scf_entry_create() function allocates a new transaction entry handle. The
scf_entry_destroy() function destroys the transaction entry handle.

The scf_entry_handle() function retrieves the handle associated with entry.

A transaction entry represents a single action on a property in a property group. If an
entry is added to a transaction using scf_transaction_property_new(3SCF),
scf_transaction_property_change(3SCF), or
scf_transaction_property_change_type(3SCF), scf_entry_add_value()
can be called zero or more times to set up the set of values for that property. Each
value must be set and of a compatible type to the type associated with the entry. When
later retrieved from the property, the values will have the type of the entry.

The scf_entry_reset() function resets a transaction entry, disassociating it from
any transaction it is a part of (invalidating the transaction in the process), and
disassociating any values that were added to it.

The scf_entry_destroy_children() function destroys all values associated with
the transaction entry. The entry itself is not destroyed.

Upon successful completion, scf_entry_create() returns a new
scf_transaction_entry_t. Otherwise, it returns NULL.

Upon successful completion, scf_entry_handle() returns the handle associated
with the transaction entry. Otherwise, it returns NULL.

Upon successful completion, scf_entry_add_value() returns 0. Otherwise, it
returns -1.

The scf_entry_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The handle argument is NULL.

scf_entry_create(3SCF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 963

SCF_ERROR_NO_MEMORY
There is not enough memory to allocate an scf_transaction_entry_t.

The scf_entry_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED
The handle associated with entry has been destroyed.

The scf_entry_add_value() function will fail if:

SCF_ERROR_NOT_SET
The transaction entry is not associated with a transaction.

SCF_ERROR_INVALID_ARGUMENT
The value argument is not set, or the entry was added to the transaction using
scf_transaction_property_delete(3SCF).

SCF_ERROR_HANDLE_MISMATCH
The value and entry arguments are not derived from the same handle.

SCF_ERROR_TYPE_MISMATCH
The type of the value argument does not match the type that was set using
scf_transaction_property_new(), scf_transaction_property_change
(), or scf_transaction_property_change_type().

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_transaction_property_change(3SCF),
scf_transaction_property_change_type(3SCF),
scf_transaction_property_delete(3SCF),
scf_transaction_property_new(3SCF), scf_transaction_reset(3SCF),
attributes(5)

scf_entry_create(3SCF)

ATTRIBUTES

SEE ALSO

964 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

scf_error, scf_strerror – error interface to Service Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_error_t scf_error(void);

const char *scf_strerror(scf_error_t error);

The scf_error() function returns the current libscf(3LIB) error value for the
current thread. If the immediately previous call to a libscf function failed, the error
value will reflect the reason for that failure.

The scf_strerror() function takes an error code previously returned by
scf_error() and returns a human-readable, localized description of the error.

The error values are as follows:

SCF_ERROR_NONE No error occurred.

SCF_ERROR_NOT_BOUND The handle is not bound.

SCF_ERROR_NOT_SET Cannot use unset value.

SCF_ERROR_DELETED Object was deleted.

SCF_ERROR_NOT_FOUND Nothing of that name was found.

SCF_ERROR_TYPE_MISMATCH The type does not match value.

SCF_ERROR_IN_USE The object is currently in use

SCF_ERROR_CONNECTION_BROKEN The connection to repository is broken.

SCF_ERROR_INVALID_ARGUMENT An argument is invalid.

SCF_ERROR_NO_MEMORY No memory is available.

SCF_ERROR_CONSTRAINT_VIOLATED A required constraint was not met.

SCF_ERROR_EXISTS The object already exists.

SCF_ERROR_NO_SERVER The repository server is unavailable

SCF_ERROR_NO_RESOURCES The repository server is out of resources

SCF_ERROR_PERMISSION_DENIED There are insufficient privileges for action

SCF_ERROR_BACKEND_ACCESS Backend refused access.

SCF_ERROR_BACKEND_READONLY Backend is read-only.

SCF_ERROR_HANDLE_MISMATCH Objects from different SCF handles were
used.

SCF_ERROR_HANDLE_DESTROYED An object was bound to a destroyed handle.

SCF_ERROR_VERSION_MISMATCH The SCF version is incompatible.

SCF_ERROR_INTERNAL An internal error occurred.

scf_error(3SCF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 965

The scf_error() function returns SCF_ERROR_NONE if there have been no calls
from libscf functions from the current thread. The return value is undefined if the
immediately previous call to a libscf function did not fail.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libscf(3LIB), attributes(5)

scf_error(3SCF)

RETURN VALUES

ATTRIBUTES

SEE ALSO

966 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

scf_handle_create, scf_handle_destroy, scf_handle_decorate, scf_handle_bind,
scf_handle_unbind, scf_myname – Service Configuration Facility handle functions

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_handle_t *scf_handle_create(scf_version_t version);

void scf_handle_destroy(scf_handle_t *handle);

int scf_handle_decorate(scf_handle_t *handle, const char *param,
scf_value_t *value);

int scf_handle_bind(scf_handle_t *handle);

int scf_handle_unbind(scf_handle_t *handle);

ssize_t scf_myname(scf_handle_t *handle, char *out, size_t sz);

The scf_handle_create() function creates a new Service Configuration Facility
handle that is used as the base for all communication with the configuration
repository. The version argument must be SCF_VERSION.

The scf_handle_decorate() function sets a single connection-level parameter,
param, to the supplied value. If value is SCF_DECORATE_CLEAR, param is reset to its
default state. Values passed to scf_handle_decorate() can be reset, reused, or
destroyed. The values set do not take effect until scf_handle_bind() is called. Any
invalid values will not cause errors prior to the call to scf_handle_bind(). The
only available decorations is:

debug (count) Set the debugging flags.

The scf_handle_bind() function binds the handle to a running
svc.configd(1M) daemon, using the current decorations to modify the connection.
All states derived from the handle are reset immediately after a successful binding.

The scf_handle_unbind() function severs an existing repository connection or
clears the in-client state for a broken connection.The scf_handle_destroy()
function destroys and frees an SCF handle. It is illegal to use the handle after calling
scf_handle_destroy(). Actions on subordinate objects act as if the handle is
unbound.

The scf_myname() function retrieves the FMRI for the service of which the
connecting process is a part. If the full FMRI does not fit in the provided buffer, it is
truncated and, if sz > 0, zero-terminated.

Upon successful completion, scf_handle_create() returns the new handle.
Otherwise, it returns NULL.

Upon successful completion, scf_handle_decorate(), scf_handle_bind(),
and scf_handle_unbind() return 0. Otherwise, they return -1.

scf_handle_create(3SCF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 967

The scf_myname() function returns the length of the full FMRI. Otherwise, it returns
–1.

The scf_handle_create() function will fail if:

SCF_ERROR_NO_MEMORY
There is no memory available.

SCF_ERROR_VERSION_MISMATCH
The version is invalid, or the application was compiled against a version of the
library that is more recent than the one on the system.

The scf_handle_decorate() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The param argument is not a recognized parameter.

SCF_ERROR_TYPE_MISMATCH
The value argument does not match the expected type for param.

SCF_ERROR_NOT_SET
The value argument is not set.

SCF_ERROR_IN_USE
The handle is currently bound.

SCF_ERROR_HANDLE_MISMATCH
The value argument is not derived from handle.

The scf_handle_bind() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
One of the decorations was invalid.

SCF_ERROR_NO_SERVER
The repository server is not running.

SCF_ERROR_NO_RESOURCES
The server does not have adequate resources for a new connection.

SCF_ERROR_IN_USE
The handle is already bound.

The scf_handle_unbind() function will fail if:

SCF_ERROR_NOT_BOUND
The handle is not bound.

The scf_handle_myname() function will fail if:

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

SCF_ERROR_NOT_BOUND
The handle is not bound.

scf_handle_create(3SCF)

ERRORS

968 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

SCF_ERROR_NOT_SET
This process is not marked as a SMF service.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level See below.

Operations on a single handle (and the objects associated with it) are Safe. Operations
on different handles are MT-Safe. Objects associated with different handles cannot be
mixed, as this will lead to an SCF_ERROR_HANDLE_MISMATCH error.

libscf(3LIB), scf_error(3SCF), attributes(5)

scf_handle_create(3SCF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 969

scf_handle_decode_fmri, scf_scope_to_fmri, scf_service_to_fmri, scf_instance_to_fmri,
scf_pg_to_fmri, scf_property_to_fmri – convert between objects and FMRIs in the
Service Configuration Facility

cc [flag...] file... -lscf [library...]
#include <libscf.h>

scf_handle_decode_fmri(scf_handle_t *handle, const char *fmri,
scf_scope_t *scope, scf_service_t *service, scf_instance_t
*instance, scf_propertygroup_t *pg, scf_property_t *property, int
flag);

ssize_t scf_scope_to_fmri(const scf_scope_t *object, char *buffer,
size_t sz);

ssize_t scf_service_to_fmri(const scf_scope_t *object, char *buffer,
size_t sz);

ssize_t scf_instance_to_fmri(const scf_scope_t *object, char *buffer,
size_t sz);

ssize_t scf_pg_to_fmri(const scf_scope_t *object, char *buffer,
size_t sz);

ssize_t scf_property_to_fmri(const scf_scope_t *object, char *buffer,
size_t sz);

The scf_handle_decode_fmri() function decodes an FMRI string into a set of
repository entries. Any number of the entity handles can be NULL. The validation and
decoding of the FMRI are determined by the flags argument and by those arguments
that are NULL.

If flags == 0, any FMRI is accepted as long as it is well-formed and exists in the
repository.

If SCF_DECODE_FMRI_EXACT is set in flags, the last part of the FMRI must match the
last non-null entity handle. For example, if property is NULL and pg is non-null, the
FMRI must be a property group FMRI.

If SCF_DECODE_FMRI_TRUNCATE is set in flags, there is no check for the existence of
any objects specified in the FMRI that follow the last non-null entity handle. For
example, if property is NULL, pg is non-null, and a property FMRI is passed in,
scf_handle_decode_fmri() succeeds as long as the property group exists, even if
the referenced property does not exist.

If SCF_DECODE_FMRI_REQUIRE_INSTANCE (or
SCF_FMRI_REQUIRE_NO_INSTANCE) is set in flags, then the FMRI must (or must not)
specify an instance.

If an error occurs, all of the entity handles that were passed to the function are reset.

The scf_scope_to_fmri(), scf_service_to_fmri(),
scf_instance_to_fmri(), scf_pg_to_fmri(), and scf_property_to_fmri
() functions convert an entity handle to an FMRI.

scf_handle_decode_fmri(3SCF)

NAME

SYNOPSIS

DESCRIPTION

970 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

Upon successful completion, scf_handle_decode_fmri() returns 0. Otherwise, it
returns -1.

Upon successful completion, scf_scope_to_fmri(), scf_service_to_fmri(),
scf_instance_to_fmri(), scf_pg_to_fmri(), and scf_property_to_fmri
() return the length of the FMRI. The buffer will be null-terminated if sz > 0, similar to
strlcpy(3C). Otherwise, they return -1 and the contents of buffer are undefined.

The scf_handle_decode_fmri() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The fmri argument is not a valid FMRI.

SCF_ERROR_CONSTRAINT_VIOLATED
The FMRI does not meet the restrictions requested in the flag argument.

SCF_ERROR_NOT_FOUND
The FMRI is well-formed but there is no object in the repository matching it.

SCF_ERROR_NOT_BOUND
The handle is not currently bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

SCF_ERROR_HANDLE_MISMATCH
One or more of the entity handles was not derived from handle.

The scf_scope_to_fmri(), scf_service_to_fmri(),
scf_instance_to_fmri(), scf_pg_to_fmri(), and scf_property_to_fmri
() functions will fail if:

SCF_ERROR_NOT_SET
The object argument is not currently set.

SCF_ERROR_DELETED
The object argument refers to an object that has been deleted.

SCF_ERROR_NOT_BOUND
The handle is not currently bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

scf_handle_decode_fmri(3SCF)

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 971

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libscf(3LIB), scf_error(3SCF), attributes(5)

scf_handle_decode_fmri(3SCF)

SEE ALSO

972 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

scf_instance_create, scf_instance_handle, scf_instance_destroy,
scf_instance_get_parent, scf_instance_get_name, scf_service_get_instance,
scf_service_add_instance, scf_instance_delete – create and manipulate instance
handles and instances in the Service Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_instance_create(scf_handle_t *handle);

scf_instance_handle(scf_instance_t *inst);

scf_instance_destroy(scf_instance_t *inst);

scf_instance_get_parent(const scf_instance_t *inst, scf_service_t
*svc);

scf_instance_get_name(const scf_instance_t *inst, size_t size);

scf_service_get_instance(const scf_service_t *svc, const char
*name, scf_instance_t *inst);

scf_service_add_instance(const scf_service_t *svc, const char
*name, scf_instance_t *inst);

scf_instance_delete(scf_instance_t *inst);

Instances form the bottom layer of the Service Configuration Facility repository tree.
An instance is the child of a service and has two sets of children:

Property Groups These hold configuration information specific to this instance. See
scf_pg_create(3SCF), scf_iter_instance_pgs(3SCF), and
scf_iter_instance_pgs_typed(3SCF).

Snapshots These are complete configuration snapshots that hold unchanging
copies of all of the property groups necessary to run the instance.
See scf_snapshot_create(3SCF) and
scf_iter_instance_snapshots(3SCF).

See smf(5) for information about instances.

An scf_instance_t is an opaque handle that can be set to a single instance at any
given time. The scf_instance_create() function allocates and initializes a new
scf_instance_t bound to handle. The scf_instance_destroy() function
destroys and frees inst.

The scf_instance_handle() function retrieves the handle to which inst is bound.

The scf_inst_get_parent() function sets svc to the service that is the parent of
inst.

The scf_instance_get_name() function retrieves the name of the instance to
which inst is set.

scf_instance_create(3SCF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 973

The scf_service_get_instance() function sets inst to the child instance of the
service svc specified by name.

The scf_service_add() function sets inst to a new child instance of the service svc
specified by name.

The scf_instance_delete() function deletes the instance to which inst is set, as
well all of the children of the instance.

Upon successful completion, scf_instance_create() returns a new
scf_instance_t. Otherwise it returns NULL.

Upon successful completion, scf_instance_handle() returns the handle to which
inst is bound. Otherwise, it returns NULL.

Upon successful completion, scf_instance_get_name() returns the length of the
string written, not including the terminating null character. Otherwise it returns -1.

Upon successful completion, scf_instance_get_parent(),
scf_service_get_instance(), scf_service_add_instance(), and
scf_instance_delete() functions return 0. Otherwise, they return -1.

The scf_instance_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The handle argument is NULL.

SCF_ERROR_NO_MEMORY
There is not enough memory to allocate an scf_instance_t.

SCF_ERROR_NO_RESOURCES
The server does not have adequate resources for a new instance handle.

The scf_instance_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED
The handle associated with inst has been destroyed.

The scf_instance_get_name(), scf_instance_get_parent(), and
scf_instance_delete() functions will fail if:

SCF_ERROR_DELETED
The instance has been deleted.

SCF_ERROR_NOT_SET
The instance is not set.

SCF_ERROR_NOT_BOUND
The repository handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_service_add_instance() function will fail if:

scf_instance_create(3SCF)

RETURN VALUES

ERRORS

974 man pages section 3: Extended Library Functions • Last Revised 20 Dec 2004

SCF_ERROR_EXISTS
An instance named name already exists.

SCF_ERROR_NO_RESOURCES
The server does not have the resources to complete the request.

The scf_service_add_instance() and scf_service_get_instance()
functions will fail if:

SCF_ERROR_NOT_SET
The service is not set.

SCF_ERROR_DELETED
The service has been deleted.

SCF_ERROR_NOT_FOUND
No instance specified by name was found.

SCF_ERROR_INVALID_ARGUMENT
The name argument is not a valid instance name.

SCF_ERROR_HANDLE_MISMATCH
The service and instance are not derived from the same handle.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_instance_get_parent() function will fail if:

SCF_ERROR_HANDLE_MISMATCH
The service and instance arguments are not derived from the same handle.

The scf_service_add_instance() and scf_instance_delete() functions
will fail if:

SCF_ERROR_PERMISSION_DENIED
The user does not have sufficient privileges to create or delete an instance.

SCF_ERROR_BACKEND_READONLY
The repository backend is read-only.

SCF_ERROR_BACKEND_ACCESS
The repository backend refused the modification.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

scf_instance_create(3SCF)

ATTRIBUTES

Extended Library Functions 975

libscf(3LIB), scf_error(3SCF), scf_iter_instance_pgs(3SCF),
scf_iter_instance_pgs_typed(3SCF),
scf_iter_instance_snapshots(3SCF), scf_pg_create(3SCF),
scf_snapshot_create(3SCF), attributes(5), smf(5)

Instance names are of the form:

[domain,]identifier

where domain is either a stock ticker symbol such as SUNW or a Java-style reversed
domain name such as com.sun. Identifiers begin with a letter or underscore and
contain only letters, digits, underscores, and dashes.

scf_instance_create(3SCF)

SEE ALSO

NOTES

976 man pages section 3: Extended Library Functions • Last Revised 20 Dec 2004

scf_iter_create, scf_iter_handle, scf_iter_destroy, scf_iter_reset, scf_iter_handle_scopes,
scf_iter_scope_services, scf_iter_service_instances, scf_iter_service_pgs,
scf_iter_service_pgs_typed, scf_iter_instance_snapshots, scf_iter_snaplevel_pgs,
scf_iter_snaplevel_pgs_typed, scf_iter_instance_pgs, scf_iter_instance_pgs_typed,
scf_iter_instance_pgs_composed, scf_iter_instance_pgs_typed_composed,
scf_iter_pg_properties, scf_iter_property_values, scf_iter_next_scope,
scf_iter_next_service, scf_iter_next_instance, scf_iter_next_snapshot, scf_iter_next_pg,
scf_iter_next_property, scf_iter_next_value – iterate through the Service Configuration
Facility repository

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_iter_t *scf_iter_create(scf_handle_t *handle);

scf_handle_t *scf_iter_handle(scf_iter_t *iter);

void scf_iter_destroy(scf_iter_t *iter);

void scf_iter_reset(scf_iter_t *iter);

int scf_iter_handle_scopes(scf_iter_t *iter, const scf_handle_t
*h);

int scf_iter_scope_services(scf_iter_t *iter, const scf_scope_t
*parent);

int scf_iter_service_instances(scf_iter_t *iter, const
scf_service_t *parent);

int scf_iter_service_pgs(scf_iter_t *iter, const scf_service_t
*parent);

int scf_iter_service_pgs_typed(scf_iter_t *iter, const
scf_service_t *parent, const char *pgtype);

int scf_iter_instance_snapshots(scf_iter_t *iter, const
scf_instance_t *parent);

int scf_iter_snaplevel_pgs(scf_iter_t *iter, const scf_snaplevel_t
*parent);

int scf_iter_snaplevel_pgs_typed(scf_iter_t *iter, const
scf_snaplevel_t *parent, const char *pgtype);

int scf_iter_instance_pgs(scf_iter_t *iter, scf_instance_t *parent);

int scf_iter_instance_pgs_typed(scf_iter_t *iter, scf_instance_t
*parent, const char *pgtype);

int scf_iter_instance_pgs_composed(scf_iter_t *iter, const
scf_instance_t *instance, const scf_snapshot_t *snapshot);

int scf_iter_instance_pgs_typed_composed(scf_iter_t *iter, const
scf_instance_t *instance, const scf_snapshot_t *snapshot, const
char *pgtype);

scf_iter_create(3SCF)

NAME

SYNOPSIS

Extended Library Functions 977

int scf_iter_pg_properties(scf_iter_t *iter, const
scf_propertygroup_t *parent);

int scf_iter_property_values(scf_iter_t *iter, const
scf_property_t *parent);

int scf_iter_next_scope(scf_iter_t *iter, scf_scope_t *out);

int scf_iter_next_service(scf_iter_t *iter, scf_service_t *out);

int scf_iter_next_instance(scf_iter_t *iter, scf_instance_t *out);

int scf_iter_next_snapshot(scf_iter_t *iter, scf_snapshot_t *out);

int scf_iter_next_pg(scf_iter_t *iter, scf_pg_t *out);

int scf_iter_next_property(scf_iter_t *iter, scf_property_t *out);

int scf_iter_next_value(scf_iter_t *iter, scf_value_t *out);

The scf_iter_create() function creates a new iterator associated with handle. The
scf_iter_destroy() function destroys an iteration.

The scf_iter_reset() function releases any resources involved with an active
iteration and returns the iterator to its initial state.

The scf_iter_handle_scopes(), scf_iter_scope_services(),
scf_iter_service_instances(), scf_iter_instance_snapshots(),
scf_iter_service_pgs(), scf_iter_instance_pgs(),
scf_iter_snaplevel_pgs(), scf_iter_pg_properties(), and
scf_iter_property_values() functions set up a new iteration of all the children
of parent of a particular type.

The scf_iter_service_pgs_typed(), scf_iter_instance_pgs_typed(),
and scf_iter_snaplevel_pgs_typed() functions iterate over the child property
groups of parent, but restrict them to a particular property group type.

The scf_iter_instance_pgs_composed() function sets up a new iteration of the
composed view of instance’s children at the time snapshot was taken. If snapshot is
NULL, the current properties are used. The composed view of an instance’s properties
is the union of the properties of the instance and its ancestors. Properties of the
instance take precedence over properties of the service with the same name, including
property group name. Property groups retrieved with this iterator might not have
instance as their parent and properties retrieved from such property groups might not
have the indicated property group as their parent. If instance and its parent have
property groups with the same name but different types, the properties in the property
group of the parent are excluded. The
scf_iter_instance_pgs_typed_composed() function behaves as
scf_iter_instance_pgs_composed(), except the property groups of the type
pgtype are returned.

scf_iter_create(3SCF)

DESCRIPTION

978 man pages section 3: Extended Library Functions • Last Revised 19 Nov 2004

The scf_iter_next_scope(), scf_iter_next_service(),
scf_iter_next_instance(), scf_iter_next_snapshot(),
scf_iter_next_pg(), scf_iter_next_property(), and
scf_iter_next_value() functions retrieve the next element of the iteration.

Upon successful completion, scf_iter_create() returns a pointer to a new
iterator. Otherwise, it returns NULL.

Upon successful completion, scf_iter_handle() returns the handle associated
with iter. Otherwise it returns NULL.

Upon successful completion, scf_iter_handle_scopes(),
scf_iter_scope_services(), scf_iter_service_instances(),
scf_iter_instance_snapshots(), scf_iter_service_pgs(),
scf_iter_instance_pgs(), scf_iter_snaplevel_pgs(),
scf_iter_pg_properties(), scf_iter_property_values(),
scf_iter_service_pgs_typed(),, scf_iter_instance_pgs_typed(),
scf_iter_instance_pgs_composed(), scf_iter_snaplevel_pgs(),
scf_iter_pg_properties(), scf_iter_property_values(),
scf_iter_service_pgs_typed(),, scf_iter_instance_pgs_typed(),
scf_iter_instance_pgs_typed_composed(), and
scf_iter_snaplevel_pgs_typed() return 0. Otherwise, they return -1.

Upon successful completion, scf_iter_next_scope(),
scf_iter_next_service(), scf_iter_next_instance(),
scf_iter_next_snapshot(), scf_iter_next_pg(),
scf_iter_next_property(), and scf_iter_next_value() return 1. If the
iterator is complete, they return 0. Otherwise, they return -1.

The scf_iter_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The handle argument is NULL.

SCF_ERROR_NO_MEMORY
There is no memory available.

SCF_ERROR_NO_RESOURCES
The server does not have adequate resources for a new iteration.

The scf_iter_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED
The handle associated with iter has been destroyed.

The scf_iter_handle_scopes(), scf_iter_scope_services(),
scf_iter_service_instances(), scf_iter_instance_snapshots(),
scf_iter_service_pgs(), scf_iter_instance_pgs(),
scf_iter_instance_pgs_composed(), scf_iter_snaplevel_pgs(),

scf_iter_create(3SCF)

RETURN VALUES

ERRORS

Extended Library Functions 979

scf_iter_pg_properties(), scf_iter_property_values(),
scf_iter_service_pgs_typed(), scf_iter_instance_pgs_typed(),
scf_iter_instance_pgs_typed_composed(), and
scf_iter_snaplevel_pgs_typed() functions will fail if:

SCF_ERROR_DELETED
The parent has been deleted.

SCF_ERROR_NOT_SET
The parent is not set.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

SCF_ERROR_HANDLE_MISMATCH
The iter and parent arguments are not derived from the same handle.

The scf_iter_service_pgs_typed(), scf_iter_instance_pgs_typed(),
scf_iter_instance_pgs_typed_composed(), and
scf_iter_snaplevel_pgs_typed() functions will fail if:

SCF_ERROR_INVALID_ARGUMENT
The pgtype argument is not a valid property group type.

The scf_iter_next_service(), scf_iter_next_instance(),
scf_iter_next_snapshot(), scf_iter_next_pg(),
scf_iter_next_property(), and scf_iter_next_value() functions will fail
if:

SCF_ERROR_DELETED
The parent the iterator is attached to has been deleted.

The scf_iter_next_scope(), scf_iter_next_service(),
scf_iter_next_instance(), scf_iter_next_snapshot(),
scf_iter_next_pg(),scf_iter_next_property(), and
scf_iter_next_value() functions will fail if:

SCF_ERROR_NOT_SET
The iterator is not set.

SCF_ERROR_INVALID_ARGUMENT
The requested object type does not match the type the iterator is walking.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_HANDLE_MISMATCH
The iter and parent arguments are not derived from the same handle.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

scf_iter_create(3SCF)

980 man pages section 3: Extended Library Functions • Last Revised 19 Nov 2004

The scf_error(3SCF) function can be used to retrieve the error value.

EXAMPLE 1 Iterate over all instances under a service.

scf_iter_t *iter = scf_iter_create(handle);

if (iter == NULL || scf_iter_service_instances(iter, parent) == -1) {
/* failure */

}
while ((r = scf_iter_next_instance(iter, child)) > 0) {

/* process child */
}
if (r < 0) {

/* failure */
}

scf_iter_destroy(iter);

EXAMPLE 2 Connect to the repository, walk all services and instances and print their FMRIs.

scf_handle_t *handle = scf_handle_create(SCF_VERSION);
scf_scope_t *scope = scf_scope_create(handle);
scf_service_t *svc = scf_service_create(handle);
scf_instance_t *inst = scf_instance_create(handle);
scf_iter_t *svc_iter = scf_iter_create(handle);
scf_iter_t *inst_iter = scf_iter_create(handle);

size_t sz = scf_limit(SCF_LIMIT_MAX_FMRI_LENGTH) + 1;
char *fmri = malloc(sz + 1);

int r;

if (handle == NULL || scope == NULL || svc == NULL ||
inst == NULL || svc_iter == NULL || inst_iter == NULL ||
fmri == NULL) {

/* failure */
}
if (scf_handle_bind(handle) == -1 ||

scf_handle_get_scope(handle, SCF_SCOPE_LOCAL, scope) == -1 ||
scf_iter_scope_services(svc_iter, scope) == -1) {

/* failure */
}
while ((r = scf_iter_next_service(svc_iter, svc)) > 0) {

if (scf_service_to_fmri(svc, fmri, sz) < 0) {
/* failure */

}
puts(fmri);
if (scf_iter_service_instances(inst_iter, svc) < 0) {

/* failure */
}
while ((r = scf_iter_next_instance(inst_iter, inst)) > 0) {

if (scf_instance_to_fmri(inst, fmri, sz) < 0) {
/* failure */

}
puts(fmri);

}
if (r < 0)

break;

scf_iter_create(3SCF)

EXAMPLES

Extended Library Functions 981

EXAMPLE 2 Connect to the repository, walk all services and instances and print their
FMRIs. (Continued)

}
if (r < 0) {

/* failure */
}

scf_handle_destroy(handle);
scf_scope_destroy(scope);
scf_service_destroy(svc);
scf_instance_destroy(inst);
scf_iter_destroy(svc_iter);

scf_iter_destroy(inst_iter);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_handle_create(3SCF), attributes(5)

scf_iter_create(3SCF)

ATTRIBUTES

SEE ALSO

982 man pages section 3: Extended Library Functions • Last Revised 19 Nov 2004

scf_limit – limit information for Service Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

ssize_t scf_limit(uint32_t name);

The scf_limit() function returns information about implementation-defined limits
in the service configuration facility. These limits are generally maximum lengths for
various strings. The values returned do not change during the execution of a program,
but they should not be cached between executions.

The available values for name are:

SCF_LIMIT_MAX_FMRI_LENGTH
Return the maximum length of an FMRI the service configuration facility accepts.

SCF_LIMIT_MAX_PG_TYPE_LENGTH
Return the maximum length for property group types in the service configuration
facility.

SCF_LIMIT_MAX_NAME_LENGTH
Return the maximum length for names in the service configuration facility. This
value does not include space for the required terminating null byte.

SCF_LIMIT_MAX_VALUE_LENGTH
Return the maximum string length a scf_value_t can hold, not including the
terminating null byte.

Lengths do not include space for the required terminating null byte.

Upon successful completion, scf_limit() returns the requested value. Otherwise, it
returns -1.

The scf_limit() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The name argument is not a recognized request.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libscf(3LIB), scf_error(3SCF), attributes(5)

scf_limit(3SCF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 983

scf_pg_create, scf_pg_handle, scf_pg_destroy, scf_pg_get_parent_service,
scf_pg_get_parent_instance, scf_pg_get_parent_snaplevel, scf_pg_get_name,
scf_pg_get_type, scf_pg_get_flags, scf_pg_update, scf_service_get_pg,
scf_service_add_pg, scf_instance_get_pg, scf_instance_get_pg_composed,
scf_instance_add_pg, scf_snaplevel_get_pg, scf_pg_delete, scf_pg_get_underlying_pg
– create and manipulate property group handles and property groups in the Service
Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_propertygroup_t *scf_pg_create(scf_handle_t *handle);

scf_handle_t *scf_pg_handle(scf_propertygroup_t *pg);

void scf_pg_destroy(scf_propertygroup_t *pg);

int scf_pg_get_parent_service(const scf_propertygroup_t *pg,
scf_service_t *svc);

int scf_pg_get_parent_instance(const scf_propertygroup_t *pg,
scf_instance_t *inst);

int scf_pg_get_parent_snaplevel(const scf_propertygroup_t *pg,
scf_snaplevel_t *level);

ssize_t scf_pg_get_name(const scf_propertygroup_t *pg, char *buf,
size_t size);

ssize_t scf_pg_get_type(const scf_propertygroup_t *pg, char *buf,
size_t size);

int scf_pg_get_flags(const scf_propertygroup_t *pg, uint32_t
*out);

int scf_pg_update(const scf_propertygroup_t *pg);

int scf_service_get_pg(const scf_service_t *svc, const char *name,
scf_propertygroup_t *pg);

int scf_service_add_pg(const scf_service_t *svc, const char *name,
const char *group_type, uint32_t flags, scf_propertygroup_t *pg);

int scf_instance_get_pg(const scf_instance_t *inst, const char
*name, scf_propertygroup_t *pg);

int scf_instance_get_pg_composed(const scf_instance_t *inst, const
scf_snapshot_t *snapshot, const char *name, scf_propertygroup_t
*pg);

int scf_instance_add_pg(const scf_instance_t *inst, const char
*name, const char *group_type, uint32_t flags,
scf_propertygroup_t *pg);

int scf_snaplevel_get_pg(const scf_snaplevel_t *level, const char
*name, const char *name, scf_propertygroup_t *pg);

scf_pg_create(3SCF)

NAME

SYNOPSIS

984 man pages section 3: Extended Library Functions • Last Revised 15 Dec 2004

int scf_pg_delete(scf_propertygroup_t *pg);

int scf_pg_get_underlying_pg(const scf_propertygroup_t *pg,
scf_propertygroup_t *out);

Property groups are an atomically-updated group of typed properties. Property
groups of services (see scf_service_create(3SCF)) or instances (see
scf_instance_create(3SCF)) are modifiable. Property groups of snaplevels (see
scf_snaplevel_create(3SCF)) are not modifiable.

An scf_propertygroup_t is an opaque handle that can be set to a single property
group at any given time. When an scf_propertygroup_t is set, it references a
frozen-in-time version of the property group to which it is set. Updates to the property
group will not be visible until either scf_pg_update() is called or the property
group is set again.

This static view is propagated to the scf_property_ts set to children of the
property group. They will not see updates, even if the scf_propertygroup_t is
updated.

The scf_pg_create() function allocates and initializes a new
scf_propertygroup_t bound to handle. The scf_pg_destroy() function
destroys and frees pg.

The scf_pg_handle() function retrieves the handle to which pg is bound.

The scf_pg_get_parent_service(), scf_pg_get_parent_instance(), and
scf_pg_get_parent_snaplevel() functions retrieve the property group’s parent,
if it is of the requested type.

The scf_pg_get_name() and scf_pg_get_type() functions retrieve the name
and type, respectively, of the property group to which pg is set.

The scf_pg_get_flags() function retrieves the flags for the property group to
which pg is set. If SCF_PG_FLAG_NONPERSISTENT is set, the property group is not
included in snapshots and will loose its contents upon system boot. Non-persistent
property groups are mainly used for smf-internal state. See smf(5).

The scf_pg_update() function ensures that pg is attached to the most recent
version of the pg to which it is set.

The scf_service_get_pg(), scf_instance_get_pg(), and
scf_snaplevel_get_pg() functions set pg to the property group specified by name
in the service specified by svc, the instance specified by inst, or the snaplevel specified
by level, respectively.

The scf_instance_get_pg_composed() function sets pg to the property group
specified by name in the composed view of inst at the time snapshot was taken. If
snapshot is NULL, the current properties are used. The composed view of an instance’s
properties is the union of the properties of the instance and its ancestors. Properties of
the instance take precedence over properties of the service with the same name

scf_pg_create(3SCF)

DESCRIPTION

Extended Library Functions 985

(including the property group name). After a successful call to
scf_instance_get_pg_composed(), the parent of pg might not be inst, and the
parents of properties obtained from pg might not be pg. If inst and its parent have
property groups with the same name but different types, the properties in the property
group of the parent are excluded.

The scf_service_add_pg() and scf_instance_add_pg() functions create a
new property group specified by name whose type is group_type, and attach the pg
handle (if non-null) to the new object. The flags argument must be either 0 or
SCF_PG_FLAG_NONPERSISTENT.

The scf_pg_delete() function deletes the property group. Versions of the property
group in snapshots are not affected.

The scf_pg_get_underlying_pg() function gets the first existing underlying
property group. If the property group specified by pg is an instance property group,
out is set to the property group of the same name in the instance’s parent.

Applications can use a transaction to modify a property group. See
scf_transaction_create(3SCF).

Upon successful completion, scf_pg_create() returns a new
scf_propertygroup_t. Otherwise, it returns NULL.

Upon successful completion, scf_instance_handle() returns the handle instance
with which it is associated. Otherwise, it returns NULL.

Upon successful completion, scf_pg_get_name() and scf_pg_get_type()
return the length of the string written, not including the terminating null byte.
Otherwise, they return -1.

The scf_pg_update() function returns 1 if the object was updated, 0 if the object
was already up to date, and -1 on failure.

Upon successful completion, scf_pg_get_parent_service(),
scf_pg_get_parent_snaplevel(), scf_pg_get_flags(),
scf_service_get_pg(), scf_service_add_pg(),
scf_pg_get_parent_instance(), scf_instance_get_pg(),
scf_instance_get_pg_composed(), scf_instance_add_pg(),
scf_snaplevel_get_pg(), scf_pg_delete(), and
scf_pg_get_underlying_pg() return 0. Otherwise, they return -1.

The scf_pg_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The handle argument is NULL.

SCF_ERROR_NO_MEMORY
There is not enough memory to allocate an scf_propertygroup_t.

SCF_ERROR_NO_RESOURCES
The server does not have adequate resources for a new property group handle.

scf_pg_create(3SCF)

RETURN VALUES

ERRORS

986 man pages section 3: Extended Library Functions • Last Revised 15 Dec 2004

The scf_pg_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED
The handle associated with pg has been destroyed.

The scf_pg_update() function will fail if:

SCF_ERROR_DELETED
The property group referred to by pg has been deleted.

SCF_ERROR_NOT_SET
The property group specified by pg is not set.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_pg_get_name(), scf_pg_get_type(), scf_pg_get_flags(),
scf_pg_get_parent_service(), scf_pg_get_parent_snaplevel(), and
scf_pg_get_parent_instance() functions will fail if:

SCF_ERROR_DELETED
The property group specified by pg has been deleted.

SCF_ERROR_NOT_SET
The property group specified by pg is not set.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_instance_get_pg() function will fail if:

SCF_ERROR_DELETED
The instance or an ancestor has been deleted.

SCF_ERROR_NOT_BOUND
The handle was never bound or has been unbound.

The scf_pg_get_parent_service(), scf_pg_get_parent_snaplevel(), and
scf_pg_get_parent_instance() functions will fail if:

SCF_ERROR_CONSTRAINT_VIOLATED
The requested parent type does not match the actual type of the parent of the
property group specified by pg.

SCF_ERROR_HANDLE_MISMATCH
The property group and either the instance, the service, or the snaplevel are not
derived from the same handle.

scf_pg_create(3SCF)

Extended Library Functions 987

The scf_instance_get_pg(), scf_instance_get_pg_composed(),
scf_service_get_pg(), and scf_pg_get_underlying_pg() functions will fail
if:

SCF_ERROR_NOT_FOUND
The property group specified by name was not found.

The scf_service_add_pg(), scf_service_get_pg(), scf_instance_add_pg
(), scf_instance_get_pg(), scf_instance_get_pg_composed(), and
scf_snaplevel_get_pg() functions will fail if:

SCF_ERROR_DELETED
The service or instance has been deleted.

SCF_ERROR_NOT_SET
The instance is not set.

SCF_ERROR_INVALID_ARGUMENT
The value of the name argument is not a valid property group name.

SCF_ERROR_HANDLE_MISMATCH
The property group and either the instance, the service, or the level are not derived
from the same handle.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_service_add_pg() and scf_instance_add_pg() functions will fail if:

SCF_ERROR_INVALID_ARGUMENT
The value of the group_type argument is not a valid property group type or the flags
argument contains an unrecognized value.

SCF_ERROR_PERMISSION_DENIED
The caller does not have permission to create the requested property group.

SCF_ERROR_BACKEND_READONLY
The repository backend is read-only.

SCF_ERROR_BACKEND_ACCESS
The repository backend refused the modification.

SCF_ERROR_EXISTS
A {service,instance,property group} named name already exists.

SCF_ERROR_NO_RESOURCES
The server does not have the resources to complete the request.

The scf_pg_delete() function will fail if:

SCF_ERROR_DELETED
The property group has been deleted by someone else.

scf_pg_create(3SCF)

988 man pages section 3: Extended Library Functions • Last Revised 15 Dec 2004

SCF_ERROR_NOT_SET
The property group has not been set.

SCF_ERROR_PERMISSION_DENIED
The caller does not have permission to delete this property group.

SCF_ERROR_BACKEND_READONLY
The repository backend is read-only.

SCF_ERROR_BACKEND_ACCESS
The repository backend refused the modification.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_pg_get_underlying_pg() function will fail if:

SCF_ERROR_DELETED
The property group has been deleted.

SCF_ERROR_NOT_SET
The property group has not been set.

SCF_ERROR_NOT_FOUND
No underlying property group was found.

SCF_ERROR_HANDLE_MISMATCH
The property group and out are not derived from the same handle.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_error(3SCF) function can be used to retrieve the error value.

EXAMPLE 1 Perform a layered lookup of name in pg.

int layered_lookup(scf_propertygroup_t *pg, const char *name,
scf_property_t *out) {

scf_handle_t *handle = scf_pg_handle(out);
scf_propertygroup_t *new_pg;
scf_propertygroup_t *cur, *other;
int state = 0;

if (handle == NULL) {
return (-1);

}
new_pg = scf_pg_create(handle);
if (new_pg == NULL) {

return (-1);
}
for (;;) {

cur = state ? pg : new_pg;
other = state ? new_pg : pg;
state = !state;

scf_pg_create(3SCF)

EXAMPLES

Extended Library Functions 989

EXAMPLE 1 Perform a layered lookup of name in pg. (Continued)

if (scf_pg_get_property(cur, name, out) != -1) {
scf_pg_destroy(new_pg);
return (SUCCESS);

}
if (scf_pg_get_underlying_pg(cur, other) == -1)

break;
}
scf_pg_destroy(new_pg);
return (NOT_FOUND);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_handle_decode_fmri(3SCF),
scf_instance_create(3SCF), scf_pg_to_fmri(3SCF),
scf_service_create(3SCF), scf_snaplevel_create(3SCF),
scf_transaction_create(3SCF), attributes(5), smf(5)

scf_pg_create(3SCF)

ATTRIBUTES

SEE ALSO

990 man pages section 3: Extended Library Functions • Last Revised 15 Dec 2004

scf_property_create, scf_property_handle, scf_property_destroy,
scf_property_get_name, scf_property_type, scf_property_is_type,
scf_property_get_value, scf_pg_get_property – create and manipulate property
handles in the Service Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_property_t *scf_property_create(scf_handle_t *handle);

scf_handle_t *scf_property_handle(scf_property_t *prop);

void scf_property_destroy(scf_property_t *prop);

ssize_t scf_property_get_name(const scf_property_t *prop, char
*buf, size_t size);

int scf_property_type(const scf_property_t *prop, scf_type_t
*type);

int scf_property_is_type(const scf_property_t *prop, scf_type_t
type);

int scf_property_get_value(const scf_property_t *prop,
scf_value_t *value);

int scf_pg_get_property(const scf_property_t *pg, const char
*name, scf_property_t *prop);

Properties are named sets of values of one type. They are grouped into property
groups (see scf_pg_create(3SCF)) that are updated atomically using transactions
(see scf_transaction_create(3SCF)).

An scf_property_t is an opaque handle that can be set to a single property at any
given time. When set, it inherits the point-in-time from the source
scf_propertygroup_t and does not change until reset.

The scf_property_create() function allocates and initializes a new
scf_property_t bound to handle. The scf_property_destroy() function
destroys and frees prop.

The scf_property_handle() function returns the handle to which prop is bound.

The scf_property_type() function retrieves the type of the property to which prop
is set.

The scf_property_is_type() function determines if the property is compatible
with type. See scf_value_is_type(3SCF).

The scf_property_get_value() function retrieves the single value that the
property to which prop is set contains. If the property has more than one value, the
value argument is set to one of the values. To retrieve all values associated with a
property, see scf_iter_property_values(3SCF).

scf_property_create(3SCF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 991

The scf_pg_get_property() function sets prop to the property specified by name
in the property group specified by pg.

Upon successful completion, scf_property_create() returns a new
scf_property_t. Otherwise, it returns NULL.

Upon successful completion, scf_property_get_name() function returns the
length of the string written, not including the terminating null byte. Otherwise, it
returns -1.

Upon successful completion, scf_pg_get_property(), scf_property_type(),
scf_property_is_type(), and scf_pg_get_value() functions return 0.
Otherwise, they return -1.

The scf_property_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The value of the handle argument is NULL.

SCF_ERROR_NO_MEMORY
There is not enough memory to allocate an scf_property_t.

SCF_ERROR_NO_RESOURCES
The server does not have adequate resources for a new property handle.

The scf_property_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED
The handle associated with prop has been destroyed.

The scf_property_get_value() function will fail if:

SCF_ERROR_HANDLE_MISMATCH
The property and value are not derived from the same handle.

The scf_property_get_name(), scf_property_type(),
scf_property_is_type(), and scf_property_get_value() functions will fail
if:

SCF_ERROR_DELETED
The property’s parent property group or an ancestor has been deleted.

SCF_ERROR_NOT_BOUND
The handle was never bound or has been unbound.

SCF_ERROR_NOT_SET
The property is not set.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_property_is_type() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The type argument is not a valid type.

scf_property_create(3SCF)

RETURN VALUES

ERRORS

992 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

SCF_ERROR_TYPE_MISMATCH
The prop argument is not of a type compatible with type.

The scf_pg_get_property() function will fail if:

SCF_ERROR_NOT_SET
The property group specified by pg is not set.

SCF_ERROR_NOT_FOUND
The property specified by name was not found.

SCF_ERROR_INVALID_ARGUMENT
The value of the name argument is not a valid property name.

SCF_ERROR_HANDLE_MISMATCH
The property group and property are not derived from the same handle.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

SCF_ERROR_NOT_BOUND
The handle was never bound or has been unbound.

SCF_ERROR_DELETED
The property group or an ancestor has been deleted.

The scf_property_get_value() function will fail if:

SCF_ERROR_CONSTRAINT_VIOLATED
The property has more than one value associated with it. The value argument will
be set to one of the values.

SCF_ERROR_NOT_FOUND
The property has no values associated with it. The value argument will be reset.

SCF_ERROR_HANDLE_MISMATCH
The property and value are derived from different handles.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_handle_decode_fmri(3SCF),
scf_iter_property_values(3SCF), scf_pg_create(3SCF),
scf_property_to_fmri(3SCF), scf_transaction_create(3SCF),
scf_value_is_type(3SCF), attributes(5)

scf_property_create(3SCF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 993

scf_scope_create, scf_scope_handle, scf_scope_destroy, scf_scope_get_name,
scf_handle_get_scope – create and manipulate scope handles in the Service
Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_scope_t *scf_scope_create(scf_handle_t *handle);

scf_handle_t *scf_scope_handle(scf_scope_t *sc);

void scf_scope_destroy(scf_scope_t *sc);

ssize_t scf_scope_get_name(scf_scope_t *sc, char *buf, size_t size);

int scf_handle_get_scope(scf_handle_t *handle, const char *name,
scf_scope_t *out);

Scopes are the top level of the Service Configuration Facility’s repository tree. The
children of a scope are services (see scf_service_create(3SCF)) and can be
walked using scf_iter_scope_services(3SCF).

There is a distinguished scope with the name SCF_SCOPE_LOCAL that is the root for
all available services on the local machine. In the current implementation, there are no
other scopes.

An scf_scope_t is an opaque handle that can be set to a single scope at any given
time. The scf_scope_create() function allocates a new scf_scope_t bound to
handle. The scf_scope_destroy() function destroys and frees sc.

The scf_scope_handle() function retrieves the handle to which sc is bound.

The scf_scope_get_name() function retrieves the name of the scope to which sc is
set.

The scf_handle_get_scope() function sets out to the scope specified by name for
the repository handle specified by handle. The scf_iter_handle_scopes(3SCF)
and scf_iter_next_scope(3SCF) calls can be used to iterate through all available
scopes.

Upon successful completion, scf_scope_create() returns a new scf_scope_t.
Otherwise, it returns NULL.

Upon successful completion, scf_scope_handle() returns the handle to which sc is
bound. Otherwise, it returns NULL.

Upon successful completion, scf_scope_get_name() returns the length of the
string written, not including the terminating null byte. Otherwise, it returns -1.

Upon successful completion, scf_handle_get_scope() returns 0. Otherwise, it
returns -1.

The scf_scope_create() function will fail if:

scf_scope_create(3SCF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

994 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

SCF_ERROR_INVALID_ARGUMENT
The value of the handle argument is NULL.

SCF_ERROR_NO_MEMORY
There is not enough memory to allocate an scf_scope_t.

SCF_ERROR_NO_RESOURCES
The server does not have adequate resources for a new scope handle.

The scf_scope_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED
The handle associated with sc has been destroyed.

The scf_scope_get_name() function will fail if:

SCF_ERROR_NOT_SET
The scope is not set.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_handle_get_scope() function will fail if:

SCF_ERROR_NOT_FOUND
No scope named name was found.

SCF_ERROR_INVALID_ARGUMENT
The name argument is not a valid scope name.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

SCF_ERROR_HANDLE_MISMATCH
The value of the out argument is not derived from handle.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

scf_scope_create(3SCF)

ATTRIBUTES

Extended Library Functions 995

libscf(3LIB), scf_error(3SCF), scf_handle_decode_fmri(3SCF),
scf_iter_handle_scopes(3SCF), scf_iter_next_scope(3SCF),
scf_iter_scope_services(3SCF), scf_scope_to_fmri(3SCF),
scf_service_create(3SCF), attributes(5)

scf_scope_create(3SCF)

SEE ALSO

996 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

scf_service_create, scf_service_handle, scf_service_destroy, scf_service_get_parent,
scf_service_get_name, scf_scope_get_service, scf_scope_add_service,
scf_service_delete – create and manipulate service handles and services in the Service
Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_service_t *scf_service_create(scf_handle_t *handle);

scf_handle_t *scf_service_handle(scf_service_t *svc);

void scf_service_destroy(scf_service_t *svc);

int scf_service_get_parent(scf_service_t *svc, scf_scope_t *sc);

ssize_t scf_service_get_name(const scf_service_t *svc, char *buf,
size_t size);

int scf_scope_get_service(const scf_scope_t *sc, const char *name,
scf_service_t *svc);

int scf_scope_add_service(const scf_scope_t *sc, const char *name,
scf_service_t *svc);

int scf_service_delete(scf_service_t *svc);

Services form the middle layer of the Service Configuration Facility repository tree.
Services are children of a scope (see scf_scope_create(3SCF)) and have three sets
of children:

Property groups These hold configuration information shared by all of
the instances of the service. See
scf_pg_create(3SCF),
scf_iter_service_pgs(3SCF), and
scf_iter_service_pgs_typed(3SCF).

Instances A particular instantiation of the service. See
scf_instance_create(3SCF).

A service groups one or more related instances and provides a shared configuration
for them.

An scf_service_t is an opaque handle that can be set to a single service at any
given time. The scf_service_create() function allocates and initializes a new
scf_service_t bound to handle. The scf_service_destroy() function destroys
and frees svc.

The scf_service_handle() function retrieves the handle to which svc is bound.

The scf_service_get_parent() function sets sc to the scope that is the parent of
svc.

scf_service_create(3SCF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 997

The scf_service_get_name() function retrieves the name of the service to which
svc is set.

The scf_scope_get_service() function sets svc to the service specified by name in
the scope specified by sc.

The scf_scope_new_service() function sets svc to a new service specified by
name in the scope specified by sc.

The scf_service_delete() function deletes the service to which svc is set, as well
as all of its children.

Upon successful completion, scf_service_create() returns a new
scf_service_t. Otherwise, it returns NULL.

Upon successful completion, scf_service_handle() returns the handle to which
svc is bound. Otherwise, it returns NULL.

Upon successful completion, scf_service_get_name() returns the length of the
string written, not including the terminating null byte. Otherwise, it returns -1.

Upon successful completion, scf_service_get_parent(),
scf_scope_get_service(), scf_scope_add_service(), and
scf_service_delete() return 0. Otherwise, it returns -1.

The scf_service_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The value of the handle argument is NULL.

SCF_ERROR_NO_MEMORY
There is not enough memory to allocate an scf_service_t.

SCF_ERROR_NO_RESOURCES
The server does not have adequate resources for a new scope handle.

The scf_service_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED
The handle associated with svc has been destroyed.

The scf_service_get_name(), scf_service_get_parent(), and
scf_service_delete() functions will fail if:

SCF_ERROR_DELETED
The service has been deleted by someone else.

SCF_ERROR_NOT_SET
The service is not set.

SCF_ERROR_NOT_BOUND
The handle is not bound.

scf_service_create(3SCF)

RETURN VALUES

ERRORS

998 man pages section 3: Extended Library Functions • Last Revised 2 Dec 2004

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_scope_add_service() function will fail if:

SCF_ERROR_EXISTS
A {service,instance,property group} named name already exists.

SCF_ERROR_NO_RESOURCES
The server does not have the resources to complete the request.

SCF_ERROR_DELETED
The parent entity has been deleted.

The scf_scope_add_service() and scf_scope_get_service() functions will
fail if:

SCF_ERROR_NOT_SET
The scope is not set.

SCF_ERROR_NOT_FOUND
The service specified by name was not found.

SCF_ERROR_INVALID_ARGUMENT
The value of the name argument is not a valid service name.

SCF_ERROR_HANDLE_MISMATCH
The scope and service are not derived from the same handle.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_scope_add_service() and scf_scope_delete() functions will fail if:

SCF_ERROR_PERMISSION_DENIED
The user does not have sufficient privileges to create or delete a service.

SCF_ERROR_BACKEND_READONLY
The repository backend is read-only.

SCF_ERROR_BACKEND_ACCESS
The repository backend refused the modification.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

scf_service_create(3SCF)

ATTRIBUTES

Extended Library Functions 999

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_handle_decode_fmri(3SCF),
scf_iter_service_pgs(3SCF), scf_iter_service_pgs_typed(3SCF),
scf_instance_create(3SCF), scf_pg_create(3SCF),
scf_scope_create(3SCF), scf_service_to_fmri(3SCF), attributes(5),
smf(5)

scf_service_create(3SCF)

SEE ALSO

1000 man pages section 3: Extended Library Functions • Last Revised 2 Dec 2004

SCF_Session_close, SCF_Terminal_close, SCF_Card_close – close a smartcard session,
terminal, or card

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Session_close(SCF_Session_t session);

SCF_Status_t SCF_Terminal_close(SCF_Terminal_t terminal);

SCF_Status_t SCF_Card_close(SCF_Card_t card);

card An object that was returned from
SCF_Terminal_getCard(3SMARTCARD)

session An object that was returned from
SCF_Session_getSession(3SMARTCARD)

terminal An object that was returned from
SCF_Session_getTerminal(3SMARTCARD)

These functions release the resources (memory, threads, and others) that were
allocated within the library when the session, terminal, or card was opened. Any
storage allocated by calls to SCF_Session_getInfo(3SMARTCARD),
SCF_Terminal_getInfo(3SMARTCARD), or SCF_Card_getInfo(3SMARTCARD)
is deallocated when the associated object is closed. Attempts to access results from
these interfaces after the object has been closed results in undefined behavior.

If a card that was locked by SCF_Card_lock(3SMARTCARD) is closed, the lock is
automatically released. When a terminal is closed, any event listeners on that terminal
object are removed and any cards that were obtained with the terminal are closed.
Similarly, closing a session will close any terminals or cards obtained with that session.
These are the only cases where the library will automatically perform a close.

Once closed, a session, terminal, or card object can no longer be used by an SCF
function. Any attempt to do so results in an SCF_STATUS_BADHANDLE error. The sole
exception is that closing an object, even if already closed, is always a successful
operation.

Closing a handle is always a successful operation that returns
SCF_STATUS_SUCCESS. The library can safely detect handles that are invalid or
already closed.

EXAMPLE 1 Close each object explicitly.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Session_getTerminal(mySession, NULL, &myTerminal);
if (status != SCF_STATUS_SUCCESS) exit(1);

SCF_Session_close(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

EXAMPLES

Extended Library Functions 1001

EXAMPLE 1 Close each object explicitly. (Continued)

status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/* (Do interesting things with smartcard...) */

SCF_Card_close(myCard);
SCF_Terminal_close(myTerminal);

SCF_Session_close(mySession);

EXAMPLE 2 Allow the library to close objects.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Session_getTerminal(mySession, NULL, &myTerminal);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

/* (Do interesting things with smartcard...) */

SCF_Session_close(mySession);

/* myTerminal and myCard have been closed by the library. */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Card_getInfo(3SMARTCARD),
SCF_Card_lock(3SMARTCARD), SCF_Session_getInfo(3SMARTCARD),
SCF_Session_getSession(3SMARTCARD),
SCF_Session_getTerminal(3SMARTCARD),
SCF_Terminal_getCard(3SMARTCARD),
SCF_Terminal_getInfo(3SMARTCARD), attributes(5)

SCF_Session_close(3SMARTCARD)

ATTRIBUTES

SEE ALSO

1002 man pages section 3: Extended Library Functions • Last Revised 14 May 2002

SCF_Session_freeInfo, SCF_Terminal_freeInfo, SCF_Card_freeInfo – deallocate
information storage

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Session_freeInfo(SCF_Session_t session, void
*value);

SCF_Status_t SCF_Terminal_freeInfo(SCF_Terminal_t terminal, void
*value);

SCF_Status_t SCF_Card_freeInfo(SCF_Card_t card, void *value);

card An object that was returned from
SCF_Terminal_getCard(3SMARTCARD). This object must be
associated with the information value being freed.

session An object that was returned from
SCF_Session_getSession(3SMARTCARD). This object must
be associated with the information value being freed.

terminal An object that was returned from
SCF_Session_getTerminal(3SMARTCARD). This object must
be associated with the information value being freed.

value A pointer that was returned from a call to
SCF_Session_getInfo(3SMARTCARD),
SCF_Terminal_getInfo(3SMARTCARD), or
SCF_Card_getInfo(3SMARTCARD).

When information is requested for an object (for example, by using
SCF_Session_getInfo()), the result is placed in memory allocated for that request.
This memory must eventually be deallocated, or a memory leak will result. The
deallocation of memory can occur in one of two ways.

� The simplest method is to allow the smartcard library to automatically deallocate
memory when the object associated with the information is closed. For example,
when SCF_Card_close(3SMARTCARD) is called, any information obtained from
SCF_Card_getInfo() for that card object is deallocated. The application is not
required to call SCF_Card_freeInfo() at all.

� If the object persists for a long period of time, the application can explicitly request
the information to be deallocated without closing the object, so that memory is not
wasted on unneeded storage. Similarly, if an application repeatedly requests
information about an object (even the same information), the application can
explicitly request deallocation as needed, so that memory usage does not continue
to increase until the object is closed. In general, requesting information to be
deallocated can be used to reduce runtime memory bloat.

Attempts to access deallocated memory result in undefined behavior.

SCF_Session_freeInfo(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 1003

If the information is successfully deallocated, SCF_STATUS_SUCCESS is returned.
Otherwise, an error value is returned.

These functions will fail if:

SCF_STATUS_BADARGS The specified value cannot be deallocated, possibly
because of an invalid pointer, a value already
deallocated, or because the value is not associated with
the specified session, terminal, or card.

SCF_STATUS_BADHANDLE The specified session, terminal, or card has been closed
or is invalid.

SCF_STATUS_FAILED An internal error occured.

EXAMPLE 1 Free information.

char *terminalName;
SCF_Status_t status;
SCF_Terminal_t myTerminal;

/* (...call SCF_Session_getTerminal to open myTerminal...) */

status = SCF_Terminal_getInfo(myTerminal, "name", &terminalName);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The terminal name is %s\n", terminalName);

status = SCF_Terminal_freeInfo(myTerminal, terminalName);

if (status != SCF_STATUS_SUCCESS) exit(1);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Session_getInfo(3SMARTCARD),
SCF_Session_getSession(3SMARTCARD),
SCF_Session_getTerminal(3SMARTCARD),
SCF_Terminal_getCard(3SMARTCARD), attributes(5)

SCF_Session_freeInfo(3SMARTCARD)

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

1004 man pages section 3: Extended Library Functions • Last Revised 28 Feb 2001

SCF_Session_getInfo, SCF_Terminal_getInfo, SCF_Card_getInfo – retrieve information
about a session, terminal, or card

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Session_getInfo(SCF_Session_t session, const char
*name, void *value);

SCF_Status_t SCF_Terminal_getInfo(SCF_Terminal_t terminal, const
char *name, void *value);

SCF_Status_t SCF_Card_getInfo(SCF_Card_t card, const char *name,
void *value);

card An object that was returned from
SCF_Terminal_getCard(3SMARTCARD).

name The name of a property for which a value is to be returned. The
name is case-sensitive.

session An object that was returned from
SCF_Session_getSession(3SMARTCARD).

terminal An object that was returned from
SCF_Session_getTerminal(3SMARTCARD).

value The value of the property. The actual type of the value depends on
what property was being queried.

These functions obtain information about a session, terminal, or card. The information
returned represents the current state of the object and can change between calls.

Each call allocates new storage for the returned result. This storage is tracked
internally and is deallocated when the object is closed. An application repeatedly
asking for information can cause memory bloat until the object is closed. The
application can optionally call SCF_Session_freeInfo(3SMARTCARD),
SCF_Terminal_freeInfo(3SMARTCARD), or
SCF_Card_freeInfo(3SMARTCARD) to cause immediate deallocation of the value.
Applications must not use other means such asfree(3C) to deallocate the memory.

Applications must not access values that have been deallocated. For example,
accessing a Card’s ATR after the card has been closed results in undefined behavior.

For a session, the valid property names and value types are:

terminalnames (pointer to char **)
The list of terminal names that can currently be used in this session. The returned
value is an array of char *, each element of the list is a pointer to a terminal name.
The end of the array is denoted by a null pointer. The first element of the list is the
default terminal for the session, which will be used when
SCF_Session_getTerminal() is called with a null pointer for the terminal
name.

SCF_Session_getInfo(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

Extended Library Functions 1005

For a terminal, the standard property names and value types are as follows. Some
terminal drivers can define additional driver-specific properties.

name (pointer to char *)
The name of the terminal. If the default terminal was used (a null pointer was
passed to SCF_Session_getTerminal()), the value will contain the actual name
of the default terminal. For example, "MyInternalCardReader".

type (pointer to char *)
The type of the terminal. For example, "SunISCRI".

devname (pointer to char *)
Information about how the device is attached to the system. This can be a UNIX
device name (for example, "/dev/scmi2c0") or some other terminal-specific string
describing its relation to the system.

For a card, the valid property names and value types are:

type (pointer to char *)
The type of the smartcard, as recognized by the framework (For example,
"Cyberflex"). If the framework does not recognize the card type, "UnknownCard" is
returned.

atr (pointer to struct SCF_BinaryData_t *)
The Answer To Reset (ATR) data returned by the card when it was last inserted or
reset. The structure member length denotes how many bytes are in the ATR. The
structure member data is a pointer to the actual ATR bytes.

Upon success, SCF_STATUS_SUCCESS is returned and value will contain the
requested information. Otherwise, an error value is returned and value remains
unaltered.

These functions will fail if:

SCF_STATUS_BADARGS Either name or value is a null pointer.

SCF_STATUS_BADHANDLE The session, terminal, or card has been
closed or is invalid.

SCF_STATUS_FAILED An internal error occurred.

SCF_STATUS_UNKNOWNPROPERTY The property specified by name was not
found.

EXAMPLE 1 Simple string information.

SCF_Status_t status;
SCF_Terminal_t myTerminal;
const char *myName, *myType;

/* (...call SCF_Session_getTerminal to open myTerminal...) */

status = SCF_Terminal_getInfo(myTerminal, "name", &myName);
if (status != SCF_STATUS_SUCCESS) exit(1);
status = SCF_Terminal_getInfo(myTerminal, "type", &myType);

SCF_Session_getInfo(3SMARTCARD)

RETURN VALUES

ERRORS

EXAMPLES

1006 man pages section 3: Extended Library Functions • Last Revised 28 Feb 2001

EXAMPLE 1 Simple string information. (Continued)

if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The terminal called %s is a %s\n", myName, myType);

EXAMPLE 2 Display the names of all terminals available in the session.

SCF_Status_t status;
SCF_Session_t mySession;
const char **myList; /* Technically "const char * const *". */
int i;

/* (...call SCF_Session_getSession to open mySession...) */

status = SCF_Session_getInfo(mySession, "terminalnames", &myList);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The following terminals are available:\n");
for (i=0; myList[i] != NULL; i++) {

printf("%d: %s\n", i, myList[i]);

}

EXAMPLE 3 Display the card’s ATR.

SCF_Status_t status;
SCF_Card_t myCard;
struct SCF_BinaryData_t *myATR;
int i;

/* (...call SCF_Terminal_getCard to open myCard...) */

status = SCF_Card_getInfo(myCard, "atr", &myATR);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("The card’s ATR is: 0x");
for(i=0; i < myATR->length; i++) {

printf("%02.2x", myATR->data[i]);
}

printf("\n");

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Session_freeInfo(3SMARTCARD),
SCF_Session_getSession(3SMARTCARD),
SCF_Session_getTerminal(3SMARTCARD),
SCF_Terminal_getCard(3SMARTCARD), attributes(5)

SCF_Session_getInfo(3SMARTCARD)

ATTRIBUTES

SEE ALSO

Extended Library Functions 1007

SCF_Session_getSession – establish a context with a system’s smartcard framework

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Session_getSession(SCF_Session_t *session);

session A pointer to an SCF_Session_t. If a session is successfully
established, the session will be returned through this parameter.

The SCF_Session_getSession() function establishes a session with the Solaris
Smart Card Framework (SCF). Once a session has been opened, the session can be
used with SCF_Session_getTerminal(3SMARTCARD) to access a smartcard
terminal (reader). Information about the session can be obtained by calling
SCF_Session_getInfo(3SMARTCARD).

When the session is no longer needed, SCF_Session_close(3SMARTCARD) should
be called to end the session and release session resources. Closing a session will also
close any terminals and cards opened within the session.

An application usually needs to open only a single session. For example, multiple
terminals can be opened from the same session. If an appication opens additional
sessions, each call will return independent (different) sessions.

Upon success, SCF_STATUS_SUCCESS is returned and session contains a valid session.
If a session could not be established, an error value is returned and session remains
unaltered.

The SCF_Session_getSession() function will fail if:

SCF_STATUS_BADARGS The session argument is a null pointer.

SCF_STATUS_COMMERROR The library was unable to contact the smartcard server
daemon (ocfserv(1M)), or the library was unable to
obtain a session from the server.

SCF_STATUS_FAILED An internal error occurred.

EXAMPLE 1 Establish a session with the framework.

SCF_Status_t status;
SCF_Session_t mySession;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) exit(1);

/* Proceed with other smartcard operations. */

See attributes(5) for descriptions of the following attributes:

SCF_Session_getSession(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

1008 man pages section 3: Extended Library Functions • Last Revised 28 Feb 2001

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Session_close(3SMARTCARD),
SCF_Session_getInfo(3SMARTCARD),
SCF_Session_getTerminal(3SMARTCARD), attributes(5)

SCF_Session_getSession(3SMARTCARD)

SEE ALSO

Extended Library Functions 1009

SCF_Session_getTerminal – establish a context with a smartcard terminal (reader)

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Session_getTerminal(SCF_Session_t session, const
char *terminalName, SCF_Terminal_t *terminal);

session The session (from SCF_Session_getSession(3SMARTCARD))
containing a terminal to be opened.

terminal A pointer to an SCF_Terminal_t. If the terminal is successfully
opened, a handle for the terminal will be returned through this
parameter.

terminalName Specifies the name of the terminal to access. If terminalName is a
null pointer, it indicates that the library should connect with the
default terminal for the session.

The SCF_Session_getTerminal() function establishes a context with a specific
smartcard terminal (also known as a reader) in the session. Terminal objects are used
for detecting card movement (insertion or removal) and to create card objects for
accessing a specific card.

The list of available terminal names can be retrieved by calling
SCF_Session_getInfo(3SMARTCARD). Unless the user explicitly requests a
specific terminal, applications should use the session’s default terminal by calling
SCF_Session_getTerminal() with a null pointer for the terminal name. This
eliminates the need to first process an available-terminal list with just one element on
systems with only a single smartcard terminal. On multi-terminal systems, the user
can preconfigure one of the terminals as the default (or preferred) terminal. See
USAGE below.

If SCF_Session_getTerminal() is called multiple times in the same session to
access the same physical terminal, the same SCF_Terminal_t will be returned in
each call. Multithreaded applications must take care to avoid having one thread close
a terminal that is still needed by another thread. This can be accomplished by
coordination within the application or by having each thread open a separate session
to avoid interference.

When the terminal is no longer needed, SCF_Terminal_close(3SMARTCARD)
should be called to release terminal resources. Closing a terminal will also close any
cards opened from the terminal.

Upon success, SCF_STATUS_SUCCESS is returned and terminal contains the opened
terminal. Otherwise, an error value is returned and terminal remains unaltered.

The SCF_Session_getTerminal() function will fail if:

SCF_STATUS_BADARGS The terminal argument is a null pointer.

SCF_STATUS_BADHANDLE The session was closed or is invalid.

SCF_Session_getTerminal(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

1010 man pages section 3: Extended Library Functions • Last Revised 15 May 2002

SCF_STATUS_BADTERMINAL The specified terminalName is not valid for this session,
or the default terminal could not be opened because
there are no terminals available in this session.

SCF_STATUS_COMMERROR The connection to the server was lost.

SCF_STATUS_FAILED An internal error occurred.

EXAMPLE 1 Use the default terminal.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
char *myName;

/* (...call SCF_Session_getSession to open mySession...) */

status = SCF_Session_getTerminal(mySession, NULL, &myTerminal);
if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Terminal_getInfo(myTerminal, "name", &myName);
if (status != SCF_STATUS_SUCCESS) exit(1);

printf("Please insert a card into the terminal named %s\n", myName);

/* ... */

EXAMPLE 2 Open a terminal by name.

SCF_Status_t status;
SCF_Session_t mySession;
SCF_Terminal_t myTerminal;
char *myName;

/* (...call SCF_Session_getSession to open mySession...) */

/*
* The name should be selected from the list of terminal names
* available from SCF_Session_getInfo, but it could also be
* read from an appliation’s config file or from user input.
*/
myName = "SunInternalReader";

status = SCF_Session_getTerminal(mySession, myName, &myTerminal);
if (status == SCF_STATUS_BADTERMINAL) {

printf("There is no terminal named %s.\n", myName);
exit(1);

} else if (status != SCF_STATUS_SUCCESS) exit(2);

/* ... */

SCF_Session_getTerminal(3SMARTCARD)

EXAMPLES

Extended Library Functions 1011

When using the Solaris OCF smartcard framework, the default reader is specified by
the ocf.client.default.defaultreader property. If this property is not set, the
first available reader is chosen as the default. Users can set the
SCF_DEFAULT_TERMINAL environment variable to the name of a terminal to override
the normal default. The smartcard utility can also be used to add terminals to or
remove terminals from the system. See smartcard(1M) for information on how to
add or modify the OCF property.

Terminals can be accessed only by the user who expected to have physical access to
the terminal. By default, this user is assumed to be the owner of /dev/console and
the superuser. Certain terminals such as Sun Ray appliances can use a different
method to restrict access to the terminal.

The framework also uses the DISPLAY environment variable to further restrict which
terminals are listed for a user. By default, terminals are associated with the ":0" display.
Sun Ray terminals are associated with the display for that session, for example ":25". If
the DISPLAY environment variable is not set or is a display on another host, it is
treated as though it were set to ":0". Terminals not associated with the user’s DISPLAY
are not listed. To override this behaviour, the SCF_FILTER_KEY environment variable
can be set to the desired display, for example ":0", ":25", and so on. To list all terminals
to which a user has access, SCF_FILTER_KEY can be set to the special value of ":*".

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

smartcard(1M), libsmartcard(3LIB), SCF_Session_getInfo(3SMARTCARD),
SCF_Session_getSession(3SMARTCARD),
SCF_Terminal_close(3SMARTCARD), attributes(5)

SCF_Session_getTerminal(3SMARTCARD)

USAGE

ATTRIBUTES

SEE ALSO

1012 man pages section 3: Extended Library Functions • Last Revised 15 May 2002

scf_simple_prop_get, scf_simple_prop_free, scf_simple_app_props_get,
scf_simple_app_props_free, scf_simple_app_props_next,
scf_simple_app_props_search, scf_simple_prop_numvalues, scf_simple_prop_type,
scf_simple_prop_name, scf_simple_prop_pgname, scf_simple_prop_next_boolean,
scf_simple_prop_next_count, scf_simple_prop_next_integer,
scf_simple_prop_next_time, scf_simple_prop_next_astring,
scf_simple_prop_next_ustring, scf_simple_prop_next_opaque,
scf_simple_prop_next_reset – simplified property read interface to Service
Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_simple_prop_t *scf_simple_prop_get(scf_handle_t *handle, const
char *instance, const char *pgname, const char *propname);

void scf_simple_prop_free(scf_simple_prop_t *prop);

scf_simple_app_props_t *scf_simple_app_props_get(scf_handle_t
*handle, const char *instance);

void scf_simple_app_props_free(scf_simple_app_props_t *propblock);

const scf_simple_prop_t *scf_simple_app_props_next(const
scf_simple_app_props_t *propblock, scf_simple_prop_t *last);

const scf_simple_prop_t *scf_simple_app_props_search(const
scf_simple_app_props_t *propblock, const char *pgname, const
char *propname);

ssize_t scf_simple_prop_numvalues(const scf_simple_prop_t *prop);

scf_type_t scf_simple_prop_type(const scf_simple_prop_t *prop);

const char *scf_simple_prop_name(const scf_simple_prop_t *prop);

const char *scf_simple_prop_pgname(const scf_simple_prop_t
*prop);

uint8_t *scf_simple_prop_next_boolean(const scf_simple_prop_t
*prop);

uint64_t *scf_simple_prop_next_count(const scf_simple_prop_t
*prop);

int64_t *scf_simple_prop_next_integer(const scf_simple_prop_t
*prop);

int64_t *scf_simple_prop_next_time(const scf_simple_prop_t *prop,
int32_t *nsec);

char *scf_simple_prop_next_astring(const scf_simple_prop_t
*prop);

char *scf_simple_prop_next_ustring(const scf_simple_prop_t
*prop);

scf_simple_prop_get(3SCF)

NAME

SYNOPSIS

Extended Library Functions 1013

void *scf_simple_prop_next_opaque(const scf_simple_prop_t *prop,
size_t *length);

void *scf_simple_prop_next_reset(const scf_simple_prop_t *prop);

The simplified read interface to the Service Configuration Facility deals with
properties and blocks of properties.

The scf_simple_prop_get() function pulls a single property. The
scf_simple_prop_*() functions operate on the resulting scf_simple_prop_t.

The application might need to get many properties or iterate through all properties.
The scf_simple_app_props_get() function gets all properties from the service
instance that are in property groups of type ’application’. Individual properties are
pulled from the block using the scf_simple_app_props_next() function for
iteration or scf_simple_app_props_search() to search. The pointer to the
scf_simple_prop_t returned from iteration or searching can be acted upon using
the scf_simple_prop_*() functions. Each scf_*_get() function has an
accompanying scf_*_free function. The application does not free the pointer to the
scf_simple_prop_t returned from the scf_simple_app_props_next() and
scf_simple_app_props_search() calls. A free call is only used with a
corresponding get call.

The scf_simple_prop_*() functions return references to the read-only in-memory
copy of the property information. Any changes to this information results in unstable
behavior and inaccurate results. The simplified read interface provides read access
only, with no provisions to modify data in the service configuration facility repository.

The scf_simple_prop_get() function takes as arguments a bound handle, a
service instance FMRI, and the property group and property name of a property. If
handle is NULL, the library uses a temporary handle created for the purpose. If instance
is NULL the library automatically finds the FMRI of the calling process. If pgname is
NULL, the library uses the default application property group. The caller is responsible
for freeing the returned property with scf_simple_prop_free().

The scf_simple_prop_free() function frees the scf_simple_prop_t allocated
by scf_simple_prop_get().

The scf_simple_app_props_get() function takes a bound handle and a service
instance FMRI and pulls all the application properties into an
scf_simple_app_props_t. If handle is NULL, the library uses a temporary handle
created for the purpose. If instance is NULL, the library looks up the instance FMRI of
the process calling the function. The caller is responsible for freeing the
scf_simple_app_props_t with scf_simple_app_props_free().

The scf_simple_app_props_free() function frees the
scf_simple_app_props_t allocated by scf_simple_app_props_get().

scf_simple_prop_get(3SCF)

DESCRIPTION

1014 man pages section 3: Extended Library Functions • Last Revised 19 Nov 2004

The scf_simple_app_props_next() function iterates over each property in an
scf_simple_app_props_t. It takes an scf_simple_app_props_t pointer and
the last property returned from the previous call and returns the next property in the
scf_simple_app_props_t. Because the property is a reference into the
scf_simple_app_props_t, its lifetime extends only until that structure is freed.

Thescf_simple_app_props_search() function queries for an exact match on a
property in a property group. It takes a service instance FMRI, a property group name,
and a property name, and returns a property pointer. Because the property is a
reference into the scf_simple_app_props_t, its lifetime extends only until that
structure is freed.

The scf_simple_prop_numvalues() function takes a pointer to a property and
returns the number of values in that property.

The scf_simple_prop_type() function takes a pointer to a property and returns
the type of the property in an scf_type_t.

The scf_simple_prop_name() function takes a pointer to a property and returns a
pointer to the property name string.

The scf_simple_prop_pgname() function takes a pointer to a property and
returns a pointer to the property group name string. The
scf_simple_prop_next_boolean(), scf_simple_prop_next_count(),
scf_simple_prop_next_integer(), scf_simple_prop_next_astring(),
and scf_simple_prop_next_ustring() functions take a pointer to a property
and return the first value in the property. Subsequent calls iterate over all the values in
the property. The property’s internal iteration can be reset with
scf_simple_prop_next_reset().

The scf_simple_prop_next_time() function takes a pointer to a property and
the address of an allocated int32_t to hold the nanoseconds field, and returns the
first value in the property. Subsequent calls iterate over the property values.

The scf_simple_prop_next_opaque() function takes a pointer to a property and
the address of an allocated integer to hold the size of the opaque buffer. It returns the
first value in the property. Subsequent calls iterate over the property values, as do the
scf_simple_prop_next_*() functions. The scf_simple_prop_next_opaque
() function writes the size of the opaque buffer into the allocated integer.

The scf_simple_prop_next_reset() function resets iteration on a property, so
that a call to one of the scf_simple_prop_next_*() functions returns the first
value in the property.

Upon successful completion, scf_simple_prop_get() returns a pointer to an
allocated scf_simple_prop_t. Otherwise, it returns NULL.

Upon successful completion, scf_simple_app_props_get() returns a pointer to
an allocated scf_simple_app_props_t. Otherwise, it returns NULL.

scf_simple_prop_get(3SCF)

RETURN VALUES

Extended Library Functions 1015

Upon successful completion, scf_simple_app_props_next() returns a pointer to
an scf_simple_prop_t. Otherwise, it returns NULL.

Upon successful completion, scf_simple_app_props_search() returns a pointer
to an scf_simple_prop_t. Otherwise, it returns NULL.

Upon successful completion, scf_simple_prop_numvalues() returns the number
of values in a property. Otherwise, it returns -1.

Upon successful completion, scf_simple_prop_type() returns an scf_type_t.
Otherwise, it returns -1.

Upon successful completion, scf_simple_prop_name() and
scf_simple_prop_pgname() return character pointers. Otherwise, they return
NULL.

Upon successful completion, scf_simple_prop_next_boolean(),
scf_simple_prop_next_count(), scf_simple_prop_next_integer(),
scf_simple_prop_next_time(), scf_simple_prop_next_astring(),
scf_simple_prop_next_ustring(), and scf_simple_prop_next_opaque()
return a pointer to the next value in the property. After all values have been returned,
NULL is returned and SCF_ERROR_NONE is set. On failure, NULL is returned and the
appropriate error value is set.

The scf_simple_prop_get() and scf_simple_app_props_get() function will
fail if:

SCF_ERROR_NOT_FOUND
The specified instance or property does not exist.

SCF_ERROR_INVALID_ARGUMENT
The instance FMRI is invalid or property name is NULL.

SCF_ERROR_NO_MEMORY
The memory allocation failed.

SCF_ERROR_NOT_BOUND
The connection handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the datastore is broken.

The scf_simple_app_props_next() function will fail if:

SCF_ERROR_NOT_SET
The value of the propblock argument is NULL.

The scf_simple_app_props_search() function will fail if:

SCF_ERROR_NOT_FOUND
The property was not found.

SCF_ERROR_NOT_SET
The value of the propblock or propname argument is NULL.

scf_simple_prop_get(3SCF)

ERRORS

1016 man pages section 3: Extended Library Functions • Last Revised 19 Nov 2004

The scf_simple_prop_numvalues(), scf_simple_prop_type(),
scf_simple_prop_name(), and scf_simple_prop_pgname() functions will fail
if:

SCF_ERROR_NOT_SET
The property is NULL.

The scf_simple_prop_next_boolean(), scf_simple_prop_next_count(),
scf_simple_prop_next_integer(), scf_simple_prop_next_time(),
scf_simple_prop_next_astring(), scf_simple_prop_next_ustring(),
and scf_simple_prop_next_opaque() functions will fail if:

SCF_ERROR_NOT_SET
The property is NULL.

SCF_ERROR_TYPE_MISMATCH
The requested type does not match the property type.

EXAMPLE 1 Simple Property Get

/*
* In this example, we pull the property named "size" from the
* default property group. We make sure that the property
* isn’t empty, and then copy it into the sizeval variable.
*/

scf_simple_prop_t *prop;
ssize_t numvals;
int64_t *sizeval;

prop = scf_simple_prop_get(
"svc://localhost/category/service/instance",
NULL, "size");

numvals = scf_simple_prop_numvalues(prop);

if(numvals > 0){
sizeval = scf_simple_prop_next_integer(prop);

}

scf_simple_prop_free(prop);

EXAMPLE 2 Property Iteration

scf_simple_prop_t *prop;
scf_simple_app_props_t *appprops;

appprops = scf_simple_app_props_get(
"svc://localhost/category/service/instance");

prop = scf_simple_app_props_next(appprops, NULL);

while(prop != NULL)
{

/*
* This iteration will go through every property in the

scf_simple_prop_get(3SCF)

EXAMPLES

Extended Library Functions 1017

EXAMPLE 2 Property Iteration (Continued)

* instance’s application block. The user can use
* the set of property functions to pull the values out
* of prop, as seen in other examples.
*/

(...code acting on each property...)

prop = scf_simple_app_props_next(appprops, prop);

}

scf_simple_app_props_free(appprops);

EXAMPLE 3 Property Searching

/*
* In this example, we pull the property block from the instance,
* and then query it. Generally speaking, the simple get would
* be used for an example like this, but for the purposes of
* illustration, the non-simple approach is used. The property
* is a list of integers that are pulled into an array.
* Note how val is passed back into each call, as described above.
*/

scf_simple_app_props_t *appprops;
scf_simple_prop_t *prop;
int i;
int64_t *intlist;
ssize_t numvals;

appprops = scf_simple_app_props_get(
"svc://localhost/category/service/instance");

prop = scf_simple_app_props_search(appprops, "appname", "numlist");

if(prop != NULL){

numvals = scf_simple_prop_numvalues(prop);

if(numvals > 0){

intlist = malloc(numvals * sizeof(int64_t));

val = scf_simple_prop_next_integer(prop);

for(i=0, i < numvals, i++){
intlist[i] = *val;
val = scf_simple_prop_next_integer(prop);

}
}

}

scf_simple_app_props_free(appprops);

scf_simple_prop_get(3SCF)

1018 man pages section 3: Extended Library Functions • Last Revised 19 Nov 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libscf(3LIB), scf_error(3SCF), attributes(5)

scf_simple_prop_get(3SCF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 1019

scf_simple_walk_instances – observational interface for Service Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

int scf_simple_walk_instances(uint_t flags, void *private, int
(*inst_callback)(scf_handle_t *, scf_instance_t *, void *));

The scf_simple_walk_instances() function iterates over every service instance
in a specified state and calls a callback function provided by the user on each specified
instance.

The function takes a flags argument to indicate which instance states are involved in
the iteration, an opaque buffer to be passed to the callback function, and a callback
function with three arguments, a handle, an instance pointer, and an opaque buffer. If
the callback function returns a value other than success, iteration is ended, an error is
set, and the function returns -1.

The handle passed to the callback function is provided to the callback function by the
library. This handle is used by the callback function for all low-level allocation
involved in the function.

The simplified library provides defined constants for the flags argument. The user can
use a bitwise OR to apply more than one flag. The SCF_STATE_ALL flag is a bitwise
OR of all the other states.The flags are:

SCF_STATE_UNINIT
SCF_STATE_MAINT
SCF_STATE_OFFLINE
SCF_STATE_DISABLED
SCF_STATE_ONLINE
SCF_STATE_DEGRADED
SCF_STATE_ALL

Upon successful completion, scf_simple_walk_instances() returns 0.
Otherwise, it returns -1.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libscf(3LIB), attributes(5)

scf_simple_walk_instances(3SCF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

1020 man pages section 3: Extended Library Functions • Last Revised 17 Aug 2004

scf_snaplevel_create, scf_snaplevel_handle, scf_snaplevel_destroy,
scf_snaplevel_get_parent, scf_snaplevel_get_scope_name,
scf_snaplevel_get_service_name, scf_snaplevel_get_instance_name,
scf_snapshot_get_base_snaplevel, scf_snaplevel_get_next_snaplevel – create and
manipulate snaplevel handles in the Service Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_snaplevel_t *scf_snaplevel_create(scf_handle_t *handle);

scf_handle_t *scf_snaplevel_handle(scf_snaplevel_t *level);

void scf_snaplevel_destroy(scf_snaplevel_t *level);

int scf_snaplevel_get_parent(const scf_snaplevel_t *level, const
scf_snapshot_t *snap);

ssize_t scf_snaplevel_get_scope_name(const scf_snaplevel_t *level,
char *buf, size_t size);

ssize_t scf_snaplevel_get_service_name(const scf_snaplevel_t
*level, char *buf, size_t size);

ssize_t scf_snaplevel_get_instance_name(const scf_snaplevel_t
*level, char *buf, size_t size);

int scf_snapshot_get_base_snaplevel(const scf_snapshot_t *snap,
scf_snaplevel_t *level);

int scf_snaplevel_get_next_snaplevel(scf_snaplevel_t *in,
scf_snaplevel_t *out);

A snaplevel holds all of the property groups associated with either a service or an
instance. Each snapshot has an ordered list of snaplevels. Snaplevels contain the
names of the instance or service from which they are derived.

An scf_snaplevel_t is an opaque handle that can be set to a single snaplevel at
any given time. When set, the scf_snaplevel_t inherits the point in time from the
scf_snapshot_t from which it comes.

The scf_snaplevel_create() function allocates and initializes a new
scf_snaplevel_t bound to handle. The scf_snaplevel_destroy() function
destroys and frees level.

The scf_snaplevel_handle() function retrieves the handle to which level is
bound.

The scf_snaplevel_get_parent() function sets snap to the parent snapshot of
the snaplevel to which level is set. The snapshot specified by snap is attached to the
same point in time as level.

scf_snaplevel_create(3SCF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 1021

The scf_snaplevel_get_scope_name(), scf_snaplevel_get_service_name
(), and scf_snaplevel_get_instance_name() functions retrieve the name of
the scope, service, and instance for the snapshot to which snap is set. If the snaplevel is
from an instance, all three succeed. If the snaplevel is from a service,
scf_snaplevel_get_instance_name() fails.

The scf_snapshot_get_base_snaplevel() function sets level to the first
snaplevel in the snapshot to which snap is set. The
scf_snaplevel_get_next_snaplevel() function sets out to the next snaplevel
after the snaplevel to which in is set. Both the in and out arguments can point to the
same scf_snaplevel_t.

To retrieve the property groups associated with a snaplevel, see
scf_iter_snaplevel_pgs(3SCF), scf_iter_snaplevel_pgs_typed(3SCF),
and scf_snaplevel_get_pg(3SCF).

Upon successful completion, scf_snaplevel_create() returns a new
scf_snaplevel_t. Otherwise, it returns NULL.

Upon successful completion, scf_snaplevel_get_scope_name(),
scf_snaplevel_get_service_name(), and
scf_snaplevel_get_instance_name() return the length of the string written,
not including the terminating null byte. Otherwise, they return -1.

Upon successful completion, scf_snaplevel_get_parent(),
scf_snapshot_get_base_snaplevel(), and
scf_snaplevel_get_next_snaplevel() return. Otherwise, they return -1.

The scf_snaplevel_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The handle argument is NULL.

SCF_ERROR_NO_MEMORY
There is not enough memory to allocate an scf_snaplevel_t.

SCF_ERROR_NO_RESOURCES
The server does not have adequate resources for a new snapshot handle.

The scf_snaplevel_get_scope_name(), scf_snaplevel_get_service_name
(), scf_snaplevel_get_instance_name(), and scf_snaplevel_get_parent
() functions will fail if:

SCF_ERROR_DELETED
The object referred to by level has been deleted.

SCF_ERROR_NOT_SET
The snaplevel is not set.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

scf_snaplevel_create(3SCF)

RETURN VALUES

ERRORS

1022 man pages section 3: Extended Library Functions • Last Revised 15 Nov 2004

The scf_snaplevel_get_instance_name() function will fail if:

SCF_ERROR_CONSTRAINT_VIOLATED
The snaplevel is derived from a service.

The scf_snapshot_get_base_snaplevel() function will fail if:

SCF_ERROR_DELETED
The snapshot has been deleted.

SCF_ERROR_NOT_SET
The snapshot is not set.

SCF_ERROR_HANDLE_MISMATCH
The snapshot and snaplevel are not derived from the same handle.

SCF_ERROR_NOT_FOUND
There are no snaplevels in this snapshot.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_snaplevel_get_next_snaplevel() function will fail if:

SCF_ERROR_DELETED
The snaplevel has been deleted.

SCF_ERROR_NOT_SET
The snaplevel is not set.

SCF_ERROR_HANDLE_MISMATCH
The in and out arguments are not derived from the same handle.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

SCF_ERROR_NOT_FOUND
There are no more snaplevels in this snapshot.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

scf_snaplevel_create(3SCF)

ATTRIBUTES

Extended Library Functions 1023

libscf(3LIB), scf_error(3SCF), scf_iter_snaplevel_pgs(3SCF),
scf_iter_snaplevel_pgs_typed(3SCF), scf_snaplevel_get_pg(3SCF),
attributes(5)

scf_snaplevel_create(3SCF)

SEE ALSO

1024 man pages section 3: Extended Library Functions • Last Revised 15 Nov 2004

scf_snapshot_create, scf_snapshot_handle, scf_snapshot_destroy,
scf_snapshot_get_parent, scf_snapshot_get_name, scf_snapshot_update,
scf_instance_get_snapshot – create and manipulate snapshot handles and snapshots in
the Service Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_snapshot_t *scf_snapshot_create(scf_handle_t *handle);

scf_handle_t *scf_snapshot_handle(scf_snapshot_t *snap);

void scf_snapshot_destroy(scf_snapshot_t *snap);

int scf_snapshot_get_parent(const scf_snapshot_t *snap,
scf_instance_t *inst);

ssize_t scf_snapshot_get_name(const scf_snapshot_t *snap, char
*buf, size_t size);

int scf_snapshot_update(scf_snapshot_t *snap);

int scf_instance_get_snapshot(const scf_instance_t *inst, const
char *name, scf_snapshot_t *snap);

A snapshot is an unchanging picture of the full set of property groups associated with
an instance. Snapshots are automatically created and managed by the Solaris
Management Facility. See smf(5).

A snapshot consists of a set of snaplevels, each of which holds copies of the property
groups associated with an instance or service in the resolution path of the base
instance. Typically, there is one snaplevel for the instance and one for the instance’s
parent service.

The scf_snapshot_create() function allocates and initializes a new
scf_snapshot_t bound to handle. The scf_snapshot_destroy() function
destroys and frees snap.

The scf_snapshot_handle() function retrieves the handle to which snap is bound.

The scf_snapshot_get_parent() function sets inst to the parent of the snapshot
to which snap is set.

The scf_snapshot_get_name() function retrieves the name of the snapshot to
which snap is set.

The scf_snapshot_update() function reattaches snap to the latest version of the
snapshot to which snap is set.

The scf_instance_get_snapshot() function sets snap to the snapshot specified
by name in the instance specified by inst. To walk all of the snapshots, see
scf_iter_instance_snapshots(3SCF).

scf_snapshot_create(3SCF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 1025

To access the snaplevels of a snapshot, see
scf_snapshot_get_base_snaplevel(3SCF).

Upon successful completion, scf_snapshot_create() returns a new
scf_snapshot_t. Otherwise, it returns NULL.

Upon successful completion, scf_snapshot_handle() returns the handle to which
snap is bound. Otherwise, it returns NULL.

Upon successful completion, scf_snapshot_get_name() returns the length of the
string written, not including the terminating null byte. Otherwise, it returns NULL.

The scf_snapshot_update() function returns 1 if the snapshot was updated, 0 if
the snapshot had not been updated, and -1 on failure.

Upon successful completion, scf_snapshot_get_parent() and
scf_instance_get_snapshot() return 0. Otherwise, they return -1.

The scf_snapshot_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The handle argument is NULL.

SCF_ERROR_NO_MEMORY
There is not enough memory to allocate an scf_snapshot_t.

SCF_ERROR_NO_RESOURCES
The server does not have adequate resources for a new instance handle.

The scf_snapshot_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED
The handle associated with snap has been destroyed.

The scf_snapshot_get_name() and scf_snapshot_get_parent() functions
will fail if:

SCF_ERROR_DELETED
The snapshot has been deleted.

SCF_ERROR_NOT_SET
The snapshot is not set.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_instance_get_snapshot() function will fail if:

SCF_ERROR_DELETED
The instance has been deleted.

scf_snapshot_create(3SCF)

RETURN VALUES

ERRORS

1026 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

SCF_ERROR_NOT_SET
The instance is not set.

SCF_ERROR_NOT_FOUND
The snapshot specified by name was not found.

SCF_ERROR_INVALID_ARGUMENT
The value of the name argument is not a valid snapshot name.

SCF_ERROR_HANDLE_MISMATCH
The instance and snapshot are not derived from the same handle.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

The scf_error(3SCF) function can be used to retrieve the error value.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libscf(3LIB), scf_error(3SCF), scf_iter_instance_snapshots(3SCF),
scf_snapshot_get_base_snaplevel(3SCF), attributes(5), smf(5)

scf_snapshot_create(3SCF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 1027

SCF_strerror – get a string describing a status code

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

const char *SCF_strerror(SCF_Status_t error);

error A value returned from a smartcard SCF function call. A list of all
current codes is contained in <smartcard/scf.h>

The SCF_strerror() function provides a mechanism for generating a brief message
that describes each SCF_Status_t error code. An application might use the message
when displaying or logging errors.

The string returned by the function does not contain any newline characters. Returned
strings must not be modified or freed by the caller.

A pointer to a valid string is always returned. If the provided error is not a valid SCF
error code, a string is returned stating that the error code is unknown. A null pointer is
never returned.

EXAMPLE 1 Report a fatal error.

SCF_Status_t status;
SCF_Session_t mySession;

status = SCF_Session_getSession(&mySession);
if (status != SCF_STATUS_SUCCESS) {

printf("Smartcard startup error: %s\n", SCF_strerror(status));
exit(1);

}

/* ... */

Messages returned from SCF_strerror() are in the native language specified by the
LC_MESSAGES locale category; see setlocale(3C). The C locale is used if the native
strings could not be loaded.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Session_getSession(3SMARTCARD),
strerror(3C), attributes(5)

SCF_strerror(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

EXAMPLES

USAGE

ATTRIBUTES

SEE ALSO

1028 man pages section 3: Extended Library Functions • Last Revised 14 May 2002

SCF_Terminal_addEventListener, SCF_Terminal_updateEventListener,
SCF_Terminal_removeEventListener – receive asychronous event notification

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Terminal_addEventListener(SCF_Terminal_t
terminal, SCF_Event_t events, void(*callback)(SCF_Event_t,
SCF_Terminal_t, void *), void *userData, SCF_ListenerHandle_t
*listenerHandle);

SCF_Status_t SCF_Terminal_updateEventListener(SCF_Terminal_t
terminal, SCF_ListenerHandle_t listenerHandle, SCF_Event_t events);

SCF_Status_t SCF_Terminal_removeEventListener(SCF_Terminal_t
terminal, SCF_ListenerHandle_t listenerHandle);

terminal A terminal (from SCF_Session_getTerminal(3SMARTCARD))
to which the event listener should be added or removed.

events Events to deliver to the callback. An event will not be delivered if
it is not listed. The caller can register for multiple events by
performing a bitwise OR of the desired events. The valid events
are:

SCF_EVENT_ALL
All of the events listed below will be delivered.

SCF_EVENT_CARDINSERTED
A smartcard was inserted into the terminal.

SCF_EVENT_CARDREMOVED
A smartcard was removed from the terminal.

SCF_EVENT_CARDPRESENT
Indicates that a card was present in the terminal when the event
listener was first added. This event allows event listeners to
determine the initial state of the terminal before an insert or
remove event occurs. Either this event or the
SCF_EVENT_CARDABSENT (see below) event will be delivered
only once upon adding an event listener and immediately
before any other events are delivered. Future card movements
will generate SCF_EVENT_CARDINSERTED and
SCF_EVENT_CARDREMOVED events, but not
SCF_EVENT_CARDPRESENT or SCF_EVENT_CARDABSENT
events. An event listener can assume that if a
SCF_EVENT_CARDPRESENT event is delivered, the next card
movement event will be a SCF_EVENT_CARDREMOVED.

SCF_EVENT_CARDABSENT
Indicates that a card was not present in the terminal when the
event listener was first added. This event allows event listeners
to determine the initial state of the terminal before an insert or

SCF_Terminal_addEventListener(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

Extended Library Functions 1029

remove event occurs. Either this event or the
SCF_EVENT_CARDPRESENT event (see above) will be delivered
only once upon adding an event listener and immediately
before any other events are delivered. Future card movements
will generate SCF_EVENT_CARDINSERTED and
SCF_EVENT_CARDREMOVED events, but not
SCF_EVENT_CARDPRESENT or SCF_EVENT_CARDABSENT
events. An event listener can assume that if a
SCF_EVENT_CARDABSENT event is delivered, the next card
movement event will be a SCF_EVENT_CARDINSERTED.

SCF_EVENT_CARDRESET
The smartcard currently present has been reset (see
SCF_Card_reset(3SMARTCARD)).

SCF_EVENT_TERMINALCLOSED
The terminal is in the process of being closed (due to a call to
SCF_Session_close(3SMARTCARD) or
SCF_Terminal_close(3SMARTCARD)), so no further events
will be delivered. The terminal argument provided to the
callback will still be valid.

SCF_EVENT_COMMERROR
The connection to the server has been lost. No further events
will be delivered.

callback A function pointer that will be executed when the desired event
occurs. The function must take three arguments. The first is a
SCF_Event_t containing the event that occured. The second
argument is an SCF_Terminal_t containing the terminal on
which the event occured. The third is a void * that can be used to
provide arbitrary data to the callback when it is executed.

userData A pointer to arbitrary user data. The data is not accessed by the
library. The pointer is simply provided to the callback when an
event is issued. This argument can safely be set to NULL if not
needed. The callback must be able to handle this case.

listenerHandle A unique "key" that is provided by
SCF_Terminal_addEventListener() to refer to a specific
event listener registration. This allows multiple event listeners to
be selectivly updated or removed.

These functions allow an application to receive notification of events on a terminal as
they occur. The concept is similar to a signal handler. When an event occurs, a thread
in the SCF library will execute the provided callback function. Once added, the listener
will receive events until it is removed or either the terminal or session is closed.

When the callback function is executed, the callback arguments specify the event that
occured and the terminal on which it occurred. Additionally, each callback will receive
the userData pointer that was provided when the listener was added. The library does

SCF_Terminal_addEventListener(3SMARTCARD)

DESCRIPTION

1030 man pages section 3: Extended Library Functions • Last Revised 28 Feb 2001

not make a copy of the memory pointed to by userData, so applications must take care
not to deallocate that memory until it is known that the callback will no longer access
it (for example, by removing the event listener). Each invocation of the callback will be
for exactly one event. If the library needs to deliver multiple events, they will be
dispatched one at a time. Because the callback is executed from a thread, any
operations it performs must be thread safe. For each callback registration, the library
creates a new thread to deliver events to that callback. The callback is expected to
perform minimal work and return quickly.

An application can add multiple callbacks on a terminal. Any event that occurs will be
delivered to all listeners that registered for that event type. The same callback can be
registered multiple times. Each call to SCF_Terminal_addEventListener() will
result in a new SCF_ListenerHandle_t. The events a callback receives can be
changed by calling SCF_Terminal_updateEventListener() with the handle that
was returned when the listener was initially added. If the listener is set to receive no
events (that is, the events parameter has no bits set), the listener will remain registered
but will not receive any events. To remove a listener and release allocated resources,
use SCF_Terminal_removeEventListener() or close the terminal.

If the event listener was successfully added or removed, SCF_STATUS_SUCCESS is
returned. Otherwise, an error value is returned and the internal list of registered event
listeners remains unaltered.

These functions will fail if:

SCF_STATUS_BADARGS The callback function pointer and/or listenerHandle is
null, or an unknown event was specified.

SCF_STATUS_BADHANDLE The specified terminal has been closed or is invalid, or
the event listener handle could not be found to update
or remove.

SCF_STATUS_COMMERROR The connection to the server was lost.

SCF_STATUS_FAILED An internal error occurred.

EXAMPLE 1 Register for card movements.

struct myState_t {
int isStateKnown;
int isCardPresent;

};

void myCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void *data) {
struct myState_t *state = data;
if (event == SCF_EVENT_CARDINSERTED) {

printf("--- Card inserted ---\n");
state->isCardPresent = 1;

}
else if (event == SCF_EVENT_CARDREMOVED) {

printf("--- Card removed ---\n");
state->isCardPresent = 0;

SCF_Terminal_addEventListener(3SMARTCARD)

RETURN VALUES

ERRORS

EXAMPLES

Extended Library Functions 1031

EXAMPLE 1 Register for card movements. (Continued)

}
state->isStateKnown = 1;

}

main() {
SCF_Status_t status;
SCF_Terminal_t myTerminal;
SCF_ListenerHandle_t myListener;
struct myState_t myState;

/* (...call SCF_Session_getTerminal to open myTerminal...) */

myState.isStateKnown = 0;
status = SCF_Terminal_addEventListener(myTerminal,

SCF_EVENT_CARDINSERTED|SCF_EVENT_CARDREMOVED, &myCallback,
&myState, &myListener);

if (status != SCF_STATUS_SUCCESS) exit(1);

while(1) {
if (!myState.isStateKnown)

printf("Waiting for first event...\n");
else {

if (myState.isCardPresent)
printf("Card is present.\n");

else
printf("Card is not present.\n");

}
sleep(1);

}

}

EXAMPLE 2 Use different callbacks for each event.

void myInsertCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void *data) {

/* ... */
}

void myRemoveCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void *data) {
/* ... */

}

main () {
SCF_Status_t status;
SCF_Terminal_t terminal;
SCF_ListenerHandle_t myListener1, myListener2, myListener3;
int foo, bar;

/* (...call SCF_Session_getTerminal to open myTerminal...) */

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDINSERTED, &myInsertCallback, &foo,

SCF_Terminal_addEventListener(3SMARTCARD)

1032 man pages section 3: Extended Library Functions • Last Revised 28 Feb 2001

EXAMPLE 2 Use different callbacks for each event. (Continued)

&myListener1);
if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDREMOVED, &myRemoveCallback, &foo,
&myListener2);

if (status != SCF_STATUS_SUCCESS) exit(1);

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_CARDREMOVED, &myRemoveCallback, &bar,
&myListener3);

if (status != SCF_STATUS_SUCCESS) exit(1);

/*
* At this point, when each insertion occurs, myInsertCallback
* will be called once (with a pointer to foo). When each removal
* occurs, myRemoveCallback will be called twice. One call will
* be given a pointer to foo, and the other will be given a
* pointer to bar.
*/

status = SCF_Terminal_removeEventListener(myTerminal,
myListener2);

if (status != SCF_STATUS_SUCCESS) exit(1);

/*
* Now, when a removal occurs, myRemoveCallback will only be
* called once, with a pointer to bar.
*/

/* ... */

}

EXAMPLE 3 Use initial state events to show user the terminal state in a GUI.

void myCallback(SCF_Event_t event, SCF_Terminal_t eventTerminal,
void *unused) {
if (event == SCF_EVENT_CARDPRESENT) {

/* Set initial icon to a terminal with a card present. */
}
else if (event == SCF_EVENT_CARDABSENT) {

/* Set initial icon to a terminal without a card present. */
}
else if (event == SCF_EVENT_CARDINSERTED) {

/* Show animation for card being inserted into a terminal. */
}
else if (event == SCF_EVENT_CARDREMOVED) {

/* Show animation for card being removed from a terminal. */
}

}

main() {
SCF_Terminal_t myTerminal;
SCF_ListenerHandle_t myListener;

SCF_Terminal_addEventListener(3SMARTCARD)

Extended Library Functions 1033

EXAMPLE 3 Use initial state events to show user the terminal state in a GUI. (Continued)

/* (...call SCF_Session_getTerminal to open myTerminal...) */

status = SCF_Terminal_addEventListener(myTerminal,
SCF_EVENT_ALL, &myCallback, NULL, &myListener);

if (status != SCF_STATUS_SUCCESS) exit(1);

/* ... */

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Card_reset(3SMARTCARD),
SCF_Session_close(3SMARTCARD),
SCF_Session_getTerminal(3SMARTCARD),
SCF_Terminal_updateEventListener(3SMARTCARD),
SCF_Terminal_close(3SMARTCARD),
SCF_Terminal_removeEventListener(3SMARTCARD), attributes(5)

SCF_Terminal_addEventListener(3SMARTCARD)

ATTRIBUTES

SEE ALSO

1034 man pages section 3: Extended Library Functions • Last Revised 28 Feb 2001

SCF_Terminal_getCard – establish a context with a smartcard

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Terminal_getCard(SCF_Terminal_t terminal,
SCF_Card_t *card);

card A pointer to a SCF_Card_t. If the smartcard is successfully
opened, a handle for the card will be returned through this
parameter.

terminal The terminal (from
SCF_Session_getTerminal(3SMARTCARD)) containing a
smartcard to open.

The SCF_Terminal_getCard() function establishes a context with a specific
smartcard in a terminal. Card objects can be used to send APDUs (Application
Protocol Data Units) to the card with SCF_Card_exchangeAPDU(3SMARTCARD).
When the card is no longer needed, SCF_Card_close(3SMARTCARD) should be
called to release allocated resources.

If SCF_Terminal_getCard() is called multiple times in the same session to access
the same physical card (while the card remains inserted), the same SCF_Card_t will
be returned in each call. The library cannot identifty specific cards, so when a card is
reinserted it will be represented by a new SCF_Card_t. Multithreaded applications
must take care to avoid having one thread close a card that is still needed by another
thread. This can be accomplished by coordination within the application, or by having
each thread open a separate session to avoid interference.

If a working card is present in the reader, SCF_STATUS_SUCCESS is returned and card
is a valid reference to the card. Otherwise, an error value is returned and card remains
unaltered.

The SCF_Terminal_getCard() function will fail if:

SCF_STATUS_BADARGS The card argument is a null pointer.

SCF_STATUS_BADHANDLE The specified terminal has been closed or is invalid.

SCF_STATUS_FAILED An internal error occured.

SCF_STATUS_NOCARD No card is present in the terminal.

EXAMPLE 1 Access a smartcard.

SCF_Status_t status;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

/* (...call SCF_Session_getTerminal to open myTerminal...) */

status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status == SCF_STATUS_NOCARD) {

SCF_Terminal_getCard(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

Extended Library Functions 1035

EXAMPLE 1 Access a smartcard. (Continued)

printf("Please insert your smartcard and try again.\n");
exit(0);

}
else if (status != SCF_STATUS_SUCCESS) exit(1);

/* (...go on to use the card with SCF_Card_exchangeAPDU()...) */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Card_close(3SMARTCARD),
SCF_Card_exchangeAPDU(3SMARTCARD), SCF_Card_getInfo(3SMARTCARD),
SCF_Card_lock(3SMARTCARD), SCF_Session_getTerminal(3SMARTCARD),
attributes(5)

SCF_Terminal_getCard(3SMARTCARD)

ATTRIBUTES

SEE ALSO

1036 man pages section 3: Extended Library Functions • Last Revised 28 Feb 2001

SCF_Terminal_waitForCardPresent, SCF_Terminal_waitForCardAbsent,
SCF_Card_waitForCardRemoved – wait for a card to be inserted or removed

cc [flag...] file... -lsmartcard [library...]
#include <smartcard/scf.h>

SCF_Status_t SCF_Terminal_waitForCardPresent(SCF_Terminal_t
terminal, unsigned int timeout);

SCF_Status_t SCF_Terminal_waitForCardAbsent(SCF_Terminal_t
terminal, unsigned int timeout);

SCF_Status_t SCF_Card_waitForCardRemoved(SCF_Card_t card,
unsigned int timeout);

card A card that was returned from
SCF_Terminal_getCard(3SMARTCARD).

terminal A terminal that was returned from
SCF_Session_getTerminal(3SMARTCARD).

timeout The maximum number or seconds to wait for the desired state to
be reached. If the timeout is 0, the function will immediately
return SCF_STATUS_TIMEOUT if the terminal or card is not in the
desired state. A timeout of SCF_TIMEOUT_MAX can be specified to
indicate that the function should never timeout.

These functions determine if a card is currently available in the specified terminal.

The SCF_Card_waitForCardRemoved() function differs from
SCF_Terminal_waitForCardAbsent() in that it checks to see if a specific card has
been removed. If another card (or even the same card) has since been reinserted,
SCF_Card_waitForCardRemoved() will report that the old card was removed,
while the SCF_Terminal_waitForCardAbsent() will instead report that there is a
card present.

If the desired state is already true, the function will immediately return
SCF_STATUS_SUCCESS. Otherwise it will wait for a change to the desired state, or for
the timeout to expire, whichever occurs first.

Unlike an event listener (SCF_Terminal_addEventListener(3SMARTCARD)),
these functions return the state of the terminal, not just events. To use an electronics
analogy, event listeners are edge-triggered, while these functions are level-triggered.

If the desired state is reached before the timeout expires, SCF_STATUS_SUCCESS is
returned. If the timeout expires, SCF_STATUS_TIMEOUT is returned. Otherwise, an
error value is returned.

These functions will fail if:

SCF_STATUS_BADHANDLE The specified terminal or card has been closed or is
invalid.

SCF_Terminal_waitForCardPresent(3SMARTCARD)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 1037

SCF_STATUS_COMMERROR The server closed the connection.

SCF_STATUS_FAILED An internal error occured.

EXAMPLE 1 Determine if a card is currently inserted.

int isCardCurrentlyPresent(SCF_Terminal_t myTerminal) {
SCF_Status_t status;

/*
* The timeout of zero makes sure this call will always
* return immediately.
*/
status = SCF_Terminal_waitForCardPresent(myTerminal, 0);

if (status == SCF_STATUS_SUCCESS) return (TRUE);
else if (status == SCF_STATUS_TIMEOUT) return (FALSE);

/*
* For other errors, this example just assumes no card
* is present. We don’t really know.
*/
return (FALSE);

}

EXAMPLE 2 Remind the user every 5 seconds to remove their card.

SCF_Status_t status;
SCF_Terminal_t myTerminal;

/* (...call SCF_Session_getTerminal to open myTerminal...) */

status = SCF_Terminal_waitForCardAbsent(myTerminal, 0);
while (status == SCF_STATUS_TIMEOUT) {

printf("Please remove the card from the terminal!\n");
status = SCF_Terminal_waitForCardAbsent(myTerminal, 5);

}

if (status == SCF_STATUS_SUCCESS)
printf("Thank you.\n");

else
exit(1);

/* ... */

EXAMPLE 3 Demonstrate the difference between the card-specific and terminal-specific calls.

SCF_Status_t status;
SCF_Terminal_t myTerminal;
SCF_Card_t myCard;

/* (...call SCF_Session_getTerminal to open myTerminal...) */

status = SCF_Terminal_getCard(myTerminal, &myCard);
if (status != SCF_STATUS_SUCCESS) exit(1);

SCF_Terminal_waitForCardPresent(3SMARTCARD)

EXAMPLES

1038 man pages section 3: Extended Library Functions • Last Revised 15 May 2002

EXAMPLE 3 Demonstrate the difference between the card-specific and terminal-specific
calls. (Continued)

/*
* While we sleep, assume user removes the card
* and inserts another card.
*/
sleep(10);

status = SCF_Terminal_waitForCardAbsent(myTerminal, 0);
/*
* In this case, status is expected to be SCF_STATUS_TIMEOUT, as there
* is a card present.
*/

status = SCF_Card_waitForCardRemoved(myCard, 0);
/*
* In this case, status is expected to be SCF_STATUS_SUCCESS, as the
* card returned from SCF_Terminal_getCard was indeed removed (even
* though another card is currently in the terminal).
*/

/* ... */

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libsmartcard(3LIB), SCF_Session_getTerminal(3SMARTCARD),
SCF_Terminal_addEventListener(3SMARTCARD),
SCF_Terminal_getCard(3SMARTCARD), attributes(5)

SCF_Terminal_waitForCardPresent(3SMARTCARD)

ATTRIBUTES

SEE ALSO

Extended Library Functions 1039

scf_transaction_create, scf_transaction_handle, scf_transaction_reset,
scf_transaction_reset_all, scf_transaction_destroy, scf_transaction_destroy_children,
scf_transaction_start, scf_transaction_property_delete, scf_transaction_property_new,
scf_transaction_property_change, scf_transaction_property_change_type,
scf_transaction_commit – create and manipulate transaction in the Service
Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_transaction_t *scf_transaction_create(scf_handle_t *handle);

scf_handle_t *scf_transaction_handle(scf_transaction_t *tran);

void scf_transaction_reset(scf_transaction_t *tran);

void scf_transaction_reset_all(scf_transaction_t *tran);

void scf_transaction_destroy(scf_transaction_t *tran);

void scf_transaction_destroy_children(scf_transaction_t *tran);

int scf_transaction_start(scf_transaction_t *tran,
scf_propertygroup_t *pg);

int scf_transaction_property_delete(scf_transaction_t *tran,
scf_transaction_entry_t *entry, const char *prop_name);

int scf_transaction_property_new(scf_transaction_t *tran,
scf_transaction_entry_t *entry, const char *prop_name,
scf_type_t type);

int scf_transaction_property_change(scf_transaction_t *tran,
scf_transaction_entry_t *entry, const char *prop_name,
scf_type_t type);

int scf_transaction_property_change_type(scf_transaction_t *tran,
scf_transaction_entry_t *entry, const char *prop_name,
scf_type_t type);

int scf_transaction_commit(scf_transaction_t *tran);

Transactions are the mechanism for changing property groups. They act atomically,
whereby either all of the updates occur or none of them do. An scf_transaction_t
is always in one of the following states:

reset The initial state. A successful return of
scf_transaction_start() moves the transaction to the
started state.

started The transaction has started. The
scf_transaction_property_delete(),
scf_transaction_property_new(),
scf_transaction_property_change(), and
scf_transaction_property_change_type() functions can

scf_transaction_create(3SCF)

NAME

SYNOPSIS

DESCRIPTION

1040 man pages section 3: Extended Library Functions • Last Revised 20 Dec 2004

be used to set up changes to properties. The
scf_transaction_reset() and
scf_transaction_reset_all() functions return the
transaction to the reset state.

A call to scf_transaction_commit() (whether or not it is
successful) moves the transaction to the committed state.
Modifying, resetting, or destroying the entries and values
associated with a transaction will move it to the invalid state.

committed The scf_transaction_reset() and
scf_transaction_reset_all() functions return the
transaction to the reset state.

invalid The scf_transaction_reset() and
scf_transaction_reset_all() functions return the
transaction to the reset state.

The scf_transaction_create() function allocates and initializes an
scf_transaction_t bound to handle. The scf_transaction_destroy()
function resets, destroys, and frees tran. If there are any entrys associated with the
transaction, scf_transaction_destroy() also effects a call to
scf_transaction_reset(). The scf_transaction_destroy_children()
function resets, destroys, and frees all entrys and values associated the transaction.

The scf_transaction_handle() function gets the handle to which tran is bound.

The scf_transaction_start() function sets up the transaction to modify the
property group to which pg is set. The time reference used by pg becomes the basis of
the transaction. The transaction fails if the property group has been modified since the
last update of pg at the time when scf_transaction_commit() is called.

The scf_transaction_property_delete(),
scf_transaction_property_new(), scf_transaction_property_change()
, and scf_transaction_property_change_type() functions add a new
transaction entry to the transaction. Each property the transaction affects must have a
unique scf_transaction_entry_t. Each scf_transaction_entry_t can be
associated with only a single transaction at a time. These functions all fail if the
transaction is not in the started state, prop_name is not a valid property name, or entry
is already associated with a transaction. These functions affect commit and failure as
follows:

scf_transaction_property_delete()
This function deletes the property prop_name in the property group. It fails if
prop_name does not name a property in the property group.

scf_transaction_property_new()
This function adds a new property prop_name to the property group with a value
list of type type. It fails if prop_name names an existing property in the property
group.

scf_transaction_create(3SCF)

Extended Library Functions 1041

scf_transaction_property_change()
This function changes the value list for an existing property prop_name in the
property group. It fails if prop_name does not name an existing property in the
property group or names an existing property group with a different type.

scf_transaction_property_change_type()
This function changes the value list and type for an existing property prop_name in
the property group. It fails if prop_name does not name an existing property in the
property group.

If the function call is successful, entry remains active in the transaction until
scf_transaction_destroy(), scf_transaction_reset(), or
scf_transaction_reset_all() is called. The scf_entry_add_value(3SCF)
manual page provides information for setting up the value list for entries that are not
associated with scf_transaction_property_delete(). Resetting or destroying
an entry or value active in a transaction will move it into the invalid state.

The scf_transaction_commit() function attempts to commit tran.

The scf_transaction_reset() function returns the transaction to the reset state
and releases all of the transaction entries that were added.

The scf_transaction_reset_all() function returns the transaction to the reset
state, releases all of the transaction entries, and calls scf_entry_reset(3SCF) on all
values associated with the entries.

Upon successful completion, scf_transaction_create() returns a new
scf_transaction_t. Otherwise, it returns NULL.

Upon successful completion, scf_transaction_handle() returns the handle
associated with the transaction. Otherwise, it returns NULL.

Upon successful completion, scf_transaction_start(),
scf_transaction_property_delete(), scf_transaction_property_new()
, scf_transaction_property_change(), and
scf_transaction_property_change_type() return 0. Otherwise, they return
−1.

The scf_transaction_commit() function returns 1 upon successful commit, 0 if
the property group set in scf_transaction_start() is not the most recent, and -1
on failure.

The scf_transaction_create() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The value of the handle argument is NULL.

SCF_ERROR_NO_MEMORY
There is not enough memory to allocate an scf_transaction_t.

SCF_ERROR_NO_RESOURCES
The server does not have adequate resources for a new transaction handle.

scf_transaction_create(3SCF)

RETURN VALUES

ERRORS

1042 man pages section 3: Extended Library Functions • Last Revised 20 Dec 2004

The scf_transaction_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED
The handle associated with tran has been destroyed.

The scf_transaction_start() function will fail if:

SCF_ERROR_BACKEND_ACCESS
The repository backend refused the modification.

SCF_ERROR_BACKEND_READONLY
The repository backend refused modification because it is read-only.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

SCF_ERROR_DELETED
The property group has been deleted.

SCF_ERROR_HANDLE_MISMATCH
The transaction and property group are not derived from the same handle.

SCF_ERROR_IN_USE
The transaction is not in the reset state. The scf_transaction_reset() and
scf_transaction_reset_all() functions can be used to return the transaction
to the reset state.

SCF_ERROR_NOT_BOUND
The handle was never bound or has been unbound.

SCF_ERROR_NOT_SET
The property group specified by pg is not set.

SCF_ERROR_PERMISSION_DENIED
The user does not have sufficient privileges to modify the property group.

The scf_transaction_property_delete(),
scf_transaction_property_new(), scf_transaction_property_change()
, and scf_transaction_property_change_type() functions will fail if:

SCF_ERROR_NOT_SET
The transaction has not been started.

SCF_ERROR_DELETED
The property group the transaction is changing has been deleted.

SCF_ERROR_INVALID_ARGUMENT
The prop_name argument is not a valid property name.

SCF_ERROR_HANDLE_MISMATCH
The transaction and entry are not derived from the same handle.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

scf_transaction_create(3SCF)

Extended Library Functions 1043

The scf_transaction_property_delete(),
scf_transaction_property_change(), and
scf_transaction_property_change_type() functions will fail if:

SCF_ERROR_NOT_FOUND
The property group does not contain a property named prop_name.

The scf_transaction_property_new() ,
scf_transaction_property_change(), and
scf_transaction_property_change_type() functions will fail if:

SCF_ERROR_INVALID_ARGUMENT
The prop_name argument is not not a valid property name, or the type argument is
an invalid type.

The scf_transaction_property_new() function will fail if:

SCF_ERROR_EXISTS
The property group already contains a property named prop_name.

The scf_transaction_property_change() function will fail if:

SCF_ERROR_TYPE_MISMATCH
The property prop_name is not of type type.

The scf_transaction_commit() function will fail if:

SCF_ERROR_BACKEND_READONLY
The repository backend is read-only.

SCF_ERROR_BACKEND_ACCESS
The repository backend refused the modification.

SCF_ERROR_NOT_BOUND
The handle is not bound.

SCF_ERROR_CONNECTION_BROKEN
The connection to the repository was lost.

SCF_ERROR_INVALID_ARGUMENT
The transaction is in an invalid state.

SCF_ERROR_DELETED
The property group the transaction is acting on has been deleted.

SCF_ERROR_NOT_SET
The transaction has not been started.

SCF_ERROR_PERMISSION_DENIED
The user does not have sufficient privileges to modify the property group.

The scf_error(3SCF) function can be used to retrieve the error value.

EXAMPLE 1 Set an existing boolean value to true.

tx = scf_transaction_create(handle);
e1 = scf_entry_create(handle);

scf_transaction_create(3SCF)

EXAMPLES

1044 man pages section 3: Extended Library Functions • Last Revised 20 Dec 2004

EXAMPLE 1 Set an existing boolean value to true. (Continued)

v1 = scf_value_create(handle);

do {
if (scf_pg_update(pg) == -1)

goto fail;
if (scf_transaction_start(tx, pg) == -1)

goto fail;

/* set up transaction entries */
if (scf_transaction_property_change(tx, e1, "property",

SCF_TYPE_BOOLEAN) == -1) {
scf_transaction_reset(tx);
goto fail;

}
scf_value_set_boolean(v1, B_TRUE);
scf_entry_add_value(e1, v1);

if (scf_transaction_add(tx, e1) == -1) {
scf_transaction_reset(tx);
goto fail;

}

result = scf_transaction_commit(tx);

scf_transaction_reset(tx);
} while (result == 0);

if (result < 0)
goto fail;

/* success */

cleanup:
scf_transaction_destroy(tx);
scf_entry_destroy(e1);

scf_value_destroy(v1);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libscf(3LIB), scf_entry_reset(3SCF), scf_error(3SCF),
scf_pg_create(3SCF), attributes(5)

scf_transaction_create(3SCF)

ATTRIBUTES

SEE ALSO

Extended Library Functions 1045

scf_value_create, scf_value_handle, scf_value_reset, scf_value_destroy, scf_value_type,
scf_value_base_type, scf_value_is_type, scf_type_base_type, scf_value_get_boolean,
scf_value_get_count, scf_value_get_integer, scf_value_get_time, scf_value_get_astring,
scf_value_get_ustring, scf_value_get_opaque, scf_value_get_as_string,
scf_value_get_as_string_typed, scf_value_set_boolean, scf_value_set_count,
scf_value_set_integer, scf_value_set_time, scf_value_set_from_string,
scf_value_set_astring, scf_value_set_ustring, scf_value_set_opaque – manipulate
values in the Service Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

scf_value_t *scf_value_create(scf_handle_t *h);

scf_handle_t *scf_value_handle(scf_value_t *v);

void scf_value_reset(scf_value_t *v);

void scf_value_destroy(scf_value_t *v);

int scf_value_type(scf_value_t *v);

int scf_value_base_type(scf_value_t *v);

int scf_value_is_type(scf_value_t *v, scf_type_t type);

int scf_type_base_type(scf_type_t type, scf_type_t *out);

int scf_value_get_boolean(scf_value_t *v, uint8_t *out);

int scf_value_get_count(scf_value_t *v, uint64_t *out);

int scf_value_get_integer(scf_value_t *v, int64_t *out);

int scf_value_get_time(scf_value_t *v, int64_t *seconds, int32_t
*ns);

ssize_t scf_value_get_astring(scf_value_t *v, char *buf, size_t
size);

ssize_t scf_value_get_ustring(scf_value_t *v, char *buf, size_t
size);

ssize_t scf_value_get_opaque(scf_value_t *v, ,);

ssize_t scf_value_get_as_string(scf_value_t *v, char *buf, size_t
size);

ssize_t scf_value_get_as_string_typed(scf_value_t *v, scf_type_t
type, char *buf, size_t size);

void scf_value_set_boolean(scf_value_t *v, uint8_t in);

void scf_value_set_count(scf_value_t *v, uint64_t in);

void scf_value_set_integer(scf_value_t *v, int64_t in);

int scf_value_set_time(scf_value_t *v, int64_t seconds, int32_t
ns);

scf_value_create(3SCF)

NAME

SYNOPSIS

1046 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

int scf_value_set_from_string(scf_value_t *v, scf_type_t type,
char *in);

int scf_value_set_astring(scf_value_t *v, const char *in);

int scf_value_set_ustring(scf_value_t *v, const char *in);

int scf_value_set_opaque(scf_value_t *v, void *in, size_t sz);

The scf_value_create() function creates a new, reset scf_value_t that holds a
single typed value. The value can be used only with the handle specified by h and
objects associated with h.

The scf_value_reset() function resets the value to the uninitialized state. The
scf_value_destroy() function deallocates the object.

The scf_value_type() function retrieves the type of the contents of v. The
scf_value_is_type() function determines if a value is of a particular type or any
of its subtypes. The scf_type_base_type() function returns the base type of type.
The scf_value_base_type() function returns the true base type of the value (the
highest type reachable from the value’s type).

Type Identifier Base Type Type Description

SCF_TYPE_INVALID reserved invalid type

SCF_TYPE_BOOLEAN single bit

SCF_TYPE_COUNT unsigned 64-bit quantity

SCF_TYPE_INTEGER signed 64-bit quantity

SCF_TYPE_TIME signed 64-bit seconds, signed
32-bit nanoseconds in the
range 0 <= ns < 1,000,000,000

SCF_TYPE_ASTRING 8-bit NUL-terminated string

SCF_TYPE_OPAQUE opaque 8-bit data

SCF_TYPE_USTRING ASTRING 8-bit UTF-8 string

SCF_TYPE_URI USTRING a URI string

SCF_TYPE_FMRI URI a Fault Management Resource
Identifier

SCF_TYPE_HOST USTRING either a hostname, IPv4
address, or IPv6 address

SCF_TYPE_HOSTNAME HOST a fully-qualified domain name

SCF_TYPE_NETADDR_V4 HOST adotted-quad IPv4 address
with optional network portion

scf_value_create(3SCF)

DESCRIPTION

Extended Library Functions 1047

Type Identifier Base Type Type Description

SCF_TYPE_NETADDR_V6 HOST legal IPv6 address

The scf_value_get_boolean(), scf_value_get_count(),
scf_value_get_integer(), scf_value_get_time(),
scf_value_get_astring(), scf_value_get_ustring(), and
scf_value_get_opaque() functions read a particular type of value from v.

The scf_value_get_as_string() and scf_value_get_as_string_typed()
functions convert the value to a string form. For
scf_value_get_as_string_typed(), the value must be a reachable subtype of
type.

The scf_value_set_boolean(), scf_value_set_count(),
scf_value_set_integer(), scf_value_set_time(),
scf_value_set_astring(), scf_value_set_ustring(), and
scf_value_set_opaque() functions set v to a particular value of a particular type.

The scf_value_set_from_string() function is the inverse of
scf_value_get_as_string(). It sets v to the value encoded in buf of type type.

Upon successful completion, scf_value_create() returns a new, reset
scf_value_t. Otherwise, it returns NULL.

Upon successful completion, scf_value_handle() returns the handle associated
with v. Otherwise, it returns NULL.

The scf_value_base_type() function returns the base type of the value, or
SCF_TYPE_INVALID on failure.

Upon successful completion, scf_value_type() returns the type of the value.
Otherwise, it returns SCF_TYPE_INVALID.

Upon successful completion, scf_value_is_type(), scf_value_get_boolean
(), scf_value_get_count(), scf_value_get_integer(),
scf_value_get_time(), scf_value_set_time(),
scf_value_set_from_string(), scf_value_set_astring(),
scf_value_set_ustring(), and scf_value_set_opaque() return 0.
Otherwise, they return -1.

Upon successful completion, scf_value_get_astring(),
scf_value_get_ustring(), scf_value_get_as_string(), and
scf_value_get_as_string_typed() return the length of the string written, not
including the terminating null byte. Otherwise, they return -1.

Upon successful completion, scf_value_get_opaque() returns the number of
bytes written. Otherwise, it returns -1.

The scf_value_create() function will fail if:

scf_value_create(3SCF)

RETURN VALUES

ERRORS

1048 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

SCF_ERROR_INVALID_ARGUMENT
The handle is NULL.

SCF_ERROR_NO_MEMORY
There is not enough memory to allocate an scf_value_t.

The scf_value_handle() function will fail if:

SCF_ERROR_HANDLE_DESTROYED
The handle associated v has been destroyed.

The scf_value_set_time() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The nanoseconds field is not in the range 0 <= ns < 1,000,000,000.

The scf_type_base_type() function will fail if:

SCF_ERROR_INVALID_ARGUMENT
The type argument is not a valid type.

The scf_value_set_astring(), scf_value_set_ustring(),
scf_value_set_opaque(), and scf_value_set_from_string() functions will
fail if:

SCF_ERROR_INVALID_ARGUMENT
The in argument is not a valid value for the specified type or is longer than the
maximum supported value length.

The scf_type_base_type(), scf_value_is_type(), and
scf_value_get_as_string_typed() functions will fail if:

SCF_ERROR_INVALID_ARGUMENT
The type argument is not a valid type.

The scf_value_type(), scf_value_base_type(), scf_value_get_boolean
(), scf_value_get_count(), scf_value_get_integer(),
scf_value_get_time(), scf_value_get_astring(),
scf_value_get_ustring(), scf_value_get_as_string(),
andscf_value_get_as_string_typed() functions will fail if:

SCF_ERROR_NOT_SET
The v argument has not been set to a value.

The scf_value_get_boolean(), scf_value_get_count(),
scf_value_get_integer(), scf_value_get_time(),
scf_value_get_astring(), scf_value_get_ustring(), and
scf_value_get_as_string_typed() functions will fail if:

SCF_ERROR_TYPE_MISMATCH
The requested type is not the same as the value’s type and is not in the base-type
chain.

The scf_error(3SCF) function can be used to retrieve the error value.

scf_value_create(3SCF)

Extended Library Functions 1049

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libscf(3LIB), scf_entry_add_value(3SCF), scf_error(3SCF), attributes(5)

scf_value_create(3SCF)

ATTRIBUTES

SEE ALSO

1050 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

sendfile – send files over sockets or copy files to files

cc [flag...] file... -lsendfile [library...]

#include <sys/sendfile.h>

ssize_t sendfile(int out_fd, int in_fd, off_t *off, size_t len);

The sendfile() function copies data from in_fd to out_fd starting at offset off and of
length len bytes. The in_fd argument should be a file descriptor to a regular file opened
for reading. See open(2). The out_fd argument should be a file descriptor to a regular
file opened for writing or to a connected AF_INET or AF_INET6 socket of
SOCK_STREAM type. See socket(3SOCKET). The off argument is a pointer to a
variable holding the input file pointer position from which the data will be read. After
sendfile() has completed, the variable will be set to the offset of the byte following
the last byte that was read. The sendfile() function does not modify the current file
pointer of in_fd, but does modify the file pointer for out_fd if it is a regular file.

The sendfile() function can also be used to send buffers by pointing in_fd to
SFV_FD_SELF.

Upon successful completion, sendfile() returns the total number of bytes written to
out_fd and also updates the offset to point to the byte that follows the last byte read.
Otherwise, it returns –1, and errno is set to indicate an error.

The sendfile() function will fail if:

EAFNOSUPPORT The implementation does not support the specified address family
for socket.

EAGAIN Mandatory file or record locking is set on either the file descriptor
or output file descriptor if it points at regular files. O_NDELAY or
O_NONBLOCK is set, and there is a blocking record lock. An attempt
has been made to write to a stream that cannot accept data with
the O_NDELAY or the O_NONBLOCK flag set.

EBADF The out_fd or in_fd argument is either not a valid file descriptor,
out_fd is not opened for writing. or in_fd is not opened for reading.

EINVAL The offset cannot be represented by the off_t structure, or the
length is negative when cast to ssize_t.

EIO An I/O error occurred while accessing the file system.

ENOTCONN The socket is not connected.

EOPNOTSUPP The socket type is not supported.

EPIPE The out_fd argument is no longer connected to the peer endpoint.

The sendfile() function has a transitional interface for 64-bit file offsets. See
lf64(5).

sendfile(3EXT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Extended Library Functions 1051

EXAMPLE 1 Sending a Buffer Over a Socket

The following example demonstrates how to send the buffer buf over a socket. At the
end, it prints the number of bytes transferred over the socket from the buffer. It
assumes that addr will be filled up appropriately, depending upon where to send the
buffer.

int tfd;
off_t baddr;
struct sockaddr_in sin;
char buf[64 * 1024];
in_addr_t addr;

tfd = socket(AF_INET, SOCK_STREAM, 0);
if (tfd == -1) {

perror("socket");
exit(1);

}

sin.sin_family = AF_INET;
sin.sin_addr = addr; /* Fill in the appropriate address. */
sin.sin_port = htons(2345);
if (connect(tfd, (struct sockaddr *)&sin, sizeof(sin))<0) {

perror("connect");
exit(1);

}

baddr = (off_t)buf;
len = sendfile(tfd, SFV_FD_SELF, &baddr, len);

if (len == -1) {
perror("sendfile");
exit(1);

}

printf("Transfered %d bytes from buffer to socket", len);

EXAMPLE 2 Transferring Files to Sockets

The following program demonstrates a transfer of files to sockets:

int ffd, tfd;
off_t off;
struct sockaddr_in sin;
in_addr_t addr;
int len;
struct stat stat_buf;

ffd = open("file", O_RDONLY);
if (ffd == -1) {

perror("open");
exit(1);

}

tfd = socket(AF_INET, SOCK_STREAM, 0);
if (tfd == -1) {

sendfile(3EXT)

EXAMPLES

1052 man pages section 3: Extended Library Functions • Last Revised 19 Apr 2004

EXAMPLE 2 Transferring Files to Sockets (Continued)

perror("socket");
exit(1);

}

sin.sin_family = AF_INET;
sin.sin_addr = addr; /* Fill in the appropriate address. */
sin.sin_port = htons(2345);
if (connect(tfd, (struct sockaddr *) &sin, sizeof(sin)) <0) {

perror("connect");
exit(1);

}

if (fstat(ffd, &stat_buf) == -1) {
perror("fstat");
exit(1);

}

len = sendfile(tfd, ffd, &off, stat_buf.st_size);

if (len == -1) {
perror("sendfile");
exit(1);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

open(2), libsendfile(3LIB), sendfilev(3EXT), socket(3SOCKET),
attributes(5), lf64(5)

sendfile(3EXT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 1053

sendfilev – send a file

cc [flag...] file... -lsendfile [library...]

#include <sys/sendfile.h>

ssize_t sendfilev(int fildes, const struct sendfilevec *vec, int
sfvcnt, size_t *xferred);

The sendfilev() function attempts to write data from the sfvcnt buffers specified
by the members of vec array: vec[0], vec[1], ... , vec[sfvcnt–1]. fildes is a
file descriptor to a regular file or to a AF_NCA, AF_INET, or AF_INET6 family type
SOCK_STREAM socket that is open for writing.

This function is analogous to the writev() system call. See writev(2). However,
instead of sending out chunks of data, sendfilev() can read input data from data
buffers or file descriptors.

The following is the sendfilevec structure:

typedef struct sendfilevec {
int sfv_fd; /* input fd */
uint_t sfv_flag; /* Flags. see below */
off_t sfv_off; /* offset to start reading from */
size_t sfv_len; /* amount of data */

} sendfilevec_t;

#define SFV_FD_SELF (-2)

To send a file, open the file for reading. Point sfv_fd to the file descriptor returned as
a result. See open(2). sfv_off should contain the offset within the file. sfv_len
should have the length of the file to be transferred.

The xferred parameter is updated to record the total number of bytes written to
out_fd.

The sfv_flag field is reserved and should be set to zero.

To send data directly from the address space of the process, set sfv_fd to
SFV_FD_SELF. sfv_off should point to the data, with sfv_len containing the
length of the buffer.

The sendfilev() function supports the following parameters:

fildes A file descriptor to a regular file or to a AF_NCA, AF_INET, or
AF_INET6 family type SOCK_STREAM socket that is open for
writing. For AF_NCA, the protocol type should be zero.

vec An array of SENDFILEVEC_T, as defined in the sendfilevec
structure above.

sfvcnt The number of members in vec.

xferred The total number of bytes written to out_fd.

sendfilev(3EXT)

NAME

SYNOPSIS

DESCRIPTION

PARAMETERS

1054 man pages section 3: Extended Library Functions • Last Revised 19 Apr 2004

Upon successful completion, sendfilev() returns total number of bytes written to
out_fd. Otherwise, it returns -1, and errno is set to indicate an error. xferred
contains the amount of data successfuly transferred, which can be used to discover the
error vector.

EAFNOSUPPORT The implementation does not support the specified
address family for socket.

EPROTOTYPE The socket type is not supported.

EBADF The fildes argument is not a valid descriptor open for
writing or an sfv_fd is invalid or not open for
reading.

EACCES The process does not have appropriate privileges or
one of the files pointed by sfv_fd does not have
appropriate permissions.

EPIPE The fildes argument is a socket that has been shut down
for writing.

EIO An I/O error occurred while accessing the file system.

EFAULT The vec argument points to an illegal address.

EFAULT The xferred argument points to an illegal address.

EINVAL The sfvcnt argument was less than or equal to 0. One of
the sfv_len in vec array was less than or equal to 0, or
greater than the file size. An sfv_fd is not seekable.

EAGAIN Mandatory file or record locking is set on either the file
descriptor or output file descriptor if it points at
regular files. O_NDELAY or O_NONBLOCK is set, and
there is a blocking record lock. An attempt has been
made to write to a stream that cannot accept data with
the O_NDELAY or the O_NONBLOCK flag set.

The sendfilev() function has a transitional interface for 64-bit file offsets. See
lf64(5).

The following example sends 2 vectors, one of HEADER data and a file of length 100
over sockfd. sockfd is in a connected state, that is, socket(), accept(), and
bind() operation are complete.

#include <sys/sendfile.h>
.
.
.
int
main (int argc, char *argv[]){

int sockfd;
ssize_t ret;
size_t xfer;

sendfilev(3EXT)

RETURN VALUES

ERRORS

USAGE

EXAMPLES

Extended Library Functions 1055

struct sendfilevec vec[2];
.
.
.

vec[0].sfv_fd = SFV_FD_SELF;
vec[0].sfv_flag = 0;
vec[0].sfv_off = "HEADER_DATA";
vec[0].sfv_len = strlen("HEADER_DATA");
vec[1].sfv_fd = open("input_file",....);
vec[1].sfv_flag = 0;
vec[1].sfv_off = 0;
vec[1].sfv_len = 100;

ret = sendfilev(sockfd, vec, 2, &xfer);
.
.
.

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

open(2), writev(2), libsendfile(3LIB), sendfile(3EXT), socket(3SOCKET),
attributes(5)

sendfilev(3EXT)

ATTRIBUTES

SEE ALSO

1056 man pages section 3: Extended Library Functions • Last Revised 19 Apr 2004

setproject – place process in new project with attendant resource controls, resource
pools, and attributes

cc [flag ...] file... -lproject [library ...]

#include <project.h>

int setproject(const char *project_name, const char *user_name, uint_t
flags);

The setproject() function provides a simplified method for the association of a
user process with a project and its various resource management attributes, as stored
in the project(4) name service database. These attributes include resource control
settings, resource pool membership, and third party attributes (which are ignored by
setproject().)

If user_name is a valid member of the project specified by project_name, as determined
by inproj(3PROJECT), setproject() will create a new task with settaskid(2)
using task flags specified by flags, use setrctl(2) to associate various resource
controls with the process, task, and project, and bind the calling process to the
appropriate resource pool with pool_set_binding(3POOL). Resource controls not
explicitly specified in the project entry will be preserved. If user_name is a name of the
superuser (user with UID equal to 0), the setproject() function skips the
inproj(3PROJECT) check described above and allows the superuser to join any
project.

The current process will not be bound to a resource pool if the resource pools facility
(see pooladm(1M)) is inactive. The setproject() function will succeed whether or
not the project specified by project_name specifies a project.pool attribute. If the
resource pools facility is active, setproject() will fail if the project does not specify
a project.pool attribute and there is no designated pool accepting default
assignments. The setproject() function will also fail if there is a specified
project.pool attribute for a nonexistent pool.

Upon successful completion, setproject() returns 0. If any of the resource control
assignments failed but the project assignment, pool binding, and task creation
succeeded, an integer value corresponding to the offset into the key-value pair list of
the failed attribute assignment is returned. If the project assignment or task creation
was not successful, setproject() returns SETPROJ_ERR_TASK and sets errno to
indicate the error. In the event of a pool binding failure, setproject() returns
SETPROJ_ERR_POOL and sets errno to indicate the error. Additional error
information can be retrieved from pool_error(3POOL).

The setproject() function will fail during project assignment or task creation if:

EACCES The invoking task was created with the TASK_FINAL flag.

EAGAIN A resource control limiting the number of LWPs or tasks in the
target project or zone has been exceeded.

EINVAL The project ID associated with the given project is not within the
range of valid project IDs, invalid flags were specified, or
user_name is NULL.

setproject(3PROJECT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 1057

EPERM The effective user of the calling process is not superuser.

ESRCH The specified user is not a valid user of the given project,
user_name is not valid user name, or project_name is not valid
project name.

The setproject() function will fail during pool binding if:

EACCES No resource pool accepting default bindings exists.

EPERM The effective user of the calling process is not superuser.

ESRCH The specified resource pool is unknown

If setproject() returns an offset into the key-value pair list, the returned error
value is associated with setrctl(2) for resource control attributes.

The setproject() function recognizes a name-structured value pair for the
attributes in the project(4) database with the following format:

entity.control=(privilege,value,action,action,...),...

where privilege is one of BASIC or PRIVILEGED, value is a numeric value with
optional units, and action is one of none, deny, and signal=signum or
signal=SIGNAME. For instance, to set a series of progressively more assertive
control values on a project’s per-process CPU time, specify

process.max-cpu-time=(PRIVILEGED,1000s,signal=SIGXRES), \

(PRIVILEGED,1250, signal=SIGTERM),(PRIVILEGED,1500,signal=SIGKILL)

To prevent a task from exceeding a total of 128 LWPs, specify a resource control with

task.max-lwps=(PRIVILEGED,128,deny)

Specifying a resource control name with no values causes all resource control values
for that name to be cleared on the given project, leaving only the system resource
control value on the specified resource control name.

For example, to remove all resource control values on shared memory, specify:

project.max-shm-memory

The project attribute, project.pool, specifies the pool to which processes associated
with the project entry should be bound. Its format is:

project.pool=pool_name

where pool_name is a valid resource pool within the active configuration enabled
with pooladm(1M).

The final attribute is used to finalize the task created by setproject().
Seesettaskid(2).

task.final

setproject(3PROJECT)

USAGE

1058 man pages section 3: Extended Library Functions • Last Revised 28 Jun 2004

All further attempts to create new tasks, such as using newtask(1) and su(1M), will
fail.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

pooladm(1M), setrctl(2), settaskid(2), inproj(3PROJECT),
pool_error(3POOL), pool_set_binding(3POOL), passwd(4), project(4),
attributes(5)

setproject(3PROJECT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 1059

signbit – test sign

#include <math.h>

int signbit(real-floating x);

The signbit() macro determines whether the sign of its argument value is negative.
NaNs, zeros, and infinities have a sign bit.

The signbit() macro returns a non-zero value if and only if the sign of its argument
value is negative.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

fpclassify(3M), isfinite(3M), isinf(3M), isnan(3M), isnormal(3M),
math.h(3HEAD), attributes(5), standards(5)

signbit(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

1060 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

significand, significandf, significandl – significand function

cc [flag...] file... -lm [library...]

#include <math.h>

double significand(double x);

float significandf(float x);

long double significandl(long double x);

If x equals sig * 2n with 1≤ sig < 2, then these functions return sig.

Upon successful completion, these functions return sig.

If x is either 0, ±Inf or NaN, x is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

logb(3M), scalb(3M), attributes(5)

significand(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 1061

sin, sinf, sinl – sine function

cc [flag...] file... -lm [library...]

#include <math.h>

double sin(double x);

float sinf(float x);

long double sinl(long double x);

These functions compute the sine of its argument x, measured in radians.

Upon successful completion, these functions return the sine of x.

If x is NaN, a NaN is returned.

If x is ±0, x is returned.

If x is ±Inf, a domain error occurs and a NaN is returned.

These functions will fail if:

Domain Error The x argument is ±Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

asin(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M),
math.h(3HEAD), attributes(5), standards(5)

sin(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

1062 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

sincos, sincosf, sincosl – combined sine and cosine function

cc [flag...] file... -lm [library...]

#include <math.h>

void sincos(double x, double *s, double *c);

void sincosf(float x, float *s, float *c);

void sincosl(long double x, long double *s, long double *c);

These functions compute the sine and cosine of the first argument x, measured in
radians.

Upon successful completion, these functions return the sine of x in *s and cosine of x
in *c.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

MT-Level MT-Safe

cos(3M), sin(3M), math.h(3HEAD), attributes(5)

sincos(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 1063

sinh, sinhf, sinhl – hyperbolic sine function

cc [flag...] file... -lm [library...]

#include <math.h>

double sinh(double x);

float sinhf(float x);

long double sinhl(long double x);

These functions compute the hyperbolic sine of x.

Upon successful completion, these functions return the hyperbolic sine of x.

If the result would cause an overflow, a range error occurs and ±HUGE_VAL,
±HUGE_VALF, and ±HUGE_VALL (with the same sign as x) is returned as appropriate
for the type of the function.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned by acos() as
specified by SVID3 and XPG3.

These functions will fail if:

Range Error The result would cause an overflow.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the overflow floating-point
exception is raised.

The asinh() function sets errno to ERANGE if the result would
cause an overflow.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling asinh(). On return, if errno is
non-zero, an error has occurred. The asinhf() and asinhl() functions do not set
errno.

See attributes(5) for descriptions of the following attributes:

sinh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

1064 man pages section 3: Extended Library Functions • Last Revised 1 Sep 2002

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

asinh(3M), cosh(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M),
math.h(3HEAD), matherr(3M), tanh(3M), attributes(5), standards(5)

sinh(3M)

SEE ALSO

Extended Library Functions 1065

smf_enable_instance, smf_disable_instance, smf_refresh_instance,
smf_restart_instance, smf_maintain_instance, smf_degrade_instance,
smf_restore_instance, smf_get_state – administrative interface to the Service
Configuration Facility

cc [flag...] file... -lscf [library...]

#include <libscf.h>

int smf_enable_instance(const char *instance, int flags);

int smf_disable_instance(const char *instance, int flags);

int smf_refresh_instance(const char *instance);

int smf_restart_instance(const char *instance);

int smf_maintain_instance(const char *instance, int flags);

int smf_degrade_instance(const char *instance, int flags);

int smf_restore_instance(const char *instance);

char *smf_get_state(const char *instance);

These functions provide administrative control over service instances. Using these
functions, an administrative tool can make a request to enable, disable, refresh, or
restart an instance. All calls are asynchronous. They request an action, but do not wait
to see if the action succeeds or fails.

The smf_enable_instance() function enables the service instance specified by
instance FMRI. If flags is SMF_TEMPORARY, the enabling of the service instance is a
temporary change, lasting only for the lifetime of the current system instance. The flags
argument is set to 0 if no flags are to be use.

The smf_disable_instance() function disables the service instance specified by
instance FMRI. If flags is SMF_TEMPORARY, the disabling of the service instance is a
temporary change, lasting only for the lifetime of the current system instance. The flags
argument is set to 0 if no flags are to be use.

The smf_refresh_instance() function causes the service instance specified by
instance FMRI to re-read its configuration information.

The smf_restart_instance() function restarts the service instance specified by
instance FMRI.

The smf_maintain_instance() function moves the service instance specified by
instance into the maintenance state. If flags is SMF_IMMEDIATE, the instance is moved
into maintenance state immediately, killing any running methods. If flags is
SMF_TEMPORARY, the change to maintenance state is a temporary change, lasting only
for the lifetime of the current system instance. The flags argument is set to 0 if no flags
are to be use.

smf_enable_instance(3SCF)

NAME

SYNOPSIS

DESCRIPTION

1066 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

The smf_degrade_instance() function moves an online service instance into the
degraded state. This function operates only on instances in the online state. The flags
argument is set to 0 if no flags are to be use. The only available flag is
SMF_IMMEDIATE, which causes the instance to be moved into the degraded state
immediately.

The smf_restore_instance() function brings an instance currently in the
maintenance to the uninitialized state, so that it can be brought back online. For a
service in the degraded state, smf_restore_instance() brings the specified
instance back to the online state.

The smf_get_state() function returns a pointer to a string containing the name of
the instance’s current state. The user is responsible for freeing this string. Possible state
strings are defined as the following:

#define SCF_STATE_STRING_UNINIT ((const char *)"uninitialized")
#define SCF_STATE_STRING_MAINT ((const char *)"maintenance")
#define SCF_STATE_STRING_OFFLINE ((const char *)"offline")
#define SCF_STATE_STRING_DISABLED ((const char *)"disabled")
#define SCF_STATE_STRING_ONLINE ((const char *)"online")

#define SCF_STATE_STRING_DEGRADED ((const char *)"degraded")

Upon successful completion, smf_enable_instance(), smf_disable_instance
(), smf_refresh_instance(), smf_restart_instance(),
smf_maintain_instance(), smf_degrade_instance(), and
smf_restore_instance() return 0. Otherwise, they return –1.

Upon successful completion, smf_get_state returns an allocated string. Otherwise, it
returns NULL.

These functions will fail if:

SCF_ERROR_NO_MEMORY
The memory allocation failed.

SCF_ERROR_INVALID_ARGUMENT
The instance FMRI or flags argument is invalid.

SCF_ERROR_NOT_FOUND
The FMRI is valid but there is no matching instance found.

SCF_ERROR_CONNECTION_BROKEN
The connection to repository was broken.

SCF_ERROR_NO_RESOURCES
The server has insufficient resources.

The smf_restore_instance() and smf_degrade_instance() functions will
fail if:

SCF_ERROR_CONSTRAINT_VIOLATED
The function is called on an instance in an inappropriate state.

The scf_error(3SCF) function can be used to retrieve the error value.

smf_enable_instance(3SCF)

RETURN VALUES

ERRORS

Extended Library Functions 1067

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

libscf(3LIB), scf_error(3SCF), attributes(5)

smf_enable_instance(3SCF)

ATTRIBUTES

SEE ALSO

1068 man pages section 3: Extended Library Functions • Last Revised 9 Sep 2004

sqrt, sqrtf, sqrtl – square root function

cc [flag...] file... -lm [library...]

#include <math.h>

double sqrt(double x);

float sqrtf(float x);

long double sqrtl(long double x);

These functions compute the square root of their argument x.

Upon successful completion, these functions return the square root of x.

For finite values of x < −0, a domain error occurs and either a NaN (if supported) or an
implementation-defined value is returned.

If x is NaN, a NaN is returned.

If x is ±0 or +Inf, x is returned.

If x is −Inf, a domain error occurs and a NaN is returned.

These functions will fail if:

Domain Error The finite value of x is < −0 or x is −Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

The sqrt() function sets errno to EDOM if the value of x is
negative.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

An application can also set errno to 0 before calling sqrt(). On return, if errno is
non-zero, an error has occurred. The sqrtf() and sqrtl() functions do not set
errno.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

sqrt(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

Extended Library Functions 1069

feclearexcept(3M), fetestexcept(3M), isnan(3M), math.h(3HEAD),
attributes(5), standards(5)

sqrt(3M)

SEE ALSO

1070 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

SSAAgentIsAlive, SSAGetTrapPort, SSARegSubtable, SSARegSubagent,
SSARegSubtree, SSASendTrap, SSASubagentOpen – Sun Solstice Enterprise Agent
registration and communication helper functions

cc [flag ...] file ... -lssagent -lssasnmp [library ..]

#include <impl.h>

extern int SSAAgentIsAlive(IPAddress *agent_addr, int *port, char
*community, struct timeval *timeout);

extern int SSAGetTrapPort();

extern int *SSARegSubagent(Agent* agent);

int SSARegSubtable(SSA_Table *table);

int SSARegSubtree(SSA_Subtree *subtree);

extern void SSASendTrap(char *name);

extern int SSASubagentOpen(int *num_of_retry, char *agent_name);

The SSAAgentIsAlive() function returns TRUE if the master agent is alive,
otherwise returns FALSE. The agent_addr parameter is the address of the agent. Specify
the security token in the community parameter. You can specify the maximum amount
of time to wait for a response with the timeout parameter.

The SSAGetTrapPort() function returns the port number used by the Master Agent
to communicate with the subagent.

The SSARegSubagent() function enables a subagent to register and unregister with
a Master Agent. The agent parameter is a pointer to an Agent structure containing the
following members:

int timeout; /* optional */
int agent_id; /* required */
int agent_status; /* required */
char *personal_file; /* optional */
char *config_file; /* optional */
char *executable; /* optional */
char *version_string; /* optional */
char *protocol; /* optional */
int process_id; /* optional */
char *name; /* optional */
int system_up_time; /* optional */
int watch_dog_time; /* optional */
Address address; /* required */
struct _Agent; /* reserved */

struct _Subtree; /* reserved */

The agent_id member is an integer value returned by the SSASubagentOpen()
function. After calling SSASubagentOpen(), you pass the agent_id in the
SSARegSubagent() call to register the subagent with the Master Agent.

The following values are supported for agent_status:

SSAAgentIsAlive(3SNMP)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 1071

SSA_OPER_STATUS_ACTIVE
SSA_OPER_STATUS_NOT_IN_SERVICE
SSA_OPER_STATUS_DESTROY

You pass SSA_OPER_STATUS_DESTROY as the value in a SSARegSubagent()
function call when you want to unregister the agent from the Master Agent.

Address has the same structure as sockaddr_in, that is a common UNIX structure
containing the following members:

short sin_family;
ushort_t sin_port;
struct in_addr sin_addr;
char sin_zero[8];

The SSARegSubtable() function registers a MIB table with the Master Agent. If this
function is successful, an index number is returned, otherwise 0 is returned. The table
parameter is a pointer to a SSA_Table structure containing the following members:

int regTblIndex; /* index value */
int regTblAgentID; /* current agent ID */
Oid regTblOID; /* Object ID of the table */
int regTblStartColumn; /* start column index */
int regTblEndColumn; /* end column index */
int regTblStartRow; /* start row index */
int regTblEndRow; /* end row index */
int regTblStatus; /* status */

The regTblStatus can have one of the following values:

SSA_OPER_STATUS_ACTIVE
SSA_OPER_STATUS_NOT_IN_SERVICE

The SSARegSubtree() function registers a MIB subtree with the master agent. If
successful this function returns an index number, otherwise 0 is returned. The subtree
parameter is a pointer to a SSA_Subtree structure containing the following
members:

int regTreeIndex; /* index value */
int regTreeAgentID; /* current agent ID */
Oid name; /* Object ID to register */
int regtreeStatus; /* status */

The regtreeStatus can have one of the following values:

SSA_OPER_STATUS_ACTIVE
SSA_OPER_STATUS_NOT_IN_SERVICE

The SSASendTrap() function instructs the Master Agent to send a trap notification,
based on the keyword passed with name. When your subagent MIB is compiled by
mibcodegen, it creates a lookup table of the trap notifications defined in the MIB. By
passing the name of the trap notification type as name, the subagent instructs the
Master Agent to construct the type of trap defined in the MIB.

The SSASubagentOpen() function initializes communication between the subagent
and the Master Agent. You must call this function before calling SSARegSubagent()
to register the subagent with the Master Agent. The SSASubagentOpen() function

SSAAgentIsAlive(3SNMP)

1072 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

returns a unique agent ID that is passed in the SSARegSubagent() call to register
the subagent. If 0 is returned as the agent ID, the attempt to initialize communication
with the Master Agent was unsuccessful. Since UDP is used to initialize
communication with the Master Agent, you may want to set the value of num_of_retry
to make multiple attempts.

The value for agent_name must be unique within the domain for which the Master
Agent is responsible.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

attributes(5)

SSAAgentIsAlive(3SNMP)

ATTRIBUTES

SEE ALSO

Extended Library Functions 1073

SSAOidCmp, SSAOidCpy, SSAOidDup, SSAOidFree, SSAOidInit, SSAOidNew,
SSAOidString, SSAOidStrToOid, SSAOidZero – Sun Solstice Enterprise Agent OID
helper functions

cc [flag ...] file ... -lssasnmp [library ..]

#include <impl.h>

int SSAOidCmp(Oid *oid1, Oid *oid2);

int SSAOidCpy(Oid *oid1, Oid *oid2, char *error_label);

Oid *SSAOidDup(Oid *oid, char *error_label);

void SSAOidFree(Oid *oid);

int SSAOidInit(Oid *oid, Subid *subids, int len, char *error_label);

Oid *SSAOidNew();

char *SSAOidString(Oid *oid);

Oid *SSAOidStrToOid(char* name, char *error_label);

void SSAOidZero(Oid *oid);

The SSAOidCmp() function performs a comparison of the given OIDs. This function
returns:

0 if oid1 is equal to oid2

1 if oid1 is greater than oid2

−1 if oid1 is less than oid2

The SSAOidCpy() function makes a deep copy of oid2 to oid1. This function assumes
oid1 has been processed by the SSAOidZero() function. Memory is allocated inside
oid1 and the contents of oid2, not just the pointer, is copied to oid1. If an error is
encountered, an error message is stored in the error_label buffer.

The SSAOidDup() function returns a clone of oid, by using the deep copy. Error
information is stored in the error_label buffer.

The SSAOidFree() function frees the OID instance, with its content.

The SSAOidNew() function returns a new OID.

The SSAOidInit() function copies the Subid array from subids to the OID instance
with the specified length len. This function assumes that the OID instance has been
processed by the SSAOidZero() function or no memory is allocated inside the OID
instance. If an error is encountered, an error message is stored in the error_label buffer.

The SSAOidString() function returns a char pointer for the printable form of the
given oid.

The SSAOidStrToOid() function returns a new OID instance from name. If an error
is encountered, an error message is stored in the error_label buffer.

SSAOidCmp(3SNMP)

NAME

SYNOPSIS

DESCRIPTION

1074 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

The SSAOidZero() function frees the memory used by the OID object for buffers, but
not the OID instance itself.

The SSAOidNew() and SSAOidStrToOid() functions return 0 if an error is
detected.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

attributes(5)

SSAOidCmp(3SNMP)

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 1075

SSAStringCpy, SSAStringInit, SSAStringToChar, SSAStringZero – Sun Solstice
Enterprise Agent string helper functions

cc [flag ...] file ... -lssasnmp [library ..]

#include <impl.h>

void *SSAStringZero(String *string);

int SSAStringInit(String *string, uchar_t *chars, int len, char
*error_label);

int SSAStringCpy(String *string1, String *string2, char *error_label);

char *SSAStringToChar(String string);

The SSAStringCpy() function makes a deep copy of string2 to string1. This function
assumes that string1 has been processed by the SSAStringZero() function. Memory
is allocated inside the string1 and the contents of string2, not just the pointer, is copied
to the string1. If an error is encountered, an error message is stored in the error_label
buffer.

The SSAStringInit() function copies the char array from chars to the string
instance with the specified length len. This function assumes that the string instance
has been processed by the SSAStringZero() function or no memory is allocated
inside the string instance. If an error is encountered, an error message is stored in the
error_label buffer.

The SSAStringToChar() function returns a temporary char array buffer for printing
purposes.

The SSAStringZero() function frees the memory inside of the String instance, but
not the string object itself.

The SSAStringInit() and SSAStringCpy() functions return 0 if successful and
−1 if error.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

attributes(5)

SSAStringCpy(3SNMP)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

1076 man pages section 3: Extended Library Functions • Last Revised 17 Dec 1996

stdarg – handle variable argument list

#include <stdarg.h>

va_list pvar;

void va_start(va_list pvar, void parmN);

(type *) va_arg(va_list pvar, type);

void va_copy(va_list dest, va_list src);

void va_end(va_list pvar);

This set of macros allows portable procedures that accept variable numbers of
arguments of variable types to be written. Routines that have variable argument lists
(such as printf) but do not use stdarg are inherently non-portable, as different
machines use different argument-passing conventions.

va_list is a type defined for the variable used to traverse the list.

The va_start macro is invoked before any access to the unnamed arguments and
initializes pvar for subsequent use by va_arg() and va_end(). The parameter
parmN is the identifier of the rightmost parameter in the variable parameter list in the
function definition (the one just before the , ...). If this parameter is declared with
the register storage class or with a function or array type, or with a type that is not
compatible with the type that results after application of the default argument
promotions, the behavior is undefined.

The parameter parmN is required under strict ANSI C compilation. In other
compilation modes, parmN need not be supplied and the second parameter to the
va_start() macro can be left empty (for example, va_start(pvar,);). This
allows for routines that contain no parameters before the ... in the variable
parameter list.

The va_arg() macro expands to an expression that has the type and value of the next
argument in the call. The parameter pvar should have been previously initialized by
va_start(). Each invocation of va_arg() modifies pvar so that the values of
successive arguments are returned in turn. The parameter type is the type name of
the next argument to be returned. The type name must be specified in such a way so
that the type of a pointer to an object that has the specified type can be obtained
simply by postfixing a * to type. If there is no actual next argument, or if type is not
compatible with the type of the actual next argument (as promoted according to the
default argument promotions), the behavior is undefined.

The va_copy() macro saves the state represented by the va_list src in the
va_list dest. The va_list passed as dest should not be initialized by a previous call
to va_start(), and must be passed to va_end() before being reused as a parameter
to va_start() or as the dest parameter of a subsequent call to va_copy(). The
behavior is undefined should any of these restrictions not be met.

The va_end() macro is used to clean up.

Multiple traversals, each bracketed by va_start() and va_end(), are possible.

stdarg(3EXT)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 1077

EXAMPLE 1 A sample program.

This example gathers into an array a list of arguments that are pointers to strings (but
not more than MAXARGS arguments) with function f1, then passes the array as a single
argument to function f2. The number of pointers is specified by the first argument to
f1.

#include <stdarg.h>
#define MAXARGS 31
void f1(int n_ptrs, ...)
{

va_list ap;
char *array[MAXARGS];
int ptr_no = 0;

if (n_ptrs > MAXARGS)
n_ptrs = MAXARGS;

va_start(ap, n_ptrs);
while (ptr_no < n_ptrs)

array[ptr_no++] = va_arg(ap, char*);
va_end(ap);
f2(n_ptrs, array);

}

Each call to f1 shall have visible the definition of the function or a declaration such as

void f1(int, ...)

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

vprintf(3C), attributes(5), standards(5)

It is the responsibility of the calling routine to specify in some manner how many
arguments there are, since it is not always possible to determine the number of
arguments from the stack frame. For example, execl is passed a zero pointer to signal
the end of the list. The printf function can determine the number of arguments by the
format. It is non-portable to specify a second argument of char, short, or float to
va_arg(), because arguments seen by the called function are not char, short, or
float. C converts char and short arguments to int and converts float
arguments to double before passing them to a function.

stdarg(3EXT)

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

1078 man pages section 3: Extended Library Functions • Last Revised 10 May 2002

strccpy, streadd, strcadd, strecpy – copy strings, compressing or expanding escape
codes

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

char *strccpy(char *output, const char *input);

char *strcadd(char *output, const char *input);

char *strecpy(char *output, const char *input, const char *exceptions);

char *streadd(char *output, const char *input, const char *exceptions);

strccpy() copies the input string, up to a null byte, to the output string, compressing
the C-language escape sequences (for example, \n, \001) to the equivalent character.
A null byte is appended to the output. The output argument must point to a space big
enough to accommodate the result. If it is as big as the space pointed to by input it is
guaranteed to be big enough. strccpy() returns the output argument.

strcadd() is identical to strccpy(), except that it returns the pointer to the null
byte that terminates the output.

strecpy() copies the input string, up to a null byte, to the output string, expanding
non-graphic characters to their equivalent C-language escape sequences (for example,
\n, \001). The output argument must point to a space big enough to accommodate the
result; four times the space pointed to by input is guaranteed to be big enough (each
character could become \ and 3 digits). Characters in the exceptions string are not
expanded. The exceptions argument may be zero, meaning all non-graphic characters
are expanded. strecpy() returns the output argument.

streadd() is identical to strecpy(), except that it returns the pointer to the null
byte that terminates the output.

EXAMPLE 1 Example of expanding and compressing escape codes.

/* expand all but newline and tab */
strecpy(output, input, "\n\t");

/* concatenate and compress several strings */
cp = strcadd(output, input1);
cp = strcadd(cp, input2);

cp = strcadd(cp, input3);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

string(3C), strfind(3GEN), attributes(5)

When compiling multi-thread applications, the _REENTRANT flag must be defined on
the compile line. This flag should only be used in multi-thread applications.

strccpy(3GEN)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 1079

strfind, strrspn, strtrns, str – string manipulations

cc [flag ...] file ... -lgen [library ...]

#include <libgen.h>

int strfind(const char *as1, const char *as2);

char *strrspn(const char *string, const char *tc);

char * strtrns(const char *string, const char *old, const char *new,
char *result);

The strfind() function returns the offset of the first occurrence of the second string,
as2, if it is a substring of string as1. If the second string is not a substring of the first
string strfind() returns −1.

The strrspn() function trims chartacters from a string. It searches from the end of
string for the first character that is not contained in tc. If such a character is found,
strrspn() returns a pointer to the next character; otherwise, it returns a pointer to
string.

The strtrns() function transforms string and copies it into result. Any character that
appears in old is replaced with the character in the same position in new. The new
result is returned.

When compiling multithreaded applications, the _REENTRANT flag must be defined
on the compile line. This flag should only be used in multithreaded applications.

EXAMPLE 1 An example of the strfind() function.

/* find offset to substring "hello" within as1 */
i = strfind(as1, "hello");
/* trim junk from end of string */
s2 = strrspn(s1, "*?#$%");
*s2 = ’\0’;
/* transform lower case to upper case */
a1[] = "abcdefghijklmnopqrstuvwxyz";
a2[] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
s2 = strtrns(s1, a1, a2, s2);

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

string(3C), attributes(5)

strfind(3GEN)

NAME

SYNOPSIS

DESCRIPTION

USAGE

EXAMPLES

ATTRIBUTES

SEE ALSO

1080 man pages section 3: Extended Library Functions • Last Revised 20 Jan 1999

SUNW_C_GetMechSession, SUNW_C_KeyToObject – PKCS#11 Cryptographic
Framework functions

cc [flag ...] file... -lpkcs11 [library...]
#include <security/pkcs11.h>

#include <security/cryptki.h>

CK_RV SUNW_C_GetMechSession(CK_MECHANISM_TYPE mech,
CK_SESSION_HANDLE_PTR hSession);

CK_RV SUNW_C_KeyToObject(CK_SESSION_HANDLE hSession,
CK_MECHANISM_TYPE mech, const void *rawkey, size_t rawkey_len,
CK_OBJECT_HANDLE_PTR obj);

These functions implement the RSA PKCS#11 v2.11 specification by using plug-ins to
provide the slots.

The SUNW_C_GetMechSession() function initializes the PKCS#11 cryptographic
framework and performs all necessary calls to Standard PKCS#11 functions (see
libpkcs11(3LIB)) to create a session capable of providing operations on the
requested mechanism. It is not neccessary to call C_Initalize() or
C_GetSlotList() before the first call to SUNW_C_GetMechSession().

If the SUNW_C_GetMechSession() function is called multiple times, it will return a
new session each time without re-initalizing the framework. If it is unable to return a
new session, CKR_SESSION_COUNT is returned.

The C_CloseSession() function should be called to release the session when it is
no longer required.

The SUNW_C_KeyToObject() function creates a key object for the specified
mechanism from the rawkey data. The object should be destroyed with
C_DestroyObject() when it is no longer required.

The SUNW_C_GetMechSession() function returns the following values:

CKR_OK The function completed successfully.

CKR_SESSION_COUNT No sessions are available.

CKR_ARGUMENTS_BAD A null pointer was passed for the return session
handle.

CKR_MECHANISM_INVALID The requested mechanism is invalid or no available
plug-in provider supports it.

CKR_FUNCTION_FAILED The function failed.

CKR_GENERAL_ERROR A general error occurred.

The SUNW_C_KeyToObject() function returns the following values:

CKR_OK The function completed successfully.

SUNW_C_GetMechSession(3EXT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 1081

CKR_ARGUMENTS_BAD A null pointer was passed for the session handle or the
key material.

CKR_MECHANISM_INVALID The requested mechanism is invalid or no available
plug-in provider supports it.

CKR_FUNCTION_FAILED The function failed.

CKR_GENERAL_ERROR A general error occurred.

The return values of each of the implemented functions are defined and listed in the
RSA PKCS#11 v2.11 specification. See
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11.

These functions are not part of the RSA PKCS#11 v2.11 specification. They are not
likely to exist on non-Solaris systems. They are provided as a convenience to
application programmers. Use of these functions will make the application
non-portable to other systems.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

libpkcs11(3LIB), attributes(5)

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11

SUNW_C_GetMechSession(3EXT)

USAGE

ATTRIBUTES

SEE ALSO

1082 man pages section 3: Extended Library Functions • Last Revised 19 Aug 2003

http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-11

sysevent_bind_handle, sysevent_unbind_handle – bind or unbind subscriber handle

cc [flag...] file ... -lsysevent [library ...]
#include <libsysevent.h>

sysevent_handle_t *sysevent_bind_handle(void
(*event_handler)(sysevent_t *ev));

void sysevent_unbind_handle(sysevent_handle_t *sysevent_hdl);

ev pointer to sysevent buffer handle

event_handler pointer to an event handling function

sysevent_hdl pointer to a sysevent subscriber handle

The sysevent_bind_handle() function allocates memory associated with a
subscription handle and binds it to the caller’s event_handler. The event_handler is
invoked during subsequent system event notifications once a subscription has been
made with sysevent_subscribe_event(3SYSEVENT).

The system event is represented by the argument ev and is passed as an argument to
the invoked event delivery function, event_handler.

Additional threads are created to service communication between syseventd(1M)
and the calling process and to run the event handler routine, event_handler.

The sysevent_unbind_handle() function deallocates memory and other resources
associated with a subscription handle and deactivates all system event notifications for
the calling process. All event notifications are guaranteed to stop upon return from
sysevent_unbind_handle().

The sysevent_bind_handle() function returns a valid sysevent subscriber
handle if the handle is successfully allocated. Otherwise, NULL is returned and errno
is set to indicate the error.

The sysevent_unbind_handle() function returns no value.

The sysevent_bind_handle() function will fail if:

EACCESS The calling process has an ID other than the privileged user.

EBUSY There are no resources available.

EINVAL The pointer to the function event_handler is NULL.

EMFILE The process has too many open descriptors.

ENOMEM There are insufficient resources to allocate the handle.

sysevent_bind_handle(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 1083

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

syseventd(1M), sysevent_subscribe_event(3SYSEVENT), attributes(5)

Event notifications are revoked by syseventd when the bound process dies. Event
notification is suspended if a signal is caught and handled by the event_handler
thread. Event notification is also suspended when the calling process attempts to use
fork(2) or fork1(2). Event notifications might be lost during suspension periods.

sysevent_bind_handle(3SYSEVENT)

ATTRIBUTES

SEE ALSO

NOTES

1084 man pages section 3: Extended Library Functions • Last Revised 12 Nov 2001

sysevent_free – free memory for sysevent handle

cc [flag ...] file ...-lsysevent [library ...]
#include <libsysevent.h>

void sysevent_free(sysevent_t *ev);

ev handle to event an event buffer

The sysevent_free() function deallocates memory associated with an event buffer.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

attributes(5)

sysevent_free(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

ATTRIBUTES

SEE ALSO

Extended Library Functions 1085

sysevent_get_attr_list – get attribute list pointer

cc [flag ...] file ... -lsysevent -lnvpair [library ...]
#include <libsysevent.h>

#include <libnvpair.h>

int sysevent_get_attr_list(sysevent_t *ev, nvlist_t **attr_list);

ev handle to a system event

attr_list address of a pointer to attribute list (nvlist_t)

The sysevent_get_attr_list() function updates attr_list to point to a searchable
name-value pair list associated with the sysevent event, ev. The interface manages
the allocation of the attribute list, but it is up to the caller to free the list when it is no
longer needed with a call to nvlist_free(). See nvlist_alloc(3NVPAIR).

The sysevent_get_attr_list() function returns 0 if the attribute list for ev is
found to be valid. Otherwise it returns −1 and sets errno to indicate the error.

The sysevent_get_attr_list() function will fail if:

ENOMEM Insufficient memory available to allocate an nvlist.

EINVAL Invalid sysevent event attribute list.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

syseventd(1M), nvlist_alloc(3NVPAIR),
nvlist_lookup_boolean(3NVPAIR), attributes(5)

sysevent_get_attr_list(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

1086 man pages section 3: Extended Library Functions • Last Revised 12 Sep 2000

sysevent_get_class_name, sysevent_get_subclass_name, sysevent_get_size,
sysevent_get_seq, sysevent_get_time – get class name, subclass name, ID or buffer size
of event

cc [flag...] file ...-lsysevent [library...]
#include <libsysevent.h>

char *sysevent_get_class_name(sysevent_t *ev);

char *sysevent_get_subclass_name(sysevent_t *ev);

int sysevent_get_size(sysevent_t *ev);

uint64_t sysevent_get_seq(sysevent_t *ev);

void sysevent_get_time(sysevent_t *ev, hrtime_t *etimep);

ev handle to event

etimep pointer to high resolution event time variable

The sysevent_get_class_name() and sysevent_get_subclass_name()
functions return, respectively, the class and subclass names for the provided event ev.

The sysevent_get_size() function returns the size of the event buffer, ev.

The sysevent_get_seq() function returns a unique event sequence number of
event ev. The sequence number is reset on every system boot.

The sysevent_get_time() function writes the time the event was published into
the variable pointed to by etimep. The event time is added to the event just before it is
put into the kernel internal event queue.

EXAMPLE 1 Parse sysevent header information.

The following example parses sysevent header information from an application’s
event handler.

hrtime_t last_ev_time;
unit64_t last_ev_seq;

void
event_handler(sysevent_t *ev)
{

sysevent_t *new_ev;
int ev_sz;
hrtime_t ev_time;
uint64_t ev_seq;

/* Filter on class and subclass */
if (strcmp(EC_PRIV, sysevent_get_class_name(ev)) != 0) {

return;
} else if (strcmp("ESC_MYSUBCLASS,

sysevent_get_subclass_name(ev)) != 0) {
return;

sysevent_get_class_name(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

EXAMPLES

Extended Library Functions 1087

EXAMPLE 1 Parse sysevent header information. (Continued)

}

/*
* Check for replayed sysevent, time must
* be greater than previously recorded.
*/
sysevent_get_event_time(ev, &ev_time);
ev_seq = sysevent_get_seq(ev);
if (ev_time < last_ev_time ||

(ev_time == last_ev_time && ev_seq <=
last_ev_seq)) {

return;
}

last_ev_time = ev_time;
last_ev_seq = ev_seq;

/* Store event for later processing */
ev_sz = sysevent_get_size(ev):
new_ev (sysevent_t *)malloc(ev_sz);
bcopy(ev, new_ev, ev_sz);
queue_event(new_ev);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

attributes(5)

sysevent_get_class_name(3SYSEVENT)

ATTRIBUTES

SEE ALSO

1088 man pages section 3: Extended Library Functions • Last Revised 1 Apr 2003

sysevent_get_vendor_name, sysevent_get_pub_name, sysevent_get_pid – get vendor
name, publisher name or processor ID of event

cc [flag ...] file ...-lsysevent [library ...]
#include <libsysevent.h>

char *sysevent_get_vendor_name(sysevent_t *ev);

char *sysevent_get_pub_name(sysevent_t *ev);

pid_t sysevent_get_pid(sysevent_t *ev);

ev handle to a system event object

The sysevent_get_pub_name() function returns the publisher name for the
sysevent handle, ev. The publisher name identifies the name of the publishing
application or kernel subsystem of the sysevent.

The sysevent_get_pid() function returns the process ID for the publishing
application or SE_KERN_PID for sysevents originating in the kernel. The publisher
name and PID are useful for implementing event acknowledgement.

The sysevent_get_vendor_name() function returns the vendor string for the
publishing application or kernel subsystem. A vendor string is the company’s stock
symbol that provided the application or kernel subsystem that generated the system
event. This information is useful for filtering sysevents for one or more vendors.

The interface manages the allocation of the vendor and publisher name strings, but it
is the caller’s responsibility to free the strings when they are no longer needed by
calling free(3MALLOC). If the new vendor and publisher name strings cannot be
created, sysevent_get_vendor_name() and sysevent_get_pub_name() return
a null pointer and may set errno to ENOMEM to indicate that the storage space available
is insufficient.

EXAMPLE 1 Parse sysevent header information.

The following example parses sysevent header information from an application’s
event handler.

char *vendor;
char *pub;

void
event_handler(sysevent_t *ev)
{

if (strcmp(EC_PRIV, sysevent_get_class_name(ev)) != 0) {
return;

}

vendor = sysevent_get_vendor_name(ev);
if (strcmp("SUNW", vendor) != 0) {

free(vendor);
return;

}

sysevent_get_vendor_name(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

EXAMPLES

Extended Library Functions 1089

EXAMPLE 1 Parse sysevent header information. (Continued)

pub = sysevent_get_pub_name(ev);
if (strcmp("test_daemon", pub) != 0) {

free(vendor);
free(pub);
return;

}
(void) kill(sysevent_get_pid(ev), SIGUSR1);
free(vendor);
free(pub);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

malloc(3MALLOC), attributes(5)

sysevent_get_vendor_name(3SYSEVENT)

ATTRIBUTES

SEE ALSO

1090 man pages section 3: Extended Library Functions • Last Revised 17 Mar 2004

sysevent_post_event – post system event for applications

cc [flag...] file... -lsysevent -lnvpair [library...]
#include <libsysevent.h>

#include <libnvpair.h>

int sysevent_post_event(char *class, char *subclass, char *vendor, char
*publisher, nvlist_t *attr_list, sysevent_id_t *eid);

attr_list pointer to an nvlist_t, listing the name-value attributes
associated with the event, or NULL if there are no such attributes
for this event

class pointer to a string defining the event class

eid pointer to a system unique identifier

publisher pointer to a string defining the event’s publisher nam

subclass pointer to a string defining the event subclass

vendor pointer to a string defining the vendor

The sysevent_post_event() function causes a system event of the specified class,
subclass, vendor, and publisher to be generated on behalf of the caller and queued for
delivery to the sysevent daemon syseventd(1M).

The vendor should be the company stock symbol (or similarly enduring identifier) of
the event posting application. The publisher should be the name of the application
generating the event.

For example, all events posted by Sun applications begin with the company’s stock
symbol, "SUNW". The publisher is usually the name of the application generating the
system event. A system event generated by devfsadm(1M) has a publisher string of
devfsadm.

The publisher information is used by sysevent consumers to filter unwanted event
publishers.

Upon successful queuing of the system event, a unique identifier is assigned to eid.

The sysevent_post_event() function returns 0 if the system event has been
queued successfully for delivery. Otherwise it returns −1 and sets errno to indicate
the error.

The sysevent_post_event() function will fail if:

ENOMEM Insufficient resources to queue the system event.

EIO The syseventd daemon is not responding and events cannot be
queued or delivered at this time.

EINVAL Invalid argument.

EPERM Permission denied.

sysevent_post_event(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 1091

EFAULT A copy error occurred.

EXAMPLE 1 Post a system event event with no attributes.

The following example posts a system event event with no attributes.

if (sysevent_post_event(EC_PRIV, "ESC_MYSUBCLASS", "SUNW", argv[0],
NULL), &eid == -1) {

fprintf(stderr, "error logging system event\n");

}

EXAMPLE 2 Post a system event with two name-value pair attributes.

The following example posts a system event event with two name-value pair
attributes, an integer value and a string.

nvlist_t *attr_list;
uint32_t uint32_val = 0XFFFFFFFF;
char *string_val = "string value data";

if (nvlist_alloc(&attr_list, 0, 0) == 0) {
err = nvlist_add_uint32(attr_list, "uint32 data", uint32_val);
if (err == 0)

err = nvlist_add_string(attr_list, "str data",
string_val);

if (err == 0)
err = sysevent_post_event(EC_PRIV, "ESC_MYSUBCLASS",

"SUNW", argv[0], attr_list, &eid);
if (err != 0)

fprintf(stderr, "error logging system event\n");
nvlist_free(attr_list);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

devfsadm(1M), syseventd(1M), nvlist_add_boolean(3NVPAIR),
nvlist_alloc(3NVPAIR), attributes(5)

sysevent_post_event(3SYSEVENT)

EXAMPLES

ATTRIBUTES

SEE ALSO

1092 man pages section 3: Extended Library Functions • Last Revised 26 May 2004

sysevent_subscribe_event, sysevent_unsubscribe_event – register or unregister interest
in event receipt

cc [flag...] file... -lsysevent [library...]

#include <libsysevent.h>

int sysevent_subscribe_event(sysevent_handle_t *sysevent_hdl, char
*event_class, char **event_subclass_list, int num_subclasses);

void sysevent_unsubscribe_event(sysevent_handle_t *sysevent_hdl,
char *event_class);

event_class system event class string

event_subclass_list array of subclass strings

num_subclasses number of subclass strings

sysevent_hdl sysevent subscriber handle

The sysevent_subscribe_event() function registers the caller’s interest in event
notifications belonging to the class event_class and the subclasses contained in
event_subclass_list. The subscriber handle sysevent_hdl is updated with the new
subscription and the calling process receives event notifications from the event
handler specified in sysevent_bind_handle.

System events matching event_class and a subclass contained in event_subclass_list
published after the caller returns from sysevent_subscribe_event() are
guaranteed to be delivered to the calling process. Matching system events published
and queued prior to a call to sysevent_subscribe_event() may be delivered to
the process’s event handler.

The num_subclasses argument provides the number of subclass string elements in
event_subclass_list.

A caller can use the event class EC_ALL to subscribe to all event classes and
subclasses. The event class EC_SUB_ALL can be used to subscribe to all subclasses
within a given event class.

Subsequent calls to sysevent_subscribe_event() are allowed to add additional
classes or subclasses. To remove an existing subscription,
sysevent_unsubscribe_event() must be used to remove the subscription.

The sysevent_unsubscribe_event() function removes the subscription
described by event_class for sysevent_hdl. Event notifications matching event_class will
not be delivered to the calling process upon return.

A caller can use the event class EC_ALL to remove all subscriptions for sysevent_hdl.

The library manages all subscription resources.

The sysevent_subscribe_event() function returns 0 if the subscription is
successful. Otherwise, −1 is returned and errno is set to indicate the error.

sysevent_subscribe_event(3SYSEVENT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

Extended Library Functions 1093

The sysevent_unsubscribe_event() function returns no value.

The sysevent_subscribe_event() function will fail if:

EACCESS The calling process has an ID other than the privileged user.

EINVAL The sysevent_hdl argument is an invalid sysevent handle.

ENOMEM There is insufficient memory available to allocate subscription
resources.

EXAMPLE 1 Subscribing for DR and environmental events

#include <libsysevent.h>
#include <sys/nvpair.h>

static int32_t attr_int32;

#define CLASS1 "class1"
#define CLASS2 "class2"
#define SUBCLASS_1 "subclass_1"
#define SUBCLASS_2 "subclass_2"
#define SUBCLASS_3 "subclass_3"
#define MAX_SUBCLASS 3

static void
event_handler(sysevent_t *ev)
{

nvlist_t *nvlist;

/*
* Special processing for events (CLASS1, SUBCLASS_1) and
* (CLASS2, SUBCLASS_3)
*/
if ((strcmp(CLASS1, sysevent_get_class_name(ev)) == 0 &&

strcmp(SUBCLASS_1, sysevent_get_subclass_name(ev)) == 0) ||
(strcmp(CLASS2, sysevent_get_subclass_name(ev) == 0) &&
strcmp(SUBCLASS_3, sysevent_get_subclass(ev)) == 0)) {
if (sysevent_get_attr_list(ev, &nvlist) != 0)

return;
if (nvlist_lookup_int32(nvlist, "my_int32_attr", &attr_int32)

!= 0)
return;

/* Event Processing */
} else {

/* Event Processing */
}

}

int
main(int argc, char **argv)
{

sysevent_handle_t *shp;
const char *subclass_list[MAX_SUBCLASS];

sysevent_subscribe_event(3SYSEVENT)

ERRORS

EXAMPLES

1094 man pages section 3: Extended Library Functions • Last Revised 30 Jul 2002

EXAMPLE 1 Subscribing for DR and environmental events (Continued)

/* Bind event handler and create subscriber handle */
shp = sysevent_bind_handle(event_handler);
if (shp == NULL)

exit(1);

/* Subscribe to all CLASS1 event notifications */
subclass_list[0] = EC_SUB_ALL;
if (sysevent_subscribe_event(shp, CLASS1, subclass_list, 1) != 0) {

sysevent_unbind_handle(shp);
exit(1);

}

/* Subscribe to CLASS2 events for subclasses: SUBCLASS_1,
* SUBCLASS_2 and SUBCLASS_3
*/
subclass_list[0] = SUBCLASS_1;
subclass_list[1] = SUBCLASS_2;
subclass_list[1] = SUBCLASS_3;
if (sysevent_subscribe_event(shp, CLASS2, subclass_list,

MAX_SUBCLASS) != 0) {
sysevent_unbind_handle(shp);
exit(1);

}

for (;;) {
(void) pause();

}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

syseventd(1M), sysevent_bind_handle(3SYSEVENT),
sysevent_get_attr_list(3SYSEVENT),
sysevent_get_class_name(3SYSEVENT),
sysevent_get_vendor_name(3SYSEVENT), attributes(5)

sysevent_subscribe_event(3SYSEVENT)

ATTRIBUTES

SEE ALSO

Extended Library Functions 1095

tan, tanf, tanl – tangent function

cc [flag...] file... -lm [library...]

#include <math.h>

double tan(double x);

float tanf(float x);

long double tanl(long double x);

These functions compute the tangent of their argument x, measured in radians.

Upon successful completion, these functions return the tangent of x.

If x is NaN, a NaN is returned.

If x is ±0, x is returned.

If x is ±Inf, a domain error occurs and a NaN is returned.

These functions will fail if:

Domain Error The value of x is ±Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, the invalid floating-point
exception is raised.

There are no known floating-point representations such that for a normal argument,
tan(x) is either overflow or underflow.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

atan(3M), feclearexcept(3M), fetestexcept(3M), isnan(3M),
math.h(3HEAD), attributes(5), standards(5)

tan(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

1096 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

tanh, tanhf, tanhl – hyperbolic tangent function

cc [flag...] file... -lm [library...]

#include <math.h>

double tanh(double x);

float tanhf(float x);

long double tanhl(long double x);

These functions compute the hyperbolic tangent of their argument x.

Upon successful completion, these functions return the hyperbolic tangent of x.

If x is NaN, a NaN is returned.

If x is ±0, x is returned.

If x is ±Inf, ±1 is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

atanh(3M), isnan(3M), math.h(3HEAD), tan(3M), attributes(5), standards(5)

tanh(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 1097

Task – Perl interface to Tasks

use Sun::Solaris::Task qw(:ALL);

my $taskid = gettaskid();

This module provides wrappers for the gettaskid(2) and settaskid(2) system
calls.

TASK_NORMAL, TASK_FINAL.

settaskid($project, $flags)
The $project parameter must be a valid project ID and the $flags parameter
must be TASK_NORMAL or TASK_FINAL. The parameters are passed through
directly to the underlying settaskid() system call. The new task ID is returned if
the call succeeds. On failure −1 is returned.

gettaskid()
This function returns the numeric task ID of the calling process, or undef if the
underlying gettaskid() system call is unsuccessful.

None.

None.

By default nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module:

:SYSCALLS settaskid() and gettaskid()

:CONSTANTS TASK_NORMAL and TASK_FINAL

:ALL :SYSCALLS and :CONSTANTS

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u

Interface Stability Evolving

gettaskid(2), settaskid(2), attributes(5)

Task(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Constants

Functions

Class methods

Object methods

Exports

ATTRIBUTES

SEE ALSO

1098 man pages section 3: Extended Library Functions • Last Revised 1 Dec 2002

tgamma, tgammaf, tgammal – compute gamma function

cc [flag...] file... -lm [library...]

#include <math.h>

double tgamma(double x);

float tgammaf(float x);

long double tgammal(long double x);

These functions compute the gamma() function of x.

Upon successful completion, these functions return gamma(x).

If x is a negative integer, a domain error occurs and a NaN is returned.

If the correct value would cause overflow, a range error occurs and tgamma(),
tgammaf(), and tgammal() return the value of the macro ±HUGE_VAL,
±HUGE_VALF, or ±HUGE_VALL, respectively.

If x is NaN, a NaN is returned.

If x is ±Inf, x is returned.

If x is ±0, a pole error occurs and tgamma(), tgammaf(), and tgammal() return
±HUGE_VAL, ±HUGE_VALF, and ±HUGE_VALL, respectively.

If x is +Inf, a domain error occurs and a NaN is returned.

These functions will fail if:

Domain Error The value of x is a negative integer or x is −Inf.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the invalid floating-point
exception is raised.

Pole Error The value of x is zero.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the divide–by-zero
floating-point exception is raised.

Range Error The value overflows.

If the integer expression (math_errhandling &
MATH_ERREXCEPT) is non-zero, then the overflow floating-point
exception is raised.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or

tgamma(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

Extended Library Functions 1099

check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

feclearexcept(3M), fetestexcept(3M), lgamma(3M), math.h(3HEAD),
attributes(5), standards(5)

tgamma(3M)

ATTRIBUTES

SEE ALSO

1100 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

tnfctl_buffer_alloc, tnfctl_buffer_dealloc – allocate or deallocate a buffer for trace data

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_buffer_alloc(tnfctl_handle_t *hndl, const
char *trace_file_name, size_t trace_buffer_size);

tnfctl_buffer_dealloc(tnfctl_handle_t *hndl);

tnfctl_buffer_alloc() allocates a buffer to which trace events are logged. When
tracing a process using a tnfctl handle returned by tnfctl_pid_open(3TNF),
tnfctl_exec_open(3TNF), tnfctl_indirect_open(3TNF), and
tnfctl_internal_open(3TNF)), trace_file_name is the name of the trace file to
which trace events should be logged. It can be an absolute path specification or a
relative path specification. If it is relative, the current working directory of the process
that is calling tnfctl_buffer_alloc() is prefixed to trace_file_name. If the named
trace file already exists, it is overwritten. For kernel tracing, that is, for a tnfctl handle
returned by tnfctl_kernel_open(3TNF), trace events are logged to a trace buffer in
memory; therefore, trace_file_name is ignored. Use tnfxtract(1) to extract a kernel
buffer into a file.

trace_buffer_size is the size in bytes of the trace buffer that should be allocated. An error
is returned if an attempt is made to allocate a buffer when one already exists.
tnfctl_buffer_alloc() affects the trace attributes; use
tnfctl_trace_attrs_get(3TNF) to get the latest trace attributes after a buffer is
allocated.

tnfctl_buffer_dealloc() is used to deallocate a kernel trace buffer that is no
longer needed. hndl must be a kernel handle, returned by
tnfctl_kernel_open(3TNF). A process’s trace file cannot be deallocated using
tnfctl_buffer_dealloc(). Instead, once the trace file is no longer needed for
analysis and after the process being traced exits, use rm(1) to remove the trace file. Do
not remove the trace file while the process being traced is still alive.
tnfctl_buffer_dealloc () affects the trace attributes; use
tnfctl_trace_attrs_get(3TNF) to get the latest trace attributes after a buffer is
deallocated.

For a complete discussion of tnf tracing, see tracing(3TNF).

tnfctl_buffer_alloc() and tnfctl_buffer_dealloc() return
TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_buffer_alloc():

TNFCTL_ERR_BUFEXISTS A buffer already exists.

TNFCTL_ERR_ACCES Permission denied; could not create a trace
file.

TNFCTL_ERR_SIZETOOSMALL The trace_buffer_size requested is smaller
than the minimum trace buffer size needed.

tnfctl_buffer_alloc(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 1101

Use trace_min_size of trace attributes in
tnfctl_trace_attrs_get(3TNF) to
determine the minimum size of the buffer.

TNFCTL_ERR_SIZETOOBIG The requested trace file size is too big.

TNFCTL_ERR_BADARG trace_file_name is NULL or the absolute path
name is longer than MAXPATHLEN.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_buffer_dealloc():

TNFCTL_ERR_BADARG hndl is not a kernel handle.

TNFCTL_ERR_NOBUF No buffer exists to deallocate.

TNFCTL_ERR_BADDEALLOC Cannot deallocate a trace buffer unless
tracing is stopped. Use
tnfctl_trace_state_set(3TNF) to stop
tracing.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), rm(1), tnfxtract(1), TNF_PROBE(3TNF), libtnfctl(3TNF),
tnfctl_exec_open(3TNF), tnfctl_indirect_open(3TNF),
tnfctl_internal_open(3TNF), tnfctl_kernel_open(3TNF),
tnfctl_pid_open(3TNF), tnfctl_trace_attrs_get(3TNF), tracing(3TNF),
attributes(5)

tnfctl_buffer_alloc(3TNF)

ATTRIBUTES

SEE ALSO

1102 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_close – close a tnfctl handle

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_close(tnfctl_handle_t *hndl,
tnfctl_targ_op_t action);

tnfctl_close() is used to close a tnfctl handle and to free up the memory
associated with the handle. When the handle is closed, the tracing state and the states
of the probes are not changed. tnfctl_close() can be used to close handles in any
mode, that is, whether they were created by tnfctl_internal_open(3TNF),
tnfctl_pid_open(3TNF), tnfctl_exec_open(3TNF),
tnfctl_indirect_open(3TNF), or tnfctl_kernel_open(3TNF).

The action argument is only used in direct mode, that is, if hndl was created by
tnfctl_exec_open(3TNF) or tnfctl_pid_open(3TNF). In direct mode, action
specifies whether the process will proceed, be killed, or remain suspended. action may
have the following values:

TNFCTL_TARG_DEFAULT Kills the target process if hndl was created
with tnfctl_exec_open(3TNF), but lets
it continue if it was created with
tnfctl_pid_open(3TNF).

TNFCTL_TARG_KILL Kills the target process.

TNFCTL_TARG_RESUME Allows the target process to continue.

TNFCTL_TARG_SUSPEND Leaves the target process suspended. This is
not a job control suspend. It is possible to
attach to the process again with a debugger
or with the tnfctl_pid_open(3TNF)
interface. The target process can also be
continued with prun(1).

tnfctl_close() returns TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_close():

TNFCTL_ERR_BADARG A bad argument was sent in action.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

tnfctl_close(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

Extended Library Functions 1103

prex(1), prun(1), TNF_PROBE(3TNF), libtnfctl(3TNF),
tnfctl_exec_open(3TNF), tnfctl_indirect_open(3TNF),
tnfctl_kernel_open(3TNF), tnfctl_pid_open(3TNF), tracing(3TNF),
attributes(5)

tnfctl_close(3TNF)

SEE ALSO

1104 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_indirect_open, tnfctl_check_libs – control probes of another process where caller
provides /proc functionality

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_indirect_open(void *prochandle,
tnfctl_ind_config_t *config, tnfctl_handle_t **ret_val);

tnfctl_errcode_t tnfctl_check_libs(tnfctl_handle_t *hndl);

The interfaces tnfctl_indirect_open() and tnfctl_check_libs() are used to
control probes in another process where the libtnfctl(3TNF) client has already
opened proc(4) on the target process. An example of this is when the client is a
debugger. Since these clients already use /proc on the target, libtnfctl(3TNF)
cannot use /proc directly. Therefore, these clients must provide callback functions
that can be used to inspect and to update the target process. The target process must
load libtnfprobe.so.1 (defined in <tnf/tnfctl.h> as macro
TNFCTL_LIBTNFPROBE).

The first argument prochandle is a pointer to an opaque structure that is used in the
callback functions that inspect and update the target process. This structure should
encapsulate the state that the caller needs to use /proc on the target process (the
/proc file descriptor). The second argument, config, is a pointer to

typedef
struct tnfctl_ind_config {

int (*p_read)(void *prochandle, paddr_t addr, char *buf,
size_t size);

int (*p_write)(void *prochandle, paddr_t addr, char *buf,
size_t size);

pid_t (*p_getpid)(void *prochandle);
int (*p_obj_iter)(void *prochandle, tnfctl_ind_obj_f *func,

void *client_data);
} tnfctl_ind_config_t;

The first field p_read is the address of a function that can read size bytes at address
addr in the target image into the buffer buf. The function should return 0 upon
success.. The second field p_write is the address of a function that can write size bytes
at address addr in the target image from the buffer buf. The function should return 0
upon success. The third field p_getpid is the address of a function that should return
the process id of the target process (prochandle). The fourth field p_obj_iter is the
address of a function that iterates over all load objects and the executable by calling
the callback function func with client_data. If func returns 0, p_obj_iter should continue
processing link objects. If func returns any other value, p_obj_iter should stop calling
the callback function and return that value. p_obj_iter should return 0 if it iterates over
all load objects.

If a failure is returned by any of the functions in config, the error is propagated back as
PREX_ERR_INTERNAL by the libtnfctl interface that called it.

The definition of tnfctl_ind_obj_f is:

tnfctl_indirect_open(3TNF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 1105

typedef int
tnfctl_ind_obj_f(void *prochandle,

const struct tnfctl_ind_obj_info *obj
void *client_data);

typedef struct tnfctl_ind_obj_info {
int objfd; /* -1 indicates fd not available */
paddr_t text_base; /* virtual addr of text segment */
paddr_t data_base; /* virtual addr of data segment */
const char *objname; /* null-term. pathname to loadobj */

} tnfctl_ind_obj_info_t;

objfd should be the file descriptor of the load object or executable. If it is −1, then
objname should be an absolute pathname to the load object or executable. If objfd is not
closed by libtnfctl, it should be closed by the load object iterator function. text_base
and data_base are the addresses where the text and data segments of the load object are
mapped in the target process.

Whenever the target process opens or closes a dynamic object, the set of available
probes may change. See dlopen(3C) and dlclose(3C). In indirect mode, call
tnfctl_check_libs() when such events occur to make libtnfctl aware of any
changes. In other modes this is unnecessary but harmless. It is also harmless to call
tnfctl_check_libs() when no such events have occurred.

tnfctl_indirect_open() and tnfctl_check_libs() return
TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_indirect_open():

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_BUSY Internal tracing is being used.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not loaded in the
target process.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_check_libs():

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), dlclose(3C), dlopen(3C), libtnfctl(3TNF),
tnfctl_probe_enable(3TNF), tnfctl_probe_trace(3TNF), tracing(3TNF),
proc(4), attributes(5)

tnfctl_indirect_open(3TNF)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

1106 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

Linker and Libraries Guide

tnfctl_indirect_open() should only be called after the dynamic linker has
mapped in all the libraries (rtld sync point) and called only after the process is
stopped. Indirect process probe control assumes the target process is stopped
whenever any libtnfctl interface is used on it. For example, when used for indirect
process probe control, tnfctl_probe_enable(3TNF) and
tnfctl_probe_trace(3TNF) should be called only for a process that is stopped.

tnfctl_indirect_open(3TNF)

NOTES

Extended Library Functions 1107

tnfctl_internal_open – create handle for internal process probe control

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_internal_open(tnfctl_handle_t **ret_val);

tnfctl_internal_open() returns in ret_val a pointer to an opaque handle that can
be used to control probes in the same process as the caller (internal process probe
control). The process must have libtnfprobe.so.1 loaded. Probes in libraries that
are brought in by dlopen(3C) will be visible after the library has been opened. Probes
in libraries closed by a dlclose(3C) will not be visible after the library has been
disassociated. See the NOTES section for more details.

tnfctl_internal_open() returns TNFCTL_ERR_NONE upon success.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_BUSY Another client is already tracing this
program (internally or externally).

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not linked in the
target process.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

ld(1), prex(1), TNF_PROBE(3TNF), dlopen(3C), dlclose(3C), libtnfctl(3TNF),
tracing(3TNF), attributes(5)

Linker and Libraries Guide

libtnfctl interposes on dlopen(3C) and dlclose(3C) in order to be notified of
libraries being dynamically opened and closed. This interposition is necessary for
internal process probe control to update its list of probes. In these interposition
functions, a lock is acquired to synchronize on traversal of the library list maintained
by the runtime linker. To avoid deadlocking on this lock, tnfctl_internal_open
() should not be called from within the init section of a library that can be opened by
dlopen(3C).

Since interposition does not work as expected when a library is opened dynamically,
tnfctl_internal_open() should not be used if the client opened libtnfctl
through dlopen(3C). In this case, the client program should be built with a static
dependency on libtnfctl. Also, if the client program is explicitly linking in -ldl,
it should link -ltnfctl before -ldl.

tnfctl_internal_open(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

1108 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

Probes in filtered libraries (see ld(1)) will not be seen because the filtee (backing
library) is loaded lazily on the first symbol reference and not at process startup or
dlopen(3C) time. A workaround is to call tnfctl_check_libs(3TNF) once the
caller is sure that the filtee has been loaded.

tnfctl_internal_open(3TNF)

Extended Library Functions 1109

tnfctl_kernel_open – create handle for kernel probe control

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_kernel_open(tnfctl_handle_t **ret_val);

tnfctl_kernel_open() starts a kernel tracing session and returns in ret_val an
opaque handle that can be used to control tracing and probes in the kernel. Only one
kernel tracing session is possible at a time on a given machine. An error code of
TNFCTL_ERR_BUSY is returned if there is another process using kernel tracing. Use
the command

fuser -f /dev/tnfctlto print the process id of the process currently using kernel
tracing. Only a superuser may use tnfctl_kernel_open(). An error code of
TNFCTL_ERR_ACCES is returned if the caller does not have the necessary privileges.

tnfctl_kernel_open returns TNFCTL_ERR_NONE upon success.

TNFCTL_ERR_ACCES Permission denied. Superuser privileges are
needed for kernel tracing.

TNFCTL_ERR_BUSY Another client is currently using kernel
tracing.

TNFCTL_ERR_ALLOCFAIL Memory allocation failed.

TNFCTL_ERR_FILENOTFOUND /dev/tnfctl not found.

TNFCTL_ERR_INTERNAL Some other failure occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), fuser(1M), TNF_PROBE(3TNF), libtnfctl(3TNF), tracing(3TNF),
tnf_kernel_probes (4), attributes(5)

tnfctl_kernel_open(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

1110 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_pid_open, tnfctl_exec_open, tnfctl_continue – interfaces for direct probe and
process control for another process

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_pid_open(pid_t pid, tnfctl_handle_t
**ret_val);

tnfctl_errcode_t tnfctl_exec_open(const char *pgm_name, char *
const *argv, char * const *envp, const char *libnfprobe_path, const
char *ld_preload, tnfctl_handle_t **ret_val);

tnfctl_errcode_t tnfctl_continue(tnfctl_handle_t *hndl,
tnfctl_event_t *evt, tnfctl_handle_t **child_hndl);

The tnfctl_pid_open(), tnfctl_exec_open(), and tnfctl_continue()
functions create handles to control probes in another process (direct process probe
control). Either tnfctl_pid_open() or tnfctl_exec_open() will return a handle
in ret_val that can be used for probe control. On return of these calls, the process is
stopped. tnfctl_continue() allows the process specified by hndl to continue
execution.

The tnfctl_pid_open() function attaches to a running process with process id of
pid. The process is stopped on return of this call. The tnfctl_pid_open() function
returns an error message if pid is the same as the calling process. See
tnfctl_internal_open(3TNF) for information on internal process probe control. A
pointer to an opaque handle is returned in ret_val, which can be used to control the
process and the probes in the process. The target process must have
libtnfprobe.so.1 (defined in <tnf/tnfctl.h> as macro
TNFCTL_LIBTNFPROBE) linked in for probe control to work.

The tnfctl_exec_open() function is used to exec(2) a program and obtain a
probe control handle. For probe control to work, the process image to be exec’d must
load libtnfprobe.so.1. The tnfctl_exec_open() function makes it simple for
the library to be loaded at process start up time. The pgm_name argument is the
command to exec. If pgm_name is not an absolute path, then the $PATH environment
variable is used to find the pgm_name. argv is a null-terminated argument pointer, that
is, it is a null-terminated array of pointers to null-terminated strings. These strings
constitute the argument list available to the new process image. The argv argument
must have at least one member, and it should point to a string that is the same as
pgm_name. See execve(2). The libnfprobe_path argument is an optional argument, and
if set, it should be the path to the directory that contains libtnfprobe.so.1. There
is no need for a trailing "/" in this argument. This argument is useful if
libtnfprobe.so.1 is not installed in /usr/lib. ld_preload is a space-separated list
of libraries to preload into the target program. This string should follow the syntax
guidelines of the LD_PRELOAD environment variable. See ld.so.1(1). The following
illustrates how strings are concatenated to form the LD_PRELOAD environment
variable in the new process image:

tnfctl_pid_open(3TNF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 1111

<current value of $LD_PRELOAD> + <space> +
libtnfprobe_path + "/libtnfprobe.so.1" +<space> +
ld_preload

This option is useful for preloading interposition libraries that have probes in them.

envp is an optional argument, and if set, it is used for the environment of the target
program. It is a null-terminated array of pointers to null-terminated strings. These
strings constitute the environment of the new process image. See execve(2). If envp is
set, it overrides ld_preload. In this case, it is the caller’s responsibility to ensure that
libtnfprobe.so.1 is loaded into the target program. If envp is not set, the new
process image inherits the environment of the calling process, except for LD_PRELOAD.

The ret_val argument is the handle that can be used to control the process and the
probes within the process. Upon return, the process is stopped before any user code,
including .init sections, has been executed.

The tnfctl_continue() function is a blocking call and lets the target process
referenced by hndl continue running. It can only be used on handles returned by
tnfctl_pid_open() and tnfctl_exec_open() (direct process probe control). It
returns when the target stops; the reason that the process stopped is returned in evt.
This call is interruptible by signals. If it is interrupted, the process is stopped, and
TNFCTL_EVENT_EINTR is returned in evt. The client of this library will have to decide
which signal implies a stop to the target and catch that signal. Since a signal interrupts
tnfctl_continue(), it will return, and the caller can decide whether or not to call
tnfctl_continue() again.

tnfctl_continue() returns with an event of TNFCTL_EVENT_DLOPEN,
TNFCTL_EVENT_DLCLOSE, TNFCTL_EVENT_EXEC, TNFCTL_EVENT_FORK,
TNFCTL_EVENT_EXIT, or TNFCTL_EVENT_TARGGONE, respectively, when the target
program calls dlopen(3C), dlclose(3C), any flavor of exec(2), fork(2) (or
fork1(2)), exit(2), or terminates unexpectedly. If the target program called exec(2),
the client then needs to call tnfctl_close(3TNF) on the current handle leaving the
target resumed, suspended, or killed (second argument to tnfctl_close(3TNF)). No
other libtnfctl interface call can be used on the existing handle. If the client wants
to control the exec’ed image, it should leave the old handle suspended, and use
tnfctl_pid_open() to reattach to the same process. This new handle can then be
used to control the exec’ed image. See EXAMPLES below for sample code. If the target
process did a fork(2) or fork1(2), and if control of the child process is not needed,
then child_hndl should be NULL. If control of the child process is needed, then
child_hndl should be set. If it is set, a pointer to a handle that can be used to control the
child process is returned in child_hndl. The child process is stopped at the end of the
fork() system call. See EXAMPLES for an example of this event.

The tnfctl_pid_open(), tnfctl_exec_open(), and tnfctl_continue()
functions return TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_pid_open():

TNFCTL_ERR_BADARG The pid specified is the same process. Use
tnfctl_internal_open(3TNF) instead.

tnfctl_pid_open(3TNF)

RETURN VALUES

ERRORS

1112 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

TNFCTL_ERR_ACCES Permission denied. No privilege to connect
to a setuid process.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_BUSY Another client is already using /proc to
control this process or internal tracing is
being used.

TNFCTL_ERR_NOTDYNAMIC The process is not a dynamic executable.

TNFCTL_ERR_NOPROCESS No such target process exists.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not linked in the
target process.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_exec_open():

TNFCTL_ERR_ACCES Permission denied.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_NOTDYNAMIC The target is not a dynamic executable.

TNFCTL_ERR_NOLIBTNFPROBE libtnfprobe.so.1 is not linked in the
target process.

TNFCTL_ERR_FILENOTFOUND The program is not found.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_continue():

TNFCTL_ERR_BADARG Bad input argument. hndl is not a direct
process probe control handle.

TNFCTL_ERR_INTERNAL An internal error occurred.

TNFCTL_ERR_NOPROCESS No such target process exists.

EXAMPLE 1 Using tnfctl_pid_open()

These examples do not include any error-handling code. Only the initial example
includes the declaration of the variables that are used in all of the examples.

The following example shows how to preload libtnfprobe.so.1 from the normal
location and inherit the parent’s environment.

const char *pgm;
char * const *argv;
tnfctl_handle_t *hndl, *new_hndl, *child_hndl;
tnfctl_errcode_t err;
char * const *envptr;
extern char **environ;
tnfctl_event_t evt;

tnfctl_pid_open(3TNF)

EXAMPLES

Extended Library Functions 1113

EXAMPLE 1 Using tnfctl_pid_open() (Continued)

int pid;

/* assuming argv has been allocated */
argv[0] = pgm;
/* set up rest of argument vector here */
err = tnfctl_exec_open(pgm, argv, NULL, NULL, NULL, &hndl);

This example shows how to preload two user-supplied libraries libc_probe.so.1
and libthread_probe.so.1. They interpose on the corresponding libc.so and
libthread.so interfaces and have probes for function entry and exit.
libtnfprobe.so.1 is preloaded from the normal location and the parent’s
environment is inherited.

/* assuming argv has been allocated */
argv[0] = pgm;
/* set up rest of argument vector here */
err = tnfctl_exec_open(pgm, argv, NULL, NULL,

"libc_probe.so.1 libthread_probe.so.1", &hndl);

This example preloads an interposition library libc_probe.so.1, and specifies a
different location from which to preload libtnfprobe.so.1.

/* assuming argv has been allocated */
argv[0] = pgm;
/* set up rest of argument vector here */
err = tnfctl_exec_open(pgm, argv, NULL, "/opt/SUNWXXX/lib",

"libc_probe.so.1", &hndl);

To set up the environment explicitly for probe control to work, the target process must
link libtnfprobe.so.1. If using envp, it is the caller’s responsibility to do so.

/* assuming argv has been allocated */
argv[0] = pgm;
/* set up rest of argument vector here */
/* envptr set up to caller’s needs */
err = tnfctl_exec_open(pgm, argv, envptr, NULL, NULL, &hndl);

Use this example to resume a process that does an exec(2) without controlling it.

err = tnfctl_continue(hndl, &evt, NULL);
switch (evt) {
case TNFCTL_EVENT_EXEC:

/* let target process continue without control */
err = tnfctl_close(hndl, TNFCTL_TARG_RESUME);
...
break;

}

Alternatively, use the next example to control a process that does an exec(2).

/*
* assume the pid variable has been set by calling
* tnfctl_trace_attrs_get()
*/

tnfctl_pid_open(3TNF)

1114 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

EXAMPLE 1 Using tnfctl_pid_open() (Continued)

err = tnfctl_continue(hndl, &evt, NULL);
switch (evt) {
case TNFCTL_EVENT_EXEC:

/* suspend the target process */
err = tnfctl_close(hndl, TNFCTL_TARG_SUSPEND);
/* re-open the exec’ed image */
err = tnfctl_pid_open(pid, &new_hndl);
/* new_hndl now controls the exec’ed image */
...
break;

}

To let fork’ed children continue without control, use NULL as the last argument to
tnfctl_continue().

err = tnfctl_continue(hndl, &evt, NULL);

The next example is how to control child processes that fork(2) or fork1(2) create.

err = tnfctl_continue(hndl, &evt, &child_hndl);
switch (evt) {
case TNFCTL_EVENT_FORK:

/* spawn a new thread or process to control child_hndl */
...
break;

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

ld(1), prex(1), proc(1), exec(2), execve(2), exit(2), fork(2), TNF_PROBE(3TNF),
dlclose(3C), dlopen(3C), libtnfctl(3TNF), tnfctl_close(3TNF),
tnfctl_internal_open(3TNF), tracing(3TNF) attributes(5)

Linker and Libraries Guide

After a call to tnfctl_continue() returns, a client should use
tnfctl_trace_attrs_get(3TNF) to check the trace_buf_state member of the
trace attributes and make sure that there is no internal error in the target.

tnfctl_pid_open(3TNF)

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 1115

tnfctl_probe_apply, tnfctl_probe_apply_ids – iterate over probes

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_probe_apply(tnfctl_handle_t *hndl,
tnfctl_probe_op_t probe_op, void *clientdata);

tnfctl_errcode_t tnfctl_probe_apply_ids(tnfctl_handle_t *hndl,
ulong_t probe_count, ulong_t *probe_ids, tnfctl_probe_op_t probe_op,
void *clientdata);

tnfctl_probe_apply() is used to iterate over the probes controlled by hndl. For
every probe, the probe_op function is called:

typedef tnfctl_errcode_t (*tnfctl_probe_op_t)(
tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl,
void *clientdata);

Several predefined functions are available for use as probe_op. These functions are
described in tnfctl_probe_state_get(3TNF).

The clientdata supplied in tnfctl_probe_apply() is passed in as the last argument
of probe_op. The probe_hndl in the probe operation function can be used to query or
change the state of the probe. See tnfctl_probe_state_get(3TNF). The probe_op
function should return TNFCTL_ERR_NONE upon success. It can also return an error
code, which will cause tnfctl_probe_apply() to stop processing the rest of the
probes and return with the same error code. Note that there are five (5) error codes
reserved that the client can use for its own semantics. See ERRORS.

The lifetime of probe_hndl is the same as the lifetime of hndl. It is good until hndl is
closed by tnfctl_close(3TNF). Do not confuse a probe_hndl with hndl. The
probe_hndl refers to a particular probe, while hndl refers to a process or the kernel. If
probe_hndl is used in another libtnfctl(3TNF) interface, and it references a probe in
a library that has been dynamically closed (see dlclose(3C)), then the error code
TNFCTL_ERR_INVALIDPROBE will be returned by that interface.

tnfctl_probe_apply_ids() is very similar to tnfctl_probe_apply(). The
difference is that probe_op is called only for probes that match a probe id specified in
the array of integers referenced by probe_ids. The number of probe ids in the array
should be specified in probe_count. Use tnfctl_probe_state_get() to get the
probe_id that corresponds to the probe_handl.

tnfctl_probe_apply() and tnfctl_probe_apply_ids() return
TNFCTL_ERR_NONE upon success.

The following errors apply to both tnfctl_probe_apply() and
tnfctl_probe_apply_ids():

TNFCTL_ERR_INTERNAL An internal error occurred.

TNFCTL_ERR_USR1 Error code reserved for user.

tnfctl_probe_apply(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

1116 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

TNFCTL_ERR_USR2 Error code reserved for user.

TNFCTL_ERR_USR3 Error code reserved for user.

TNFCTL_ERR_USR4 Error code reserved for user.

TNFCTL_ERR_USR5 Error code reserved for user.

tnfctl_probe_apply() and tnfctl_probe_apply_ids() also return any error
returned by the callback function probe_op.

The following errors apply only to tnfctl_probe_apply_ids():

TNFCTL_ERR_INVALIDPROBE The probe handle is no longer valid. For
example, the probe is in a library that has
been closed by dlclose(3C).

EXAMPLE 1 Enabling Probes

To enable all probes:

tnfctl_probe_apply(hndl, tnfctl_probe_enable, NULL);

EXAMPLE 2 Disabling Probes

To disable the probes that match a certain pattern in the probe attribute string:

/* To disable all probes that contain the string "vm" */
tnfctl_probe_apply(hndl, select_disable, "vm");
static tnfctl_errcode_t
select_disable(tnfctl_handle_t *hndl, tnfctl_probe_t *probe_hndl,
void *client_data)
{

char *pattern = client_data;
tnfctl_probe_state_t probe_state;
tnfctl_probe_state_get(hndl, probe_hndl, &probe_state);
if (strstr(probe_state.attr_string, pattern)) {

tnfctl_probe_disable(hndl, probe_hndl, NULL);
}

}

Note that these examples do not have any error handling code.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT-Level MT-Safe

prex(1), TNF_PROBE(3TNF), dlclose(3C), dlopen(3C), libtnfctl(3TNF),
tnfctl_close(3TNF), tnfctl_probe_state_get(3TNF), tracing(3TNF),
tnf_kernel_probes(4), attributes(5)

tnfctl_probe_apply(3TNF)

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 1117

Linker and Libraries Guide

tnfctl_probe_apply(3TNF)

1118 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

tnfctl_probe_state_get, tnfctl_probe_enable, tnfctl_probe_disable, tnfctl_probe_trace,
tnfctl_probe_untrace, tnfctl_probe_connect, tnfctl_probe_disconnect_all – interfaces to
query and to change the state of a probe

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_probe_state_get(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, tnfctl_probe_state_t *state);

tnfctl_errcode_t tnfctl_probe_enable(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_disable(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_trace(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_untrace(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_disconnect_all(tnfctl_handle_t
*hndl, tnfctl_probe_t *probe_hndl, void *ignored);

tnfctl_errcode_t tnfctl_probe_connect(tnfctl_handle_t *hndl,
tnfctl_probe_t *probe_hndl, const char *lib_base_name, const char
*func_name);

tnfctl_probe_state_get() returns the state of the probe specified by probe_hndl
in the process or kernel specified by hndl. The user will pass these in to an apply
iterator. The caller must also allocate state and pass in a pointer to it. The semantics of
the individual members of state are:

id The unique integer assigned to this probe. This number
does not change over the lifetime of this probe. A
probe_hndl can be obtained by using the calls
tnfctl_apply(), tanfctl_apply_ids(), or
tnfctl_register_funcs().

attr_string A string that consists of attribute value pairs separated
by semicolons. For the syntax of this string, see the
syntax of the detail argument of the
TNF_PROBE(3TNF) macro. The attributes name, slots,
keys, file, and line are defined for every probe.
Additional user-defined attributes can be added by
using the detail argument of the TNF_PROBE(3TNF)
macro. An example of attr_string follows:

"name pageout;slots vnode pages_pageout ;
keys vm pageio io;file vm.c;line 25;"

enabled B_TRUE if the probe is enabled, or B_FALSE if the
probe is disabled. Probes are disabled by default. Use

tnfctl_probe_state_get(3TNF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 1119

tnfctl_probe_enable() or
tnfctl_probe_disable() to change this state.

traced B_TRUE if the probe is traced, or B_FALSE if the probe
is not traced. Probes in user processes are traced by
default. Kernel probes are untraced by default. Use
tnfctl_probe_trace() or
tnfctl_probe_untrace() to change this state.

new_probe B_TRUE if this is a new probe brought in since the last
change in libraries. See dlopen(3C) or dlclose(3C).
Otherwise, the value of new_probe will be B_FALSE.
This field is not meaningful for kernel probe control.

obj_name The name of the shared object or executable in which
the probe is located. This string can be freed, so the
client should make a copy of the string if it needs to be
saved for use by other libtnfctl interfaces. In kernel
mode, this string is always NULL.

func_names A null-terminated array of pointers to strings that
contain the names of functions connected to this probe.
Whenever an enabled probe is encountered at runtime,
these functions are executed. This array also will be
freed by the library when the state of the probe
changes. Use tnfctl_probe_connect() or
tnfctl_probe_disconnect_all() to change this
state.

func_addrs A null-terminated array of pointers to addresses of
functions in the target image connected to this probe.
This array also will be freed by the library when the
state of the probe changes.

client_registered_data Data that was registered by the client for this probe by
the creator function in
tnfctl_register_funcs(3TNF).

tnfctl_probe_enable(), tnfctl_probe_disable(),
tnfctl_probe_trace(), tnfctl_probe_untrace(), and
tnfctl_probe_disconnect_all() ignore the last argument. This convenient
feature permits these functions to be used in the probe_op field of
tnfctl_probe_apply(3TNF) and tnfctl_probe_apply_ids(3TNF).
tnfctl_probe_enable() enables the probe specified by probe_hndl . This is the
master switch on a probe. A probe does not perform any action until it is enabled.

tnfctl_probe_disable() disables the probe specified by probe_hndl.

tnfctl_probe_trace() turns on tracing for the probe specified by probe_hndl.
Probes emit a trace record only if the probe is traced.

tnfctl_probe_state_get(3TNF)

1120 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

tnfctl_probe_untrace() turns off tracing for the probe specified by probe_hndl.
This is useful if you want to connect probe functions to a probe without tracing it.

tnfctl_probe_connect() connects the function func_name which exists in the
library lib_base_name, to the probe specified by probe_hndl. tnfctl_probe_connect
() returns an error code if used on a kernel tnfctl handle. lib_base_name is the base
name (not a path) of the library. If it is NULL, and multiple functions in the target
process match func_name, one of the matching functions is chosen arbitrarily. A probe
function is a function that is in the target’s address space and is written to a certain
specification. The specification is not currently published.

tnf_probe_debug() is one function exported by libtnfprobe.so.1 and is the
debug function that prex(1) uses. When the debug function is executed, it prints out
the probe arguments and the value of the sunw%debug attribute of the probe to
stderr.

tnfctl_probe_disconnect_all() disconnects all probe functions from the probe
specified by probe_hndl.

Note that no libtnfctl call returns a probe handle (tnfctl_probe_t), yet each of
the routines described here takes a probe_hndl as an argument. These routines may be
used by passing them to one of the tnfctl_probe_apply(3TNF) iterators as the
"op" argument. Alternatively, probe handles may be obtained and saved by a user’s
"op" function, and they can be passed later as the probe_hndl argument when using any
of the functions described here.

tnfctl_probe_state_get(), tnfctl_probe_enable(),
tnfctl_probe_disable(), tnfctl_probe_trace(),
tnfctl_probe_untrace(), tnfctl_probe_disconnect_all() and
tnfctl_probe_connect() return TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_probe_state_get():

TNFCTL_ERR_INVALIDPROBE probe_hndl is no longer valid. The library
that the probe was in could have been
dynamically closed by dlclose(3C).

The following error codes apply to tnfctl_probe_enable(),
tnfctl_probe_disable(), tnfctl_probe_trace(), tnfctl_probe_untrace
(), and tnfctl_probe_disconnect_all()

TNFCTL_ERR_INVALIDPROBE probe_hndl is no longer valid. The library
that the probe was in could have been
dynamically closed by dlclose(3C).

TNFCTL_ERR_BUFBROKEN Cannot do probe operations because tracing
is broken in the target.

tnfctl_probe_state_get(3TNF)

RETURN VALUES

ERRORS

Extended Library Functions 1121

TNFCTL_ERR_NOBUF Cannot do probe operations until a buffer is
allocated. See
tnfctl_buffer_alloc(3TNF). This error
code does not apply to kernel probe control.

The following error codes apply to tnfctl_probe_connect():

TNFCTL_ERR_INVALIDPROBE probe_hndl is no longer valid. The library
that the probe was in could have been
dynamically closed by dlclose(3C).

TNFCTL_ERR_BADARG The handle is a kernel handle, or func_name
could not be found.

TNFCTL_ERR_BUFBROKEN Cannot do probe operations because tracing
is broken in the target.

TNFCTL_ERR_NOBUF Cannot do probe operations until a buffer is
allocated. See
tnfctl_buffer_alloc(3TNF).

See attributes(5) for description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), libtnfctl(3TNF), tnfctl_check_libs(3TNF),
tnfctl_continue(3TNF), tnfctl_probe_apply(3TNF),
tnfctl_probe_apply_ids(3TNF), tracing(3TNF), tnf_kernel_probes(4),
attributes(5)

tnfctl_probe_state_get(3TNF)

ATTRIBUTES

SEE ALSO

1122 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

tnfctl_register_funcs – register callbacks for probe creation and destruction

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_register_funcs(tnfctl_handle_t *hndl,
void * (*create_func)(tnfctl_handle_t *, tnfctl_probe_t *), void
(*destroy_func)(void *));

The function tnfctl_register_funcs() is used to store client-specific data on a
per-probe basis. It registers a creator and a destructor function with hndl, either of
which can be NULL. The creator function is called for every probe that currently exists
in hndl. Every time a new probe is discovered, that is brought in by dlopen(3C),
create_func is called.

The return value of the creator function is stored as part of the probe state and can be
retrieved by tnfctl_probe_state_get(3TNF) in the member field
client_registered_data.

destroy_func is called for every probe handle that is freed. This does not necessarily
happen at the time dlclose(3C) frees the shared object. The probe handles are freed
only when hndl is closed by tnfctl_close(3TNF). If tnfctl_register_funcs()
is called a second time for the same hndl, then the previously registered destructor
function is called first for all of the probes.

tnfctl_register_funcs() returns TNFCTL_ERR_NONE upon success.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), dlclose(3C), dlopen(3C), libtnfctl(3TNF),
tnfctl_close(3TNF), tnfctl_probe_state_get(3TNF), tracing(3TNF),
tnf_kernel_probes(4), attributes(5)

Linker and Libraries Guide

tnfctl_register_funcs(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 1123

tnfctl_strerror – map a tnfctl error code to a string

cc [flag ...] file ... -ltnfctl [library ...]

#include <tnf/tnfctl.h>

const char * tnfctl_strerror(tnfctl_errcode_t errcode);

tnfctl_strerror() maps the error number in errcode to an error message string,
and it returns a pointer to that string. The returned string should not be overwritten or
freed.

tnfctl_strerror() returns the string "unknown libtnfctl.so error code" if the error
number is not within the legal range.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), libtnfctl(3TNF), tracing(3TNF), attributes(5)

tnfctl_strerror(3TNF)

NAME

SYNOPSIS

DESCRIPTION

ERRORS

ATTRIBUTES

SEE ALSO

1124 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_trace_attrs_get – get the trace attributes from a tnfctl handle

cc [flag...] file... -ltnfctl [library...]

#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_trace_attrs_get(tnfctl_handle_t *hndl,
tnfctl_trace_attrs_t *attrs);

The tnfctl_trace_attrs_get() function returns the trace attributes associated
with hndl in attrs. The trace attributes can be changed by some of the other interfaces
in libtnfctl(3TNF). It is the client’s responsibility to use
tnfctl_trace_attrs_get() to get the new trace attributes after use of interfaces
that change them. Typically, a client will use tnfctl_trace_attrs_get() after a
call to tnfctl_continue(3TNF) in order to make sure that tracing is still working.
See the discussion of trace_buf_state that follows.

Trace attributes are represented by the struct tnfctl_trace_attrs structure
defined in <tnf/tnfctl.h>:

struct tnfctl_trace_attrs {
pid_t targ_pid; /* not kernel mode */
const char *trace_file_name; /* not kernel mode */
size_t trace_buf_size;
size_t trace_min_size;
tnfctl_bufstate_t trace_buf_state;
boolean_t trace_state;
boolean_t filter_state; /* kernel mode only */
long pad;

};

The semantics of the individual members of attrs are:

targ_pid The process id of the target process. This is not valid
for kernel tracing.

trace_file_name The name of the trace file to which the target writes.
trace_file_name will be NULL if no trace file exists
or if kernel tracing is implemented. This pointer should
not be used after calling other libtnfctl interfaces.
The client should copy this string if it should be saved
for the use of other libtnfctl interfaces.

trace_buf_size The size of the trace buffer or file in bytes.

trace_min_size The minimum size in bytes of the trace buffer that can
be allocated by using the
tnfctl_buffer_alloc(3TNF) interface.

trace_buf_state The state of the trace buffer. TNFCTL_BUF_OK indicates
that a trace buffer has been allocated.
TNFCTL_BUF_NONE indicates that no buffer has been
allocated. TNFCTL_BUF_BROKEN indicates that there is
an internal error in the target for tracing. The target
will continue to run correctly, but no trace records will

tnfctl_trace_attrs_get(3TNF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 1125

be written. To fix tracing, restart the process. For kernel
tracing, deallocate the existing buffer with
tnfctl_buffer_dealloc(3TNF) and allocate a new
one with tnfctl_buffer_alloc(3TNF).

trace_state The global tracing state of the target. Probes that are
enabled will not write out data unless this state is on.
This state is off by default for the kernel and can be
changed by tnfctl_trace_state_set(3TNF). For a
process, this state is on by default and can only be
changed by tnf_process_disable(3TNF) and
tnf_process_enable(3TNF).

filter_state The state of process filtering. For kernel probe control,
it is possible to select a set of processes for which
probes are enabled. See
tnfctl_filter_list_get(3TNF),
tnfctl_filter_list_add(3TNF), and
tnfctl_filter_list_delete(3TNF). No trace
output will be written when other processes traverse
these probe points. By default process filtering is off,
and all processes cause the generation of trace records
when they hit an enabled probe. Use
tnfctl_filter_state_set(3TNF) to change the
filter state.

The tnfctl_trace_attrs_get() function returns TNFCTL_ERR_NONE upon
success.

The tnfctl_trace_attrs_get() function will fail if:

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), libtnfctl(3TNF), tnfctl_buffer_alloc(3TNF),
tnfctl_continue(3TNF), tnfctl_filter_list_get (3TNF),
tnf_process_disable(3TNF), tracing(3TNF), attributes(5)

tnfctl_trace_attrs_get(3TNF)

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

1126 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

tnfctl_trace_state_set, tnfctl_filter_state_set, tnfctl_filter_list_get, tnfctl_filter_list_add,
tnfctl_filter_list_delete – control kernel tracing and process filtering

cc [flag ...] file ... -ltnfctl [library ...]
#include <tnf/tnfctl.h>

tnfctl_errcode_t tnfctl_trace_state_set(tnfctl_handle_t *hndl,
boolean_t trace_state);

tnfctl_errcode_t tnfctl_filter_state_set(tnfctl_handle_t *hndl,
boolean_t filter_state);

tnfctl_errcode_t tnfctl_filter_list_get(tnfctl_handle_t *hndl,
pid_t **pid_list, int *pid_count);

tnfctl_errcode_t tnfctl_filter_list_add(tnfctl_handle_t *hndl,
pid_t pid_to_add);

tnfctl_errcode_t tnfctl_filter_list_delete(tnfctl_handle_t *hndl,
pid_t pid_to_delete);

The interfaces to control kernel tracing and process filtering are used only with kernel
handles, handles created by tnfctl_kernel_open(3TNF). These interfaces are used
to change the tracing and filter states for kernel tracing.

tnfctl_trace_state_set() sets the kernel global tracing state to "on" if trace_state
is B_TRUE, or to "off" if trace_state is B_FALSE. For the kernel, trace_state is off by
default. Probes that are enabled will not write out data unless this state is on. Use
tnfctl_trace_attrs_get(3TNF) to retrieve the current tracing state.

tnfctl_filter_state_set() sets the kernel process filtering state to "on" if
filter_state is B_TRUE, or to "off" if filter_state is B_FALSE. filter_state is off by default.
If it is on, only probe points encountered by processes in the process filter set by
tnfctl_filter_list_add() will generate trace points. Use
tnfctl_trace_attrs_get(3TNF) to retrieve the current process filtering state.

tnfctl_filter_list_get() returns the process filter list as an array in pid_list.
The count of elements in the process filter list is returned in pid_count. The caller
should use free(3C) to free memory allocated for the array pid_list.

tnfctl_filter_list_add() adds pid_to_add to the process filter list. The process
filter list is maintained even when the process filtering state is off, but it has no effect
unless the process filtering state is on.

tnfctl_filter_list_delete() deletes pid_to_delete from the process filter list. It
returns an error if the process does not exist or is not in the filter list.

The interfaces tnfctl_trace_state_set(), tnfctl_filter_state_set(),
tnfctl_filter_list_add(), tnfctl_filter_list_delete(), and
tnfctl_filter_list_get() return TNFCTL_ERR_NONE upon success.

The following error codes apply to tnfctl_trace_state_set:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

tnfctl_trace_state_set(3TNF)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 1127

TNFCTL_ERR_NOBUF Cannot turn on tracing without a buffer
being allocated.

TNFCTL_ERR_BUFBROKEN Tracing is broken in the target.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_state_set:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_list_add:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_NOPROCESS No such process exists.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_list_delete:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_NOPROCESS No such process exists.

TNFCTL_ERR_INTERNAL An internal error occurred.

The following error codes apply to tnfctl_filter_list_get:

TNFCTL_ERR_BADARG The handle is not a kernel handle.

TNFCTL_ERR_ALLOCFAIL A memory allocation failure occurred.

TNFCTL_ERR_INTERNAL An internal error occurred.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfc

MT Level MT-Safe

prex(1), TNF_PROBE(3TNF), free(3C), libtnfctl(3TNF),
tnfctl_kernel_open(3TNF), tnfctl_trace_attrs_get (3TNF),
tracing(3TNF), tnf_kernel_probes(4), attributes(5)

tnfctl_trace_state_set(3TNF)

ATTRIBUTES

SEE ALSO

1128 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

TNF_DECLARE_RECORD, TNF_DEFINE_RECORD_1, TNF_DEFINE_RECORD_2,
TNF_DEFINE_RECORD_3, TNF_DEFINE_RECORD_4, TNF_DEFINE_RECORD_5 –
TNF type extension interface for probes

cc [flag ...] file ...[-ltnfprobe] [library ...]

#include <tnf/probe.h>

TNF_DECLARE_RECORD(c_type, tnf_type);

TNF_DEFINE_RECORD_1(c_type, tnf_type, tnf_member_type_1, c_member_name_1);

TNF_DEFINE_RECORD_2(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2);

TNF_DEFINE_RECORD_3(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2, tnf_member_type_3,
c_member_name_3);

TNF_DEFINE_RECORD_4(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2, tnf_member_type_3, c_member_name_3,
tnf_member_type_4, c_member_name_4);

TNF_DEFINE_RECORD_5(c_type, tnf_type, tnf_member_type_1, c_member_name_1,
tnf_member_type_2, c_member_name_2, tnf_member_type_3, c_member_name_3,
tnf_member_type_4, c_member_name_4, tnf_member_type_5,
c_member_name_5);

This macro interface is used to extend the TNF (Trace Normal Form) types that can be
used in TNF_PROBE(3TNF).

There should be only one TNF_DECLARE_RECORD and one TNF_DEFINE_RECORD per
new type being defined. The TNF_DECLARE_RECORD should precede the
TNF_DEFINE_RECORD. It can be in a header file that multiple source files share if
those source files need to use the tnf_type being defined. The TNF_DEFINE_RECORD
should only appear in one of the source files.

The TNF_DEFINE_RECORD macro interface defines a function as well as a couple of
data structures. Hence, this interface has to be used in a source file (.c or .cc file) at file
scope and not inside a function.

Note that there is no semicolon after the TNF_DEFINE_RECORD interface. Having one
will generate a compiler warning.

Compiling with the preprocessor option -DNPROBE (see cc(1B)), or with the
preprocessor control statement #define NPROBE ahead of the #include
<tnf/probe.h> statement, will stop the TNF type extension code from being
compiled into the program.

The c_type argument must be a C struct type. It is the template from which the new
tnf_type is being created. Not all elements of the C struct need be provided in the TNF
type being defined.

TNF_DECLARE_RECORD(3TNF)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 1129

The tnf_type argument is the name being given to the newly created type. Use of this
interface uses the name space prefixed by tnf_type. If a new type called "xxx_type" is
defined by a library, then the library should not use "xxx_type" as a prefix in any other
symbols it defines. The policy on managing the type name space is the same as
managing any other name space in a library; that is, prefix any new TNF types by the
unique prefix that the rest of the symbols in the library use. This would prevent name
space collisions when linking multiple libraries that define new TNF types. For
example, if a library libpalloc.so uses the prefix "pal" for all symbols it defines,
then it should also use the prefix "pal" for all new TNF types being defined.

The tnf_member_type_n argument is the TNF type of the nth provided member of the C
structure.

The tnf_member_name_n argument is the name of the nth provided member of the C
structure.

EXAMPLE 1 Defining and using a TNF type.

The following example demonstrates how a new TNF type is defined and used in a
probe. This code is assumed to be part of a fictitious library called "libpalloc.so" which
uses the prefix "pal" for all it’s symbols.

#include <tnf/probe.h>
typedef struct pal_header {

long size;
char * descriptor;
struct pal_header *next;

} pal_header_t;
TNF_DECLARE_RECORD(pal_header_t, pal_tnf_header);
TNF_DEFINE_RECORD_2(pal_header_t, pal_tnf_header,

tnf_long, size,
tnf_string, descriptor)

/*
* Note: name space prefixed by pal_tnf_header should not be used by this
* client anymore.
*/
void
pal_free(pal_header_t *header_p)
{

int state;
TNF_PROBE_2(pal_free_start, "palloc pal_free",

"sunw%debug entering pal_free",
tnf_long, state_var, state,
pal_tnf_header, header_var, header_p);

. . .

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfd

TNF_DECLARE_RECORD(3TNF)

EXAMPLES

ATTRIBUTES

1130 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

prex(1), tnfdump(1), TNF_PROBE(3TNF), tnf_process_disable(3TNF),
attributes(5)

It is possible to make a tnf_type definition be recursive or mutually recursive e.g. a
structure that uses the "next" field to point to itself (a linked list). If such a structure is
sent in to a TNF_PROBE(3TNF), then the entire linked list will be logged to the trace
file (until the "next" field is NULL). But, if the list is circular, it will result in an infinite
loop. To break the recursion, either don’t include the "next" field in the tnf_type, or
define the type of the "next" member as tnf_opaque.

TNF_DECLARE_RECORD(3TNF)

SEE ALSO

NOTES

Extended Library Functions 1131

TNF_PROBE, TNF_PROBE_0, TNF_PROBE_1, TNF_PROBE_2, TNF_PROBE_3,
TNF_PROBE_4, TNF_PROBE_5, TNF_PROBE_0_DEBUG, TNF_PROBE_1_DEBUG,
TNF_PROBE_2_DEBUG, TNF_PROBE_3_DEBUG, TNF_PROBE_4_DEBUG,
TNF_PROBE_5_DEBUG, TNF_DEBUG – probe insertion interface

cc [flag ...] [-DTNF_DEBUG] file ... [-ltnfprobe] [library ...]

#include <tnf/probe.h>

TNF_PROBE_0(name, keys, detail);

TNF_PROBE_1(name, keys, detail, arg_type_1, arg_name_1, arg_value_1);

TNF_PROBE_2(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2);

TNF_PROBE_3(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3);

TNF_PROBE_4(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4);

TNF_PROBE_5(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4, arg_type_5, arg_name_5, arg_value_5);

TNF_PROBE_0_DEBUG(name, keys, detail);

TNF_PROBE_1_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1);

TNF_PROBE_2_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2);

TNF_PROBE_3_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3);

TNF_PROBE_4_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4);

TNF_PROBE_5_DEBUG(name, keys, detail, arg_type_1, arg_name_1, arg_value_1,
arg_type_2, arg_name_2, arg_value_2, arg_type_3, arg_name_3, arg_value_3,
arg_type_4, arg_name_4, arg_value_4, arg_type_5, arg_name_5, arg_value_5);

This macro interface is used to insert probes into C or C++ code for tracing. See
tracing(3TNF) for a discussion of the Solaris tracing architecture, including example
source code that uses it.

You can place probes anywhere in C and C++ programs including .init sections, .fini
sections, multi-threaded code, shared objects, and shared objects opened by
dlopen(3C). Use probes to generate trace data for performance analysis or to write
debugging output to stderr. Probes are controlled at runtime by prex(1).

TNF_PROBE(3TNF)

NAME

SYNOPSIS

DESCRIPTION

1132 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

The trace data is logged to a trace file in Trace Normal Form (TNF). The interface for
the user to specify the name and size of the trace file is described in prex(1). Think of
the trace file as the least recently used circular buffer. Once the file has been filled,
newer events will overwrite the older ones.

Use TNF_PROBE_0 through TNF_PROBE_5 to create production probes. These probes
are compiled in by default. Developers are encouraged to embed such probes
strategically, and to leave them compiled within production software. Such probes
facilitate on-site analysis of the software.

Use TNF_PROBE_0_DEBUG through TNF_PROBE_5_DEBUG to create debug probes.
These probes are compiled out by default. If you compile the program with the
preprocessor option -DTNF_DEBUG (see cc(1B)), or with the preprocessor control
statement #define TNF_DEBUG ahead of the #include <tnf/probe.h> statement,
the debug probes will be compiled into the program. When compiled in, debug probes
differ in only one way from the equivalent production probes. They contain an
additional "debug" attribute which may be used to distinguish them from production
probes at runtime, for example, when using prex(). Developers are encouraged to
embed any number of probes for debugging purposes. Disabled probes have such a
small runtime overhead that even large numbers of them do not make a significant
impact.

If you compile with the preprocessor option -DNPROBE (see cc(1B)), or place the
preprocessor control statement #define NPROBE ahead of the #include
<tnf/probe.h> statement, no probes will be compiled into the program.

The name of the probe should follow the syntax guidelines for identifiers in ANSI C.
The use of name declares it, hence no separate declaration is necessary. This is a block
scope declaration, so it does not affect the name space of the program.

keys is a string of space-separated keywords that specify the groups that the probe
belongs to. Semicolons, single quotation marks, and the equal character (=) are not
allowed in this string. If any of the groups are enabled, the probe is enabled. keys
cannot be a variable. It must be a string constant.

detail is a string that consists of <attribute> <value> pairs that are each separated by a
semicolon. The first word (up to the space) is considered to be the attribute and the
rest of the string (up to the semicolon) is considered the value. Single quotation marks
are used to denote a string value. Besides quotation marks, spaces separate multiple
values. The value is optional. Although semicolons or single quotation marks
generally are not allowed within either the attribute or the value, when text with
embedded spaces is meant to denote a single value, use single quotes surrounding this
text.

TNF_PROBE(3TNF)

name

keys

detail

Extended Library Functions 1133

Use detail for one of two reasons. First, use detail to supply an attribute that a user can
type into prex(1) to select probes. For example, if a user defines an attribute called
color, then prex(1) can select probes based on the value of color. Second, use detail to
annotate a probe with a string that is written out to a trace file only once. prex(1) uses
spaces to tokenize the value when searching for a match. Spaces around the semicolon
delimiter are allowed. detail cannot be a variable; it must be a string constant. For
example, the detail string:

"XYZ%debug ’entering function A’; XYZ%exception ’no file’;

XYZ%func_entry; XYZ%color red blue"

consists of 4 units:

Attribute Value Values that prex matches on

XYZ%debug ’entering function A’ ’entering function A’

XYZ%exception ’no file’ ’no file’

XYZ%func_entry /.*/ (regular expression)

XYZ%color red blue red <or> blue

Attribute names must be prefixed by the vendor stock symbol followed by the ’%’
character. This avoids conflicts in the attribute name space. All attributes that do not
have a ’%’ character are reserved. The following attributes are predefined:

Attribute Semantics

name name of probe

keys keys of the probe (value is space− separated
tokens)

file file name of the probe

line line number of the probe

slots slot names of the probe event (arg_name_n)

object the executable or shared object that this probe
is in.

debug distinguishes debug probes from production
probes

This is the type of the nth argument. The following are predefined TNF types:

TNF_PROBE(3TNF)

arg_type_n

1134 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

tnf Type Associated C type (and semantics)

tnf_int int

tnf_uint unsigned int

tnf_long long

tnf_ulong unsigned long

tnf_longlong long long (if implemented in compilation
system)

tnf_ulonglong unsigned long long (if implemented in
compilation system)

tnf_float float

tnf_double double

tnf_string char *

tnf_opaque void *

To define new TNF types that are records consisting of the predefined TNF types or
references to other user defined types, use the interface specified in
TNF_DECLARE_RECORD(3TNF).

arg_name_n is the name that the user associates with the nth argument. Do not place
quotation marks around arg_name_n. Follow the syntax guidelines for identifiers in
ANSI C. The string version of arg_name_n is stored for every probe and can be
accessed as the attribute "slots".

arg_value_n is evaluated to yield a value to be included in the trace file. A read access
is done on any variables that are in mentioned in arg_value_n. In a multithreaded
program, it is the user’s responsibility to place locks around the TNF_PROBE macro if
arg_value_n contains a variable that should be read protected.

EXAMPLE 1 tracing(3TNF).

See tracing(3TNF) for complete examples showing debug and production probes in
source code.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfd

MT Level MT-Safe

cc(1B), ld(1), prex(1), tnfdump(1), dlopen(3C), libtnfctl(3TNF),
TNF_DECLARE_RECORD(3TNF), threads(5), tnf_process_disable(3TNF),
tracing(3TNF), attributes(5)

TNF_PROBE(3TNF)

arg_name_n

arg_value_n

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 1135

If attaching to a running program with prex(1) to control the probes, compile the
program with -ltnfprobe or start the program with the environment variable
LD_PRELOAD set to libtnfprobe.so.1. See ld(1). If libtnfprobe is explicitly
linked into the program, it must be listed before libdoor, which in turn must be
listed before libthread on the link line.

TNF_PROBE(3TNF)

NOTES

1136 man pages section 3: Extended Library Functions • Last Revised 1 Mar 2004

tnf_process_disable, tnf_process_enable, tnf_thread_disable, tnf_thread_enable – probe
control internal interface

cc [flag ...] file ... -ltnfprobe [library ...]

#include <tnf/probe.h>

void tnf_process_disable(void);

void tnf_process_enable(void);

void tnf_thread_disable(void);

void tnf_thread_enable(void);

There are three levels of granularity for controlling tracing and probe functions (called
probing from here on): probing for the entire process, a particular thread, and the
probe itself can be disabled or enabled. The first two (process and thread) are
controlled by this interface. The probe is controlled with the prex(1) utility.

The tnf_process_disable() function turns off probing for the process. The
default process state is to have probing enabled. The tnf_process_enable()
function turns on probing for the process.

The tnf_thread_disable() function turns off probing for the currently running
thread. Threads are "born" or created with this state enabled. The
tnf_thread_enable() function turns on probing for the currently running thread.
If the program is a non-threaded program, these two thread interfaces disable or
enable probing for the process.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfd

Interface Stability Unstable

MT-Level MT-Safe

prex(1), tnfdump(1), TNF_DECLARE_RECORD(3TNF), TNF_PROBE(3TNF),
attributes(5)

A probe is considered enabled only if:

� prex(1) has enabled the probe AND

� the process has probing enabled, which is the default or could be set with
tnf_process_enable() AND

� the thread that hits the probe has probing enabled, which is every thread’s default
or could be set with tnf_thread_enable().

tnf_process_disable(3TNF)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 1137

There is a run time cost associated with determining that the probe is disabled. To
reduce the performance effect of probes, this cost should be minimized. The quickest
way that a probe can be determined to be disabled is by the enable control that
prex(1) uses. Therefore, to disable all the probes in a process use the disable
command in prex(1) rather than tnf_process_disable().

The tnf_process_disable() and tnf_process_enable() functions should
only be used to toggle probing based on some internal program condition. The
tnf_thread_disable() function should be used to turn off probing for threads
that are uninteresting.

tnf_process_disable(3TNF)

1138 man pages section 3: Extended Library Functions • Last Revised 5 Feb 2002

tracing – overview of tnf tracing system

tnf tracing is a set of programs and API’s that can be used to present a high-level
view of the performance of an executable, a library, or part of the kernel. tracing is
used to analyze a program’s performance and identify the conditions that produced a
bug.

The core elements of tracing are:

TNF_PROBE_*() The TNF_PROBE_*() macros define "probes" to be
placed in code which, when enabled and executed,
cause information to be added to a trace file. See
TNF_PROBE(3TNF). If there are insufficient
TNF_PROBE_* macros to store all the data of interest
for a probe, data may be grouped into records. See
TNF_DECLARE_RECORD(3TNF).

prex Displays and controls probes in running software. See
prex(1).

kernel probes A set of probes built into the Solaris kernel which
capture information about system calls, multithreading,
page faults, swapping, memory management, and I/O.
You can use these probes to obtain detailed traces of
kernel activity under your application workloads. See
tnf_kernel_probes(4).

tnfxtract A program that extracts the trace data from the kernel’s
in-memory buffer into a file. See tnfxtract(1).

tnfdump A program that displays the information from a trace
file. See tnfdump(1).

libtnfctl A library of interfaces that controls probes in a process.
See libtnfctl(3TNF). prex(1) also utilizes this
library. Other tools and processes use the libtnfctl
interfaces to exercise fine control over their own
probes.

tnf_process_enable() A routine called by a process to turn on tracing and
probe functions for the current process. See
tnf_process_enable(3TNF).

tnf_process_disable() A routine called by a process to turn off tracing and
probe functions for the current process. See
tnf_process_disable(3TNF).

tnf_thread_enable() A routine called by a process to turn on tracing and
probe functions for the currently running thread. See
tnf_thread_enable(3TNF).

tracing(3TNF)

NAME

DESCRIPTION

Extended Library Functions 1139

tnf_thread_disable() A routine called by a process to turn off tracing and
probe functions for the currently running thread. See
tnf_thread_disable(3TNF).

EXAMPLE 1 Tracing a Process

The following function in some daemon process accepts job requests of various types,
queueing them for later execution. There are two "debug probes" and one "production
probe." Note that probes which are intended for debugging will not be compiled into
the final version of the code; however, production probes are compiled into the final
product.

/*
* To compile in all probes (for development):
* cc -DTNF_DEBUG ...
*
* To compile in only production probes (for release):
* cc ...
*
* To compile in no probes at all:
* cc -DNPROBE ...
*/

#include <tnf/probe.h>
void work(long, char *);
enum work_request_type { READ, WRITE, ERASE, UPDATE };
static char *work_request_name[] = {"read", "write", "erase", "update"};
main()
{

long i;
for (i = READ; i <= UPDATE; i++)

work(i, work_request_name[i]);
}
void work(long request_type, char *request_name)
{

static long q_length;
TNF_PROBE_2_DEBUG(work_start, "work",

"XYZ%debug ’in function work’",
tnf_long, request_type_arg, request_type,
tnf_string, request_name_arg, request_name);

/* assume work request is queued for later processing */
q_length++;
TNF_PROBE_1(work_queue, "work queue",

"XYZ%work_load heavy",
tnf_long, queue_length, q_length);

TNF_PROBE_0_DEBUG(work_end, "work", "");
}

The production probe "work_queue," which remains compiled in the code, will, when
enabled, log the length of the work queue each time a request is received.

tracing(3TNF)

EXAMPLES

1140 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

EXAMPLE 1 Tracing a Process (Continued)

The debug probes "work_start" and "work_end, " which are compiled only during the
development phase, track entry to and exit from the work() function and measure
how much time is spent executing it. Additionally, the debug probe "work_start" logs
the value of the two incoming arguments request_type and request_name. The
runtime overhead for disabled probes is low enough that one can liberally embed
them in the code with little impact on performance.

For debugging, the developer would compile with -DTNF_DEBUG, run the program
under control of prex(1), enable the probes of interest (in this case, all probes),
continue the program until exit, and dump the trace file:

% cc
-DTNF_DEBUG -o daemon daemon.c # compile in all probes
% prex daemon # run program under prex control
Target process stopped
Type "continue" to resume the target, "help" for help ...
prex> list probes $all # list all probes in program
<probe list output here>
prex> enable $all # enable all probes
prex> continue # let target process execute
<program output here>
prex: target process finished
% ls /tmp/trace-* # trace output is in trace-<pid>
/tmp/trace-4194
% tnfdump /tmp/trace-4194 # get ascii output of trace file
<trace records output here>

For the production version of the system, the developer simply compiles without
–DTNF_DEBUG.

EXAMPLE 2 Tracing the Kernel

Kernel tracing is similar to tracing a process; however, there are some differences. For
instance, to trace the kernel, you need superuser privileges. The following example
uses prex(1) and traces the probes in the kernel that capture system call information.

Allocate kernel
trace buffer and capture trace data:
root# prex -k
Type "help" for help ...
prex> buffer alloc 2m # allocate kernel trace buffer
Buffer of size 2097152 bytes allocated
prex> list probes $all # list all kernel probes
<probe list output here>
prex> list probes syscall # list syscall probes

(keys=syscall)
<syscall probes list output here>
prex> enable syscall # enable only syscall probes
prex> ktrace on # turn on kernel tracing
<Run your application in another window at this point>
prex> ktrace off # turn off kernel tracing

tracing(3TNF)

Extended Library Functions 1141

EXAMPLE 2 Tracing the Kernel (Continued)

prex> quit # exit prex
Extract the kernel’s trace buffer into a file:
root# tnfxtract /tmp/ktrace # extract kernel trace buffer
Reset kernel tracing:
root# prex -k
prex> disable $all # disable all probes
prex> untrace $all # untrace all probes
prex> buffer dealloc # deallocate kernel trace buffer
prex> quit

CAUTION: Do not deallocate the trace buffer until you have extracted it into a trace
file. Otherwise, you will lose the trace data that you collected from your experiment!

Examine the kernel trace file:

root# tnfdump /tmp/ktrace # get ascii dump of trace file
<trace records output here>

prex can also attach to a running process, list probes, and perform a variety of other
tasks.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWtnfd

MT Level MT-Safe

prex(1), tnfdump(1), tnfxtract(1), TNF_DECLARE_RECORD(3TNF),
TNF_PROBE(3TNF), libtnfctl(3TNF), tnf_process_disable(3TNF),
tnf_kernel_probes(4), attributes(5)

tracing(3TNF)

ATTRIBUTES

SEE ALSO

1142 man pages section 3: Extended Library Functions • Last Revised 4 Mar 1997

trunc, truncf, truncl – round to truncated integer value

cc [flag...] file... -lm [library...]

#include <math.h>

double trunc(double x);

float truncf(float x);

long double truncl(long double x);

These functions round their argument to the integer value, in floating format, nearest
to but no larger in magnitude than the argument.

Upon successful completion, these functions return the truncated integer value.

If x is NaN, a NaN is returned.

If x is ±0 or ±Inf, x is returned.

No errors are defined.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard

MT-Level MT-Safe

math.h(3HEAD), attributes(5), standards(5)

trunc(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

ATTRIBUTES

SEE ALSO

Extended Library Functions 1143

Ucred – Perl interface to User Credentials

use Sun::Solaris::Ucred qw(:ALL);

This module provides wrappers for the Ucred-related system and library calls.

None.

ucred_get($pid)
This function returns the credential of the process specified by $pid if the process
exists and the calling process is permitted to obtain the credentials of that process.

getpeerucred($fd)
If $fd is a connected connection-oriented TLI endpoint, a connected
SOCK_STREAM, or a SOCK_SEQPKT socket, getpeerucred() returns the user
credential of the peer at the time the connection was established, if availble.

ucred_geteuid($ucred)
This function returns the effective uid of a user credential, if available.

ucred_getruid($ucred)
This function returns the real uid of a user credential, if available.

ucred_getsuid($ucred)
This function returns the saved uid of a user credential, if available.

ucred_getegid($ucred)
This function returns the effective group of a user credential, if available.

ucred_getrgid($ucred)
This function returns the real group of a user credential, if available.

ucred_getsgid($ucred)
This function returns the saved group of a user credential, if available.

ucred_getgroups($ucred)
This function returns the list of supplemental groups of a user credential, if
available.An array of groups is returned in ARRAY context; the number of groups is
returned in SCALAR context.

ucred_getprivset($ucred, $which)
This function returns the privilege set specified by $which of a user credential, if
available.

ucred_getpflags($ucred, $flags)
This function returns the value of a specific process flag of a user credential, if
available.

ucred_getpid($ucred)
This function returns the process ID of a user credential, if available.

ucred_getprojid($ucred)
This function returns the project ID of a user credential, if available.

ucred_getzoneid($ucred)
This function returns the zone ID of a user credential, if available.

Ucred(3PERL)

NAME

SYNOPSIS

DESCRIPTION

Constants

Functions

1144 man pages section 3: Extended Library Functions • Last Revised 30 Jan 2004

None.

None.

By default nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module:

:SYSCALLS ucred_get(), getpeerucred()

:LIBCALLS ucred_geteuid(), ucred_getruid(), ucred_getsuid(),
ucred_getegid(), ucred_getrgid(), ucred_getsgid(),
ucred_getgroups(), ucred_getprivset(),
ucred_getpflags(), ucred_getpid(), ucred_getzone()

:ALL :SYSCALLS(), :LIBCALLS()

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpl5u

Interface Stability Evolving

getpeerucred(3C), ucred_get(3C), attributes(5)

Ucred(3PERL)

Class methods

Object methods

Exports

ATTRIBUTES

SEE ALSO

Extended Library Functions 1145

uuid_clear, uuid_compare, uuid_copy, uuid_generate, uuid_generate_random,
uuid_generate_time, uuid_is_null, uuid_parse, uuid_time, uuid_unparse – universally
unique identifier (UUID) operations

cc [flag ...] file... -luuid [library ...]

#include <uuid/uuid.h>

void uuid_clear(uuid_t uu);

int uuid_compare(uuid_t uu1, uuid_t uu2);

void uuid_copy(uuid_t dst, uuid_t src);

void uuid_generate(uuid_t out);

void uuid_generate_random(uuid_t out);

void uuid_generate_time(uuid_t out);

int uuid_is_null(uuid_t uu);

int uuid_parse(char *in, uuid_t uu);

time_t uuid_time(uuid_t uu, struct timeval *ret_tv);

void uuid_unparse(uuid_t uu, char *out);

The uuid_clear() function sets the value of the specified universally unique
identifier (UUID) variable uu to the NULL value.

The uuid_compare() function compares the two specified UUID variables uu1 and
uu2 to each other. It returns an integer less than, equal to, or greater than zero if uu1 is
found to be, respectively, lexicographically less than, equal, or greater than uu2.

The uuid_copy() function copies the UUID variable src to dst.

The uuid_generate() function creates a new UUID that is generated based on
high-quality randomness from /dev/urandom, if available. If /dev/urandom is not
available, uuid_generate() calls uuid_generate_time(). Because the use of this
algorithm provides information about when and where the UUID was generated, it
could cause privacy problems for some applications.

The uuid_generate_random() function produces a UUID with a random or
pseudo-randomly generated time and Ethernet MAC address that corresponds to a
DCE version 4 UUID.

The uuid_generate_time() function uses the current time and the local Ethernet
MAC address (if available, otherwise a MAC address is fabricated) that corresponds to
a DCE version 1 UUID. If the UUID is not guaranteed to be unique, the multicast bit is
set (the high-order bit of octet number 10).

The uuid_is_null() function compares the value of the specified UUID variable uu
to the NULL value. If the value is equal to the NULL UUID, 1 is returned. Otherwise 0 is
returned.

uuid_clear(3UUID)

NAME

SYNOPSIS

DESCRIPTION

1146 man pages section 3: Extended Library Functions • Last Revised 5 Sep 2002

The uuid_parse() function converts the UUID string specified by in to the internal
uuid_t format. The input UUID is a string of the form
cefa7a9c-1dd2-11b2-8350-880020adbeef. In printf(3C) format the string is
"%08x-%04x-%04x-%04x-%012x", 36 bytes plus the trailing null character. If the
input string is parsed successfully, 0 is returned and the UUID is stored in the location
pointed to by uu. Otherwise -1 is returned.

The uuid_time() function extracts the time at which the specified UUID uu was
created. Since the UUID creation time is encoded within the UUID, this function can
reasonably be expected to extract the creation time only for UUIDs created with the
uuid_generate_time() function. The time at which the UUID was created, in
seconds since January 1, 1970 GMT (the epoch), is returned (see time(2)). The time at
which the UUID was created, in seconds and microseconds since the epoch is also
stored in the location pointed to by ret_tv (see gettimeofday(3C)).

The uuid_unparse() function converts the specified UUID uu from the internal
binary format into a 36-byte string (plus trailing null character) and stores this value in
the character string pointed to by out.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level Safe

inetd(1M), time(2), gettimeofday(3C), libuuid(3LIB), printf(3C),
attributes(5)

uuid_clear(3UUID)

ATTRIBUTES

SEE ALSO

Extended Library Functions 1147

varargs – handle variable argument list

#include <varargs.h>
va_alist
va_dcl

va_list pvar;

void va_start(va_listpvar);

type va_arg(va_list pvar, type);

void va_end(va_list pvar);

This set of macros allows portable procedures that accept variable argument lists to be
written. Routines that have variable argument lists (such as printf(3C)) but do not
use varargs are inherently non-portable, as different machines use different
argument-passing conventions.

va_alist is used as the parameter list in a function header.

va_dcl is a declaration for va_alist. No semicolon should follow va_dcl.

va_list is a type defined for the variable used to traverse the list.

va_start is called to initialize pvar to the beginning of the list.

va_arg will return the next argument in the list pointed to by pvar. type is the type
the argument is expected to be. Different types can be mixed, but it is up to the routine
to know what type of argument is expected, as it cannot be determined at runtime.

va_end is used to clean up.

Multiple traversals, each bracketed by va_start and va_end, are possible.

EXAMPLE 1 A sample program.

This example is a possible implementation of execl (see exec(2)).

#include <unistd.h>
#include <varargs.h>
#define MAXARGS 100
/* execl is called by

execl(file, arg1, arg2, ..., (char *)0);
*/
execl(va_alist)
va_dcl
{

va_list ap;
char *file;
char *args[MAXARGS]; /* assumed big enough*/
int argno = 0;

va_start(ap);
file = va_arg(ap, char *);
while ((args[argno++] = va_arg(ap, char *)) != 0)

;

varargs(3EXT)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

1148 man pages section 3: Extended Library Functions • Last Revised 10 May 2002

EXAMPLE 1 A sample program. (Continued)

va_end(ap);
return execv(file, args);

}

exec(2), printf(3C), vprintf(3C), stdarg(3EXT)

It is up to the calling routine to specify in some manner how many arguments there
are, since it is not always possible to determine the number of arguments from the
stack frame. For example, execl is passed a zero pointer to signal the end of the list.
printf can tell how many arguments are there by the format.

It is non-portable to specify a second argument of char, short, or float to va_arg,
since arguments seen by the called function are not char, short, or float. C
converts char and short arguments to int and converts float arguments to
double before passing them to a function.

stdarg is the preferred interface.

varargs(3EXT)

SEE ALSO

NOTES

Extended Library Functions 1149

vatan_, vatanf_, vatan2_, vatan2f_, vcos_, vcosf_, vexp_, vexpf_, vhypot_, vhypotf_,
vlog_, vlogf_, vpow_, vpowf_, vrhypot_, vrhypotf_, vrsqrt_, vrsqrtf_, vsin_, vsinf_,
vsincos_, vsincosf_, vsqrt_, vsqrtf_ – vector versions of common mathematical
functions

cc [flag...] file... -lmvec [library...]

void vatan_(int *n, double * restrict x, int *stridex, double *
restrict y, int *stridey);

void vatanf_(int *n, float * restrict x, int *stridex, float *
restrict y, int *stridey);

void vatan2_(int *n, double * restrict y, int *stridey, double *
restrict x, int *stridex, double * restrict z, int *stridez);

void vatan2f_(int *n, float * restrict y, int *stridey, float *
restrict x, int *stridex, float * restrict z, int *stridez);

void vcos_(int *n, double * restrict x, int *stridex, double *
restrict y, int *stridey);

void vcosf_(int *n, float * restrict x, int *stridex, float *
restrict y, int *stridey);

void vexp_(int *n, double * restrict x, int *stridex, double *
restrict y, int *stridey);

void vexpf_(int *n, float * restrict x, int *stridex, float *
restrict y, int *stridey);

void vhypot_(int *n, double * restrict x, int *stridex, double *
restrict y, int *stridey, double * restrict z, int *stridez);

void vhypotf_(int *n, float * restrict x, int *stridex, float *
restrict y, int *stridey, float * restrict z, int *stridez);

void vlog_(int *n, double * restrict x, int *stridex, double *
restrict y, int *stridey);

void vlogf_(int *n, float * restrict x, int *stridex, float *
restrict y, int *stridey);

void vpow_(int *n, double * restrict x, int *stridex, double *
restrict y, int *stridey, double * restrict z, int *stridez);

void vpowf_(int *n, float * restrict x, int *stridex, float *
restrict y, int *stridey, float * restrict z, int *stridez);

void vrhypot_(int *n, double * restrict x, int *stridex, double *
restrict y, int *stridey, double * restrict z, int *stridez);

void vrhypotf_(int *n, float * restrict x, int *stridex, float *
restrict y, int *stridey, float * restrict z, int *stridez);

void vrsqrt_(int *n, double * restrict x, int *stridex, double *
restrict y, int *stridey);

vatan_(3MVEC)

NAME

SYNOPSIS

1150 man pages section 3: Extended Library Functions • Last Revised 19 Nov 2003

void vrsqrtf_(int *n, float * restrict x, int *stridex, float *
restrict y, int *stridey);

void vsin_(int *n, double * restrict x, int *stridex, double *
restrict y, int *stridey);

void vsinf_(int *n, float * restrict x, int *stridex, float *
restrict y, int *stridey);

void vsincos_(int *n, double * restrict x, int *stridex, double *
restrict s, int *strides, double * restrict c, int *stridec);

void vsincosf_(int *n, float * restrict x, int *stridex, float *
restrict s, int *strides, float * restrict c, int *stridec);

void vsqrt_(int *n, double * restrict x, int *stridex, double *
restrict y, int *stridey);

void vsqrtf_(int *n, float * restrict x, int *stridex, float *
restrict y, int *stridey);

These functions evaluate common mathematical functions for an entire vector of
values at once. The first parameter specifies the number of function values to compute
and must be positive. Subsequent parameters specify vectors holding the argument
and result values. Each vector is specified by a pointer to its first element and a stride,
which is the increment between successive elements.

The call vatan_(n, x, sx, y, sy) setsy[i * (*sy)] = atan(x[i * (*sx)])
for each i = 0, 1, ..., *n - 1. Analogous descriptions apply to vcos_(),
vexp_(), vlog_(), vsin_(), and vsqrt_().

The call vatan2_(n, y, sy, x, sx, z, sz) sets z[i * (*sz)] = atan2(y[i
* (*sy)], x[i * (*sx)]). Analogous descriptions apply to vhypot_() and
vpow_().

The call vrhypot_(n, x, sx, y, sy, z, sz) sets z[i * (*sz)] = 1 /
hypot(x[i * (*sx)], y[i * (*sy)]).

The call vrsqrt_(n, x, sx, y, sy) sets y[i * (*sy)] = 1 / sqrt(x[i *
(*sx)]).

The call vsincos_(n, x, sx, s, ss, c, sc) simultaneously sets s[i * (*ss)]
= sin(x[i * (*sx)]) and c[i * (*sc)] = cos(x[i * (*sx)]).

The vatanf_(), vatan2f_(), vcosf_(), vexpf_(), vhypotf_(), vlogf_(),
vpowf_(), vrhypotf_(), vrsqrtf_(), vsinf_(), vsincosf_(), and
vsqrtf_() functions are single precision versions of the double precision functions
listed above.

For each function, the element count *n must be positive. The strides for the argument
and result arrays can be arbitrary integers, but the arrays themselves must not be the
same or overlap. For example, the results of the code fragment

vatan_(3MVEC)

DESCRIPTION

Extended Library Functions 1151

double x[100];
int n = 100, s = 1;

vexp_(&n, x, &s, x, &s);

are undefined. A stride can be zero, which effectively collapses the entire vector into a
single element. For example, one can use vpow_() to compute values of pow(x[i],
y) for a fixed value of y by specifying *stridey = 0. A stride can also be negative, but
the corresponding pointer must still point to the first element of the vector to be used;
if the stride is negative, this will be the highest-addressed element in memory. (This
convention differs from the Level 1 BLAS, in which array parameters always refer to
the lowest-addressed element in memory even when negative increments are used.)

The vector functions listed above handle exceptional cases in the same way as the
corresponding scalar functions in libm(3LIB) when C99 MATHERREXCEPT
conventions are in effect, namely by raising floating point exceptions and, if those
exceptions are not trapped, delivering the best available result, which can be a finite
number, infinity, or Not-a-Number (NaN). Some vector functions can raise the inexact
exception even when all elements of the argument array are such that the numerical
results are exact.

The vector functions assume that the round-to-nearest floating point rounding mode is
in effect. If a program changes the rounding mode from the default round-to-nearest, it
must reestablish that mode before calling any of these functions. The result of calling a
vector function with a rounding mode other than round-to-nearest in effect is
undefined.

The vector functions are not guaranteed to deliver results that are identical to the
results of the corresponding scalar functions given the same arguments. In particular,
the vsqrt_() and vsqrtf_() functions do not always deliver correctly rounded
results. However, all of the functions listed above deliver results that are accurate to
within one unit in the last place.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

atan(3M), atan2(3M), cos(3M), exp(3M), hypot(3M), libm(3LIB), log(3M),
pow(3M), sin(3M), sqrt(3M), attributes(5)

vatan_(3MVEC)

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

1152 man pages section 3: Extended Library Functions • Last Revised 19 Nov 2003

vc_abs_, vz_abs_, vc_exp_, vz_exp_, vc_log_, vz_log_, vc_pow_, vz_pow_ – vector
versions of common complex mathematical functions

cc [flag...] file... -lmvec [library...]

void vc_abs_(int *n, float _Complex * restrict x, int *stridex,
float * restrict y, int *stridey);

void vz_abs_(int *n, double _Complex * restrict x, int *stridex,
double * restrict y, int *stridey);

void vc_exp_(int *n, float _Complex * restrict x, int *stridex,
float _Complex * restrict y, int *stridey, float * restrict
tmp);

void vz_exp_(int *n, double _Complex * restrict x, int *stridex,
double _Complex * restrict y, int *stridey, double * restrict
tmp);

void vc_log_(int *n, float _Complex * restrict x, int *stridex,
float _Complex * restrict y, int *stridey);

void vz_log_(int *n, double _Complex * restrict x, int *stridex,
double _Complex * restrict y, int *stridey);

void vc_pow_(int *n, float _Complex * restrict x, int *stridex,
float _Complex * restrict y, int *stridey, float _Complex *
restrict z, int *stridez, float * restrict tmp);

void vz_pow_(int *n, double _Complex * restrict x, int *stridex,
double _Complex * restrict y, int *stridey, double _Complex *
restrict z, int *stridez, double * restrict tmp);

These functions evaluate common complex mathematical functions for an entire
vector of values at once. The first parameter specifies the number of function values to
compute and must be positive. Subsequent parameters specify vectors holding the
argument and result values. Each vector is specified by a pointer to its first element
and a stride, which is the increment between successive elements.

The call vc_abs_(n, x, sx, y, sy) sets y[i * (*sy)] to the magnitude (also
called the modulus) of x[i * (*sx)] for each i = 0, 1, ..., *n - 1. The x
argument is complex but y is real.

The call vc_exp_(n, x, sx, y, sy, tmp) sets y[i * (*sy)] = exp(x[i *
(*sx)]). The tmp array provides scratch space and must be at least *n elements in
length.

The call vc_log_(n, x, sx, y, sy) sets y[i * (*sy)] = log(x[i *
(*sx)]).

The call vc_pow_(n, x, sx, y, sy, z, sz, tmp) sets z[i * (*sz)] = x[i *
(*sx)] ** y[i * (*sy)]. The tmp array provides scratch space and must be at
least 3 * (*n) elements in length.

vc_abs_(3MVEC)

NAME

SYNOPSIS

DESCRIPTION

Extended Library Functions 1153

The vz_abs_(), vz_exp_(), vz_log_(), and vz_pow_() functions are double
precision versions of the single precision functions listed above.

For each function, the element count *n must be positive. The strides for the argument
and result arrays can be arbitrary integers, but the arrays themselves must not be the
same or overlap. For example, the results of the code fragment

double _Complex x[100];
int n = 100, s = 1;

vz_exp_(&n, x, &s, x, &s);

are undefined. A stride can be zero, which effectively collapses the entire vector into a
single element. For example, one can use vc_pow_() to compute values of x[i] ** y for
a fixed value of y by specifying *stridey = 0. A stride can also be negative, but the
corresponding pointer must still point to the first element of the vector to be used; if
the stride is negative, this will be the highest-addressed element in memory. (This
convention differs from the Level 1 BLAS, in which array parameters always refer to
the lowest-addressed element in memory even when negative increments are used.)

The vector functions listed above use textbook mathematical formulas such as exp(x
+ i y) = exp x (cos y + i sin y) to express complex functions in terms of real
functions. They then use the real vector functions described in vatan_(3MVEC).
These functions perform no special handling for exceptional cases. In particular, they
need not deliver the same results as the C99 <complex.h> complex math functions.

The vector functions assume that the round-to-nearest floating point rounding mode is
in effect. If a program changes the rounding mode from the default round-to-nearest, it
must reestablish that mode before calling any of these functions. The result of calling a
vector function with a rounding mode other than round-to-nearest in effect is
undefined.

The complex vector functions are not guaranteed to deliver results that are identical to
the results of the corresponding C99 <complex.h> complex math functions given the
same arguments.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

MT-Level MT-Safe

complex.h(3HEAD), vatan_(3MVEC), attributes(5)

vc_abs_(3MVEC)

ERRORS

USAGE

ATTRIBUTES

SEE ALSO

1154 man pages section 3: Extended Library Functions • Last Revised 19 Nov 2004

volmgt_acquire – reserve removable media device

cc [flag ...] file ... -lvolmgt [library ...]
#include <sys/types.h>

#include <volmgt.h>

int volmgt_acquire(char *dev, char *id, int ovr, char **err, pid_t
*pidp);

The volmgt_acquire() routine reserves the removable media device specified as
dev. volmgt_acquire() operates in two different modes, depending on whether or
not Volume Management is running. See vold(1M).

If Volume Management is running, volmgt_acquire() attempts to reserve the
removable media device specified as dev. Specify dev as either a symbolic device name
(for example, floppy0) or a physical device pathname (for example,
/vol/dsk/unnamed_floppy).

If Volume Management is not running, volmgt_acquire() requires callers to specify
a physical device pathname for dev. Specifying dev as a symbolic device name is not
acceptable. In this mode, volmgt_acquire() relies entirely on the major and minor
numbers of the device to determine whether or not the device is reserved.

If dev is free, volmgt_acquire() updates the internal device reservation database
with the caller’s process id (pid) and the specified id string.

If dev is reserved by another process, the reservation attempt fails and
volmgt_acquire():

� sets errno to EBUSY

� fills the caller’s id value in the array pointed to by err

� fills in the pid to which the pointer pidp points with the pid of the process which
holds the reservation, if the supplied pidp is non-zero

If the override ovr is non-zero, the call overrides the device reservation.

Upon successful completion, volmgt_acquire() returns a non-zero value.

Upon failure, volmgt_acquire() returns 0. If the return value is 0, and errno is set
to EBUSY, the address pointed to by err contains the string that was specified as id
(when the device was reserved by the process holding the reservation).

The volmgt_acquire() routine fails if one or more of the following are true:

EINVAL One of the specified arguments is invalid or missing.

EBUSY dev is already reserved by another process (and ovr was not set to a
non-zero value)

volmgt_acquire(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

Extended Library Functions 1155

EXAMPLE 1 Using volmgt_acquire()

In the following example, Volume Management is running and the first floppy drive is
reserved, accessed and released.

#include <volmgt.h>
char *errp;
if (!volmgt_acquire("floppy0", "FileMgr", 0, NULL,

&errp, NULL)) {
/* handle error case */
. . .

}
/* floppy acquired - now access it */
if (!volmgt_release("floppy0")) {

/* handle error case */
. . .

}

EXAMPLE 2 Using volmgt_acquire() To Override A Lock On Another Process

The following example shows how callers can override a lock on another process
using volmgt_acquire().

char *errp, buf[20];
int override = 0;
pid_t pid;
if (!volmgt_acquire("floppy0", "FileMgr", 0, &errp,

&pid)) {
if (errno == EBUSY) {

(void) printf("override %s (pid=%ld)?\n",
errp, pid); {

(void) fgets(buf, 20, stdin);
if (buf[0] == ’y’) {

override++;
}

} else {
/* handle other errors */
. . .

}
}
if (override) {

if (!volmgt_acquire("floppy0", "FileMgr", 1,
&errp, NULL)) {

/* really give up this time! */
. . .

}
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

vold(1M), free(3C), malloc(3C), volmgt_release(3VOLMGT), attributes(5)

volmgt_acquire(3VOLMGT)

EXAMPLES

ATTRIBUTES

SEE ALSO

1156 man pages section 3: Extended Library Functions • Last Revised 11 Dec 1996

When returning a string through err, volmgt_acquire() allocates a memory area
using malloc(3C). Use free(3C) to release the memory area when no longer needed.

The ovr argument is intended to allow callers to override the current device
reservation. It is assumed that the calling application has determined that the current
reservation can safely be cleared. See EXAMPLES.

volmgt_acquire(3VOLMGT)

NOTES

Extended Library Functions 1157

volmgt_check – have Volume Management check for media

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

int volmgt_check(char *pathname);

This routine asks Volume Management to check the specified pathname and determine
if new media has been inserted in that drive.

If a null pointer is passed in, then Volume Management will check each device it is
managing that can be checked.

If new media is found, volmgt_check() tells Volume Management to initiate any
"actions" specified in /etc/vold.conf (see vold.conf(4)).

This routine returns 0 if no media was found, and a non-zero value if any media was
found.

This routine can fail, returning 0, if a stat(2) or open(2) of the supplied pathname
fails, or if any of the following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while checking for media.

EXAMPLE 1 Checking If Any New Media Is Inserted

To check if any drive managed by Volume Management has any new media inserted
in it:

if (volmgt_check(NULL)) {
(void) printf("Volume Management found media\n");

}

This would also request Volume Management to take whatever action was specified in
/etc/vold.conf for any media found.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), volcheck(1), vold(1M), open(2), stat(2), volmgt_inuse(3VOLMGT),
volmgt_running(3VOLMGT), vold.conf(4), attributes(5), volfs(7FS)

Volume Management must be running for this routine to work.

Since volmgt_check() returns 0 for two different cases (both when no media is
found, and when an error occurs), it is up to the user to to check errno to differentiate
the two, and to ensure that Volume Management is running.

volmgt_check(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

1158 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

volmgt_feature_enabled – check whether specific Volume Management features are
enabled

cc [flag ...] file ... -l volmgt [library ...]

#include <volmgt.h>

int volmgt_feature_enabled(char *feat_str);

The volmgt_feature_enabled() routine checks whether specific Volume
Management features are enabled. volmgt_feature_enabled() checks for the
Volume Management features passed in to it by the feat_str parameter.

Currently, the only supported feature string that volmgt_feature_enabled()
checks for is floppy-summit-interfaces. The floppy-summit-interfaces
feature string checks for the presence of the libvolmgt routines
volmgt_acquire() and volmgt_release().

The list of features that volmgt_feature_enabled() checks for is expected to
expand in the future.

0 is returned if the specified feature is not currently available. A non-zero value
indicates that the specified feature is currently available.

EXAMPLE 1 A sample of the volmgt_feature_enabled() function.

In the following example, volmgt_feature_enabled() checks whether the
floppy-summit-interfaces feature is enabled.

if (volmgt_feature_enabled("floppy-summit-interfaces")) {
(void) printf("Media Sharing Routines ARE present\n");

} else {
(void) printf("Media Sharing Routines are NOT present\n");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

volmgt_acquire(3VOLMGT), volmgt_release(3VOLMGT), attributes(5)

volmgt_feature_enabled(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 1159

volmgt_inuse – check whether or not Volume Management is managing a pathname

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

int volmgt_inuse(char *pathname);

volmgt_inuse() checks whether Volume Management is managing the specified
pathname.

A non-zero value is returned if Volume Management is managing the specified
pathname, otherwise 0 is returned.

This routine can fail, returning 0, if a stat(2) of the supplied pathname or an open(2)
of /dev/volctl fails, or if any of the following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while checking for the supplied
pathname for use.

EXAMPLE 1 Using volmgt_inuse()

To see if Volume Management is managing the first floppy disk:

if (volmgt_inuse("/dev/rdiskette0") != 0) {
(void) printf("volmgt is managing diskette 0\n");

} else {
(void) printf("volmgt is NOT managing diskette 0\n");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), vold(1M), open(2), stat(2), errno(3C), volmgt_check(3VOLMGT),
volmgt_running(3VOLMGT), attributes(5), volfs(7FS)

This routine requires Volume Management to be running.

Since volmgt_inuse() returns 0 for two different cases (both when a volume is not
in use, and when an error occurs), it is up to the user to to check errno to differentiate
the two, and to ensure that Volume Management is running.

volmgt_inuse(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

1160 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

volmgt_ownspath – check Volume Management name space for path

cc [flag]... file... −lvolgmt [library]...

#include <volmgt.h>

int volmgt_ownspath(char *path);

path A string containing the path.

The volmgt_ownspath() function checks to see if a given path is contained in the
Volume Management name space. This is achieved by comparing the beginning of the
supplied path name with the output from volmgt_root(3VOLMGT)

The volgmt_ownspath() function returns a non-zero value if path is owned by
Volume Management. It returns 0 if path is not in its name space or Volume
Management is not running.

EXAMPLE 1 Using volmgt_ownspath()

The following example first checks if Volume Management is running, then checks the
Volume Management name space for path, and then returns the id for the piece of
media.

char *path;

...

if (volmgt_running()) {
if (volmgt_ownspath(path)) {

(void) printf("id of %s is %lld\n",
path, media_getid(path));

}
}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT Level Safe

Commitment Level Public

volmgt_root(3VOLMGT), volmgt_running(3VOLMGT), attributes(5)

volmgt_ownspath(3VOLMGT)

NAME

SYNOPSIS

PARAMETERS

DESCRIPTION

RETURN VALUES

EXAMPLES

ATTRIBUTES

SEE ALSO

Extended Library Functions 1161

volmgt_release – release removable media device reservation

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

int volmgt_release(char *dev);

The volmgt_release() routine releases the removable media device reservation
specified as dev. See volmgt_acquire(3VOLMGT) for a description of dev.

If dev is reserved by the caller, volmgt_release() updates the internal device
reservation database to indicate that the device is no longer reserved. If the requested
device is reserved by another process, the release attempt fails and errno is set to 0.

Upon successful completion, volmgt_release returns a non-zero value. Upon
failure, 0 is returned.

On failure, volmgt_release() returns 0, and sets errno for one of the following
conditions:

EINVAL dev was invalid or missing.

EBUSY dev was not reserved by the caller.

EXAMPLE 1 Using volmgt_release()

In the following example, Volume Management is running, and the first floppy drive
is reserved, accessed and released.

#include <volmgt.h>
char *errp;
if (!volmgt_acquire("floppy0", "FileMgr", 0, &errp,

NULL)) {
/* handle error case */
. . .

}
/* floppy acquired - now access it */
if (!volmgt_release("floppy0")) {

/* handle error case */
. . .

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

Interface Stability Stable

vold(1M), volmgt_acquire(3VOLMGT), attributes(5)

volmgt_release(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

1162 man pages section 3: Extended Library Functions • Last Revised 11 Dec 1996

volmgt_root – return the Volume Management root directory

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

const char *volmgt_root(void);

The volmgt_root() function returns the current Volume Management root
directory, which by default is /vol but can be configured to be in a different location.

The volmgt_root() function returns pointer to a static string containing the root
directory for Volume Management.

This function may fail if an open() of /dev/volctl fails. If this occurs a pointer to
the default Volume Management root directory is returned.

EXAMPLE 1 Finding the Volume Management root directory.

To find out where the Volume Management root directory is:

if ((path = volmgt_root()) != NULL) {
(void) printf("Volume Management root dir=%s\n", path);

} else {
(void) printf("can’t find Volume Management root dir\n");

}

/vol default location for the Volume Management root directory

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), vold(1M), open(2), volmgt_check(3VOLMGT),
volmgt_inuse(3VOLMGT), volmgt_running (3VOLMGT), attributes(5),
volfs(7FS)

This function returns the default root directory location even when Volume
Management is not running.

volmgt_root(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

Extended Library Functions 1163

volmgt_running – return whether or not Volume Management is running

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

int volmgt_running(void);

volmgt_running() tells whether or not Volume Management is running.

A non-zero value is returned if Volume Management is running, else 0 is returned.

volmgt_running() will fail, returning 0, if a stat(2) or open(2) of /dev/volctl
fails, or if any of the following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while checking to see if Volume
Management was running.

EXAMPLE 1 Using volmgt_running()

To see if Volume Management is running:

if (volmgt_running() != 0) {
(void) printf("Volume Management is running\n");

} else {
(void) printf("Volume Management is NOT running\n");

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), vold(1M), open(2), stat(2), volmgt_check(3VOLMGT),
volmgt_inuse (3VOLMGT), attributes(5), volfs(7FS)

Volume Management must be running for many of the Volume Management library
routines to work.

volmgt_running(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

1164 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

volmgt_symname, volmgt_symdev – convert between Volume Management symbolic
names, and the devices that correspond to them

cc [flag ...] file ... -lvolmgt [library ...]

#include <volmgt.h>

char *volmgt_symname(char *pathname);

char *volmgt_symdev(char *symname);

These two routines compliment each other, translating between Volume
Management’s symbolic name for a device, called a symname, and the /dev pathname
for that same device.

volmgt_symname() converts a supplied /dev pathname to a symname, Volume
Management’s idea of that device’s symbolic name (see volfs(7FS) for a description
of Volume Management symbolic names).

volmgt_symdev() does the opposite conversion, converting between a symname,
Volume Management’s idea of a device’s symbolic name for a volume, to the /dev
pathname for that device.

volmgt_symname() returns the symbolic name for the device pathname supplied,
and volmgt_symdev() returns the device pathname for the supplied symbolic name.

These strings are allocated upon success, and therefore must be freed by the caller
when they are no longer needed (see free(3C)).

volmgt_symname() can fail, returning a null string pointer, if a stat(2) of the
supplied pathname fails, or if an open(2) of /dev/volctl fails, or if any of the
following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while trying to convert the
supplied pathname to a symname.

volmgt_symdev() can fail if an open(2) of /dev/volctl fails, or if any of the
following is true:

ENXIO Volume Management is not running.

EINTR An interrupt signal was detected while trying to convert the
supplied symname to a /dev pathname.

EXAMPLE 1 Testing Floppies

The following tests how many floppies Volume Management currently sees in floppy
drives (up to 10):

for (i=0; i < 10; i++) {
(void) sprintf(path, "floppy%d", i);
if (volmgt_symdev(path) != NULL) {

(void) printf("volume %s is in drive %d\n",

volmgt_symname(3VOLMGT)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

EXAMPLES

Extended Library Functions 1165

EXAMPLE 1 Testing Floppies (Continued)

path, i);
}

}

EXAMPLE 2 Finding The Symbolic Name

This code finds out what symbolic name (if any) Volume Management has for
/dev/rdsk/c0t6d0s2:

if ((nm = volmgt_symname("/dev/rdsk/c0t6d0s2")) == NULL) {
(void) printf("path not managed\n");

} else {
(void) printf("path managed as %s\n", nm);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

cc(1B), vold(1M), open(2), stat(2), free(3C), malloc(3C),
volmgt_check(3VOLMGT), volmgt_inuse(3VOLMGT),
volmgt_running(3VOLMGT), attributes(5), volfs(7FS)

These routines only work when Volume Management is running.

There should be a straightforward way to query Volume Management for a list of all
media types it’s managing, and how many of each type are being managed.

volmgt_symname(3VOLMGT)

ATTRIBUTES

SEE ALSO

NOTES

BUGS

1166 man pages section 3: Extended Library Functions • Last Revised 31 Dec 1996

wsreg_add_child_component, wsreg_remove_child_component,
wsreg_get_child_components – add or remove a child component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_child_component(Wsreg_component *comp, const
Wsreg_component *childComp);

int wsreg_remove_child_component(Wsreg_component *comp, const
Wsreg_component *childComp);

Wsreg_component **wsreg_get_child_components(const
Wsreg_component *comp);

The wsreg_add_child_component() function adds the component specified by
childComp to the list of child components contained in the component specified by
comp.

The wsreg_remove_child_component() function removes the component
specified by childComp from the list of child components contained in the component
specified by comp.

The wsreg_get_child_components() function returns the list of child
components contained in the component specified by comp.

The wsreg_add_child_component() function returns a non-zero value if the
specified child component was successfully added; otherwise, 0 is returned.

The wsreg_remove_child_component() function returns a non-zero value if the
specified child component was successfully removed; otherwise, 0 is returned.

The wsreg_get_child_components() function returns a null-terminated array of
Wsreg_component pointers that represents the specified component’s list of child
components. If the specified component has no child components, NULL is returned.
The resulting array must be released by the caller through a call to
wsreg_free_component_array(). See wsreg_create_component(3WSREG).

The parent-child relationship between components in the product install registry is
used to record a product’s structure. Product structure is the arrangement of features
and components that make up a product. The structure of installed products can be
displayed with the prodreg GUI.

The child component must be installed and registered before the parent component
can be. The registration of a parent component that has child components results in
each of the child components being updated to reflect their parent component.

Read access to the product install registry is required in order to use these functions
because these relationships are held with lightweight component references that can
only be fully resolved using the registry contents.

wsreg_add_child_component(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

Extended Library Functions 1167

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

prodreg(1M), wsreg_can_access_registry(3WSREG),
wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), wsreg_set_parent(3WSREG), attributes(5)

wsreg_add_child_component(3WSREG)

ATTRIBUTES

SEE ALSO

1168 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_add_compatible_version, wsreg_remove_compatible_version,
wsreg_get_compatible_versions – add or remove a backward-compatible version

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_compatible_version(Wsreg_component *comp, const
char *version);

int wsreg_remove_compatible_version(Wsreg_component *comp, const
char *version);

char **wsreg_get_compatible_versions(const Wsreg_component
*comp);

The wsreg_add_compatible_version() function adds the version string
specified by version to the list of backward-compatible versions contained in the
component specified by comp.

The wsreg_remove_compatible_version() function removes the version string
specified by version from the list of backward-compatible versions contained in the
component specified by comp.

The wsreg_get_compatible_versions() function returns the list of
backward-compatible versions contained in the component specified by comp.

The wsreg_add_compatible_version() function returns a non-zero value if the
specified backward-compatible version was successfully added; otherwise, 0 is
returned.

The wsreg_remove_compatible_version() function returns a non-zero value if
the specified backward-compatible version was successfully removed; otherwise, 0 is
returned.

The wsreg_get_compatible_versions() function returns a null-terminated
array of char pointers that represents the specified component’s list of
backward-compatible versions. If the specified component has no such versions, NULL
is returned. The resulting array and its contents must be released by the caller.

The list of backward compatible versions is used to allow components that are used by
multiple products to upgrade successfully without compromising any of its dependent
products. The installer that installs such an update can check the list of
backward-compatible versions and look at what versions are required by all of the
dependent components to ensure that the upgrade will not result in a broken product.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_compatible_version(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

Extended Library Functions 1169

prodreg(1M), wsreg_initialize(3WSREG), wsreg_register(3WSREG),
wsreg_set_version(3WSREG), attributes(5)

wsreg_add_compatible_version(3WSREG)

SEE ALSO

1170 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_add_dependent_component, wsreg_remove_dependent_component,
wsreg_get_dependent_components – add or remove a dependent component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_dependent_component(Wsreg_component *comp, const
Wsreg_component *dependentComp);

int wsreg_remove_dependent_component(Wsreg_component *comp, const
Wsreg_component *dependentComp);

Wsreg_component **wsreg_get_dependent_components(const
Wsreg_component *comp);

The wsreg_add_dependent_component() function adds the component specified
by dependentComp to the list of dependent components contained in the component
specified by comp.

The wsreg_remove_dependent_component() function removes the component
specified by dependentComp from the list of dependent components contained in the
component specified by comp.

The wsreg_get_dependent_components() function returns the list of dependent
components contained in the component specified by comp.

The wsreg_add_dependent_component() function returns a non-zero value if the
specified dependent component was successfully added; otherwise, 0 is returned.

The wsreg_remove_dependent_component() function returns a non-zero value if
the specified dependent component was successfully removed; otherwise, 0 is
returned.

The wsreg_get_dependent_components() function returns a null-terminated
array of Wsreg_component pointers that represents the specified component’s list of
dependent components. If the specified component has no dependent components,
NULL is returned. The resulting array must be released by the caller through a call to
wsreg_free_component_array(). See wsreg_create_component(3WSREG).

The relationship between two components in which one must be installed for the
other to be complete is a dependent/required relationship. The component that is
required by the other component is the required component. The component that
requires the other is the dependent component.

The required component must be installed and registered before the dependent
component can be. Uninstaller applications should check the registry before
uninstalling and unregistering components so a successful uninstallation of one
product will not result in another product being compromised.

Read access to the product install registry is required to use these functions because
these relationships are held with lightweight component references that can only be
fully resolved using the registry contents.

wsreg_add_dependent_component(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

Extended Library Functions 1171

The act of registering a component having required components results in the
converse dependent relationships being established automatically.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_required_component(3WSREG),
wsreg_can_access_registry(3WSREG), wsreg_create_component(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG), attributes(5)

wsreg_add_dependent_component(3WSREG)

ATTRIBUTES

SEE ALSO

1172 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_add_display_name, wsreg_remove_display_name, wsreg_get_display_name,
wsreg_get_display_languages – add, remove, or return a localized display name

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_display_name(Wsreg_component *comp, const char
*language, const char *display_name);

int wsreg_remove_display_name(Wsreg_component *comp, const char
*language);

char *wsreg_get_display_name(const Wsreg_component *comp, const
char *language);

char **wsreg_get_display_languages(const Wsreg_component *comp);

For each of these functions, the comp argument specifies the component on which
these functions operate. The language argument is the ISO 639 language code
identifying a particular display name associated with the specified component.

The wsreg_add_display_name() function adds the display name specified by
display_name to the component specified by comp.

The wsreg_remove_display_name() function removes a display name from the
component specified by comp.

The wsreg_get_display_name() function returns a display name from the
component specified by comp.

The wsreg_get_display_languages() returns the ISO 639 language codes for
which display names are available from the component specified by comp.

The wsreg_add_display_name() function returns a non-zero value if the display
name was set correctly; otherwise 0 is returned.

The wsreg_remove_display_name() function returns a non-zero value if the
display name was removed; otherwise 0 is returned.

The wsreg_get_display_name() function returns the display name from the
specified component if the component has a display name for the specified language
code. Otherwise, NULL is returned. The caller must not free the resulting display
name.

The wsreg_get_display_languages() function returns a null-terminated array of
ISO 639 language codes for which display names have been set into the specified
component. If no display names have been set, NULL is returned. It is the caller’s
responsibility to release the resulting array, but not the contents of the array.

wsreg_add_display_name(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

Extended Library Functions 1173

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_add_display_name(3WSREG)

ATTRIBUTES

SEE ALSO

1174 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_add_required_component, wsreg_remove_required_component,
wsreg_get_required_components – add or remove a required component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_add_required_component(Wsreg_component *comp, const
Wsreg_component *requiredComp);

int wsreg_remove_required_component(Wsreg_component *comp, const
Wsreg_component *requiredComp);

Wsreg_component **wsreg_get_required_components(const
Wsreg_component *comp);

The wsreg_add_required_component() function adds the component specified
by requiredComp to the list of required components contained in the component
specified by comp.

The wsreg_remove_required_component() function removes the component
specified by requiredComp from the list of required components contained in the
component specified by comp.

The wsreg_get_required_components() function returns the list of required
components contained in the component specified by comp.

The wsreg_add_required_component() function returns a non-zero value if the
specified required component was successfully added. Otherwise, 0 is returned.

The wsreg_remove_required_component() function returns a non-zero value if
the specified required component was successfully removed. Otherwise, 0 is returned.

The wsreg_get_required_components() function returns a null-terminated
array of Wsreg_component pointers that represents the specified component’s list of
required components. If the specified component has no required components, NULL
is returned. The resulting array must be released by the caller through a call to
wsreg_free_component_array(). See wsreg_create_component(3WSREG).

The relationship between two components in which one must be installed for the
other to be complete is a dependent/required relationship. The component that is
required by the other component is the required component. The component that
requires the other is the dependent component.

The required component must be installed and registered before the dependent
component can be. Uninstaller applications should check the registry before
uninstalling and unregistering components so a successful uninstallation of one
product will not result in another product being compromised.

Read access to the product install registry is required in order to use these functions
because these relationships are held with lightweight component references that can
only be fully resolved using the registry contents.

wsreg_add_required_component(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

Extended Library Functions 1175

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_dependent_component(3WSREG),
wsreg_can_access_registry(3WSREG), wsreg_create_component(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG), attributes(5)

wsreg_add_required_component(3WSREG)

ATTRIBUTES

SEE ALSO

1176 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_can_access_registry – determine access to product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <fcntl.h>

#include <wsreg.h>

int wsreg_can_access_registry(int access_flag);

The wsreg_can_access_registry() function is used to determine what access, if
any, an application has to the product install registry.

The access_flag argument can be one of the following:

O_RDONLY Inquire about read only access to the registry.

O_RDWR Inquire about modify (read and write) access to the registry.

The wsreg_can_access_registry() function returns non-zero if the specified
access level is permitted. A return value of 0 indicates the specified access level is not
permitted.

EXAMPLE 1 Initialize the registry and determine if access to the registry is permitted.

#include <fcntl.h>
#include <wsreg.h>

int main(int argc, char **argv)
{

int result;
if (wsreg_initialize(WSREG_INIT_NORMAL, NULL)) {

printf("conversion recommended, sufficient access denied\n");
}

if (wsreg_can_access_registry(O_RDONLY)) {
printf("registry read access granted\n");

} else {
printf("registry read access denied\n");

}

if (wsreg_can_access_registry(O_RDWR)) {
printf("registry read/write access granted\n");

} else {
printf("registry read/write access denied\n");

}

}

The wsreg_initialize(3WSREG) function must be called before calls to
wsreg_can_access_registry() can be made.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_can_access_registry(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

USAGE

ATTRIBUTES

Extended Library Functions 1177

wsreg_initialize(3WSREG), attributes(5)

wsreg_can_access_registry(3WSREG)

SEE ALSO

1178 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_clone_component – clone a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_component *wsreg_clone_component(const Wsreg_component
*comp);

The wsreg_clone_component() function clones the component specified by comp.

The wsreg_clone_component() returns a pointer to a component that is
configured exactly the same as the component specified by comp.

The resulting component must be released through a call to
wsreg_free_component() by the caller. See
wsreg_create_component(3WSREG).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_get(3WSREG), attributes(5)

wsreg_clone_component(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 1179

wsreg_components_equal – determine equality of two components

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_components_equal(const Wsreg_component *comp1, const
Wsreg_component *comp2);

The wsreg_components_equal() function determines if the component specified
by the comp1 argument is equal to the component specified by the comp2 argument.
Equality is evaluated based only on the content of the two components, not the order
in which data was set into the components.

The wsreg_components_equal() function returns a non-zero value if the
component specified by the comp1 argument is equal to the component specified by
the comp2 argument. Otherwise, 0 is returned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_clone_component(3WSREG), wsreg_create_component(3WSREG),
wsreg_initialize(3WSREG), attributes(5)

wsreg_components_equal(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

1180 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_create_component, wsreg_free_component, wsreg_free_component_array –
create or release a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_component *wsreg_create_component(const char *uuid);

void wsreg_free_component(Wsreg_component *comp);

int wsreg_free_component_array(Wsreg_component **complist);

The wsreg_create_component() function allocates a new component and assigns
the uuid (universal unique identifier) specified by uuid to the resulting component.

The wsreg_free_component() function releases the memory associated with the
component specified by comp.

The wsreg_free_component_array() function frees the null-terminated array of
component pointers specified by complist. This function can be used to free the results
of a call to wsreg_get_all(). See wsreg_get(3WSREG).

The wsreg_create_component() function returns a pointer to the newly allocated
Wsreg_component structure.

The wsreg_free_component_array() function returns a non-zero value if the
specified Wsreg_component array was freed successfully. Otherwise, 0 is returned.

A minimal registerable Wsreg_component configuration must include a version,
unique name, display name, and an install location.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_display_name(3WSREG), wsreg_get(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG),
wsreg_set_id(3WSREG), wsreg_set_location(3WSREG),
wsreg_set_unique_name(3WSREG), wsreg_set_version(3WSREG),
attributes(5)

wsreg_create_component(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 1181

wsreg_get, wsreg_get_all – query product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_component *wsreg_get(const Wsreg_query *query);

Wsreg_component **wsreg_get_all(void);

The wsreg_get() function queries the product install registry for a component that
matches the query specified by query.

The wsreg_get_all() function returns all components currently registered in the
product install registry.

The wsreg_get() function returns a pointer to a Wsreg_component structure
representing the registered component. If no component matching the specified query
is currently registered, wsreg_get() returns NULL.

The wsreg_get_all() function returns a null-terminated array of
Wsreg_component pointers. Each element in the resulting array represents one
registered component.

The wsreg library must be initialized by a call to wsreg_initialize(3WSREG)
before any call to wsreg_get() or wsreg_get_all().

The Wsreg_component pointer returned from wsreg_get() should be released
through a call to wsreg_free_component(). See
wsreg_create_component(3WSREG).

The Wsreg_component pointer array returned from wsreg_get_all() should be
released through a call to wsreg_free_component_array(). See
wsreg_create_component(3WSREG).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), attributes(5)

wsreg_get(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

1182 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_initialize – initialize wsreg library

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_initialize(Wsreg_init_level level, const char
*alternate_root);

The wsreg_initialize() function initializes the wsreg library.

The level argument can be one of the following:

WSREG_INIT_NORMAL If an old registry file is present, attempt to
perform a conversion.

WSREG_INIT_NO_CONVERSION If an old conversion file is present, do not
perform the conversion, but indicate that
the conversion is recommended.

The alternate_root argument can be used to specify a root prefix. If NULL is specified, no
root prefix is used.

The wsreg_initialize() function can return one of the following:

WSREG_SUCCESS The initialization was successful and no
registry conversion is necessary.

WSREG_CONVERSION_RECOMMENDED An old registry file exists and should be
converted.

A conversion is attempted if the init_level argument is WSREG_INIT_NORMAL and a
registry file from a previous version of the product install registry exists. If the
wsreg_initialize() function returns WSREG_CONVERSION_RECOMMENDED, the
user either does not have permission to update the product install registry or does not
have read/write access to the previous registry file.

The wsreg_initialize() function must be called before any other wsreg library
functions.

The registry conversion can take some time to complete. The registry conversion can
also be performed using the graphical registry viewer /usr/bin/prodreg or by the
registry converter /usr/bin/regconvert.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

prodreg(1M), wsreg_can_access_registry(3WSREG), attributes(5)

wsreg_initialize(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 1183

wsreg_query_create, wsreg_query_free – create a new query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

Wsreg_query *wsreg_query_create(void);

void wsreg_query_free(Wsreg_query *query);

The wsreg_query_create() function allocates a new query that can retrieve
components from the product install registry.

The wsreg_query_free() function releases the memory associated with the query
specified by query.

The wsreg_query_create() function returns a pointer to the newly allocated
query. The resulting query is completely empty and must be filled in to describe the
desired component.

The query identifies fields used to search for a specific component in the product
install registry. The query must be configured and then passed to the
wsreg_get(3WSREG) function to perform the registry query.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_query_set_id(3WSREG), wsreg_query_set_instance(3WSREG),
wsreg_query_set_location(3WSREG),
wsreg_query_set_unique_name(3WSREG),
wsreg_query_set_version(3WSREG), wsreg_unregister(3WSREG),
attributes(5)

wsreg_query_create(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

1184 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_query_set_id, wsreg_query_get_id – set or get the uuid of a query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_id(Wsreg_query *query, const char *uuid);

char *wsreg_query_get_id(const Wsreg_query *query);

The wsreg_query_set_id() function sets the uuid (universal unique identifier)
specified by uuid in the query specified by query. If a uuid has already been set in the
specified query, the resources associated with the previously set uuid are released.

The wsreg_query_get_id() function returns the uuid associated with the query
specified by query. The resulting string is not a copy and must not be released by the
caller.

The wsreg_query_set_id() function returns non-zero if the uuid was set correctly;
otherwise 0 is returned.

The wsreg_query_get_id() function returns the uuid associated with the specified
query.

The query identifies fields used to search for a specific component in the product
install registry. By specifying the uuid, the component search is narrowed to all
components in the product install registry that have the specified uuid.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
towsreg_query_create(3WSREG), attributes(5)

wsreg_query_set_id(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 1185

wsreg_query_set_instance, wsreg_query_get_instance – set or get the instance of a
query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_instance(Wsreg_query *query, int instance);

int wsreg_query_get_instance(Wsreg_query *comp);

The wsreg_query_set_instance() function sets the instance number specified by
instance in the query specified by query.

The wsreg_query_get_instance() function retrieves the instance from the query
specified by query.

The wsreg_query_set_instance() function returns a non-zero value if the
instance was set correctly; otherwise 0 is returned.

The wsreg_query_get_instance() function returns the instance number from the
specified query. It returns 0 if the instance number has not been set.

The query identifies fields used to search for a specific component in the product
install registry. By specifying the instance, the component search is narrowed to all
components in the product install registry that have the specified instance.

Other fields can be specified in the same query to further narrow down the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_query_create(3WSREG), attributes(5)

wsreg_query_set_instance(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

1186 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_query_set_location, wsreg_query_get_location – set or get the location of a
query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_location(Wsreg_query *query, const char
*location);

char *wsreg_query_get_location(Wsreg_query *query);

The wsreg_query_set_location() function sets the location specified by location
in the query specified by query. If a location has already been set in the specified query,
the resources associated with the previously set location are released.

The wsreg_query_get_location() function gets the location string from the
query specified by query.

The wsreg_query_set_location() function returns a non-zero value if the
location was set correctly; otherwise 0 is returned.

The wsreg_query_get_location() function returns the location from the
specified query structure. The resulting location string is not a copy, so it must not be
released by the caller.

The query identifies fields used to search for a specific component in the product
install registry. By specifying the install location, the component search is narrowed to
all components in the product install registry that are installed in the same location.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_query_create(3WSREG), attributes(5)

wsreg_query_set_location(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 1187

wsreg_query_set_unique_name, wsreg_query_get_unique_name – set or get the
unique name of a query

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_unique_name(Wsreg_query *query, const char
*unique_name);

char *wsreg_query_get_unique_name(const Wsreg_query *query);

The wsreg_query_set_unique_name() function sets the unique name specified
by unique_name in the query specified by query. If a unique name has already been set
in the specified query, the resources associated with the previously set unique name
are released.

The wsreg_query_get_unique_name() function gets the unique name string from
the query specified by query. The resulting string is not a copy and must not be
released by the caller.

The wsreg_query_set_unique_name() function returns a non-zero value if the
unique_name was set correctly; otherwise 0 is returned.

The wsreg_query_get_unique_name() function returns a copy of the unique_name
from the specified query.

The query identifies fields used to search for a specific component in the product
install registry. By specifying the unique name, the component search is narrowed to
all components in the product install registry that have the specified unique name.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_query_create(3WSREG), attributes(5)

wsreg_query_set_unique_name(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

1188 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_query_set_version, wsreg_query_get_version – set or get the version of a query

cc [flag ...] file ... -lwsreg [library ...]
#include <wsreg.h>

int wsreg_query_set_version(Wsreg_query *query, const char
*version);

char *wsreg_query_get_version(const Wsreg_query *query);

The wsreg_query_set_version() function sets the version specified by version in
the query specified by query. If a version has already been set in the specified query,
the resources associated with the previously set version are released.

The wsreg_query_get_version() function gets the version string from the query
specified by query. The resulting string is not a copy and must not be released by the
caller.

The wsreg_query_set_version() function returns a non-zero value if the version
was set correctly; otherwise 0 is returned.

The wsreg_query_get_version() function returns the version from the specified
query. If no version has been set, NULLt is returned. The resulting version string is not
a copy and must not be released by the caller.

The query identifies fields used to search for a specific component in the product
install registry. By specifying the version, the component search is narrowed to all
components in the product install registry that have the specified version.

Other fields can be specified in the same query to further narrow the search.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_query_create(3WSREG), attributes(5)

wsreg_query_set_version(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 1189

wsreg_register – register a component in the product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_register(Wsreg_component *comp);

The wsreg_register() function updates a component in the product install
registry.

If comp is already in the product install registry, the call to wsreg_register()
results in the currently registered component being updated. Otherwise, comp is added
to the product install registry.

An instance is assigned to the component upon registration. Subsequent component
updates retain the same component instance.

If comp has required components, each required component is updated to reflect the
required component relationship.

If comp has child components, each child component that does not already have a
parent is updated to reflect specified component as its parent.

Upon successful completion, a non-zero value is returned. If the component could not
be updated in the product install registry, 0 is returned.

EXAMPLE 1 Create and register a component.

The following example creates and registers a component.

#include <wsreg.h>

int main (int argc, char **argv)
{

char *uuid = "d6cf2869-1dd1-11b2-9fcb-080020b69971";
Wsreg_component *comp = NULL;

/* Initialize the registry */
wsreg_initialize(WSREG_INIT_NORMAL, NULL);

/* Create the component */
comp = wsreg_create_component(uuid);
wsreg_set_unique_name(comp, "wsreg_example_1");
wsreg_set_version(comp, "1.0");
wsreg_add_display_name(comp, "en", "Example 1 component");
wsreg_set_type(comp, WSREG_COMPONENT);
wsreg_set_location(comp, "/usr/local/example1_component");

/* Register the component */
wsreg_register(comp);
wsreg_free_component(comp);
return 0;

}

wsreg_register(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

1190 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

A product’s structure can be recorded in the product install registry by registering a
component for each element and container in the product definition. The product and
each of its features would be registered in the same way as a package that represents
installed files.

Components should be registered only after they are successfully installed. If an entire
product is being registered, the product should be registered after all components and
features are installed and registered.

In order to register correctly, the component must be given a uuid, unique name,
version, display name, and a location. The location assgined to product structure
components should generally be the location in which the user chose to install the
product.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_get(3WSREG), wsreg_initialize(3WSREG),
wsreg_create_component(3WSREG), wsreg_unregister(3WSREG),
attributes(5)

wsreg_register(3WSREG)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 1191

wsreg_set_data, wsreg_get_data, wsreg_get_data_pairs – add or retrieve a key-value
pair

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_data(Wsreg_component *comp, const char *key, const
char *value);

char *wsreg_get_data(const Wsreg_component *comp, const char
*key);

char *wsreg_get_data_pairs(const Wsreg_component *comp);

The wsreg_set_data() function adds the key-value pair specified by key and value
to the component specified by comp. If value is NULL, the key and current value is
removed from the specified component.

The wsreg_get_data() function retrieves the value associated with the key
specified by key from the component specified by comp.

The wsreg_get_data_pairs() function returns the list of key-value pairs from the
component specified by comp.

The wsreg_set_data() function returns a non-zero value if the specified key-value
pair was successfully added. It returns 0 if the addition failed. If NULL is passed as the
value, the current key-value pair are removed from the specified component.

The wsreg_get_data() function returns the value associated with the specified key.
It returns NULL if there is no value associated with the specified key. The char pointer
that is returned is not a clone, so it must not be freed by the caller.

The wsreg_get_data_pairs() function returns a null-terminated array of char
pointers that represents the specified component’s list of data pairs. The even indexes
of the resulting array represent the key names. The odd indexes of the array represent
the values. If the specified component has no data pairs, NULL is returned. The
resulting array (not its contents) must be released by the caller.

Any string data can be associated with a component. Because this information can be
viewed in the prodreg registry viewer, it is a good place to store support contact
information.

After the data pairs are added or removed, the component must be updated with a
call to wsreg_register(3WSREG) for the modifications to be persistent.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_set_data(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

1192 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

prodreg(1M), wsreg_initialize(3WSREG), wsreg_register(3WSREG),
attributes(5)

wsreg_set_data(3WSREG)

SEE ALSO

Extended Library Functions 1193

wsreg_set_id, wsreg_get_id – set or get the uuid of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_id(Wsreg_component *comp, const char *uuid);

char *wsreg_get_id(const Wsreg_component *comp);

The wsreg_set_id() function sets the uuid (universal unique identifier) specified
by uuid into the component specified by comp. If a uuid has already been set into the
specified component, the resources associated with the previously set uuid are
released.

The wsreg_get_id() function returns a copy of the uuid of the component specified
by comp. The resulting string must be released by the caller.

The wsreg_set_id() function returns non-zero if the uuid was set correctly;
otherwise 0 is returned.

The wsreg_get_id() function returns a copy of the specified component’s uuid.

Generally, the uuid will be set into a component by the
wsreg_create_component(3WSREG) function, so a call to the wsreg_set_id() is
not necessary.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
attributes(5)attributes(5)

wsreg_set_id(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

1194 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_set_instance, wsreg_get_instance – set or get the instance of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_instance(Wsreg_component *comp, int instance);

int wsreg_get_instance(Wsreg_component *comp);

The wsreg_set_instance() function sets the instance number specified by instance
of the component specified by comp. The instance number and uuid are used to
uniquely identify any component in the product install registry.

The wsreg_get_instance() function determines the instance number associated
with the component specified by comp.

The wsreg_set_instance() function returns a non-zero value if the instance was
set correctly; otherwise 0 is returned.

The wsreg_get_instance() function returns the instance number associated with
the specified component.

EXAMPLE 1 Get the instance value of a registered component.

The following example demonstrates how how to get the instance value of a registered
component.

#include <fcntl.h>
#include <wsreg.h>

int main (int argc, char **argv)
{

char *uuid = "d6cf2869-1dd1-11b2-9fcb-080020b69971";
Wsreg_component *comp = NULL;

/* Initialize the registry */
wsreg_initialize(WSREG_INIT_NORMAL, NULL);
if (!wsreg_can_access_registry(O_RDWR)) {

printf("No permission to modify the registry.\n");
return 1;

}

/* Create a component */
comp = wsreg_create_component(uuid);
wsreg_set_unique_name(comp, "wsreg_example_1");
wsreg_set_version(comp, "1.0");
wsreg_add_display_name(comp, "en", "Example 1 component");
wsreg_set_type(comp, WSREG_COMPONENT);
wsreg_set_location(comp, "/usr/local/example1_component");

/* Register */
wsreg_register(comp);

printf("Instance %d was assigned\n", wsreg_get_instance(comp));

wsreg_free_component(comp);

wsreg_set_instance(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

Extended Library Functions 1195

EXAMPLE 1 Get the instance value of a registered component. (Continued)

return 0;

}

Upon component registration with the wsreg_register(3WSREG) function, the
instance number is set automatically. The instance number of 0 (the default) indicates
to the wsreg_register() function that an instance number should be looked up
and assigned during registration. If a component with the same uuid and location is
already registered in the product install registry, that component’s instance number
will be used during registration.

After registration of a component, the wsreg_get_instance() function can be used
to determine what instance value was assigned.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_register(3WSREG),
attributes(5)

wsreg_set_instance(3WSREG)

USAGE

ATTRIBUTES

SEE ALSO

1196 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_set_location, wsreg_get_location – set or get the location of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_location(Wsreg_component *comp, const char *location);

char *wsreg_get_location(const Wsreg_component *comp);

The wsreg_set_location() function sets the location specified by location into the
component specified by comp. Every component must have a location before being
registered. If a location has already been set into the specified component, the
resources associated with the previously set location are released.

The wsreg_get_location() function gets the location string from the component
specified by comp. The resulting string must be released by the caller.

The wsreg_set_location() function returns a non-zero value if the location was
set correctly; otherwise 0 is returned.

The wsreg_get_location() function returns a copy of the location from the
specified component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_set_location(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 1197

wsreg_set_parent, wsreg_get_parent – set or get the parent of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

void wsreg_set_parent(Wsreg_component *comp, const
Wsreg_component *parent);

Wsreg_component *wsreg_get_parent(const Wsreg_component *comp);

The wsreg_set_parent() function sets the parent specified by parent of the
component specified by comp.

The wsreg_get_parent() function gets the parent of the component specified by
comp.

The wsreg_get_parent() function returns a pointer to a Wsreg_component
structure that represents the parent of the specified component. If the specified
component does not have a parent, NULL is returned. If a non-null value is returned, it
the caller’s responsibility to release the memory associated with the resulting
Wsreg_component pointer with a call to wsreg_free_component(). See
wsreg_create_component(3WSREG).

The parent of a component is set as a result of registering the parent component. When
a component that has children is registered, all of the child components are updated to
reflect the newly registered component as their parent. This update only occurs if the
child component does not already have a parent component set.

The specified parent component is reduced to a lightweight component reference that
uniquely identifies the parent in the product install registry. This lightweight reference
includes the parent’s uuid and instance number.

The parent must be registered before a call to wsreg_set_parent() can be made,
since the parent’s instance number must be known at the time the
wsreg_set_parent() function is called.

A process needing to call wsreg_set_parent() or wsreg_get_parent() must
have read access to the product install registry.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_can_access_registry(3WSREG), wsreg_create_component(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG),
wsreg_set_instance(3WSREG), attributes(5)

wsreg_set_parent(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

1198 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_set_type, wsreg_get_type – set or get the type of a component

cc [flag...] file ... -lwsreg [library ...]

#include <wsreg.h>

int wsreg_set_type(Wsreg_component *comp, Wsreg_component_type
type);

Wsreg_component_type wsreg_get_type(const Wsreg_component *comp);

The wsreg_set_type() function sets the type specified by type in the component
specified by comp.

The wsreg_get_type() function retrieves the type from the component specified by
comp.

The wsreg_set_type() function returns a non-zero value if the type is set
successfully; otherwise 0 is returned.

The wsreg_get_type() function returns the type currently set in the component
specified by comp.

The component type is used to indicate whether a Wsreg_component structure
represents a product, feature, or component. The type argument can be one of the
following:

WSREG_PRODUCT Indicates the Wsreg_component represents a product.
A product is a collection of features and/or
components.

WSREG_FEATURE Indicates the Wsreg_component represents a feature.
A feature is a collection of components.

WSREG_COMPONENT Indicates the Wsreg_component represents a
component. A component is a collection of files that
may be installed.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_create_component(3WSREG), wsreg_initialize(3WSREG),
wsreg_register(3WSREG), wsreg_set_instance(3WSREG), attributes(5)

wsreg_set_type(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 1199

wsreg_set_uninstaller, wsreg_get_uninstaller – set or get the uninstaller of a
component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_uninstaller(Wsreg_component *comp, const char
*uninstaller);

char *wsreg_set_uninstaller(const Wsreg_component *comp);

The wsreg_set_uninstaller() function sets the uninstaller specified by
uninstaller in the component specified by comp. If an uninstaller has already been set in
the specified component, the resources associated with the previously set uninstaller
are released.

The wsreg_get_uninstaller() function gets the uninstaller string from the
component specified by comp. The resulting string must be released by the caller.

The wsreg_set_uninstaller() function returns a non-zero value if the uninstaller
was set correctly; otherwise 0 is returned.

The wsreg_get_uninstaller() function returns a copy of the uninstaller from the
specified component.

An uninstaller is usually only associated with a product, not with every component
that comprises a product. The uninstaller string is a command that can be passed to
the shell to launch the uninstaller.

If an uninstaller is set in a registered component, the prodreg(1M) registry viewer
will provide an uninstall button that will invoke the uninstaller.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

prodreg(1M), wsreg_initialize(3WSREG), attributes(5)

wsreg_set_uninstaller(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

USAGE

ATTRIBUTES

SEE ALSO

1200 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_set_unique_name, wsreg_get_unique_name – set or get the unique name of a
component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_unique_name(Wsreg_component *comp, const char
*unique_name);

char *wsreg_get_unique_name(const Wsreg_component *comp);

The wsreg_set_unique_name() function sets the unique name specified by
unique_name in the component specified by comp. Every component must have a
unique name before being registered. If a unique name has already been set in the
specified component, the resources associated with the previously set unique name are
released.

The wsreg_get_unique_name() function gets the unique name string from the
component specified by comp. The resulting string must be released by the caller.

The wsreg_set_unique_name() function returns a non-zero value if the unique
name was set correctly; otherwise it returns 0.

The wsreg_get_unique_name() function returns a copy of the unique name from
the specified component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_set_unique_name(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 1201

wsreg_set_vendor, wsreg_get_vendor – set or get the vendor of a componentt

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_vendor(Wsreg_component *comp, const char *vendor);

char *wsreg_get_vendor(const Wsreg_component *comp);

The wsreg_set_vendor() function sets the vendor specified by vendor in the
component specified by comp. The vendor argument is a string that identifies the
vendor of the component. If a vendor has already been set in the specified component,
the resources associated with the previously set vendor are released.

The wsreg_get_vendor() function gets the vendor string from the component
specified by comp. The resulting string must be released by the caller.

The wsreg_set_vendor() function returns a non-zero value if the vendor was set
correctly; otherwise it returns 0.

The wsreg_get_vendor() function returns a copy of the vendor from the specified
component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_set_vendor(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

1202 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

wsreg_set_version, wsreg_get_version – set or get the version of a component

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_set_version(Wsreg_component *comp, const char *version);

char *wsreg_get_version(const Wsreg_component *comp);

The wsreg_set_version() function sets the version specified by version in the
component specified by comp. The version argument is a string that represents the
version of the component. Every component must have a version before being
registered. If a version has already been set in the specified component, the resources
associated with the previously set version are released.

The wsreg_get_version() function gets the version string from the component
specified by comp. The resulting string must be released by the caller.

The wsreg_set_version() function returns a non-zero value if the version was set
correctly; otherwise it returns 0.

The wsreg_get_version() function returns a copy of the version from the
specified component.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_initialize(3WSREG), attributes(5)

wsreg_set_version(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ATTRIBUTES

SEE ALSO

Extended Library Functions 1203

wsreg_unregister – remove a component from the product install registry

cc [flag ...] file ...-lwsreg [library ...]
#include <wsreg.h>

int wsreg_unregister(const Wsreg_component *comp);

The wsreg_unregister() function removes the component specified by comp from
the product install registry. The component will only be removed if the comp argument
has a matching uuid, instance, and version.

Usually, the component retrieved through a call to wsreg_get(3WSREG) before being
passed to the wsreg_unregister() function.

If the component has required components, the respective dependent components will
be updated to reflect the change.

A component that has dependent components cannot be unregistered until the
dependent components are uninstalled and unregistered.

Upon successful completion, a non-zero return value is returned. If the component
could not be unregistered, 0 is returned.

EXAMPLE 1 Unregister a component.

The following example demonstrates how to unregister a component.

#include <stdio.h>
#include <wsreg.h>

int main(int argc, char **argv)
{

char *uuid = "d6cf2869-1dd1-11b2-9fcb-080020b69971";
char *location = "/usr/local/example1_component";
Wsreg_query *query = NULL;
Wsreg_component *comp = NULL;

/* Initialize the registry */
wsreg_initialize(WSREG_INIT_NORMAL, NULL);

/* Query for the component */
query = wsreg_query_create();
wsreg_query_set_id(query, uuid);
wsreg_query_set_location(query, location);
comp = wsreg_get(query);

if (comp != NULL) {
/* The query succeeded. The component has been found. */
Wsreg_component **dependent_comps;
dependent_comps = wsreg_get_dependent_components(comp);
if (dependent_comps != NULL) {
/*
* The component has dependent components. The
* component cannot be unregistered.
*/
wsreg_free_component_array(dependent_comps);

wsreg_unregister(3WSREG)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

EXAMPLES

1204 man pages section 3: Extended Library Functions • Last Revised 22 Sep 2000

EXAMPLE 1 Unregister a component. (Continued)

printf("The component cannot be uninstalled because "
"it has dependent components\n");

} else {
/*
* The component does not have dependent components.
* It can be unregistered.
*/
if (wsreg_unregister(comp) != 0) {

printf("wsreg_unregister succeeded\n");
} else {

printf("unregister failed\n");
}

}
/* Be sure to free the component */
wsreg_free_component(comp);

} else {
/* The component is not currently registered. */
printf("The component was not found in the registry\n");

}
wsreg_query_free(query);

}

Components should be unregistered before uninstallation. If the component cannot be
unregistered, uninstallation should not be performed.

A component cannot be unregistered if other registered components require it. A call
to wsreg_get_dependent_components() can be used to determine if this
situation exists. See wsreg_add_dependent_component(3WSREG).

A successful unregistration of a component will result in all components required by
the unregistered component being updated in the product install registry to remove
the dependency. Also, child components will be updated so the unregistered
component is no longer registered as their parent.

When unregistering a product, the product should first be unregistered, followed by
the unregistration of its first feature and then the unregistration and uninstallation of
the components that comprise that feature. Be sure to use this top-down approach to
avoid removing a component that belongs to a product or feature that is required by a
separate product.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level Unsafe

wsreg_add_dependent_component(3WSREG), wsreg_get(3WSREG),
wsreg_initialize(3WSREG), wsreg_register(3WSREG), attributes(5)

wsreg_unregister(3WSREG)

USAGE

ATTRIBUTES

SEE ALSO

Extended Library Functions 1205

y0, y0f, y0l, y1, y1f, y1l, yn, ynf, ynl – Bessel functions of the second kind

cc [flag...] file... -lm [library...]

#include <math.h>

double y0(double x);

float y0f(float x);

long double y0l(long double x);

double y1(double x);

float y1f(float x);

long double y1l(long double x);

double yn(int n, double x);

float ynf(int n, float x);

long double ynl(int n, long double x);

These functions compute Bessel functions of x of the second kind of orders 0, 1 and n,
respectively.

Upon successful completion, these functions return the relevant Bessel value of x of
the second kind.

If x is NaN, a NaN is returned.

If x is negative, −HUGE_VAL or NaN is returned.

If x is 0.0, −HUGE_VAL is returned.

If the correct result would cause overflow, −HUGE_VAL is returned.

For exceptional cases, matherr(3M) tabulates the values to be returned as specified
by SVID3 and XPG3.

No errors are returned.

An application wanting to check for exceptions should call feclearexcept
(FE_ALL_EXCEPT) before calling these functions. On return, if fetestexcept
(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW | FE_UNDERFLOW) is non-zero, an
exception has been raised. An application should either examine the return value or
check the floating point exception flags to detect exceptions.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below.

y0(3M)

NAME

SYNOPSIS

DESCRIPTION

RETURN VALUES

ERRORS

USAGE

ATTRIBUTES

1206 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

ATTRIBUTE TYPE ATTRIBUTE VALUE

MT-Level MT-Safe

The y0(), y1(), and yn() functions are Standard. The y0f(), y0l(), y1f(),
y1l(), ynf(), and ynl() functions are Stable.

isnan(3M), feclearexcept(3M), fetestexcept(3M), j0(3M), math.h(3HEAD),
matherr(3M), attributes(5), standards(5)

y0(3M)

SEE ALSO

Extended Library Functions 1207

y0(3M)

1208 man pages section 3: Extended Library Functions • Last Revised 1 Nov 2003

Index

A
absolute value function — fabs, 453
absolute value function — fabsf, 453
absolute value function — fabsl, 453
access a table property —

picl_get_next_by_col, 823
access a table property —

picl_get_next_by_row, 823
access CPU performance counters in other

processes — cpc_pctx_bind_event, 123
access CPU performance counters in other

processes — cpc_pctx_invalidate, 123
access CPU performance counters in other

processes — cpc_pctx_rele, 123
access CPU performance counters in other

processes — cpc_pctx_take_sample, 123
access Fibre Channel Request Node

Identification Data (RNID) —
HBA_GetRNIDMgmtInfo, 593

access Fibre Channel Request Node
Identification Data (RNID) —
HBA_SendRNID, 593

access Fibre Channel Request Node
Identification Data (RNID) —
HBA_SendRNIDV2, 593

access Fibre Channel Request Node
Identification Data (RNID) —
HBA_SetRNIDMgmtInfo, 593

Access Port statistics for a specific HBA port. —
HBA_GetFC4Statistics, 569

Access Port statistics for a specific HBA port. —
HBA_GetFCPStatistics, 569

Access Port statistics for a specific HBA port. —
HBA_GetPortStatistics, 569

Access Port statistics for a specific HBA port. —
HBA_ResetStatistics, 569

access PROM device information —
di_prom_prop_data, 331

access PROM device information —
di_prom_prop_name, 331

access PROM device information —
di_prom_prop_next, 331

access property values and attributes —
di_prop_bytes, 335

access property values and attributes —
di_prop_devt, 335

access property values and attributes —
di_prop_int64, 335

access property values and attributes —
di_prop_ints, 335

access property values and attributes —
di_prop_name, 335

access property values and attributes —
di_prop_strings, 335

access property values and attributes —
di_prop_type, 335

aclcheck — check the validity of an ACL, 28
aclfrommode — convert an ACL to or from

permission bits, 31
aclfromtext — convert internal representation to

or from external representation, 32
aclsort — sort an ACL, 30
acltomode — convert an ACL to or from

permission bits, 31

1209

acltotext — convert internal representation to or
from external representation, 32

acos — arc cosine functions, 34
acosf — arc cosine functions, 34
acosh — inverse hyperbolic cosine

functions, 36
acoshf — inverse hyperbolic cosine

functions, 36
acoshl — inverse hyperbolic cosine

functions, 36
acosl — arc cosine functions, 34
add new name-value pair to nvlist_t —

nvlist_add_boolean, 748
add new name-value pair to nvlist_t —

nvlist_add_boolean_array, 748
add new name-value pair to nvlist_t —

nvlist_add_boolean_value, 748
add new name-value pair to nvlist_t —

nvlist_add_byte, 748
add new name-value pair to nvlist_t —

nvlist_add_byte_array, 748
add new name-value pair to nvlist_t —

nvlist_add_int16, 748
add new name-value pair to nvlist_t —

nvlist_add_int16_array, 748
add new name-value pair to nvlist_t —

nvlist_add_int32, 748
add new name-value pair to nvlist_t —

nvlist_add_int32_array, 748
add new name-value pair to nvlist_t —

nvlist_add_int64, 748
add new name-value pair to nvlist_t —

nvlist_add_int64_array, 748
add new name-value pair to nvlist_t —

nvlist_add_int8, 748
add new name-value pair to nvlist_t —

nvlist_add_int8_array, 748
add new name-value pair to nvlist_t —

nvlist_add_nvlist, 748
add new name-value pair to nvlist_t —

nvlist_add_nvlist_array, 748
add new name-value pair to nvlist_t —

nvlist_add_nvpair, 748
add new name-value pair to nvlist_t —

nvlist_add_string, 748
add new name-value pair to nvlist_t —

nvlist_add_string_array, 748

add new name-value pair to nvlist_t —
nvlist_add_uint16, 748

add new name-value pair to nvlist_t —
nvlist_add_uint16_array, 748

add new name-value pair to nvlist_t —
nvlist_add_uint32, 748

add new name-value pair to nvlist_t —
nvlist_add_uint32_array, 748

add new name-value pair to nvlist_t —
nvlist_add_uint64, 748

add new name-value pair to nvlist_t —
nvlist_add_uint64_array, 748

add new name-value pair to nvlist_t —
nvlist_add_uint8, 748

add new name-value pair to nvlist_t —
nvlist_add_uint8_array, 748

add or delete node to or from tree —
ptree_add_node, 884

add or delete node to or from tree —
ptree_delete_node, 884

add or remove a backward compatible version
— wsreg_add_compatible_version, 1169

add or remove a backward compatible version
— wsreg_get_compatible_versions, 1169

add or remove a backward compatible version
— wsreg_remove_compatible_version, 1169

add or remove a child component —
wsreg_add_child_component, 1167

add or remove a child component —
wsreg_get_child_components, 1167

add or remove a child component —
wsreg_remove_child_component, 1167

add or remove a dependent component —
wsreg_add_dependent_component, 1171

add or remove a dependent component —
wsreg_get_dependent_components, 1171

add or remove a dependent component —
wsreg_remove_dependent_component, 1171

add or remove a required component —
wsreg_add_required_component, 1175

add or remove a required component —
wsreg_get_required_components, 1175

add or remove a required component —
wsreg_remove_required_component, 1175

add or retrieve a key-value pair —
wsreg_get_data, 1192

add or retrieve a key-value pair —
wsreg_get_data_pairs, 1192

1210 man pages section 3: Extended Library Functions • January 2005

add or retrieve a key-value pair —
wsreg_set_data, 1192

add, remove, or return a localized display name
— wsreg_add_display_name, 1173

add, remove, or return a localized display name
— wsreg_get_display_languages, 1173

add, remove, or return a localized display name
— wsreg_get_display_name, 1173

add, remove, or return a localized display name
— wsreg_remove_display_name, 1173

add receive buffers to shared receive queue —
dat_srq_post_recv, 299

administrative interface to the Service
Configuration Facility —
smf_degrade_instance, 1066

administrative interface to the Service
Configuration Facility —
smf_disable_instance, 1066

administrative interface to the Service
Configuration Facility —
smf_enable_instance, 1066

administrative interface to the Service
Configuration Facility —
smf_get_state, 1066

administrative interface to the Service
Configuration Facility —
smf_maintain_instance, 1066

administrative interface to the Service
Configuration Facility —
smf_refresh_instance, 1066

administrative interface to the Service
Configuration Facility —
smf_restart_instance, 1066

administrative interface to the Service
Configuration Facility —
smf_restore_instance, 1066

advance — regular expression compile and
match routines, 911

allocate or deallocate a buffer for trace data
— tnfctl_buffer_alloc, 1101
— tnfctl_buffer_dealloc, 1101

allow or disallow a memory segment to be
imported by other nodes —
rsm_memseg_export_publish, 933

allow or disallow a memory segment to be
imported by other nodes —
rsm_memseg_export_republish, 933

allow or disallow a memory segment to be
imported by other nodes —
rsm_memseg_export_unpublish, 933

allow the user to compose an input line —
del_GetLine, 516

allow the user to compose an input line —
gl_append_history, 516

allow the user to compose an input line —
gl_automatic_history, 516

allow the user to compose an input line —
gl_bind_keyseq, 516

allow the user to compose an input line —
gl_catch_blocked, 516

allow the user to compose an input line —
gl_change_terminal, 516

allow the user to compose an input line —
gl_clear_history, 516

allow the user to compose an input line —
gl_completion_action, 516

allow the user to compose an input line —
gl_configure_getline, 516

allow the user to compose an input line —
gl_customize_completion, 516

allow the user to compose an input line —
gl_display_text, 516

allow the user to compose an input line —
gl_echo_mode, 516

allow the user to compose an input line —
gl_erase_terminal, 516

allow the user to compose an input line —
gl_error_message, 516

allow the user to compose an input line —
gl_get_line, 516

allow the user to compose an input line —
gl_group_history, 516

allow the user to compose an input line —
gl_ignore_signal, 516

allow the user to compose an input line —
gl_inactivity_timeout, 516

allow the user to compose an input line —
gl_last_signal, 516

allow the user to compose an input line —
gl_limit_history, 516

allow the user to compose an input line —
gl_list_signals, 516

allow the user to compose an input line —
gl_load_history, 516

1211

allow the user to compose an input line —
gl_lookup_history, 516

allow the user to compose an input line —
gl_prompt_style, 516

allow the user to compose an input line —
gl_query_char, 516

allow the user to compose an input line —
gl_range_of_history, 516

allow the user to compose an input line —
gl_read_char, 516

allow the user to compose an input line —
gl_register_action, 516

allow the user to compose an input line —
gl_replace_prompt, 516

allow the user to compose an input line —
gl_resize_history, 516

allow the user to compose an input line —
gl_return_status, 516

allow the user to compose an input line —
gl_save_history, 516

allow the user to compose an input line —
gl_set_term_size, 516

allow the user to compose an input line —
gl_show_history, 516

allow the user to compose an input line —
gl_size_of_history, 516

allow the user to compose an input line —
gl_state_of_history, 516

allow the user to compose an input line —
gl_terminal_size, 516

allow the user to compose an input line —
gl_toggle_history, 516

allow the user to compose an input line —
gl_trap_signal, 516

allow the user to compose an input line —
gl_watch_fd, 516

allow the user to compose an input line —
new_GetLine, 516

annotate source code with info for tools
— NOTE, 746
— _NOTE, 746

arc cosine functions — acos, 34
arc cosine functions — acosf, 34
arc cosine functions — acosl, 34
arc sine function — asin, 38
arc sine function — asinf, 38
arc sine function — asinl, 38
arc tangent function — atan2, 41

arc tangent function — atan2f, 41
arc tangent function — atan2l, 41
arc tangent function — atan, 43
arc tangent function — atanf, 43
arc tangent function — atanl, 43
asin — arc sine function, 38
asinf — arc sine function, 38
asinh — inverse hyperbolic sine functions, 40
asinhf — inverse hyperbolic sine functions, 40
asinhl — inverse hyperbolic sine functions, 40
asinl — arc sine function, 38
associate callbacks with process events —

pctx_set_events, 814
atan — arc tangent function, 43
atan2 — arc tangent function, 41
atan2f — arc tangent function, 41
atan2l — arc tangent function, 41
atanf — arc tangent function, 43
atanh — inverse hyperbolic tangent

functions, 44
atanhf — inverse hyperbolic tangent

functions, 44
atanhl — inverse hyperbolic tangent

functions, 44
atanl — arc tangent function, 43
au_close — construct audit records, 46
au_open — construct audit records, 46
au_preselect — preselect an audit record, 48
au_to — create audit record tokens, 50, 51
au_to_arg — create audit record tokens, 50, 51
au_to_arg32 — create audit record tokens, 50
au_to_arg64 — create audit record tokens, 50
au_to_attr — create audit record tokens, 50, 51
au_to_cmd — create audit record tokens, 50
au_to_data — create audit record tokens, 50, 51
au_to_groups — create audit record tokens, 50,

51
au_to_in_addr — create audit record

tokens, 50, 51
au_to_ipc — create audit record tokens, 50, 51
au_to_ipc_perm — create audit record

tokens, 51
au_to_iport — create audit record tokens, 50,

51
au_to_me — create audit record tokens, 50, 51
au_to_new_in_addr — create audit record

tokens, 51

1212 man pages section 3: Extended Library Functions • January 2005

au_to_new_process — create audit record
tokens, 51

au_to_new_socket — create audit record
tokens, 51

au_to_new_subject — create audit record
tokens, 51

au_to_newgroups — create audit record
tokens, 50

au_to_opaque — create audit record tokens, 50,
51

au_to_path — create audit record tokens, 50, 51
au_to_process — create audit record tokens, 50,

51
au_to_process_ex — create audit record

tokens, 50
au_to_return — create audit record tokens, 50,

51
au_to_return32 — create audit record

tokens, 50
au_to_return64 — create audit record

tokens, 50
au_to_socket — create audit record tokens, 50,

51
au_to_subject — create audit record tokens, 50,

51
au_to_subject_ex — create audit record

tokens, 50
au_to_text — create audit record tokens, 50, 51
au_user_mask — get user’s binary preselection

mask, 56
au_write — write audit records, 46
audit control file information

— endac, 488
— getacdir, 488
— getacflg, 488
— getacinfo, 488
— getacmin, 488
— getacna, 488
— setac, 488

audit record tokens, manipulating
— au_close, 46
— au_open, 46
— au_preselect, 48
— au_write, 46

authentication information routines for PAM
— pam_get_item, 787
— pam_set_item, 787

authentication transaction routines for PAM
— pam_end, 803
— pam_start, 803

auto encoding finder functions — auto_ef, 53
auto encoding finder functions —

auto_ef_file, 53
auto encoding finder functions —

auto_ef_free, 53
auto encoding finder functions —

auto_ef_get_encoding, 53
auto encoding finder functions —

auto_ef_get_score, 53
auto encoding finder functions —

auto_ef_str, 53
auto_ef — auto encoding finder functions, 53
auto_ef_file — auto encoding finder

functions, 53
auto_ef_free — auto encoding finder

functions, 53
auto_ef_get_encoding — auto encoding finder

functions, 53
auto_ef_get_score — auto encoding finder

functions, 53
auto_ef_str — auto encoding finder

functions, 53

B
base 10 logarithm function — log10, 692
base 10 logarithm function — log10f, 692
base 10 logarithm function — log10l, 692
Basic Security Module functions

— au_close, 46
— au_open, 46
— au_preselect, 48
— au_user_mask, 56
— au_write, 46

Bessel functions of the first kind — j0, 633
Bessel functions of the first kind — j0f, 633
Bessel functions of the first kind — j0l, 633
Bessel functions of the first kind — j1, 633
Bessel functions of the first kind — j1f, 633
Bessel functions of the first kind — j1l, 633
Bessel functions of the first kind — jn, 633
Bessel functions of the first kind — jnf, 633
Bessel functions of the first kind — jnl, 633
Bessel functions of the second kind — y0, 1206

1213

Bessel functions of the second kind — y0f, 1206
Bessel functions of the second kind — y0l, 1206
Bessel functions of the second kind — y1, 1206
Bessel functions of the second kind — y1f, 1206
Bessel functions of the second kind — y1l, 1206
Bessel functions of the second kind — yn, 1206
Bessel functions of the second kind — ynf, 1206
Bessel functions of the second kind — ynl, 1206
bgets — read stream up to next delimiter, 57
bind or unbind subscriber handle —

sysevent_bind_handle, 1083
bind or unbind subscriber handle —

sysevent_unbind_handle, 1083
bind request sets to hardware counters —

cpc_bind_cpu, 93
bind request sets to hardware counters —

cpc_bind_curlwp, 93
bind request sets to hardware counters —

cpc_bind_pctx, 93
bind request sets to hardware counters —

cpc_request_preset, 93
bind request sets to hardware counters —

cpc_set_restart, 93
bind request sets to hardware counters —

cpc_unbind, 93
buffer, split into fields — bufsplit, 59

C
cabs — return a complex absolute value, 60
cabsf — return a complex absolute value, 60
cabsl — return a complex absolute value, 60
cacos — complex arc cosine functions, 61
cacosf — complex arc cosine functions, 61
cacosh — complex arc hyperbolic cosine

functions, 62
cacoshf — complex arc hyperbolic cosine

functions, 62
cacoshl — complex arc hyperbolic cosine

functions, 62
cacosl — complex arc cosine functions, 61
carg — complex argument functions, 63
cargf — complex argument functions, 63
cargl — complex argument functions, 63
casin — complex arc sine functions, 64
casinf — complex arc sine functions, 64

casinh — complex arc hyperbolic sine
functions, 65

casinhf — complex arc hyperbolic sine
functions, 65

casinhl — complex arc hyperbolic sine
functions, 65

casinl — complex arc sine functions, 64
catan — complex arc tangent functions, 66
catanf — complex arc tangent functions, 66
catanh — complex arc hyperbolic tangent

functions, 67
catanhf — complex arc hyperbolic tangent

functions, 67
catanhl — complex arc hyperbolic tangent

functions, 67
catanl — complex arc tangent functions, 66
cbrt — cube root functions, 68
cbrtf — cube root functions, 68
cbrtl — cube root functions, 68
ccos — complex cosine functions, 69
ccosf — complex cosine functions, 69
ccosh — complex hyperbolic cosine

functions, 70
ccoshf — complex hyperbolic cosine

functions, 70
ccoshl — complex hyperbolic cosine

functions, 70
ccosl — complex cosine functions, 69
ceil — ceiling value function, 71
ceilf — ceiling value function, 71
ceiling value function — ceil, 71
ceiling value function — ceilf, 71
ceiling value function — ceill, 71
ceill — ceiling value function, 71
cexp — complex exponential functions, 72
cexpf — complex exponential functions, 72
cexpl — complex exponential functions, 72
cfc_file_start — look up possible completions

for a word, 136
cfc_literal_escapes — look up possible

completions for a word, 136
cfc_set_check_fn — look up possible

completions for a word, 136
change or add a value to the PAM environment

— pam_putenv, 781
check for the presence of a smart card —

IFDHICCPresence, 613
check the validity of an ACL — aclcheck, 28

1214 man pages section 3: Extended Library Functions • January 2005

check whether or not Volume Management is
managing a pathname —
volmgt_inuse, 1160

check whether specific Volume Management
features are enabled —
volmgt_feature_enabled, 1159

chkauthattr — verify user authorization, 495
cimag — complex imaginary functions, 73
cimagf — complex imaginary functions, 73
cimagl — complex imaginary functions, 73
class-dependent data translation

— elf32_xlatetof, 390
— elf32_xlatetom, 390
— elf64_xlatetof, 390
— elf64_xlatetom, 390

classify real floating type — fpclassify, 479
clear floating-point exception —

feclearexcept, 455
clog — complex natural logarithm

functions, 74
clogf — complex natural logarithm

functions, 74
clogl — complex natural logarithm

functions, 74
clone a component —

wsreg_clone_component, 1179
close a smartcard session, terminal, or card —

SCF_Session_close, 1001
close a smartcard session, terminal, or card —

SCF_Terminal_close, 1001
close a tnfctl handle — tnfctl_close, 1103
close the communication channel with an IFD

— IFDHCloseChannel, 606
combined sine and cosine function —

sincos, 1063
combined sine and cosine function —

sincosf, 1063
combined sine and cosine function —

sincosl, 1063
commands, open, close to and from a command

— p2open, p2close, 767
common contract control functions —

ct_ctl_abandon, 150
common contract control functions —

ct_ctl_ack, 150
common contract control functions —

ct_ctl_adopt, 150

common contract control functions —
ct_ctl_newct, 150

common contract control functions —
ct_ctl_qack, 150

common contract event functions —
ct_event_free, 152

common contract event functions —
ct_event_get_ctid, 152

common contract event functions —
ct_event_get_evid, 152

common contract event functions —
ct_event_get_flags, 152

common contract event functions —
ct_event_get_nevid, 152

common contract event functions —
ct_event_get_newct, 152

common contract event functions —
ct_event_get_type, 152

common contract event functions —
ct_event_read, 152

common contract event functions —
ct_event_read_critical, 152

common contract event functions —
ct_event_reliable, 152

common contract event functions —
ct_event_reset, 152

common contract template functions —
ct_tmpl_activate, 166

common contract template functions —
ct_tmpl_clear, 166

common contract template functions —
ct_tmpl_create, 166

common contract template functions —
ct_tmpl_get_cookie, 166

common contract template functions —
ct_tmpl_get_critical, 166

common contract template functions —
ct_tmpl_get_informative, 166

common contract template functions —
ct_tmpl_set_cookie, 166

common contract template functions —
ct_tmpl_set_critical, 166

common contract template functions —
ct_tmpl_set_informative, 166

compile — regular expression compile and
match routines, 911

complementary error function — erfc, 432
complementary error function — erfcf, 432

1215

complementary error function — erfcl, 432
complex arc cosine functions — cacos, 61
complex arc cosine functions — cacosf, 61
complex arc cosine functions — cacosl, 61
complex arc hyperbolic cosine functions —

cacosh, 62
complex arc hyperbolic cosine functions —

cacoshf, 62
complex arc hyperbolic cosine functions —

cacoshl, 62
complex arc hyperbolic sine functions —

casinh, 65
complex arc hyperbolic sine functions —

casinhf, 65
complex arc hyperbolic sine functions —

casinhl, 65
complex arc hyperbolic tangent functions —

catanh, 67
complex arc hyperbolic tangent functions —

catanhf, 67
complex arc hyperbolic tangent functions —

catanhl, 67
complex arc sine functions — casin, 64
complex arc sine functions — casinf, 64
complex arc sine functions — casinl, 64
complex arc tangent functions — catan, 66
complex arc tangent functions — catanf, 66
complex arc tangent functions — catanl, 66
complex argument functions — carg, 63
complex argument functions — cargf, 63
complex argument functions — cargl, 63
complex conjugate functions — conj, 83
complex conjugate functions — conjf, 83
complex conjugate functions — conjl, 83
complex cosine functions — ccos, 69
complex cosine functions — ccosf, 69
complex cosine functions — ccosl, 69
complex exponential functions — cexp, 72
complex exponential functions — cexpf, 72
complex exponential functions — cexpl, 72
complex hyperbolic cosine functions —

ccosh, 70
complex hyperbolic cosine functions —

ccoshf, 70
complex hyperbolic cosine functions —

ccoshl, 70
complex hyperbolic sine functions — csinh, 146

complex hyperbolic sine functions —
csinhf, 146

complex hyperbolic sine functions —
csinhl, 146

complex hyperbolic tangent functions —
ctanh, 149

complex hyperbolic tangent functions —
ctanhf, 149

complex hyperbolic tangent functions —
ctanhl, 149

complex imaginary functions — cimag, 73
complex imaginary functions — cimagf, 73
complex imaginary functions — cimagl, 73
complex natural logarithm functions —

clog, 74
complex natural logarithm functions —

clogf, 74
complex natural logarithm functions —

clogl, 74
complex power functions — cpow, 142
complex power functions — cpowf, 142
complex power functions — cpowl, 142
complex projection functions — cproj, 143
complex projection functions — cprojf, 143
complex projection functions — cprojl, 143
complex real functions — creal, 144
complex real functions — crealf, 144
complex real functions — creall, 144
complex sine functions — csin, 145
complex sine functions — csinf, 145
complex sine functions — csinl, 145
complex square root functions — csqrt, 147
complex square root functions — csqrtf, 147
complex square root functions — csqrtl, 147
complex tangent functions — ctan, 148
complex tangent functions — ctanf, 148
complex tangent functions — ctanl, 148
compute base 2 logarithm functions —

log2, 696
compute base 2 logarithm functions —

log2f, 696
compute base 2 logarithm functions —

log2l, 696
compute exponent using FLT_RADIX —

scalbln, 955
compute exponent using FLT_RADIX —

scalblnf, 955

1216 man pages section 3: Extended Library Functions • January 2005

compute exponent using FLT_RADIX —
scalblnl, 955

compute exponent using FLT_RADIX —
scalbn, 955

compute exponent using FLT_RADIX —
scalbnf, 955

compute exponent using FLT_RADIX —
scalbnl, 955

compute exponential function — expm1, 451
compute exponential function — expm1f, 451
compute exponential function — expm1l, 451
compute gamma function — tgamma, 1099
compute gamma function — tgammaf, 1099
compute gamma function — tgammal, 1099
compute natural logarithm — log1p, 694
compute natural logarithm — log1pf, 694
compute natural logarithm — log1pl, 694
compute positive difference between two

floating-point numbers — fdim, 454
compute positive difference between two

floating-point numbers — fdimf, 454
compute positive difference between two

floating-point numbers — fdiml, 454
config_admin — configuration administration

interface, 76
config_ap_id_cmp — configuration

administration interface, 76
config_change_state — configuration

administration interface, 76
config_list — configuration administration

interface, 76
config_list_ext — configuration administration

interface, 76
config_private_func — configuration

administration interface, 76
config_stat — configuration administration

interface, 76
config_strerror — configuration administration

interface, 76
config_test — configuration administration

interface, 76
config_unload_libs — configuration

administration interface, 76
configuration administration interface —

config_admin, 76
configuration administration interface —

config_ap_id_cmp, 76

configuration administration interface —
config_change_state, 76

configuration administration interface —
config_list, 76

configuration administration interface —
config_list_ext, 76

configuration administration interface —
config_private_func, 76

configuration administration interface —
config_stat, 76

configuration administration interface —
config_strerror, 76

configuration administration interface —
config_test, 76

configuration administration interface —
config_unload_libs, 76

conj — complex conjugate functions, 83
conjf — complex conjugate functions, 83
conjl — complex conjugate functions, 83
connect to a DMI service provider

— ConnectToServer, 84, 341
construct, read, and write extended accounting

records — ea_copy_object, 369
construct, read, and write extended accounting

records — ea_copy_object_tree, 369
construct, read, and write extended accounting

records — ea_get_creator, 369
construct, read, and write extended accounting

records — ea_get_hostname, 369
construct, read, and write extended accounting

records — ea_get_object, 369
construct, read, and write extended accounting

records — ea_get_object_tree, 369
construct, read, and write extended accounting

records — ea_next_object, 369
construct, read, and write extended accounting

records — ea_pack_object, 369
construct, read, and write extended accounting

records — ea_previous_object, 369
construct, read, and write extended accounting

records — ea_unpack_object, 369
construct, read, and write extended accounting

records — ea_write_object, 369
control floating point exception handling modes

— fex_getexcepthandler, 466
control floating point exception handling modes

— fex_get_handling, 466

1217

control floating point exception handling modes
— fex_setexcepthandler, 466

control floating point exception handling modes
— fex_set_handling, 466

control floating point rounding precision modes
— fegetprec, 461

control floating point rounding precision modes
— fesetprec, 461

control kernel tracing and process filtering
— tnfctl_filter_list_add, 1127
— tnfctl_filter_list_delete, 1127
— tnfctl_filter_list_get, 1127
— tnfctl_filter_state_set, 1127
— tnfctl_trace_state_set, 1127

control libcpc error reporting —
cpc_seterrhndlr, 129

control probes of another process where caller
provides /proc functionality
— tnfctl_check_libs, 1105
— tnfctl_indirect_open, 1105

convert an ACL to or from permission bits —
aclfrommode, 31

convert an ACL to or from permission bits —
acltomode, 31

convert between objects and FMRIs in the
Service Configuration Facility —
scf_handle_decode_fmri, 970

convert between objects and FMRIs in the
Service Configuration Facility —
scf_instance_to_fmri, 970

convert between objects and FMRIs in the
Service Configuration Facility —
scf_pg_to_fmri, 970

convert between objects and FMRIs in the
Service Configuration Facility —
scf_property_to_fmri, 970

convert between objects and FMRIs in the
Service Configuration Facility —
scf_scope_to_fmri, 970

convert between objects and FMRIs in the
Service Configuration Facility —
scf_service_to_fmri, 970

convert internal representation to or from
external representation — aclfromtext, 32

convert internal representation to or from
external representation — acltotext, 32

convert a supplied name into an absolute
pathname that can be used to access
removable media — media_findname, 717

convert between Volume Management symbolic
names, and the devices that correspond to
them
— volmgt_symdev, 1165
— volmgt_symname, 1165

coordinate CPC library and application versions
— cpc_version, 135

coordinate library and application versions —
lgrp_version, 675

copy data to or from a kernel image or running
system — kvm_kread, 649

copy data to or from a kernel image or running
system — kvm_kwrite, 649

copy data to or from a kernel image or running
system — kvm_read, 655

copy data to or from a kernel image or running
system — kvm_uread, 649

copy data to or from a kernel image or running
system — kvm_uwrite, 649

copy data to or from a kernel image or running
system — kvm_write, 655

copysign — number manipulation function, 86
copysignf — number manipulation function, 86
copysignl — number manipulation function, 86
cos — cosine function, 87
cosf — cosine function, 87
cosh — hyperbolic cosine function, 88
coshf — hyperbolic cosine function, 88
coshl — hyperbolic cosine function, 88
cosine function — cos, 87
cosine function — cosf, 87
cosine function — cosl, 87
cosl — cosine function, 87
cpc — hardware performance counters, 90
cpc_access — test access CPU performance

counters, 92
cpc_bind_cpu — bind request sets to hardware

counters, 93
cpc_bind_curlwp — bind request sets to

hardware counters, 93
cpc_bind_event — use CPU performance

counters on lwps, 101
cpc_bind_pctx — bind request sets to hardware

counters, 93

1218 man pages section 3: Extended Library Functions • January 2005

cpc_caps — determine CPU performance
counter configuration, 120

cpc_cciname — determine CPU performance
counter configuration, 120

cpc_close — initialize the CPU Performance
Counter library, 122

cpc_count_sys_events — enable and disable
performance counters, 110

cpc_count_usr_events — enable and disable
performance counters, 110

cpc_cpuref — determine CPU performance
counter configuration, 120

cpc_disable — enable and disable performance
counters, 112

cpc_enable — enable and disable performance
counters, 112

cpc_event — data structure to describe CPU
performance counters, 114

cpc_event_accum — simple difference and
accumulate operations, 116

cpc_event_diff — simple difference and
accumulate operations, 116

cpc_eventtostr — translate strings to and from
events, 133

cpc_getcciname — determine CPU performance
counter configuration, 118

cpc_getcpuref — determine CPU performance
counter configuration, 118

cpc_getcpuver — determine CPU performance
counter configuration, 118

cpc_getnpic — determine CPU performance
counter configuration, 118

cpc_getusage — determine CPU performance
counter configuration, 118

cpc_npic — determine CPU performance
counter configuration, 120

cpc_open — initialize the CPU Performance
Counter library, 122

cpc_pctx_bind_event — access CPU
performance counters in other
processes, 123

cpc_pctx_invalidate — access CPU performance
counters in other processes, 123

cpc_pctx_rele — access CPU performance
counters in other processes, 123

cpc_pctx_take_sample — access CPU
performance counters in other
processes, 123

cpc_rele — use CPU performance counters on
lwps, 101

cpc_request_preset — bind request sets to
hardware counters, 93

cpc_set_add_request — manage sets of counter
requests, 125

cpc_set_create — manage sets of counter
requests, 125

cpc_set_destroy — manage sets of counter
requests, 125

cpc_set_restart — bind request sets to hardware
counters, 93

cpc_seterrhndlr — control libcpc error
reporting, 129

cpc_strtoevent — translate strings to and from
events, 133

cpc_take_sample — use CPU performance
counters on lwps, 101

cpc_unbind — bind request sets to hardware
counters, 93

cpc_version — coordinate CPC library and
application versions, 135

cpc_walk_attrs — determine CPU performance
counter configuration, 120

cpc_walk_events_all — determine CPU
performance counter configuration, 120

cpc_walk_events_pic — determine CPU
performance counter configuration, 120

cpc_walk_names — determine CPU
performance counter configuration, 118

cpc_walk_requests — manage sets of counter
requests, 125

cpl_add_completion — look up possible
completions for a word, 136

cpl_check_exe — look up possible completions
for a word, 136

cpl_complete_word — look up possible
completions for a word, 136

cpl_file_completions — look up possible
completions for a word, 136

cpl_last_error — look up possible completions
for a word, 136

cpl_list_completions — look up possible
completions for a word, 136

cpl_recall_matches — look up possible
completions for a word, 136

cpl_record_error — look up possible
completions for a word, 136

1219

cplus_demangle — decode a C++ encoded
symbol name, 309

cpow — complex power functions, 142
cpowf — complex power functions, 142
cpowl — complex power functions, 142
cproj — complex projection functions, 143
cprojf — complex projection functions, 143
cprojl — complex projection functions, 143
creal — complex real functions, 144
crealf — complex real functions, 144
creall — complex real functions, 144
create a new query —

wsreg_query_create, 1184
create a new query — wsreg_query_free, 1184
create and manipulate instance handles and

instances in the Service Configuration
Facility — scf_instance_create, 973

create and manipulate instance handles and
instances in the Service Configuration
Facility — scf_instance_delete, 973

create and manipulate instance handles and
instances in the Service Configuration
Facility — scf_instance_destroy, 973

create and manipulate instance handles and
instances in the Service Configuration
Facility — scf_instance_get_name, 973

create and manipulate instance handles and
instances in the Service Configuration
Facility — scf_instance_get_parent, 973

create and manipulate instance handles and
instances in the Service Configuration
Facility — scf_instance_handle, 973

create and manipulate instance handles and
instances in the Service Configuration
Facility — scf_service_add_instance, 973

create and manipulate instance handles and
instances in the Service Configuration
Facility — scf_service_get_instance, 973

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_instance_add_pg, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_instance_get_pg, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_instance_get_pg_composed, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility — scf_pg_create, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility — scf_pg_delete, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_pg_destroy, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_pg_get_flags, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_pg_get_name, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_pg_get_parent_instance, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_pg_get_parent_service, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_pg_get_parent_snaplevel, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_pg_get_type, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_pg_get_underlying_pg, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility — scf_pg_handle, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility — scf_pg_update, 984

1220 man pages section 3: Extended Library Functions • January 2005

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_service_add_pg, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_service_get_pg, 984

create and manipulate property group handles
and property groups in the Service
Configuration Facility —
scf_snaplevel_get_pg, 984

create and manipulate property handles in the
Service Configuration Facility —
scf_pg_get_property, 991

create and manipulate property handles in the
Service Configuration Facility —
scf_property_create, 991

create and manipulate property handles in the
Service Configuration Facility —
scf_property_destroy, 991

create and manipulate property handles in the
Service Configuration Facility —
scf_property_get_name, 991

create and manipulate property handles in the
Service Configuration Facility —
scf_property_get_value, 991

create and manipulate property handles in the
Service Configuration Facility —
scf_property_handle, 991

create and manipulate property handles in the
Service Configuration Facility —
scf_property_is_type, 991

create and manipulate property handles in the
Service Configuration Facility —
scf_property_type, 991

create and manipulate scope handles in the
Service Configuration Facility —
scf_handle_get_scope, 994

create and manipulate scope handles in the
Service Configuration Facility —
scf_scope_create, 994

create and manipulate scope handles in the
Service Configuration Facility —
scf_scope_destroy, 994

create and manipulate scope handles in the
Service Configuration Facility —
scf_scope_get_name, 994

create and manipulate scope handles in the
Service Configuration Facility —
scf_scope_handle, 994

create and manipulate service handles and
services in the Service Configuration Facility
— scf_scope_add_service, 997

create and manipulate service handles and
services in the Service Configuration Facility
— scf_scope_get_service, 997

create and manipulate service handles and
services in the Service Configuration Facility
— scf_service_create, 997

create and manipulate service handles and
services in the Service Configuration Facility
— scf_service_delete, 997

create and manipulate service handles and
services in the Service Configuration Facility
— scf_service_destroy, 997

create and manipulate service handles and
services in the Service Configuration Facility
— scf_service_get_name, 997

create and manipulate service handles and
services in the Service Configuration Facility
— scf_service_get_parent, 997

create and manipulate service handles and
services in the Service Configuration Facility
— scf_service_handle, 997

create and manipulate snaplevel handles in the
Service Configuration Facility —
scf_snaplevel_create, 1021

create and manipulate snaplevel handles in the
Service Configuration Facility —
scf_snaplevel_destroy, 1021

create and manipulate snaplevel handles in the
Service Configuration Facility —
scf_snaplevel_get_instance_name, 1021

create and manipulate snaplevel handles in the
Service Configuration Facility —
scf_snaplevel_get_next_snaplevel, 1021

create and manipulate snaplevel handles in the
Service Configuration Facility —
scf_snaplevel_get_parent, 1021

create and manipulate snaplevel handles in the
Service Configuration Facility —
scf_snaplevel_get_scope_name, 1021

create and manipulate snaplevel handles in the
Service Configuration Facility —
scf_snaplevel_get_service_name, 1021

1221

create and manipulate snaplevel handles in the
Service Configuration Facility —
scf_snaplevel_handle, 1021

create and manipulate snaplevel handles in the
Service Configuration Facility —
scf_snapshot_get_base_snaplevel, 1021

create and manipulate snapshot handles and
snapshots in the Service Configuration
Facility — scf_instance_get_snapshot, 1025

create and manipulate snapshot handles and
snapshots in the Service Configuration
Facility — scf_snapshot_create, 1025

create and manipulate snapshot handles and
snapshots in the Service Configuration
Facility — scf_snapshot_destroy, 1025

create and manipulate snapshot handles and
snapshots in the Service Configuration
Facility — scf_snapshot_get_name, 1025

create and manipulate snapshot handles and
snapshots in the Service Configuration
Facility — scf_snapshot_get_parent, 1025

create and manipulate snapshot handles and
snapshots in the Service Configuration
Facility — scf_snapshot_handle, 1025

create and manipulate snapshot handles and
snapshots in the Service Configuration
Facility — scf_snapshot_update, 1025

create and manipulate transaction in the Service
Configuration Facility —
scf_entry_add_value, 963

create and manipulate transaction in the Service
Configuration Facility —
scf_entry_create, 963

create and manipulate transaction in the Service
Configuration Facility —
scf_entry_destroy, 963

create and manipulate transaction in the Service
Configuration Facility —
scf_entry_destroy_children, 963

create and manipulate transaction in the Service
Configuration Facility —
scf_entry_handle, 963

create and manipulate transaction in the Service
Configuration Facility —
scf_entry_reset, 963

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_commit, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_create, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_destroy, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_destroy_children, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_handle, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_property_change, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_property_change_type, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_property_delete, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_property_new, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_reset, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_reset_all, 1040

create and manipulate transaction in the Service
Configuration Facility —
scf_transaction_start, 1040

create audit record tokens — au_to, 50, 51
create audit record tokens — au_to_arg32, 50
create audit record tokens — au_to_arg64, 50
create audit record tokens — au_to_arg, 50, 51
create audit record tokens — au_to_attr, 50, 51
create audit record tokens — au_to_cmd, 50
create audit record tokens — au_to_data, 50, 51
create audit record tokens — au_to_groups, 50,

51
create audit record tokens —

au_to_in_addr, 50, 51
create audit record tokens — au_to_ipc, 50, 51
create audit record tokens —

au_to_ipc_perm, 51
create audit record tokens — au_to_iport, 50,

51

1222 man pages section 3: Extended Library Functions • January 2005

create audit record tokens — au_to_me, 50, 51
create audit record tokens —

au_to_newgroups, 50
create audit record tokens —

au_to_new_in_addr, 51
create audit record tokens —

au_to_new_process, 51
create audit record tokens —

au_to_new_socket, 51
create audit record tokens —

au_to_new_subject, 51
create audit record tokens — au_to_opaque, 50,

51
create audit record tokens — au_to_path, 50, 51
create audit record tokens — au_to_process, 50,

51
create audit record tokens —

au_to_process_ex, 50
create audit record tokens —

au_to_return32, 50
create audit record tokens —

au_to_return64, 50
create audit record tokens — au_to_return, 50,

51
create audit record tokens — au_to_socket, 50,

51
create audit record tokens — au_to_subject, 50,

51
create audit record tokens —

au_to_subject_ex, 50
create audit record tokens — au_to_text, 50, 51
create or break logical commection between

import and export segments —
rsm_memseg_import_connect, 937

create or break logical commection between
import and export segments —
rsm_memseg_import_disconnect, 937

create or destroy a property —
ptree_create_prop, 889

create or destroy a property —
ptree_destroy_prop, 889

create or destroy barrier for imported segment
—
rsm_memseg_import_destroy_barrier, 941

create or destroy barrier for imported segment
— rsm_memseg_import_init_barrier, 941

create or free local memory handle —
rsm_create_localmemory_handle, 918

create or free local memory handle —
rsm_free_localmemory_handle, 918

create or release a component —
wsreg_create_component, 1181

create or release a component —
wsreg_free_component, 1181

create or release a component —
wsreg_free_component_array, 1181

create, destroy and manipulate exacct objects —
ea_alloc, 374

create, destroy and manipulate exacct objects —
ea_attach_to_group, 374

create, destroy and manipulate exacct objects —
ea_attach_to_object, 374

create, destroy and manipulate exacct objects —
ea_free, 374

create, destroy and manipulate exacct objects —
ea_free_item, 374

create, destroy and manipulate exacct objects —
ea_free_object, 374

create, destroy and manipulate exacct objects —
ea_match_object_catalog, 374

create, destroy and manipulate exacct objects —
ea_set_group, 374

create, destroy and manipulate exacct objects —
ea_set_item, 374

create, destroy and manipulate exacct objects —
ea_strdup, 374

create, destroy and manipulate exacct objects —
ea_strfree, 374

create a communication channel with an IFD —
IFDHCreateChannel, 608

create a communication channel with an IFD —
IFDHCreateChannelByName, 609

create an instance of End Point with Shared
Receive Queue —
dat_ep_create_with_srq, 187

create and add node to tree and return node
handle — ptree_create_and_add_node, 886

create and add property to node and return
property handle —
ptree_create_and_add_prop, 887

create DmiOctetString in dynamic memory, —
newDmiOctetString, 741

create DmiString in dynamic memory, —
newDmiString, 742

create handle for internal process probe control
— tnfctl_internal_open, 1108

1223

create handle for kernel probe control —
tnfctl_kernel_open, 1110

csin — complex sine functions, 145
csinf — complex sine functions, 145
csinh — complex hyperbolic sine functions, 146
csinhf — complex hyperbolic sine

functions, 146
csinhl — complex hyperbolic sine

functions, 146
csinl — complex sine functions, 145
csqrt — complex square root functions, 147
csqrtf — complex square root functions, 147
csqrtl — complex square root functions, 147
ct_ctl_abandon — common contract control

functions, 150
ct_ctl_ack — common contract control

functions, 150
ct_ctl_adopt — common contract control

functions, 150
ct_ctl_newct — common contract control

functions, 150
ct_ctl_qack — common contract control

functions, 150
ct_event_free — common contract event

functions, 152
ct_event_get_ctid — common contract event

functions, 152
ct_event_get_evid — common contract event

functions, 152
ct_event_get_flags — common contract event

functions, 152
ct_event_get_nevid — common contract event

functions, 152
ct_event_get_newct — common contract event

functions, 152
ct_event_get_type — common contract event

functions, 152
ct_event_read — common contract event

functions, 152
ct_event_read_critical — common contract

event functions, 152
ct_event_reliable — common contract event

functions, 152
ct_event_reset — common contract event

functions, 152
ct_pr_event_get_exitstatus — process contract

event functions, 155

ct_pr_event_get_gcorefile — process contract
event functions, 155

ct_pr_event_get_pcorefile — process contract
event functions, 155

ct_pr_event_get_pid — process contract event
functions, 155

ct_pr_event_get_ppid — process contract event
functions, 155

ct_pr_event_get_sender — process contract
event functions, 155

ct_pr_event_get_senderct — process contract
event functions, 155

ct_pr_event_get_signal — process contract
event functions, 155

ct_pr_event_get_zcorefile — process contract
event functions, 155

ct_pr_status_get_contracts — process contract
status functions, 158

ct_pr_status_get_fatal — process contract status
functions, 158

ct_pr_status_get_members — process contract
status functions, 158

ct_pr_status_get_param — process contract
status functions, 158

ct_pr_tmpl_get_fatal — process contract
template functions, 160

ct_pr_tmpl_get_param — process contract
template functions, 160

ct_pr_tmpl_get_transfer — process contract
template functions, 160

ct_pr_tmpl_set_fatal — process contract
template functions, 160

ct_pr_tmpl_set_param — process contract
template functions, 160

ct_pr_tmpl_set_transfer — process contract
template functions, 160

ct_tmpl_activate — common contract template
functions, 166

ct_tmpl_clear — common contract template
functions, 166

ct_tmpl_create — common contract template
functions, 166

ct_tmpl_get_cookie — common contract
template functions, 166

ct_tmpl_get_critical — common contract
template functions, 166

ct_tmpl_get_informative — common contract
template functions, 166

1224 man pages section 3: Extended Library Functions • January 2005

ct_tmpl_set_cookie — common contract
template functions, 166

ct_tmpl_set_critical — common contract
template functions, 166

ct_tmpl_set_informative — common contract
template functions, 166

ctan — complex tangent functions, 148
ctanf — complex tangent functions, 148
ctanh — complex hyperbolic tangent

functions, 149
ctanhf — complex hyperbolic tangent

functions, 149
ctanhl — complex hyperbolic tangent

functions, 149
ctanl — complex tangent functions, 148
cube root functions — cbrt, 68
cube root functions — cbrtf, 68
cube root functions — cbrtl, 68

D
dat_ep_create_with_srq — create an instance of

End Point with Shared Receive Queue, 187
dat_ep_recv_query — provide Endpoint receive

queue consumption on SRQ, 220
dat_ep_set_watermark — set high watermark

on Endpoint, 224
dat_lmr_sync_rdma_read — synchronize local

memory with RDMA read on non-coherent
memory, 261

dat_lmr_sync_rdma_write — synchronize local
memory with RDMA write on non-coherent
memory, 263

dat_srq_free — destroy an instance of the
shared receive queue, 298

dat_srq_post_recv — add receive buffers to
shared receive queue, 299

dat_srq_query — provide parameters of the
shared receive queue, 302

dat_srq_resize — modify the size of the shared
receive queue, 304

dat_srq_set_lw — set low watermark on shared
receive queue, 306

data structure to describe CPU performance
counters — cpc_event, 114

decode a C++ encoded symbol name
— cplus_demangle, 309

decode a C++ encoded symbol name
(Continued)

— demangle, 309
decompose floating-point number — modf, 724
decompose floating-point number —

modff, 724
decompose floating-point number —

modfl, 724
del_CplFileConf — look up possible

completions for a word, 136
del_ExpandFile — expand filename and

wildcard expressions, 377
del_GetLine — allow the user to compose an

input line, 516
del_PathCache — lookup a file in a list of

directories, 808
del_PcaPathConf — lookup a file in a list of

directories, 808
del_WordCompletion — look up possible

completions for a word, 136
demangle — decode a C++ encoded symbol

name, 309
destroy a layout object —

m_destroy_layout, 716
destroy an instance of the shared receive queue

— dat_srq_free, 298
determine CPU performance counter

configuration — cpc_caps, 120
determine CPU performance counter

configuration — cpc_cciname, 120
determine CPU performance counter

configuration — cpc_cpuref, 120
determine CPU performance counter

configuration — cpc_getcciname, 118
determine CPU performance counter

configuration — cpc_getcpuref, 118
determine CPU performance counter

configuration — cpc_getcpuver, 118
determine CPU performance counter

configuration — cpc_getnpic, 118
determine CPU performance counter

configuration — cpc_getusage, 118
determine CPU performance counter

configuration — cpc_npic, 120
determine CPU performance counter

configuration — cpc_walk_attrs, 120
determine CPU performance counter

configuration — cpc_walk_events_all, 120

1225

determine CPU performance counter
configuration — cpc_walk_events_pic, 120

determine CPU performance counter
configuration — cpc_walk_names, 118

determine maximum numeric value of two
floating-point numbers — fmax, 476

determine maximum numeric value of two
floating-point numbers — fmaxf, 476

determine maximum numeric value of two
floating-point numbers — fmaxl, 476

determine minimum numeric value of two
floating-point numbers — fmin, 477

determine minimum numeric value of two
floating-point numbers — fminf, 477

determine minimum numeric value of two
floating-point numbers — fminl, 477

determine access to product install registry —
wsreg_can_access_registry, 1177

determine equality of two components —
wsreg_components_equal, 1180

determine the version of the API supported by
the Common Library —
HBA_GetVersion, 571

determine whether snapshot of lgroup
hierarchy is stale — lgrp_cookie_stale, 665

device ID interfaces for user applications —
devid_compare, 310

device ID interfaces for user applications —
devid_deviceid_to_nmlist, 310

device ID interfaces for user applications —
devid_free, 310

device ID interfaces for user applications —
devid_free_nmlist, 310

device ID interfaces for user applications —
devid_get, 310

device ID interfaces for user applications —
devid_get_minor_name, 310

device ID interfaces for user applications —
devid_sizeof, 310

device ID interfaces for user applications —
devid_str_decode, 310

device ID interfaces for user applications —
devid_str_encode, 310

device ID interfaces for user applications —
devid_str_free, 310

device ID interfaces for user applications —
devid_valid, 310

devid_compare — device ID interfaces for user
applications, 310

devid_deviceid_to_nmlist — device ID
interfaces for user applications, 310

devid_free — device ID interfaces for user
applications, 310

devid_free_nmlist — device ID interfaces for
user applications, 310

devid_get — device ID interfaces for user
applications, 310

devid_get_minor_name — device ID interfaces
for user applications, 310

devid_sizeof — device ID interfaces for user
applications, 310

devid_str_decode — device ID interfaces for
user applications, 310

devid_str_encode — device ID interfaces for
user applications, 310

devid_str_free — device ID interfaces for user
applications, 310

devid_valid — device ID interfaces for user
applications, 310

di_binding_name — return libdevinfo node
information, 314

di_bus_addr — return libdevinfo node
information, 314

di_compatible_names — return libdevinfo node
information, 314

di_devfs_minor_path — generate and free
physical path names, 318

di_devfs_path — generate and free physical
path names, 318

di_devfs_path_free — generate and free
physical path names, 318

di_devid — return libdevinfo node
information, 314

di_driver_major — return libdevinfo node
information, 314

di_driver_name — return libdevinfo node
information, 314

di_driver_ops — return libdevinfo node
information, 314

di_instance — return libdevinfo node
information, 314

di_link_next_by_lnode — libdevinfo link
traversal functions, 322

di_link_next_by_node — libdevinfo link
traversal functions, 322

1226 man pages section 3: Extended Library Functions • January 2005

di_link_private_get — manipulate libdevinfo
user traversal pointers, 326

di_link_private_set — manipulate libdevinfo
user traversal pointers, 326

di_link_spectype — return libdevinfo link
information, 323

di_link_to_lnode — return libdevinfo link
information, 323

di_lnode_devinfo — return libdevinfo lnode
information, 324

di_lnode_devt — return libdevinfo lnode
information, 324

di_lnode_name — return libdevinfo lnode
information, 324

di_lnode_next — libdevinfo lnode traversal
function, 325

di_lnode_private_get — manipulate libdevinfo
user traversal pointers, 326

di_lnode_private_set — manipulate libdevinfo
user traversal pointers, 326

di_minor_devt — return libdevinfo minor node
information, 328

di_minor_name — return libdevinfo minor
node information, 328

di_minor_nodetype — return libdevinfo minor
node information, 328

di_minor_private_get — manipulate libdevinfo
user traversal pointers, 326

di_minor_private_set — manipulate libdevinfo
user traversal pointers, 326

di_minor_spectype — return libdevinfo minor
node information, 328

di_node_name — return libdevinfo node
information, 314

di_node_private_get — manipulate libdevinfo
user traversal pointers, 326

di_node_private_set — manipulate libdevinfo
user traversal pointers, 326

di_nodeid — return libdevinfo node
information, 314

di_prom_prop_data — access PROM device
information, 331

di_prom_prop_name — access PROM device
information, 331

di_prom_prop_next — access PROM device
information, 331

di_prop_bytes — access property values and
attributes, 335

di_prop_devt — access property values and
attributes, 335

di_prop_int64 — access property values and
attributes, 335

di_prop_ints — access property values and
attributes, 335

di_prop_lookup_bytes — search for a
property, 338

di_prop_lookup_int64 — search for a
property, 338

di_prop_lookup_ints — search for a
property, 338

di_prop_lookup_strings — search for a
property, 338

di_prop_name — access property values and
attributes, 335

di_prop_strings — access property values and
attributes, 335

di_prop_type — access property values and
attributes, 335

di_walk_link — traverse libdevinfo links, 342
di_walk_lnode — traverse libdevinfo

lnodes, 343
di_walk_minor — traverse libdevinfo minor

nodes, 344
di_walk_node — traverse libdevinfo device

nodes, 345
directories, create, remove them in a path —

mkdirp, rmdirp, 723
dmi_error — print error in string form, 355
DmiAddComponent — Management Interface

database administration functions, 346
DmiAddGroup — Management Interface

database administration functions, 346
DmiAddLanguage — Management Interface

database administration functions, 346
DmiAddRow — Management Interface

operation functions, 350
DmiDeleteComponent — Management

Interface database administration
functions, 346

DmiDeleteGroup — Management Interface
database administration functions, 346

DmiDeleteLanguage — Management Interface
database administration functions, 346

DmiDeleteRow — Management Interface
operation functions, 350

1227

DmiGetAttribute — Management Interface
operation functions, 350

DmiGetConfig — Management Interface
initialization functions, 356

DmiGetMultiple — Management Interface
operation functions, 350

DmiGetVersion — Management Interface
initialization functions, 356

DmiListAttributes — Management Interface
listing functions, 359

DmiListClassNames — Management Interface
listing functions, 359

DmiListComponents — Management Interface
listing functions, 359

DmiListComponentsByClass — Management
Interface listing functions, 359

DmiListGroups — Management Interface listing
functions, 359

DmiListLanguages — Management Interface
listing functions, 359

DmiOriginateEvent — Service Provider
functions for components, 364

DmiRegister — Management Interface
initialization functions, 356

DmiRegisterCi — Service Provider functions for
components, 364

DmiSetAttribute — Management Interface
operation functions, 350

DmiSetConfig — Management Interface
initialization functions, 356

DmiSetMultiple — Management Interface
operation functions, 350

DmiUnregister — Management Interface
initialization functions, 356

DmiUnregisterCi — Service Provider functions
for components, 364

E
ea_alloc — create, destroy and manipulate

exacct objects, 374
ea_attach_to_group — create, destroy and

manipulate exacct objects, 374
ea_attach_to_object — create, destroy and

manipulate exacct objects, 374
ea_close — open or close exacct files, 367

ea_copy_object — construct, read, and write
extended accounting records, 369

ea_copy_object_tree — construct, read, and
write extended accounting records, 369

ea_error — error interface to extended
accounting library, 366

ea_free — create, destroy and manipulate exacct
objects, 374

ea_free_item — create, destroy and manipulate
exacct objects, 374

ea_free_object — create, destroy and
manipulate exacct objects, 374

ea_get_creator — construct, read, and write
extended accounting records, 369

ea_get_hostname — construct, read, and write
extended accounting records, 369

ea_get_object — construct, read, and write
extended accounting records, 369

ea_get_object_tree — construct, read, and write
extended accounting records, 369

ea_match_object_catalog — create, destroy and
manipulate exacct objects, 374

ea_next_object — construct, read, and write
extended accounting records, 369

ea_open — open or close exacct files, 367
ea_pack_object — construct, read, and write

extended accounting records, 369
ea_previous_object — construct, read, and write

extended accounting records, 369
ea_set_group — create, destroy and manipulate

exacct objects, 374
ea_set_item — create, destroy and manipulate

exacct objects, 374
ea_strdup — create, destroy and manipulate

exacct objects, 374
ea_strfree — create, destroy and manipulate

exacct objects, 374
ea_unpack_object — construct, read, and write

extended accounting records, 369
ea_write_object — construct, read, and write

extended accounting records, 369
ef_expand_file — expand filename and

wildcard expressions, 377
ef_last_error — expand filename and wildcard

expressions, 377
ef_list_expansions — expand filename and

wildcard expressions, 377
elf — object file access library, 392

1228 man pages section 3: Extended Library Functions • January 2005

elf, get entries from name list — nlist, 745
elf_begin — process ELF object files, 398
elf_cntl — control an elf file descriptor, 403
elf_end — process ELF object files, 398
elf_errmsg — error handling, 405
elf_errno — error handling, 405
elf_fill — set fill byte, 406
elf_flagdata — manipulate flags, 407
elf_flagehdr — manipulate flags, 407
elf_flagelf — manipulate flags, 407
elf_flagphdr — manipulate flags, 407
elf_flagshdr — manipulate flags, 407
elf_getarhdr — retrieve archive member

header, 409
elf_getarsym — retrieve archive symbol

table, 411
elf_getbase — get the base offset for an object

file, 412
elf_getdata — get section data, 413
elf_getident — retrieve file identification

data, 418
elf_getshnum — retrieve section number, 418
elf_getshstrndx — retrieve section header string

table index, 418
elf_getscn — get section information, 420
elf_hash — compute hash value, 422
elf_kind — determine file type, 423
elf_memory — process ELF object files, 398
elf_ndxscn — get section information, 420
elf_newdata — get section data, 413
elf_newscn — get section information, 420
elf_next — process ELF object files, 398
elf_nextscn — get section information, 420
elf_rand — process ELF object files, 398
elf_rawdata — get section data, 413
elf_rawfile — retrieve uninterpreted file

contents, 424
elf_strptr — make a string pointer, 425
elf_update — update an ELF descriptor, 426
elf_version — coordinate ELF library and

application versions, 430
elf32_checksum — return the checksum of an

elf image, — elf64_checksum, 383
elf32_fsize — return the size of an object file

type, 384
elf32_getehdr — retrieve class-dependent object

file header, 385

elf32_getphdr — retrieve class-dependent
program header table, 387

elf32_getshdr — retrieve class-dependent
section header, 389

elf32_newehdr — retrieve class-dependent
object file header, 385

elf32_newphdr — retrieve class-dependent
program header table, 387

elf32_xlatetof — class-dependent data
translation, 390

elf32_xlatetom — class-dependent data
translation, 390

elf64_checksum — return the checksum of an
elf image, — elf32_checksum, 383

elf64_fsize — return the size of an object file
type, 384

elf64_getehdr — retrieve class-dependent object
file header, 385

elf64_getphdr — retrieve class-dependent
program header table, 387

elf64_getshdr — retrieve class-dependent
section header, 389

elf64_newehdr — retrieve class-dependent
object file header, 385

elf64_newphdr — retrieve class-dependent
program header table, 387

elf64_xlatetof — class-dependent data
translation, 390

elf64_xlatetom — class-dependent data
translation, 390

enable and disable performance counters —
cpc_count_sys_events, 110

enable and disable performance counters —
cpc_count_usr_events, 110

enable and disable performance counters —
cpc_disable, 112

enable and disable performance counters —
cpc_enable, 112

encryption, determine whether a buffer of
characters is encrypted — isencrypt, 622

end a Fibre Channel Common Transport request
to a Fabric — HBA_SendCTPassThru, 582

end a Fibre Channel Common Transport request
to a Fabric — HBA_SendCTPassThruV2, 582

endac — get audit control file information, 488
endauclass — close audit_class database

file, 490

1229

endauevent — close audit_event database
file, 493

endauthattr — get authorization database
entry, 495

endddent — get device_deallocate entry, 500
enddmapent — get device_maps entry, 502
endexecattr — get execution profile entry, 504
endprofattr — get profile description and

attributes, 508
endprojent — project database entry

functions, 510
enduserattr — get user_attr entry, 514
erf — error function, 431
erfc — complementary error function, 432
erfcf — complementary error function, 432
erfcl — complementary error function, 432
erff — error function, 431
erfl — error function, 431
error function — erf, 431
error function — erff, 431
error function — erfl, 431
error interface to resource pools library —

pool_error, 854
error interface to resource pools library —

pool_strerror, 854
error interface to Service Configuration Facility

— scf_error, 965
error interface to Service Configuration Facility

— scf_strerror, 965
error interface to extended accounting library —

ea_error, 366
establish a context with a smartcard —

SCF_Terminal_getCard, 1035
establish a context with a smartcard terminal

(reader) — SCF_Session_getTerminal, 1010
establish a context with a system’s smartcard

framework — SCF_Session_getSession, 1008
Euclidean distance function — hypot, 596
Euclidean distance function — hypotf, 596
Euclidean distance function — hypotl, 596
Exacct — exacct system calls and error

handling, 433
Exacct::Catalog — exacct catalog tag

manipulation, 436
Exacct::File — exacct file manipulation, 438
Exacct::Object — exacct object

manipulation, 441

Exacct::Object::Group — exacct group
manipulation, 444

Exacct::Object::Item — exacct item
manipulation, 446

exacct catalog tag manipulation —
Exacct::Catalog, 436

exacct file manipulation — Exacct::File, 438
exacct group manipulation —

Exacct::Object::Group, 444
exacct item manipulation —

Exacct::Object::Item, 446
exacct object manipulation —

Exacct::Object, 441
exacct system calls and error handling —

Exacct, 433
Executable and Linking Format, See elf
exp — exponential function, 449
exp2 — exponential base 2 functions, 448
exp2f — exponential base 2 functions, 448
exp2l — exponential base 2 functions, 448
expand filename and wildcard expressions —

del_ExpandFile, 377
expand filename and wildcard expressions —

ef_expand_file, 377
expand filename and wildcard expressions —

ef_last_error, 377
expand filename and wildcard expressions —

ef_list_expansions, 377
expand filename and wildcard expressions —

new_ExpandFile, 377
expf — exponential function, 449
expl — exponential function, 449
expm1 — compute exponential function, 451
expm1f — compute exponential function, 451
expm1l — compute exponential function, 451
exponential base 2 functions — exp2, 448
exponential base 2 functions — exp2f, 448
exponential base 2 functions — exp2l, 448
exponential function — exp, 449
exponential function — expf, 449
exponential function — expl, 449
extract mantissa and exponent from a

floating-point number — frexp, 481
extract mantissa and exponent from a

floating-point number — frexpf, 481
extract mantissa and exponent from a

floating-point number — frexpl, 481

1230 man pages section 3: Extended Library Functions • January 2005

F
fabs — absolute value function, 453
fabsf — absolute value function, 453
fabsl — absolute value function, 453
fdim — compute positive difference between

two floating-point numbers, 454
fdimf — compute positive difference between

two floating-point numbers, 454
fdiml — compute positive difference between

two floating-point numbers, 454
feclearexcept — clear floating-point

exception, 455
fegetenv — get and set current floating-point

environment, 456
fegetexceptflag — get and set floating-point

status flags, 457
fegetprec — control floating point rounding

precision modes, 461
fegetround — get and set current rounding

direction, 458
feholdexcept — save current floating-point

environment, 459
feraiseexcept — raise floating-point

exception, 460
fesetenv — get and set current floating-point

environment, 456
fesetexceptflag — get and set floating-point

status flags, 457
fesetprec — control floating point rounding

precision modes, 461
fesetround — get and set current rounding

direction, 458
fetestexcept — test floating-point exception

flags, 462
feupdateenv — update floating-point

environment, 463
fex_get_handling — control floating point

exception handling modes, 466
fex_get_log — log retrospective diagnostics for

floating point exceptions, 470
fex_get_log_depth — log retrospective

diagnostics for floating point exceptions, 470
fex_getexcepthandler — control floating point

exception handling modes, 466
fex_log_entry — log retrospective diagnostics

for floating point exceptions, 470
fex_merge_flags — manage the floating point

environment, 465

fex_set_handling — control floating point
exception handling modes, 466

fex_set_log — log retrospective diagnostics for
floating point exceptions, 470

fex_set_log_depth — log retrospective
diagnostics for floating point exceptions, 470

fex_setexcepthandler — control floating point
exception handling modes, 466

fgetprojent — project database entry
functions, 510

fgetuserattr — get user_attr entry, 514
file system, create new — newfs, 53
files, search for named file in named directories

— pathfind, 806
find a kstat by name — kstat_data_lookup, 643
find a kstat by name — kstat_lookup, 643
find node with given property and value —

picl_find_node, 820
find node with given property and value —

ptree_find_node, 892
finished using lgroup interface — lgrp_fini, 667
floating-point multiply-add — fma, 474
floating-point multiply-add — fmaf, 474
floating-point multiply-add — fmal, 474
floating-point remainder value function —

fmod, 478
floating-point remainder value function —

fmodf, 478
floating-point remainder value function —

fmodl, 478
floating-point rounding functions —

nearbyint, 740
floating-point rounding functions —

nearbyintf, 740
floating-point rounding functions —

nearbyintl, 740
floor — floor function, 473
floor function — floor, 473
floor function — floorf, 473
floor function — floorl, 473
floorf — floor function, 473
floorl — floor function, 473
fma — floating-point multiply-add, 474
fmaf — floating-point multiply-add, 474
fmal — floating-point multiply-add, 474
fmax — determine maximum numeric value of

two floating-point numbers, 476

1231

fmaxf — determine maximum numeric value of
two floating-point numbers, 476

fmaxl — determine maximum numeric value of
two floating-point numbers, 476

fmin — determine minimum numeric value of
two floating-point numbers, 477

fminf — determine minimum numeric value of
two floating-point numbers, 477

fminl — determine minimum numeric value of
two floating-point numbers, 477

fmod — floating-point remainder value
function, 478

fmodf — floating-point remainder value
function, 478

fmodl — floating-point remainder value
function, 478

fpclassify — classify real floating type, 479
free_authattr — release memory, 495
free dynamic memory allocated for input

DmiString structure, — freeDmiString, 480
free_execattr — get execution profile entry, 504
free memory for sysevent handle —

sysevent_free, 1085
free_profattr — get profile description and

attributes, 508
free_proflist — get execution profile entry, 504
free_proflist — get profile description and

attributes, 508
free_userattr — get user_attr entry, 514
freeDmiString— free dynamic memory

allocated for input DmiString structure, 480
frexp — extract mantissa and exponent from a

floating-point number, 481
frexpf — extract mantissa and exponent from a

floating-point number, 481
frexpl — extract mantissa and exponent from a

floating-point number, 481
functions to manage lockfile(s) for user’s

mailbox
— maillock, 704
— mailunlock, 704
— touchlock, 704

G
gather SCSI information from discovered ports

— HBA_ScsiInquiryV2, 588

gather SCSI information from discovered ports
— HBA_ScsiReadCapacityV2, 588

gather SCSI information from discovered ports
— HBA_ScsiReportLUNsV2, 588

gather SCSI information from discovered ports
— HBA_SendReadCapacity, 588

gather SCSI information from discovered ports
— HBA_SendReportLUNs, 588

gather SCSI information from discovered ports
— HBA_SendScsiInquiry, 588

generate and free physical path names —
di_devfs_minor_path, 318

generate and free physical path names —
di_devfs_path, 318

generate and free physical path names —
di_devfs_path_free, 318

get a property handle of a node —
picl_get_first_prop, 821

get a property handle of a node —
picl_get_next_prop, 821

get and set current floating-point environment
— fegetenv, 456

get and set current floating-point environment
— fesetenv, 456

get and set current rounding direction —
fegetround, 458

get and set current rounding direction —
fesetround, 458

get and set floating-point status flags —
fegetexceptflag, 457

get and set floating-point status flags —
fesetexceptflag, 457

get class name, subclass name, ID or buffer size
of event — sysevent_get_class_name, 1087

get class name, subclass name, ID or buffer size
of event — sysevent_get_seq, 1087

get class name, subclass name, ID or buffer size
of event — sysevent_get_size, 1087

get class name, subclass name, ID or buffer size
of event —
sysevent_get_subclass_name, 1087

get class name, subclass name, ID or buffer size
of event — sysevent_get_time, 1087

get device_deallocate entry — endddent, 500
get device_deallocate entry — getddent, 500
get device_deallocate entry — getddnam, 500
get device_deallocate entry — setddent, 500
get device_deallocate entry — setddfile, 500

1232 man pages section 3: Extended Library Functions • January 2005

get device_maps entry — enddmapent, 502
get device_maps entry — getdmapent, 502
get device_maps entry — getdmapnam, 502
get device_maps entry — getdmaptdev, 502
get device_maps entry — getdmaptype, 502
get device_maps entry — setdmapent, 502
get device_maps entry — setdmapfile, 502
get execution profile entry — endexecattr, 504
get execution profile entry — free_execattr, 504
get execution profile entry — free_proflist, 504
get execution profile entry — getexecattr, 504
get execution profile entry — getexecprof, 504
get execution profile entry — getexecuser, 504
get execution profile entry — get_profiles, 504
get execution profile entry —

match_execattr, 504
get execution profile entry — setexecattr, 504
get of set lgroup affinity —

lgrp_affinity_get, 662
get of set lgroup affinity —

lgrp_affinity_set, 662
get or free interconnect topology —

rsm_free_interconnect_topology, 922
get or free interconnect topology —

rsm_get_interconnect_topology, 922
get or release a controller handle —

rsm_get_controller, 920
get or release a controller handle —

rsm_get_controller_attr, 920
get or release a controller handle —

rsm_release_controller, 920
get or release a poll descriptor —

rsm_memseg_get_pollfd, 936
get or release a poll descriptor —

rsm_memseg_release_pollfd, 936
get profile description and attributes —

endprofattr, 508
get profile description and attributes —

free_profattr, 508
get profile description and attributes —

free_proflist, 508
get profile description and attributes —

getprofattr, 508
get profile description and attributes —

getproflist, 508
get profile description and attributes —

getprofnam, 508

get profile description and attributes —
setprofattr, 508

get section data — elf_getdata, 413
get section data — elf_newdata, 413
get section data — elf_rawdata, 413
get the value of a property —

picl_get_propval, 829
get the value of a property —

picl_get_propval_by_name, 829
get the value of a property —

ptree_get_propval, 901
get the value of a property —

ptree_get_propval_by_name, 901
get user_attr entry — enduserattr, 514
get user_attr entry — fgetuserattr, 514
get user_attr entry — free_userattr, 514
get user_attr entry — getuserattr, 514
get user_attr entry — getusernam, 514
get user_attr entry — getuseruid, 514
get user_attr entry — setuserattr, 514
get vendor name, publisher name or processor

ID of event — sysevent_get_pid, 1089
get vendor name, publisher name or processor

ID of event —
sysevent_get_pub_name, 1089

get vendor name, publisher name or processor
ID of event —
sysevent_get_vendor_name, 1089

get a string describing a status code —
SCF_strerror, 1028

get and set media attributes
— media_getattr, 719
— media_setattr, 719

get attribute list pointer —
sysevent_get_attr_list, 1086

get children of given lgroup —
lgrp_children, 664

get CPU IDs contained in specified lgroup —
lgrp_cpus, 666

get error message string — picl_strerror, 836
get frutree parent node for a given device node

— picl_get_frutree_parent, 822
get frutree parent node for a given device node

— ptree_get_frutree_parent, 894
get handle of node specified by PICL tree path

— picl_get_node_by_path, 824
get handle of node specified by PICL tree path

— ptree_get_node_by_path, 896

1233

get home lgroup — lgrp_home, 668
get IFD capabilities —

IFDHGetCapabilities, 611
get latency between two lgroups —

lgrp_latency, 670
get number of lgroups — lgrp_nlgrps, 672
get parents of given lgroup —

lgrp_parents, 673
get_profiles — get execution profile entry, 504
get property information —

ptree_get_propinfo, 899
get property information and handle of named

property — picl_get_propinfo_by_name, 828
get property information and handle of named

property —
ptree_get_propinfo_by_name, 900

get segment ID range —
rsm_get_segmentid_range, 924

get the handle of the property by name —
picl_get_prop_by_name, 826

get the information about a property —
picl_get_propinfo, 827

get the root handle of the PICL tree —
picl_get_root, 831

get the root node handle — ptree_get_root, 902
get the trace attributes from a tnfctl handle —

tnfctl_trace_attrs_get, 1125
get view of lgroup hierarchy — lgrp_view, 676
getacdir — get audit control file

information, 488
getacflg — get audit control file

information, 488
getacinfo — get audit control file

information, 488
getacmin — get audit control file

information, 488
getacna — get audit control file

information, 488
getauclassent — get audit_class database

entry, 490
getauclassent_r — get audit_class database

entry, 490
getauclassnam — get audit_class database

entry, 490
getauclassnam_r — get audit_class database

entry, 490
getauditflags() — generate process audit

state, 507

getauditflagsbin() — convert audit flag
specifications, 492

getauditflagschar() — convert audit flag
specifications, 492

getauevent — get audit_event database
entry, 493

getauevent_r — get audit_event database
entry, 493

getauevnam — get audit_event database
entry, 493

getauevnam_r — get audit_event database
entry, 493

getauevnonam — get audit_event database
entry, 493

getauevnum — get audit_event database
entry, 493

getauevnum_r — get audit_event database
entry, 493

getauthattr — get authorization database
entry, 495

getauthnam — get authorization database
entry, 495

getddent — get device_deallocate entry, 500
getddnam — get device_deallocate entry, 500
getdefaultproj — project database entry

functions, 510
getdmapent — get device_maps entry, 502
getdmapnam — get device_maps entry, 502
getdmaptdev — get device_maps entry, 502
getdmaptype — get device_maps entry, 502
getexecattr — get execution profile entry, 504
getexecprof — get execution profile entry, 504
getexecuser — get execution profile entry, 504
getprofattr — get profile description and

attributes, 508
getproflist — get profile description and

attributes, 508
getprofnam — get profile description and

attributes, 508
getprojbyid — project database entry

functions, 510
getprojbyname — project database entry

functions, 510
getprojent — project database entry

functions, 510
getuserattr — get user_attr entry, 514
getusernam — get user_attr entry, 514
getuseruid — get user_attr entry, 514

1234 man pages section 3: Extended Library Functions • January 2005

gl_abandon_line — use gl_get_line() from
an external event loop, 544

gl_append_history — allow the user to
compose an input line, 516

gl_automatic_history — allow the user to
compose an input line, 516

gl_bind_keyseq — allow the user to compose an
input line, 516

gl_catch_blocked — allow the user to compose
an input line, 516

gl_change_terminal — allow the user to
compose an input line, 516

gl_clear_history — allow the user to compose
an input line, 516

gl_completion_action — allow the user to
compose an input line, 516

gl_configure_getline — allow the user to
compose an input line, 516

gl_customize_completion — allow the user to
compose an input line, 516

gl_display_text — allow the user to compose an
input line, 516

gl_echo_mode — allow the user to compose an
input line, 516

gl_erase_terminal — allow the user to compose
an input line, 516

gl_error_message — allow the user to compose
an input line, 516

gl_get_line — allow the user to compose an
input line, 516

gl_group_history — allow the user to compose
an input line, 516

gl_handle_signal — use gl_get_line() from
an external event loop, 544

gl_ignore_signal — allow the user to compose
an input line, 516

gl_inactivity_timeout — allow the user to
compose an input line, 516

gl_io_mode — use gl_get_line() from an
external event loop, 544

gl_last_signal — allow the user to compose an
input line, 516

gl_limit_history — allow the user to compose
an input line, 516

gl_list_signals — allow the user to compose an
input line, 516

gl_load_history — allow the user to compose an
input line, 516

gl_lookup_history — allow the user to compose
an input line, 516

gl_normal_io — use gl_get_line() from an
external event loop, 544

gl_pending_io — use gl_get_line() from an
external event loop, 544

gl_prompt_style — allow the user to compose
an input line, 516

gl_query_char — allow the user to compose an
input line, 516

gl_range_of_history — allow the user to
compose an input line, 516

gl_raw_io — use gl_get_line() from an
external event loop, 544

gl_read_char — allow the user to compose an
input line, 516

gl_register_action — allow the user to compose
an input line, 516

gl_replace_prompt — allow the user to
compose an input line, 516

gl_resize_history — allow the user to compose
an input line, 516

gl_return_status — allow the user to compose
an input line, 516

gl_save_history — allow the user to compose an
input line, 516

gl_set_term_size — allow the user to compose
an input line, 516

gl_show_history — allow the user to compose
an input line, 516

gl_size_of_history — allow the user to compose
an input line, 516

gl_state_of_history — allow the user to
compose an input line, 516

gl_terminal_size — allow the user to compose
an input line, 516

gl_toggle_history — allow the user to compose
an input line, 516

gl_trap_signal — allow the user to compose an
input line, 516

gl_tty_signals — use gl_get_line() from an
external event loop, 544

gl_watch_fd — allow the user to compose an
input line, 516

gmatch — shell global pattern matching, 551

1235

H
handle persistent bindings between FCP-2

discovered devices and operating system
SCSI information —
HBA_GetFcpPersistentBinding, 561

handle persistent bindings between FCP-2
discovered devices and operating system
SCSI information —
HBA_GetPersistentBindingV2, 561

handle persistent bindings between FCP-2
discovered devices and operating system
SCSI information —
HBA_RemoveAllPersistentBindings, 561

handle persistent bindings between FCP-2
discovered devices and operating system
SCSI information —
HBA_RemovePersistentBinding, 561

handle persistent bindings between FCP-2
discovered devices and operating system
SCSI information —
HBA_SetPersistentBindingV2, 561

hardware performance counters — cpc, 90
have Volume Management check for media —

volmgt_check, 1158
HBA_FreeLibrary — load and free the resources

used by the HBA Common Library, 573
HBA_GetAdapterAttributes — retrieve

attributes about a specific HBA, 552
HBA_GetAdapterName — retrieve the name of

a specific HBA, 553
HBA_GetAdapterPortAttributes — retrieve

Fibre Channel port attributes for a specific
device, 555

HBA_GetBindingCapability — return and sets
binding capabilities on an HBA port, 558

HBA_GetBindingSupport — return and sets
binding capabilities on an HBA port, 558

HBA_GetDiscoveredPortAttributes — retrieve
Fibre Channel port attributes for a specific
device, 555

HBA_GetEventBuffer — remove and return the
next event from the HBA’s event queue, 560

HBA_GetFC4Statistics — Access Port statistics
for a specific HBA port., 569

HBA_GetFcpPersistentBinding — handle
persistent bindings between FCP-2
discovered devices and operating system
SCSI information, 561

HBA_GetFCPStatistics — Access Port statistics
for a specific HBA port., 569

HBA_GetNumberOfAdapters — report the
number of HBAs known to the Common
Library, 568

HBA_GetPersistentBindingV2 — handle
persistent bindings between FCP-2
discovered devices and operating system
SCSI information, 561

HBA_GetPortAttributesByWWN — retrieve
Fibre Channel port attributes for a specific
device, 555

HBA_GetPortStatistics — Access Port statistics
for a specific HBA port., 569

HBA_GetRNIDMgmtInfo — access Fibre
Channel Request Node Identification Data
(RNID), 593

HBA_GetVendorLibraryAttributes — return
details about the implementation of the
wrapper library and the vendor specific
library, 572

HBA_GetVersion — determine the version of
the API supported by the Common
Library, 571

HBA_GetWrapperLibraryAttributes — return
details about the implementation of the
wrapper library and the vendor specific
library, 572

HBA_LoadLibrary — load and free the
resources used by the HBA Common
Library, 573

HBA_RefreshAdapterConfiguration — refresh
information for a specific HBA, 576

HBA_RefreshInformation — refresh
information for a specific HBA, 576

HBA_RemoveAllPersistentBindings — handle
persistent bindings between FCP-2
discovered devices and operating system
SCSI information, 561

HBA_RemovePersistentBinding — handle
persistent bindings between FCP-2
discovered devices and operating system
SCSI information, 561

HBA_ResetStatistics — Access Port statistics for
a specific HBA port., 569

HBA_ScsiInquiryV2 — gather SCSI information
from discovered ports, 588

1236 man pages section 3: Extended Library Functions • January 2005

HBA_ScsiReadCapacityV2 — gather SCSI
information from discovered ports, 588

HBA_ScsiReportLUNsV2 — gather SCSI
information from discovered ports, 588

HBA_SendCTPassThru — end a Fibre Channel
Common Transport request to a Fabric, 582

HBA_SendCTPassThruV2 — end a Fibre
Channel Common Transport request to a
Fabric, 582

HBA_SendLIRR — issue an Extended Link
Service through the local HBA Port, 585

HBA_SendReadCapacity — gather SCSI
information from discovered ports, 588

HBA_SendReportLUNs — gather SCSI
information from discovered ports, 588

HBA_SendRLS — issue an Extended Link
Service through the local HBA Port, 585

HBA_SendRNID — access Fibre Channel
Request Node Identification Data
(RNID), 593

HBA_SendRNIDV2 — access Fibre Channel
Request Node Identification Data
(RNID), 593

HBA_SendRPL — issue an Extended Link
Service through the local HBA Port, 585

HBA_SendRPS — issue an Extended Link
Service through the local HBA Port, 585

HBA_SendScsiInquiry — gather SCSI
information from discovered ports, 588

HBA_SendSRL — issue an Extended Link
Service through the local HBA Port, 585

HBA_SetBindingSupport — return and sets
binding capabilities on an HBA port, 558

HBA_SetPersistentBindingV2 — handle
persistent bindings between FCP-2
discovered devices and operating system
SCSI information, 561

HBA_SetRNIDMgmtInfo — access Fibre
Channel Request Node Identification Data
(RNID), 593

hyperbolic cosine function — cosh, 88
hyperbolic cosine function — coshf, 88
hyperbolic cosine function — coshl, 88
hyperbolic sine function — sinh, 1064
hyperbolic sine function — sinhf, 1064
hyperbolic sine function — sinhl, 1064
hyperbolic tangent function — tanh, 1097
hyperbolic tangent function — tanhf, 1097

hyperbolic tangent function — tanhl, 1097
hypot — Euclidean distance function, 596
hypotf — Euclidean distance function, 596
hypotl — Euclidean distance function, 596

I
IFDHCloseChannel — close the communication

channel with an IFD, 606
IFDHControl — send control information to an

IFD, 607
IFDHCreateChannel — create a communication

channel with an IFD, 608
IFDHCreateChannelByName — create a

communication channel with an IFD, 609
IFDHGetCapabilities — get IFD

capabilities, 611
IFDHICCPresence — check for the presence of a

smart card, 613
IFDHPowerICC — power up or power down

the smart card, 614
IFDHSetCapabilities — set slot or card

capabilities, 616
IFDHSetProtocolParameters — set protocol

parameters, 617
IFDHTransmitToICC — transmit APDU to a

smart card, 619
ilogb — return an unbiased exponent, 621
ilogbf — return an unbiased exponent, 621
ilogbl — return an unbiased exponent, 621
initialize kernel statistics facility —

kstat_close, 644
initialize kernel statistics facility —

kstat_open, 644
initialize the CPU Performance Counter library

— cpc_close, 122
initialize the CPU Performance Counter library

— cpc_open, 122
initialize a layout object —

m_create_layout, 712
initialize lgroup interface — lgrp_init, 669
initialize ptree_propinfo_t structure —

ptree_init_propinfo, 903
initialize wsreg library — wsreg_initialize, 1183
initiate a session with the PICL daemon —

picl_initialize, 832
inproj — project database entry functions, 510

1237

interfaces for direct probe and process control
for another process
— tnfctl_continue, 1111
— tnfctl_exec_open, 1111
— tnfctl_pid_open, 1111

interfaces to query and to change the state of a
probe
— tnfctl_probe_connect, 1119
— tnfctl_probe_disable, 1119
— tnfctl_probe_disconnect_all, 1119
— tnfctl_probe_enable, 1119
— tnfctl_probe_state_get, 1119
— tnfctl_probe_trace, 1119
— tnfctl_probe_untrace, 1119

inverse hyperbolic cosine functions —
acosh, 36

inverse hyperbolic cosine functions —
acoshf, 36

inverse hyperbolic cosine functions —
acoshl, 36

inverse hyperbolic sine functions — asinh, 40
inverse hyperbolic sine functions — asinhf, 40
inverse hyperbolic sine functions — asinhl, 40
inverse hyperbolic tangent functions —

atanh, 44
inverse hyperbolic tangent functions —

atanhf, 44
inverse hyperbolic tangent functions —

atanhl, 44
isencrypt — determine whether a buffer of

characters is encrypted, 622
isfinite — test for finite value, 623
isgreater — test if x greater than y, 624
isgreaterequal — test if x greater than or equal

to y, 625
isless — test if x is less than y, 627
islessequal — test if x is less than or equal to

y, 628
islessgreater — test if x is less than or greater

than y, 629
isnan — test for NaN, 630
isnormal — test for a normal value, 631
issue an Extended Link Service through the

local HBA Port — HBA_SendLIRR, 585
issue an Extended Link Service through the

local HBA Port — HBA_SendRLS, 585
issue an Extended Link Service through the

local HBA Port — HBA_SendRPL, 585

issue an Extended Link Service through the
local HBA Port — HBA_SendRPS, 585

issue an Extended Link Service through the
local HBA Port — HBA_SendSRL, 585

isunordered — test if arguments are
unordered, 632

iterate through the Service Configuration
Facility repository — scf_iter_create, 977

iterate through the Service Configuration
Facility repository — scf_iter_destroy, 977

iterate through the Service Configuration
Facility repository — scf_iter_handle, 977

iterate through the Service Configuration
Facility repository —
scf_iter_handle_scopes, 977

iterate through the Service Configuration
Facility repository —
scf_iter_instance_pgs, 977

iterate through the Service Configuration
Facility repository —
scf_iter_instance_pgs_composed, 977

iterate through the Service Configuration
Facility repository —
scf_iter_instance_pgs_typed, 977

iterate through the Service Configuration
Facility repository —
scf_iter_instance_pgs_typed_composed, 977

iterate through the Service Configuration
Facility repository —
scf_iter_instance_snapshots, 977

iterate through the Service Configuration
Facility repository —
scf_iter_next_instance, 977

iterate through the Service Configuration
Facility repository — scf_iter_next_pg, 977

iterate through the Service Configuration
Facility repository —
scf_iter_next_property, 977

iterate through the Service Configuration
Facility repository —
scf_iter_next_scope, 977

iterate through the Service Configuration
Facility repository —
scf_iter_next_service, 977

iterate through the Service Configuration
Facility repository —
scf_iter_next_snapshot, 977

1238 man pages section 3: Extended Library Functions • January 2005

iterate through the Service Configuration
Facility repository —
scf_iter_next_value, 977

iterate through the Service Configuration
Facility repository —
scf_iter_pg_properties, 977

iterate through the Service Configuration
Facility repository —
scf_iter_property_values, 977

iterate through the Service Configuration
Facility repository — scf_iter_reset, 977

iterate through the Service Configuration
Facility repository —
scf_iter_scope_services, 977

iterate through the Service Configuration
Facility repository —
scf_iter_service_instances, 977

iterate through the Service Configuration
Facility repository —
scf_iter_service_pgs, 977

iterate through the Service Configuration
Facility repository —
scf_iter_service_pgs_typed, 977

iterate through the Service Configuration
Facility repository —
scf_iter_snaplevel_pgs, 977

iterate through the Service Configuration
Facility repository —
scf_iter_snaplevel_pgs_typed, 977

iterate over probes
— tnfctl_probe_apply, 1116
— tnfctl_probe_apply_ids, 1116

J
j0 — Bessel functions of the first kind, 633
j0f — Bessel functions of the first kind, 633
j0l — Bessel functions of the first kind, 633
j1 — Bessel functions of the first kind, 633
j1f — Bessel functions of the first kind, 633
j1l — Bessel functions of the first kind, 633
jn — Bessel functions of the first kind, 633
jnf — Bessel functions of the first kind, 633
jnl — Bessel functions of the first kind, 633

K
kernel virtual memory functions

get invocation argument for process —
kvm_getcmd, 647

get u-area for process — kvm_getu, 647
get entries from kernel symbol table —

kvm_nlist, 652
kstat — kernel statistics facility, 634
specify a kernel to examine — kvm_open,

kvm_close, 653
kstat — kernel statistics facility, 634
kstat_chain_update — update the kstat header

chain, 642
kstat_close — initialize kernel statistics

facility, 644
kstat_data_lookup — find a kstat by name, 643
kstat_lookup — find a kstat by name, 643
kstat_open — initialize kernel statistics

facility, 644
kstat_read — read or write kstat data, 645
kstat_write — read or write kstat data, 645
kva_match — look up a key in a key-value

array, 646
kvm_close — specify kernel to examine, 653
kvm_getcmd — get invocation arguments for

process, 647
kvm_getproc — read system process

structures, 650
kvm_getu — get u-area for process, 647
kvm_kread — copy data to or from a kernel

image or running system, 649
kvm_kwrite — copy data to or from a kernel

image or running system, 649
kvm_nextproc — read system process

structures, 650
kvm_nlist — get entries from kernel symbol

table, 652
kvm_open — specify kernel to examine, 653
kvm_read — copy data to or from a kernel

image or running system, 655
kvm_setproc — read system process

structures, 650
kvm_uread — copy data to or from a kernel

image or running system, 649
kvm_uwrite — copy data to or from a kernel

image or running system, 649
kvm_write — copy data to or from a kernel

image or running system, 655

1239

L
la_activity — runtime linker auditing

functions, 951
la_amd64_pltenter — runtime linker auditing

functions, 951
la_i86_pltenter — runtime linker auditing

functions, 951
la_objfilter — runtime linker auditing

functions, 951
la_objopen — runtime linker auditing

functions, 951
la_objsearch — runtime linker auditing

functions, 951
la_pltexit — runtime linker auditing

functions, 951
la_pltexit64 — runtime linker auditing

functions, 951
la_preinit — runtime linker auditing

functions, 951
la_sparcv8_pltenter — runtime linker auditing

functions, 951
la_sparcv9_pltenter — runtime linker auditing

functions, 951
la_symbind32 — runtime linker auditing

functions, 951
la_symbind64 — runtime linker auditing

functions, 951
la_version — runtime linker auditing

functions, 951
layout transformation —

m_transform_layout, 728
layout transformation for wide character strings

— m_wtransform_layout, 733
ld_atexit — link-editor support functions, 658
ld_atexit64 — link-editor support

functions, 658
ld_file — link-editor support functions, 658
ld_file64 — link-editor support functions, 658
ld_input_done — link-editor support

functions, 658
ld_input_section — link-editor support

functions, 658
ld_input_section64 — link-editor support

functions, 658
ld_section — link-editor support functions, 658
ld_section64 — link-editor support

functions, 658
ld_start — link-editor support functions, 658

ld_start64 — link-editor support functions, 658
ld_support — link-editor support

functions, 658
ld_version — link-editor support functions, 658
lgrp_affinity_get — get of set lgroup

affinity, 662
lgrp_affinity_set — get of set lgroup

affinity, 662
lgrp_children — get children of given

lgroup, 664
lgrp_cookie_stale — determine whether

snapshot of lgroup hierarchy is stale, 665
lgrp_cpus — get CPU IDs contained in specified

lgroup, 666
lgrp_fini — finished using lgroup interface, 667
lgrp_home — get home lgroup, 668
lgrp_init — initialize lgroup interface, 669
lgrp_latency — get latency between two

lgroups, 670
lgrp_nlgrps — get number of lgroups, 672
lgrp_parents — get parents of given

lgroup, 673
lgrp_root — return root lgroup ID, 674
lgrp_version — coordinate library and

application versions, 675
lgrp_view — get view of lgroup hierarchy, 676
libdevinfo link traversal functions —

di_link_next_by_lnode, 322
libdevinfo link traversal functions —

di_link_next_by_node, 322
libdevinfo lnode traversal function —

di_lnode_next, 325
libpicl — PICL interface library, 677
libpicltree — PTree and Plug-in Registration

interface library, 680
library for TNF probe control in a process or the

kernel — libtnfctl, 683
libtecla_version — query libtecla version

number, 682
libtnfctl — library for TNF probe control in a

process or the kernel, 683
limit information for Service Configuration

Facility — scf_limit, 983
link-editor support functions —

ld_atexit64, 658
link-editor support functions — ld_atexit, 658
link-editor support functions — ld_file64, 658
link-editor support functions — ld_file, 658

1240 man pages section 3: Extended Library Functions • January 2005

link-editor support functions —
ld_input_done, 658

link-editor support functions —
ld_input_section64, 658

link-editor support functions —
ld_input_section, 658

link-editor support functions —
ld_section64, 658

link-editor support functions — ld_section, 658
link-editor support functions — ld_start64, 658
link-editor support functions — ld_start, 658
link-editor support functions —

ld_support, 658
link-editor support functions — ld_version, 658
llrint — round to nearest integer value using

current rounding direction, 688
llrintf — round to nearest integer value using

current rounding direction, 688
llrintl — round to nearest integer value using

current rounding direction, 688
llround — round to nearest integer value, 690
llroundf — round to nearest integer value, 690
llroundl — round to nearest integer value, 690
load and free the resources used by the HBA

Common Library — HBA_FreeLibrary, 573
load and free the resources used by the HBA

Common Library — HBA_LoadLibrary, 573
load exponent of a radix-independent

floating-point number — scalb, 953
load exponent of a radix-independent

floating-point number — scalbf, 953
load exponent of a radix-independent

floating-point number — scalbl, 953
log — natural logarithm function, 698
log retrospective diagnostics for floating point

exceptions — fex_get_log, 470
log retrospective diagnostics for floating point

exceptions — fex_get_log_depth, 470
log retrospective diagnostics for floating point

exceptions — fex_log_entry, 470
log retrospective diagnostics for floating point

exceptions — fex_set_log, 470
log retrospective diagnostics for floating point

exceptions — fex_set_log_depth, 470
log a message in system log — picld_log, 817
log10 — base 10 logarithm function, 692
log10f — base 10 logarithm function, 692
log10l — base 10 logarithm function, 692

log1p — compute natural logarithm, 694
log1pf — compute natural logarithm, 694
log1pl — compute natural logarithm, 694
log2 — compute base 2 logarithm

functions, 696
log2f — compute base 2 logarithm

functions, 696
log2l — compute base 2 logarithm

functions, 696
logb — radix-independent exponent, 700
logbf — radix-independent exponent, 700
logbl — radix-independent exponent, 700
logf — natural logarithm function, 698
logl — natural logarithm function, 698
look up possible completions for a word —

cfc_file_start, 136
look up possible completions for a word —

cfc_literal_escapes, 136
look up possible completions for a word —

cfc_set_check_fn, 136
look up possible completions for a word —

cpl_add_completion, 136
look up possible completions for a word —

cpl_check_exe, 136
look up possible completions for a word —

cpl_complete_word, 136
look up possible completions for a word —

cpl_file_completions, 136
look up possible completions for a word —

cpl_last_error, 136
look up possible completions for a word —

cpl_list_completions, 136
look up possible completions for a word —

cpl_recall_matches, 136
look up possible completions for a word —

cpl_record_error, 136
look up possible completions for a word —

del_CplFileConf, 136
look up possible completions for a word —

del_WordCompletion, 136
look up possible completions for a word —

new_CplFileConf, 136
look up possible completions for a word —

new_WordCompletion, 136
lookup a file in a list of directories —

del_PathCache, 808
lookup a file in a list of directories —

del_PcaPathConf, 808

1241

lookup a file in a list of directories —
new_PathCache, 808

lookup a file in a list of directories —
new_PcaPathConf, 808

lookup a file in a list of directories —
pca_last_error, 808

lookup a file in a list of directories —
pca_lookup_file, 808

lookup a file in a list of directories —
pca_path_completions, 808

lookup a file in a list of directories —
pca_scan_path, 808

lookup a file in a list of directories —
pca_set_check_fn, 808

lookup a file in a list of directories —
ppc_file_start, 808

lookup a file in a list of directories —
ppc_literal_escapes, 808

lrint — round to nearest integer value using
current rounding direction, 702

lrintf — round to nearest integer value using
current rounding direction, 702

lrintl — round to nearest integer value using
current rounding direction, 702

lround — round to nearest integer value, 703
lroundf — round to nearest integer value, 703
lroundl — round to nearest integer value, 703

M
m_create_layout — initialize a layout

object, 712
m_destroy_layout — destroy a layout

object, 716
m_getvalues_layout — query layout values of a

LayoutObject, 722
m_setvalues_layout — set layout values of a

LayoutObject, 727
m_transform_layout — layout

transformation, 728
m_wtransform_layout — layout transformation

for wide character strings, 733
maillock — functions to manage lockfile(s) for

user’s mailbox, 704
mailunlock — functions to manage lockfile(s)

for user’s mailbox, 704

manage a name-value pair list —
nvlist_alloc, 751

manage a name-value pair list —
nvlist_dup, 751

manage a name-value pair list —
nvlist_free, 751

manage a name-value pair list —
nvlist_lookup_nv_alloc, 751

manage a name-value pair list —
nvlist_merge, 751

manage a name-value pair list —
nvlist_pack, 751

manage a name-value pair list —
nvlist_size, 751

manage a name-value pair list —
nvlist_unpack, 751

manage a name-value pair list —
nvlist_xalloc, 751

manage a name-value pair list —
nvlist_xdup, 751

manage a name-value pair list —
nvlist_xpack, 751

manage a name-value pair list —
nvlist_xunpack, 751

manage a name-value pair list —
nv_alloc_fini, 751

manage a name-value pair list —
nv_alloc_init, 751

manage a name-value pair list —
nv_alloc_reset, 751

manage sets of counter requests —
cpc_set_add_request, 125

manage sets of counter requests —
cpc_set_create, 125

manage sets of counter requests —
cpc_set_destroy, 125

manage sets of counter requests —
cpc_walk_requests, 125

manage the floating point environment —
fex_merge_flags, 465

Management Interface database administration
functions
— DmiAddComponent, 346
— DmiAddGroup, 346
— DmiAddLanguage, 346
— DmiDeleteComponent, 346
— DmiDeleteGroup, 346
— DmiDeleteLanguage, 346

1242 man pages section 3: Extended Library Functions • January 2005

Management Interface initialization functions
— DmiGetConfig, 356
— DmiGetVersion, 356
— DmiRegister, 356
— DmiSetConfig, 356
— DmiUnregister, 356

Management Interface listing functions
— DmiListAttributes, 359
— DmiListClassNames, 359
— DmiListComponents, 359
— DmiListComponentsByClass, 359
— DmiListGroups, 359
— DmiListLanguages, 359

Management Interface operation functions
— DmiAddRow, 350
— DmiDeleteRow, 350
— DmiGetAttribute, 350
— DmiGetMultiple, 350
— DmiSetAttribute, 350
— DmiSetMultiple, 350

manipulate libdevinfo user traversal pointers —
di_link_private_get, 326

manipulate libdevinfo user traversal pointers —
di_link_private_set, 326

manipulate libdevinfo user traversal pointers —
di_lnode_private_get, 326

manipulate libdevinfo user traversal pointers —
di_lnode_private_set, 326

manipulate libdevinfo user traversal pointers —
di_minor_private_get, 326

manipulate libdevinfo user traversal pointers —
di_minor_private_set, 326

manipulate libdevinfo user traversal pointers —
di_node_private_get, 326

manipulate libdevinfo user traversal pointers —
di_node_private_set, 326

manipulate resource pool configurations —
pool_conf_alloc, 845

manipulate resource pool configurations —
pool_conf_close, 845

manipulate resource pool configurations —
pool_conf_commit, 845

manipulate resource pool configurations —
pool_conf_export, 845

manipulate resource pool configurations —
pool_conf_free, 845

manipulate resource pool configurations —
pool_conf_info, 845

manipulate resource pool configurations —
pool_conf_location, 845

manipulate resource pool configurations —
pool_conf_open, 845

manipulate resource pool configurations —
pool_conf_remove, 845

manipulate resource pool configurations —
pool_conf_rollback, 845

manipulate resource pool configurations —
pool_conf_status, 845

manipulate resource pool configurations —
pool_conf_update, 845

manipulate resource pool configurations —
pool_conf_validate, 845

manipulate values in the Service Configuration
Facility — scf_type_base_type, 1046

manipulate values in the Service Configuration
Facility — scf_value_base_type, 1046

manipulate values in the Service Configuration
Facility — scf_value_create, 1046

manipulate values in the Service Configuration
Facility — scf_value_destroy, 1046

manipulate values in the Service Configuration
Facility — scf_value_get_astring, 1046

manipulate values in the Service Configuration
Facility — scf_value_get_as_string, 1046

manipulate values in the Service Configuration
Facility —
scf_value_get_as_string_typed, 1046

manipulate values in the Service Configuration
Facility — scf_value_get_boolean, 1046

manipulate values in the Service Configuration
Facility — scf_value_get_count, 1046

manipulate values in the Service Configuration
Facility — scf_value_get_integer, 1046

manipulate values in the Service Configuration
Facility — scf_value_get_opaque, 1046

manipulate values in the Service Configuration
Facility — scf_value_get_time, 1046

manipulate values in the Service Configuration
Facility — scf_value_get_ustring, 1046

manipulate values in the Service Configuration
Facility — scf_value_handle, 1046

manipulate values in the Service Configuration
Facility — scf_value_is_type, 1046

manipulate values in the Service Configuration
Facility — scf_value_reset, 1046

1243

manipulate values in the Service Configuration
Facility — scf_value_set_astring, 1046

manipulate values in the Service Configuration
Facility — scf_value_set_boolean, 1046

manipulate values in the Service Configuration
Facility — scf_value_set_count, 1046

manipulate values in the Service Configuration
Facility — scf_value_set_from_string, 1046

manipulate values in the Service Configuration
Facility — scf_value_set_integer, 1046

manipulate values in the Service Configuration
Facility — scf_value_set_opaque, 1046

manipulate values in the Service Configuration
Facility — scf_value_set_time, 1046

manipulate values in the Service Configuration
Facility — scf_value_set_ustring, 1046

manipulate values in the Service Configuration
Facility — scf_value_type, 1046

map or unmap imported segment —
rsm_memseg_import_map, 942

map or unmap imported segment —
rsm_memseg_import_unmap, 942

map a tnfctl error code to a string —
tnfctl_strerror, 1124

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_boolean, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_boolean_array, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_boolean_value, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_byte, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_byte_array, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int16, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int16_array, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int32, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int32_array, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int64, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int64_array, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int8, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_int8_array, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_nvlist, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_nvlist_array, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_pairs, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_string, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_string_array, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint16, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint16_array, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint32, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint32_array, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint64, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint64_array, 758

1244 man pages section 3: Extended Library Functions • January 2005

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint8, 758

match name and type indicated by the interface
name and retrieve data value —
nvlist_lookup_uint8_array, 758

match_execattr — get execution profile
entry, 504

math library exception-handling —
matherr, 706

matherr — math library
exception-handling, 706

md5 — MD5 digest functions, 714
MD5 digest functions — md5, 714
MD5 digest functions — MD5Final, 714
MD5 digest functions — MD5Init, 714
MD5 digest functions — MD5Update, 714
MD5 digest functions — md5_calc, 714
md5_calc — MD5 digest functions, 714
MD5Final — MD5 digest functions, 714
MD5Init — MD5 digest functions, 714
MD5Update — MD5 digest functions, 714
media_findname — convert a supplied name

into an absolute pathname that can be used
to access removable media, 717

media_getattr — get and set media
attributes, 719

media_setattr — get and set media
attributes, 719

memory management, copy a file into memory
— copylist, 85

mkdirp — create directories in a path, 723
modf — decompose floating-point number, 724
modff — decompose floating-point

number, 724
modfl — decompose floating-point

number, 724
modify/delete user credentials for an

authentication service — pam_setcred, 783
modify the size of the shared receive queue —

dat_srq_resize, 304
mp — multiple precision integer

arithmetic, 725
mp_gcd — multiple precision integer

arithmetic, 725
mp_itom — multiple precision integer

arithmetic, 725

mp_madd — multiple precision integer
arithmetic, 725

mp_mcmp — multiple precision integer
arithmetic, 725

mp_mdiv — multiple precision integer
arithmetic, 725

mp_mfree — multiple precision integer
arithmetic, 725

mp_min — multiple precision integer
arithmetic, 725

mp_mout — multiple precision integer
arithmetic, 725

mp_msqrt — multiple precision integer
arithmetic, 725

mp_msub — multiple precision integer
arithmetic, 725

mp_mtox — multiple precision integer
arithmetic, 725

mp_mult — multiple precision integer
arithmetic, 725

mp_pow — multiple precision integer
arithmetic, 725

mp_rpow — multiple precision integer
arithmetic, 725

mp_sdiv — multiple precision integer
arithmetic, 725

mp_xtom — multiple precision integer
arithmetic, 725

multiple precision integer arithmetic —
mp, 725

multiple precision integer arithmetic —
mp_gcd, 725

multiple precision integer arithmetic —
mp_itom, 725

multiple precision integer arithmetic —
mp_madd, 725

multiple precision integer arithmetic —
mp_mcmp, 725

multiple precision integer arithmetic —
mp_mdiv, 725

multiple precision integer arithmetic —
mp_mfree, 725

multiple precision integer arithmetic —
mp_min, 725

multiple precision integer arithmetic —
mp_mout, 725

multiple precision integer arithmetic —
mp_msqrt, 725

1245

multiple precision integer arithmetic —
mp_msub, 725

multiple precision integer arithmetic —
mp_mtox, 725

multiple precision integer arithmetic —
mp_mult, 725

multiple precision integer arithmetic —
mp_pow, 725

multiple precision integer arithmetic —
mp_rpow, 725

multiple precision integer arithmetic —
mp_sdiv, 725

multiple precision integer arithmetic —
mp_xtom, 725

N
nan — return quiet NaN, 739
nanf — return quiet NaN, 739
nanl — return quiet NaN, 739
natural logarithm function — log, 698
natural logarithm function — logf, 698
natural logarithm function — logl, 698
nearbyint — floating-point rounding

functions, 740
nearbyintf — floating-point rounding

functions, 740
nearbyintl — floating-point rounding

functions, 740
new_CplFileConf — look up possible

completions for a word, 136
new_ExpandFile — expand filename and

wildcard expressions, 377
new_GetLine — allow the user to compose an

input line, 516
new_PathCache — lookup a file in a list of

directories, 808
new_PcaPathConf — lookup a file in a list of

directories, 808
new_WordCompletion — look up possible

completions for a word, 136
newDmiOctetString — create DmiOctetString in

dynamic memory, 741
newDmiString — create DmiString in dynamic

memory, 742
newfs — make new file system, 53

next representable double-precision
floating-point number — nextafter, 743

next representable double-precision
floating-point number — nextafterf, 743

next representable double-precision
floating-point number — nextafterl, 743

next representable double-precision
floating-point number — nexttoward, 743

next representable double-precision
floating-point number — nexttowardf, 743

next representable double-precision
floating-point number — nexttowardl, 743

nextafter — next representable double-precision
floating-point number, 743

nextafterf — next representable
double-precision floating-point number, 743

nextafterl — next representable
double-precision floating-point number, 743

nexttoward — next representable
double-precision floating-point number, 743

nexttowardf — next representable
double-precision floating-point number, 743

nexttowardl — next representable
double-precision floating-point number, 743

NOTE — annotate source code with info for
tools, 746

_NOTE — annotate source code with info for
tools, 746

NOTE — annotate source code with info for
tools
NOTE vs _NOTE, 747
NoteInfo Argument, 747

number manipulation function — copysign, 86
number manipulation function — copysignf, 86
number manipulation function — copysignl, 86
nv_alloc_fini — manage a name-value pair

list, 751
nv_alloc_init — manage a name-value pair

list, 751
nv_alloc_reset — manage a name-value pair

list, 751
nvlist_add_boolean — add new name-value

pair to nvlist_t, 748
nvlist_add_boolean_array — add new

name-value pair to nvlist_t, 748
nvlist_add_boolean_value — add new

name-value pair to nvlist_t, 748

1246 man pages section 3: Extended Library Functions • January 2005

nvlist_add_byte — add new name-value pair to
nvlist_t, 748

nvlist_add_byte_array — add new name-value
pair to nvlist_t, 748

nvlist_add_int16 — add new name-value pair
to nvlist_t, 748

nvlist_add_int16_array — add new name-value
pair to nvlist_t, 748

nvlist_add_int32 — add new name-value pair
to nvlist_t, 748

nvlist_add_int32_array — add new name-value
pair to nvlist_t, 748

nvlist_add_int64 — add new name-value pair
to nvlist_t, 748

nvlist_add_int64_array — add new name-value
pair to nvlist_t, 748

nvlist_add_int8 — add new name-value pair to
nvlist_t, 748

nvlist_add_int8_array — add new name-value
pair to nvlist_t, 748

nvlist_add_nvlist — add new name-value pair
to nvlist_t, 748

nvlist_add_nvlist_array — add new name-value
pair to nvlist_t, 748

nvlist_add_nvpair — add new name-value pair
to nvlist_t, 748

nvlist_add_string — add new name-value pair
to nvlist_t, 748

nvlist_add_string_array — add new
name-value pair to nvlist_t, 748

nvlist_add_uint16 — add new name-value pair
to nvlist_t, 748

nvlist_add_uint16_array — add new
name-value pair to nvlist_t, 748

nvlist_add_uint32 — add new name-value pair
to nvlist_t, 748

nvlist_add_uint32_array — add new
name-value pair to nvlist_t, 748

nvlist_add_uint64 — add new name-value pair
to nvlist_t, 748

nvlist_add_uint64_array — add new
name-value pair to nvlist_t, 748

nvlist_add_uint8 — add new name-value pair
to nvlist_t, 748

nvlist_add_uint8_array — add new name-value
pair to nvlist_t, 748

nvlist_alloc — manage a name-value pair
list, 751

nvlist_dup — manage a name-value pair
list, 751

nvlist_free — manage a name-value pair
list, 751

nvlist_lookup_boolean — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_boolean_array — match name
and type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_boolean_value — match name
and type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_byte — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_byte_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_int16 — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_int16_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_int32 — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_int32_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_int64 — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_int64_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_int8 — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_int8_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_nv_alloc — manage a
name-value pair list, 751

nvlist_lookup_nvlist — match name and type
indicated by the interface name and retrieve
data value, 758

1247

nvlist_lookup_nvlist_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_pairs — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_string — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_string_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_uint16 — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_uint16_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_uint32 — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_uint32_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_uint64 — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_uint64_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_lookup_uint8 — match name and type
indicated by the interface name and retrieve
data value, 758

nvlist_lookup_uint8_array — match name and
type indicated by the interface name and
retrieve data value, 758

nvlist_merge — manage a name-value pair
list, 751

nvlist_next_nvpair — return data regarding
name-value pairs, 761

nvlist_pack — manage a name-value pair
list, 751

nvlist_remove — remove name-value
pairs, 764

nvlist_remove_all — remove name-value
pairs, 764

nvlist_size — manage a name-value pair
list, 751

nvlist_unpack — manage a name-value pair
list, 751

nvlist_xalloc — manage a name-value pair
list, 751

nvlist_xdup — manage a name-value pair
list, 751

nvlist_xpack — manage a name-value pair
list, 751

nvlist_xunpack — manage a name-value pair
list, 751

nvpair_name — return data regarding
name-value pairs, 761

nvpair_type — return data regarding
name-value pairs, 761

nvpair_value_boolean_array — retrieve value
from a name-value pair, 765

nvpair_value_boolean_value — retrieve value
from a name-value pair, 765

nvpair_value_byte — retrieve value from a
name-value pair, 765

nvpair_value_byte_array — retrieve value from
a name-value pair, 765

nvpair_value_int16 — retrieve value from a
name-value pair, 765

nvpair_value_int16_array — retrieve value from
a name-value pair, 765

nvpair_value_int32 — retrieve value from a
name-value pair, 765

nvpair_value_int32_array — retrieve value from
a name-value pair, 765

nvpair_value_int64 — retrieve value from a
name-value pair, 765

nvpair_value_int64_array — retrieve value from
a name-value pair, 765

nvpair_value_int8 — retrieve value from a
name-value pair, 765

nvpair_value_int8_array — retrieve value from
a name-value pair, 765

nvpair_value_nvlist — retrieve value from a
name-value pair, 765

nvpair_value_nvlist_array — retrieve value
from a name-value pair, 765

nvpair_value_string — retrieve value from a
name-value pair, 765

nvpair_value_string_array — retrieve value
from a name-value pair, 765

nvpair_value_uint16 — retrieve value from a
name-value pair, 765

1248 man pages section 3: Extended Library Functions • January 2005

nvpair_value_uint16_array — retrieve value
from a name-value pair, 765

nvpair_value_uint32 — retrieve value from a
name-value pair, 765

nvpair_value_uint32_array — retrieve value
from a name-value pair, 765

nvpair_value_uint64 — retrieve value from a
name-value pair, 765

nvpair_value_uint64_array — retrieve value
from a name-value pair, 765

nvpair_value_uint8 — retrieve value from a
name-value pair, 765

nvpair_value_uint8_array — retrieve value
from a name-value pair, 765

O
observational interface for Service

Configuration Facility —
scf_simple_walk_instances, 1020

open or close exacct files — ea_close, 367
open or close exacct files — ea_open, 367

P
p2close — close pipes to and from a

command, 767
p2open — open pipes to and from a

command, 767
PAM — PAM Service Module APIs, 789
PAM — Pluggable Authentication Module, 769
pam — Pluggable Authentication Module

Administrative Interface, 770
Interface Overview, 769
Stacking Multiple Schemes, 770
Stateful Interface, 770

pam_acct_mgmt — perform PAM account
validation procedures, 772

pam_authenticate — perform authentication
within the PAM framework, 773

pam_chauthtok — perform password related
functions within the PAM framework, 775

pam_close_session — perform PAM session
creation and termination operations, 780

pam_end — authentication transaction routines
for PAM, 803

PAM error messages, get string —
pam_strerror, 805

pam_get_data — PAM routines to maintain
module specific state, 785

pam_get_item — authentication information
routines for PAM, 787

pam_getenv — returns the value for a PAM
environment name, 777

pam_getenvlist — returns a list of all the PAM
environment variables, 778

pam_open_session — perform PAM session
creation and termination operations, 780

pam_putenv — change or add a value to the
PAM environment, 781

PAM routines to maintain module specific state
— pam_get_data, 785
— pam_set_data, 785

PAM Service Module APIs, — PAM, 789
pam_set_data — PAM routines to maintain

module specific state, 785
pam_set_item — authentication information

routines for PAM, 787
pam_setcred — modify/delete user credentials

for an authentication service, 783
pam_sm — PAM Service Module APIs

Interaction with the User, 790
Interface Overview, 789
Stateful Interface, 789

pam_sm_acct_mgmt — service provider
implementation for pam_acct_mgmt, 793

pam_sm_authenticate — service provider
implementation for pam_authenticate, 795

pam_sm_chauthtok — service provider
implementation for pam_chauthtok, 797

pam_sm_close_session — Service provider
implementation for pam_open_session and
pam_close_session, 800

pam_sm_open_session — Service provider
implementation for pam_open_session and
pam_close_session, 800

pam_sm_setcred — service provider
implementation for pam_setcred, 801

pam_start — authentication transaction routines
for PAM, 803

pathfind — search for named file in named
directories, 806

pca_last_error — lookup a file in a list of
directories, 808

1249

pca_lookup_file — lookup a file in a list of
directories, 808

pca_path_completions — lookup a file in a list
of directories, 808

pca_scan_path — lookup a file in a list of
directories, 808

pca_set_check_fn — lookup a file in a list of
directories, 808

pctx_capture — process context library, 812
pctx_create — process context library, 812
pctx_release — process context library, 812
pctx_run — process context library, 812
pctx_set_events — associate callbacks with

process events, 814
perform mutex locking on a card —

SCF_Card_lock, 959
perform mutex locking on a card —

SCF_Card_unlock, 959
perform a reset of a smartcard —

SCF_Card_reset, 961
perform authentication within the PAM

framework — pam_authenticate, 773
perform PAM account validation procedures —

pam_acct_mgmt, 772
perform PAM session creation and termination

operations
— pam_close_session, 780
— pam_open_session, 780

perform password related functions within the
PAM framework — pam_chauthtok, 775

Perl interface to Projects — Project, 880
Perl interface to Tasks — Task, 1098
Perl interface to User Credentials —

Ucred, 1144
Perl tied hash interface to the kstat facility —

Sun::Solaris::Kstat, 640
picl_find_node — find node with given

property and value, 820
picl_get_first_prop — get a property handle of a

node, 821
picl_get_frutree_parent — get frutree parent

node for a given device node, 822
picl_get_next_by_col — access a table

property, 823
picl_get_next_by_row — access a table

property, 823
picl_get_next_prop — get a property handle of

a node, 821

picl_get_node_by_path — get handle of node
specified by PICL tree path, 824

picl_get_prop_by_name — get the handle of the
property by name, 826

picl_get_propinfo — get the information about
a property, 827

picl_get_propinfo_by_name — get property
information and handle of named
property, 828

picl_get_propval — get the value of a
property, 829

picl_get_propval_by_name — get the value of a
property, 829

picl_get_root — get the root handle of the PICL
tree, 831

picl_initialize — initiate a session with the PICL
daemon, 832

PICL interface library — libpicl, 677
picl_set_propval — set the value of a property

to the specified value, 833
picl_set_propval_by_name — set the value of a

property to the specified value, 833
picl_shutdown — shutdown the session with

the PICL daemon, 835
picl_strerror — get error message string, 836
picl_wait — wait for PICL tree to refresh, 837
picl_walk_tree_by_class — walk subtree by

class, 838
picld_log — log a message in system log, 817
picld_plugin_register — register plug-in with

the daemon, 818
pipes, open, close to and from a command —

p2open, p2close, 767
PKCS#11 Cryptographic Framework functions

— SUNW_C_GetMechSession, 1081
PKCS#11 Cryptographic Framework functions

— SUNW_C_KeyToObject, 1081
place process in new project with attendant

resource controls, resource pools, and
attributes — setproject, 1057

Pluggable Authentication Module, — PAM, 769
pool_associate — resource pool manipulation

functions, 839
pool_component_info — resource pool

component functions, 842
pool_component_to_elem — resource pool

element-related functions, 844

1250 man pages section 3: Extended Library Functions • January 2005

pool_conf_alloc — manipulate resource pool
configurations, 845

pool_conf_close — manipulate resource pool
configurations, 845

pool_conf_commit — manipulate resource pool
configurations, 845

pool_conf_export — manipulate resource pool
configurations, 845

pool_conf_free — manipulate resource pool
configurations, 845

pool_conf_info — manipulate resource pool
configurations, 845

pool_conf_location — manipulate resource pool
configurations, 845

pool_conf_open — manipulate resource pool
configurations, 845

pool_conf_remove — manipulate resource pool
configurations, 845

pool_conf_rollback — manipulate resource pool
configurations, 845

pool_conf_status — manipulate resource pool
configurations, 845

pool_conf_to_elem — resource pool
element-related functions, 844

pool_conf_update — manipulate resource pool
configurations, 845

pool_conf_validate — manipulate resource pool
configurations, 845

pool_create — resource pool manipulation
functions, 839

pool_destroy — resource pool manipulation
functions, 839

pool_dissociate — resource pool manipulation
functions, 839

pool_dynamic_location — resource pool
framework functions, 851

pool_error — error interface to resource pools
library, 854

pool_get_binding — set and query process to
resource pool bindings, 856

pool_get_owning_resource — resource pool
component functions, 842

pool_get_pool — retrieve resource pool
configuration elements, 859

pool_get_property — resource pool element
property manipulation, 861

pool_get_resource — retrieve resource pool
configuration elements, 859

pool_get_resource_binding — set and query
process to resource pool bindings, 856

pool_get_status — resource pool framework
functions, 851

pool_info — resource pool manipulation
functions, 839

pool_put_property — resource pool element
property manipulation, 861

pool_query_components — retrieve resource
pool configuration elements, 859

pool_query_pool_resources — resource pool
manipulation functions, 839

pool_query_pools — retrieve resource pool
configuration elements, 859

pool_query_resource_components — resource
pool resource manipulation functions, 864

pool_query_resources — retrieve resource pool
configuration elements, 859

pool_resource_create — resource pool resource
manipulation functions, 864

pool_resource_destroy — resource pool
resource manipulation functions, 864

pool_resource_info — resource pool resource
manipulation functions, 864

pool_resource_to_elem — resource pool
element-related functions, 844

pool_resource_transfer — resource pool
resource manipulation functions, 864

pool_resource_type_list — resource pool
framework functions, 851

pool_resource_xtransfer — resource pool
resource manipulation functions, 864

pool_rm_property — resource pool element
property manipulation, 861

pool_set_binding — set and query process to
resource pool bindings, 856

pool_set_status — resource pool framework
functions, 851

pool_static_location — resource pool
framework functions, 851

pool_strerror — error interface to resource pools
library, 854

pool_to_elem — resource pool element-related
functions, 844

pool_value_alloc — resource pool property
value manipulation functions, 867

pool_value_free — resource pool property value
manipulation functions, 867

1251

pool_value_get_bool — resource pool property
value manipulation functions, 867

pool_value_get_double — resource pool
property value manipulation functions, 867

pool_value_get_int64 — resource pool property
value manipulation functions, 867

pool_value_get_name — resource pool property
value manipulation functions, 867

pool_value_get_string — resource pool
property value manipulation functions, 867

pool_value_get_type — resource pool property
value manipulation functions, 867

pool_value_get_uint64 — resource pool
property value manipulation functions, 867

pool_value_set_bool — resource pool property
value manipulation functions, 867

pool_value_set_double — resource pool
property value manipulation functions, 867

pool_value_set_int64 — resource pool property
value manipulation functions, 867

pool_value_set_name — resource pool property
value manipulation functions, 867

pool_value_set_string — resource pool property
value manipulation functions, 867

pool_value_set_uint64 — resource pool
property value manipulation functions, 867

pool_version — resource pool framework
functions, 851

pool_walk_components — walk objects within
resource pool configurations, 870

pool_walk_pools — walk objects within
resource pool configurations, 870

pool_walk_properties — resource pool element
property manipulation, 861

pool_walk_resources — walk objects within
resource pool configurations, 870

post a PICL event — ptree_post_event, 904
pow — power function, 872
power function — pow, 872
power function — powf, 872
power function — powl, 872
power up or power down the smart card —

IFDHPowerICC, 614
powf — power function, 872
powl — power function, 872
ppc_file_start — lookup a file in a list of

directories, 808

ppc_literal_escapes — lookup a file in a list of
directories, 808

print a DmiString, — printDmiString, 877
print data in DmiAttributeValues list, —

printDmiAttributeValues, 875
print data in input data union, —

printDmiDataUnion, 876
print error in string form, — dmi_error, 355
printDmiAttributeValues— print data in

DmiAttributeValues list, 875
printDmiDataUnion— print data in input data

union, 876
printDmiString— print a DmiString, 877
probe insertion interface

— TNF_DEBUG, 1132
— TNF_PROBE_0, 1132
— TNF_PROBE_0_DEBUG, 1132
— TNF_PROBE_1, 1132
— TNF_PROBE_1_DEBUG, 1132
— TNF_PROBE_2, 1132
— TNF_PROBE_2_DEBUG, 1132
— TNF_PROBE_3, 1132
— TNF_PROBE_3_DEBUG, 1132
— TNF_PROBE_4, 1132
— TNF_PROBE_4_DEBUG, 1132
— TNF_PROBE_5, 1132
— TNF_PROBE_5_DEBUG, 1132

process context library — pctx_capture, 812
process context library — pctx_create, 812
process context library — pctx_release, 812
process context library — pctx_run, 812
process contract event functions —

ct_pr_event_get_exitstatus, 155
process contract event functions —

ct_pr_event_get_gcorefile, 155
process contract event functions —

ct_pr_event_get_pcorefile, 155
process contract event functions —

ct_pr_event_get_pid, 155
process contract event functions —

ct_pr_event_get_ppid, 155
process contract event functions —

ct_pr_event_get_sender, 155
process contract event functions —

ct_pr_event_get_senderct, 155
process contract event functions —

ct_pr_event_get_signal, 155

1252 man pages section 3: Extended Library Functions • January 2005

process contract event functions —
ct_pr_event_get_zcorefile, 155

process contract status functions —
ct_pr_status_get_contracts, 158

process contract status functions —
ct_pr_status_get_fatal, 158

process contract status functions —
ct_pr_status_get_members, 158

process contract status functions —
ct_pr_status_get_param, 158

process contract template functions —
ct_pr_tmpl_get_fatal, 160

process contract template functions —
ct_pr_tmpl_get_param, 160

process contract template functions —
ct_pr_tmpl_get_transfer, 160

process contract template functions —
ct_pr_tmpl_set_fatal, 160

process contract template functions —
ct_pr_tmpl_set_param, 160

process contract template functions —
ct_pr_tmpl_set_transfer, 160

Project — Perl interface to Projects, 880
project database entry functions —

endprojent, 510
project database entry functions —

fgetprojent, 510
project database entry functions —

getdefaultproj, 510
project database entry functions —

getprojbyid, 510
project database entry functions —

getprojbyname, 510
project database entry functions —

getprojent, 510
project database entry functions — inproj, 510
project database entry functions —

setprojent, 510
project_walk — visit active project IDs on

current system, 882
provide a transient program number, —

reg_ci_callback, 910
provide Endpoint receive queue consumption

on SRQ — dat_ep_recv_query, 220
provide parameters of the shared receive queue

— dat_srq_query, 302
ptree_add_node — add or delete node to or

from tree, 884

PTree and Plug-in Registration interface library
— libpicltree, 680

ptree_create_and_add_node — create and add
node to tree and return node handle, 886

ptree_create_and_add_prop — create and add
property to node and return property
handle, 887

ptree_create_prop — create or destroy a
property, 889

ptree_delete_node — add or delete node to or
from tree, 884

ptree_destroy_prop — create or destroy a
property, 889

ptree_find_node — find node with given
property and value, 892

ptree_get_frutree_parent — get frutree parent
node for a given device node, 894

ptree_get_node_by_path — get handle of node
specified by PICL tree path, 896

ptree_get_propinfo — get property
information, 899

ptree_get_propinfo_by_name — get property
information and handle of named
property, 900

ptree_get_propval — get the value of a
property, 901

ptree_get_propval_by_name — get the value of
a property, 901

ptree_get_root — get the root node handle, 902
ptree_init_propinfo — initialize

ptree_propinfo_t structure, 903
ptree_post_event — post a PICL event, 904
ptree_register_handler — register a handler for

the event, 905
ptree_unregister_handler — unregister the

event handler for the event, 906
ptree_update_propval — update a property

value, 907
ptree_update_propval_by_name — update a

property value, 907
ptree_walk_tree_by_class — walk subtree by

class, 908

Q
query layout values of a LayoutObject —

m_getvalues_layout, 722

1253

query libtecla version number —
libtecla_version, 682

R
radix-independent exponent — logb, 700
radix-independent exponent — logbf, 700
radix-independent exponent — logbl, 700
raise floating-point exception —

feraiseexcept, 460
rd_delete — runtime linker debugging

functions, 952
rd_errstr — runtime linker debugging

functions, 952
rd_event_addr — runtime linker debugging

functions, 952
rd_event_enable — runtime linker debugging

functions, 952
rd_event_getmsg — runtime linker debugging

functions, 952
rd_init — runtime linker debugging

functions, 952
rd_loadobj_iter — runtime linker debugging

functions, 952
rd_log — runtime linker debugging

functions, 952
rd_new — runtime linker debugging

functions, 952
rd_objpad_enable — runtime linker debugging

functions, 952
rd_plt_resolution — runtime linker debugging

functions, 952
rd_reset — runtime linker debugging

functions, 952
read and write a disk’s VTOC — read_vtoc, 909
read from a segment —

rsm_memseg_import_get16, 939
read from a segment —

rsm_memseg_import_get32, 939
read from a segment —

rsm_memseg_import_get64, 939
read from a segment —

rsm_memseg_import_get8, 939
read from a segment —

rsm_memseg_import_get, 939
read or write kstat data — kstat_read, 645
read or write kstat data — kstat_write, 645

read system process structures
— kvm_getproc, 650
— kvm_nextproc, 650
— kvm_setproc, 650

read and write a disk’s VTOC — read_vtoc,
write_vtoc, 909

read_vtoc — read and write a disk’s VTOC, 909
receive asychronous event notification —

SCF_Terminal_addEventListener, 1029
receive asychronous event notification —

SCF_Terminal_removeEventListener, 1029
receive asychronous event notification —

SCF_Terminal_updateEventListener, 1029
refresh information for a specific HBA —

HBA_RefreshAdapterConfiguration, 576
refresh information for a specific HBA —

HBA_RefreshInformation, 576
regexpr — regular expression compile and

match routines, 911
register a component in the product install

registry — wsreg_register, 1190
register a handler for the event —

ptree_register_handler, 905
register callbacks for probe creation and

destruction — tnfctl_register_funcs, 1123
register plug-in with the daemon —

picld_plugin_register, 818
regular expression compile and match routines

— advance, 911
— compile, 911
— regexpr, 911
— step, 911

release removable media device reservation —
volmgt_release, 1162

remainder — remainder function, 914
remainder function — remainder, 914
remainder function — remainderf, 914
remainder function — remainderl, 914
remainder functions — remquo, 915
remainder functions — remquof, 915
remainder functions — remquol, 915
remainderf — remainder function, 914
remainderl — remainder function, 914
remote memory access error detection functions

— rsm_memseg_import_close_barrier, 944
remote memory access error detection functions

— rsm_memseg_import_open_barrier, 944

1254 man pages section 3: Extended Library Functions • January 2005

remote memory access error detection functions
— rsm_memseg_import_order_barrier, 944

remove name-value pairs —
nvlist_remove, 764

remove name-value pairs —
nvlist_remove_all, 764

remove a component from the product install
registry — wsreg_unregister, 1204

remove and return the next event from the
HBA’s event queue —
HBA_GetEventBuffer, 560

remquo — remainder functions, 915
remquof — remainder functions, 915
remquol — remainder functions, 915
report the number of HBAs known to the

Common Library —
HBA_GetNumberOfAdapters, 568

reserve removable media device —
volmgt_acquire, 1155

resource allocation and management functions
for export memory segments —
rsm_memseg_export_create, 930

resource allocation and management functions
for export memory segments —
rsm_memseg_export_destroy, 930

resource allocation and management functions
for export memory segments —
rsm_memseg_export_rebind, 930

resource pool component functions —
pool_component_info, 842

resource pool component functions —
pool_get_owning_resource, 842

resource pool element property manipulation —
pool_get_property, 861

resource pool element property manipulation —
pool_put_property, 861

resource pool element property manipulation —
pool_rm_property, 861

resource pool element property manipulation —
pool_walk_properties, 861

resource pool element-related functions —
pool_component_to_elem, 844

resource pool element-related functions —
pool_conf_to_elem, 844

resource pool element-related functions —
pool_resource_to_elem, 844

resource pool element-related functions —
pool_to_elem, 844

resource pool framework functions —
pool_dynamic_location, 851

resource pool framework functions —
pool_get_status, 851

resource pool framework functions —
pool_resource_type_list, 851

resource pool framework functions —
pool_set_status, 851

resource pool framework functions —
pool_static_location, 851

resource pool framework functions —
pool_version, 851

resource pool manipulation functions —
pool_associate, 839

resource pool manipulation functions —
pool_create, 839

resource pool manipulation functions —
pool_destroy, 839

resource pool manipulation functions —
pool_dissociate, 839

resource pool manipulation functions —
pool_info, 839

resource pool manipulation functions —
pool_query_pool_resources, 839

resource pool property value manipulation
functions — pool_value_alloc, 867

resource pool property value manipulation
functions — pool_value_free, 867

resource pool property value manipulation
functions — pool_value_get_bool, 867

resource pool property value manipulation
functions — pool_value_get_double, 867

resource pool property value manipulation
functions — pool_value_get_int64, 867

resource pool property value manipulation
functions — pool_value_get_name, 867

resource pool property value manipulation
functions — pool_value_get_string, 867

resource pool property value manipulation
functions — pool_value_get_type, 867

resource pool property value manipulation
functions — pool_value_get_uint64, 867

resource pool property value manipulation
functions — pool_value_set_bool, 867

resource pool property value manipulation
functions — pool_value_set_double, 867

resource pool property value manipulation
functions — pool_value_set_int64, 867

1255

resource pool property value manipulation
functions — pool_value_set_name, 867

resource pool property value manipulation
functions — pool_value_set_string, 867

resource pool property value manipulation
functions — pool_value_set_uint64, 867

resource pool resource manipulation functions
— pool_query_resource_components, 864

resource pool resource manipulation functions
— pool_resource_create, 864

resource pool resource manipulation functions
— pool_resource_destroy, 864

resource pool resource manipulation functions
— pool_resource_info, 864

resource pool resource manipulation functions
— pool_resource_transfer, 864

resource pool resource manipulation functions
— pool_resource_xtransfer, 864

retrieve Fibre Channel port attributes for a
specific device —
HBA_GetAdapterPortAttributes, 555

retrieve Fibre Channel port attributes for a
specific device —
HBA_GetDiscoveredPortAttributes, 555

retrieve Fibre Channel port attributes for a
specific device —
HBA_GetPortAttributesByWWN, 555

retrieve information about a session, terminal,
or card — SCF_Card_getInfo, 1005

retrieve information about a session, terminal,
or card — SCF_Session_getInfo, 1005

retrieve information about a session, terminal,
or card — SCF_Terminal_getInfo, 1005

retrieve resource pool configuration elements —
pool_get_pool, 859

retrieve resource pool configuration elements —
pool_get_resource, 859

retrieve resource pool configuration elements —
pool_query_components, 859

retrieve resource pool configuration elements —
pool_query_pools, 859

retrieve resource pool configuration elements —
pool_query_resources, 859

retrieve value from a name-value pair —
nvpair_value_boolean_array, 765

retrieve value from a name-value pair —
nvpair_value_boolean_value, 765

retrieve value from a name-value pair —
nvpair_value_byte, 765

retrieve value from a name-value pair —
nvpair_value_byte_array, 765

retrieve value from a name-value pair —
nvpair_value_int16, 765

retrieve value from a name-value pair —
nvpair_value_int16_array, 765

retrieve value from a name-value pair —
nvpair_value_int32, 765

retrieve value from a name-value pair —
nvpair_value_int32_array, 765

retrieve value from a name-value pair —
nvpair_value_int64, 765

retrieve value from a name-value pair —
nvpair_value_int64_array, 765

retrieve value from a name-value pair —
nvpair_value_int8, 765

retrieve value from a name-value pair —
nvpair_value_int8_array, 765

retrieve value from a name-value pair —
nvpair_value_nvlist, 765

retrieve value from a name-value pair —
nvpair_value_nvlist_array, 765

retrieve value from a name-value pair —
nvpair_value_string, 765

retrieve value from a name-value pair —
nvpair_value_string_array, 765

retrieve value from a name-value pair —
nvpair_value_uint16, 765

retrieve value from a name-value pair —
nvpair_value_uint16_array, 765

retrieve value from a name-value pair —
nvpair_value_uint32, 765

retrieve value from a name-value pair —
nvpair_value_uint32_array, 765

retrieve value from a name-value pair —
nvpair_value_uint64, 765

retrieve value from a name-value pair —
nvpair_value_uint64_array, 765

retrieve value from a name-value pair —
nvpair_value_uint8, 765

retrieve value from a name-value pair —
nvpair_value_uint8_array, 765

retrieve archive symbol table —
elf_getarsym, 411

retrieve attributes about a specific HBA —
HBA_GetAdapterAttributes, 552

1256 man pages section 3: Extended Library Functions • January 2005

retrieve class-dependent object file header
— elf32_getehdr, 385
— elf32_newehdr, 385
— elf64_getehdr, 385
— elf64_newehdr, 385

retrieve class-dependent program header table
— elf32_getphdr, 387
— elf32_newphdr, 387
— elf64_getphdr, 387
— elf64_newphdr, 387

retrieve class-dependent section header
— elf32_getshdr, 389
— elf64_getshdr, 389

retrieve the name of a specific HBA —
HBA_GetAdapterName, 553

return a complex absolute value — cabs, 60
return a complex absolute value — cabsf, 60
return a complex absolute value — cabsl, 60
return an unbiased exponent — ilogb, 621
return an unbiased exponent — ilogbf, 621
return an unbiased exponent — ilogbl, 621
return and sets binding capabilities on an HBA

port — HBA_GetBindingCapability, 558
return and sets binding capabilities on an HBA

port — HBA_GetBindingSupport, 558
return and sets binding capabilities on an HBA

port — HBA_SetBindingSupport, 558
return data regarding name-value pairs —

nvlist_next_nvpair, 761
return data regarding name-value pairs —

nvpair_name, 761
return data regarding name-value pairs —

nvpair_type, 761
return details about the implementation of the

wrapper library and the vendor specific
library —
HBA_GetVendorLibraryAttributes, 572

return details about the implementation of the
wrapper library and the vendor specific
library —
HBA_GetWrapperLibraryAttributes, 572

return libdevinfo link information —
di_link_spectype, 323

return libdevinfo link information —
di_link_to_lnode, 323

return libdevinfo lnode information —
di_lnode_devinfo, 324

return libdevinfo lnode information —
di_lnode_devt, 324

return libdevinfo lnode information —
di_lnode_name, 324

return libdevinfo minor node information —
di_minor_devt, 328

return libdevinfo minor node information —
di_minor_name, 328

return libdevinfo minor node information —
di_minor_nodetype, 328

return libdevinfo minor node information —
di_minor_spectype, 328

return libdevinfo node information —
di_binding_name, 314

return libdevinfo node information —
di_bus_addr, 314

return libdevinfo node information —
di_compatible_names, 314

return libdevinfo node information —
di_devid, 314

return libdevinfo node information —
di_driver_major, 314

return libdevinfo node information —
di_driver_name, 314

return libdevinfo node information —
di_driver_ops, 314

return libdevinfo node information —
di_instance, 314

return libdevinfo node information —
di_nodeid, 314

return libdevinfo node information —
di_node_name, 314

return quiet NaN — nan, 739
return quiet NaN — nanf, 739
return quiet NaN — nanl, 739
returns a list of all the PAM environment

variables — pam_getenvlist, 778
return root lgroup ID — lgrp_root, 674
return the size of an object file type

— elf32_fsize, 384
— elf64_fsize, 384

returns the value for a PAM environment name
— pam_getenv, 777

return the Volume Management root directory
— volmgt_root, 1163

return whether or not Volume Management is
running — volmgt_running, 1164

rint — round-to-nearest integral value, 916

1257

rintf — round-to-nearest integral value, 916
rintl — round-to-nearest integral value, 916
rmdirp — remove directories in a path, 723
round — round to nearest integer value in

floating-point format, 917
round to nearest integer value — llround, 690
round to nearest integer value — llroundf, 690
round to nearest integer value — llroundl, 690
round to nearest integer value — lround, 703
round to nearest integer value — lroundf, 703
round to nearest integer value — lroundl, 703
round to nearest integer value in floating-point

format — round, 917
round to nearest integer value in floating-point

format — roundf, 917
round to nearest integer value in floating-point

format — roundl, 917
round to nearest integer value using current

rounding direction — llrint, 688
round to nearest integer value using current

rounding direction — llrintf, 688
round to nearest integer value using current

rounding direction — llrintl, 688
round to nearest integer value using current

rounding direction — lrint, 702
round to nearest integer value using current

rounding direction — lrintf, 702
round to nearest integer value using current

rounding direction — lrintl, 702
round to truncated integer value — trunc, 1143
round to truncated integer value —

truncf, 1143
round to truncated integer value — truncl, 1143
round-to-nearest integral value — rint, 916
round-to-nearest integral value — rintf, 916
round-to-nearest integral value — rintl, 916
roundf — round to nearest integer value in

floating-point format, 917
roundl — round to nearest integer value in

floating-point format, 917
rsm_create_localmemory_handle — create or

free local memory handle, 918
rsm_free_interconnect_topology — get or free

interconnect topology, 922
rsm_free_localmemory_handle — create or free

local memory handle, 918
rsm_get_controller — get or release a controller

handle, 920

rsm_get_controller_attr — get or release a
controller handle, 920

rsm_get_interconnect_topology — get or free
interconnect topology, 922

rsm_get_segmentid_range — get segment ID
range, 924

rsm_intr_signal_post — signal or wait for an
event, 926

rsm_intr_signal_wait — signal or wait for an
event, 926

rsm_intr_signal_wait_pollfd — wait for events
on a list of file descriptors, 928

rsm_memseg_export_create — resource
allocation and management functions for
export memory segments, 930

rsm_memseg_export_destroy — resource
allocation and management functions for
export memory segments, 930

rsm_memseg_export_publish — allow or
disallow a memory segment to be imported
by other nodes, 933

rsm_memseg_export_rebind — resource
allocation and management functions for
export memory segments, 930

rsm_memseg_export_republish — allow or
disallow a memory segment to be imported
by other nodes, 933

rsm_memseg_export_unpublish — allow or
disallow a memory segment to be imported
by other nodes, 933

rsm_memseg_get_pollfd — get or release a poll
descriptor, 936

rsm_memseg_import_close_barrier — remote
memory access error detection
functions, 944

rsm_memseg_import_connect — create or break
logical commection between import and
export segments, 937

rsm_memseg_import_destroy_barrier — create
or destroy barrier for imported segment, 941

rsm_memseg_import_disconnect — create or
break logical commection between import
and export segments, 937

rsm_memseg_import_get — read from a
segment, 939

rsm_memseg_import_get_mode — set or get
mode for barrier scoping, 950

1258 man pages section 3: Extended Library Functions • January 2005

rsm_memseg_import_get16 — read from a
segment, 939

rsm_memseg_import_get32 — read from a
segment, 939

rsm_memseg_import_get64 — read from a
segment, 939

rsm_memseg_import_get8 — read from a
segment, 939

rsm_memseg_import_getv — write to a
segment using a list of I/O requests, 948

rsm_memseg_import_init_barrier — create or
destroy barrier for imported segment, 941

rsm_memseg_import_map — map or unmap
imported segment, 942

rsm_memseg_import_open_barrier — remote
memory access error detection
functions, 944

rsm_memseg_import_order_barrier — remote
memory access error detection
functions, 944

rsm_memseg_import_put — write to a
segment, 946

rsm_memseg_import_put16 — write to a
segment, 946

rsm_memseg_import_put32 — write to a
segment, 946

rsm_memseg_import_put64 — write to a
segment, 946

rsm_memseg_import_put8 — write to a
segment, 946

rsm_memseg_import_putv — write to a
segment using a list of I/O requests, 948

rsm_memseg_import_set_mode — set or get
mode for barrier scoping, 950

rsm_memseg_import_unmap — map or unmap
imported segment, 942

rsm_memseg_release_pollfd — get or release a
poll descriptor, 936

rsm_release_controller — get or release a
controller handle, 920

rtld_audit — runtime linker auditing
functions, 951

rtld_db — runtime linker debugging
functions, 952

runtime linker auditing functions —
la_activity, 951

runtime linker auditing functions —
la_amd64_pltenter, 951

runtime linker auditing functions —
la_i86_pltenter, 951

runtime linker auditing functions —
la_objfilter, 951

runtime linker auditing functions —
la_objopen, 951

runtime linker auditing functions —
la_objsearch, 951

runtime linker auditing functions —
la_pltexit64, 951

runtime linker auditing functions —
la_pltexit, 951

runtime linker auditing functions —
la_preinit, 951

runtime linker auditing functions —
la_sparcv8_pltenter, 951

runtime linker auditing functions —
la_sparcv9_pltenter, 951

runtime linker auditing functions —
la_symbind32, 951

runtime linker auditing functions —
la_symbind64, 951

runtime linker auditing functions —
la_version, 951

runtime linker auditing functions —
rtld_audit, 951

runtime linker debugging functions —
rd_delete, 952

runtime linker debugging functions —
rd_errstr, 952

runtime linker debugging functions —
rd_event_addr, 952

runtime linker debugging functions —
rd_event_enable, 952

runtime linker debugging functions —
rd_event_getmsg, 952

runtime linker debugging functions —
rd_init, 952

runtime linker debugging functions —
rd_loadobj_iter, 952

runtime linker debugging functions —
rd_log, 952

runtime linker debugging functions —
rd_new, 952

runtime linker debugging functions —
rd_objpad_enable, 952

runtime linker debugging functions —
rd_plt_resolution, 952

1259

runtime linker debugging functions —
rd_reset, 952

runtime linker debugging functions —
rtld_db, 952

S
save current floating-point environment —

feholdexcept, 459
scalb — load exponent of a radix-independent

floating-point number, 953
scalbf — load exponent of a radix-independent

floating-point number, 953
scalbl — load exponent of a radix-independent

floating-point number, 953
scalbln — compute exponent using

FLT_RADIX, 955
scalblnf — compute exponent using

FLT_RADIX, 955
scalblnl — compute exponent using

FLT_RADIX, 955
scalbn — compute exponent using

FLT_RADIX, 955
scalbnf — compute exponent using

FLT_RADIX, 955
scalbnl — compute exponent using

FLT_RADIX, 955
SCF_Card_exchangeAPDU — send a command

APDU to a card and read the card’s
response, 957

SCF_Card_getInfo — retrieve information about
a session, terminal, or card, 1005

SCF_Card_lock — perform mutex locking on a
card, 959

SCF_Card_reset — perform a reset of a
smartcard, 961

SCF_Card_unlock — perform mutex locking on
a card, 959

SCF_Card_waitForCardRemoved — wait for a
card to be inserted or removed, 1037

scf_entry_add_value — create and manipulate
transaction in the Service Configuration
Facility, 963

scf_entry_create — create and manipulate
transaction in the Service Configuration
Facility, 963

scf_entry_destroy — create and manipulate
transaction in the Service Configuration
Facility, 963

scf_entry_destroy_children — create and
manipulate transaction in the Service
Configuration Facility, 963

scf_entry_handle — create and manipulate
transaction in the Service Configuration
Facility, 963

scf_entry_reset — create and manipulate
transaction in the Service Configuration
Facility, 963

scf_error — error interface to Service
Configuration Facility, 965

scf_handle_bind — Service Configuration
Facility handle functions, 967

scf_handle_create — Service Configuration
Facility handle functions, 967

scf_handle_decode_fmri — convert between
objects and FMRIs in the Service
Configuration Facility, 970

scf_handle_decorate — Service Configuration
Facility handle functions, 967

scf_handle_destroy — Service Configuration
Facility handle functions, 967

scf_handle_get_scope — create and manipulate
scope handles in the Service Configuration
Facility, 994

scf_handle_unbind — Service Configuration
Facility handle functions, 967

scf_instance_add_pg — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_instance_create — create and manipulate
instance handles and instances in the Service
Configuration Facility, 973

scf_instance_delete — create and manipulate
instance handles and instances in the Service
Configuration Facility, 973

scf_instance_destroy — create and manipulate
instance handles and instances in the Service
Configuration Facility, 973

scf_instance_get_name — create and
manipulate instance handles and instances in
the Service Configuration Facility, 973

scf_instance_get_parent — create and
manipulate instance handles and instances in
the Service Configuration Facility, 973

1260 man pages section 3: Extended Library Functions • January 2005

scf_instance_get_pg — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_instance_get_pg_composed — create and
manipulate property group handles and
property groups in the Service Configuration
Facility, 984

scf_instance_get_snapshot — create and
manipulate snapshot handles and snapshots
in the Service Configuration Facility, 1025

scf_instance_handle — create and manipulate
instance handles and instances in the Service
Configuration Facility, 973

scf_instance_to_fmri — convert between objects
and FMRIs in the Service Configuration
Facility, 970

scf_iter_create — iterate through the Service
Configuration Facility repository, 977

scf_iter_destroy — iterate through the Service
Configuration Facility repository, 977

scf_iter_handle — iterate through the Service
Configuration Facility repository, 977

scf_iter_handle_scopes — iterate through the
Service Configuration Facility
repository, 977

scf_iter_instance_pgs — iterate through the
Service Configuration Facility
repository, 977

scf_iter_instance_pgs_composed — iterate
through the Service Configuration Facility
repository, 977

scf_iter_instance_pgs_typed — iterate through
the Service Configuration Facility
repository, 977

scf_iter_instance_pgs_typed_composed —
iterate through the Service Configuration
Facility repository, 977

scf_iter_instance_snapshots — iterate through
the Service Configuration Facility
repository, 977

scf_iter_next_instance — iterate through the
Service Configuration Facility
repository, 977

scf_iter_next_pg — iterate through the Service
Configuration Facility repository, 977

scf_iter_next_property — iterate through the
Service Configuration Facility
repository, 977

scf_iter_next_scope — iterate through the
Service Configuration Facility
repository, 977

scf_iter_next_service — iterate through the
Service Configuration Facility
repository, 977

scf_iter_next_snapshot — iterate through the
Service Configuration Facility
repository, 977

scf_iter_next_value — iterate through the
Service Configuration Facility
repository, 977

scf_iter_pg_properties — iterate through the
Service Configuration Facility
repository, 977

scf_iter_property_values — iterate through the
Service Configuration Facility
repository, 977

scf_iter_reset — iterate through the Service
Configuration Facility repository, 977

scf_iter_scope_services — iterate through the
Service Configuration Facility
repository, 977

scf_iter_service_instances — iterate through the
Service Configuration Facility
repository, 977

scf_iter_service_pgs — iterate through the
Service Configuration Facility
repository, 977

scf_iter_service_pgs_typed — iterate through
the Service Configuration Facility
repository, 977

scf_iter_snaplevel_pgs — iterate through the
Service Configuration Facility
repository, 977

scf_iter_snaplevel_pgs_typed — iterate through
the Service Configuration Facility
repository, 977

scf_limit — limit information for Service
Configuration Facility, 983

scf_myname — Service Configuration Facility
handle functions, 967

scf_pg_create — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_pg_delete — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

1261

scf_pg_destroy — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_pg_get_flags — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_pg_get_name — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_pg_get_parent_instance — create and
manipulate property group handles and
property groups in the Service Configuration
Facility, 984

scf_pg_get_parent_service — create and
manipulate property group handles and
property groups in the Service Configuration
Facility, 984

scf_pg_get_parent_snaplevel — create and
manipulate property group handles and
property groups in the Service Configuration
Facility, 984

scf_pg_get_property — create and manipulate
property handles in the Service
Configuration Facility, 991

scf_pg_get_type — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_pg_get_underlying_pg — create and
manipulate property group handles and
property groups in the Service Configuration
Facility, 984

scf_pg_handle — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_pg_to_fmri — convert between objects and
FMRIs in the Service Configuration
Facility, 970

scf_pg_update — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_property_create — create and manipulate
property handles in the Service
Configuration Facility, 991

scf_property_destroy — create and manipulate
property handles in the Service
Configuration Facility, 991

scf_property_get_name — create and
manipulate property handles in the Service
Configuration Facility, 991

scf_property_get_value — create and
manipulate property handles in the Service
Configuration Facility, 991

scf_property_handle — create and manipulate
property handles in the Service
Configuration Facility, 991

scf_property_is_type — create and manipulate
property handles in the Service
Configuration Facility, 991

scf_property_to_fmri — convert between
objects and FMRIs in the Service
Configuration Facility, 970

scf_property_type — create and manipulate
property handles in the Service
Configuration Facility, 991

scf_scope_add_service — create and manipulate
service handles and services in the Service
Configuration Facility, 997

scf_scope_create — create and manipulate
scope handles in the Service Configuration
Facility, 994

scf_scope_destroy — create and manipulate
scope handles in the Service Configuration
Facility, 994

scf_scope_get_name — create and manipulate
scope handles in the Service Configuration
Facility, 994

scf_scope_get_service — create and manipulate
service handles and services in the Service
Configuration Facility, 997

scf_scope_handle — create and manipulate
scope handles in the Service Configuration
Facility, 994

scf_scope_to_fmri — convert between objects
and FMRIs in the Service Configuration
Facility, 970

scf_service_add_instance — create and
manipulate instance handles and instances in
the Service Configuration Facility, 973

scf_service_add_pg — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_service_create — create and manipulate
service handles and services in the Service
Configuration Facility, 997

1262 man pages section 3: Extended Library Functions • January 2005

scf_service_delete — create and manipulate
service handles and services in the Service
Configuration Facility, 997

scf_service_destroy — create and manipulate
service handles and services in the Service
Configuration Facility, 997

scf_service_get_instance — create and
manipulate instance handles and instances in
the Service Configuration Facility, 973

scf_service_get_name — create and manipulate
service handles and services in the Service
Configuration Facility, 997

scf_service_get_parent — create and manipulate
service handles and services in the Service
Configuration Facility, 997

scf_service_get_pg — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_service_handle — create and manipulate
service handles and services in the Service
Configuration Facility, 997

scf_service_to_fmri — convert between objects
and FMRIs in the Service Configuration
Facility, 970

SCF_Session_close — close a smartcard session,
terminal, or card, 1001

SCF_Session_getInfo — retrieve information
about a session, terminal, or card, 1005

SCF_Session_getSession — establish a context
with a system’s smartcard framework, 1008

SCF_Session_getTerminal — establish a context
with a smartcard terminal (reader), 1010

scf_simple_app_props_free — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_app_props_get — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_app_props_next — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_app_props_search — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_free — simplified property
read interface to Service Configuration
Facility, 1013

scf_simple_prop_get — simplified property
read interface to Service Configuration
Facility, 1013

scf_simple_prop_name — simplified property
read interface to Service Configuration
Facility, 1013

scf_simple_prop_next_astring — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_next_boolean — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_next_count — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_next_integer — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_next_opaque — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_next_reset — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_next_time — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_next_ustring — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_numvalues — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_pgname — simplified
property read interface to Service
Configuration Facility, 1013

scf_simple_prop_type — simplified property
read interface to Service Configuration
Facility, 1013

scf_simple_walk_instances — observational
interface for Service Configuration
Facility, 1020

scf_snaplevel_create — create and manipulate
snaplevel handles in the Service
Configuration Facility, 1021

scf_snaplevel_destroy — create and manipulate
snaplevel handles in the Service
Configuration Facility, 1021

1263

scf_snaplevel_get_instance_name — create and
manipulate snaplevel handles in the Service
Configuration Facility, 1021

scf_snaplevel_get_next_snaplevel — create and
manipulate snaplevel handles in the Service
Configuration Facility, 1021

scf_snaplevel_get_parent — create and
manipulate snaplevel handles in the Service
Configuration Facility, 1021

scf_snaplevel_get_pg — create and manipulate
property group handles and property groups
in the Service Configuration Facility, 984

scf_snaplevel_get_scope_name — create and
manipulate snaplevel handles in the Service
Configuration Facility, 1021

scf_snaplevel_get_service_name — create and
manipulate snaplevel handles in the Service
Configuration Facility, 1021

scf_snaplevel_handle — create and manipulate
snaplevel handles in the Service
Configuration Facility, 1021

scf_snapshot_create — create and manipulate
snapshot handles and snapshots in the
Service Configuration Facility, 1025

scf_snapshot_destroy — create and manipulate
snapshot handles and snapshots in the
Service Configuration Facility, 1025

scf_snapshot_get_base_snaplevel — create and
manipulate snaplevel handles in the Service
Configuration Facility, 1021

scf_snapshot_get_name — create and
manipulate snapshot handles and snapshots
in the Service Configuration Facility, 1025

scf_snapshot_get_parent — create and
manipulate snapshot handles and snapshots
in the Service Configuration Facility, 1025

scf_snapshot_handle — create and manipulate
snapshot handles and snapshots in the
Service Configuration Facility, 1025

scf_snapshot_update — create and manipulate
snapshot handles and snapshots in the
Service Configuration Facility, 1025

scf_strerror — error interface to Service
Configuration Facility, 965

SCF_strerror — get a string describing a status
code, 1028

SCF_Terminal_addEventListener — receive
asychronous event notification, 1029

SCF_Terminal_close — close a smartcard
session, terminal, or card, 1001

SCF_Terminal_getCard — establish a context
with a smartcard, 1035

SCF_Terminal_getInfo — retrieve information
about a session, terminal, or card, 1005

SCF_Terminal_removeEventListener — receive
asychronous event notification, 1029

SCF_Terminal_updateEventListener — receive
asychronous event notification, 1029

SCF_Terminal_waitForCardAbsent — wait for a
card to be inserted or removed, 1037

SCF_Terminal_waitForCardPresent — wait for a
card to be inserted or removed, 1037

scf_transaction_commit — create and
manipulate transaction in the Service
Configuration Facility, 1040

scf_transaction_create — create and manipulate
transaction in the Service Configuration
Facility, 1040

scf_transaction_destroy — create and
manipulate transaction in the Service
Configuration Facility, 1040

scf_transaction_destroy_children — create and
manipulate transaction in the Service
Configuration Facility, 1040

scf_transaction_handle — create and
manipulate transaction in the Service
Configuration Facility, 1040

scf_transaction_property_change — create and
manipulate transaction in the Service
Configuration Facility, 1040

scf_transaction_property_change_type — create
and manipulate transaction in the Service
Configuration Facility, 1040

scf_transaction_property_delete — create and
manipulate transaction in the Service
Configuration Facility, 1040

scf_transaction_property_new — create and
manipulate transaction in the Service
Configuration Facility, 1040

scf_transaction_reset — create and manipulate
transaction in the Service Configuration
Facility, 1040

scf_transaction_reset_all — create and
manipulate transaction in the Service
Configuration Facility, 1040

1264 man pages section 3: Extended Library Functions • January 2005

scf_transaction_start — create and manipulate
transaction in the Service Configuration
Facility, 1040

scf_type_base_type — manipulate values in the
Service Configuration Facility, 1046

scf_value_base_type — manipulate values in
the Service Configuration Facility, 1046

scf_value_create — manipulate values in the
Service Configuration Facility, 1046

scf_value_destroy — manipulate values in the
Service Configuration Facility, 1046

scf_value_get_as_string — manipulate values in
the Service Configuration Facility, 1046

scf_value_get_as_string_typed — manipulate
values in the Service Configuration
Facility, 1046

scf_value_get_astring — manipulate values in
the Service Configuration Facility, 1046

scf_value_get_boolean — manipulate values in
the Service Configuration Facility, 1046

scf_value_get_count — manipulate values in
the Service Configuration Facility, 1046

scf_value_get_integer — manipulate values in
the Service Configuration Facility, 1046

scf_value_get_opaque — manipulate values in
the Service Configuration Facility, 1046

scf_value_get_time — manipulate values in the
Service Configuration Facility, 1046

scf_value_get_ustring — manipulate values in
the Service Configuration Facility, 1046

scf_value_handle — manipulate values in the
Service Configuration Facility, 1046

scf_value_is_type — manipulate values in the
Service Configuration Facility, 1046

scf_value_reset — manipulate values in the
Service Configuration Facility, 1046

scf_value_set_astring — manipulate values in
the Service Configuration Facility, 1046

scf_value_set_boolean — manipulate values in
the Service Configuration Facility, 1046

scf_value_set_count — manipulate values in the
Service Configuration Facility, 1046

scf_value_set_from_string — manipulate values
in the Service Configuration Facility, 1046

scf_value_set_integer — manipulate values in
the Service Configuration Facility, 1046

scf_value_set_opaque — manipulate values in
the Service Configuration Facility, 1046

scf_value_set_time — manipulate values in the
Service Configuration Facility, 1046

scf_value_set_ustring — manipulate values in
the Service Configuration Facility, 1046

scf_value_type — manipulate values in the
Service Configuration Facility, 1046

search for a property —
di_prop_lookup_bytes, 338

search for a property —
di_prop_lookup_int64, 338

search for a property —
di_prop_lookup_ints, 338

search for a property —
di_prop_lookup_strings, 338

send a command APDU to a card and read the
card’s response —
SCF_Card_exchangeAPDU, 957

send a file — sendfilev, 1054
send control information to an IFD —

IFDHControl, 607
send files over sockets or copy files to files —

sendfile, 1051
sendfile — send files over sockets or copy files

to files, 1051
sendfilev — send a file, 1054
Service Configuration Facility handle functions

— scf_handle_bind, 967
Service Configuration Facility handle functions

— scf_handle_create, 967
Service Configuration Facility handle functions

— scf_handle_decorate, 967
Service Configuration Facility handle functions

— scf_handle_destroy, 967
Service Configuration Facility handle functions

— scf_handle_unbind, 967
Service Configuration Facility handle functions

— scf_myname, 967
Service Provider functions for components —

DmiOriginateEvent, 364
Service Provider functions for components —

DmiRegisterCi, 364
Service Provider functions for components —

DmiUnregisterCi, 364
service provider implementation for

pam_acct_mgmt —
pam_sm_acct_mgmt, 793

1265

service provider implementation for
pam_authenticate —
pam_sm_authenticate, 795

service provider implementation for
pam_chauthtok — pam_sm_chauthtok, 797

Service provider implementation for
pam_open_session and pam_close_session
— pam_sm_close_session, 800
— pam_sm_open_session, 800

service provider implementation for
pam_setcred — pam_sm_setcred, 801

set and query process to resource pool bindings
— pool_get_binding, 856

set and query process to resource pool bindings
— pool_get_resource_binding, 856

set and query process to resource pool bindings
— pool_set_binding, 856

set or get mode for barrier scoping —
rsm_memseg_import_get_mode, 950

set or get mode for barrier scoping —
rsm_memseg_import_set_mode, 950

set or get the instance of a component —
wsreg_get_instance, 1195

set or get the instance of a component —
wsreg_set_instance, 1195

set or get the instance of a query —
wsreg_query_get_instance, 1186

set or get the instance of a query —
wsreg_query_set_instance, 1186

set or get the location of a component —
wsreg_get_location, 1197

set or get the location of a component —
wsreg_set_location, 1197

set or get the location of a query —
wsreg_query_get_location, 1187

set or get the location of a query —
wsreg_query_set_location, 1187

set or get the parent of a component —
wsreg_get_parent, 1198

set or get the parent of a component —
wsreg_set_parent, 1198

set or get the type of a component —
wsreg_get_type, 1199

set or get the type of a component —
wsreg_set_type, 1199

set or get the uninstaller of a component —
wsreg_get_uninstaller, 1200

set or get the uninstaller of a component —
wsreg_set_uninstaller, 1200

set or get the unique name of a component —
wsreg_get_unique_name, 1201

set or get the unique name of a component —
wsreg_set_unique_name, 1201

set or get the unique name of a query —
wsreg_query_get_unique_name, 1188

set or get the unique name of a query —
wsreg_query_set_unique_name, 1188

set or get the uuid of a component —
wsreg_get_id, 1194

set or get the uuid of a component —
wsreg_set_id, 1194

set or get the uuid of a query —
wsreg_query_get_id, 1185

set or get the uuid of a query —
wsreg_query_set_id, 1185

set or get the vendor of a componentt —
wsreg_get_vendor, 1202

set or get the vendor of a componentt —
wsreg_set_vendor, 1202

set or get the version of a component —
wsreg_get_version, 1203

set or get the version of a component —
wsreg_set_version, 1203

set or get the version of a query —
wsreg_query_get_version, 1189

set or get the version of a query —
wsreg_query_set_version, 1189

set the value of a property to the specified value
— picl_set_propval, 833

set the value of a property to the specified value
— picl_set_propval_by_name, 833

set high watermark on Endpoint —
dat_ep_set_watermark, 224

set layout values of a LayoutObject —
m_setvalues_layout, 727

set low watermark on shared receive queue —
dat_srq_set_lw, 306

set protocol parameters —
IFDHSetProtocolParameters, 617

set slot or card capabilities —
IFDHSetCapabilities, 616

setac — get audit control file information, 488
setauclass — rewind audit_class database

file, 490

1266 man pages section 3: Extended Library Functions • January 2005

setauuser — rewind audit_event database
file, 493

setauthattr — get authorization database
entry, 495

setddent — get device_deallocate entry, 500
setddfile — get device_deallocate entry, 500
setdmapent — get device_maps entry, 502
setdmapfile — get device_maps entry, 502
setexecattr — get execution profile entry, 504
setprofattr — get profile description and

attributes, 508
setproject — place process in new project with

attendant resource controls, resource pools,
and attributes, 1057

setprojent — project database entry
functions, 510

setuserattr — get user_attr entry, 514
shell global pattern matching — gmatch, 551
shutdown the session with the PICL daemon —

picl_shutdown, 835
signal or wait for an event —

rsm_intr_signal_post, 926
signal or wait for an event —

rsm_intr_signal_wait, 926
signbit — test sign, 1060
significand — significand function, 1061
significand function — significand, 1061
significand function — significandf, 1061
significand function — significandl, 1061
significandf — significand function, 1061
significandl — significand function, 1061
simple difference and accumulate operations —

cpc_event_accum, 116
simple difference and accumulate operations —

cpc_event_diff, 116
simplified property read interface to Service

Configuration Facility —
scf_simple_app_props_free, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_app_props_get, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_app_props_next, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_app_props_search, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_free, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_get, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_name, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_next_astring, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_next_boolean, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_next_count, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_next_integer, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_next_opaque, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_next_reset, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_next_time, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_next_ustring, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_numvalues, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_pgname, 1013

simplified property read interface to Service
Configuration Facility —
scf_simple_prop_type, 1013

sin — sine function, 1062
sincos — combined sine and cosine

function, 1063
sincosf — combined sine and cosine

function, 1063

1267

sincosl — combined sine and cosine
function, 1063

sine function — sin, 1062
sine function — sinf, 1062
sine function — sinl, 1062
sinf — sine function, 1062
sinh — hyperbolic sine function, 1064
sinhf — hyperbolic sine function, 1064
sinhl — hyperbolic sine function, 1064
sinl — sine function, 1062
smf_degrade_instance — administrative

interface to the Service Configuration
Facility, 1066

smf_disable_instance — administrative
interface to the Service Configuration
Facility, 1066

smf_enable_instance — administrative interface
to the Service Configuration Facility, 1066

smf_get_state — administrative interface to the
Service Configuration Facility, 1066

smf_maintain_instance — administrative
interface to the Service Configuration
Facility, 1066

smf_refresh_instance — administrative interface
to the Service Configuration Facility, 1066

smf_restart_instance — administrative interface
to the Service Configuration Facility, 1066

smf_restore_instance — administrative interface
to the Service Configuration Facility, 1066

sort an ACL — aclsort, 30
sqrt — square root function, 1069
sqrtf — square root function, 1069
sqrtl — square root function, 1069
square root function — sqrt, 1069
square root function — sqrtf, 1069
square root function — sqrtl, 1069
SSAAgentIsAlive — Sun Solstice Enterprise

Agent registration and communication
helper functions, 1071

SSAGetTrapPort — Sun Solstice Enterprise
Agent registration and communication
helper functions, 1071

SSAOidCmp — Sun Solstice Enterprise Agent
OID helper functions, 1074

SSAOidCpy — Sun Solstice Enterprise Agent
OID helper functions, 1074

SSAOidDup — Sun Solstice Enterprise Agent
OID helper functions, 1074

SSAOidFree — Sun Solstice Enterprise Agent
OID helper functions, 1074

SSAOidInit — Sun Solstice Enterprise Agent
OID helper functions, 1074

SSAOidNew — Sun Solstice Enterprise Agent
OID helper functions, 1074

SSAOidString — Sun Solstice Enterprise Agent
OID helper functions, 1074

SSAOidStrToOid — Sun Solstice Enterprise
Agent OID helper functions, 1074

SSAOidZero — Sun Solstice Enterprise Agent
OID helper functions, 1074

SSARegSubagent — Sun Solstice Enterprise
Agent registration and communication
helper functions, 1071

SSARegSubtable — Sun Solstice Enterprise
Agent registration and communication
helper functions, 1071

SSARegSubtree — Sun Solstice Enterprise
Agent registration and communication
helper functions, 1071

SSASendTrap — Sun Solstice Enterprise Agent
registration and communication helper
functions, 1071

SSAStringCpy — Sun Solstice Enterprise Agent
string helper functions, 1076

SSAStringInit — Sun Solstice Enterprise Agent
string helper functions, 1076

SSAStringToChar — Sun Solstice Enterprise
Agent string helper functions, 1076

SSAStringZero — Sun Solstice Enterprise Agent
string helper functions, 1076

SSASubagentOpen — Sun Solstice Enterprise
Agent registration and communication
helper functions, 1071

step — regular expression compile and match
routines, 911

strcadd — copy strings, compressing or
expanding C language escape codes, 1079

strccpy — copy strings, compressing or
expanding C language escape codes, 1079

streadd — copy strings, compressing or
expanding C language escape codes, 1079

STREAMS
determine whether a buffer of characters is

encrypted — isencrypt, 622
read stream up to next delimiter — bgets, 57
split buffer into fields — bufsplit, 59

1268 man pages section 3: Extended Library Functions • January 2005

strecpy — copy strings, compressing or
expanding C language escape codes, 1079

strfind — string manipulations, 1080
string manipulations — strfind, 1080

strrspn, 1080
strtrns, 1080

string manipulations
— strfind, 1080
— strrspn, 1080
— strtrns, 1080

string operation, get PAM error message string
— pam_strerror, 805

strings, copy, compressing or expanding C
language escape codes, 1079

Sun::Solaris::Kstat — Perl tied hash interface to
the kstat facility, 640

Sun Solstice Enterprise Agent OID helper
functions
— SSAOidCmp, 1074
— SSAOidCpy, 1074
— SSAOidDup, 1074
— SSAOidFree, 1074
— SSAOidInit, 1074
— SSAOidNew, 1074
— SSAOidString, 1074
— SSAOidStrToOid, 1074
— SSAOidZero, 1074

Sun Solstice Enterprise Agent registration and
communication helper functions
— SSAAgentIsAlive, 1071
— SSAGetTrapPort, 1071
— SSARegSubagent, 1071
— SSARegSubtable, 1071
— SSARegSubtree, 1071
— SSASendTrap, 1071
— SSASubagentOpen, 1071

Sun Solstice Enterprise Agent string helper
functions
— SSAStringCpy, 1076
— SSAStringInit, 1076
— SSAStringToChar, 1076
— SSAStringZero, 1076

SUNW_C_GetMechSession — PKCS#11
Cryptographic Framework functions, 1081

SUNW_C_KeyToObject — PKCS#11
Cryptographic Framework functions, 1081

synchronize local memory with RDMA read on
non-coherent memory —
dat_lmr_sync_rdma_read, 261

synchronize local memory with RDMA write on
non-coherent memory —
dat_lmr_sync_rdma_write, 263

sysevent_bind_handle — bind or unbind
subscriber handle, 1083

sysevent_free — free memory for sysevent
handle, 1085

sysevent_get_attr_list — get attribute list
pointer, 1086

sysevent_get_class_name — get class name,
subclass name, ID or buffer size of
event, 1087

sysevent_get_pid — get vendor name,
publisher name or processor ID of
event, 1089

sysevent_get_pub_name — get vendor name,
publisher name or processor ID of
event, 1089

sysevent_get_seq — get class name, subclass
name, ID or buffer size of event, 1087

sysevent_get_size — get class name, subclass
name, ID or buffer size of event, 1087

sysevent_get_subclass_name — get class name,
subclass name, ID or buffer size of
event, 1087

sysevent_get_time — get class name, subclass
name, ID or buffer size of event, 1087

sysevent_get_vendor_name — get vendor
name, publisher name or processor ID of
event, 1089

sysevent_unbind_handle — bind or unbind
subscriber handle, 1083

T
tan — tangent function, 1096
tanf — tangent function, 1096
tangent function — tan, 1096
tangent function — tanf, 1096
tangent function — tanl, 1096
tanh — hyperbolic tangent function, 1097
tanhf — hyperbolic tangent function, 1097
tanhl — hyperbolic tangent function, 1097
tanl — tangent function, 1096

1269

Task — Perl interface to Tasks, 1098
test access CPU performance counters —

cpc_access, 92
test floating-point exception flags —

fetestexcept, 462
test for a normal value — isnormal, 631
test for finite value — isfinite, 623
test for NaN — isnan, 630
test if arguments are unordered —

isunordered, 632
test if x greater than or equal to y —

isgreaterequal, 625
test if x greater than y — isgreater, 624
test if x is less than or equal to y —

islessequal, 628
test if x is less than or greater than y —

islessgreater, 629
test if x is less than y — isless, 627
test sign — signbit, 1060
tgamma — compute gamma function, 1099
tgammaf — compute gamma function, 1099
tgammal — compute gamma function, 1099
TNF_DEBUG — probe insertion interface, 1132
TNF_PROBE — probe insertion interface

arg_name_n, 1135
arg_type_n, 1134
arg_value_n, 1135
detail, 1133
keys, 1133
name, 1133

TNF_PROBE_0 — probe insertion
interface, 1132

TNF_PROBE_0_DEBUG — probe insertion
interface, 1132

TNF_PROBE_1 — probe insertion
interface, 1132

TNF_PROBE_1_DEBUG — probe insertion
interface, 1132

TNF_PROBE_2 — probe insertion
interface, 1132

TNF_PROBE_2_DEBUG — probe insertion
interface, 1132

TNF_PROBE_3 — probe insertion
interface, 1132

TNF_PROBE_3_DEBUG — probe insertion
interface, 1132

TNF_PROBE_4 — probe insertion
interface, 1132

TNF_PROBE_4_DEBUG — probe insertion
interface, 1132

TNF_PROBE_5 — probe insertion
interface, 1132

TNF_PROBE_5_DEBUG — probe insertion
interface, 1132

tnf_process_disable() — disables probing for the
process, 1137

tnf_process_enable() — enables probing for the
process, 1137

tnf_thread_disable() — disables probing for the
calling thread, 1137

tnf_thread_enable() — enables probing for the
calling thread, 1137

tnfctl_buffer_alloc — allocate or deallocate a
buffer for trace data, 1101

tnfctl_buffer_dealloc — allocate or deallocate a
buffer for trace data, 1101

tnfctl_check_libs — control probes of another
process where caller provides /proc
functionality, 1105

tnfctl_close — close a tnfctl handle, 1103
tnfctl_continue — interfaces for direct probe

and process control for another process, 1111
tnfctl_exec_open — interfaces for direct probe

and process control for another process, 1111
tnfctl_filter_list_add — control kernel tracing

and process filtering, 1127
tnfctl_filter_list_delete — control kernel tracing

and process filtering, 1127
tnfctl_filter_list_get — control kernel tracing

and process filtering, 1127
tnfctl_filter_state_set — control kernel tracing

and process filtering, 1127
tnfctl_indirect_open — control probes of

another process where caller provides /proc
functionality, 1105

tnfctl_internal_open — create handle for
internal process probe control, 1108

tnfctl_kernel_open — create handle for kernel
probe control, 1110

tnfctl_pid_open — interfaces for direct probe
and process control for another process, 1111

tnfctl_probe_apply — iterate over probes, 1116
tnfctl_probe_apply_ids — iterate over

probes, 1116
tnfctl_probe_connect — interfaces to query and

to change the state of a probe, 1119

1270 man pages section 3: Extended Library Functions • January 2005

tnfctl_probe_disable — interfaces to query and
to change the state of a probe, 1119

tnfctl_probe_disconnect_all — interfaces to
query and to change the state of a
probe, 1119

tnfctl_probe_enable — interfaces to query and
to change the state of a probe, 1119

tnfctl_probe_state_get — interfaces to query
and to change the state of a probe, 1119

tnfctl_probe_trace — interfaces to query and to
change the state of a probe, 1119

tnfctl_probe_untrace — interfaces to query and
to change the state of a probe, 1119

tnfctl_register_funcs — register callbacks for
probe creation and destruction, 1123

tnfctl_strerror — map a tnfctl error code to a
string, 1124

tnfctl_trace_attrs_get — get the trace attributes
from a tnfctl handle, 1125

tnfctl_trace_state_set — control kernel tracing
and process filtering, 1127

touchlock — functions to manage lockfile(s) for
user’s mailbox, 704

translate strings to and from events —
cpc_eventtostr, 133

translate strings to and from events —
cpc_strtoevent, 133

transmit APDU to a smart card —
IFDHTransmitToICC, 619

traverse libdevinfo device nodes —
di_walk_node, 345

traverse libdevinfo links — di_walk_link, 342
traverse libdevinfo lnodes —

di_walk_lnode, 343
traverse libdevinfo minor nodes —

di_walk_minor, 344
trunc — round to truncated integer value, 1143
truncf — round to truncated integer

value, 1143
truncl — round to truncated integer value, 1143

U
Ucred — Perl interface to User

Credentials, 1144
universally unique identifier (UUID) operations

— uuid_clear, 1146

universally unique identifier (UUID) operations
— uuid_compare, 1146

universally unique identifier (UUID) operations
— uuid_copy, 1146

universally unique identifier (UUID) operations
— uuid_generate, 1146

universally unique identifier (UUID) operations
— uuid_generate_random, 1146

universally unique identifier (UUID) operations
— uuid_generate_time, 1146

universally unique identifier (UUID) operations
— uuid_is_null, 1146

universally unique identifier (UUID) operations
— uuid_parse, 1146

universally unique identifier (UUID) operations
— uuid_time, 1146

universally unique identifier (UUID) operations
— uuid_unparse, 1146

unregister the event handler for the event —
ptree_unregister_handler, 906

update a property value —
ptree_update_propval, 907

update a property value —
ptree_update_propval_by_name, 907

update floating-point environment —
feupdateenv, 463

update the kstat header chain —
kstat_chain_update, 642

use gl_get_line() from an external event
loop — gl_abandon_line, 544

use gl_get_line() from an external event
loop — gl_handle_signal, 544

use gl_get_line() from an external event
loop — gl_io_mode, 544

use gl_get_line() from an external event
loop — gl_normal_io, 544

use gl_get_line() from an external event
loop — gl_pending_io, 544

use gl_get_line() from an external event
loop — gl_raw_io, 544

use gl_get_line() from an external event
loop — gl_tty_signals, 544

use CPU performance counters on lwps —
cpc_bind_event, 101

use CPU performance counters on lwps —
cpc_rele, 101

use CPU performance counters on lwps —
cpc_take_sample, 101

1271

uuid_clear — universally unique identifier
(UUID) operations, 1146

uuid_compare — universally unique identifier
(UUID) operations, 1146

uuid_copy — universally unique identifier
(UUID) operations, 1146

uuid_generate — universally unique identifier
(UUID) operations, 1146

uuid_generate_random — universally unique
identifier (UUID) operations, 1146

uuid_generate_time — universally unique
identifier (UUID) operations, 1146

uuid_is_null — universally unique identifier
(UUID) operations, 1146

uuid_parse — universally unique identifier
(UUID) operations, 1146

uuid_time — universally unique identifier
(UUID) operations, 1146

uuid_unparse — universally unique identifier
(UUID) operations, 1146

V
variable arguments

handle list — stdarg, 1077
handle list — vararg, 1148

vatan_ — vector versions of common
mathematical functions, 1150

vatan2_ — vector versions of common
mathematical functions, 1150

vatan2f_ — vector versions of common
mathematical functions, 1150

vatanf_ — vector versions of common
mathematical functions, 1150

vc_abs_ — vector versions of common complex
mathematical functions, 1153

vc_exp_ — vector versions of common complex
mathematical functions, 1153

vc_log_ — vector versions of common complex
mathematical functions, 1153

vc_pow_ — vector versions of common
complex mathematical functions, 1153

vcos_ — vector versions of common
mathematical functions, 1150

vcosf_ — vector versions of common
mathematical functions, 1150

vector versions of common complex
mathematical functions — vc_abs_, 1153

vector versions of common complex
mathematical functions — vc_exp_, 1153

vector versions of common complex
mathematical functions — vc_log_, 1153

vector versions of common complex
mathematical functions — vc_pow_, 1153

vector versions of common complex
mathematical functions — vz_abs_, 1153

vector versions of common complex
mathematical functions — vz_exp_, 1153

vector versions of common complex
mathematical functions — vz_log_, 1153

vector versions of common complex
mathematical functions — vz_pow_, 1153

vector versions of common mathematical
functions — vatan2f_, 1150

vector versions of common mathematical
functions — vatan2_, 1150

vector versions of common mathematical
functions — vatanf_, 1150

vector versions of common mathematical
functions — vatan_, 1150

vector versions of common mathematical
functions — vcosf_, 1150

vector versions of common mathematical
functions — vcos_, 1150

vector versions of common mathematical
functions — vexpf_, 1150

vector versions of common mathematical
functions — vexp_, 1150

vector versions of common mathematical
functions — vhypotf_, 1150

vector versions of common mathematical
functions — vhypot_, 1150

vector versions of common mathematical
functions — vlogf_, 1150

vector versions of common mathematical
functions — vlog_, 1150

vector versions of common mathematical
functions — vpowf_, 1150

vector versions of common mathematical
functions — vpow_, 1150

vector versions of common mathematical
functions — vrhypotf_, 1150

vector versions of common mathematical
functions — vrhypot_, 1150

1272 man pages section 3: Extended Library Functions • January 2005

vector versions of common mathematical
functions — vrsqrtf_, 1150

vector versions of common mathematical
functions — vrsqrt_, 1150

vector versions of common mathematical
functions — vsincosf_, 1150

vector versions of common mathematical
functions — vsincos_, 1150

vector versions of common mathematical
functions — vsinf_, 1150

vector versions of common mathematical
functions — vsin_, 1150

vector versions of common mathematical
functions — vsqrtf_, 1150

vector versions of common mathematical
functions — vsqrt_, 1150

vexp_ — vector versions of common
mathematical functions, 1150

vexpf_ — vector versions of common
mathematical functions, 1150

vhypot_ — vector versions of common
mathematical functions, 1150

vhypotf_ — vector versions of common
mathematical functions, 1150

visit active project IDs on current system —
project_walk, 882

vlog_ — vector versions of common
mathematical functions, 1150

vlogf_ — vector versions of common
mathematical functions, 1150

volmgt_acquire — reserve removable media
device, 1155

volmgt_check — have Volume Management
check for media, 1158

volmgt_feature_enabled — check whether
specific Volume Management features are
enabled, 1159

volmgt_inuse — check whether or not Volume
Management is managing a pathname, 1160

volmgt_release — release removable media
device reservation, 1162

volmgt_root — return the Volume Management
root directory, 1163

volmgt_running — return whether or not
Volume Management is running, 1164

volmgt_symdev — convert between Volume
Management symbolic names, and the
devices that correspond to them, 1165

volmgt_symname — convert between Volume
Management symbolic names, and the
devices that correspond to them, 1165

vpow_ — vector versions of common
mathematical functions, 1150

vpowf_ — vector versions of common
mathematical functions, 1150

vrhypot_ — vector versions of common
mathematical functions, 1150

vrhypotf_ — vector versions of common
mathematical functions, 1150

vrsqrt_ — vector versions of common
mathematical functions, 1150

vrsqrtf_ — vector versions of common
mathematical functions, 1150

vsin_ — vector versions of common
mathematical functions, 1150

vsincos_ — vector versions of common
mathematical functions, 1150

vsincosf_ — vector versions of common
mathematical functions, 1150

vsinf_ — vector versions of common
mathematical functions, 1150

vsqrt_ — vector versions of common
mathematical functions, 1150

vsqrtf_ — vector versions of common
mathematical functions, 1150

VTOC, disk’s
read a disk’s VTOC — read_vtoc, 909
write a disk’s VTOC — write_vtoc, 909

vz_abs_ — vector versions of common complex
mathematical functions, 1153

vz_exp_ — vector versions of common complex
mathematical functions, 1153

vz_log_ — vector versions of common complex
mathematical functions, 1153

vz_pow_ — vector versions of common
complex mathematical functions, 1153

W
wait for a card to be inserted or removed —

SCF_Card_waitForCardRemoved, 1037
wait for a card to be inserted or removed —

SCF_Terminal_waitForCardAbsent, 1037
wait for a card to be inserted or removed —

SCF_Terminal_waitForCardPresent, 1037

1273

wait for events on a list of file descriptors —
rsm_intr_signal_wait_pollfd, 928

wait for PICL tree to refresh — picl_wait, 837
walk objects within resource pool

configurations —
pool_walk_components, 870

walk objects within resource pool
configurations — pool_walk_pools, 870

walk objects within resource pool
configurations — pool_walk_resources, 870

walk subtree by class —
picl_walk_tree_by_class, 838

walk subtree by class —
ptree_walk_tree_by_class, 908

write to a segment —
rsm_memseg_import_put16, 946

write to a segment —
rsm_memseg_import_put32, 946

write to a segment —
rsm_memseg_import_put64, 946

write to a segment —
rsm_memseg_import_put8, 946

write to a segment —
rsm_memseg_import_put, 946

write to a segment using a list of I/O requests
— rsm_memseg_import_getv, 948

write to a segment using a list of I/O requests
— rsm_memseg_import_putv, 948

write_vtoc — read and write a disk’s
VTOC, 909

wsreg_add_child_component — add or remove
a child component, 1167

wsreg_add_compatible_version — add or
remove a backward compatible
version, 1169

wsreg_add_dependent_component — add or
remove a dependent component, 1171

wsreg_add_display_name — add, remove, or
return a localized display name, 1173

wsreg_add_required_component — add or
remove a required component, 1175

wsreg_can_access_registry — determine access
to product install registry, 1177

wsreg_clone_component — clone a
component, 1179

wsreg_components_equal — determine equality
of two components, 1180

wsreg_create_component — create or release a
component, 1181

wsreg_free_component — create or release a
component, 1181

wsreg_free_component_array — create or
release a component, 1181

wsreg_get_child_components — add or remove
a child component, 1167

wsreg_get_compatible_versions — add or
remove a backward compatible
version, 1169

wsreg_get_data — add or retrieve a key-value
pair, 1192

wsreg_get_data_pairs — add or retrieve a
key-value pair, 1192

wsreg_get_dependent_components — add or
remove a dependent component, 1171

wsreg_get_display_languages — add, remove,
or return a localized display name, 1173

wsreg_get_display_name — add, remove, or
return a localized display name, 1173

wsreg_get_id — set or get the uuid of a
component, 1194

wsreg_get_instance — set or get the instance of
a component, 1195

wsreg_get_location — set or get the location of
a component, 1197

wsreg_get_parent — set or get the parent of a
component, 1198

wsreg_get_required_components — add or
remove a required component, 1175

wsreg_get_type — set or get the type of a
component, 1199

wsreg_get_uninstaller — set or get the
uninstaller of a component, 1200

wsreg_get_unique_name — set or get the
unique name of a component, 1201

wsreg_get_vendor — set or get the vendor of a
componentt, 1202

wsreg_get_version — set or get the version of a
component, 1203

wsreg_initialize — initialize wsreg library, 1183
wsreg_query_create — create a new

query, 1184
wsreg_query_free — create a new query, 1184
wsreg_query_get_id — set or get the uuid of a

query, 1185

1274 man pages section 3: Extended Library Functions • January 2005

wsreg_query_get_instance — set or get the
instance of a query, 1186

wsreg_query_get_location — set or get the
location of a query, 1187

wsreg_query_get_unique_name — set or get the
unique name of a query, 1188

wsreg_query_get_version — set or get the
version of a query, 1189

wsreg_query_set_id — set or get the uuid of a
query, 1185

wsreg_query_set_instance — set or get the
instance of a query, 1186

wsreg_query_set_location — set or get the
location of a query, 1187

wsreg_query_set_unique_name — set or get the
unique name of a query, 1188

wsreg_query_set_version — set or get the
version of a query, 1189

wsreg_register — register a component in the
product install registry, 1190

wsreg_remove_child_component — add or
remove a child component, 1167

wsreg_remove_compatible_version — add or
remove a backward compatible
version, 1169

wsreg_remove_dependent_component — add
or remove a dependent component, 1171

wsreg_remove_display_name — add, remove,
or return a localized display name, 1173

wsreg_remove_required_component — add or
remove a required component, 1175

wsreg_set_data — add or retrieve a key-value
pair, 1192

wsreg_set_id — set or get the uuid of a
component, 1194

wsreg_set_instance — set or get the instance of
a component, 1195

wsreg_set_location — set or get the location of a
component, 1197

wsreg_set_parent — set or get the parent of a
component, 1198

wsreg_set_type — set or get the type of a
component, 1199

wsreg_set_uninstaller — set or get the
uninstaller of a component, 1200

wsreg_set_unique_name — set or get the
unique name of a component, 1201

wsreg_set_vendor — set or get the vendor of a
componentt, 1202

wsreg_set_version — set or get the version of a
component, 1203

wsreg_unregister — remove a component from
the product install registry, 1204

Y
y0 — Bessel functions of the second kind, 1206
y0f — Bessel functions of the second kind, 1206
y0l — Bessel functions of the second kind, 1206
y1 — Bessel functions of the second kind, 1206
y1f — Bessel functions of the second kind, 1206
y1l — Bessel functions of the second kind, 1206
yn — Bessel functions of the second kind, 1206
ynf — Bessel functions of the second kind, 1206
ynl — Bessel functions of the second kind, 1206

1275

1276 man pages section 3: Extended Library Functions • January 2005

	man pages section 3: Extended Library Functions
	Preface
	Overview

	Index

