
man pages section 4: File Formats

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816–5174–10
January 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

050105@10536

Contents

Preface 11

Introduction 17
Intro(4) 18

File Formats 19
admin(4) 20
alias(4) 25
aliases(4) 26
a.out(4) 30
archives(4) 32
asetenv(4) 35
asetmasters(4) 37
au(4) 40
audit_class(4) 43
audit_control(4) 45
audit_data(4) 49
audit_event(4) 50
audit.log(4) 52
audit_user(4) 59
auth_attr(4) 61
autofs(4) 65
bart_manifest(4) 67
bart_rules(4) 70
bootparams(4) 74
cdtoc(4) 77

3

clustertoc(4) 80

compver(4) 84

contents(4) 85

contract(4) 87

copyright(4) 93

core(4) 94

crypt.conf(4) 99

crypto_certs(4) 101

dacf.conf(4) 102

dat.conf(4) 103

defaultdomain(4) 105

default_fs(4) 106

defaultrouter(4) 107

depend(4) 108

device_allocate(4) 110

device_maps(4) 112

devices(4) 114

dfstab(4) 115

dhcp_inittab(4) 116

dhcp_network(4) 123

dhcpsvc.conf(4) 126

dhcptab(4) 129

dialups(4) 134

dir_ufs(4) 135

d_passwd(4) 136

driver.conf(4) 138

environ(4) 141

ethers(4) 143

exec_attr(4) 144

fd(4) 147

flash_archive(4) 148

format.dat(4) 157

fspec(4) 161

fstypes(4) 163

ftp(4) 164

ftpaccess(4) 165

ftpconversions(4) 184

ftpgroups(4) 186

4 man pages section 4: File Formats • January 2005

ftphosts(4) 187

ftpservers(4) 188

ftpusers(4) 190

fx_dptbl(4) 192

gateways(4) 198

geniconvtbl(4) 202

group(4) 220

gsscred.conf(4) 222

hba.conf(4) 223

holidays(4) 224

hosts(4) 225

hosts.equiv(4) 227

ib(4) 230

idnkit.pc(4) 231

ike.config(4) 232

ike.preshared(4) 241

inetd.conf(4) 243

inet_type(4) 246

init.d(4) 247

inittab(4) 249

ipaddrsel.conf(4) 252

ipf(4) 253

ipnat(4) 262

ipnodes(4) 267

ippool(4) 269

issue(4) 272

kadm5.acl(4) 273

kdc.conf(4) 276

keytables(4) 282

krb5.conf(4) 289

ldapfilter.conf(4) 300

ldapsearchprefs.conf(4) 302

ldaptemplates.conf(4) 306

llc2(4) 310

logadm.conf(4) 316

logindevperm(4) 317

loginlog(4) 318

lutab(4) 319

5

magic(4) 320

mddb.cf(4) 323

md.tab(4) 324

mech(4) 330

meddb(4) 332

mipagent.conf(4) 333

mnttab(4) 341

mod_ipp(4) 344

ncad_addr(4) 348

nca.if(4) 349

ncakmod.conf(4) 351

ncalogd.conf(4) 353

ncaport.conf(4) 355

ndpd.conf(4) 356

netconfig(4) 361

netgroup(4) 366

netid(4) 369

netmasks(4) 371

netrc(4) 373

networks(4) 375

nfs(4) 376

nfslog.conf(4) 379

nfssec.conf(4) 381

nisfiles(4) 382

NIS+LDAPmapping(4) 385

NISLDAPmapping(4) 403

nodename(4) 417

nologin(4) 418

note(4) 419

notrouter(4) 420

nscd.conf(4) 421

nss(4) 423

nsswitch.conf(4) 424

order(4) 432

ott(4) 433

packagetoc(4) 434

packingrules(4) 438

pam.conf(4) 441

6 man pages section 4: File Formats • January 2005

passwd(4) 446

pathalias(4) 450

path_to_inst(4) 451

pci(4) 453

pcmcia(4) 457

phones(4) 458

pkginfo(4) 459

pkgmap(4) 468

platform(4) 472

plot(4B) 476

policy.conf(4) 478

power.conf(4) 481

printers(4) 488

printers.conf(4) 491

priv_names(4) 497

proc(4) 498

process(4) 528

prof_attr(4) 533

profile(4) 535

project(4) 536

protocols(4) 539

prototype(4) 540

pseudo(4) 545

publickey(4) 546

queuedefs(4) 547

rcmscript(4) 549

remote(4) 559

resolv.conf(4) 563

rmmount.conf(4) 566

rmtab(4) 570

rndc.conf(4) 571

rpc(4) 573

rpc.nisd(4) 574

rpld.conf(4) 587

rt_dptbl(4) 589

sasl_appname.conf(4) 594

sbus(4) 596

sccsfile(4) 599

7

scsi(4) 602

securenets(4) 606

service_bundle(4) 608

service_provider.conf(4) 610

services(4) 612

shadow(4) 613

sharetab(4) 615

shells(4) 616

slp.conf(4) 617

slpd.reg(4) 625

snmp.conf(4) 627

snmp_config(4) 630

snmpd.conf(4) 632

snmptrapd.conf(4) 646

snmp_variables(4) 648

sock2path(4) 649

space(4) 650

ssh_config(4) 651

sshd_config(4) 658

sulog(4) 667

synclist(4) 668

sysbus(4) 671

sysidcfg(4) 673

syslog.conf(4) 679

system(4) 682

telnetrc(4) 686

term(4) 687

terminfo(4) 690

TIMEZONE(4) 735

timezone(4) 736

tnf_kernel_probes(4) 737

ts_dptbl(4) 744

ttydefs(4) 751

ttysrch(4) 752

ufsdump(4) 754

updaters(4) 760

user_attr(4) 761

utmp(4) 764

8 man pages section 4: File Formats • January 2005

utmpx(4) 765

vfstab(4) 766

vold.conf(4) 769

volume-config(4) 773

volume-request(4) 777

wanboot.conf(4) 783

warn.conf(4) 787

xferlog(4) 788

ypfiles(4) 791

yppasswdd(4) 794

ypserv(4) 795

zoneinfo(4) 803

Index 805

9

10 man pages section 4: File Formats • January 2005

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview
The following contains a brief description of each man page section and the
information it references:

� Section 1 describes, in alphabetical order, commands available with the operating
system.

� Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

� Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

� Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

� Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

� Section 5 contains miscellaneous documentation such as character-set tables.

� Section 6 contains available games and demos.

� Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

11

� Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver⁄Kernel Interface (DKI).

� Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

� Section 9F describes the kernel functions available for use by device drivers.

� Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

. . . Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename
. . ." .

| Separator. Only one of the arguments
separated by this character can be
specified at a time.

{ } Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

12 man pages section 4: File Formats • January 2005

PROTOCOL This section occurs only in subsection 3R to
indicate the protocol description file.

DESCRIPTION This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

IOCTL This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioctl(2) system call is called
ioctl and generates its own heading. ioctl calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioctl calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

OPTIONS This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

OPERANDS This section lists the command operands and
describes how they affect the actions of the
command.

OUTPUT This section describes the output – standard output,
standard error, or output files – generated by the
command.

RETURN VALUES If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or –1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

ERRORS On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the

13

conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

USAGE This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

EXAMPLES This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

ENVIRONMENT VARIABLES This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

EXIT STATUS This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

FILES This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

ATTRIBUTES This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(5) for more information.

SEE ALSO This section lists references to other man pages,
in-house documentation, and outside publications.

14 man pages section 4: File Formats • January 2005

DIAGNOSTICS This section lists diagnostic messages with a brief
explanation of the condition causing the error.

WARNINGS This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

NOTES This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

BUGS This section describes known bugs and, wherever
possible, suggests workarounds.

15

16 man pages section 4: File Formats • January 2005

Introduction

17

Intro – introduction to file formats

This section outlines the formats of various files. The C structure declarations for the
file formats are given where applicable. Usually, the headers containing these structure
declarations can be found in the directories /usr/include or /usr/include/sys.
For inclusion in C language programs, however, the syntax #include <filename.h> or
#include <sys/filename.h> should be used.

Intro(4)

NAME

DESCRIPTION

18 man pages section 4: File Formats • Last Revised 16 Apr 2003

File Formats

19

admin – installation defaults file

admin is a generic name for an ASCII file that defines default installation actions by
assigning values to installation parameters. For example, it allows administrators to
define how to proceed when the package being installed already exists on the system.

/var/sadm/install/admin/default is the default admin file delivered with this
release. The default file is not writable, so to assign values different from this file,
create a new admin file. There are no naming restrictions for admin files. Name the
file when installing a package with the -a option of pkgadd(1M). If the -a option is
not used, the default admin file is used.

Each entry in the admin file is a line that establishes the value of a parameter in the
following form:

param=value

All of the parameters listed below can be defined in an admin file, but it is not
required to assign values to all of these. If a value is not assigned, pkgadd(1M) asks
the installer how to proceed.

The valid parameters and their possible values are shown below except as noted. They
can be specified in any order. Any of these parameters (except the mail and proxy
parameters) can be assigned the value ask, which means that, when the parameter is
reached during the installation sequence, the installer is notified and asked to supply
instructions (see NOTES).

basedir
Indicates the base directory where relocatable packages are to be installed. If there
is no basedir entry in the file, the installer will be prompted for a path name, as if
the file contained the entry basedir=ask. This parameter can also be set to
default (entry is basedir=default). In this instance, the package is installed
into the base directory specified by the BASEDIR parameter in the pkginfo(4) file.

mail
Defines a list of users to whom mail should be sent following installation of a
package. If the list is empty, no mail is sent. If the parameter is not present in the
admin file, the default value of root is used. The ask value cannot be used with
this parameter.

runlevel
Indicates resolution if the run level is not correct for the installation or removal of a
package. Options are:

nocheck Do not check for run level.

quit Abort installation if run level is not met.

conflict
Specifies what to do if an installation expects to overwrite a previously installed
file, thus creating a conflict between packages. Options are:

admin(4)

NAME

DESCRIPTION

20 man pages section 4: File Formats • Last Revised 20 Dec 2004

nocheck Do not check for conflict; files in conflict will be overwritten.

quit Abort installation if conflict is detected.

nochange Override installation of conflicting files; they will not be
installed.

setuid
Checks for executables which will have setuid or setgid bits enabled after
installation. Options are:

nocheck Do not check for setuid executables.

quit Abort installation if setuid processes are detected.

nochange Override installation of setuid processes; processes will be
installed without setuid bits enabled.

action
Determines if action scripts provided by package developers contain possible
security impact. Options are:

nocheck Ignore security impact of action scripts.

quit Abort installation if action scripts may have a negative security
impact.

partial
Checks to see if a version of the package is already partially installed on the system.
Options are:

nocheck Do not check for a partially installed package.

quit Abort installation if a partially installed package exists.

instance
Determines how to handle installation if a previous version of the package
(including a partially installed instance) already exists. Options are:

quit Exit without installing if an instance of the package already
exists (does not overwrite existing packages).

overwrite Overwrite an existing package if only one instance exists. If
there is more than one instance, but only one has the same
architecture, it overwrites that instance. Otherwise, the installer
is prompted with existing instances and asked which to
overwrite.

unique Do not overwrite an existing instance of a package. Instead, a
new instance of the package is created. The new instance will be
assigned the next available instance identifier.

idepend
Controls resolution if the package to be installed depends on other packages and if
other packages depend on the one to be installed. Options are:

admin(4)

File Formats 21

nocheck Do not check package dependencies.

quit Abort installation if package dependencies are not met.

rdepend
Controls resolution if other packages depend on the package to be removed. Also
determines behavior if registered products components to be removed. See
libwsreg(3LIB) and prodreg(1M) for a definition of product components.
Options are:

nocheck Do not check package or product dependencies.

quit Abort removal if package or product dependencies are not met.

space
Controls resolution if disk space requirements for package are not met. Options are:

nocheck Do not check space requirements (installation fails if it runs out
of space).

quit Abort installation if space requirements are not met.

authentication
Controls resolution when a datastream package with signature is to be installed.
Options are:

nocheck Do not verify package signature. This also disables the use of
the Online Certificate Status Protocol (OCSP) to validate the
package’s signing certificate.

quit Abort installation if package signature cannot be verified.

networktimeout
Number of seconds to wait before giving up a network connection when
downloading a package. This entry must be a positive integer. If not present, the
default value of 60 is used.

networkretries
Number of times to retry a failed network connection when downloading a
package. This entry must be a positive integer. If not present, the default value of 5
is used.

keystore
Location of trusted certificates used when downloading packages over SSL and
when verifying signatures on packages. This is the base directory of the certificate
location for trusted certificates used when validating digital signatures on
packages. For example, if this setting is /var/sadm/security, then pkgadd will
use /var/sadm/security/pkgadd/truststore, then
/var/sadm/security/truststore when searching for trusted certificates. See
KEYSTORE LOCATIONS and KEYSTORE AND CERTIFICATE FORMATS in
pkgadd(1M) for details on certificate store format and usage.

admin(4)

22 man pages section 4: File Formats • Last Revised 20 Dec 2004

proxy
The default proxy to use when installing packages from the network. Currently,
only HTTP or HTTPS proxies are supported. If this field is blank or nonexistent,
then no proxy will be used.

rscriptalt=root | noaccess
Determines the user that will run request scripts. This parameter can have either of
the values described below. See pkgadd(1M) for details on the conditions under
which this parameter is useful.

root
Run request script as user install, if such a user exists, with the privileges of
that user. Otherwise, run script as user root, with UID equal to 0 and with
all/zone privileges. (See zones(5).)

noaccess
Run request script as user install, if such a user exists, with the privileges of
that user. Otherwise, run script as user noaccess, with the basic privileges of
the unprivileged user noaccess.

If this parameter is not present or has a null value, the user noaccess is assumed.
Likewise, if this parameter is set to anything other than the values described here, a
warning is issued, and noaccess is assumed. rscriptalt is not present in the
default admin file, /var/sadm/install/admin/default. In this case, request
scripts are run as the user noaccess.

EXAMPLE 1 Default admin File

The default admin file, named default, is shipped with user-, group-, and
world-read privileges (444). Its contents are as follows:

mail=
instance=unique
partial=ask
runlevel=ask
idepend=ask
rdepend=ask
space=ask
setuid=ask
conflict=ask
action=ask
basedir=default
authentication=quit
networktimeout=10
networkretries=3
keystore=/var/sadm/security

proxy=

EXAMPLE 2 Sample admin file.

Below is a sample admin file.

basedir=default
runlevel=quit
conflict=quit

admin(4)

EXAMPLES

File Formats 23

EXAMPLE 2 Sample admin file. (Continued)

setuid=quit
action=quit
partial=quit
instance=unique
idepend=quit
rdepend=quit
space=quit
authentication=quit
networktimeout=10
networkretries=5
keystore=/opt/certs
proxy=syrinx.eng.example.com:8080

The default admin file is consulted during package installation when no other admin
file is specified.

/var/sadm/install/admin/default
default admin file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpkgcmdsr

Interface Stability Evolving

pkgadd(1M), prodreg(1M), libwsreg(3LIB), pkginfo(4), attributes(5),
zones(5)

The value ask should not be defined in an admin file that will be used for
non-interactive installation (because, by definition, there is no installer interaction).
Doing so causes installation to fail at the point when input is needed.

admin(4)

FILES

ATTRIBUTES

SEE ALSO

NOTES

24 man pages section 4: File Formats • Last Revised 20 Dec 2004

alias – alias table file of encoding names

/usr/lib/iconv/alias

This file contains the alias table of encoding names for iconv_open(3C).

The format of the alias table is as follows:

"%s %s\n", <variant encoding name>, <canonical encoding name>

The string specified for the variant encoding name is case-insensitive. A line beginning
with ’#’ is treated as a comment.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

iconv(3C), iconv_close(3C), iconv_open(3C), attributes (5)

alias(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

File Formats 25

aliases, addresses, forward – addresses and aliases for sendmail

/etc/mail/aliases

/etc/mail/aliases.db

/etc/mail/aliases.dir

/etc/mail/aliases.pag

~/.forward

These files contain mail addresses or aliases, recognized by sendmail(1M) for the
local host:

/etc/passwd Mail addresses (usernames) of local users.

/etc/mail/aliases Aliases for the local host, in ASCII format.
Root can edit this file to add, update, or
delete local mail aliases.

/etc/mail/aliases.{dir , pag} The aliasing information from
/etc/mail/aliases, in binary ndbm(3C)
format for use by sendmail(1M). The
program newaliases(1M) maintains these
files.

/etc/mail/aliases.db The aliasing information from
/etc/mail/aliases, in binary, Berkeley
DataBase format for use by sendmail(1M).
The program maintains these files.

Depending on the configuration of the
AliasFile option in
/etc/mail/sendmail.cf, either the
single file aliases.db or the pair of files
aliases.{dir, pag} is generated by
newaliases(1M). As shipped with Solaris,
sendmail(1M) supports both formats. If
neither is specified, the Berkeley DataBase
format which generates the single .db file
is used.

~/.forward Addresses to which a user’s mail is
forwarded (see Automatic Forwarding).

In addition, the NIS name services aliases map mail.aliases, and the NIS+ mail_aliases
table, both contain addresses and aliases available for use across the network.

As distributed, sendmail(1M) supports the following types of addresses:

username

Each local username is listed in the local host’s /etc/passwd file.

aliases(4)

NAME

SYNOPSIS

DESCRIPTION

Addresses

Local Usernames

26 man pages section 4: File Formats • Last Revised 13 Feb 2003

pathname

Messages addressed to the absolute pathname of a file are appended to that file.

|command

If the first character of the address is a vertical bar (|), sendmail(1M) pipes the
message to the standard input of the command the bar precedes.

username@domain

If domain does not contain any ‘.’ (dots), then it is interpreted as the name of a host in
the current domain. Otherwise, the message is passed to a mailhost that determines
how to get to the specified domain. Domains are divided into subdomains separated
by dots, with the top-level domain on the right.

For example, the full address of John Smith could be:

js@jsmachine.Podunk-U.EDU

if he uses the machine named jsmachine at Podunk University.

. . . [host!] host!username

These are sometimes mistakenly referred to as ‘‘Usenet’’ addresses. uucp(1C) provides
links to numerous sites throughout the world for the remote copying of files.

Other site-specific forms of addressing can be added by customizing the
sendmail.cf configuration file. See sendmail(1M) for details. Standard addresses
are recommended.

Local Aliases

/etc/mail/aliases is formatted as a series of lines of the form

aliasname:address[, address]

aliasname is the name of the alias or alias group, and address is the address of a
recipient in the group. Aliases can be nested. That is, an address can be the name of
another alias group. Because of the way sendmail(1M) performs mapping from
upper-case to lower-case, an address that is the name of another alias group must not
contain any upper-case letters.

Lines beginning with white space are treated as continuation lines for the preceding
alias. Lines beginning with # are comments.

Special Aliases

An alias of the form:

owner-aliasname : address

aliases(4)

Local Filenames

Commands

Internet-standard
Addresses

uucp Addresses

Aliases

File Formats 27

sendmail directs error-messages resulting from mail to aliasname to address, instead of
back to the person who sent the message. sendmail rewrites the SMTP envelope
sender to match this, so owner-aliasname should always point to alias-request,
and alias-request should point to the owner’s actual address:

owner-aliasname: aliasname-request

aliasname-request address

An alias of the form:

aliasname: :include:pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname
alias. This allows a private list to be maintained separately from the aliases file.

NIS and NIS+ Domain Aliases

The aliases file on the master NIS server is used for the mail.aliases NIS map, which can
be made available to every NIS client. The mail_aliases table serves the same purpose
on a NIS+ server. Thus, the /etc/mail/aliases* files on the various hosts in a
network will one day be obsolete. Domain-wide aliases should ultimately be resolved
into usernames on specific hosts. For example, if the following were in the
domain-wide alias file:

jsmith:js@jsmachine

then any NIS or NIS+ client could just mail to jsmith and not have to remember the
machine and username for John Smith.

If a NIS or NIS+ alias does not resolve to an address with a specific host, then the
name of the NIS or NIS+ domain is used. There should be an alias of the domain name
for a host in this case.

For example, the alias:

jsmith:root

sends mail on a NIS or NIS+ client to root@podunk-u if the name of the NIS or NIS+
domain is podunk-u.

When an alias (or address) is resolved to the name of a user on the local host,
sendmail(1M) checks for a ~/.forward file, owned by the intended recipient, in that
user’s home directory, and with universal read access. This file can contain one or
more addresses or aliases as described above, each of which is sent a copy of the user’s
mail.

Care must be taken to avoid creating addressing loops in the ~/.forward file. When
forwarding mail between machines, be sure that the destination machine does not
return the mail to the sender through the operation of any NIS aliases. Otherwise,
copies of the message may "bounce." Usually, the solution is to change the NIS alias to
direct mail to the proper destination.

aliases(4)

Automatic
Forwarding

28 man pages section 4: File Formats • Last Revised 13 Feb 2003

A backslash before a username inhibits further aliasing. For instance, to invoke the
vacation program, user js creates a ~/.forward file that contains the line:

\js, "|/usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into the
vacation program.

/etc/passwd Password file

/etc/nsswitch.conf Name service switch configuration file

/etc/mail/aliases Mail aliases file (ascii)

/etc/mail/aliases.db Database of mail aliases (binary)

/etc/mail/aliases.dir Database of mail aliases (binary)

/etc/mail/aliases.pag Database of mail aliases (binary)

/etc/mail/sendmail.cf sendmail configuration file

~/.forward Forwarding information file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsndmr

passwd(1), uucp(1C), vacation(1), newaliases(1M), sendmail(1M), ndbm(3C),
getusershell(3C), passwd(4), shells(4), attributes(5)

Because of restrictions in ndbm(3C), a single alias cannot contain more than about
1000 characters (if this format is used). The Berkeley DataBase format does not have
any such restriction. Nested aliases can be used to circumvent this limit.

For aliases which result in piping to a program or concatenating a file, the shell of the
controlling user must be allowed. Which shells are and are not allowed are
determined by getusershell(3C).

aliases(4)

FILES

ATTRIBUTES

SEE ALSO

NOTES

File Formats 29

a.out – Executable and Linking Format (ELF) files

#include <elf.h>

The file name a.out is the default output file name from the link editor, ld(1). The
link editor will make an a.out executable if there were no errors in linking. The
output file of the assembler, as(1), also follows the format of the a.out file although
its default file name is different.

Programs that manipulate ELF files may use the library that elf(3ELF) describes. An
overview of the file format follows. For more complete information, see the references
given below.

Linking View Execution View

ELF header ELF header

Program header table Program header table

optional

Section 1 Segment 1

. . .

Section n Segment 2

. . .

.

Section header table Section header table

optional

An ELF header resides at the beginning and holds a ‘‘road map’’ describing the file’s
organization. Sections hold the bulk of object file information for the linking view:
instructions, data, symbol table, relocation information, and so on. Segments hold the
object file information for the program execution view. As shown, a segment may
contain one or more sections.

A program header table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program header
table; relocatable files do not need one. A section header table contains information
describing the file’s sections. Every section has an entry in the table; each entry gives
information such as the section name, the section size, etc. Files used during linking
must have a section header table; other object files may or may not have one.

Although the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may differ.
Moreover, sections and segments have no specified order. Only the ELF header has a
fixed position in the file.

a.out(4)

NAME

SYNOPSIS

DESCRIPTION

30 man pages section 4: File Formats • Last Revised 3 Jul 1990

When an a.out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitialized,
the latter actually being initialized to all 0’s), and a stack. The text segment is not
writable by the program; if other processes are executing the same a.out file, the
processes will share a single text segment.

The data segment starts at the next maximal page boundary past the last text address.
If the system supports more than one page size, the ‘‘maximal page’’ is the largest
supported size. When the process image is created, the part of the file holding the end
of text and the beginning of data may appear twice. The duplicated chunk of text that
appears at the beginning of data is never executed; it is duplicated so that the
operating system may bring in pieces of the file in multiples of the actual page size
without having to realign the beginning of the data section to a page boundary.
Therefore, the first data address is the sum of the next maximal page boundary past
the end of text plus the remainder of the last text address divided by the maximal
page size. If the last text address is a multiple of the maximal page size, no duplication
is necessary. The stack is automatically extended as required. The data segment is
extended as requested by the brk(2) system call.

as(1), cc(1B), ld(1), brk(2), elf(3ELF)

ANSI C Programmer’s Guide

a.out(4)

SEE ALSO

File Formats 31

archives – device header

/* Magic numbers */
#define CMN_ASC 0x070701 /* Cpio Magic Number for −c header */
#define CMN_BIN 070707 /* Cpio Magic Number for Binary header */
#define CMN_BBS 0143561 /* Cpio Magic Number for Byte-Swap header */
#define CMN_CRC 0x070702 /* Cpio Magic Number for CRC header */
#define CMS_ASC "070701" /* Cpio Magic String for −c header */
#define CMS_CHR "070707" /* Cpio Magic String for odc header */
#define CMS_CRC "070702" /* Cpio Magic String for CRC header */
#define CMS_LEN 6 /* Cpio Magic String length */
/* Various header and field lengths */
#define CHRSZ 76 /* −H odc size minus filename field */
#define ASCSZ 110 /* −c and CRC hdr size minus filename field */
#define TARSZ 512 /* TAR hdr size */
#define HNAMLEN 256 /* maximum filename length for binary and

odc headers */
#define EXPNLEN 1024 /* maximum filename length for −c and

CRC headers */
#define HTIMLEN 2 /* length of modification time field */
#define HSIZLEN 2 /* length of file size field */
/* cpio binary header definition */
struct hdr_cpio {

short h_magic, /* magic number field */
h_dev; /* file system of file */

ushort_t h_ino, /* inode of file */
h_mode, /* modes of file */
h_uid, /* uid of file */
h_gid; /* gid of file */

short h_nlink, /* number of links to file */
h_rdev, /* maj/min numbers for special files */
h_mtime[HTIMLEN], /* modification time of file */
h_namesize, /* length of filename */

h_filesize[HSIZLEN]; /* size of file */
char h_name[HNAMLEN]; /* filename */

} ;
/* cpio −H odc header format */
struct c_hdr {

char c_magic[CMS_LEN],
c_dev[6],
c_ino[6],
c_mode[6],
c_uid[6],
c_gid[6],
c_nlink[6],
c_rdev[6],
c_mtime[11],
c_namesz[6],
c_filesz[11],
c_name[HNAMLEN];

} ;
/* −c and CRC header format */
struct Exp_cpio_hdr {

char E_magic[CMS_LEN],
E_ino[8],
E_mode[8],
E_uid[8],
E_gid[8],

archives(4)

NAME

DESCRIPTION

32 man pages section 4: File Formats • Last Revised 3 Jul 1990

E_nlink[8],
E_mtime[8],
E_filesize[8],
E_maj[8],
E_min[8],
E_rmaj[8],
E_rmin[8],
E_namesize[8],
E_chksum[8],
E_name[EXPNLEN];

} ;
/* Tar header structure and format */
#define TBLOCK 512 /* length of tar header and data blocks */
#define TNAMLEN 100 /* maximum length for tar file names */
#define TMODLEN 8 /* length of mode field */
#define TUIDLEN 8 /* length of uid field */
#define TGIDLEN 8 /* length of gid field */
#define TSIZLEN 12 /* length of size field */
#define TTIMLEN 12 /* length of modification time field */
#define TCRCLEN 8 /* length of header checksum field */
/* tar header definition */
union tblock {

char dummy[TBLOCK];
struct header {

char t_name[TNAMLEN]; /* name of file */
char t_mode[TMODLEN]; /* mode of file */
char t_uid[TUIDLEN]; /* uid of file */
char t_gid[TGIDLEN]; /* gid of file */
char t_size[TSIZLEN]; /* size of file in bytes */
char t_mtime[TTIMLEN]; /* modification time of file */
char t_chksum[TCRCLEN]; /* checksum of header */
char t_typeflag; /* flag to indicate type of file */
char t_linkname[TNAMLEN]; /* file this file is linked with */
char t_magic[6]; /* magic string always "ustar" */
char t_version[2]; /* version strings always "00" */
char t_uname[32]; /* owner of file in ASCII */
char t_gname[32]; /* group of file in ASCII */
char t_devmajor[8]; /* major number for special files */
char t_devminor[8]; /* minor number for special files */
char t_prefix[155]; /* pathname prefix */

} tbuf;
}
/* volcopy tape label format and structure */
#define VMAGLEN 8
#define VVOLLEN 6
#define VFILLEN 464
struct volcopy_label {

char v_magic[VMAGLEN],
v_volume[VVOLLEN],
v_reels,
v_reel;

long v_time,
v_length,
v_dens,
v_reelblks, /* u370 added field */
v_blksize, /* u370 added field */
v_nblocks; /* u370 added field */

char v_fill[VFILLEN];

archives(4)

File Formats 33

long v_offset; /* used with -e and -reel options */
int v_type; /* does tape have nblocks field? */

} ;

archives(4)

34 man pages section 4: File Formats • Last Revised 3 Jul 1990

asetenv – ASET environment file

/usr/aset/asetenv

The asetenv file is located in /usr/aset, the default operating directory of the
Automated Security Enhancement Tool (ASET). An alternative working directory can
be specified by the administrators through the aset -d command or the ASETDIR
environment variable. See aset(1M). asetenv contains definitions of environment
variables for ASET.

There are 2 sections in this file. The first section is labeled User Configurable Parameters.
It contains, as the label indicates, environment variables that the administrators can
modify to customize ASET behavior to suit their specific needs. The second section is
labeled ASET Internal Environment Variables and should not be changed. The
configurable parameters are explained as follows:

TASK This variable defines the list of tasks that aset will
execute the next time it runs. The available tasks are:

tune Tighten system files.

usrgrp Check user/group.

sysconf Check system configuration file.

env Check environment.

cklist Compare system files checklist.

eeprom Check eeprom(1M) parameters.

firewall Disable forwarding of IP packets.

CKLISTPATH_LOW
CKLISTPATH_MED
CKLISTPATH_HIGH These variables define the list of directories to be used

by aset to create a checklist file at the low, medium, and
high security levels, respectively. Attributes of all the
files in the directories defined by these variables will be
checked periodically and any changes will be reported
by aset. Checks performed on these directories are not
recursive. aset only checks directories explicitly listed
in these variables and does not check subdirectories of
them.

YPCHECK This variable is a boolean parameter. It specifies
whether aset should extend checking (when
applicable) on system tables to their NIS equivalents or
not. The value true enables it while the value false
disables it.

UID_ALIASES This variable specifies an alias file for user ID sharing.
Normally, aset warns about multiple user accounts
sharing the same user ID because it is not advisable for

asetenv(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 35

accountability reason. Exceptions can be created using
an alias file. User ID sharing allowed by the alias file
will not be reported by aset. See asetmasters(4) for
the format of the alias file.

PERIODIC_SCHEDULE This variable specifies the schedule for periodic
execution of ASET. It uses the format of crontab(1)
entries. Briefly speaking, the variable is assigned a
string of the following format:

minutes hours day-of-month month day-of-week

Setting this variable does not activate the periodic
schedule of ASET. To execute ASET periodically,
aset(1M) must be run with the -p option. See
aset(1M). For example, if PERIODIC_SCHEDULE is set
to the following, and aset(1M) was started with the
-p option, aset will run at 12:00 midnight every day:

0 0 * * *

EXAMPLE 1 Sample asetenv file showing the settings of the ASET configurable parameters

The following is a sample asetenv file, showing the settings of the ASET
configurable parameters:

CKLISTPATH_LOW=/etc:/
CKLISTPATH_MED=$CHECKLISTPATH_LOW:/usr/bin:/usr/ucb
CKLISTPATH_HIGH=$CHECKLISTPATH_MED:/usr/lib:/usr/sbin
YPCHECK=false
UID_ALIASES=/usr/aset/masters/uid_aliases
PERIODIC_SCHEDULE="0 0 * * *"
TASKS="env sysconf usrgrp"

When aset -p is run with this file, aset is executed at midnight of every day. The /
and /etc directories are checked at the low security level; the /, /etc, /usr/bin,
and /usr/ucb directories are checked at the medium security level; and the /, /etc,
/usr/bin, /usr/lib, and /usr/sbin directories are checked at the high security
level. Checking of NIS system files is disabled. The
/usr/aset/masters/uid_aliases file specifies the used IDs available for sharing.
The env, sysconf, and usrgrp tasks will be performed, checking the environment
variables, various system tables, and the local passwd and group files.

crontab(1), aset(1M), asetmasters(4)

ASET Administrator Manual

asetenv(4)

EXAMPLES

SEE ALSO

36 man pages section 4: File Formats • Last Revised 13 Sep 1991

asetmasters, tune.low, tune.med, tune.high, uid_aliases, cklist.low, cklist.med,
cklist.high – ASET master files

/usr/aset/masters/tune.low

/usr/aset/masters/tune.med

/usr/aset/masters/tune.high

/usr/aset/masters/uid_aliases

/usr/aset/masters/cklist.low

/usr/aset/masters/cklist.med

/usr/aset/masters/cklist.high

The /usr/aset/masters directory contains several files used by the Automated
Security Enhancement Tool (ASET). /usr/aset is the default operating directory for
ASET. An alternative working directory can be specified by the administrators through
the aset -d command or the ASETDIR environment variable. See aset(1M).

These files are provided by default to meet the need of most environments. The
administrators, however, can edit these files to meet their specific needs. The format
and usage of these files are described below.

All the master files allow comments and blank lines to improve readability. Comment
lines must start with a leading "#" character.

tune.low
tune.med
tune.high These files are used by the tune task (see aset(1M)) to restrict the

permission settings for system objects. Each file is used by ASET at
the security level indicated by the suffix. Each entry in the files is
of the form:

pathname mode owner group type

where

pathname is the full pathname

mode is the permission setting

owner is the owner of the object

group is the group of the object

type is the type of the object It can be symlink for a
symbolic link, directory for a directory, or
file for everything else.

asetmasters(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 37

Regular shell wildcard ("*", "?", ...) characters can be used in the
pathname for multiple references. See sh(1). The mode is a five-digit
number that represents the permission setting. Note that this
setting represents a least restrictive value. If the current setting is
already more restrictive than the specified value, ASET does not
loosen the permission settings.

For example, if mode is 00777, the permission will not be changed,
since it is always less restrictive than the current setting.

Names must be used for owner and group instead of numeric ID’s.
? can be used as a “don’t care” character in place of owner, group,
and type to prevent ASET from changing the existing values of
these parameters.

uid_alias This file allows user ID’s to be shared by multiple user accounts.
Normally, ASET discourages such sharing for accountability
reason and reports user ID’s that are shared. The administrators
can, however, define permissible sharing by adding entries to the
file. Each entry is of the form:

uid=alias1=alias2=alias3= ...

where

uid is the shared user id

alias? is the user accounts sharing the user ID

For example, if sync and daemon share the user ID 1, the
corresponding entry is:

1=sync=daemon

cklist.low
cklist.med
cklist.high These files are used by the cklist task (see aset(1M)), and are

created the first time the task is run at the low, medium, and high
levels. When the cklist task is run, it compares the specified
directory’s contents with the appropriate cklist.level file and
reports any discrepancies.

EXAMPLE 1 Examples of Valid Entries for the tune.low, tune.med, and tune.high Files

The following is an example of valid entries for the tune.low, tune.med, and
tune.high files:

/bin 00777 root staffsymlink
/etc 02755 root staffdirectory
/dev/sd* 00640 rootoperatorfile

asetmasters(4)

EXAMPLES

38 man pages section 4: File Formats • Last Revised 13 Sep 1991

EXAMPLE 1 Examples of Valid Entries for the tune.low, tune.med, and tune.high
Files (Continued)

aset(1M), asetenv(4)

ASET Administrator Manual

asetmasters(4)

SEE ALSO

File Formats 39

au – AU audio file format

#include <audio/au.h>

An AU audio file is composed of three parts: a header, an optional description field,
and a contiguous segment of audio data. The header is 24 bytes, and the description
field is at least 4 bytes. Therefore, the offset for most AU files is 28 bytes. However,
some people store additional data in the AU header.

The AU audio structure members and audio data are stored big endian. That is, it
starts with the most significant byte, regardless of the native byte order of the machine
architecture on which an application may be running. Therefore, multi-byte audio data
may require byte reversal for proper playback on different processor architectures. See
the macro section for properly reading and writing the AU audio structure members.

The AU header is defined by the following structure:

struct au_filehdr {
uint32_t au_magic; /* magic number (.snd) */
uint32_t au_offset; /* byte offset to start of audio data */
uint32_t au_data_size; /* data length in bytes */
uint32_t au_encoding; /* data encoding */
uint32_t au_sample_rate; /* samples per second */
uint32_t au_channels; /* number of interleaved channels */

};

typedef struct au_filehdr au_filehdr_t;

The au_magic field always contains the following constant for an AU audio file:

AUDIO_AU_FILE_MAGIC (0x2e736e64) /* ".snd" */

The au_offset field contains the length of the audio file header plus the variable
length info field. Consequently, it can be interpreted as the offset from the start of the
file to the start of the audio data.

The au_data_size field contains the length, in bytes, of the audio data segment. If
this length is not known when the header is written, it should be set to
AUDIO_AU_UNKNOWN_SIZE, defined as follows:

AUDIO_AU_UNKNOWN_SIZE (~0) /* (unsigned) -1 */

When the au_data_size field contains AUDIO_AU_UNKNOWN_SIZE, the length of
the audio data can be determined by subtracting au_offset from the total length of
the file.

The encoding field contains one of the following enumerated keys:

AUDIO_AU_ENCODING_ULAW /* 8-bit u-law */
AUDIO_AU_ENCODING_LINEAR_8 /* 8-bit linear PCM */
AUDIO_AU_ENCODING_LINEAR_16 /* 16-bit linear PCM */
AUDIO_AU_ENCODING_LINEAR_24 /* 24-bit linear PCM */

au(4)

NAME

SYNOPSIS

DESCRIPTION

40 man pages section 4: File Formats • Last Revised 15 Jan 2001

AUDIO_AU_ENCODING_LINEAR_32 /* 32-bit linear PCM */
AUDIO_AU_ENCODING_FLOAT /* Floating point */
AUDIO_AU_ENCODING_DOUBLE /* Double precision float */
AUDIO_AU_ENCODING_FRAGMENTED /* Fragmented sample data */
AUDIO_AU_ENCODING_DSP /* DSP program */
AUDIO_AU_ENCODING_FIXED_8 /* 8-bit fixed point */
AUDIO_AU_ENCODING_FIXED_16 /* 16-bit fixed point */
AUDIO_AU_ENCODING_FIXED_24 /* 24-bit fixed point */
AUDIO_AU_ENCODING_FIXED_32 /* 32-bit fixed point */
AUDIO_AU_ENCODING_EMPHASIS /* 16-bit linear with emphasis */
AUDIO_AU_ENCODING_COMPRESSED /* 16-bit linear compressed */
AUDIO_AU_ENCODING_EMP_COMP /* 16-bit linear with emphasis

and compression */
AUDIO_AU_ENCODING_MUSIC_KIT /* Music kit DSP commands */
AUDIO_AU_ENCODING_ADPCM_G721 /* CCITT G.721 ADPCM */
AUDIO_AU_ENCODING_ADPCM_G722 /* CCITT G.722 ADPCM */
AUDIO_AU_ENCODING_ADPCM_G723_3 /* CCITT G.723.3 ADPCM */
AUDIO_AU_ENCODING_ADPCM_G723_5 /* CCITT G.723.5 ADPCM */

AUDIO_AU_ENCODING_ALAW /* 8-bit A-law G.711 */

All of the linear encoding formats are signed integers centered at zero.

The au_sample_rate field contains the audio file’s sampling rate in samples per
second. Some common sample rates include 8000, 11025, 22050, 44100, and 48000
samples per second.

The au_channels field contains the number of interleaved data channels. For
monaural data, this value is set to one. For stereo data, this value is set to two. More
than two data channels can be interleaved, but such formats are currently
unsupported by the Solaris audio driver architecture. For a stereo sound file, the first
sample is the left track and the second sample is the right track.

The optional info field is a variable length annotation field that can be either text or
data. If it is a text description of the sound, then it should be NULL terminated.
However, some older files might not be terminated properly. The size of the info field
is set when the structure is created and cannot be enlarged later.

Accessing all of the AU audio structure members should be done through the supplied
AUDIO_AU_FILE2HOST and AUDIO_AU_HOST2FILE macros. By always using these
macros, code will be byte-order independent. See the example below.

EXAMPLE 1 Displaying Header Information for a Sound File

The following program reads and displays the header information for an AU sound
file. The AUDIO_AU_FILE2HOST macro ensures that this information will always be in
the proper byte order.

void main(void)
{

au_filehdr_t hdr;
au_filehdr_t local;
int fd;

au(4)

Macros

EXAMPLES

File Formats 41

EXAMPLE 1 Displaying Header Information for a Sound File (Continued)

char *name = "bark.au";

if ((fd = open(name, O_RDONLY)) < 0) {
printf("can’t open file %s\n", name);

exit(1);
}

(void) read(fd, &hdr, sizeof (hdr));

AUDIO_AU_FILE2HOST(&hdr.au_magic, &local.au_magic);
AUDIO_AU_FILE2HOST(&hdr.au_offset, &local.au_offset);
AUDIO_AU_FILE2HOST(&hdr.au_data_size, &local.au_data_size);
AUDIO_AU_FILE2HOST(&hdr.au_encoding, &local.au_encoding);
AUDIO_AU_FILE2HOST(&hdr.au_sample_rate, &local.au_sample_rate);
AUDIO_AU_FILE2HOST(&hdr.au_channels, &local.au_channels);

printf("Magic = %x\n", local.au_magic);
printf("Offset = %d\n", local.au_offset);
printf("Number of data bytes = %d\n", local.au_data_size);
printf("Sound format = %d\n", local.au_encoding);
printf("Sample rate = %d\n", local.au_sample_rate);
printf("Number of channels = %d\n", local.au_channels);

(void) close(fd);

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaudh

Stability Level Evolving

attributes(5)

Some older AU audio files are incorrectly coded with info strings that are not properly
NULL–terminated. Thus, applications should always use the au_offset value to
find the end of the info data and the beginning of the audio data.

au(4)

ATTRIBUTES

SEE ALSO

NOTES

42 man pages section 4: File Formats • Last Revised 15 Jan 2001

audit_class – audit class definitions

/etc/security/audit_class

/etc/security/audit_class is a user-configurable ASCII system file that stores
class definitions used in the audit system. Audit events in audit_event(4) are
mapped to one or more of the defined audit classes. audit_event can be updated in
conjunction with changes to audit_class. See audit_control(4) and
audit_user(4) for information about changing the preselection of audit classes in the
audit system. Programs can use the getauclassent(3BSM) routines to access audit
class information.

The fields for each class entry are separated by colons. Each class entry is a bitmap and
is separated from each other by a newline.

Each entry in the audit_class file has the form:

mask:name:description

The fields are defined as follows:

mask class mask

name class name

description class description

Each class is represented as a bit in the class mask which is an unsigned integer. Thus,
there are 32 different classes available. Meta-classes can also be defined. These are
supersets composed of multiple base classes, and thus will have more than 1 bit in its
mask. See EXAMPLES. Two special meta-classes are also pre-defined: all, and no.

all Represents a conjunction of all allowed classes, and is provided as a
shorthand method of specifying all classes.

no Is the invalid class, and any event mapped solely to this class will not be
audited. Turning auditing on to the all meta class will not cause events
mapped solely to the no class to be written to the audit trail. This class is
also used to map obsolete events which are no longer generated. Obsolete
events are retained to process old audit trails files.

EXAMPLE 1 Using an audit_class File

The following is an example of an audit_class file:

0x00000000:no:invalid class
0x00000001:fr:file read
0x00000002:fw:file write
0x00000004:fa:file attribute access
0x00000008:fm:file attribute modify
0x00000010:fc:file create
0x00000020:fd:file delete
0x00000040:cl:file close
0x00000100:nt:network

audit_class(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

File Formats 43

EXAMPLE 1 Using an audit_class File (Continued)

0x00000200:ip:ipc
0x00000400:na:non-attribute
0x00001000:lo:login or logout
0x00004000:ap:application
0x000f0000:ad:old administrative (meta-class)
0x00070000:am:administrative (meta-class)
0x00010000:ss:change system state
0x00020000:as:system-wide administration
0x00040000:ua:user administration
0x00080000:aa:audit utilization
0x00300000:pc:process (meta-class)
0x00100000:ps:process start/stop
0x00200000:pm:process modify
0x20000000:io:ioctl
0x40000000:ex:exec
0x80000000:ot:other

0xffffffff:all:all classes (meta-class)

/etc/security/audit_class

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below

The file format stability is evolving. The file content is unstable.

bsmconv(1M), au_preselect(3BSM), getauclassent(3BSM),
audit_control(4), audit_event(4), audit_user(4), attributes(5)

It is possible to deliberately turn on the no class in the kernel, in which case the audit
trail will be flooded with records for the audit event AUE_NULL.

This functionality is available only if the Basic Security Module (BSM) has been
enabled. See bsmconv(1M) for more information.

audit_class(4)

FILES

ATTRIBUTES

SEE ALSO

NOTES

44 man pages section 4: File Formats • Last Revised 6 Jan 2003

audit_control – control information for system audit daemon

/etc/security/audit_control

The audit_control file contains audit control information used by auditd(1M).
Each line consists of a title and a string, separated by a colon. There are no restrictions
on the order of lines in the file, although some lines must appear only once. A line
beginning with ‘#’ is a comment. A line can be continued with the use of the backslash
(\) convention. (See EXAMPLES.)

Directory definition lines list the directories to be used when creating audit files, in the
order in which they are to be used. The format of a directory line is:

dir:directory-name

directory-name is where the audit files will be created. Any valid writable directory can
be specified.

The following configuration is recommended:

/etc/security/audit/server/files

where server is the name of a central machine, since audit files belonging to different
servers are usually stored in separate subdirectories of a single audit directory. The
naming convention normally has server be a directory on a server machine, and all
clients mount /etc/security/audit/server at the same location in their local file
systems. If the same server exports several different file systems for auditing, their
server names will, of course, be different.

There are several other ways for audit data to be arranged: some sites may have needs
more in line with storing each host’s audit data in separate subdirectories. The audit
structure used will depend on each individual site.

The audit threshold line specifies the percentage of free space that must be present in
the file system containing the current audit file. The format of the threshold line is:

minfree:percentage

where percentage is indicates the amount of free space required. If free space falls
below this threshold, the audit daemon auditd(1M) invokes the shell script
audit_warn(1M). If no threshold is specified, the default is 0%.

The plugin definition line selects a plugin to be loaded by the audit daemon for
processing audit records.

The format of a plugin line is:

plugin: keyword1=value1;keyword2=value2;

The following keywords are defined:

audit_control(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 45

name
The value is the pathname of the plugin. This specification is required.

qsize
The value is the maximum number of records to queue for audit data sent to the
plugin. If omitted, the current hiwater mark (see the -getqctrl of
auditconfig(1M)) is used. When this maximum is reached, auditd will either
block or discard data, depending on the audit policy cnt. See auditconfig(1M).

p_*
A keyword with the prefix p_ is passed to the plugin defined by the value
associated with the name attribute. These attributes are defined for each plugin. By
convention, if the value associated with a plugin attribute is a list, the list items
are separated with commas.

If pathname is a relative path (it does not start with /) the library path will be taken as
relative to /usr/lib/security/$ISA. The $ISA token is replaced by an
implementation-defined directory name that defines the path relative to the
auditd(1M) instruction set architecture.

See audit_syslog(5) for the attributes expected for plugin:
name=audit_syslog.so.

No plugin specifier is required for generation of a binary audit log. However, to set a
queue size of other than the default, a plugin line with name=audit_binfile.so
can be used as described in audit_binfile(5).

You must specify one or more plugins. (In the case of audit_binfile.so, use of
dir: or plugin: suffices.)

The audit flags line specifies the default system audit value. This value is combined
with the user audit value read from audit_user(4) to form a user’s process
preselection mask.

The algorithm for obtaining the process preselection mask is as follows: the audit flags
from the flags: line in the audit_control file are added to the flags from the
always-audit field in the user’s entry in the audit_user file. The flags from the
never-audit field from the user’s entry in the audit_user file are then subtracted
from the total:

user’s process preselection mask =
(flags: line + always audit flags) - never audit flags

The format of a flags line is:

flags:audit-flags

where audit-flags specifies which event classes are to be audited. The character string
representation of audit-flags contains a series of flag names, each one identifying a
single audit class, separated by commas. A name preceded by ‘−’ means that the class
should be audited for failure only; successful attempts are not audited. A name

audit_control(4)

46 man pages section 4: File Formats • Last Revised 20 Mar 2003

preceded by ‘+’ means that the class should be audited for success only; failing
attempts are not audited. Without a prefix, the name indicates that the class is to be
audited for both successes and failures. The special string all indicates that all events
should be audited; −all indicates that all failed attempts are to be audited, and +all
all successful attempts. The prefixes ^, ^−, and ^+ turn off flags specified earlier in the
string (^− and ^+ for failing and successful attempts, ^ for both). They are typically
used to reset flags.

The non-attributable flags line is similar to the flags line, but this one contain the audit
flags that define what classes of events are audited when an action cannot be
attributed to a specific user. The format of a naflags line is:

naflags:audit-flags

The flags are separated by commas, with no spaces. See audit_class(4) for a list of
the predefined audit classes. Note that the classes are configurable as also described in
audit_class(4).

A line can be continued by appending a backslash (\).

EXAMPLE 1 Sample audit_control File for Specific Host

The following is a sample /etc/security/audit_control file for the machine
eggplant.

The file’s contents identify server jedgar with two file systems normally used for
audit data, another server, global, used only when jedgar fills up or breaks, and
specifies that the warning script is run when the file systems are 80% filled. It also
specifies that all logins, administrative operations are to be audited, whether or not
they succeed. All failures except failures to access object attributes are to be audited.

dir: /etc/security/jedgar/eggplant
dir: /etc/security/jedgar.aux/eggplant
#
Last-ditch audit file system when jedgar fills up.
#
dir: /etc/security/global/eggplant
minfree: 20
flags: lo,ad,-all,^-fm

naflags: lo,ad

EXAMPLE 2 Sample audit_control File for syslog and Local Storage

Shown below is a sample /etc/security/audit_control file for syslog and local
storage. For the binary log, the output is all lo and ad records, all failures of class fm
and any classes specified by means of audit_user(4). For syslog output, all lo
records are output, only failure ad records are output, and no fm records are output.
The specification for the plugin is given in two lines.

dir: /etc/security/jedgar/eggplant
dir: /etc/security/jedgar.aux/eggplant
#

audit_control(4)

EXAMPLES

File Formats 47

EXAMPLE 2 Sample audit_control File for syslog and Local Storage (Continued)

Last-ditch audit file system when jedgar fills up.
#
dir: /etc/security/global/eggplant
minfree: 20
flags: lo,ad,-fm
naflags: lo,ad
plugin: name=audit_syslog.so;p_flags=lo,+ad;\

qsize=512

EXAMPLE 3 Overriding the Default Queue Size

Shown below is a sample /etc/security/audit_control file that overrides the
default queue size for binary audit log file generation.

dir: /etc/security/jedgar/eggplant
dir: /etc/security/jedgar.aux/eggplant
#
Last-ditch audit file system when jedgar fills up.
#
dir: /etc/security/global/eggplant
minfree: 20
flags: lo,ad,-fm
naflags: lo,ad

plugin: name=audit_binfile.so; qsize=256

/etc/security/audit_control

/etc/security/audit_warn

/etc/security/audit/*/*/*

/etc/security/audit_user

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

audit(1M), audit_warn(1M), auditd(1M), bsmconv(1M), audit(2),
getfauditflags(3BSM), audit.log(4), audit_class(4), audit_user(4),
attributes(5), audit_binfile(5), audit_syslog(5)

Use of the plugin configuration line to include audit_syslog.so requires that
/etc/syslog.conf be configured for audit data. See audit_syslog(5) for more
details.

audit_control(4)

FILES

ATTRIBUTES

SEE ALSO

NOTES

48 man pages section 4: File Formats • Last Revised 20 Mar 2003

audit_data – current information on audit daemon

/etc/security/audit_data

The audit_data file contains information about the audit daemon. The file contains
the process ID of the audit daemon, and the pathname of the current audit log file. The
format of the file is:

pid>:<pathname>

Where pid is the process ID for the audit daemon, and pathname is the full pathname
for the current audit log file.

EXAMPLE 1 A sample audit_data file.

64:/etc/security/audit/server1/19930506081249.19930506230945.bongos

/etc/security/audit_data

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

audit(1M), auditd(1M), bsmconv(1M), audit(2), audit_control(4),
audit.log(4)

The functionality described on this manual page is internal to audit(1M) and might
not be supported in a future release.

The auditd utility is the only supported mechanism to communicate with
auditd(1M). The current audit log can be determined by examining the configured
audit directories. See audit_control(4).

The functionality described on this manual page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

audit_data(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

File Formats 49

audit_event – audit event definition and class mapping

/etc/security/audit_event

/etc/security/audit_event is a user-configurable ASCII system file that stores
event definitions used in the audit system. As part of this definition, each event is
mapped to one or more of the audit classes defined in audit_class(4). See
audit_control(4) and audit_user(4) for information about changing the
preselection of audit classes in the audit system. Programs can use the
getauevent(3BSM) routines to access audit event information.

The fields for each event entry are separated by colons. Each event is separated from
the next by a NEWLINE.Each entry in the audit_event file has the form:

number:name:description:flags

The fields are defined as follows:

number Event number.

Event number ranges are assigned as follows:

0 Reserved as an invalid event number.

1-2047 Reserved for the Solaris Kernel events.

2048-32767 Reserved for the Solaris TCB programs.

32768-65535 Available for third party TCB applications.

System administrators must not add, delete, or
modify (except to change the class mapping),
events with an event number less than 32768.
These events are reserved by the system.

name Event name.

description Event description.

flags Flags specifying classes to which the event is mapped. Classes are
comma separated, without spaces.

Obsolete events are commonly assigned to the special class no
(invalid) to indicate they are no longer generated. Obsolete events
are retained to process old audit trail files. Other events which are
not obsolete may also be assigned to the no class.

EXAMPLE 1 Using the audit_event File

The following is an example of some audit_event file entries:

7:AUE_EXEC:exec(2):ps,ex
79:AUE_OPEN_WTC:open(2) - write,creat,trunc:fc,fd,fw
6152:AUE_login:login - local:lo
6153:AUE_logout:logout:lo

audit_event(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

50 man pages section 4: File Formats • Last Revised 6 Jan 2003

EXAMPLE 1 Using the audit_event File (Continued)

6154:AUE_telnet:login - telnet:lo

6155:AUE_rlogin:login - rlogin:lo

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below

The file format stability is evolving. The file content is unstable.

/etc/security/audit_event

bsmconv(1M), getauevent(3BSM), audit_class(4), audit_control(4),
audit_user(4)

This functionality is available only if the Basic Security Module (BSM) has been
enabled. See bsmconv(1M) for more information.

audit_event(4)

ATTRIBUTES

FILES

SEE ALSO

NOTES

File Formats 51

audit.log – audit trail file

#include <bsm/audit.h>

#include <bsm/audit_record.h>

audit.log files are the depository for audit records stored locally or on an on an
NFS-mounted audit server. These files are kept in directories named in the file
audit_control(4) using the dir option. They are named to reflect the time they are
created and are, when possible, renamed to reflect the time they are closed as well.
The name takes the form

yyyymmddhhmmss.not_terminated.hostname

when open or if the auditd(1M) terminated ungracefully, and the form

yyyymmddhhmmss.yyyymmddhhmmss.hostname

when properly closed. yyyy is the year, mm the month, dd day in the month, hh hour
in the day, mm minute in the hour, and ss second in the minute. All fields are of fixed
width.

Audit data is generated in the binary format described below; the default for Solaris
audit is binary format. See audit_syslog(5) for an alternate data format.

The audit.log file begins with a standalone file token and typically ends with
one also. The beginning file token records the pathname of the previous audit file,
while the ending file token records the pathname of the next audit file. If the file
name is NULL the appropriate path was unavailable.

The audit.log files contains audit records. Each audit record is made up of audit
tokens. Each record contains a header token followed by various data tokens.
Depending on the audit policy in place by auditon(2), optional other tokens such as
trailers or sequences may be included.

The tokens are defined as follows:

The file token consists of:

token ID 1 byte
seconds of time 4 bytes
microseconds of time 4 bytes
file name length 2 bytes
file pathname N bytes + 1 terminating NULL byte

The header token consists of:

token ID 1 byte
record byte count 4 bytes
version # 1 byte [2]
event type 2 bytes

audit.log(4)

NAME

SYNOPSIS

DESCRIPTION

52 man pages section 4: File Formats • Last Revised 6 Jan 2004

event modifier 2 bytes
seconds of time 4 bytes/8 bytes (32-bit/64-bit value)
nanoseconds of time 4 bytes/8 bytes (32-bit/64-bit value)

The expanded header token consists of:

token ID 1 byte
record byte count 4 bytes
version # 1 byte [2]
event type 2 bytes
event modifier 2 bytes
address type/length 1 byte
machine address 4 bytes/16 bytes (IPv4/IPv6 address)
seconds of time 4 bytes/8 bytes (32/64-bits)
nanoseconds of time 4 bytes/8 bytes (32/64-bits)

The trailer token consists of:

token ID 1 byte
trailer magic number 2 bytes
record byte count 4 bytes

The arbitrary data token is defined:

token ID 1 byte
how to print 1 byte
basic unit 1 byte
unit count 1 byte
data items (depends on basic unit)

The in_addr token consists of:

token ID 1 byte
IP address type/length 1 byte
IP address 4 bytes/16 bytes (IPv4/IPv6 address)

The expanded in_addr token consists of:

token ID 1 byte
IP address type/length 4 bytes/16 bytes (IPv4/IPv6 address)
IP address 16 bytes

The ip token consists of:

token ID 1 byte
version and ihl 1 byte
type of service 1 byte
length 2 bytes
id 2 bytes
offset 2 bytes
ttl 1 byte
protocol 1 byte
checksum 2 bytes
source address 4 bytes
destination address 4 bytes

The expanded ip token consists of:

audit.log(4)

File Formats 53

token ID 1 byte
version and ihl 1 byte
type of service 1 byte
length 2 bytes
id 2 bytes
offset 2 bytes
ttl 1 byte
protocol 1 byte
checksum 2 bytes
address type/type 1 byte
source address 4 bytes/16 bytes (IPv4/IPv6 address)
address type/length 1 byte
destination address 4 bytes/16 bytes (IPv4/IPv6 address)

The iport token consists of:

token ID 1 byte
port IP address 2 bytes

The path token consists of:

token ID 1 byte
path length 2 bytes
path N bytes + 1 terminating NULL byte

The path_attr token consists of:

token ID 1 byte
count 4 bytes
path count null-terminated string(s)

The process token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
machine address 4 bytes

The expanded process token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)

audit.log(4)

54 man pages section 4: File Formats • Last Revised 6 Jan 2004

address type/length 1 byte
machine address 4 bytes/16 bytes (IPv4/IPv6 address)

The return token consists of:

token ID 1 byte
error number 1 byte
return value 4 bytes/8 bytes (32-bit/64-bit value)

The subject token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
machine address 4 bytes

The expanded subject token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)
address type/length 1 byte
machine address 4 bytes/16 bytes (IPv4/IPv6 address)

The System V IPC token consists of:

token ID 1 byte
object ID type 1 byte
object ID 4 bytes

The text token consists of:

token ID 1 byte
text length 2 bytes
text N bytes + 1 terminating NULL byte

The attribute token consists of:

token ID 1 byte
file access mode 4 bytes
owner user ID 4 bytes
owner group ID 4 bytes
file system ID 4 bytes

audit.log(4)

File Formats 55

node ID 8 bytes
device 4 bytes/8 bytes (32-bit/64-bit)

The groups token consists of:

token ID 1 byte
number groups 2 bytes
group list N * 4 bytes

The System V IPC permission token consists of:

token ID 1 byte
owner user ID 4 bytes
owner group ID 4 bytes
creator user ID 4 bytes
creator group ID 4 bytes
access mode 4 bytes
slot sequence # 4 bytes
key 4 bytes

The arg token consists of:

token ID 1 byte
argument # 1 byte
argument value 4 bytes/8 bytes (32-bit/64-bit value)
text length 2 bytes
text N bytes + 1 terminating NULL byte

The exec_args token consists of:

token ID 1 byte
count 4 bytes
text count null-terminated string(s)

The exec_env token consists of:

token ID 1 byte
count 4 bytes
text count null-terminated string(s)

The exit token consists of:

token ID 1 byte
status 4 bytes
return value 4 bytes

The socket token consists of:

token ID 1 byte
socket type 2 bytes
remote port 2 bytes
remote Internet address 4 bytes

The expanded socket token consists of:

token ID 1 byte
socket domain 2 bytes
socket type 2 bytes
local port 2 bytes

audit.log(4)

56 man pages section 4: File Formats • Last Revised 6 Jan 2004

address type/length 2 bytes
local port 2 bytes
local Internet address 4 bytes/16 bytes (IPv4/IPv6 address)
remote port 2 bytes
remote Internet address 4 bytes/16 bytes (IPv4/IPv6 address)

The seq token consists of:

token ID 1 byte
sequence number 4 bytes

The privilege token consists of:

token ID 1 byte
text length 2 bytes
privilege set name N bytes + 1 terminating NULL byte
text length 2 bytes

list of privileges N bytes + 1 terminating NULL byte

The use-of-auth token consists of:

token ID 1 byte
text length 2 bytes

authorization(s) N bytes + 1 terminating NULL byte

The command token consists of:

token ID 1 byte
count of args 2 bytes
argument list (count times)
text length 2 bytes
argument text N bytes + 1 terminating NULL byte
count of env strings 2 bytes
environment list (count times)
text length 2 bytes

env. text N bytes + 1 terminating NULL byte

The ACL token consists of:

token ID 1 byte
type 4 bytes
value 4 bytes

file mode 4 bytes

The zonename token consists of:

token ID 1 byte
name length 2 bytes

name <name length> including terminating NULL byte

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability :

audit.log(4)

ATTRIBUTES

File Formats 57

ATTRIBUTE TYPE ATTRIBUTE VALUE

binary file format Evolving

binary file contents Unstable

audit(1M), auditd(1M), bsmconv(1M), audit(2), auditon(2), au_to(3BSM),
audit_control(4), audit_syslog(5)

Each token is generally written using the au_to(3BSM) family of function calls.

audit.log(4)

SEE ALSO

NOTES

58 man pages section 4: File Formats • Last Revised 6 Jan 2004

audit_user – per-user auditing data file

/etc/security/audit_user

audit_user is an access-restricted database that stores per-user auditing preselection
data. You can use the audit_user file with other authorization sources, including the
NIS map audit_user.byname and the NIS+ table audit_user. Programs use the
getauusernam(3BSM) routines to access this information.

The search order for multiple user audit information sources is specified in the
/etc/nsswitch.conf file. See nsswitch.conf(4). The lookup follows the search
order for passwd(4).

The fields for each user entry are separated by colons (:). Each user is separated from
the next by a newline. audit_user does not have general read permission. Each
entry in the audit_user file has the form:

username:always-audit-flags:never-audit-flags

The fields are defined as follows:

username User’s login name.

always-audit-flags Flags specifying event classes to always audit.

never-audit-flags Flags specifying event classes to never audit.

For a complete description of the audit flags and how to combine them, see
audit_control(4).

EXAMPLE 1 Using the audit_user File

other:lo,am:io,cl
fred:lo,ex,+fc,-fr,-fa:io,cl

ethyl:lo,ex,nt:io,cl

/etc/nsswitch.conf

/etc/passwd

/etc/security/audit_user

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below

The file format stability is evolving. The file content is unstable.

bsmconv(1M), getauusernam(3BSM), audit_control(4), nsswitch.conf(4),
passwd(4)

audit_user(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

File Formats 59

This functionality is available only if the Basic Security Module (BSM) has been
enabled. See bsmconv(1M) for more information.

audit_user(4)

NOTES

60 man pages section 4: File Formats • Last Revised 2 Jan 2003

auth_attr – authorization description database

/etc/security/auth_attr

/etc/security/auth_attr is a local source for authorization names and
descriptions. The auth_attr file can be used with other authorization sources,
including the auth_attr NIS map and NIS+ table. Programs use the
getauthattr(3SECDB) routines to access this information.

The search order for multiple authorization sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf(4) man page.

An authorization is a right assigned to users that is checked by certain privileged
programs to determine whether users can execute restricted functionality. Each entry
in the auth_attr database consists of one line of text containing six fields separated
by colons (:). Line continuations using the backslash (\) character are permitted. The
format of each entry is:

name:res1:res2:short_desc:long_desc:attr

name The name of the authorization. Authorization names are unique
strings. Construct authorization names using the following
convention:

prefix. or prefix.suffix

prefix Everything in the name field up to the final dot (.).
Authorizations from Sun Microsystems, Inc. use
solaris as a prefix. To avoid name conflicts, all other
authorizations should use a prefix that begins with the
reverse–order Internet domain name of the
organization that creates the authorization (for
example, com.xyzcompany). Prefixes can have
additional arbitrary components chosen by the
authorization’s developer, with components separated
by dots.

suffix The final component in the name field. Specifies what is
being authorized.

When there is no suffix, the name is defined as a
heading. Headings are not assigned to users but are
constructed for use by applications in their GUIs.

When a name ends with the word grant, the entry defines a grant
authorization. Grant authorizations are used to support
fine-grained delegation. Users with appropriate grant
authorizations can delegate some of their authorizations to others.
To assign an authorization, the user needs to have both the
authorization itself and the appropriate grant authorization.

res1 Reserved for future use.

auth_attr(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 61

res2 Reserved for future use.

short_desc A short description or terse name for the authorization. This name
should be suitable for displaying in user interfaces, such as in a
scrolling list in a GUI.

long_desc A long description. This field can explain the precise purpose of
the authorization, the applications in which it is used, and the type
of user that would be interested in using it. The long description
can be displayed in the help text of an application.

attr An optional list of semicolon-separated (;) key-value pairs that
describe the attributes of an authorization. Zero or more keys may
be specified. The keyword help identifies a help file in HTML.

EXAMPLE 1 Constructing a Name

In the following example, the name has a prefix (solaris.admin.usermgr)
followed by a suffix (read):

solaris.admin.usermgr.read

EXAMPLE 2 Defining a Heading

Because the name field ends with a dot, the following entry defines a heading:

solaris.admin.usermgr.:::User Accounts::help=AuthUsermgrHeader.html

EXAMPLE 3 Assigning Separate Authorizations to Set User Attributes

In this example, a heading entry is followed by other associated authorization entries.
The entries below the heading provide separate authorizations for setting user
attributes. The attr field for each entry, including the heading entry, assigns a help file.
The application that uses the help key requires the value to equal the name of a file
ending in .htm or .html:

solaris.admin.usermgr.:::User Accounts::help=AuthUsermgrHeader.html
solaris.admin.usermgr.pswd:::Change Password::help=AuthUserMgrPswd.html

solaris.admin.usermgr.write:::Manage Users::help=AuthUsermgrWrite.html

EXAMPLE 4 Assigning a Grant Authorization

This example assigns to an administrator the following authorizations:

solaris.admin.printer.grant
solaris.admin.printer.delete
solaris.admin.printer.modify
solaris.admin.printer.read

solaris.login.enable

auth_attr(4)

EXAMPLES

62 man pages section 4: File Formats • Last Revised 9 Jan 2002

EXAMPLE 4 Assigning a Grant Authorization (Continued)

With the above authorizations, the administrator can assign to others the
solaris.admin.printer.delete, solaris.admin.printer.modify, and
solaris.admin.printer.read authorizations, but not the
solaris.login.enable authorization. If the administrator has both the grant
authorization, solaris.admin.printmgr.grant, and the wildcard authorization,
solaris.admin.printmgr.*, the administrator can grant to others any of the
printer authorizations. See user_attr(4) for more information about how wildcards
can be used to assign multiple authorizations whose names begin with the same
components.

EXAMPLE 5 Authorizing the Ability to Assign Other Authorizations

The following entry defines an authorization that grants the ability to assign any
authorization created with a solaris prefix, when the administrator also has either
the specific authorization being granted or a matching wildcard entry:

solaris.grant:::Grant All Solaris Authorizations::help=PriAdmin.html

EXAMPLE 6 Consulting the Local Authorization File Ahead of the NIS Table

With the following entry from /etc/nsswitch.conf, the local auth_attr file is
consulted before the NIS table:

auth_attr:files nisplus

/etc/nsswitch.conf

/etc/user_attr

/etc/security/auth_attr

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB), exec_attr(4), nsswitch.conf(4), user_attr(4)

When deciding which authorization source to use, keep in mind that NIS+ provides
stronger authentication than NIS.

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

Each application has its own requirements for whether the help value must be a
relative pathname ending with a filename or the name of a file. The only known
requirement is for the name of a file.

auth_attr(4)

FILES

SEE ALSO

NOTES

File Formats 63

The following characters are used in describing the database format and must be
escaped with a backslash if used as data: colon (:), semicolon (;), equals (=), and
backslash (\).

auth_attr(4)

64 man pages section 4: File Formats • Last Revised 9 Jan 2002

autofs – file containing parameter values for automountd daemon and automount
command

/etc/default/autofs

The autofs file resides in directory /etc/default and supplies default parameters
for the automountd(1M) daemon and the automount(1M) command.

The autofs file format is ASCII; comment lines begin with the crosshatch (#)
character. Parameters consist of a keyword followed by an equal sign followed by the
parameter value, of the form:

keyword=value

As shipped, the parameters in the autofs file are commented out. As root, you must
uncomment a keyword-value line to make the value for that parameter take effect.

Administrators can make changes to the startup parameters for automountd by
logging in as root and editing the autofs file. Changes made to autofs values on an
automount or automountd command line override values in
/etc/default/autofs.

Unlike /etc/init.d/autofs, the /etc/default/autofs file is preserved across
operating system upgrades.

The following parameters are currently supported in the autofs file:

AUTOMOUNT_TIMEOUT=<num>
Specifies a duration, in seconds, that a file system is to remain mounted when not
in use. The default value is 600 (10 minutes). Equivalent to the -t option in
automount.

AUTOMOUNT_VERBOSE=TRUE | FALSE
Verbose mode. Causes you to be notified of non-critical events, suchs as autofs
mounts and unmounts. The default value is FALSE. Equivalent to the -v option in
automount.

AUTOMOUNTD_VERBOSE=TRUE | FALSE
Verbose mode. Causes status messages to be logged to the console. The default
value is FALSE. Equivalent to the -v option in automountd.

AUTOMOUNTD_NOBROWSE=<num>
Turn on or off browsing for all autofs mount points. The default value is FALSE.
Equivalent to the -n option in automountd.

AUTOMOUNTD_TRACE=<num>
Expands each RPC call and displays it on standard output. The default value, 0,
turns off such tracing. Starting with 1, with each higher value, the verbosity of trace
output increases.

AUTOMOUNTD_ENV=<name>=<value>
Environment variables. Each environment variable-value pairing must be on its
own line. You can specify multiple such pairings. There are no environment

autofs(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 65

variable settings supplied. For example: AUTOMOUNTD_ENV=DAY=TUES

automount(1M), automountd(1M)

autofs(4)

SEE ALSO

66 man pages section 4: File Formats • Last Revised 12 Nov 2004

bart_manifest – system audit manifest file

The bart(1M) command generates a manifest that describes the contents of a
managed host. A manifest consists of a header and entries. Each entry represents a
single file. Entries are sorted in ascending order by file name. Any nonstandard file
names, such as those that contain embedded newline or tab characters, have the
special characters quoted prior to being sorted. See Quoting Syntax.

Lines that begin with ! supply metadata about the manifest. The manifest version line
indicates the manifest specification version. The date line shows the date on which the
manifest was created, in date(1) form.

Some lines are ignored by the manifest comparison tool. Ignored lines include blank
lines, lines that consist only of white space, and comments that begin with #.

In addition to metadata lines, the header contains the format comment block. This
comment block lists the attributes reported for each file type.

To see the format of a manifest file, see EXAMPLES.

Each manifest file entry is a single line of one of the following forms, depending on
the file type:

fname D size mode acl dirmtime uid gid
fname P size mode acl mtime uid gid
fname S size mode acl mtime uid gid
fname F size mode acl mtime uid gid contents
fname L size mode acl lnmtime uid gid dest
fname B size mode acl mtime uid gid devnode
fname C size mode acl mtime uid gid devnode

The fields of the manifest file entries are described as follows:

fname Name of the file. To prevent parsing
problems that are caused by special
characters embedded in file names, file
names are encoded as described in Quoting
Syntax.

type Type of file.

Possible values for type are as follows:

B Block device node

C Character device node

D Directory

F File

L Symbolic link

P Pipe

S Socket

bart_manifest(4)

NAME

DESCRIPTION

Manifest File
Entries

File Formats 67

size File size in bytes.

mode Octal number that represents the
permissions of the file.

acl ACL attributes for the file. For a file with
ACL attributes, this field contains the
output from acltotext().

uid Numerical user ID of the owner of this
entry.

gid Numerical group ID of the owner of this
entry.

dirmtime Modification time in seconds since 00:00:00
UTC, January 1, 1970 for directories.

lnmtime Creation time for links.

mtime Modification time in seconds since 00:00:00
UTC, January 1, 1970 for files.

contents Checksum value of the file. This attribute is
only specified for regular files. If you turn
off context checking or if checksums cannot
be computed, the value of this field is -.

dest Destination of a symbolic link.

devnode Value of the device node. This attribute is
for character device files and block device
files only.

The rules file supports a quoting syntax for representing nonstandard file names.

When generating a manifest for file names that embeded TAB, SPACE, or NEWLINE
characters, the special characters are encoded in their octal forms.

Input Character Quoted Character

SPACE \SPACE

TAB \TAB

NEWLINE \NEWLINE

? \?

[\[

* *

bart_manifest(4)

Quoting Syntax

68 man pages section 4: File Formats • Last Revised 9 Sep 2003

EXAMPLE 1 Sample Manifest File

The following is a sample system manifest file. The file entries are sorted by the
encoded versions of the file names to correctly handle special characters.

! Version 1.0
! Mon Feb 11 10:55:30 2002
Format:
fname D size mode acl dirmtime uid gid
fname P size mode acl mtime uid gid
fname S size mode acl mtime uid gid
fname F size mode acl mtime uid gid contents
fname L size mode acl lnmtime uid gid dest
fname B size mode acl mtime uid gid devnode
fname C size mode acl mtime uid gid devnode
/etc D 3584 40755 user::rwx,group::r-x,mask::r-x,other::r-x, 3c6803d7 0 3
/etc/.login F 524 100644 user::rw-,group::r--,mask::r--,other::r--,

3c165878 0 3 27b53d5c3e844af3306f1f12b330b318
/etc/.pwd.lock F 0 100600 user::rw-,group::---,mask::---,other::---,

3c166121 0 0 d41d8cd98f00b204e9800998ecf8427e
/etc/.syslog_door L 20 120777 user::rw-,group::r--,mask::rwx,other::r--,

3c6803d5 0 0 /var/run/syslog_door
/etc/autopush L 16 120777 user::r-x,group::r-x,mask::r-x,other::r-x,

3c165863 0 0 ../sbin/autopush
/etc/cron.d/FIFO P 0 10600 user::rw-,group::---,mask::---,other::---,

3c6803d5 0 0

date(1), bart(1M), bart_rules(4), attributes(5)

bart_manifest(4)

EXAMPLES

SEE ALSO

File Formats 69

bart_rules – bart rules file

The bart_rules file is a text file that is used by the bart(1M) command. The rules
file determines which files to validate and which file attributes of those files to ignore.

Some lines are ignored by the manifest comparison tool. Ignored lines include blank
lines, lines that consist only of white space, and comments that begin with #.

The rules file supports three directives: CHECK, IGNORE, and a subtree directive, which
is an absolute path name and optional pattern matching modifiers. Each CHECK,
IGNORE, and subtree directive must be on a separate line. Bart supports continuation of
long lines using a backslash (\). The rules file uses the directives to create logical
blocks.

The syntax for the rules file is as follows:

[IGNORE attribute...]*
[CHECK] [attribute...]*

subtree1 [pattern...]*
[IGNORE attribute...]*
[CHECK] [attribute...]*

subtree2 [pattern...]*
subtree3 [pattern...]*
subtree4 [pattern...]*
[IGNORE attribute...]*
[CHECK] [attribute...]*
...

Rule blocks are composed of statements that are created by using directives and
arguments.

There are three types of blocks:

Global Block The first block in the file. The block is considered
‘‘global’’ if it specifies CHECK and IGNORE statements,
but no previous subtree statement. A global block
pertains to all subsequent blocks.

Local block A block that specifies CHECK and IGNORE statements as
well as a subtree directive. The rules in this block
pertain to files and directories found in the specified
subtree.

Heir block A block that contains a null CHECK statement, no
arguments. This block inherits the global CHECK
statements and IGNORE statements.

The order in which CHECK and IGNORE statements appear in blocks is important. The
bart command processes CHECK and IGNORE statements in the order in which they
are read, with later statements overriding earlier statements.

bart_rules(4)

NAME

DESCRIPTION

Syntax

Rule Blocks

70 man pages section 4: File Formats • Last Revised 9 Sep 2003

Subtree specifications must appear one per line. Each specification must begin with an
absolute path name. Optionally, each specification can be followed by
pattern-matching arguments.

When a file system being tracked belongs to more than one subtree directive, bart
performs the following resolution steps:

� Applies the CHECK and IGNORE statements set in the global block. Note that all
CHECK and IGNORE statements are processed in order.

� Finds the last subtree directive that matches the file.

� Processes the CHECK and IGNORE statements that belong to the last matching
subtree directive. These statements are processed in the order in which they are
read, overriding global settings.

There are two types of pattern matching statements

AND For a given subtree directive, all pattern matching statements are logically
ANDed with the subtree. Patterns have the following syntax:

� Wildcards are permitted for both the subtree and pattern matching
statements.

� The exclamation point (!) character represents logical NOT.
� A pattern that terminates with a slash is a subtree. The absence of a

slash indicates that the pattern is not a directory. The subtree itself does
not require an end slash.

For example, the following subtree example includes the contents of
/home/nickiso/src except for object files, core files, and all of the SCCS
subtrees. Note that directory names that terminate with .o and directories
named core are not excluded because the patterns specified do not
terminate with /.

/home/nickiso/src !*.o !core !SCCS/

CHECK all

OR Group multiple subtree directives together. Such subtree directives are
logically ORed together.

/home/nickiso/src !*.o !core
/home/nickiso/Mail
/home/nickiso/docs *.sdw
CHECK all

IGNORE mtime lnmtime dirmtime

The files included in the previous example are as follows:

� Everything under /home/nickiso/src except for *.o and core files
� Everything under /home/nickiso/Mail
� All files under /home/nickiso/docs that end in *.sdw

For these files, all attributes are checked except for modification times.

bart_rules(4)

Pattern Matching
Statements

File Formats 71

The bart command uses CHECK and IGNORE statements to define which attributes to
track or ignore. Each attribute has an associated keyword.

The attribute keywords are as follows:

acl ACL attributes for the file. For a file with ACL
attributes, this field contains the output from
acltotext().

all All attributes.

contents Checksum value of the file. This attribute is only
specified for regular files. If you turn off context
checking or if checksums cannot be computed, the
value of this field is -.

dest Destination of a symbolic link.

devnode Value of the device node. This attribute is for character
device files and block device files only.

dirmtime Modification time in seconds since 00:00:00 UTC,
January 1, 1970 for directories.

gid Numerical group ID of the owner of this entry.

lnmtime Creation time for links.

mode Octal number that represents the permissions of the
file.

mtime Modification time in seconds since 00:00:00 UTC,
January 1, 1970 for files.

size File size in bytes.

type Type of file.

uid Numerical user ID of the owner of this entry.

EXAMPLE 1 Sample Rules File

The following is a sample rules file:

Global rules, track everything except dirmtime.
CHECK all
IGNORE dirmtime

The files in /data* are expected to change, so don’t bother
tracking the attributes expected to change.
Furthermore, by specifying ‘‘IGNORE contents,’’ you save
time and resources.
/data*
IGNORE contents mtime size

/home/nickiso f* bar/

bart_rules(4)

File Attributes

EXAMPLES

72 man pages section 4: File Formats • Last Revised 9 Sep 2003

EXAMPLE 1 Sample Rules File (Continued)

IGNORE acl

For /usr, apply the global rules.
/usr
CHECK

Note: Since /usr/tmp follows the /usr block, the /usr/tmp
subtree is subjected to the ‘‘IGNORE all.’’
/usr/tmp
/home/nickiso *.o
/home/nickiso core
/home/nickiso/proto

IGNORE all

The following files are cataloged based on the sample rules file:

� All attributes, except for dirmtime, mtime, size, and contents, are tracked for
files under the /data* subtrees.

� Files under the /usr subtree, except for /usr/tmp, are cataloged by using the
global rules.

� If the /home/nickiso/foo.c file exists, its attributes, except for acl and
dirmtime, are cataloged.

� All .o and core files under /home/nickiso, as well as the
/home/nickiso/proto and /usr/tmp subtrees, are ignored.

� If the /home/nickiso/bar/foo.o file exists, it is ignored because it is subject to
the last block.

bart(1M), bart_manifest(4), attributes(5)

bart_rules(4)

SEE ALSO

File Formats 73

bootparams – boot parameter data base

/etc/bootparams

The bootparams file contains a list of client entries that diskless clients use for
booting. Diskless booting clients retrieve this information by issuing requests to a
server running the rpc.bootparamd(1M) program. The bootparams file may be
used in conjunction with or in place of other sources for the bootparams information.
See nsswitch.conf(4).

For each client the file contains an entry with the client’s name and a list of boot
parameter values for that client. Each entry has the form:

clientname keyword=value...

The first item of each entry is the host name of the diskless client. You can use the
asterisk (’*’) character as a "wildcard" in place of the client name in a single entry. A
wildcard entry applies to all clients for which there is not an entry that specifically
names them.

In a given entry, the host name or asterisk is followed by one or more whitespace
characters and a series of keyword—value pairs separated by whitespace characters.
There must not be any whitespace within a keyword—value pair.

Each keyword—value pair has the syntax:

keyword=value

The preceding form breaks out further as:

keyword=server:value

Where server can be null and value can be a pathname.

An example that includes a server is:

client1 root=server1:/export/client1/root

An example where server is null is:

client1 rootopts=:vers2

A minor variation of the keyword=value syntax is used for the domain keyword. Unlike
the forms shown above, this syntax does not use a colon. For example:

client1 domain=bldg1.workco.com

Entries can span multiple lines. Use the backslash (’\’) character as the last character
of a line to continue the entry to the following line. For multiple-line entries, you can
split a line only in places where whitespace is allowed. For example, you can use a
backslash to split the following entry between the end of the path (root) and the
keyword domain:

bootparams(4)

NAME

SYNOPSIS

DESCRIPTION

74 man pages section 4: File Formats • Last Revised 22 Jul 2004

client1 root=server1:/export/client1/root domain=bldg1.workco.com

In entries that specify a server, server is the name of the server that will provide the file
or filesystem to the diskless client and value is the pathname of the exported file or
filesystem on that server.

In entries that use the domain keyword, the domain name specified must be the
client’s domain name. The algorithm for determining a client’s domain name is to first
check for a domain keyword in the client-specific entry and then in "wildcard" entry.
If none is found, the server’s domain name is used.

For the JumpStart installation of machines that do not have video displays, use the
term keyword to identify the terminal type of the boot server. Terminal types are
listed in /usr/share/lib/terminfo (see terminfo(4)).

An entry with the ns keyword associates a server (a name server) with, instead of a
pathname, a specific name service (NIS+, NIS, LDAP, or none) and, if that server is
not on a local subnet, the netmask needed to reach it. For example:

ns=hoot:nisplus(255.255.255.0)

An ns entry forces sysidtool(1M) to use the specified name service. By default,
sysidtool uses NIS+ in preference to NIS or LDAP if it can find an NIS+ server for
the system’s domain on the subnet. An ns entry might be necessary if you are trying
to set up a hands-off installation, or if the name server is on a different subnet, which
is common with NIS+.

If an ns keyword is not used, sysidtool uses broadcast to attempt to bind to either a
NIS+, NIS, or LDAP server. If a name server is not on the local subnet, which is
possible for NIS+ or LDAP, the bind will fail, automatic configuration of the name
service will fail, and an interactive screen is displayed, prompting the user to specify
the name service.

The ns keyword can be set in add_install_client or by Host Manager.

EXAMPLE 1 Sample bootparams Entry

Here is an example of an entry in the bootparams file:

client1 root=server1:/export/client1/root rootopts=:vers=2 \
domain=bldg1.workco.com

client2 root=server2:/export/client2/root ns=:nis
client3 root=server2:/export/client3/root ns=watson:
client4 root=server2:/export/client4/root \

ns=mach:nisplus(255.255.255.0)

EXAMPLE 2 Sample Entry for JumpStart

The following is an example of an entry that might be used for the JumpStart
installation of diskless clients that do not have displays.

bootparams(4)

EXAMPLES

File Formats 75

EXAMPLE 2 Sample Entry for JumpStart (Continued)

mozart root=haydn:/export/install/sparc/os/latest/Solaris_9/boot \
install=haydn:/export/install/sparc/os/8.1/latest boottype=:in \
install_config=haydn:/usr/local/share/lib/jump-net \

ns=otis:nisplus(255.255.255.0) term=:xterms domain=eu.cte.work.com

/etc/bootparams

rpc.bootparamd(1M), sysidtool(1M), nsswitch.conf(4)

Solaris diskless clients use the keywords root and rootopts to look up the
pathname for the root filesystem and the mount options for the root filesystem,
respectively. These are the only keywords meaningful for diskless booting clients. See
mount_ufs(1M).

bootparams(4)

FILES

SEE ALSO

NOTES

76 man pages section 4: File Formats • Last Revised 22 Jul 2004

cdtoc – CD-ROM table of contents file

The table of contents file, .cdtoc, is an ASCII file that describes the contents of a
CD-ROM or other software distribution media. It resides in the top-level directory of
the file system on a slice of a CD-ROM. It is independent of file system format, that is,
the file system on the slice can be either UFS or HSFS.

Each entry in the .cdtoc file is a line that establishes the value of a parameter in the
following form:

PARAM=value

Blank lines and comments (lines preceded by a pound-sign, ‘‘#’’) are also allowed in
the file. Parameters are grouped by product, with the beginning of a product defined
by a line of the form:

PRODNAME=value

Each product is expected to consist of one or more software packages that are stored
together in a subdirectory on the distribution media. There can be any number of
products described within the file. There is no required order in which the parameters
must be specified, except that the parameters must be grouped by product and the
PRODNAME parameter must appear first in the list of parameters for each product
specified. Each parameter is described below. All of the parameters are required for
each product.

PRODNAME The full name of the product. This must be unique
within the .cdtoc file and is preferably unique across
all possible products. This value may contain white
space. The length of this value is limited to 256 ASCII
characters; other restrictions may apply (see below).

PRODVERS The version of the product. The value can contain any
combination of letters, numbers, or other characters.
This value may contain white space. The length of this
value is limited to 256 ASCII characters; other
restrictions may apply (see below).

PRODDIR The name of the top-level directory containing the
product. This name should be relative to the top-level
directory of the distribution media, for example,
Solaris_2.6/Product. The number of path
components in the name is limited only by the system’s
maximum path name length, which is 1024 ASCII
characters. Any single component is limited to 256
ASCII characters. This value cannot contain white
space.

cdtoc(4)

NAME

DESCRIPTION

File Formats 77

The lengths of the values of PRODNAME and PRODVERS are further constrained by
the fact that the initial install programs concatenate these values to produce the full
product name. For unbundled products the combined length of the values of
PRODNAME and PRODVERS must not exceed 256 ASCII characters.

When you install OS services with Solstice Host Manager, directories for diskless
clients are created by constructing names derived from a concatenation of the values
of PRODNAME, PRODVERS, and client architecture, for example,
/export/exec/Solaris_2.x_sparc.all/usr/platform. The length of the
component containing the product name and version must not exceed 256 ASCII
characters. Thus, for products corresponding to bundled OS releases (for example,
Solaris 2.4), the values of PRODNAME and PRODVERS are effectively restricted to
lengths much less than 256.

The initial install programs use the value of the PRODDIR macro in the .cdtoc file to
indicate where packages can be found.

EXAMPLE 1 Sample of .cdtoc file.

Here is a sample .cdtoc file:

#
.cdtoc file -- Online product family CD
#
PRODNAME=Online DiskSuite
PRODVERS=2.0
PRODDIR=Online_DiskSuite_2.0
#
PRODNAME=Online Backup
PRODVERS=2.0
PRODDIR=Online_Backup_2.0

This example corresponds to the following directory layout on a CD-ROM partition:

/.cdtoc
/Online_DiskSuite_2.0

./SUNWmddr.c

./SUNWmddr.m

./SUNWmddu
/Online_Backup_2.0

./SUNWhsm

The bundled release of Solaris 2.6 includes the following .cdtoc file:

PRODNAME=Solaris
PRODVERS=2.6
PRODDIR=Solaris_2.6/Product

This file corresponds to the following directory layout on slice 0 of the Solaris 2.6
product CD:

cdtoc(4)

EXAMPLES

78 man pages section 4: File Formats • Last Revised 14 Sept 2004

EXAMPLE 1 Sample of .cdtoc file. (Continued)

/.cdtoc
/Solaris_2.6/Product

./SUNWaccr

./SUNWaccu

./SUNWadmap

.

.

.

./SUNWutool

clustertoc(4), packagetoc(4), pkginfo(4)

cdtoc(4)

SEE ALSO

File Formats 79

clustertoc – cluster table of contents description file

The cluster table of contents file, .clustertoc, is an ASCII file that describes a
hierarchical view of a software product. A .clustertoc file is required for the base
OS product. The file resides in the top-level directory containing the product.

The hierarchy described by .clustertoc can be of arbitrary depth, although the
initial system installation programs assume that it has three levels. The hierarchy is
described bottom-up, with the packages described in .packagetoc at the lowest
layer. The next layer is the cluster layer which collects packages into functional units.
The highest layer is the meta-cluster layer which collects packages and clusters together
into typical configurations.

The hierarchy exists to facilitate the selection or deselection of software for installation
at varying levels of granularity. Interacting at the package level gives the finest level of
control over what software is to be installed.

Each entry in the .clustertoc file is a line that establishes the value of a parameter
in the following form:

PARAM=value

A line starting with a pound-sign, ‘‘#’’, is considered a comment and is ignored.

Parameters are grouped by cluster or meta-cluster. The start of a cluster description is
defined by a line of the form:

CLUSTER=value

The start of a meta-cluster description is defined by a line of the form:

METACLUSTER=value

There is no order implied or assumed for specifying the parameters for a
(meta-)cluster with the exception of the CLUSTER or METACLUSTER parameter, which
must appear first and the END parameter which must appear last.

The following parameters are mandatory:

CLUSTER
The cluster identifier (for example, SUNWCacc). The identifier specified must be
unique within the package and cluster identifier namespace defined by a product’s
.packagetoc and .clustertoc files. The identifiers used are subject to the same
constraints as those for package identifiers. These constraints are (from
pkginfo(4)):

All characters in the abbreviation must be alphanumeric and the first may not be
numeric. The abbreviation is limited to a maximum length of nine characters.
install, new, and all are reserved abbreviations.

A cluster must be described before another cluster or meta-cluster may refer to it.

clustertoc(4)

NAME

DESCRIPTION

80 man pages section 4: File Formats • Last Revised 18 Feb 2003

DESC
An informative textual description of the (meta-)cluster’s contents. The length of
the description supplied may not exceed 256 characters. The text should contain no
newlines.

METACLUSTER
The metacluster identifier (for example, SUNWCprog). The identifier specified must
be unique within the package and cluster identifier namespace defined by a
product’s .packagetoc and .clustertoc files. The identifiers used are subject
to the same constraints as those for package identifiers. These constraints are (from
pkginfo(4)):

All characters in the abbreviation must be alphanumeric and the first may not be
numeric. The abbreviation is limited to a maximum length of nine characters.
install, new, and all are reserved abbreviations.

Meta-clusters can not contain references to other meta-clusters.

NAME
The full name of the (meta-)cluster. The length of the name string supplied may not
exceed 256 characters.

SUNW_CSRMEMBER
Indicates that the package or cluster is a part of the (meta-) cluster currently being
described. The value specified is the identifier of the package or cluster. There may
be an arbitrary number of SUNW_CSRMEMBER parameters per (meta-)cluster.

VENDOR
The name of the (meta-)cluster’s vendor. The length of the vendor string supplied
may not exceed 256 characters.

VERSION
The version of the (meta-)cluster. The length of the version string supplied may not
exceed 256 characters.

The following parameters are optional:

DEFAULT
Specifies which metacluster within a .clustertoc file should be selected or
installed by default. Only one metacluster can be the default.

HIDDEN
Specifies whether a metacluster should be hidden by applications. A hidden
metacluster cannot be DEFAULT.

REQUIRED
Specifies which metacluster is required. A required metacluster implies that all of
its cluster and package members are not de-selectable (must be installed).

SUNW_CSRMBRIFF
Indicates that the package is to be included dynamically in the (meta-)cluster
currently being described. The value of this parameter must follow the following
format:

clustertoc(4)

File Formats 81

SUNW_CSRMBRIFF=(test test_arc)package

This line is converted into a SUNW_CSRMEMBER entry at media installation time if
the test provided matches the platform on which the media is being installed. There
may be zero or more SUNW_CSRMBRIFF parameters per (meta-)cluster.

SUNW_CSRMBRIFF=(test value)package
where the the test is either the builtin test of "platform" or a shell script which
returns shell true (0) or shell false (1) depending on the tests being performed in
the script. value is passed to the test as the first argument and can be used to create
a script that tests for multiple hardware objects. Finally package is the package that
is included in the final .clustertoc file as a SUNW_CSRMEMBER. See
parse_dynamic_clustertoc(1M) for more information about the scripts.

EXAMPLE 1 A Cluster Description

The following is an example of a cluster description in a .clustertoc file.

CLUSTER=SUNWCacc
NAME=System Accounting
DESC=System accounting utilities
VENDOR=Sun Microsystems, Inc.
VERSION=7.2
SUNW_CSRMEMBER=SUNWaccr
SUNW_CSRMEMBER=SUNWaccu

END

EXAMPLE 2 A Meta-cluster Description

The following is an example of a meta-cluster description in a .clustertoc file.

METACLUSTER=SUNWCreq
NAME=Core System Support
DESC=A pre-defined software configuration consisting of the minimum
required software for a standalone, non-networked workstation.
VENDOR=Sun Microsystems, Inc.
VERSION=2.x
SUNW_CSRMEMBER=SUNWadmr
SUNW_CSRMEMBER=SUNWcar
SUNW_CSRMEMBER=SUNWCcs
SUNW_CSRMEMBER=SUNWCcg6
SUNW_CSRMEMBER=SUNWCdfb
SUNW_CSRMEMBER=SUNWkvm
SUNW_CSRMEMBER=SUNWCnis
SUNW_CSRMEMBER=SUNWowdv
SUNW_CSRMEMBER=SUNWter

END

EXAMPLE 3 A Meta-cluster Description With a Dynamic Cluster Entry

The following is an example of a meta-cluster description with a dynamic cluster entry
as indicated by the use of the SUNW_CSRMBRIFF parameter entries.

METACLUSTER=SUNWCprog
NAME=Developer System Support
DESC=A pre-defined software configuration consisting of the

clustertoc(4)

EXAMPLES

82 man pages section 4: File Formats • Last Revised 18 Feb 2003

EXAMPLE 3 A Meta-cluster Description With a Dynamic Cluster Entry (Continued)

typical software used by software developers.
VENDOR=Sun Microsystems, Inc.
VERSION=2.5
SUNW_CSRMEMBER=SUNWCadm
SUNW_CSRMBRIFF=(smcc.dctoc tcx)SUNWCtcx
SUNW_CSRMBRIFF=(smcc.dctoc leo)SUNWCleo
SUNW_CSRMBRIFF=(smcc.dctoc sx)SUNWCsx
. . .

END

parse_dynamic_clustertoc(1M), cdtoc(4), order(4), packagetoc(4),
pkginfo(4)

The current implementation of the initial system installation programs depend on the
.clustertoc describing three required meta-clusters for the base OS product:

SUNWCall Contains all of the software packages in the OS distribution.

SUNWCuser Contains the typical software packages for an end-user of the OS
distribution.

SUNWCreq Contains the bare-minimum packages required to boot and
configure the OS to the point of running a multi-user shell.

clustertoc(4)

SEE ALSO

NOTES

File Formats 83

compver – compatible versions file

compver is an ASCII file used to specify previous versions of the associated package
which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with which
the current version is backward compatible.

Since some packages may require installation of a specific version of another software
package, compatibility information is extremely crucial. Consider, for example, a
package called "A" which requires version "1.0" of application "B" as a prerequisite for
installation. If the customer installing "A" has a newer version of "B" (version 1.3), the
compver file for "B" must indicate that "1.3" is compatible with version "1.0" in order
for the customer to install package "A".

EXAMPLE 1 Sample compver file.

A sample compver file is shown below:

Version 1.3
Version 1.0

pkginfo(4)

Application Packaging Developer’s Guide

The comparison of the version string disregards white space and tabs. It is performed
on a word-by-word basis. Thus, "Version 1.3" and "Version 1.3" would be considered
the same.

The entries in the compver file must match the values assigned to the VERSION
parameter in the pkginfo(4) files.

compver(4)

NAME

DESCRIPTION

EXAMPLES

SEE ALSO

NOTES

84 man pages section 4: File Formats • Last Revised 4 Oct 1996

contents – list of files and associated packages

/var/sadm/install/contents

The file /var/sadm/install/contents is a source of information about the
packages installed on the system. This file must never be edited directly. Always use
the package and patch commands (see SEE ALSO) to make changes to the contents
file.

Each entry in the contents file is a single line. Fields in each entry are separated by a
single space character.

Two major styles of entries exist, old style and new style. The following is the format
of an old-style entry:

ftype class path package(s)

The following is the general format of a new-style entry:

path[=rpath] ftype class [ftype-optional-fields] package(s)

New-style entries differ for each ftype. The ftype designates the entry type, as
specified in pkgmap(4). The format for new-style entries, for each ftype, is as follows:

ftype s: path=rpath s class package
ftype l: path l class package
ftype d: path d class mode owner group package(s)
ftype b: path b class major minor mode owner group package
ftype c: path c class major minor mode owner group package
ftype f: path f class mode owner group size cksum modtime package
ftype x: path x class mode owner group package
ftype v: path v class mode owner group size cksum modtime package
ftype e: path e class mode owner group size cksum modtime package

A significant distinction between old- and new-style entries is that the former do not
begin with a slash (⁄) character, while the latter (new-style) always do. For example,
the following are new-style entries:

d none /dev SUNWcsd

e passwd /etc/passwd SUNWcsr

The following are new-style entries:

/dev d none 0755 root sys SUNWcsr SUNWcsd

/etc/passwd e passwd 0644 root sys 580 48299 1077177419 SUNWcsr

The following are the descriptions of the fields in both old- and new-style entries.

path
The absolute path of the node being described. For ftype s (indicating a symbolic
link) this is the indirect pointer (link) name.

rpath
The relative path to the real file or linked-to directory name.

contents(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 85

ftype
A one-character field that indicates the entry type (see pkgmap(4)).

class
The installation class to which the file belongs (see pkgmap(4)).

package
The package associated with this entry. For ftype d (directory) more than one
package can be present.

mode
The octal mode of the file (see pkgmap(4)).

owner
The owner of the file (see pkgmap(4)).

group
The group to which the file belongs (see pkgmap(4)).

major
The major device number (see pkgmap(4)).

minor
The minor device number (see pkgmap(4)).

size
The actual size of the file in bytes as reported by sum (see pkgmap(4)).

cksum
The checksum of the file contents (see pkgmap(4)).

modtime
The time of last modification (see pkgmap(4)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Unstable

patchadd(1M), pkgadd(1M), pkgadm(1M), pkgchk(1M), pkgmap(4),
attributes(5)

As shown above, the interface stability of /var/sadm/install/contents is
Unstable (see attributes(5)). It is common practice to use this file in a read-only
manner to determine which files belong to which packages installed on a system.
While this file has been present for many releases of the Solaris operating system, it
might not be present in future releases. The fully supported way to obtain information
from the installed package database is through pkgchk(1M). It is highly
recommended that you use pkgchk rather than relying on the contents file.

contents(4)

ATTRIBUTES

SEE ALSO

NOTES

86 man pages section 4: File Formats • Last Revised 29 Jun 2004

contract – the contract file system

/system/contract

The /system/contract file system acts as the primary interface to the contract
subsystem. There is a subdirectory of /system/contract for each available contract
type.

/system/contract can be mounted on any mount point, in addition to the the
standard /system/contract mount point, and can be mounted several places at
once. Such additional mounts are allowed in order to facilitate the confinement of
processes to subtrees of the file system using chroot(1M) and yet allow such
processes to continue to use contract commands and interfaces.

A combination of standard system calls (for example, open(2), close(2), and poll(2))
and calls to libcontract(3LIB) access /system/contract files.

Consumers of the contract file system must be large file aware. See largefile(5) and
lfcompile64(5).

At the top level, the /system/contract directory contains subdirectories named
with each available contract type, and one special directory, all. Each of these
directories is world-readable and world-searchable.

Each /system/contract/type directory contains a fixed number of files. It also
contains a variable number of subdirectories corresponding to existing contracts of
type type and named with the decimal representation of the contracts’ IDs.

The following files are in a /system/contract/type directory:

template Opening this file returns a file descriptor for a new type contract
template.

You can use the following libcontract(3LIB) calls on a template
file descriptor:

ct_tmpl_activate(3contract)
ct_tmpl_clear(3contract)
ct_tmpl_create(3contract)

See TERMS for additional template functions.

latest Opening this file returns a file descriptor for the status file of the
last type contract written by the opening LWP. See STRUCTURE OF
/system/contract/type/id. If the opening LWP has not created
a type contract, opening latest fails with ESRCH.

bundle Opening this file returns a file descriptor for an event endpoint
which receives events from all type contracts on the system. No
privileges are required to open a type bundle event endpoint.

contract(4)

NAME

SYNOPSIS

DESCRIPTION

DIRECTORY
STRUCTURE

STRUCTURE OF
/system/contract/type

File Formats 87

Events sent by contracts owned and written by users other than
the reader’s effective user id are invisible, that is, they are silently
skipped, unless the reader has {PRIV_CONTRACT_OBSERVER} in
its effective set. See EVENTS.

pbundle Opening this file returns a file descriptor for an event endpoint
which receives events from all type contracts held by the opening
process. See EVENTS.

The /system/contract/all directory contains a numerically named file for each
contract in the system. Each file is a symbolic link to the type-specific directory for that
contract, that is /system/contract/all/id points to /system/contract/type/id.

Each /system/contract/type/id directory contains the following files:

ctl Opening this file returns a file descriptor for contract
id’s control file. The open fails if the opening process
does not hold contract id and the contract has not been
inherited by the process contract of which the opening
process is a member. See process(4).

The following libcontract(3LIB) calls can be made
on a ctl file descriptor if the contract is owned by the
caller:

ct_ctl_abandon(3contract)
ct_ctl_newct(3contract)

ct_ctl_ack(3contract)
ct_ctl_qack(3contract)

The following libcontract(3LIB) call can be made
on a ctl file descriptor if the contract doesn’t have an
owner:

ct_ctl_adopt(3contract)

status Opening this file returns a file descriptor for contract
id’s status file. The following libcontract(3LIB) calls
can be made on a status file descriptor:

ct_status_read(3contract)

See STATUS.

events Opening this file returns a file descriptor for an event
endpoint which receives events from contract id. See
EVENTS.

contract(4)

STRUCTURE OF
/system/contract/all

STRUCTURE OF
/system/contract/type/id

88 man pages section 4: File Formats • Last Revised 8 Oct 2004

Only a process which has the same effective user ID as
the process owning the contract, the same effective user
ID as the contract’s author, or has
{PRIV_CONTRACT_OBSERVER} in its effective set can
open the event endpoint for a contract.

The following terms are defined for all contracts:

cookie
Specifies a 64-bit quantity that the contract author can use to identify the contract.
Use ct_tmpl_set_cookie(3CONTRACT) to set this term.

informative event set
Selects which events are delivered as informative events. Use
ct_tmpl_set_informative(3CONTRACT) to set this term.

critical event set
Selects which events are delivered as critical events. Use
ct_tmpl_set_critical(3CONTRACT) to set this term.

A status object returned by ct_status_read(3CONTRACT) contains the following
pieces of information:

contract ID
The numeric ID of the contract. Use ct_status_get_id(3CONTRACT) to obtain
this information.

contract type
The type of the contract, specifed as a string. Obtained using
ct_status_get_type(3CONTRACT). The contract type is the same as its
subdirectory name under /system/contract.

creator’s zone ID
The zone ID of the process which created the contract. Obtained using
ct_status_get_zoneid(3CONTRACT).

ownership state
The state of the contract, specified as CTS_OWNED, CTS_INHERITED, CTS_ORPHAN,
or CTS_DEAD. Use ct_status_get_state(3CONTRACT) to obtain this
information.

contract holder
If the contract’s state is CTS_OWNED, the ID of the process which owns the contract.
If the contract’s state is CTS_INHERITED, the ID of the contract which is acting as
regent. If the contract’s state is CTS_ORPHAN or CTS_DEAD, this is undefined. Use
ct_status_get_holder(3CONTRACT) to obtain this information.

number of critical events
The number of unacknowledged critical events pending on the contract’s event
queue. Use ct_status_get_nevents(3CONTRACT) to obtain this information.

negotiation time
The time remaining before the current synchronous negotiation times out. Use
ct_status_get_ntime(3CONTRACT) to obtain this information.

contract(4)

TERMS

STATUS

File Formats 89

negotiation quantum time
The time remaining before the current negotiation quantum runs out. Use
ct_status_get_qtime(3CONTRACT) to obtain this information.

netgotiation event ID
The ID of the event which initiated the negotiation timeout. Use
ct_status_get_nevid(3CONTRACT) to obtain this information.

cookie (term)
The contract’s cookie term. Use ct_status_get_cookie(3CONTRACT) to obtain
this information.

Informative event set (term)
The contract’s informative event set. Use
ct_status_get_informative(3CONTRACT) to obtain this information.

Critical event set (term)
The contract’s critical event set. Use ct_status_get_critical(3CONTRACT)
to obtain this information.

All three event endpoints, /system/contract/type/bundle,
/system/contract/type/pbundle, and /system/contract/type/id/events,
are accessed in the same manner.

The following libcontract(3LIB) interfaces are used with an event endpoint file
descriptor:

ct_event_read(3contract)
ct_event_read_critical(3contract)
ct_event_reset(3contract)
ct_event_next(3contract)

To facilitate processes watching multiple event endpoints, it is possible to poll(2) on
event endpoints. When it is possible to receive on an endpoint file descriptor, POLLIN
is set for that descriptor.

An event object returned by ct_event_read(3CONTRACT) contains the following
information:

contract ID The ID of the contract that generated the event. Use
ct_event_get_ctid(3CONTRACT) to obtain this
information.

event ID The ID of the contract event.Use
ct_event_get_evid(3CONTRACT).

flags A bit vector possibly including CT_ACK and
CTE_INFO. Use
ct_event_get_flags(3CONTRACT) to obtain this
information.

event type The type of event, equal to one of the constants
specified in the contract type’s manual page or

contract(4)

EVENTS

90 man pages section 4: File Formats • Last Revised 8 Oct 2004

CT_EV_NEGEND. Use
ct_event_get_type(3CONTRACT) to obtain this
information.

The following event types are defined:

CT_EV_NEGEND
Some time after an exit negotiation is initiated, the CT_EV_NEGEND event is sent.
This indicates that the negotiation ended. This might be because the operation was
cancelled, or because the operation was successful. If successful, and the owner
requested that a new contract be written, this contains the ID of that contract.

CT_EV_NEGEND cannot be included in a contract’s informative or critical event set.
It is always delivered and always critical. If CT_EV_NEGEND indicates that the
operation was successful, no further events are sent. The contract’s owner should
use ct_ctl_abandon(3CONTRACT) to abandon the contract.

A CT_EV_NEGEND event contains:

negotiation ID
The ID of the negotiation which ended. Use
ct_event_get_nevid(3CONTRACT) to obain this information.

new contract ID
The ID of the newly created contract. This value is 0 if no contract was created,
or the ID of the existing contract if the operation was not completed. Use
ct_event_get_newct(3CONTRACT) to obtain this information.

/system/contract
List of all contract types

/system/contract/all
Directory of all contract IDs

/system/contract/all/id
Symbolic link to the type-specific directory of contract id

/system/contract/type
Specific type directory

/system/contract/type/templete
Template for the contract type

/system/contract/type/bundle
Listening point for all contracts of that type

/system/contract/type/pbundle
Listening point for all contracts of that type for the opening process

/system/contract/type /latest
Status of most recent type contract created by the opening LWP

/system/contract/type/ID
Directory for contract id

contract(4)

EVENT TYPES

FILES

File Formats 91

/system/contract/type/ID/events
Listening point for contract id’s events

/system/contract/type/ID/ctl
Control file for contract ID

/system/contract/type/ID/status
Status info for contract ID

ctrun(1), ctstat(1), ctwatch(1), chroot(1M), close(2), ioctl(2), open(2),
poll(2), ct_ctl_abandon(3CONTRACT), ct_event_get_ctid(3CONTRACT),
ct_event_get_evid(3CONTRACT), ct_event_get_flags(3CONTRACT),
ct_event_get_nevid(3CONTRACT), ct_event_get_newct(3CONTRACT),
ct_event_get_type(3CONTRACT),
ct_status_read(3CONTRACT)ct_status_get_cookie(3CONTRACT),
ct_status_get_critical(3CONTRACT),
ct_status_get_holder(3CONTRACT), ct_status_get_id(3CONTRACT),
ct_status_get_informative(3CONTRACT),
ct_status_get_nevid(3CONTRACT), ct_status_get_nevents(3CONTRACT),
ct_status_get_ntime(3CONTRACT), ct_status_get_qtime(3CONTRACT),
ct_status_get_state(3CONTRACT), ct_status_get_type(3CONTRACT),
ct_tmpl_set_cookie(3CONTRACT), ct_tmpl_set_critical(3CONTRACT),
ct_tmpl_set_informative(3CONTRACT), libcontract(3LIB), process(4),
largefile(5), lfcompile(5), privileges(5)

contract(4)

SEE ALSO

92 man pages section 4: File Formats • Last Revised 8 Oct 2004

copyright – copyright information file

copyright is an ASCII file used to provide a copyright notice for a package. The text
may be in any format. The full file contents (including comment lines) are displayed
on the terminal at the time of package installation.

Application Packaging Developer’s Guide

copyright(4)

NAME

DESCRIPTION

SEE ALSO

File Formats 93

core – process core file

The operating system writes out a core file for a process when the process is
terminated due to receiving certain signals. A core file is a disk copy of the contents of
the process address space at the time the process received the signal, along with
additional information about the state of the process. This information can be
consumed by a debugger. Core files can also be generated by applying the gcore(1)
utility to a running process.

Typically, core files are produced following abnormal termination of a process
resulting from a bug in the corresponding application. Whatever the cause, the core
file itself provides invaluable information to the programmer or support engineer to
aid in diagnosing the problem. The core file can be inspected using a debugger such as
dbx(1) or mdb(1) or by applying one of the proc(1) tools.

The operating system attempts to create up to two core files for each abnormally
terminating process, using a global core file name pattern and a per-process core file
name pattern. These patterns are expanded to determine the pathname of the resulting
core files, and can be configured by coreadm(1M). By default, the global core file
pattern is disabled and not used, and the per-process core file pattern is set to core.
Therefore, by default, the operating system attempts to create a core file named core
in the process’s current working directory.

A process terminates and produces a core file whenever it receives one of the signals
whose default disposition is to cause a core dump. The list of signals that result in
generating a core file is shown in signal.h(3HEAD). Therefore, a process might not
produce a core file if it has blocked or modified the behavior of the corresponding
signal. Additionally, no core dump can be created under the following conditions:

� If normal file and directory access permissions prevent the creation or modification
of the per-process core file pathname by the current process user and group ID.
This test does not apply to the global core file pathname because the global core file
is always written as the superuser.

� If the core file pattern expands to a pathname that contains intermediate directory
components that do not exist. For example, if the global pattern is set to
/var/core/%n/core.%p, and no directory /var/core/‘uname -n‘ has been
created, no global core files are produced.

� If the destination directory is part of a filesystem that is mounted read-only.
� If the resource limit RLIMIT_CORE has been set to 0 for the process, no per-process

core file is produced. Refer to setrlimit(2) and ulimit(1) for more information
on resource limits.

� If the core file name already exists in the destination directory and is not a regular
file (that is, is a symlink, block or character special-file, and so forth).

� If the kernel cannot open the destination file O_EXCL, which can occur if same file
is being created by another process simultaneously.

� If the process’s effective user ID is different from its real user ID or if its effective
group ID is different from its real group ID. Similarly, set-user-ID and set-group-ID
programs do not produce core files as this could potentially compromise system

core(4)

NAME

DESCRIPTION

94 man pages section 4: File Formats • Last Revised 18 Feb 2004

security. These processes can be explicitly granted permission to produce core files
using coreadm(1M), at the risk of exposing secure information.

The core file contains all the process information pertinent to debugging: contents of
hardware registers, process status, and process data. The format of a core file is object
file specific.

For ELF executable programs (see a.out(4)), the core file generated is also an ELF file,
containing ELF program and file headers. The e_type field in the file header has type
ET_CORE. The program header contains an entry for every segment that was part of
the process address space, including shared library segments. The contents of the
mappings specified by coreadm(1M) are also part of the core image. Each program
header has its p_memsz field set to the size of the mapping. The program headers that
represent mappings whose data is included in the core file have their p_filesz field
set the same as p_memsz, otherwise p_filesz is zero.

A mapping’s data may be excluded due to the core file content settings (see
coreadm(1M)), or due to some failure. If the data is excluded because of a failure, the
program header entry will have the PF_SUNW_FAILURE flag set in its p_flags field.

The program headers of an ELF core file also contain entries for two NOTE segments,
each containing several note entries as described below. The note entry header and
core file note type (n_type) definitions are contained in <sys/elf.h>. The first
NOTE segment exists for binary compatibility with old programs that deal with core
files. It contains structures defined in <sys/old_procfs.h>. New programs should
recognize and skip this NOTE segment, advancing instead to the new NOTE segment.
The old NOTE segment is deleted from core files in a future release.

The old NOTE segment contains the following entries. Each has entry name "CORE"
and presents the contents of a system structure:

prpsinfo_t n_type: NT_PRPSINFO. This entry contains
information of interest to the ps(1) command, such as
process status, CPU usage, "nice" value, controlling
terminal, user-ID, process-ID, the name of the
executable, and so forth. The prpsinfo_t structure is
defined in <sys/old_procfs.h>.

char array n_type: NT_PLATFORM. This entry contains a string
describing the specific model of the hardware platform
on which this core file was created. This information is
the same as provided by sysinfo(2) when invoked
with the command SI_PLATFORM.

auxv_t array n_type: NT_AUXV. This entry contains the array of
auxv_t structures that was passed by the operating
system as startup information to the dynamic linker.
Auxiliary vector information is defined in
<sys/auxv.h>.

core(4)

File Formats 95

Following these entries, for each active (non-zombie) light-weight process (LWP) in
the process, the old NOTE segment contains an entry with a prstatus_t structure,
plus other optionally-present entries describing the LWP, as follows:

prstatus_t n_type: NT_PRSTATUS. This structure contains things
of interest to a debugger from the operating system,
such as the general registers, signal dispositions, state,
reason for stopping, process-ID, and so forth. The
prstatus_t structure is defined in
<sys/old_procfs.h>.

prfpregset_t n_type: NT_PRFPREG. This entry is present only if the
LWP used the floating-point hardware. It contains the
floating-point registers. The prfpregset_t structure
is defined in <sys/procfs_isa.h>.

gwindows_t n_type: NT_GWINDOWS. This entry is present only on a
SPARC machine and only if the system was unable to
flush all of the register windows to the stack. It
contains all of the unspilled register windows. The
gwindows_t structure is defined in
<sys/regset.h>.

prxregset_t n_type: NT_PRXREG. This entry is present only if the
machine has extra register state associated with it. It
contains the extra register state. The prxregset_t
structure is defined in <sys/procfs_isa.h>.

The new NOTE segment contains the following entries. Each has entry name “CORE”
and presents the contents of a system structure:

psinfo_t n_type: NT_PSINFO. This structure contains
information of interest to the ps(1) command, such as
process status, CPU usage, "nice" value, controlling
terminal, user-ID, process-ID, the name of the
executable, and so forth. The psinfo_t structure is
defined in <sys/procfs.h>.

pstatus_t n_type: NT_PSTATUS. This structure contains things
of interest to a debugger from the operating system,
such as pending signals, state, process-ID, and so forth.
The pstatus_t structure is defined in
<sys/procfs.h>.

char array n_type: NT_PLATFORM. This entry contains a string
describing the specific model of the hardware platform
on which this core file was created. This information is
the same as provided by sysinfo(2) when invoked
with the command SI_PLATFORM.

core(4)

96 man pages section 4: File Formats • Last Revised 18 Feb 2004

auxv_t array n_type: NT_AUXV. This entry contains the array of
auxv_t structures that was passed by the operating
system as startup information to the dynamic linker.
Auxiliary vector information is defined in
<sys/auxv.h>.

struct utsname n_type: NT_UTSNAME. This structure contains the
system information that would have been returned to
the process if it had performed a uname(2) system call
prior to dumping core. The utsname structure is
defined in <sys/utsname.h>.

prcred_t n_type: NT_PRCRED. This structure contains the
process credentials, including the real, saved, and
effective user and group IDs. The prcred_t structure
is defined in <aasys/procfs.h>. Following the
structure is an optional array of supplementary group
IDs. The total number of supplementary group IDs is
given by the pr_ngroups member of the prcred_t
structure, and the structure includes space for one
supplementary group. If pr_ngroups is greater than
1, there is pr_ngroups - 1 gid_t items following
the structure; otherwise, there is no additional data.

char array n_type: NT_ZONENAME. This entry contains a string
which describes the name of the zone in which the
process was running. See zones(5). The information is
the same as provided by getzonenamebyid(3C) when
invoked with the numerical ID returned by
getzoneid(3C).

struct ssd array n_type: NT_LDT. This entry is present only on an
32-bit x86 machine and only if the process has set up a
Local Descriptor Table (LDT). It contains an array of
structures of type struct ssd, each of which was
typically used to set up the %gs segment register to be
used to fetch the address of the current thread
information structure in a multithreaded process. The
ssd structure is defined in <sys/sysi86.h>.

core_content_t n_type: NT_CONTENT. This optional entry indicates
which parts of the process image are specified to be
included in the core file. See coreadm(1M).

Following these entries, for each active and zombie LWP in the process, the new NOTE
segment contains an entry with an lwpsinfo_t structure plus, for a non-zombie
LWP, an entry with an lwpstatus_t structure, plus other optionally-present entries
describing the LWP, as follows. A zombie LWP is a non-detached LWP that has
terminated but has not yet been reaped by another LWP in the same process.

core(4)

File Formats 97

lwpsinfo_t n_type: NT_LWPSINFO. This structure contains information of
interest to the ps(1) command, such as LWP status, CPU usage,
"nice" value, LWP-ID, and so forth. The lwpsinfo_t structure is
defined in <sys/procfs.h>. This is the only entry present for a
zombie LWP.

lwpstatus_t n_type: NT_LWPSTATUS. This structure contains things of interest
to a debugger from the operating system, such as the general
registers, the floating point registers, state, reason for stopping,
LWP-ID, and so forth. The lwpstatus_t structure is defined in
<sys/procfs.h>>.

gwindows_t n_type: NT_GWINDOWS. This entry is present only on a SPARC
machine and only if the system was unable to flush all of the
register windows to the stack. It contains all of the unspilled
register windows. The gwindows_t structure is defined in
<sys/regset.h>.

prxregset_t n_type: NT_PRXREG. This entry is present only if the machine has
extra register state associated with it. It contains the extra register
state. The prxregset_t structure is defined in
<sys/procfs_isa.h>.

asrset_t n_type: NT_ASRS. This entry is present only on a SPARC V9
machine and only if the process is a 64-bit process. It contains the
ancillary state registers for the LWP. The asrset_t structure is
defined in <sys/regset.h>.

The size of the core file created by a process may be controlled by the user (see
getrlimit(2)).

gcore(1), mdb(1), proc(1), ps(1), coreadm(1M), getrlimit(2), setrlimit(2),
setuid(2), sysinfo(2), uname(2), getzonenamebyid(3C), getzoneid(3C),
elf(3ELF), signal.h(3HEAD), a.out(4), proc(4), zones(5)

ANSI C Programmer’s Guide

core(4)

SEE ALSO

98 man pages section 4: File Formats • Last Revised 18 Feb 2004

crypt.conf – configuration file for pluggable crypt modules

/etc/security/crypt.conf

crypt.conf is the configuration file for the pluggable crypt architecture. Each crypt
module must provide a function to generate a password hash,
crypt_genhash_impl(3C), and a function to generate the salt,
crypt_gensalt_impl(3C).

There must be at least one entry in crypt.conf with the same name as is stored in
the crypt_algorithm_magic symbol of the module. The documentation provided
with the module should list this name.

The module_path field specifies the path name to a shared library object that
implements crypt_genhash_impl(), crypt_gensalt_impl(), and
crypt_algorithm_magic. If the path name is not absolute, it is assumed to be
relative to /usr/lib/security/$ISA. If the path name contains the $ISA token,
the token is replaced by an implementation-defined directory name that defines the
path relative to the calling program’s instruction set architecture.

The params field is used to pass module-specific options to the shared objects. See
crypt_genhash_impl(3C) and crypt_gensalt_impl(3C). It is the responsibility
of the module to parse and interpret the options. The params field can be used by the
modules to turn on debugging or to pass any module-specific parameters that control
the output of the hashing algorithm.

EXAMPLE 1 Provide compatibility for md5crypt-generated passwords.

The default configuration preserves previous Solaris behavior while adding
compatibility for md5crypt-generated passwords as provided on some BSD and Linux
systems.

#
crypt.conf
#

1 /usr/lib/security/$ISA/crypt_bsdmd5.so

EXAMPLE 2 Use md5crypt to demonstrate compatibility with BSD– and Linux–based
systems.

The following example lists 4 algorithms and demonstrates how compatibility with
BSD– and Linux–based systems using md5crypt is made available, using the
algorithm names 1 and 2.

#
crypt.conf
#
md5 /usr/lib/security/$ISA/crypt_md5.so
rot13 /usr/lib/security/$ISA/crypt_rot13.so

For *BSD/Linux compatibilty
1 is md5, 2 is Blowfish

crypt.conf(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

File Formats 99

EXAMPLE 2 Use md5crypt to demonstrate compatibility with BSD– and Linux–based
systems. (Continued)

1 /usr/lib/security/$ISA/crypt_bsdmd5.so

2 /usr/lib/security/$ISA/crypt_bsdbf.so

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

passwd(1), crypt(3C), crypt_genhash_impl(3C), crypt_gensalt(3C),
crypt_gensalt_impl(3C), getpassphrase(3C), passwd(4), attributes(5),
crypt_unix(5)

crypt.conf(4)

ATTRIBUTES

SEE ALSO

100 man pages section 4: File Formats • Last Revised 10 Jun 2002

crypto_certs – directory for certificate files for Solaris Cryptographic Framework

/etc/crypto/certs/CA

/etc/crypto/certs/SUNWosnet

The /etc/crypto/certs directory contains ASN.1 BER or PEM encoded certificate
files for use by the Solaris Cryptographic Framework.

A default installation contains only two certificates. The CA certificate is the trust
anchor for all other certificates. The SUNWosnet certificate contains the certificate use
to sign the Solaris user and kernel cryptographic plug-ins.

Additional certificates my be installed by third-party cryptographic providers. They
should either be copied to /etc/crypto/certs or included in the package that
delivers the provider.

Only certificates that are issued by the CA certificate are accepted by the Solaris
Cryptographic Framework. This restriction is in place due to US Export Law on the
export of open cryptographic interfaces at the time of shipping this revision of the
product.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Evolving

elfsign(1), libpkcs11(3LIB), attributes(5)

crypto_certs(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

File Formats 101

dacf.conf – device auto-configuration configuration file

/etc/dacf.conf

The kernel uses the dacf.conf file to automatically configure hot plugged devices.
Because the dacf.conf file contains important kernel state information, it should not
be modified.

The format of the /etc/dacf.conf file is not public and might change in versions of
the Solaris operating environment that are not compatible with Solaris 8.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

attributes(5)

This document does not constitute an API. The /etc/dacf.conf file might not exist
or might contain different contents or interpretations in versions of the Solaris
operating environment that are not compatible with Solaris 8. The existence of this
notice does not imply that any other documentation lacking this notice constitutes an
API.

dacf.conf(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

102 man pages section 4: File Formats • Last Revised 15 May 2001

dat.conf – DAT static registry

/etc/dat/dat.conf

The DAT static registry, /etc/dat/dat.conf is a system-wide data resource
maintained by the system administrative command datadm(1M).

/etc/dat/dat.conf contains a list of interface adapters supported by uDAPL
service providers. An interface adapter on Infiniband (IB) corresponds to an IPoIB
device instance, for example, ibd0. An IPoIB device name represents an IP interface
plumbed by ifconfig(1M) on an IB partition/Host Channel Adapter port
combination.

Each entry in the DAT static registry is a single line that contains eight fields. Fields
are separated by a SPACE. Lines that begin with a pound sign (#) are considered
comments. All characters that follow the # are ignored. Enclose Solaris specific strings
(Solaris_specific_string) and service provider’s instance data (service
_provider_instance_data) in quotes.

The following shows the order of the fields in a dat.conf entry:

"interface_adapter_name" "API_version" "threadsafe | nonthreadsafe" \
"default | nondefault" "service_provider_library_pathname" \
"service_provider_version" "service _provider_instance_data"\
"Solaris_specific_string"

The fields are defined as follows:

interface_adapter_name
Specifies the Interface Adapter (IA) name. In IB, this is the IPoIB device instance
name, for example, ibd0. This represents an IP interface plumbed on an IB
partition/port combination of the HCA.

API_version
Specifies the API version of the service provide library: For example,
"u"major.minor is u1.2.

threadsafe | nonthreadsafe
Specifies a threadsafe or non-threadsafe library.

default | nondefault
Specifies a default or non-default version of library. A service provider can offer
several versions of the library. If so, one version is designated as default with the
rest as nondefault.

service_provider_library_pathname
Specifies the pathname of the library image.

service_provider_version
Specifies the version of the service provider. By convention, specify the company
stock symbol as the service provider, followed by major and minor version
numbers, for example, SUNW1.0.

service _provider_instance_data
Specifies the service provider instance data.

dat.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 103

Solaris_specific_string
Specifies a platform specific string, for example, the device name in the
service_provider.conf file.

EXAMPLE 1 Sample dat.conf File

The following dat.conf file shows a uDAPL 1.2 service provider for tavor,
udapl_tavor.so.1 supporting two interfaces, ibd0 and ibd1:

#
dat.conf for uDAPL 1.2
#
ibd0 u1.2 nonthreadsafe default udapl_tavor.so.1 SUNW.1.0 ""
"driver_name=tavor"
ibd1 u1.2 nonthreadsafe default udapl_tavor.so.1 SUNW.1.0 ""

"driver_name=tavor"

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWudaplr

Interface Stability Standard

datadm(1M), ifconfig(1M), libdat(3LIB), service_provider.conf(4),
attributes(5)

An empty dat.conf is created during the package SUNWudaplr installation if no file
is present beforehand. Entries in the file are added or removed by running
datadm(1M).

The content of the platform specific string does not constitute an API. It is generated
by datadm(1M) and might have a different content or interpretation in a future
release.

dat.conf(4)

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

104 man pages section 4: File Formats • Last Revised 18 Jun 2004

defaultdomain – specify host’s domain name

/etc/defaultdomain

The file /etc/defaultdomain determines a host’s domain name for direct use by
the NIS and NIS+ name services. The defaultdomain file is read at boot time and its
contents used by the domainname(1M) command. Because of its use by domainname,
defaultdomain is also used by the LDAP service (see ldap(1)). Under certain,
narrow circumstances (see resolv.conf(4)), because domainname uses
defaultdomain, a DNS client can use the contents of defaultdomain.

The contents of defaultdomain consists of a single line containing a host’s domain
name.

nis+(1), uname(1), ldapclient(1M), nisclient(1M), ypbind(1M), ypinit(1M),
resolv.conf(4)

The defaultdomain file is created and modified by Solaris installation and
configuration scripts. Only users knowledgeable of name service configuration should
edit the file.

defaultdomain(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

File Formats 105

default_fs, fs – specify the default file system type for local or remote file systems

When file system administration commands have both specific and generic
components (for example, fsck(1M)), the file system type must be specified. If it is
not explicitly specified using the -F FSType command line option, the generic
command looks in /etc/vfstab in order to determine the file system type, using the
supplied raw or block device or mount point. If the file system type can not be
determined by searching /etc/vfstab, the command will use the default file system
type specified in either /etc/default/fs or /etc/dfs/dfstypes, depending on
whether the file system is local or remote.

The default local file system type is specified in /etc/default/fs by a line of the
form LOCAL=fstype (for example, LOCAL=ufs). The default remote file system type is
determined by the first entry in the /etc/dfs/fstypes file.

File system administration commands will determine whether the file system is local
or remote by examining the specified device name. If the device name starts with ‘‘/’’
(slash), it is considered to be local; otherwise it is remote.

The default file system types can be changed by editing the default files with a text
editor.

/etc/vfstab list of default parameters for each file system

/etc/default/fs the default local file system type

/etc/dfs/fstypes the default remote file system type

fsck(1M), fstypes(4), vfstab(4)

default_fs(4)

NAME

DESCRIPTION

FILES

SEE ALSO

106 man pages section 4: File Formats • Last Revised 20 Mar 1992

defaultrouter – configuration file for default router(s)

/etc/defaultrouter

The /etc/defaultrouter file specifies a IPv4 host’s default router(s).

The format of the file is as follows:

IP_address

...

The /etc/defaultrouter file can contain the IP addresses or hostnames of one or
more default routers, with each entry on its own line. If you use hostnames, each
hostname must also be listed in the local /etc/hosts file, because no name services
are running at the time that defaultrouter is read.

Lines beginning with the ‘‘#’’ character are treated as comments.

The default routes listed in this file replace those added by the kernel during diskless
booting. An empty /etc/defaultrouter file will cause the default route added by
the kernel to be deleted.

Use of a default route, whether received from a DHCP server or from
/etc/defaultrouter, prevents a machine from acting as an IPv4 router. You can
use routeadm(1M) to override this behavior.

/etc/defaultrouter Configuration file containing the hostnames
or IP addresses of one or more default
routers.

in.rdisc(1M), in.routed(1M), routeadm(1M), hosts(4)

defaultrouter(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

File Formats 107

depend – software dependencies file

depend is an ASCII file used to specify information concerning software dependencies
for a particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of the
package is described after the entry line by giving the package architecture and/or
version. The format of each entry and subsequent instance definition is:

type pkg name
(arch)version
(arch)version

. . .

The fields are:

type Defines the dependency type. Must be one of the following
characters:

P Indicates a prerequisite for installation; for example, the
referenced package or versions must be installed.

I Implies that the existence of the indicated package or
version is incompatible.

R Indicates a reverse dependency. Instead of defining the
package’s own dependencies, this designates that
another package depends on this one. This type should
be used only when an old package does not have a
depend file, but relies on the newer package
nonetheless. Therefore, the present package should not
be removed if the designated old package is still on the
system since, if it is removed, the old package will no
longer work.

pkg Indicates the package abbreviation.

name Specifies the full package name.

(arch)version Specifies a particular instance of the software. A version name
cannot begin with a left parenthesis. The instance specifications,
both (arch) and version, are completely optional, but each
(arch)version pair must begin on a new line that begins with white
space. A null version set equates to any version of the indicated
package.

EXAMPLE 1 Sample of depend file

Here are the contents of a sample depend file, for the SUNWftpr (FTP Server)
package, stored in /var/sadm/pkg/SUNWftpr/install:

depend(4)

NAME

DESCRIPTION

EXAMPLES

108 man pages section 4: File Formats • Last Revised 4 Oct 1996

EXAMPLE 1 Sample of depend file (Continued)

P SUNWcar Core Architecture, (Root)
P SUNWkvm Core Architecture, (Kvm)
P SUNWcsr Core Solaris, (Root)
P SUNWcsu Core Solaris, (Usr)
P SUNWcsd Core Solaris Devices
P SUNWcsl Core Solaris Libraries
R SUNWftpu FTP Server, (Usr)

pkginfo(4)

Application Packaging Developer’s Guide

depend(4)

SEE ALSO

File Formats 109

device_allocate – device_allocate file

/etc/security/device_allocate

The device_allocate file contains mandatory access control information about
each physical device. Each device is represented by a one line entry of the form:

device-name;device-type;reserved;reserved;auths;device-exec

where

device-name This is an arbitrary ASCII string naming the physical
device. This field contains no embedded white space or
non-printable characters.

device-type This is an arbitrary ASCII string naming the generic
device type. This field identifies and groups together
devices of like type. This field contains no embedded
white space or non-printable characters.

reserved This field is reserved for future use.

reserved This field is reserved for future use.

auths This field contains a comma-separated list of
authorizations required to allocate the device, or
asterisk (*) to indicate that the device is not allocatable,
or an ’@’ symbol to indicate that no explicit
authorization is needed to allocate the device.

The default authorization is
solaris.device.allocate. See auths(1)

device-exec This is the physical device’s data purge program to be
run any time the device is acted on by allocate(1).
This is to ensure that all usable data is purged from the
physical device before it is reused. This field contains
the filename of a program in /etc/security/lib or
the full pathname of a cleanup script provided by the
system administrator.

The device_allocate file is an ASCII file that resides in the /etc/security
directory.

Lines in device_allocate can end with a ‘\’ to continue an entry on the next line.

Comments may also be included. A ‘#’ makes a comment of all further text until the
next NEWLINE not immediately preceded by a ‘\’.

White space is allowed in any field.

device_allocate(4)

NAME

SYNOPSIS

DESCRIPTION

110 man pages section 4: File Formats • Last Revised 17 Mar 2003

The device_allocate file must be created by the system administrator before
device allocation is enabled.

The device_allocate file is owned by root, with a group of sys, and a mode of
0644.

EXAMPLE 1 Declaring an allocatable device

Declare that physical device st0 is a type st. st is allocatable, and the script used to
clean the device after running deallocate(1) is named
/etc/security/lib/st_clean.

scsi tape
st0;\

st;\
reserved;\
reserved;\
solaris.device.allocate;\
/etc/security/lib/st_clean

EXAMPLE 2 Declaring an allocatable device with authorizations

Declare that physical device fd0 is of type fd. fd is allocatable by users with the
solaris.device.allocate authorization, and the script used to clean the device
after running deallocate(1) is named /etc/security/lib/fd_clean.

floppy drive
fd0;\

fd;\
reserved;\
reserved;\
solaris.device.allocate;\
/etc/security/lib/fd_clean

Notice that making a device allocatable means that you need to allocate and deallocate
it to use it (with allocate(1) and deallocate(1)). If a device is not allocatable, there
will be an asterisk (*) in the auths field, and no one can use the device.

/etc/security/device_allocate Contains list of allocatable devices

auths(1), allocate(1), bsmconv(1M), deallocate(1), list_devices(1),
auth_attr(4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

device_allocate(4)

EXAMPLES

FILES

SEE ALSO

NOTES

File Formats 111

device_maps – device_maps file

/etc/security/device_maps

The device_maps file contains access control information about each physical device.
Each device is represented by a one line entry of the form:

device-name : device-type : device-list :

where

device-name This is an arbitrary ASCII string naming the physical
device. This field contains no embedded white space or
non-printable characters.

device-type This is an arbitrary ASCII string naming the generic
device type. This field identifies and groups together
devices of like type. This field contains no embedded
white space or non-printable characters.

device-list This is a list of the device special files associated with
the physical device. This field contains valid device
special file path names separated by white space.

The device_maps file is an ASCII file that resides in the /etc/security directory.

Lines in device_maps can end with a ‘\’ to continue an entry on the next line.

Comments may also be included. A ‘#’ makes a comment of all further text until the
next NEWLINE not immediately preceded by a ‘\’.

Leading and trailing blanks are allowed in any of the fields.

The device_maps file must be created by the system administrator bef\ore device
allocation is enabled.

This file is owned by root, with a group of sys, and a mode of 0644.

EXAMPLE 1 A sample device_maps file

scsi tape
st1:\
rmt:\
/dev/rst21 /dev/nrst21 /dev/rst5 /dev/nrst5 /dev/rst13 \
/dev/nrst13 /dev/rst29 /dev/nrst29 /dev/rmt/1l /dev/rmt/1m \
/dev/rmt/1 /dev/rmt/1h /dev/rmt/1u /dev/rmt/1ln /dev/rmt/1mn \
/dev/rmt/1n /dev/rmt/1hn /dev/rmt/1un /dev/rmt/1b /dev/rmt/1bn:\

/etc/security/device_maps

allocate(1), bsmconv(1M), deallocate(1), dminfo(1M), list_devices(1)

device_maps(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

112 man pages section 4: File Formats • Last Revised 16 Jan 2001

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

device_maps(4)

NOTES

File Formats 113

devices, devid_cache, snapshot_cache, vhci_cache – device configuration information

/etc/devices

/etc/devices/devid_cache

The directory /etc/devices is a repository of device-related data. Files in this
directory are used to preserve this information across reboots and are created and
updated as necessary by the system.

There are no administrative actions necessary with respect to files in /etc/devices.
Should the contents of a file become corrupted or an update fail, the file can simply be
removed. The system re-creates the file as necessary.

devfsadm(1M), ddi_devid_register(9F), ddi_devid_register(9F)

Files in this directory do not constitute an API. Files might not exist or might have a
different content or interpretation in a future release. The existence of this notice does
not imply that any other documentation that lacks this notice constitutes an API.

devices(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

114 man pages section 4: File Formats • Last Revised 15 Mar 2004

dfstab – file containing commands for sharing resources across a network

dfstab resides in directory /etc/dfs and contains commands for sharing resources
across a network. dfstab gives a system administrator a uniform method of
controlling the automatic sharing of local resources.

Each line of the dfstab file consists of a share(1M) command. The dfstab file can
be read by the shell to share all resources. System administrators can also prepare their
own shell scripts to execute particular lines from dfstab.

The contents of dfstab are executed automatically when the system enters run-level
3.

share(1M), shareall(1M)

dfstab(4)

NAME

DESCRIPTION

SEE ALSO

File Formats 115

dhcp_inittab – information repository for DHCP options

The /etc/dhcp/inittab file contains information about the Dynamic Host
Configuration Protocol (DHCP) options, which are network configuration parameters
passed from DHCP servers to DHCP clients when a client machine uses DHCP. Since
many DHCP-related commands must parse and understand these DHCP options, this
file serves as a central location where information about these options may be
obtained.

The DHCP inittab file provides three general pieces of information:

� A mnemonic alias, or symbol name, for each option number. For instance, option
12 is aliased to the name Hostname. This is useful for DHCP-related programs that
require human interaction, such as dhcpinfo(1).

� Information about the syntax for each option. This includes information such as the
type of the value, for example, whether it is a 16-bit integer or an IP address.

� The policy for what options are visible to which DHCP-related programs.

The dhcp_inittab file can only be changed upon system upgrade. Only additions of
SITE options (or changes to same) will be preserved during upgrade.

The VENDOR options defined here are intended for use by the Solaris DHCP client and
DHCP management tools. The SUNW vendor space is owned by Sun, and changes are
likely during upgrade. If you need to configure the Solaris DHCP server to support
the vendor options of a different client, see dhcptab(4) for details.

Each DHCP option belongs to a certain category, which roughly defines the scope of
the option; for instance, an option may only be understood by certain hosts within a
given site, or it may be globally understood by all DHCP clients and servers. The
following categories are defined; the category names are not case-sensitive:

STANDARD All client and server DHCP implementations agree on the
semantics. These are administered by the Internet Assigned
Numbers Authority (IANA). These options are numbered from 1
to 127.

SITE Within a specific site, all client and server implementations agree
on the semantics. However, at another site the type and meaning
of the option may be quite different. These options are numbered
from 128 to 254.

VENDOR Each vendor may define 254 options unique to that vendor. The
vendor is identified within a DHCP packet by the "Vendor Class"
option, number 60. An option with a specific numeric identifier
belonging to one vendor will, in general, have a type and
semantics different from that of a different vendor. Vendor options

dhcp_inittab(4)

NAME

DESCRIPTION

116 man pages section 4: File Formats • Last Revised 7 Jun 2001

are "super-encapsulated" into the vendor field number 43, as
defined in RFC 2132. The dhcp_inittab file only contains Sun
vendor options. Define non-Sun vendor options in the dhcptab
file.

FIELD This category allows the fixed fields within a DHCP packet to be
aliased to a mnemonic name for use with dhcpinfo(1).

INTERNAL This category is internal to the Solaris DHCP implementation and
will not be further defined.

Data entries are written one per line and have seven fields; each entry provides
information for one option. Each field is separated by a comma, except for the first and
second, which are separated by whitespace (as defined in isspace(3C)). An entry
cannot be continued onto another line. Blank lines and those whose first
non-whitespace character is ’#’ are ignored.

The fields, in order, are:

� Mnemonic Identifier

The Mnemonic Identifier is a user-friendly alias for the option number; it is not
case sensitive. This field must be per-category unique and should be unique across
all categories. The option names in the STANDARD, SITE, and VENDOR spaces
should not overlap, or the behavior will be undefined. See Mnemonic
Identifiers for Options section of this man page for descriptions of the
option names.

� Category (scope)

The Category field is one of STANDARD, SITE, VENDOR, FIELD, or INTERNAL and
identifies the scope in which the option falls.

� Option Number

The Option Number is the number of this option when it is in a DHCP packet. This
field should be per-category unique and the STANDARD and SITE fields should not
have overlapping code fields or the behavior is undefined.

� Data Type

Data Type is one of the following values, which are not case sensitive:

Ascii A printable character string

Bool Has no value. Scope limited to category limited to INTERNAL.
Presence of an option of this type within a Solaris configuration
file represents TRUE, absence represents FALSE.

Octet An array of bytes

Unumber8 An 8-bit unsigned integer

Snumber8 An 8-bit signed integer

Unumber16 A 16-bit unsigned integer

dhcp_inittab(4)

DHCP inittab
Format

File Formats 117

Snumber16 A 16-bit signed integer

Unumber32 A 32-bit unsigned integer

Snumber32 A 32-bit signed integer

Unumber64 A 64-bit unsigned integer

Snumber64 A 64-bit signed integer

Ip An IP address

The data type field describes an indivisible unit of the option payload, using one of
the values listed above.

� Granularity

The Granularity field describes how many "indivisible units" in the option payload
make up a whole value or item for this option. The value must be greater than zero
(0) for any data type other than Bool, in which case it must be zero (0).

� Maximum Number Of Items

This value specifies the maximum items of Granularity which are permissible in a
definition using this symbol. For example, there can only be one IP address
specified for a subnet mask, so the Maximum number of items in this case is one
(1). A Maximum value of zero (0) means that a variable number of items is
permitted.

� Visibility

The Visibility field specifies which DHCP-related programs make use of this
information, and should always be defined as "sdmi" for newly added options.

The following table maps the mnemonic identifiers used in Solaris DHCP to RFC 2132
options:

Symbol Code Description

Subnet 1 Subnet Mask, dotted Internet address (IP).

UTCoffst 2 Coordinated Universal time offset (seconds).

Router 3 List of Routers, IP.

Timeserv 4 List of RFC-868 servers, IP.

IEN116ns 5 List of IEN 116 name servers, IP.

DNSserv 6 List of DNS name servers, IP.

Logserv 7 List of MIT-LCS UDP log servers, IP.

Cookie 8 List of RFC-865 cookie servers, IP.

Lprserv 9 List of RFC-1179 line printer servers, IP.

dhcp_inittab(4)

Mnemonic
Identifiers for

Options

118 man pages section 4: File Formats • Last Revised 7 Jun 2001

Symbol Code Description

Impress 10 List of Imagen Impress servers, IP.

Resource 11 List of RFC-887 resource location servers, IP.

Hostname 12 Client’s hostname, value from hosts database.

Bootsize 13 Number of 512 octet blocks in boot image,
NUMBER.

Dumpfile 14 Path where core image should be dumped, ASCII.

DNSdmain 15 DNS domain name, ASCII.

Swapserv 16 Client’s swap server, IP.

Rootpath 17 Client’s Root path, ASCII.

ExtendP 18 Extensions path, ASCII.

IpFwdF 19 IP Forwarding Enable/Disable, NUMBER.

NLrouteF 20 Non-local Source Routing, NUMBER.

PFilter 21 Policy Filter, IP.

MaxIpSiz 22 Maximum datagram Reassembly Size, NUMBER.

IpTTL 23 Default IP Time to Live, (1=<x<=255), NUMBER.

PathTO 24 RFC-1191 Path MTU Aging Timeout, NUMBER.

PathTbl 25 RFC-1191 Path MTU Plateau Table, NUMBER.

MTU 26 Interface MTU, x>=68, NUMBER.

SameMtuF 27 All Subnets are Local, NUMBER.

Broadcst 28 Broadcast Address, IP.

MaskDscF 29 Perform Mask Discovery, NUMBER.

MaskSupF 30 Mask Supplier, NUMBER.

RDiscvyF 31 Perform Router Discovery, NUMBER.

RSolictS 32 Router Solicitation Address, IP.

StaticRt 33 Static Route, Double IP (network router).

TrailerF 34 Trailer Encapsulation, NUMBER.

ArpTimeO 35 ARP Cache Time out, NUMBER.

EthEncap 36 Ethernet Encapsulation, NUMBER.

TcpTTL 37 TCP Default Time to Live, NUMBER.

TcpKaInt 38 TCP Keepalive Interval, NUMBER.

dhcp_inittab(4)

File Formats 119

Symbol Code Description

TcpKaGbF 39 TCP Keepalive Garbage, NUMBER.

NISdmain 40 NIS Domain name, ASCII.

NISservs 41 List of NIS servers, IP.

NTPservs 42 List of NTP servers, IP.

NetBNms 44 List of NetBIOS Name servers, IP.

NetBDsts 45 List of NetBIOS Distribution servers, IP.

NetBNdT 46 NetBIOS Node type (1=B-node, 2=P, 4=M, 8=H).

NetBScop 47 NetBIOS scope, ASCII.

XFontSrv 48 List of X Window Font servers, IP.

XDispMgr 49 List of X Window Display managers, IP.

LeaseTim 51 Lease Time Policy, (-1 = PERM), NUMBER.

Message 56 Message to be displayed on client, ASCII.

T1Time 58 Renewal (T1) time, NUMBER.

T2Time 59 Rebinding (T2) time, NUMBER.

NW_dmain 62 NetWare/IP Domain Name, ASCII.

NWIPOpts 63 NetWare/IP Options, OCTET (unknown type).

NIS+dom 64 NIS+ Domain name, ASCII.

NIS+serv 65 NIS+ servers, IP.

TFTPsrvN 66 TFTP server hostname, ASCII.

OptBootF 67 Optional Bootfile path, ASCII.

MblIPAgt 68 Mobile IP Home Agent, IP.

SMTPserv 69 Simple Mail Transport Protocol Server, IP.

POP3serv 70 Post Office Protocol (POP3) Server, IP.

NNTPserv 71 Network News Transport Proto. (NNTP) Server,
IP.

WWWservs 72 Default WorldWideWeb Server, IP.

Fingersv 73 Default Finger Server, IP.

IRCservs 74 Internet Relay Chat Server, IP.

STservs 75 StreetTalk Server, IP.

STDAservs 76 StreetTalk Directory Assist. Server, IP.

dhcp_inittab(4)

120 man pages section 4: File Formats • Last Revised 7 Jun 2001

Symbol Code Description

UserClas 77 User class information, ASCII.

SLP_DA 78 Directory agent, OCTET.

SLP_SS 79 Service scope, OCTET.

AgentOpt 82 Agent circuit ID, OCTET.

FQDN 89 Fully Qualified Domain Name, OCTET.

PXEarch 93 Client system architecture, NUMBER.

PXEnii 94 Client Network Device Interface, OCTET.

PXEcid 97 UUID/GUID-based client indentifier, OCTET.

BootFile N/A File to Boot, ASCII.

BootPath N/A Boot path prefix to apply to client’s requested boot
file, ASCII.

BootSrvA N/A Boot Server, IP.

BootSrvN N/A Boot Server Hostname, ASCII.

EchoVC N/A Echo Vendor Class Identifier Flag, (Present=TRUE)

LeaseNeg N/A Lease is Negotiable Flag, (Present=TRUE)

Include N/A Include listed macro values in this macro.

EXAMPLE 1 Altering the DHCP inittab File

In general, the DHCP inittab file should only be altered to add SITE options. If
other options are added, they will not be automatically carried forward when the
system is upgraded. For instance:

ipPairs SITE, 132, IP, 2, 0, sdmi

describes an option named ipPairs, that is in the SITE category. That is, it is defined
by each individual site, and is option code 132, which is of type IP Address, consisting
of a potentially infinite number of pairs of IP addresses.

/etc/dhcp/inittab

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Evolving

dhcp_inittab(4)

EXAMPLES

FILES

ATTRIBUTES

File Formats 121

dhcpinfo(1),dhcpagent(1M), isspace(3C), dhcptab(4), attributes(5), dhcp(5),
dhcp_modules(5)

System Administration Guide: IP Services

Alexander, S., and R. Droms. RFC 2132, DHCP Options and BOOTP Vendor Extensions.
Network Working Group. March 1997.

Droms, R. RFC 2131, Dynamic Host Configuration Protocol. Network Working Group.
March 1997.

dhcp_inittab(4)

SEE ALSO

122 man pages section 4: File Formats • Last Revised 7 Jun 2001

dhcp_network – DHCP network tables

The Dynamic Host Configuration Protocol (DHCP) network tables are used to map
the client identifiers of DHCP clients to IP addresses and the associated configuration
parameters of that address. One DHCP network table exists for each network served
by the DHCP server, and each table is named using the network’s IP address. There is
no table or file with the name dhcp_network.

The DHCP network tables can exist as ASCII text files, binary text files, or NIS+ tables,
depending on the data store used. Since the format of the file could change, the
preferred method of managing the DHCP network tables is through the use of
dhcpmgr(1M) or the pntadm(1M) command.

The dhcp_network file is used as a policy mechanism for whether in.dhcpd(1M)
leases addresses on a given network. If the DHCP server is not serving leases or
information to a network, there should be no dhcp_network file for that network. To
set the DHCP server in informational mode, where it responds to INFORM messages but
does not lease addresses on that network, create an empty dhcp_network file for that
network. For normal operations, where the DHCP server both leases addresses and
responds to INFORM packets, create a dhcp_network file using dhcpmgr(1M) or
pntadm(1M) and populate it with leasable addresses.

The format of the records in a DHCP network table depends on the data store used to
maintain the table. However, an entry in a DHCP network table must contain the
following fields:

Client_ID The client identifier field, Client_ID, is an ASCII hexadecimal
representation of the unique octet string value of the DHCP Client
Identifier Option (code 61) which identifies a DHCP client. In the
absence of the DHCP Client Identifier Option, the DHCP client is
identified using the form given below for BOOTP clients. The
number of characters in this field must be an even number, with a
maximum length of 64 characters. Valid characters are 0 - 9 and
A-F. Entries with values of 00 are freely available for dynamic
allocation to requesting clients. BOOTP clients are identified by the
concatenation of the network’s hardware type (as defined by RFC
1340, titled "Assigned Numbers") and the client’s hardware
address. For example, the following BOOTP client has a hardware
type of ’01’ (10mb ethernet) and a hardware address of
8:0:20:11:12:b7, so its client identifier would be:
010800201112B7

Flags The Flags field is a decimal value, the bit fields of which can have
a combination of the following values:

1 (PERMANENT)
Evaluation of the Lease field is turned off (lease is permanent).
If this bit is not set, Evaluation of the Lease field is enabled
and the Lease is DYNAMIC.

dhcp_network(4)

NAME

DESCRIPTION

File Formats 123

2 (MANUAL)
This entry has a manual client ID binding (cannot be reclaimed
by DHCP server). Client will not be allocated another address.

4 (UNUSABLE)
When set, this value means that either through ICMP echo or
client DECLINE, this address has been found to be unusable.
Can also be used by the network administrator to prevent a
certain client from booting, if used in conjunction with the
MANUAL flag.

8 (BOOTP)
This entry is reserved for allocation to BOOTP clients only.

Client_IP The Client_IP field holds the IP address for this entry. This
value must be unique in the database.

Server_IP This field holds the IP address of the DHCP server which owns this
client IP address, and thus is responsible for initial allocation to a
requesting client. On a multi-homed DHCP server, this IP address
must be the first address returned by gethostbyname(3NSL).

Lease This numeric field holds the entry’s absolute lease expiration time,
and is in seconds since January 1, 1970. It can be decimal, or
hexadecimal (if 0x prefixes number). The special value -1 is used
to denote a permanent lease.

Macro This ASCII text field contains the dhcptab macro name used to
look up this entry’s configuration parameters in the dhcptab(4)
database.

Comment This ASCII text field contains an optional comment.

This section describes how the DHCP/BOOTP server calculates a client’s
configuration lease using information contained in the dhcptab(4) and DHCP
network tables. The server consults the LeaseTim and LeaseNeg symbols in the
dhcptab, and the Flags and Lease fields of the chosen IP address record in the
DHCP network table.

The server first examines the Flags field for the identified DHCP network table
record. If the PERMANENT flag is on, then the client’s lease is considered permanent.

If the PERMANENT flag is not on, the server checks if the client’s lease as represented by
the Lease field in the network table record has expired. If the lease is not expired, the
server checks if the client has requested a new lease. If the LeaseNeg symbol has not
been included in the client’s dhcptab parameters, then the client’s requested lease
extension is ignored, and the lease is set to be the time remaining as shown by the
Lease field. If the LeaseNeg symbol has been included, then the server will extend
the client’s lease to the value it requested if this requested lease is less than or equal to
the current time plus the value of the client’s LeaseTim dhcptab parameter.

dhcp_network(4)

TREATISE ON
LEASES

124 man pages section 4: File Formats • Last Revised 5 Mar 2004

If the client’s requested lease is greater than policy allows (value of LeaseTim), then
the client is given a lease equal to the current time plus the value of LeaseTim. If
LeaseTim is not set, then the default LeaseTim value is one hour.

For more information about the dhcptab symbols, see dhcptab(4).

See attributes(5) for a description of the following attribute:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWdhcsu

Interface Stability Evolving

dhcpconfig(1M), dhcpmgr(1M), dhtadm(1M), in.dhcpd(1M), pntadm(1M),
dhcptab(4), dhcp(5), dhcp_modules(5), attributes(5)

Solaris DHCP Service Developer’s Guide

System Administration Guide: IP Services

Reynolds, J. and J. Postel, Assigned Numbers, STD 2, RFC 1340, USC/Information
Sciences Institute, July 1992.

dhcp_network(4)

ATTRIBUTES

SEE ALSO

File Formats 125

dhcpsvc.conf – file containing service configuration parameters for the DHCP service

The dhcpsvc.conf file resides in directory /etc/inet and contains parameters for
specifying Dynamic Host Configuration Protocol (DHCP) service configuration
settings, including the type and location of DHCP data store used.

The description of the dhcpsvc.conf file in this man page is informational only. The
preferred method of setting or modifying values within the dhcpsvc.conf file is by
using dhcpconfig(1M) or the dhcpmgr(1M) utility. Do not edit the dhcpsvc.conf
file.

The dhcpsvc.conf file format is ASCII; comment lines begin with the crosshatch (#)
character. Parameters consist of a keyword followed by an equals (=) sign followed by
the parameter value, of the form:

Keyword=Value

The following Keyword and Value parameters are supported:

BOOTP_COMPAT
String. automatic or manual. Enables support of BOOTP clients. Default is no
BOOTP. Value selects BOOTP address allocation method. automatic to support all
BOOTP clients, manual to support only registered BOOTP clients. server mode
only parameter.

CACHE_TIMEOUT
Integer. Number of seconds the server caches data from data store. Used to improve
performance. Default is 10 seconds. server mode only parameter.

CONVER
Integer. Container version. Used by DHCP administrative tools to identify which
version of the public module is being used to administer the data store. CONVER
should not be changed manually.

DAEMON_ENABLED
TRUE/FALSE. If TRUE, the DHCP daemon can be run. If FALSE, DHCP daemon
process exits immediately if the daemon is started. Default is TRUE. Generic
parameter.

HOSTS_DOMAIN
String. Defines name service domain that DHCP administration tools use when
managing the hosts table. Valid only when HOSTS_RESOURCE is set to nisplus or
dns.

HOSTS_RESOURCE
String. Defines what name service resource should be used by the DHCP
administration tools when managing the hosts table. Current valid values are
files, nisplus, and dns.

ICMP_VERIFY
TRUE/FALSE. Toggles ICMP echo verification of IP addresses. Default is TRUE.
server mode only parameter.

dhcpsvc.conf(4)

NAME

DESCRIPTION

126 man pages section 4: File Formats • Last Revised 26 Jun 2003

INTERFACES
String. Comma-separated list of interface names to listen to. Generic parameter.

LOGGING_FACILITY
Integer. Local facility number (0–7 inclusive) to log DHCP events to. Default is not
to log transactions. Generic parameter.

OFFER_CACHE_TIMEOUT
Integer. Number of seconds before OFFER cache timeouts occur. Default is 10
seconds. server mode only parameter.

PATH
Path to DHCP data tables within the data store specified by the RESOURCE
parameter. The value of the PATH keyword is specific to the RESOURCE.

RELAY_DESTINATIONS
String. Comma-separated list of host names and/or IP addresses of relay
destinations. relay mode only parameter.

RELAY_HOPS
Integer. Max number of BOOTP relay hops before packet is dropped. Default is 4.
Generic parameter.

RESCAN_INTERVAL
Integer. Number of minutes between automatic dhcptab rescans. Default is not to
do rescans. server mode only parameter.

RESOURCE
Data store resource used. Use this parameter to name the public module. See the
PATH keyword in dhcp_modules(5).

RESOURCE_CONFIG
String. The private layer provides for module-specific configuration information
through the use of the RESOURCE_CONFIG keyword. See dhcp_modules(5).

Providers can access RESOURCE_CONFIG using the configure function by
specifying an optional service provider layer API function:

int configure(const char *configp);

If this function is defined by the public module provider, it is called during module
load time by the private layer, with the contents of the RESOURCE_CONFIG string
acquired by the administrative interface (in the case of the dhcpmgr, through the
use of a public module-specific java bean extending the dhcpmgr to provide a
configuration dialog for this information.

RUN_MODE
server or relay. Selects daemon run mode. Default is server.

SECONDARY_SERVER_TIMEOUT
Integer. The number of seconds a secondary server waits for a primary server to
respond before responding itself. Default is 20 seconds. This is a server mode only
parameter.

dhcpsvc.conf(4)

File Formats 127

UPDATE_TIMEOUT
Integer. Number of seconds to wait for a response from the DNS server before
timing out. If this parameter is present, the DHCP daemon updates DNS on behalf
of DHCP clients, and waits the number of seconds specified for a response before
timing out. You can use UPDATE_TIMEOUT without specifying a number to enable
DNS updates with the default timeout of 15 seconds. If this parameter is not
present, the DHCP daemon does not update DNS for DHCP clients.

VERBOSE
TRUE/FALSE. Toggles verbose mode, determining amount of status and error
messages reported by the daemon. Default is FALSE. Set to TRUE only for
debugging. Generic parameter.

dhcpmgr(1M), in.dhcpd(1M), dhcp(5), dhcp_modules(5)

System Administration Guide: IP Services

dhcpsvc.conf(4)

SEE ALSO

128 man pages section 4: File Formats • Last Revised 26 Jun 2003

dhcptab – DHCP configuration parameter table

The dhcptab configuration table allows network administrators to organize groups of
configuration parameters as macro definitions, which can then be referenced in the
definition of other useful macros. These macros are then used by the DHCP server to
return their values to DHCP and BOOTP clients.

The preferred method of managing the dhcptab is through the use of the
dhcpmgr(1M) or dhtadm(1M) utility. The description of dhcptab entries included in
this manual page is intended for informational purposes only, and should not be used
to manually edit entries.

You can view the contents of the dhcptab using the DHCP manager’s tabs for Macros
and Options, or using the dhtadm -P command.

The format of a dhcptab table depends on the data store used to maintain it.
However, any dhcptab must contain the following fields in each record:

Name This field identifies the macro or symbol record and is used as a
search key into the dhcptab table. The name of a macro or symbol
must consist of ASCII characters, with the length limited to 128
characters. Names can include spaces, except at the end of the
name. The name is not case-sensitive.

Type This field specifies the type of record and is used as a search key
into the dhcptab. Currently, there are only two legal values for
Type:

m This record is a DHCP macro definition.

s This record is a DHCP symbol definition. It is
used to define vendor and site-specific options.

Value This field contains the value for the specified type of record. For
the m type, the value will consist of a series of symbol=value pairs,
separated by the colon (:) character. For the s type, the value will
consist of a series of fields, separated by a comma (,), which
define a symbol’s characteristics. Once defined, a symbol can be
used in macro definitions.

The Value field of a symbols definition contain the following fields describing the
characteristics of a symbol:

Context This field defines the context in which the symbol definition is to
be used. It can have one of the following values:

Site
This symbol defines a site-specific option, codes 128-254.

Vendor=Client Class ...
This symbol defines a vendor-specific option, codes 1-254. The
Vendor context takes ASCII string arguments which identify the
client class that this vendor option is associated with. Multiple

dhcptab(4)

NAME

DESCRIPTION

Syntax of dhcptab
Entries

Symbol
Characteristics

File Formats 129

client class names can be specified, separated by white space.
Only those clients whose client class matches one of these
values will see this option. For Sun machines, the Vendor client
class matches the value returned by the command uname –i
on the client, with periods replacing commas.

Code This field specifies the option code number associated with this
symbol. Valid values are 128-254 for site-specific options, and 1-254
for vendor-specific options.

Type This field defines the type of data expected as a value for this
symbol, and is not case-sensitive. Legal values are:

ASCII NVT ASCII text. Value is enclosed in
double-quotes ("). Granularity setting has no
effect on symbols of this type, since ASCII
strings have a natural granularity of one (1).

BOOLEAN No value is associated with this data type.
Presence of symbols of this type denote
boolean TRUE, whereas absence denotes
FALSE. Granularity and Miximum values
have no meaning for symbols of this type.

IP Dotted decimal form of an Internet address.
Multi-IP address granularity is supported.

NUMBER An unsigned number with a supported
granularity of 1, 2, 4, and 8 octets.

Valid NUMBER types are: UNUMBER8,
SNUMBER8, UNUMBER16, SNUMBER16,
UNUMBER32, SNUMBER32, UNUMBER64, and
SNUMBER64. See dhcp_inittab(4) for details.

OCTET Uninterpreted ASCII representation of binary
data. The client identifier is one example of an
OCTET string. Valid characters are 0–9, a-f,
A-F. One ASCII character represents one nibble
(4 bits), thus two ASCII characters are needed
to represent an 8 bit quantity. The granularity
setting has no effect on symbols of this type,
since OCTET strings have a natural granularity
of one (1).

For example, to encode a sequence of bytes
with decimal values 77, 82, 5, 240, 14, the
option value would be encoded as
4d5205f00e. A macro which supplies a value

dhcptab(4)

130 man pages section 4: File Formats • Last Revised 15 Mar 2002

for option code 78, SLP_DA, with a 0
Mandatory byte and Directory Agents at
192.168.1.5 and 192.168.0.133 would
appear in the dhcptab as:

slpparams
Macro

:SLP_DA=00c0a80105c0a80085:

Granularity This value specifies how many objects of Type define a single
instance of the symbol value. For example, the static route
option is defined to be a variable list of routes. Each route consists
of two IP addresses, so the Type is defined to be IP, and the data’s
granularity is defined to be 2 IP addresses. The granularity field
affects the IP and NUMBER data types.

Maximum This value specifies the maximum items of Granularity which
are permissible in a definition using this symbol. For example,
there can only be one IP address specified for a subnet mask, so
the Maximum number of items in this case is one (1). A Maximum
value of zero (0) means that a variable number of items is
permitted.

The following example defines a site-specific option (symbol) called MystatRt, of
code 130, type IP, and granularity 2, and a Maximum of 0. This definition
corresponds to the internal definition of the static route option (StaticRt).

MystatRt s Site,130,IP,2,0

The following example demonstrates how a SLP Service Scope symbol (SLP_SS) with
a scope value of happy and mandatory byte set to 0 is encoded. The first octet of the
option is the Mandatory octet, which is set either to 0 or 1. In this example, it is set to
0 (00). The balance of the value is the hexidecimal ASCII code numbers representing
the name happy, that is, 6861707079.

SLP_SS=006861707079

The following example illustrates a macro defined using the MystatRt site option
symbol just defined:

10netnis m :MystatRt=3.0.0.0 10.0.0.30:Macros can be specified in the Macro field in
DHCP network tables (see dhcp_network(4)), which will bind particular macro
definitions to specific IP addresses.

Up to four macro definitions are consulted by the DHCP server to determine the
options that are returned to the requesting client.

These macros are processed in the following order:

dhcptab(4)

Macro Definitions

File Formats 131

Client Class A macro named using the ASCII representation of the
client class (e.g. SUNW.Ultra-30) is searched for in
the dhcptab. If found, its symbol/value pairs will be
selected for delivery to the client. This mechanism
permits the network administrator to select
configuration parameters to be returned to all clients of
the same class.

Network A macro named by the dotted Internet form of the
network address of the client’s network (for example,
10.0.0.0) is searched for in the dhcptab. If found,
its symbol/value pairs will be combined with those of
the Client Class macro. If a symbol exists in both
macros, then the Network macro value overrides the
value defined in the Client Class macro. This
mechanism permits the network administrator to select
configuration parameters to be returned to all clients
on the same network.

IP Address This macro may be named anything, but must be
specified in the DHCP network table for the IP address
record assigned to the requesting client. If this macro is
found in the dhcptab, then its symbol/value pairs will
be combined with those of the Client Class macro
and the Network macro. This mechanism permits the
network administrator to select configuration
parameters to be returned to clients using a particular
IP address. It can also be used to deliver a macro
defined to include "server-specific" information by
including this macro definition in all DHCP network
table entries owned by a specific server.

Client Identifier A macro named by the ASCII representation of the
client’s unique identifier as shown in the DHCP
network table (see dhcp_network(4)). If found, its
symbol/value pairs are combined to the sum of the
Client Class, Network, and IP Address macros.
Any symbol collisions are replaced with those specified
in the client identifier macro. The client mechanism
permits the network administrator to select
configuration parameters to be returned to a particular
client, regardless of what network that client is
connected to.

Refer to System Administration Guide: IP Services for more information about macro
processing.

Refer to the dhcp_inittab(4) man page for more information about symbols used in
Solaris DHCP.

dhcptab(4)

132 man pages section 4: File Formats • Last Revised 15 Mar 2002

dhcpmgr(1M), dhtadm(1M), in.dhcpd(1M), dhcp_inittab(4), dhcp_network(4),
dhcp(5)

System Administration Guide: IP Services

Alexander, S., and R. Droms, DHCP Options and BOOTP Vendor Extensions, RFC 2132,
Silicon Graphics, Inc., Bucknell University, March 1997.

Droms, R., Interoperation Between DHCP and BOOTP, RFC 1534, Bucknell University,
October 1993.

Droms, R., Dynamic Host Configuration Protocol, RFC 2131, Bucknell University, March
1997.

Wimer, W., Clarifications and Extensions for the Bootstrap Protocol, RFC 1542, Carnegie
Mellon University, October 1993.

dhcptab(4)

SEE ALSO

File Formats 133

dialups – list of terminal devices requiring a dial-up password

/etc/dialups

dialups is an ASCII file which contains a list of terminal devices that require a
dial-up password. A dial-up password is an additional password required of users
who access the computer through a modem or dial-up port. The correct password
must be entered before the user is granted access to the computer. The set of ports that
require a dial-up password are listed in the dialups file.

Each entry in the dialups file is a single line of the form:

terminal-device

where

terminal-device The full path name of the terminal device that will
require a dial-up password for users accessing the
computer through a modem or dial-up port.

The dialups file should be owned by the root user and the root group. The file
should have read and write permissions for the owner (root) only.

EXAMPLE 1 A sample dialups file.

Here is a sample dialups file:

/dev/term/a
/dev/term/b
/dev/term/c

/etc/d_passwd dial-up password file

/etc/dialups list of dial-up ports requiring dial-up passwords

d_passwd(4)

dialups(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

134 man pages section 4: File Formats • Last Revised 4 May 1994

dir_ufs, dir – format of ufs directories

#include <sys/param.h>

#include <sys/types.h>

#include <sys/fs/ufs_fsdir.h>

A directory consists of some number of blocks of DIRBLKSIZ bytes, where
DIRBLKSIZ is chosen such that it can be transferred to disk in a single atomic
operation, for example, 512 bytes on most machines.

Each DIRBLKSIZ-byte block contains some number of directory entry structures,
which are of variable length. Each directory entry has a struct direct at the front
of it, containing its inode number, the length of the entry, and the length of the name
contained in the entry. These entries are followed by the name padded to a 4 byte
boundary with null bytes. All names are guaranteed null-terminated. The maximum
length of a name in a directory is MAXNAMLEN.

#define DIRBLKSIZ DEV_BSIZE
#define MAXNAMLEN 256
struct direct {

ulong_t d_ino; /* inode number of entry */
ushort_t d_reclen; /* length of this record */
ushort_t d_namlen; /* length of string in d_name */
char d_name[MAXNAMLEN + 1]; /* maximum name length */

};

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Unstable

attributes(5), ufs(7FS)

dir_ufs(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

File Formats 135

d_passwd – dial-up password file

/etc/d_passwd

A dial-up password is an additional password required of users who access the
computer through a modem or dial-up port. The correct password must be entered
before the user is granted access to the computer.

d_passwd is an ASCII file which contains a list of executable programs (typically
shells) that require a dial-up password and the associated encrypted passwords. When
a user attempts to log in on any of the ports listed in the dialups file (see
dialups(4)), the login program looks at the user’s login entry stored in the passwd
file (see passwd(4)), and compares the login shell field to the entries in d_passwd.
These entries determine whether the user will be required to supply a dial-up
password.

Each entry in d_passwd is a single line of the form:

login-shell:password:

where

login-shell The name of the login program that will require an additional
dial-up password.

password An encrypted password. Users accessing the computer through a
dial-up port or modem using login-shell will be required to enter
this password before gaining access to the computer.

d_passwd should be owned by the root user and the root group. The file should
have read and write permissions for the owner (root) only.

If the user’s login program in the passwd file is not found in d_passwd or if the login
shell field in passwd is empty, the user must supply the default password. The default
password is the entry for /usr/bin/sh. If d_passwd has no entry for
/usr/bin/sh, then those users whose login shell field in passwd is empty or does
not match any entry in d_passwd will not be prompted for a dial-up password.

Dial-up logins are disabled if d_passwd has only the following entry:

/usr/bin/sh:*:

EXAMPLE 1 Sample d_passwd file.

Here is a sample d_passwd file:

/usr/lib/uucp/uucico:q.mJzTnu8icF0:
/usr/bin/csh:6k/7KCFRPNVXg:
/usr/bin/ksh:9df/FDf.4jkRt:
/usr/bin/sh:41FuGVzGcDJlw:

The passwd (see passwd(1)) utility can be used to generate the encrypted password
for each login program. passwd generates encrypted passwords for users and places
the password in the shadow (see shadow(4)) file. Passwords for the d_passwd file

d_passwd(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

Generating An
Encrypted
Password

136 man pages section 4: File Formats • Last Revised 2 Sep 2004

will need to be generated by first adding a temporary user id using useradd (see
useradd(1M)), and then using passwd(1) to generate the desired password in the
shadow file. Once the encrypted version of the password has been created, it can be
copied to the d_passwd file.

For example:

1. Type useradd tempuser and press Return. This creates a user named tempuser.

2. Type passwd tempuser and press Return. This creates an encrypted password for
tempuser and places it in the shadow file.

3. Find the entry for tempuser in the shadow file and copy the encrypted password
to the desired entry in the d_passwd file.

4. Type userdel tempuser and press Return to delete tempuser.

These steps must be executed as the root user.

/etc/d_passwd dial-up password file

/etc/dialups list of dial-up ports requiring dial-up passwords

/etc/passwd password file

/etc/shadow shadow password file

passwd(1), useradd(1M), dialups(4), passwd(4), shadow(4)

When creating a new dial-up password, be sure to remain logged in on at least one
terminal while testing the new password. This ensures that there is an available
terminal from which you can correct any mistakes that were made when the new
password was added.

d_passwd(4)

FILES

SEE ALSO

WARNINGS

File Formats 137

driver.conf – driver configuration files

driver.conf

Driver configuration files pass information about device drivers and their
configuration to the system. Most device drivers do not have to have configuration
files. Drivers for devices that are self-identifying, such as the SBus devices on many
systems, can usually obtain all the information they need from the FCode PROM on
the SBus card using the DDI property interfaces. See ddi_prop_get_int(9F) and
ddi_prop_lookup(9F) for details.

The system associates a driver with its configuration file by name. For example, a
driver in /usr/kernel/drv called wombat has the driver configuration file
wombat.conf, also stored in /usr/kernel/drv, associated with it. On systems
capable of support 64-bit drivers, the driver configuration file should be placed in the
directory in which the 32-bit driver is (or would be) located, even if only a 64-bit
version is provided. For example, a 64–bit driver stored in
/usr/kernel/drv/sparcv9 stores its driver configuration file in
/usr/kernel/drv.

The value of the name property (see the name field, below) needs to match the binding
name of the device. The binding name is the name chosen by the system to bind a
driver to a device and is either an alias associated with the driver or the hardware
node name of the device.

The syntax of a single entry in a driver configuration file takes one of three forms:

name="node name" parent="parent name" [property-name=value ...];

In this form, the parent name can be either a simple nexus driver name to match all
instances of that parent/node, or the parent name can be a specific full pathname,
beginning with a slash (/) character, identifying a specific instance of a parent bus.

Alternatively, the parent can be specified by the type of interface it presents to its
children.

name="node name" class="class name" [property-name=value ...];

For example, the driver for the SCSI host adapter may have different names on
different platforms, but the target drivers can use class scsi to insulate themselves
from these differences.

Entries of either form above correspond to a device information (devinfo) node in
the kernel device tree. Each node has a name which is usually the name of the driver,
and a parent name which is the name of the parent devinfo node it will be connected
to. Any number of name-value pairs may be specified to create properties on the
prototype devinfo node. These properties can be retrieved using the DDI property
interfaces (for example, ddi_prop_get_int(9F) and ddi_prop_lookup(9F)). The
prototype devinfo node specification must be terminated with a semicolon (;).

The third form of an entry is simply a list of properties.

driver.conf(4)

NAME

SYNOPSIS

DESCRIPTION

138 man pages section 4: File Formats • Last Revised 29 Apr 2003

[property-name=value ...];

A property created in this way is treated as global to the driver. It can be overridden
by a property with the same name on a particular devinfo node, either by creating
one explicitly on the prototype node in the driver.conf file or by the driver.

Items are separated by any number of newlines, SPACE or TAB characters.

The configuration file may contain several entries to specify different device
configurations and parent nodes. The system may call the driver for each possible
prototype devinfo node, and it is generally the responsibility of the drivers
probe(9E) routine to determine if the hardware described by the prototype devinfo
node is really present.

Property names must not violate the naming conventions for Open Boot PROM
properties or for IEEE 1275 names. In particular, property names should contain only
printable characters, and should not contain at-sign (@), slash (/), backslash (\), colon
(:), or square brackets ([]). Property values can be decimal integers or strings
delimited by double quotes ("). Hexadecimal integers can be constructed by prefixing
the digits with 0x.

A comma separated list of integers can be used to construct properties whose value is
an integer array. The value of such properties can be retrieved inside the driver using
ddi_prop_lookup_int_array(9F).

Comments are specified by placing a # character at the beginning of the comment
string, the comment string extends for the rest of the line.

EXAMPLE 1 Configuration File for a PCI Bus Frame Buffer

The following is an example of a configuration file called ACME,simple.conf for a
PCI bus frame buffer called ACME,simple.

#
Copyright (c) 1993, by ACME Fictitious Devices, Inc.
#
#ident "@(#)ACME,simple.conf 1.3 1999/09/09"

name="ACME,simple" class="pci" unit-address="3,1"
debug-mode=12;

This example creates a prototype devinfo node called ACME,simple under all
parent nodes of class pci. The node has device and function numbers of 3 and 1,
respectively; the property debug-mode is provided for all instances of the driver.

EXAMPLE 2 Configuration File for a Pseudo Device Driver

The following is an example of a configuration file called ACME,example.conf for a
pseudo device driver called ACME,example.

driver.conf(4)

EXAMPLES

File Formats 139

EXAMPLE 2 Configuration File for a Pseudo Device Driver (Continued)

#
Copyright (c) 1993, ACME Fictitious Devices, Inc.
#
#ident "@(#)ACME,example.conf 1.2 93/09/09"
name="ACME,example" parent="pseudo" instance=0

debug-level=1;

name="ACME,example" parent="pseudo" instance=1;

whizzy-mode="on";
debug-level=3;

This creates two devinfo nodes called ACME,example which will attach below the
pseudo node in the kernel device tree. The instance property is only interpreted by
the pseudo node, see pseudo(4) for further details. A property called debug-level
will be created on the first devinfo node which will have the value 1. The example
driver will be able to fetch the value of this property using ddi_prop_get_int(9F).

Two global driver properties are created, whizzy-mode (which will have the string
value "on") and debug-level (which will have the value 3). If the driver looks up the
property whizzy-mode on either node, it will retrieve the value of the global
whizzy-mode property ("on"). If the driver looks up the debug-level property on
the first node, it will retrieve the value of the debug-level property on that node (1).
Looking up the same property on the second node will retrieve the value of the global
debug-level property (3).

pci(4), pseudo(4), sbus(4), scsi(4), probe(9E), ddi_getlongprop(9F),
ddi_getprop(9F), ddi_getproplen(9F), ddi_prop_op(9F)

Writing Device Drivers

To avoid namespace collisions between multiple driver vendors, it is strongly
recommended that the name property of the driver should begin with a vendor-unique
string. A reasonably compact and unique choice is the vendor over-the-counter stock
symbol.

The update_drv(1M) command should be used to prompt the kernel to reread
driver.conf files. Using modunload(1M) to update driver.conf continues to
work in release 9 of the Solaris operating environment, but the behavior will change in
a future release.

driver.conf(4)

SEE ALSO

WARNINGS

NOTES

140 man pages section 4: File Formats • Last Revised 29 Apr 2003

environ, pref, variables – user-preference variables files for AT&T FACE

$HOME/pref/.environ

$HOME/pref/.variables

$HOME/FILECABINET/.pref

$HOME/WASTEBASKET/.pref

The .environ, .pref, and .variables files contain variables that indicate user
preferences for a variety of operations. The .environ and .variables files are
located under the user’s $HOME/pref directory. The .pref files are found under
$HOME/FILECABINET, $HOME/WASTEBASKET, and any directory where preferences
were set via the organize command. Names and descriptions for each variable are
presented below. Variables are listed one per line and are of the form variable=value.

Variables found in .environ include:

LOGINWIN[1-4] Windows that are opened when FACE is initialized.

SORTMODE Sort mode for file folder listings. Values include the following
hexadecimal digits:

1 Sorted alphabetically by name.

2 Files most recently modified first.

800 Sorted alphabetically by object type.

The values above may be listed in reverse order by ORing the
following value:

1000 List objects in reverse order. For example, a value of
1002 will produce a folder listing with files LEAST
recently modified displayed first. A value of 1001
would produce a "reverse" alphabetical by name listing
of the folder.

DISPLAYMODE Display mode for file folders. Values include the following
hexadecimal digits:

0 File names only.

4 File names and brief description.

8 File names, description, plus additional information.

WASTEPROMPT Prompt before emptying wastebasket (yes/no?).

WASTEDAYS Number of days before emptying wastebasket.

PRINCMD[1-3] Print command defined to print files.

environ(4)

NAME

SYNOPSIS

DESCRIPTION

.environ Variables

File Formats 141

UMASK Holds default permissions with which files will be created.

Variables found in .pref are the following:

SORTMODE Contains the same values as the SORTMODE variable described in
.environ above.

DISPMODE Contains the same values as the DISPLAYMODE variable described
in .environ above.

Variables found in .variables include:

EDITOR Default editor.

PS1 Shell prompt.

environ(4)

.pref Variables

.variable Variables

142 man pages section 4: File Formats • Last Revised 3 Jul 1990

ethers – Ethernet address to hostname database or domain

The ethers file is a local source of information about the (48–bit) Ethernet addresses
of hosts on the Internet. The ethers file can be used in conjunction with or instead of
other ethers sources, including the NIS maps ethers.byname and
ethers.byaddr, the NIS+ table ethers, or Ethernet address data stored on an
LDAP server. Programs use the ethers(3SOCKET) routines to access this
information.

The ethers file has one line for each host on an Ethernet. The line has the following
format:

Ethernet-address official-host-name

Items are separated by any number of SPACE and/or TAB characters. A ‘#’ indicates
the beginning of a comment extending to the end of line.

The standard form for Ethernet addresses is “x:x:x:x:x:x” where x is a hexadecimal
number between 0 and ff, representing one byte. The address bytes are always in
network order. Host names may contain any printable character other than SPACE,
TAB, NEWLINE, or comment character.

/etc/ethers

ethers(3SOCKET), hosts(4), nsswitch.conf(4)

ethers(4)

NAME

DESCRIPTION

FILES

SEE ALSO

File Formats 143

exec_attr – execution profiles database

/etc/security/exec_attr

/etc/security/exec_attr is a local database that specifies the execution
attributes associated with profiles. The exec_attr file can be used with other sources
for execution profiles, including the exec_attr NIS map and NIS+ table. Programs
use the getexecattr(3SECDB) routines to access this information.

The search order for multiple execution profile sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf(4) man page. The
search order follows the entry for prof_attr(4).

A profile is a logical grouping of authorizations and commands that is interpreted by a
profile shell to form a secure execution environment. The shells that interpret profiles
are pfcsh, pfksh, and pfsh. See the pfsh(1) man page. Each user’s account is
assigned zero or more profiles in the user_attr(4) database file.

Each entry in the exec_attr database consists of one line of text containing seven
fields separated by colons (:). Line continuations using the backslash (\) character are
permitted. The basic format of each entry is:

name:policy:type:res1:res2:id:attr

name
The name of the profile. Profile names are case-sensitive.

policy
The security policy that is associated with the profile entry. The valid policies are
suser (standard Solaris superuser) and solaris. The solaris policy recognizes
privileges (see privileges(5)); the suser policy does not.

The solaris and suser policies can coexist in the same exec_attr database, so
that Solaris releases prior to the current release can use the suser policy and the
current Solaris release can use a solaris policy. solaris is a superset of suser;
it allows you to specify privileges in addition to UIDs. Policies that are specific to
the current release of Solaris or that contain privileges should use solaris.
Policies that use UIDs only or that are not specific to the current Solaris release
should use suser.

type
The type of object defined in the profile. The only valid type is cmd.

res1
Reserved for future use.

res2
Reserved for future use.

exec_attr(4)

NAME

SYNOPSIS

DESCRIPTION

144 man pages section 4: File Formats • Last Revised 22 Nov 2004

id
A string that uniquely identifies the object described by the profile. For a profile of
type cmd, the id is either the full path to the command or the asterisk (*) symbol,
which is used to allow all commands. An asterisk that replaces the filename
component in a pathname indicates all files in a particular directory.

To specify arguments, the pathname should point to a shell script that is written to
execute the command with the desired argument. In a Bourne shell, the effective
UID is reset to the real UID of the process when the effective UID is less than 100
and not equal to the real UID. Depending on the euid and egid values, Bourne
shell limitations might make other shells preferable. To prevent the effective UIDs
from being reset to real UIDs, you can start the script with the -p option.

#!/bin/sh -p

attr
An optional list of semicolon-separated (;) key-value pairs that describe the
security attributes to apply to the object upon execution. Zero or more keys may be
specified. The list of valid key words depends on the policy enforced. The following
key words are valid: euid, uid, egid, and gid.

euid and uid contain a single user name or a numeric user ID. Commands
designated with euid run with the effective UID indicated, which is similar to
setting the setuid bit on an executable file. Commands designated with uid run
with both the real and effective UIDs. Setting uid may be more appropriate than
setting the euid on privileged shell scripts.

egid and gid contain a single group name or a numeric group ID. Commands
designated with egid run with the effective GID indicated, which is similar to
setting the setgid bit on a file. Commands designated with gid run with both the
real and effective GIDs. Setting gid may be more appropriate than setting guid on
privileged shell scripts.

privs contains a privilege set which will be added to the inheritable set prior to
running the command.

limitprivs contains a privilege set which will be assigned to the limit set prior to
running the command.

privs and limitprivs are only valid for the solaris policy.

EXAMPLE 1 Using effective user and group IDs

The following example shows the audit command specified in the Audit Control
profile to execute with an effective user ID of root (0) and effective group ID of bin (3):

Audit Control:suser:cmd:::/etc/init.d/audit:euid=0;egid=3

/etc/nsswitch.conf

/etc/user_attr

exec_attr(4)

EXAMPLES

FILES

File Formats 145

/etc/security/exec_attr

When deciding which authorization source to use (see DESCRIPTION), keep in mind
that NIS+ provides stronger authentication than NIS.

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

The following characters are used in describing the database format and must be
escaped with a backslash if used as data: colon (:), semicolon (;), equals (=), and
backslash (\).

auths(1), profiles(1), roles(1), sh(1), makedbm(1M), getauthattr(3SECDB),
getauusernam(3BSM), getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB), kva_match(3SECDB), auth_attr(4), prof_attr(4),
user_attr(4), privileges(5)

exec_attr(4)

CAVEATS

SEE ALSO

146 man pages section 4: File Formats • Last Revised 22 Nov 2004

fd – file descriptor files

These files, conventionally called /dev/fd/0, /dev/fd/1, /dev/fd/2, and so on,
refer to files accessible through file descriptors. If file descriptor n is open, these two
system calls have the same effect:

fd = open("/dev/fd/n",mode);
fd = dup(n);

On these files creat(2) is equivalent to open, and mode is ignored. As with dup,
subsequent reads or writes on fd fail unless the original file descriptor allows the
operations.

For convenience in referring to standard input, standard output, and standard error,
an additional set of names is provided: /dev/stdin is a synonym for /dev/fd/0,
/dev/stdout for /dev/fd/1, and /dev/stderr for /dev/fd/2.

creat(2), dup(2), open(2)

open(2) returns −1 and EBADF if the associated file descriptor is not open.

fd(4)

NAME

DESCRIPTION

SEE ALSO

DIAGNOSTICS

File Formats 147

flash_archive – format of flash archive

flash_archive

A flash archive is an easily transportable version of a reference configuration of the
Solaris operating environment, plus optional other software. Such an archive is used
for the rapid installation of Solaris on large numbers of machines. The machine that
contains a flash archive is referred to as a master system. A machine that receives a
copy of a flash archive is called a clone system.

There are two types of flash archives: full and differential. A full archive is used for
initial installation or whenever a complete, fresh installation is called for. A differential
archive is used to update an installation. A full archive contains all of the files from a
master and overwrites the installed software on a clone completely. A differential
archive contains only the differences between the software on a master and on a clone.
These differences include new files, changed files, and deleted files. (These will be
deleted on clones, as well). Installation of a differential archive is faster and consumes
fewer resources than installation of a full archive.

You create a flash archive, full or differential, with the flar(1M) or flarcreate(1M)
command. You view information about a given flash archive with flar. flar also
enables you to split or combine the sections of a flash archive.

Flash archives are monolithic files containing both archive identification information
and the actual files that have been copied from a master system and that will be
extracted onto a clone system. The standard extension for a flash archive is .flar.

The flash archive is laid out in the following sections:

� archive cookie
� archive identification
� manifest (for differential archives only)
� predeployment
� postdeployment
� reboot
� summary
� user-defined (optional)
� archive files

The only assumptions regarding section number and placement that an application
processing the archive can make is that there is an identification section located
immediately after the archive cookie and that the last section in the archive is an
archive files section.

These sections are described in the following subsections.

The very beginning of the archive contains a cookie, which serves to identify the file as
a flash archive. It is also used by the deployment code for identification and validation
purposes.

The case-sensitive, newline-terminated cookie that identifies version 1.n flash archives,
is FlAsH-aRcHiVe-1.n, where n is an integer in the range 0 through 9.

flash_archive(4)

NAME

SYNOPSIS

DESCRIPTION

Archive Cookie

148 man pages section 4: File Formats • Last Revised 29 Apr 2003

The archive version is designed to allow for the future evolution of the flash archive
specification while allowing applications that process flash archives to determine
whether specific archives are of a format that can be handled correctly. The archive
version is a number of the form x.y, where x is the major version number, and y is the
minor version number.

When an application encounters a flash archive with an unknown major version
number, it should issue an error message and exit.

The archive identification section is plain text, delimited with newline characters. It is
composed of a series of keyword/value pairs, with one pair allowed per line.
Keywords and values are separated by a single equal sign. There are no limits to the
length of individual lines. Binary data to be included as the value to a keyword is
base64 encoded. The keywords themselves are case-insensitive. The case-sensitivity of
the values is determined by the definition of the keyword, though most are
case-insensitive.

The global order of the keywords within the identification section is undefined, save
for the section boundary keywords. The identification section must begin with
section_begin=ident and must end with section_end=ident.

In addition to the keywords defined for the flash archive and enumerated below, users
can define their own. These user-defined keywords are ignored by the flash
mechanisms, but can be used by user-provided scripts or programs that process the
identification section. User-defined keywords must begin with X, and contain
characters other than linefeeds, equal signs, and null characters. For example,
X-department is a valid user-defined keyword. department, which lacks the X-
prefix, is not. Suggested naming conventions for user-defined keyword include the
underscore-delimited descriptive method used for the pre-defined keywords, or a
federated convention similar to that used to name Java packages.

Applications that process the identification section will process unrecognized
non-user-defined keywords differently, depending on whether the archive version is
known. If the application recognizes the archive specification version, it will reject any
unrecognized non-user-defined keyword. If the application does not recognize the
specification version, that is, if the minor version number is higher than the highest
minor version it knows how to process, unrecognized non-user-defined keywords will
be ignored. These ignored keyword are reported to the user by means of a non-fatal
warning message.

The keywords defined for this version of the Flash archive specification are listed
below.

Keyword Value Required

section_begin text yes

section_end text yes

flash_archive(4)

Archive
Identification

Section

File Formats 149

Keyword Value Required

archive_id text no

files_archived_method text no

files_compressed_method text no

files_archived_size numeric no

files_unarchived_size numeric no

creation_date text no

creation_master text no

content_name text yes

content_type text no

content_description text no

content_author text no

content_architectures text list no

creation_node text no

creation_hardware_class text no

creation_platform text no

creation_processor text no

creation_release text no

creation_os_name text no

creation_os_version text no

Future versions of the identification section might define additional keywords. The
only guarantee regarding the new keywords is that they will not intrude upon the
user-defined keyword namespace as given above.

The following is an example identification section:

section_begin=identification
files_archived_method=cpio
files_compressed_method=compress
files_archived_size=259323342
files_unarchived_size=591238111
creation_date=20000131221409
creation_master=pumbaa
content_name=Finance Print Server
content_type=server
content_description=Solaris 8 Print Server
content_author=Mighty Matt
content_architectures=sun4u

flash_archive(4)

150 man pages section 4: File Formats • Last Revised 29 Apr 2003

creation_node=pumbaa
creation_hardware_class=sun4u
creation_platform=SUNW,Sun-Fire
creation_processor=sparc
creation_release=5.9
creation_os_name=SunOS
creation_os_version=s81_49
x-department=Internal Finance

section_end=identification

The following are descriptions of the identification section keywords:

section_begin
section_end

These keywords are used to delimit sections in the archive and are not limited
exclusively to the identification section. For example, the archive files section includes
a section_begin keyword, though with a different value. User-defined archive
sections will be delimited by section_begin and section_end keywords, with
values appropriate to each section. The currently defined section names are given in
the table below. User-defined names should follow the same convention as
user-defined identification sections, with the additional restriction that they not
contain forward slashes (/).

Section Boundary

identification identification

archive files archive

archive cookie cookie

Note that while the archive cookie does not use section boundaries, and thus has no
need for a section name within the archive itself, the flar(1M) command uses section
names when splitting the archive, and thus requires a section name for the archive
cookie. The name cookie is reserved for that purpose.

The following keywords, used in the archive identification section, describe the
contents of the archive files section.

archive_id
This optional keyword uniquely describes the contents of the archive. It is computed
as a unique hash value of the bytes representing the archive. Currently this value is
represented as an ASCII hexadecimal 128-bit MD5 hash of the archive contents.
This value is used by the installation software only to validate the contents of the
archive during archive installation.

If the keyword is present, the hash value is recomputed during extraction based on
the contents of the archive being extracted. If the recomputed value does not match
the stored value in the identification section, the archive is deemed corrupt, and
appropriate actions can be taken by the application.

flash_archive(4)

File Formats 151

If the keyword is not present, no integrity check is performed.

files_archived_method
This keyword describes the archive method used in the files section. If this keyword
is not present, the files section is assumed to be in CPIO format with ASCII headers
(the -c option to cpio). If the keyword is present, it can have the following value:

cpio The archive format in the files section is CPIO with
ASCII headers.

The compression method indicated by the files_compressed_method keyword
(if present) is applied to the archive file created by the archive method.

The introduction of additional archive methods will require a change in the major
archive specification version number, as applications aware only of cpio will be
unable to extract archives that use other archive methods.

files_compressed_method
This keyword describes the compression algorithm (if any) used on the files section.
If this keyword is not present, the files section is assumed to be uncompressed. If
the keyword is present, it can have one of the following values:

none The files section is not compressed.

compress The files section is compressed using compress(1).

The compression method indicated by this keyword is applied to the archive file
created by the archive method indicated by the value of the
files_archived_method keyword (if any). gzip compression of the flash
archive is not currently supported, as the gzip decompression program is not
included in the standard miniroot.

Introduction of an additional compression algorithm would require a change in the
major archive specification version number, as applications aware only of the above
methods will be unable to extract archives that use other compression algorithms.

files_archived_size
The value associated with this keyword is the size of the archived files section, in
bytes. This value is used by the deployment software only to give extraction
progress information to the user. While the deployment software can easily
determine the size of the archived files section prior to extraction, it cannot do so in
the case of archive retrieval via a stream. To determine the compressed size when
extracting from a stream, the extraction software would have to read the stream
twice. This double read would result in an unacceptable performance penalty
compared to the value of the information gathered.

If the keyword is present, the value is used only for the provision of status
information. Because this keyword is only advisory, deployment software must be
able to handle extraction of archives for which the actual file section size does not
match the size given in files_archive_size.

flash_archive(4)

152 man pages section 4: File Formats • Last Revised 29 Apr 2003

If files_archive_size is not present and the archive is being read from a
stream device that does not allow the prior determination of size information, such
as a tape drive, completion status information will not be generated. If the keyword
is not present and the archive is being read from a random-access device such as a
mounted file system, or from a stream that provides size information, the
compressed size will be generated dynamically and used for the provision of status
information.

files_unarchived_size
This keyword defines the cumulative size in bytes of the extracted archive. The
value is used for file system size verification. The following verification methods
are possible using this approach:

No checking If the files_unarchived_size keyword is
absent, no space checking will be performed.

Aggregate checking If the files_unarchived_size keyword is
present and the associated value is an integer, the
integer will be compared against the aggregate free
space created by the requested file system
configuration.

The following keywords provide descriptive information about the archive as a whole.
They are generally used to assist the user in archive selection and to aid in archive
management. These keywords are all optional and are used by the deployment
programs only to assist the user in distinguishing between individual archives.

creation_date
The value of the creation_date keyword is a textual timestamp representing the
time of creation for the archive. The value of this keyword can be overridden at
archive creation time through the flarcreate(1M). The timestamp must be in
ISO-8601 complete basic calendar format without the time designator (ISO-8601,
§5.4.1(a)) as follows:

CCYYMMDDhhmmss

For example:

20000131221409

(January 31st, 2000 10:14:09pm)

The date and time included in the value should be in GMT.

creation_master
The value of the creation_master keyword is the name of the master machine
used to create the archive. The value can be overridden at archive creation time.

content_name
The value of the content_name keyword should describe the archive’s function
and purpose. It is similar to the NAME parameter found in Solaris packages.

flash_archive(4)

File Formats 153

The value of the content_name keyword is used by the deployment utilities to
identify the archive and can be presented to the user during the archive selection
process and/or the extraction process. The value must be no longer than 256
characters.

content_type
The value of this keyword specifies a category for the archive. This category is
defined by the user and is used by deployment software for display purposes. This
keyword is the flash analog of the Solaris packaging CATEGORY keyword.

content_description
The value of this keyword is used to provide the user with a description of what
the archive contains and should build on the description provided in
content_name. In this respect, content_description is analogous to the DESC
keyword used in Solaris packages.

There is no length limit to the value of content_description. To facilitate
display, the value can contain escaped newline characters. As in C, the escaped
newline takes the form of \n. Due to the escaped newline, backlashes must be
included as \\. The description is displayed in a non-proportional font, with at
least 40 characters available per line. Lines too long for display are wrapped.

content_author
The value of this keyword is a user-defined string identifying the creator of the
archive. Suggested values include the full name of the creator, the creator’s email
address, or both.

content_architectures
The value of this keyword is a comma-delimited list of the kernel architectures
supported by the given archive. The value of this keyword is generated at archive
creation time, and can be overridden by the user at that time. If this keyword is
present in the archive, the extraction mechanism validates the kernel architecture of
the clone system with the list of architectures supported by the archive. The
extraction fails if the kernel architecture of the clone is not supported by the
archive. If the keyword is not present, no architecture validation is performed.

The keywords listed belowhave values filled in by uname(2) at the time the flash
archive is created. If you create a flash archive in which the root directory is not /, the
flash archive software inserts the string UNKNOWN for all of the creation_* keywords
except creation_node, creation_release, and creation_os_name. For
creation_node, the flash software uses the contents of the nodename(4) file. For
creation_release and creation_os_name, the flash software attempts to use the
contents of <root_directory>/var/sadm/system/admin/INST_RELEASE. If it is
unsuccessful in reading this file, it assigns the value UNKNOWN.

Regardless of their sources, you cannot override the values of the creation_*
keywords.

creation_node
The return from uname -n.

flash_archive(4)

154 man pages section 4: File Formats • Last Revised 29 Apr 2003

creation_hardware_class
The return from uname -m.

creation_platform
The return from uname -i.

creation_processor
The return from uname -p.

creation_release
The return from uname -r.

creation_os_name
The return from uname -s.

creation_os_version
The return from uname -v.

The manifest section is used only for differential flash archives. It contains a filter that
specifies selection of an operating environment image and a list of the files to be
retained in, added to, and deleted from a clone system. The list contains permissions,
modification times, and other information on each file. The flash software uses this
section to perform a consistency check prior to deployment of an archive on a clone. If
the user who created the differential archive used the -M option to flar(1M) or
flarcreate(1M), this section will not be present.

The manifest section is for the exclusive use of the flash software. The format of this
section is internal to Sun and is subject to change.

Contain internal information that the flash software uses before and after deploying an
operating environment image. These sections are for the exclusive use of the flash
software.

Contains a summary of archive creation. This section records the activities of
predeployment and postdeployment scripts.

Following the identification section can be zero or more user-defined sections. These
sections are not processed by the archive extraction code and can be used for any
purpose.

User-defined sections must be line-oriented, terminated with newline (ASCII 0x0a)
characters. There is no limit on the length of individual lines. If binary data is to be
included in a user-defined section, it should be encoded using base64 or a similar
algorithm.

The archive files section contains the files gathered from the master system. While the
length of this section should be the same as the value of the files_archived_size
keyword in the identification section, you should not assume that these two values are
equal. This section begins with section_begin=archive, but it does not have an
ending section boundary.

flash_archive(4)

Manifest Section

Predeployment,
Postdeployment,

and Reboot
Sections

Summary Section

User-Defined
Sections

Archive Files
Section

File Formats 155

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWinst

compress(1), cpio(1), flar(1M), flarcreate(1M), md5(3EXT), attributes(5)

flash_archive(4)

ATTRIBUTES

SEE ALSO

156 man pages section 4: File Formats • Last Revised 29 Apr 2003

format.dat – disk drive configuration for the format command

format.dat enables you to use your specific disk drives with format(1M). On
Solaris 2.3 and compatible systems, format will automatically configure and label
SCSI drives, so that they need not be defined in format.dat. Three things can be
defined in the data file:

� search paths
� disk types
� partition tables.

The following syntax rules apply to the data file:

� The pound # sign is the comment character. Any text on a line after a pound sign is
not interpreted by format.

� Each definition in the format.dat file appears on a single logical line. If the
definition is more than one line long, all but the last line of the definition must end
with a backslash (\).

� A definition consists of a series of assignments that have an identifier on the left
side and one or more values on the right side. The assignment operator is the equal
sign (=). Assignments within a definition must be separated by a colon (:).

� White space is ignored by format(1M). If you want an assigned value to contain
white space, enclose the entire value in double quotes ("). This will cause the white
space within quotes to be preserved as part of the assignment value.

� Some assignments can have multiple values on the right hand side. Separate values
by a comma (,).

The data file contains disk definitions that are read in by format(1M) when it starts
up. Each definition starts with one of the following keywords: search_path,
disk_type, and partition.

search_path 4.x: Tells format which disks it should search for when it starts
up. The list in the default data file contains all the disks in the
GENERIC configuration file. If your system has disks that are not
in the GENERIC configuration file, add them to the search_path
definition in your data file. The data file can contain only one
search_path definition. However, this single definition lets you
specify all the disks you have in your system.

5.x: By default, format(1M) understands all the logical devices
that are of the form /dev/rdsk/cntndnsn; hence search_path
is not normally defined on a 5.x system.

disk_type Defines the controller and disk model. Each disk_type definition
contains information concerning the physical geometry of the disk.
The default data file contains definitions for the controllers and

format.dat(4)

NAME

DESCRIPTION

Syntax

Keywords

File Formats 157

disks that the Solaris operating environment supports. You need to
add a new disk_type only if you have an unsupported disk. You
can add as many disk_type definitions to the data file as you
want.

The following controller types are supported by format(1M):

XY450 Xylogics 450 controller (SMD)

XD7053 Xylogics 7053 controller (SMD)

SCSI True SCSI (CCS or SCSI-2)

ISP-80 IPI panther controller

The keyword itself is assigned the name of the disk type. This
name appears in the disk’s label and is used to identify the disk
type whenever format(1M) is run. Enclose the name in double
quotes to preserve any white space in the name.

Below are lists of identifiers for supported controllers. Note that an
asterisk (’*’) indicates the identifier is mandatory for that controller
-- it is not part of the keyword name.

The following identifiers are assigned values in all disk_type
definitions:

acyl* alternate cylinders

asect alternate sectors per track

atrks alternate tracks

fmt_time formatting time per cylinder

ncyl* number of logical cylinders

nhead* number of logical heads

nsect* number of logical sectors per track

pcyl* number of physical cylinders

phead number of physical heads

psect number of physical sectors per
track

rpm* drive RPM

These identifiers are for SCSI and MD-21 Controllers

read_retries page 1 byte 3 (read retries)

write_retries page 1 byte 8 (write retries)

cyl_skew page 3 bytes 18-19 (cylinder skew)

format.dat(4)

158 man pages section 4: File Formats • Last Revised 19 Apr 2001

trk_skew page 3 bytes 16-17 (track skew)

trks_zone page 3 bytes 2-3 (tracks per zone)

cache page 38 byte 2 (cache parameter)

prefetch page 38 byte 3 (prefetch parameter)

max_prefetch page 38 byte 4 (minimum prefetch)

min_prefetch page 38 byte 6 (maximum prefetch)

Note: The Page 38 values are device-specific. Refer the user to the
particular disk’s manual for these values.

For SCSI disks, the following geometry specifiers may cause a
mode select on the byte(s) indicated:

asect page 3 bytes 4-5 (alternate sectors per zone)

atrks page 3 bytes 8-9 (alt. tracks per logical unit)

phead page 4 byte 5 (number of heads)

psect page 3 bytes 10-11 (sectors per track)

And these identifiers are for SMD Controllers Only

bps* bytes per sector (SMD)

bpt* bytes per track (SMD)

Note: under SunOS 5.x, bpt is only required for SMD disks. Under
SunOS 4.x, bpt was required for all disk types, even though it was
only used for SMD disks.

And this identifier is for XY450 SMD Controllers Only

drive_type* drive type (SMD) (just call this "xy450 drive
type")

partition Defines a partition table for a specific disk type. The partition table
contains the partitioning information, plus a name that lets you
refer to it in format(1M). The default data file contains default
partition definitions for several kinds of disk drives. Add a
partition definition if you repartitioned any of the disks on your
system. Add as many partition definitions to the data file as you
need.

Partition naming conventions differ in SunOS 4.x and in SunOS
5.x.

4.x: the partitions are named as a, b, c, d, e, f, g, h.

5.x: the partitions are referred to by numbers 0, 1, 2, 3, 4, 5, 6, 7.

format.dat(4)

File Formats 159

EXAMPLE 1 A sample disk_type and partition.

Following is a sample disk_type and partition definition in format.dat file for
SUN0535 disk device.

disk_type = "SUN0535" \
: ctlr = SCSI : fmt_time = 4 \
: ncyl = 1866 : acyl = 2 : pcyl = 2500 : nhead = 7 : nsect = 80 \
: rpm = 5400

partition = "SUN0535" \
: disk = "SUN0535" : ctlr = SCSI \

: 0 = 0, 64400 : 1 = 115, 103600 : 2 = 0, 1044960 : 6 = 300, 876960

/etc/format.dat default data file if format -x is not
specified, nor is there a format.dat file in
the current directory.

format(1M)

System Administration Guide: Basic Administration

format.dat(4)

EXAMPLES

FILES

SEE ALSO

160 man pages section 4: File Formats • Last Revised 19 Apr 2001

fspec – format specification in text files

It is sometimes convenient to maintain text files on the system with non-standard tabs,
(tabs that are not set at every eighth column). Such files must generally be converted
to a standard format, frequently by replacing all tabs with the appropriate number of
spaces, before they can be processed by system commands. A format specification
occurring in the first line of a text file specifies how tabs are to be expanded in the
remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and
surrounded by the brackets <: and :>. Each parameter consists of a keyletter, possibly
followed immediately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of
tabs must be one of the following:

� A list of column numbers separated by commas, indicating tabs
set at the specified columns.

� A ’−’ followed immediately by an integer n, indicating tabs at
intervals of n columns.

� A ’−’ followed by the name of a ‘‘canned’’ tab specification.

Standard tabs are specified by t−8, or equivalently, t1,9,17,25,
etc. The canned tabs that are recognized are defined by the
tabs(1) command.

ssize The s parameter specifies a maximum line size. The value of size
must be an integer. Size checking is performed after tabs have been
expanded, but before the margin is prepended.

mmargin The m parameter specifies a number of spaces to be prepended to
each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line
containing the format specification is to be deleted from the
converted file.

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specification
is encountered in the file.

Default values, which are assumed for parameters not supplied, are t−8 and m0. If the
s parameter is not specified, no size checking is performed. If the first line of a file
does not contain a format specification, the above defaults are assumed for the entire
file. The following is an example of a line containing a format specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to code the
d parameter.

fspec(4)

NAME

DESCRIPTION

File Formats 161

ed(1), newform(1), tabs(1)

fspec(4)

SEE ALSO

162 man pages section 4: File Formats • Last Revised 3 Jul 1990

fstypes – file that registers distributed file system packages

fstypes resides in directory /etc/dfs and lists distributed file system utilities
packages installed on the system. For each installed distributed file system type, there
is a line that begins with the file system type name (for example, ‘‘nfs’’), followed by
white space and descriptive text.

The file system indicated in the first line of the file is the default file system; when
Distributed File System (DFS) Administration commands are entered without the
option −F fstypes, the system takes the file system type from the first line of the
fstypes file.

The default file system can be changed by editing the fstypes file with any
supported text editor.

dfmounts(1M), dfshares(1M), share(1M), shareall(1M), unshare(1M)

fstypes(4)

NAME

DESCRIPTION

SEE ALSO

File Formats 163

ftp – FTP client configuration file

/etc/default/ftp

Use the ftp file to configure the behavior of the FTP client. Lines that begin with a
hash symbol (“# “) are treated as comment lines and are ignored.

The ftp file supports the following behavior directives:

FTP_LS_SENDS_NLST=yes | no
The ls command of the ftp client sends an NLST to the FTP Server by default.
Several non-Solaris clients send LIST instead. In order to make the Solaris ftp
client send LIST when the ls command is issued, set FTP_LS_SENDS_NLST to no.
The value of FTP_LS_SENDS_NLST is yes by default.

If the user sets a value for FTP_LS_SENDS_NLST in the user’s environment, this value
will override any FTP_LS_SENDS_NLST directive that is specified in
/etc/default/ftp.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbipr

ftp(1), attributes(5)

ftp(4)

NAME

SYNOPSIS

DESCRIPTION

Behavior
Directives

ATTRIBUTES

SEE ALSO

164 man pages section 4: File Formats • Last Revised 22 Oct 2002

ftpaccess – FTP Server configuration file

/etc/ftpd/ftpaccess

The ftpaccess file is used to configure the operation of the FTP Server.

The following access capabilities are supported:

autogroup groupname class [class...]
If an anonymous user is a member of any of class, the FTP Server will perform a
setegid(2) to groupname. This allows access to group and owner read-only files
and directories to a particular class of anonymous users. groupname is a valid group
returned by getgrnam(3C).

class class typelist addrglob [addrglob...]
Define class of users, with source addresses of the form addrglob. Multiple members
of class may be defined. There may be multiple class commands listing additional
members of the class. If multiple class commands can apply to the current
session, the first one listed in the access file is used. If a valid class for a host is not
defined, access will be denied. typelist is a comma-separated list of any of the
keywords anonymous, guest, and real. If the real keyword is included, the
class can match users using FTP to access real accounts. If the anonymous keyword
is included the class can match users using anonymous FTP. The guest keyword
matches guest access accounts.

addrglob may be a globbed domain name or a globbed numeric IPv4 address. It may
also be the name of a file, starting with a slash (’/’), which contains additional
address globs. IPv4 numeric addresses may also be specified in the form
address:netmask or address/CIDR. IPv6 numeric addresses can only be
specified with an optional CIDR, not using globs or netmasks.

Placing an exclamation (!) before an addrglob negates the test. For example,

class rmtuser real !*.example.com

will classify real users from outside the example.com domain as the class
rmtuser. Use care with this option. Remember, the result of each test is OR’ed with
other tests on the line.

deny addrglob [message_file]
Deny access to host(s) that match addrglob and display message_file. If the value of
addrglob is !nameserved access to sites without a working nameservers is denied.
message_file may contain magic cookies. See message for more details.

guestgroup groupname [groupname...]
guestuser username [username...]
realgroup groupname [groupname...]
realuser username [username...]

For guestgroup, if a real user is a member of any groupname, the session is set up
like anonymous FTP. groupname is a valid group returned by getgrnam(3C). The
user’s home directory must be set up exactly as anonymous FTP would be. The
home directory field of the passwd entry is divided into two directories. The first

ftpaccess(4)

NAME

SYNOPSIS

DESCRIPTION

Access
Capabilities

File Formats 165

field is the root directory that will be the argument to the chroot(2) call. The
second field is the user’s home directory, relative to the root directory. Use a “/./”
to separate the two fields. For example, the following is the real entry in
/etc/passwd:

guest1:x:100:92:Guest FTP:/export/home/guests/./guest1:/bin/true

When guest1 successfully logs in, the FTP Server will chroot() to
/export/home/guests and then chdir(2) to /guest1. The guest user will only
be able to access the directory structure under /export/home/guests, which will
look and act as / to guest1, just as an anonymous FTP user would. The -d option
to ftpconfig(1M) is useful when creating guest FTP user accounts. The group
name may be specified by either name or numeric ID. To use a numeric group ID,
place a percent sign (%) before the number. You can give ranges. Use an asterisk to
indicate all groups. guestuser works like guestgroup, except that it uses the
user name or numeric ID. realuser and realgroup have the same syntax, but
they reverse the effect of guestuser and guestgroup. They allow real user access
when the remote user would otherwise be determined a guest.

guestuser *

realgroup admin

causes all non-anonymous users to be treated as guest, with the sole exception of
users in the admin group, who are granted real user access.

nice nice-delta [class]
Adjust the process nice value of the FTP server process by the indicated nice-delta
value if the remote user is a member of the named class. If class is not specified, then
use nice-delta as the default adjustment to the FTP server process nice value. This
default nice value adjustment is used to adjust the nice value of the server
process only for those users who do not belong to any class for which a
class-specific nice directive exists in the ftpaccess file.

defumask umask [class]
Set the umask applied to files created by the FTP server if the remote user is a
member of the named class. If class is not specified, then use the umask as the
default for classes that do not have one specified.. The mode of files created may be
specified by using the upload directive.

tcpwindow size [class]
Set the TCP window size (socket buffer size) for the data connection. Use this to
control network traffic. For instance, slow PPP dialin links may need smaller TCP
windows to speed up throughput. If you do not know what this does, do not set it.

ipcos control|data value [typelist]
Set the IP Class of Service for either the control or data connection.

For connections using AF_INET type sockets, this sets the Type of Service field in
the IP header to the value specified.

For connections using AF_INET6 type sockets, this sets the Traffic Class field in the
IP header to the value specified.

ftpaccess(4)

166 man pages section 4: File Formats • Last Revised 10 Sep 2003

When configured through inetd.conf(4), the socket type is controlled by the
protocol field of the ftp service. When running in standalone mode the default
socket type is AF_INET6. The in.ftpd(1M) -4 option selects AF_INET.

typelist is a comma-separated list of any of the keywords anonymous, guest,
real, and class=. When class= appears, it must be followed by a class name.

keepalive yes|no
Set the TCP SO_KEEPALIVE option for control and data sockets. This can be used
to control network disconnect. If yes, then set it. If no, then use the system default
(usually off). You probably want to set this.

timeout accept seconds
timeout connect seconds
timeout data seconds
timeout idle seconds
timeout maxidle seconds
timeout RFC931 seconds

Set various timeout conditions.

accept How long the FTP Server will wait for an incoming
(PASV) data connection. The default is 120 seconds.

connect How long the FTP Server will wait attempting to
establish an outgoing (PORT) data connection. This
effects the actual connection attempt. The daemon
makes several attempts, sleeping between each
attempt, before giving up. The default is 120
seconds.

data How long the FTP Server will wait for some activity
on the data connection. You should keep this long
because the remote client may have a slow link, and
there can be quite a bit of data queued for the client.
The default is 1200 seconds.

idle How long the FTP Server will wait for the next
command. The default is 900 seconds. The default
can also be overridden by using the -t option at the
command-line. This access clause overrides both.

maxidle The SITE IDLE command allows the remote client
to establish a higher value for the idle timeout. The
maxidle clause sets the upper limit that the client
may request. The default can also be overridden by
using the -T option at the command-line. This
access clause overrides both. The default is 7200
seconds.

RFC931 The maximum time the FTP server allows for the
entire RFC931 (AUTH/ident) conversation. Setting
this to zero (0) disables the server’s use of this

ftpaccess(4)

File Formats 167

protocol. The information obtained by means of
RFC931 is recorded in the system logs and is not
actually used in any authentication. The default is 10
seconds.

file-limit [raw] in|out|total count [class]
Limit the number of data files a user in the given class may transfer. The limit may
be placed on files in, out, or total. If no class is specified, the limit is the default for
classes which do not have a limit specified. The optional parameter raw applies the
limit to the total traffic rather than just data files.

data-limit [raw] in|out|total count [class]
Limit the number of data bytes a user in the given class may transfer. The limit may
be placed on bytes in, out, or total. If no class is specified, the limit is the default for
classes which do not have a limit specified. Note that once it has been exceeded,
this limit will prevent transfers, but it will not terminate a transfer in progress. The
optional parameter raw applies the limit to total traffic rather than just data files.

limit-time *|anonymous|guest minutes
Limit the total time a session can take. By default, there is no limit. Real users are
never limited.

guestserver [hostname...]
Control which hosts may be used for anonymous access. If used without hostname,
all anonymous access is denied to this site. More than one hostname may be
specified. Anonymous access will only be allowed on the named machines. If access
is denied, the user will be asked to use the first hostname listed.

limit class n times [message_file]
Limit class to n users at times times, displaying message_file if the user is denied
access. A limit check is performed at login time only. If multiple limit
commands can apply to the current session, the first applicable one is used. Failing
to define a valid limit, or a limit of -1, is equivalent to no limits. The format of times
is¸:

day[day...][time-range][|day[day...][time-range]]...

The value of day can be Su, Mo, Tu, We, Th, Fr, Sa, Wk (for any weekday Monday
through Friday), or Any. time-range is in 24–hour clock notation. If a time range is
not specified, any time of the day is matched. Multiple day and time-range may be
specified by the “|” symbol. For example, Wk1730-0900|Sa|Su specifies 5:30
p.m. to 9:00 a.m., Monday through Friday, and anytime on weekends. message_file
may contain magic cookies. See message for more details.

noretrieve [absolute|relative]
[class=classname...][-] filename [filename...]

Always deny retrievability of these files. If filename specifies a pathname that begins
with ’/’ character, then only those files are marked no retrieve. Otherwise all files
that match the filename are refused transfer. For example, noretrieve
/etc/passwd core specifies no one will be able to retrieve the /etc/passwd
file. You will be allowed to transfer any file named passwd that is not in /etc.

ftpaccess(4)

168 man pages section 4: File Formats • Last Revised 10 Sep 2003

On the other hand, no one will be able to get files named core, wherever they are.
Directory specifications mark all files and subdirectories in the named directory
unretrievable. The filename may be specified as a file glob. For example,

noretrieve /etc /home/*/.htaccess

specifies that no files in /etc or any of its subdirectories may be retrieved. Also, no
files named .htaccess anywhere under the /home directory may be retrieved.
The optional first parameter selects whether names are interpreted as absolute or
relative to the current chroot’d environment. The default is to interpret names
beginning with a slash as absolute. The noretrieve restrictions may be placed
upon members of particular classes. If any class= is specified, the named files
cannot be retrieved only if the current user is a member of one of the given classes.

allow-retrieve [absolute|relative]
[class=classname...][-] filename [filename...]

Allows retrieval of files which would otherwise be denied by noretrieve.

loginfails number
After number login failures, log a "repeated login failures" message and terminate
the FTP connection. The default value for number is 5.

private yes | no
Allow or deny use of the SITE GROUP and SITE GPASS commands after the user
logs in. The SITE GROUP and SITE GPASS commands specify an enhanced access
group and associated password. If the group name and password are valid, the
user becomes a member of the group specified in the group access file
/etc/ftpd/ftpgroups by means of setegid(2). See ftpgroups(4) for the
format of the file. For this option to work for anonymous FTP users, the FTP Server
must keep /etc/group permanently open and load the group access file into
memory. This means that the FTP Server now has an additional file descriptor
open, and the necessary passwords and access privileges granted to users by means
of SITE GROUP will be static for the duration of an FTP session. If you have an
urgent need to change the access groups or passwords now, you have to kill all of
the running FTP Servers.

The following informational capabilities are supported:

greeting full|brief|terse
greeting text message

The greeting command allows you to control how much information is given out
before the remote user logs in. greeting full, which is the default greeting,
shows the hostname and daemon version. greeting brief shows the hostname.
greeting terse simply says "FTP Server ready." Although full is the default,
brief is suggested.

The text form allows you to specify any greeting message. message can be any
string. Whitespace (spaces and tabs) is converted to a single space.

ftpaccess(4)

Informational
Capabilities

File Formats 169

banner path
The banner command operates similarly to the message command, except that
the banner is displayed before the user enters the username. The path is relative to
the real system root, not to the base of the anonymous FTP directory.

Use of the banner command can completely prevent non-compliant FTP clients
from making use of the FTP Server. Not all clients can handle multi-line responses,
which is how the banner is displayed.

email name
Use this command to define the email address for the FTP Server administrator.
This string will be printed every time the %E magic cookie is used in message files.

hostname some.host.name
Defines the default host name of the FTP Server. This string will be printed on the
greeting message and every time the %L magic cookie is used. The host name for
virtual servers overrides this value. If no host name is specified, the default host
name for the local machine is used.

message path [when [class...]]
Define a file with path such that the FTP Server will display the contents of the file
to the user at login time or upon using the change working directory command.
The when parameter may be LOGIN or CWD=dirglob. If whenis CWD=dirglob, dirglob
specifies the new default directory that will trigger the notification. A dirglob of “*”
matches all directories.

The optional class specification allows the message to be displayed only to members
of a particular class. More than one class may be specified.

"Magic cookies" can be present in path that cause the FTP Server to replace the
cookie with a specified text string:

%T Local time. For example, Thu Nov 15 17:12:42 1990.

%F Free space in partition of CWD, in Kbytes.

%C Current working directory.

%E The email address for the FTP Server administrator.

%R Remote host name.

%L Local host name.

%U Username given at login time.

%u Username as defined by means of RFC 931 authentication.

%M Maximum allowed number of users in this class.

%N Current number of users in this class.

The following quota magic cookies are also supported but not always set (see the
quota-info capability):

%B absolute limit on disk blocks allocated

ftpaccess(4)

170 man pages section 4: File Formats • Last Revised 10 Sep 2003

%b preferred limit on disk blocks

%Q current block count

%I maximum number of allocated inodes (+1)

%i preferred inode limit

%q current number of allocated inodes

%H time limit for excessive disk use

%h time limit for excessive files

The message is displayed only once to avoid annoying the user. Remember that
when messages are triggered by an anonymous or guest FTP user, they must be
relative to the base of the anonymous or guest FTP directory tree.

quota-info uid-range [uid-range...]
Enable retrieval of quota information for users matching uid-range. This sets the
quota magic cookies. Retrieving quota information might cause a significant delay
when logging into the server.

uid-range can be a username, single UID, or a UID range. Place a percent sign(%)
before a number. An asterisk means “all users.”

readme pathglob [when [class...]]
Define a file with pathglob such that the FTP Server will notify the user at login time
or upon using the change working directory command that the file exists and the
date that it was modified. The when parameter may be LOGIN or CWD=dirglob. If
when is CWD=dirglob, dirglob specifies the new default directory that will trigger the
notification. A dirglob of “*” matches all directories. The message will only be
displayed once, to avoid bothering users. Remember that when README messages
are triggered by an anonymous or guest FTP user, the pathglob must be relative to
the base of the anonymous or guest FTP directory tree.

The optional class specification allows the message to be displayed only to members
of a particular class. You can specify more than one class.

The following logging capabilities are supported:

log commands typelist
Enables logging of the individual FTP commands sent by users. typelist is a
comma-separated list of any of the keywords anonymous, guest, and real.
Command logging information is written to the system log.

log transfers typelist directions
Log file transfers made by FTP users to the xferlog(4) file. Logging of incoming
transfers to the server can be enabled separately from outbound transfers from the
server. directions is a comma-separated list of any of the two keywords inbound
and outbound, and will respectively cause transfers to be logged for files sent to
and from the server.

ftpaccess(4)

Logging
Capabilities

File Formats 171

log security typelist
Enables logging of violations of security rules to the system log, including for
example, noretrieve and .notar.

log syslog
log syslog+xferlog

Redirect the logging messages for incoming and outgoing transfers to syslog.
Without this option the messages are written to xferlog. When you specify
syslog+xferlog, the transfer log messages are sent to both the system log file
and the xferlog file.

xferlog format formatstring
Customize the format of the transfer log entry written. formatstring can be any
string, which might include magic cookies. Strings of whitespace characters are
converted into a single space.

The following transfer-specific magic cookies are recognized only immediately after
a transfer has been completed:

%Xt transfer-time

%Xn bytes-transferred

%XP filename

%Xp chroot-filename

%Xy transfer-type

%Xf special-action-flag

%Xd direction

%Xm access-mode

%Xa authentication-method

%Xc completion-status

%Xs file-size

%Xr restart-offset

xferlog(4) includes a description of these fields. If no xferlog format entry is
present, the default is:

xferlog format %T %Xt %R %Xn %XP %Xy %Xf %Xd %Xm %U ftp %Xa %u %Xc

The following miscellaneous capabilities are supported:

alias string dir
Define an alias, string, for a directory. Use this command to add the concept of
logical directories. For example: alias rfc: /pub/doc/rfc would allow the
user to access /pub/doc/rfc from any directory by the command "cd rfc:".
Aliases only apply to the cd command.

ftpaccess(4)

Miscellaneous
Capabilities

172 man pages section 4: File Formats • Last Revised 10 Sep 2003

cdpath dir
Define an entry in the cdpath. This command defines a search path that is used
when changing directories. For example:

cdpath /pub/packages

cdpath /.aliases

would allow the user to move into any directory directly under either the
/pub/packages or the /.aliases directories. The search path is defined by the
order in which the lines appear in the ftpaccess file. If the user were to give the
command ftp> cd foo the directory will be searched for in the following order:

./foo
an alias called foo
/pub/packages/foo
/.aliases/foo

The cdpath is only available with the cd command. If you have a large number of
aliases, you might want to set up an aliases directory with links to all of the areas
you wish to make available to users.

compress yes|no classglob [classglob...]
tar yes|no classglob [classglob...]

Enable the use of conversions marked with the O_COMPRESS, O_UNCOMPRESS, and
O_TAR options in /etc/ftpd/ftpconversions. See ftpconversions(4).

shutdown path
If the file pointed to by path exists, the server will check the file regularly to see if
the server is going to be shut down. If a shutdown is planned, the user is notified.
New connections are denied after a specified time before shutdown. Current
connections are dropped at a specified time before shutdown.

The format of the file specified by path is:

year month day hour minute deny_offset disc_offset text

year A value of 1970 or greater.

month A value of 0 to 11.

day A value of 1 to 31.

hour A value of 0 to 23.

minute A value of 0 to 59.

deny_offset
disc_offset The offsets in HHMM format that new connections

will be denied and existing connections will be
disconnected before the shutdown time.

text Follows the normal rules for any message. The
following additional magic cookies are available:

ftpaccess(4)

File Formats 173

%s The time at which the system is going to
shut down.

%r The time at which new connections will
be denied.

%d The time at which current connections
will be dropped.

All times are in the form: ddd MMM DD hh:mm:ss YYYY. Only one shutdown
command can be present in the configuration file. You can use the external program
ftpshut(1M) to automate generation of this file.

daemonaddress address
Listen only on the IP address specified. If the value is not set, then the FTP Server
will listen for connections on every IP address. This applies only when the FTP
Server is run in standalone mode.

virtual address root|banner|logfile path
Enable the FTP Server limited virtual hosting capabilities. The address is the IP
address of the virtual server. The second argument specifies that the path is either
the path to the root of the filesystem for this virtual server, the banner presented
to the user when connecting to this virtual server, or the logfile where transfers
are recorded for this virtual server. If the logfile is not specified the default log
file will be used. All other message files and permissions as well as any other
settings in this file apply to all virtual servers. The address may also be specified as a
hostname rather than as an IP number. This is strongly discouraged since, if DNS is
not available at the time the FTP session begins, the hostname will not be matched.

root|logfile path
In contrast to limited virtual hosting, complete virtual hosting allows separate
configuration files to be virtual host specific. See ftpservers(4). The only
additions that are necessary in a virtual host’s ftpaccess file is the root directive
that ensures the correct root directory is used for the virtual host. This only works
with complete virtual hosting, which in contrast to limited virtual hosting, allows
separate configuration files to be specified for each virtual host.

path is either the root of the filesystem for this virtual server or the logfile where
transfers for this virtual server are recorded. root and logfile may only be specified
when not preceded by virtual address in a virtual hosts’s ftpaccess file.

virtual address hostname|email string
Set the hostname shown in the greeting message and status command, or the email
address used in message files and on the HELP command, to the given string.

virtual address allow username [username...]
virtual address deny username [username...]

ftpaccess(4)

174 man pages section 4: File Formats • Last Revised 10 Sep 2003

By default, real and guest users are not allowed to log in on the virtual server,
unless they are guests that are chroot’d to the virtual root. The users listed on the
virtual allow line(s) are granted access. You can grant access to all users by
giving ’*’ as the username. The virtual deny clauses are processed after the
virtual allow clauses. Thus specific users can be denied access although all
users were allowed in an earlier clause.

virtual address private
Deny log in access to anonymous users on the virtual server. Anonymous users are
generally allowed to log in on the virtual server if this option is not specified.

virtual address passwd file
Use a different passwd file for the virtual host.

virtual address shadow file
Use a different shadow file for the virtual host.

defaultserver deny username [username...]
defaultserver allow username [username...]

By default, all users are allowed access to the non-virtual FTP Server. Use
defaultserver deny to revoke access for specific real and guest users. Specify ’*’
to deny access to all users, except anonymous users. Specific real and guest users
can then be allowed access by using defaultserver allow.

defaultserver private
By default, all users are allowed access to the non-virtual FTP Server. Use
defaultserver private to revoke access for anonymous users.

The virtual and defaultserver allow, deny and private clauses provide a
means to control which users are allowed access to which FTP Servers.

passive address externalip cidr
Allow control of the address reported in response to a passive command. When
any control connection matching cidr requests a passive data connection (PASV),
the externalip address is reported. This does not change the address that the daemon
actually listens on, only the address reported to the client. This feature allows the
daemon to operate correctly behind IP renumbering firewalls. For example:

passive address 10.0.1.15 10.0.0.0/8

passive address 192.168.1.5 0.0.0.0/0

Clients connecting from the class-A network 10 will be told the passive connection
is listening on IP address 10.0.1.15 while all others will be told the connection is
listening on 192.168.1.5. Multiple passive addresses may be specified to handle
complex, or multi-gatewayed, networks.

passive ports cidr min max
Allows control of the TCP port numbers which may be used for a passive data
connection. If the control connection matches the cidr, a port in the range min to max
will be randomly selected for the daemon to listen on. This feature allows firewalls
to limit the ports that remote clients may use to connect into the protected network.

ftpaccess(4)

File Formats 175

cidr is shorthand for an IP address followed by a slash and the number of left-most
bits that represent the network address, as opposed to the machine address. For
example, if you are using the reserved class-A network 10, instead of a netmask of
255.0.0.0, use a CIDR of /8, as in 10.0.0.0/8, to represent your network.

When min and max are both 0, the kernel rather than the FTP server selects the TCP
port to listen on. Kernel port selection is usually not desirable if the kernel allocates
TCP ports sequentially. If in doubt, let the FTP server do the port selection.

pasv-allow class [addrglob...]
port-allow class [addrglob...]

Normally, the FTP Server does not allow a PORT command to specify an address
different than that of the control connection. Nor does it allow a PASV connection
from another address.

The port-allow clause provides a list of addresses that the specified class of user
may give on a PORT command. These addresses will be allowed even if they do not
match the IP address of the client-side of the control connection.

The pasv-allow clause provides a list of addresses that the specified class of user
may make data connections from. These addresses will be allowed even if they do
not match the IP address of the client-side of the control connection.

lslong command [options...]
lsshort command [options...]
lsplain command [options...]

Use the lslong, lsshort, and lsplain clauses to specify the commands and
options to use to generate directory listings. The options cannot contain spaces, and
the default values for these clauses are generally correct. Use lslong, lsshort, or
lsplain only if absolutely necessary.

mailserver hostname
Specify the name of a mail server that will accept upload notifications for the FTP
Server. Multiple mail servers may be listed. The FTP Server will attempt to deliver
the upload notification to each, in order, until one accepts the message. If no mail
servers are specified, localhost is used. This option is only meaningful if anyone
is to be notified of anonymous uploads. See incmail.

incmail emailaddress
virtual address incmail emailaddress
defaultserver incmail emailaddress

Specify email addresses to be notified of anonymous uploads. Multiple addresses
can be specified. Each will receive a notification. If no addresses are specified, no
notifications are sent.

If addresses are specified for a virtual host, only those addresses will be sent
notification of anonymous uploads on that host. Otherwise, notifications will be
sent to the global addresses.

ftpaccess(4)

176 man pages section 4: File Formats • Last Revised 10 Sep 2003

defaultserver addresses only apply when the FTP session is not using one of
the virtual hosts. In this way, you can receive notifications for your default
anonymous area, but not see notifications to virtual hosts that do not have their
own notifications.

mailfrom emailaddress
virtual address mailfrom emailaddress
defaultserver mailfrom emailaddress

Specify the sender’s email address for anonymous upload notifications. Only one
address may be specified. If no mailfrom applies, email is sent from the default
mailbox name wu-ftpd. To avoid problems if the recipient attempts to reply to a
notification, or if downstream mail problems generate bounces, you should ensure
the mailfrom address is deliverable.

sendbuf size [typelist]
recvbuf size [typelist]

Set the send or receive buffer sizes used for binary transfers. They have no effect on
ASCII transfers.

rhostlookup yes|no [addrglob ...]
Allows or disallows the lookup of the remote host’s name. Name lookups can be
slow, but skipping them means that places where an addrglob is matched (for
example, in the class capability) will match only an IP address, not a name. Also
deny !nameserved and dns refuse_no_reverse or refuse_mismatch will
deny access when a name lookup is not done. The default is to lookup the remote
host’s name.

Only IP addresses, not names, are matched in addrglob.

flush-wait yes|no [typelist]
Controls the behavior at the end of a download or directory listing. If yes,
shutdown the data connection for sending and wait for the client to close its end
before sending a transfer complete reply on the control connection. This is the
default behavior. If no, close the data connection and send the transfer complete
reply without waiting for the client. With this behavior, data loss can go undetected.

If a client hangs at the end of a directory listing, or the system has many sockets in
the FIN_WAIT_2 state, try setting to no as a workaround for broken client
behavior.

The following permission capabilities are supported:

chmod yes|no typelist
delete yes|no typelist
overwrite yes|no typelist
rename yes|no typelist
umask yes|no typelist

Allows or disallows the ability to perform the specified function. By default, all real
and guest users are allowed. Anonymous users are only allowed overwrite and
umask.

ftpaccess(4)

Permission
Capabilities

File Formats 177

typelist is a comma-separated list of any of the keywords anonymous, guest, real
and class=. When class= appears, it must be followed by a classname. If any
class= appears, the typelist restriction applies only to users in that class.

passwd-check none|trivial|rfc822 [enforce|warn]
Define the level and enforcement of password checking done by the FTP Server for
anonymous FTP.

none No password checking is performed.

trivial The password must contain an ’@’.

rfc822 The password must be RFC 822 compliant.

warn Warn, but permit the login.

enforce Notify and deny the login.

deny-email case-insensitive-emailaddress
Consider the email address given as an argument as invalid. If passwd-check is
set to enforce, anonymous users giving this address as a password cannot log in.
That way, you can stop users from having stupid WWW browsers use fake
addresses like IE?0User@ or mozilla@. (by using this, you are not shutting out users
using a WWW browser for ftp - you just make them configure their browser
correctly.) Only one address is allowed per line, but you can have as many
deny-email addresses as you like.

path-filter typelist message allowed_regexp
[disallowed_regexp...]

For users in typelist, path-filter defines regular expressions that control what
characters can be used in the filename of an uploaded file or created directory.
There may be multiple disallowed regular expressions. If a filename is invalid due
to failure to match the regular expression criteria, message will be displayed to the
user. For example:

path-filter anonymous /etc/pathmsg ^[-A-Za-z0-9._]*$ ^\. ^-

specifies that all upload filenames for anonymous users must be made of only the
characters A-Z, a-z, 0-9, and "._-" and may not begin with a "." or a "-". If the
filename is invalid, /etc/pathmsg will be displayed to the user.

upload [absolute|relative] [class=classname]... [-]
root-dir dirglob yes|no owner group mode
[dirs|nodirs] [d_mode]

Define a directory with dirglob that permits or denies uploads. If it does permit
uploads, all newly created files will be owned by owner and group and will have
their permissions set according to mode. Existing files that are overwritten will
retain their original ownership and permissions. Directories are matched on a
best-match basis. For example:

upload /var/ftp * no
upload /var/ftp /incoming yes ftp daemon 0666

upload /var/ftp /incoming/gifs yes jlc guest 0600 nodirs

ftpaccess(4)

178 man pages section 4: File Formats • Last Revised 10 Sep 2003

would only allow uploads into /incoming and /incoming/gifs. Files that were
uploaded to /incoming are owned by ftp/daemon and have permissions of 0666.
Files uploaded to /incoming/gifs are owned by jlc/guest and have
permissions of 0600. The optional "dirs" and "nodirs” keywords can be specified
to allow or disallow the creation of new subdirectories using the mkdir command.
If the upload command is used, directory creation is allowed by default. To turn it
off by default, you must specify a user, group and mode followed by the "nodirs"
keyword as the first line where the upload command is used in this file. If
directories are permitted, the optional d_mode determines the permissions for a
newly created directory. If d_mode is omitted, the permissions are inferred from
mode. The permissions are 0777 if mode is also omitted. The upload keyword only
applies to users who have a home directory of root-dir. root-dir may be specified as
"*" to match any home directory. The owner or group may each be specified as "*", in
which case any uploaded files or directories will be created with the ownership of
the directory in which they are created. The optional first parameter selects whether
root-dir names are interpreted as absolute or relative to the current chroot’d
environment. The default is to interpret <root-dir> names as absolute. You can
specify any number of class=classname restrictions. If any are specified, this
upload clause only takes effect if the current user is a member of one of the classes.

In the absence of any matching upload clause, real and guest users can upload files
and make directories, but anonymous users cannot. The mode of uploaded files is
0666. For created directories, the mode is 0777. Both modes are modified by the
current umask setting.

throughput root-dir subdir-glob file-glob-list
bytes-per-second bytes-per-second-multiply remote-glob-list

Define files by means of a comma-separated file-glob-list in subdir matched by
subdir-glob under root-dir that have restricted transfer throughput of bytes-per-second
on download when the remote hostname or remote IP address matches the
comma-separated remote-glob-list. Entries are matched on a best-match basis. For
example:

throughput /e/ftp * * oo - *
throughput /e/ftp /sw* * 1024 0.5 *
throughput /e/ftp /sw* README oo - *

throughput /e/ftp /sw* * oo - *.foo.com

would set maximum throughput per default, but restrict download to 1024 bytes
per second for any files under /e/ftp/sw/ that are not named README. The only
exceptions are remote hosts from within the domain foo.com which always get
maximum throughput. Every time a remote client has retrieved a file under
/e/ftp/sw/ the bytes per seconds of the matched entry line are internally
multiplied by a factor, here 0.5. When the remote client retrieves its second file, it is
served with 512 bytes per second, the third time with only 256 bytes per second, the
fourth time with only 128 bytes per second, and so on. The string "oo" for the bytes
per second field means no throughput restriction. A multiply factor of 1.0 or "-"
means no change of the throughput after every successful transfer. The root-dir here
must match the home directory specified in the password database . The
throughput keyword only applies to users who have a home directory of root-dir.

ftpaccess(4)

File Formats 179

anonymous-root root-dir [class...]
root-dir specifies the chroot() path for anonymous users. If no anonymous-root is
matched, the old method of parsing the home directory for the FTP user is used. If
no class is specified, this is the root directory for anonymous users who do not
match any other anonymous-root specification. Multiple classes may be specified
on this line. If an anonymous-root is chosen for the user, the FTP user’s home
directory in the root-dir/etc/passwd file is used to determine the initial directory
and the FTP user’s home directory in the system-wide /etc/passwd is not used.
For example:

anonymous-root /home/ftp

anonymous-root /home/localftp localnet

causes all anonymous users to be chroot’d to the directory /home/ftp. If the
FTP user exists in /home/ftp/etc/passwd, their initial CWD is that home
directory. Anonymous users in the class localnet, however, are chroot’d to the
directory /home/localftp and their initial CWD is taken from the FTP user’s home
directory in /home/localftp/etc/passwd.

guest-root root-dir [uid-range...]
root-dir specifies the chroot() path for guest users. If no guest-root is matched, the
old method of parsing the user’s home directory is used. If no uid-range is specified,
this is the root directory for guestusers who do not match any other guest-root
specification. Multiple UID ranges may be given on this line. If a guest-root is
chosen for the user, the user’s home directory in the root-dir/etc/passwd file is
used to determine the initial directory and the home directory in the system-wide
/etc/passwd is not used. uid-range specifies names or numeric UID values. To use
numbers, put a percent sign (%) symbol before it or before the range. Ranges are
specified by giving the lower and upper bounds (inclusive), separated by a dash. If
the lower bound is omitted, it means all up to. If the upper bound is omitted, it
means all starting from. For example:

guest-root /home/users
guest-root /home/staff %100-999 sally

guest-root /home/users/owner/ftp frank

causes all guest users to chroot() to /home/users then starts each user in the
user’s home directory, as specifiedin /home/users/etc/passwd. Users in the
range 100 through 999, inclusive, and user sally, will be chroot’d to
/home/staff and the CWD will be taken from their entries in
/home/staff/etc/passwd. The single user frank will be chroot’d to
/home/users/owner/ftp and the CWD will be from his entry in
/home/users/owner/ftp/etc/passwd.

The order is important for both anonymous-root and guest-root. If a user would
match multiple clauses, only the first applies; with the exception of the clause which
has no class or uid-range, which applies only if no other clause matches.

deny-uid uid-range [uid-range...]
deny-gid gid-range [gid-range...]
allow-uid uid-range [uid-range...]

ftpaccess(4)

180 man pages section 4: File Formats • Last Revised 10 Sep 2003

allow-gid gid-range [gid-range...]
Use these clauses to specify UID and GID values that will be denied access to the
FTP Server. The allow-uid and allow-gid clauses may be used to allow access
for UID and GID values which would otherwise be denied. These checks occur
before all others. deny is checked before allow. The default is to allow access.
These clauses do not apply to anonymous users. Use defaultserver private to
deny access to anonymous users. In most cases, these clauses obviate the need for
an ftpusers(4) file. For example, the following clauses deny FTP Server access to
all privileged or special users and groups, except the guest1 user or group.

deny-gid %-99 nobody noaccess nogroup
deny-uid %-99 nobody noaccess nobody4
allow-gid guest1

allow-uid guest1

Support for the ftpusers file still exists, so it may be used when changing the
ftpaccess file is not desired. In any place a single UID or GID is allowed
throughout the ftpaccess file, either names or numbers also may be used. To use
a number, put a percent sign (%) symbol before it. In places where a range is
allowed, put the percent sign before the range. A “*” matches all UIDs or GIDs.

restricted-uid uid-range [uid-range...]
restricted-gid gid-range [gid-range...]
unrestricted-uid uid-range [uid-range...]
unrestricted-gid gid-range [gid-range...]

These clauses control whether or not real or guest users will be allowed access to
areas on the FTP site outside their home directories. These clauses are not meant to
replace the use of guestgroup and guestuser. Instead, use these clauses to
supplement the operation of guests. The unrestricted-uid and
unrestricted-gid clauses may be used to allow users outside their home
directories who would otherwise be restricted.

The following example shows the intended use for these clauses. Assume user
dick has a home directory /home/dick and jane has a home directory
/home/jane:

guest-root /home dick jane

restricted-uid dick jane

While both dick and jane are chroot’d to /home, they cannot access each
other’s files because they are restricted to their home directories. However, you
should not rely solely upon the FTP restrictions to control access. As with all other
FTP access rules, you should also use directory and file permissions to support the
operation of the ftpaccess configuration.

site-exec-max-lines number [class...]
The SITE EXEC feature traditionally limits the number of lines of output that may
be sent to the remote client. Use this clause to set this limit. If this clause is omitted,
the limit is 20 lines. A limit of 0 (zero) implies no limit. Be very careful if you choose
to remove the limit. If a clause is found matching the remote user’s class, that limit
is used. Otherwise, the clause with class ’*’, or no class given, is used. For example:

ftpaccess(4)

File Formats 181

site-exec-max-lines 200 remote
site-exec-max-lines 0 local

site-exec-max-lines 25

limits output from SITE EXEC (and therefore SITE INDEX) to 200 lines for remote
users, specifies there is no limit at all for local users, and sets a limit of 25 lines for
all other users.

dns refuse_mismatch filename [override]
Refuse FTP sessions when the forward and reverse lookups for the remote site do
not match. Lookups are done using the system’s name service as configured in
nsswitch.conf(4). Display the named file, like a message file, admonishing the
user. If the optional override is specified, allow the connection after complaining.

dns refuse_no_reverse filename [override]
Refuse FTP sessions when the remote host’s IP address has no associated name.
Lookups are done using the system’s name service as configured in
nsswitch.conf(4). Display the named file, such as a message file, admonishing
the user. If the optional override is specified, allow the connection after
complaining.

dns resolveroptions [options]
Modify certain internal resolver variables. This only has an effect when DNS is used
as the system’s name service. The line takes a series of options which are used to set
the RES_OPTIONS environment variable, see resolv.conf(4) for details. For
example:

dns resolveroptions rotate attempts:1

turns on querying name servers round-robin and selects querying each name server
only once.

Lines that begin with a # sign are treated as comment lines and are ignored.

/etc/ftpd/ftpaccess

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

Interface Stability External

compress(1), ls(1), tar(1), ftpaddhost(1M), ftpconfig(1M), ftpshut(1M),
in.ftpd(1M), chroot(2), nice(2), umask(2), getgrnam(3C), resolver(3RESOLV),
ftpconversions(4), ftpgroups(4), ftpservers(4), ftpusers(4),
nsswitch.conf(4), resolv.conf(4), timezone(4), xferlog(4), attributes(5),
fnmatch(5)

Crocker, David H. RFC 822, Standard For The Format Of ARPA Internet Text Messages.
Network Information Center. August 1982.

ftpaccess(4)

FILES

ATTRIBUTES

SEE ALSO

182 man pages section 4: File Formats • Last Revised 10 Sep 2003

St. Johns, Michael. RFC 931, Authentication Server. Network Working Group. January
1985.

ftpaccess(4)

File Formats 183

ftpconversions – FTP Server conversions database

/etc/ftpd/ftpconversions

When the FTP Server, in.ftpd(1M), receives the retrieve (RETR) command, if the
specified file does not exist, it looks for a conversion to change an existing file or
directory of the same base name into the format requested, subject to the
ftpaccess(4) compress and tar capabilities.

The conversions and their attributes known by in.ftpd(1M) are stored in an ASCII
file of the following format. Each line in the file provides a description for a single
conversion. The fields in this file are separated by colons (:).

%s:%s:%s:%s:%s:%s:%s:%s

1 2 3 4 5 6 7 8

The fields are described as follows:

1 Strip prefix.

2 Strip postfix.

3 Addon prefix.

4 Addon postfix.

5 External command.

6 Types.

7 Options.

8 Description.

The Strip prefix and Addon prefix fields are not currently supported.

The Strip postfix and addon postfix fields are extensions to be added to or
removed from the requested filename in attempting to produce the name of an
existing file or directory. When the attempt succeeds, the FTP Server runs the external
command associated with the conversion. The magic cookie %s in the argument is
passed to the command, replaced with the name of the existing file or directory.

External command is the absolute pathname of a command to run followed by the
appropriate options to carry out the conversion. The standard output of the command
is sent back in response to the RETR (retrieve) command. For anonymous and guest
users to be able to execute the command, it must be present in their chroot’d
hierarchy along with any necessary dynamic libraries.

Types specifies the conversion type. The following values are recognized:

T_ASCII ASCII transfers are allowed of a file produced by the conversion.

T_DIR Directories can be converted.

T_REG Regular files can be converted.

ftpconversions(4)

NAME

SYNOPSIS

DESCRIPTION

184 man pages section 4: File Formats • Last Revised 1 May 2003

Options are checked against the ftpaccess(4) compress and tar capabilities and
are recorded in the special-action-flag field that is written to the FTP Server
logfile. See xferlog(4). The following options are supported:

O_COMPRESS conversion compresses

O_TAR conversion archives

O_UNCOMPRESS conversion uncompresses

You can specify more than one option by using "|" to separate options. For example,
O_TAR|O_COMPRESS specifies that the conversion archives and compresses.

Description is a one word description of the conversion that is used in error
messages returned to the FTP client.

Lines that begin with a # sign are treated as comment lines and are ignored.

EXAMPLE 1 Compressing a Regular File for Transfer

The following example specifies a conversion which generates filename.Z by
compressing an existing file filename. The conversion can only be applied to regular
files, not directories, and the absence of T_ASCII prevents the resulting file from
being transferred in ASCII mode.

: : :.Z:/usr/bin/compress -c %s:T_REG:O_COMPRESS:COMPRESS

EXAMPLE 2 Uncompressing and Transferring in ASCII Mode

The following example specifies a conversion that takes filename.Z and
uncompresses it to produce filename, which then can be transferred in ASCII mode.

:.Z: : :/usr/bin/compress -cd %s:T_REG|T_ASCII:O_UNCOMPRESS:UNCOMPRESS

/etc/ftpd/ftpconversions

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

ldd(1), in.ftpd(1M), ftpaccess(4), xferlog(4), attributes(5)

ftpconversions(4)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

File Formats 185

ftpgroups – FTP Server enhanced group access file

/etc/ftpd/ftpgroups

The ftpgroups file contains the enhanced group access information.

After login, if the ftpaccess(4) file includes private yes, the user may use the SITE
GROUP and SITE GPASS commands to specify an enhanced access group and a
password for that group. If the access group name and password are valid, the the
FTP Server executes setegid(2) to make the user a member of the real group listed in
the ftpgroups file.

The format for the ftpgroups file is:

accessgroup:encrypted_password:real_group_name

The fields are defined as follows:

accessgroup An arbitrary string of alphanumeric and punctuation
characters.

encrypted_password The group password encrypted exactly like in
/etc/shadow.

real_group_name The name of a valid group returned by getgrnam(3C).

The privatepw utility is an administrative tool to add, delete and list enhanced
access group information in the ftpgroups file. See privatepw(1M). Lines that
begin with a # sign are treated as comment lines and are ignored.

/etc/ftpd/ftpgroups

/etc/ftpd/ftpaccess

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

Interface Stability External

in.ftpd(1M), privatepw(1M), setegid(2), getgrnam(3C), ftpaccess(4),
group(4), shadow(4), attributes(5)

ftpgroups(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

186 man pages section 4: File Formats • Last Revised 1 May 2003

ftphosts – FTP Server individual user host access file

/etc/ftpd/ftphosts

The ftphosts file is used to allow or deny access to accounts from specified hosts.
The following access capabilities are supported:

allow username addrglob [addrglob...]
Only allow users to login as username from host(s) that match addrglob.

deny username addrglob [addrglob...]
Do not allow users to login as username from host(s) that match addrglob.

A username of * matches all users. A username of anonymous or ftp specifies the
anonymous user.

addrglob is a regular expression that is matched against hostnames or IP addresses.
addrglob may also be in the form address:netmask or address/CIDR, or be the
name of a file that starts with a slash (’/’) and contains additional address globs. An
exclamation mark (‘!’) placed before the addrglob negates the test.

The first allow or deny entry in the ftphosts file that matches a username and host
is used. If no entry exists for a username, then access is allowed. Otherwise, a matching
allow entry is required to permit access.

You can use the following ftphosts file to allow anonymous access from any host
except those on the class A network 10, with the exception of 10.0.0.* IP addresses,
which are allowed access:

allow ftp 10.0.0.*
deny ftp 10.*.*.*

allow ftp *

10.0.0.* can be written as 10.0.0.0:255.255.255.0 or 10.0.0.0/24.

/etc/ftpd/ftphosts

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

Interface Stability External

in.ftpd(1M), ftpaccess(4), attributes(5)

ftphosts(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

File Formats 187

ftpservers – FTP Server virtual hosting configuration file

/etc/ftpd/ftpservers

The ftpservers file is used to configure complete virtual hosting. In contrast to
limited virtual hosting, complete virtual hosting allows separate configuration files to
be specified for each virtual host.

The set of configuration files for each virtual host are placed in their own directory.
The ftpservers file associates the address of each virtual host with the directory its
configuration files are stored in. The virtual host configuration files must be named:

ftpaccess Virtual host’s access file

ftpusers Restricts the accounts that can use the virtual host

ftpgroups Virtual hosts enhanced group access file

ftphosts Allow or deny usernames access to the virtual host

ftpconversions Customize conversions available from the virtual host

You do not need to put every file in each virtual host directory. If you want a virtual
host to use the master copy of a file, then do not include it in the virtual host directory.
If the file is not included, the master copy from the /etc/ftpd directory will be used.

The file names must match exactly. If you misspell any of them or name them
differently, the server will not find them, and the server will use the master copy
instead.

The ftpaddhost utility is an administrative tool to configure virtual hosts. See
ftpaddhost(1M).

There are two fields to each entry in the ftpservers file:

address directory-containing-configuration-files

For example:

10.196.145.10 /etc/ftpd/virtual-ftpd/10.196.145.10
10.196.145.200 /etc/ftpd//virtual-ftpd/10.196.145.200

some.domain INTERNAL

When an FTP client connects to the FTP Server, in.ftpd(1M) tries to match the IP
address to which the FTP client connected with one found in the ftpservers file.

The address can be an IPv4 or IPv6 address, or a hostname.

If a match is found, The FTP server uses any configuration files found in the associated
directory.

If a match is not found, or an invalid directory path is encountered, the default paths
to the configuration files are used. The use of INTERNAL in the example above fails the
check for a specific directory, and the master configuration files will be used.

ftpservers(4)

NAME

SYNOPSIS

DESCRIPTION

File Format

188 man pages section 4: File Formats • Last Revised 1 May 2003

Either the actual IP address or a specific hostname can be used to specify the virtual
host. It is better to specify the actual IP of the virtual host, as it reduces the need for a
domain lookup and eliminates DNS security related naming issues, for example:

10.196.145.20 /etc/ftpd/config/faqs.org/

ftp.some.domain /etc/ftpd/config/faqs.org/

Lines that begin with a # sign are treated as comment lines and are ignored.

/etc/ftpd/ftpservers

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

Interface Stability External

ftpaddhost(1M), in.ftpd(1M), ftpaccess(4), ftpconversions(4),
ftpgroups(4), ftphosts(4), ftpusers(4), attributes(5)

ftpservers(4)

FILES

ATTRIBUTES

SEE ALSO

File Formats 189

ftpusers – file listing users to be disallowed ftp login privileges

/etc/ftpd/ftpusers

The ftpusers file lists users for whom ftp login privileges are disallowed. Each
ftpuser entry is a single line of the form:

name

where name is the user’s login name.

The FTP Server, in.ftpd(1M), reads the ftpusers file. If the login name of the user
matches one of the entries listed, it rejects the login attempt.

The ftpusers file has the following default configuration entries:

root
daemon
bin
sys
adm
lp
uccp
nuucp
smmsp
listen
nobody
noaccess

nobody4

These entries match the default instantiated entries from passwd(4). The list of default
entries typically contains the superuser root and other administrative and system
application identities.

The root entry is included in the ftpusers file as a security measure since the default
policy is to disallow remote logins for this identity. This policy is also set in the the
default value of the CONSOLE entry in the /etc/default/login file. See login(1).
If you allow root login privileges by deleting the root entry in ftpusers, you should
also modify the security policy in /etc/default/login to reflect the site security
policy for remote login access by root.

Other default entries are administrative identities that are typically assumed by
system applications but never used for local or remote login, for example sys and
nobody. Since these entries do not have a valid password field instantiated in
shadow(4), no login can be performed.

If a site adds similar administrative or system application identities in passwd(4) and
shadow(4), for example, majordomo, the site should consider including them in the
ftpusers file for a consistent security policy.

Lines that begin with # are treated as comment lines and are ignored.

/etc/ftpd/ftpusers A file that lists users for whom ftp login privileges are
disallowed.

ftpusers(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

190 man pages section 4: File Formats • Last Revised 1 May 2003

/etc/ftpusers See /etc/ftpd/ftpusers. This file is deprecated,
although its use is still supported.

/etc/default/login

/etc/passwd password file

/etc/shadow shadow password file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

Interface Stability

/etc/ftpd/ftpusers

External

Interface Stability

/etc/ftpusers

Obsolete

login(1), in.ftpd(1M), ftpaccess(4), ftphosts(4), passwd(4), shadow(4),
attributes(5), environ(5)

ftpusers(4)

ATTRIBUTES

SEE ALSO

File Formats 191

fx_dptbl – fixed priority dispatcher parameter table

fx_dptbl

The process scheduler or dispatcher is the portion of the kernel that controls allocation
of the CPU to processes. The scheduler supports the notion of scheduling classes,
where each class defines a scheduling policy used to schedule processes within that
class. Associated with each scheduling class is a set of priority queues on which
ready-to-run processes are linked. These priority queues are mapped by the system
configuration into a set of global scheduling priorities, which are available to
processes within the class. The dispatcher always selects for execution the process
with the highest global scheduling priority in the system. The priority queues
associated with a given class are viewed by that class as a contiguous set of priority
levels numbered from 0 (lowest priority) to n (highest priority—a
configuration-dependent value). The set of global scheduling priorities that the queues
for a given class are mapped into might not start at zero and might not be contiguous,
depending on the configuration.

Processes in the fixed priority class are scheduled according to the parameters in a
fixed–priority dispatcher parameter table (fx_dptbl). The fx_dptbl table consists
of an array (config_fx_dptbl[]) of parameter structures (struct fxdpent_t),
one for each of the n priority levels used by fixed priority processes in user mode. The
structures are accessed by way of a pointer, (fx_dptbl), to the array. The properties
of a given priority level i are specified by the ith parameter structure in this array
(fx_dptbl[i]).

A parameter structure consists of the following members. These are also described in
the /usr/include/sys/fx.h header.

fx_globpri The global scheduling priority associated with this priority level.
The mapping between fixed–priority priority levels and global
scheduling priorities is determined at boot time by the system
configuration. fx_globpri can not be changed with
dispadmin(1M).

fx_quantum The length of the time quantum allocated to processes at this level
in ticks (hz). The time quantum value is only a default or starting
value for processes at a particular level, as the time quantum of a
fixed priority process can be changed by the user with the
priocntl(1) command or the priocntl(2) system call.

In the high resolution clock mode (hires_tick set to 1), the
value of hz is set to 1000. Increase quantums to maintain the same
absolute time quantums.

An administrator can affect the behavior of the fixed priority
portion of the scheduler by reconfiguring the fx_dptbl. There are
two methods available for doing this: reconfigure with a loadable
module at boot-time or by using dispadmin(1M) at run-time.

fx_dptbl(4)

NAME

SYNOPSIS

DESCRIPTION

192 man pages section 4: File Formats • Last Revised 15 Oct 2002

The fx_dptbl can be reconfigured with a loadable module that contains a new fixed
priority dispatch table. The module containing the dispatch table is separate from the
FX loadable module, which contains the rest of the fixed priority software. This is the
only method that can be used to change the number of fixed priority priority levels or
the set of global scheduling priorities used by the fixed priority class. The relevant
procedure and source code is described in Replacing the fx_dptbl Loadable Module
below.

The fx_quantum values in the fx_dptbl can be examined and modified on a
running system using the dispadmin(1M) command. Invoking dispadmin for the
fixed-priority class allows the administrator to retrieve the current fx_dptbl
configuration from the kernel’s in-core table or overwrite the in-core table with values
from a configuration file. The configuration file used for input to dispadmin must
conform to the specific format described as follows:

� Blank lines are ignored and any part of a line to the right of a # symbol is treated as
a comment.

� The first non-blank, non-comment line must indicate the resolution to be used for
interpreting the time quantum values. The resolution is specified as:

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the
resolution used is the reciprocal of res in seconds (for example, RES=1000 specifies
millisecond resolution). Although you can specify very fine (nanosecond)
resolution, the time quantum lengths are rounded up to the next integral multiple
of the system clock’s resolution.

� The remaining lines in the file are used to specify the fx_quantum values for each
of the fixed-priority priority levels. The first line specifies the quantum for
fixed-priority level 0, the second line specifies the quantum for fixed-priority level
1, and so forth. There must be exactly one line for each configured fixed priority
priority level. Each fx_quantum entry must be a positive integer specifying the
desired time quantum in the resolution given by res.

See EXAMPLES for an example of an excerpt of a dispadmin configuration file.

To change the size of the fixed priority dispatch table, you must build the loadable
module that contains the dispatch table information. Save the existing module before
using the following procedure.

1. Place the dispatch table code shown below in a file called fx_dptbl.c. See
EXAMPLES, below, for an example of this file.

2. Compile the code using the given compilation and link lines supplied:

cc -c -0 -D_KERNEL fx_dptbl.c

ld -r -o FX_DPTBL fx_dptbl.o

3. Copy the current dispatch table in /usr/kernel/sched to FX_DPTBL.bak.

4. Replace the current FX_DPTBL in /usr/kernel/sched.

fx_dptbl(4)

fx_dptbl Loadable
Module

dispadmin
Configuration File

Replacing the
fx_dptbl Loadable

Module

File Formats 193

5. Make changes in the /etc/system file to reflect the changes to the sizes of the
tables. See system(4). The variables affected is fx_maxupri. The syntax for
setting this is as follows:

set FX:fx_maxupri=(value for max fixed-priority user priority)

6. Reboot the system to use the new dispatch table.

Exercise great care in using the preceding method to replace the dispatch table. A
mistake can result in panics, thus making the system unusable.

EXAMPLE 1 Configuration File Excerpt

The following excerpt from a dispadmin configuration file illustrates the correct
format. Note that, for each line specifying a set of parameters, there is a comment
indicating the corresponding priority level. These level numbers indicate priority
within the fixed priority class; the mapping between these fixed-priority priorities and
the corresponding global scheduling priorities is determined by the configuration
specified in the FX_DPTBL loadable module. The level numbers are strictly for the
convenience of the administrator reading the file and, as with any comment, they are
ignored by dispadmin. The dispadmin command assumes that the lines in the file
are ordered by consecutive, increasing priority level (from 0 to the maximum
configured fixed–priority priority). For the sake of someone reading the file, the level
numbers in the comments should agree with this ordering. If for some reason they do
not, dispadmin is unaffected.

Fixed Priority Dispatcher Configuration File RES=1000

RES=1000
TIME QUANTUM PRIORITY
(fx_quantum) LEVEL
200 # 0
200 # 1
200 # 2
200 # 3
200 # 4
200 # 5
200 # 6
200 # 7
. . .
. . .
. . .
20 # 58
20 # 59

20 # 60

EXAMPLE 2 fx_dptbl.c File Used for Building the New fx_dptbl

The following is an example of a fx_dptbl.c file used for building the new
fx_dptbl.

fx_dptbl(4)

EXAMPLES

194 man pages section 4: File Formats • Last Revised 15 Oct 2002

EXAMPLE 2 fx_dptbl.c File Used for Building the New fx_dptbl (Continued)

/* BEGIN fx_dptbl.c */

#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/fx.h>
#include <sys/fxpriocntl.h>

/*
* This is the loadable module wrapper.
*/

#include <sys/modctl.h>

extern struct mod_ops mod_miscops;

/*
* Module linkage information for the kernel.
*/

static struct modlmisc modlmisc = {
&mod_miscops, "Fixed priority dispatch table"

};

static struct modlinkage modlinkage = {
MODREV_1, &modlmisc, 0

};

_init()
{

return (mod_install(&modlinkage));
}

_info(modinfop)
struct modinfo *modinfop;

{
return (mod_info(&modlinkage, modinfop));

}

#define FXGPUP0 0 /* Global priority for FX user priority 0 */
fxdpent_t config_fx_dptbl[] = {

/* glbpri qntm */

FXGPUP0+0, 20,
FXGPUP0+1, 20,
FXGPUP0+2, 20,
FXGPUP0+3, 20,
FXGPUP0+4, 20,
FXGPUP0+5, 20,
FXGPUP0+6, 20,
FXGPUP0+7, 20,

fx_dptbl(4)

File Formats 195

EXAMPLE 2 fx_dptbl.c File Used for Building the New fx_dptbl (Continued)

FXGPUP0+8, 20,
FXGPUP0+9, 20,
FXGPUP0+10, 16,
FXGPUP0+11, 16,
FXGPUP0+12, 16,
FXGPUP0+13, 16,
FXGPUP0+14, 16,
FXGPUP0+15, 16,
FXGPUP0+16, 16,
FXGPUP0+17, 16,
FXGPUP0+18, 16,
FXGPUP0+19, 16,
FXGPUP0+20, 12,
FXGPUP0+21, 12,
FXGPUP0+22, 12,
FXGPUP0+23, 12,
FXGPUP0+24, 12,
FXGPUP0+25, 12,
FXGPUP0+26, 12,
FXGPUP0+27, 12,
FXGPUP0+28, 12,
FXGPUP0+29, 12,
FXGPUP0+30, 8,
FXGPUP0+31, 8,
FXGPUP0+32, 8,
FXGPUP0+33, 8,
FXGPUP0+34, 8,
FXGPUP0+35, 8,
FXGPUP0+36, 8,
FXGPUP0+37, 8,
FXGPUP0+38, 8,
FXGPUP0+39, 8,
FXGPUP0+40, 4,
FXGPUP0+41, 4,
FXGPUP0+42, 4,
FXGPUP0+43, 4,
FXGPUP0+44, 4,
FXGPUP0+45, 4,
FXGPUP0+46, 4,
FXGPUP0+47, 4,
FXGPUP0+48, 4,
FXGPUP0+49, 4,
FXGPUP0+50, 4,
FXGPUP0+51, 4,
FXGPUP0+52, 4,
FXGPUP0+53, 4,
FXGPUP0+54, 4,
FXGPUP0+55, 4,
FXGPUP0+56, 4,
FXGPUP0+57, 4,
FXGPUP0+58, 4,
FXGPUP0+59, 2,
FXGPUP0+60 2,

};

fx_dptbl(4)

196 man pages section 4: File Formats • Last Revised 15 Oct 2002

EXAMPLE 2 fx_dptbl.c File Used for Building the New fx_dptbl (Continued)

pri_t config_fx_maxumdpri =
sizeof (config_fx_dptbl) / sizeof (fxdpent_t) - 1;

/*
* Return the address of config_fx_dptbl
*/
fxdpent_t *
fx_getdptbl()
{

return (config_fx_dptbl);
}

/*
* Return the address of fx_maxumdpri
*/
pri_t
fx_getmaxumdpri()
{
/*
* the config_fx_dptbl table.
*/

return (config_fx_maxumdpri);

}

priocntl(1), dispadmin(1M), priocntl(2), system(4)

System Administration Guide, Volume 1, System Interface Guide

In order to improve performance under heavy system load, both the nfsd daemon
and the lockd daemon utilize the maximum priority in the FX class. Unusual
fx_dptbl configurations may have significant negative impact on the performance of
the nfsd and lockd daemons.

fx_dptbl(4)

SEE ALSO

NOTES

File Formats 197

gateways – configuration file for /usr/sbin/in.routed IPv4 network routing daemon

/etc/gateways

The /etc/gateways file is used by the routing daemon, in.routed(1M). When the
daemon starts, it reads /etc/gateways to find such distant gateways that cannot be
located using only information from a routing socket, to discover if some of the local
gateways are passive, and to obtain other parameters.

The /etc/gateways file consists of a series of lines, each in one of the two formats
shown below or consisting of parameters described later. Blank lines and lines starting
with “#” are treated as comments.

One format specifies networks:

net Nname[/mask] gateway Gname metric value <passive | active | extern>

The other format specifies hosts:

host Hname gateway Gname metric value <passive | active | extern>

Host hname is equivalent to net nname/32.

The parameters in the lines shown above are described as follows:

Nname or Hname
Name of the destination network or host. It can be a symbolic network name or an
Internet address specified in "dot" notation (see inet(3SOCKET)). If it is a name,
then it must either be defined in /etc/networks or /etc/hosts, or a naming
service must have been started before in.routed(1M).

Mask
An optional number between 1 and 32 indicating the netmask associated with
Nname.

Gname
Name or address of the gateway to which RIP responses should be forwarded.

Value
The hop count to the destination host or network.

passive | active | extern
One of these keywords must be present to indicate whether the gateway should be
treated as passive or active, or whether the gateway is external to the scope of the
RIP protocol. A passive gateway is not expected to exchange routing information,
while gateways marked active should be willing to exchange RIP packets. See
in.routed(1M) for further details.

After turning on debugging in in.routed with the -t option, you can see that lines
that follow the format described above create pseudo-interfaces. To set parameters for
remote or external interfaces, use a line starting with if=alias(Hname),
if=remote(Hname), and so forth.

gateways(4)

NAME

SYNOPSIS

DESCRIPTION

198 man pages section 4: File Formats • Last Revised 19 Aug 2004

For backward compatibility with the previous Solaris in.routed implementation,
three special keyword formats are accepted. If present, these forms must each be on a
separate line, and must not be combined on the same line with any of the keywords
listed elsewhere in this document. These three forms are:

norip ifname Disable all RIP processing on the specified interface.

noripin ifname Disable the processing of received RIP responses on the
specified interface.

noripout ifname Disable RIP output on the specified interface.

Note that, in each of the preceding three keywords, the ifname argument is optional. If
it is not present, the keyword applies to all interfaces.

Lines that start with neither "net" nor "host" must consist of one or more of the
following parameter settings, separated by commas or blanks:

if=ifname
Indicates that the other parameters on the line apply only to the interface name
ifname. If this parameter is not specified, then other parameters on the line apply to
all interfaces.

subnet=nname[/mask][,metric]
Advertises a route to network nname with mask mask and the supplied metric
(default 1). This is useful for filling "holes" in CIDR allocations. This parameter
must appear by itself on a line. The network number must specify a full, 32-bit
value, as in 192.0.2.0 instead of 192.0.2.

ripv1_mask=nname/mask1,mask2
Specifies that the netmask of the network of which nname/mask1 is a subnet should
be mask2. For example, ripv1_mask=192.0.2.16/28,27 marks
192.0.2.16/28 as a subnet of 192.0.2.0/27 instead of 192.0.2.0/24. It is
better to turn on RIPv2 instead of using this facility. See the description of
ripv2_out, below.

passwd=XXX[|KeyID[start|stop]]
Specifies a RIPv2 cleartext password that will be included on all RIPv2 responses
sent, and checked on all RIPv2 responses received. Any blanks, tab characters,
commas, or “#”, “|”, or NULL characters in the password must be escaped with a
backslash (\). The common escape sequences \n, \r, \t, \b, and \xxx have their
usual meanings. The KeyID must be unique but is ignored for cleartext passwords.
If present, start and stop are timestamps in the form year/month/day@hour:minute.
They specify when the password is valid. The valid password with the longest
future is used on output packets, unless all passwords have expired, in which case
the password that expired most recently is used. If no passwords are valid yet, no
password is output. Incoming packets can carry any password that is valid, will be
valid within 24 hours, or that was valid within 24 hours. To protect password
secrecy, the passwd settings are valid only in the /etc/gateways file and only
when that file is readable only by UID 0.

gateways(4)

File Formats 199

md5_passwd=XXX|KeyID[start|stop]
Specifies a RIPv2 MD5 password. Except that a KeyID is required, this keyword is
similar to passwd (described above).

no_ag
Turns off aggregation of subnets in RIPv1 and RIPv2 responses.

no_host
Turns off acceptance of host routes.

no_super_ag
Turns off aggregation of networks into supernets in RIPv2 responses.

passive
Marks the interface not to be advertised in updates sent over other interfaces, and
turns off all RIP and router discovery through the interface.

no_rip
Disables all RIP processing on the specified interface. If no interfaces are allowed to
process RIP packets, in.routed acts purely as a router discovery daemon.

Note that turning off RIP without explicitly turning on router discovery
advertisements with rdisc_adv or -s causes in.routed to act as a client router
discovery daemon, which does not advertise.

no_rip_mcast
Causes RIPv2 packets to be broadcast instead of multicast.

no_ripv1_in
Causes RIPv1 received responses to be ignored.

no_ripv2_in
Causes RIPv2 received responses to be ignored.

ripv2_out
Turns on RIPv2 output and causes RIPv2 advertisements to be multicast when
possible.

ripv2
Equivalent to no_ripv1_in and ripv2_out. This enables RIPv2 and disables
RIPv1.

no_rdisc
Disables the Internet Router Discovery Protocol.

no_solicit
Disables the transmission of Router Discovery Solicitations.

send_solicit
Specifies that Router Discovery solicitations should be sent, even on point-to-point
links, which, by default, only listen to Router Discovery messages.

no_rdisc_adv
Disables the transmission of Router Discovery Advertisements.

gateways(4)

200 man pages section 4: File Formats • Last Revised 19 Aug 2004

rdisc_adv
Specifies that Router Discovery Advertisements should be sent, even on
point-to-point links, which by default only listen to Router Discovery messages.

bcast_rdisc
Specifies that Router Discovery packets should be broadcast instead of multicast.

rdisc_pref=N
Sets the preference in Router Discovery Advertisements to the optionally signed
integer N. The default preference is 0. Default routes with higher or less negative
preferences are preferred by clients.

rdisc_interval=N
Sets the nominal interval with which Router Discovery Advertisements are
transmitted to N seconds and their lifetime to 3*N.

fake_default=metric
Has an identical effect to -F net[/mask][=metric] with the network number and
netmask coming from the specified interface.

pm_rdisc
Similar to fake_default. To prevent RIPv1 listeners from receiving RIPv2 routes
when those routes are multicast, this feature causes a RIPv1 default route to be
broadcast to RIPv1 listeners. Unless modified with fake_default, the default
route is broadcast with a metric of 14. That serves as a "poor man’s router
discovery" protocol.

trust_gateway=rtr_name[|net1/mask1|net2/mask2|...]
Causes RIP packets from that router and other routers named in other
trust_gateway keywords to be accepted, and packets from other routers to be
ignored. If networks are specified, then routes to other networks will be ignored
from that router.

redirect_ok
Causes RIP to allow ICMP Redirect messages when the system is acting as a router
and forwarding packets. Otherwise, ICMP Redirect messages are overridden.

rip_neighbor=x.x.x.x
By default, RIPv1 advertisements over point-to-point links are sent to the peer’s
address (255.255.255.255, if none is available), and RIPv2 advertisements are sent to
either the RIP multicast address or the peer’s address if no_rip_mcast is set. This
option overrides those defaults and configures a specific address to use on the
indicated interface. This can be used to set a "broadcast" type advertisement on a
point-to-point link.

in.routed(1M), route(1M), rtquery(1M), inet(3SOCKET),

Internet Transport Protocols, XSIS 028112, Xerox System Integration Standard

gateways(4)

SEE ALSO

File Formats 201

geniconvtbl – geniconvtbl input file format

An input file to geniconvtbl is an ASCII text file that contains an iconv code
conversion definition from one codeset to another codeset.

The geniconvtbl utility accepts the code conversion definition file(s) and writes
code conversion binary table file(s) that can be used in iconv(1) and iconv(3C) to
support user-defined code conversions. See iconv(1) and iconv(3C)for more detail
on the iconv code conversion and geniconvtbl(1) for more detail on the utility.

The following lexical conventions are used in the iconv code conversion definition:

CONVERSION_NAME A string of characters representing the name of the
iconv code conversion. The iconv code conversion
name should start with one or more printable ASCII
characters followed by a percentage character ’%’
followed by another one or more of printable ASCII
characters. Examples: ISO8859-1%ASCII,
646%eucJP, CP_939%ASCII.

NAME A string of characters starts with any one of the ASCII
alphabet characters or the underscore character, ’_’,
followed by one or more ASCII alphanumeric
characters and underscore character, ’_’. Examples:
_a1, ABC_codeset, K1.

HEXADECIMAL A hexadecimal number. The hexadecimal
representation consists of an escape character, ’0’
followed by the constant ’x’ or ’X’ and one or more
hexadecimal digits. Examples: 0x0, 0x1, 0x1a, 0X1A,
0x1B3.

DECIMAL A decimal number, represented by one or more decimal
digits. Examples: 0, 123, 2165.

Each comment starts with ’//’ ends at the end of the line.

The following keywords are reserved:

automatic between binary

break condition default

dense direction discard

else error escapeseq

false if index

init input inputsize

geniconvtbl(4)

NAME

DESCRIPTION

The Lexical
Conventions

202 man pages section 4: File Formats • Last Revised 18 Feb 2003

map maptype no_change_copy

operation output output_byte_length

outputsize printchr printhd

printint reset return

true

Additionally, the following symbols are also reserved as tokens:

{ } [] () ; , ...

The following table shows the precedence and associativity of the operators from
lower precedence at the top to higher precedence at the bottom of the table allowed in
the iconv code conversion definition:

Operator (Symbol) Associativity
--
Assignment (=) Right
--
Logical OR (||) Left
--
Logical AND (&&) Left
--
Bitwise OR (|) Left
--
Exclusive OR (^) Left
--
Bitwise AND (&) Left
--
Equal-to (= =), Left

Inequality (!=)
--
Less-than (<), Left

Less-than-or-equal-to (<=),
Greater-than (>),
Greater-than-or-equal-to (>=)

--
Left-shift (<<), Left

Right-shift (>>)
--
Addition (+), Left

Subtraction (-)
--
Multiplication (*), Left

Division (/),
Remainder (%)

geniconvtbl(4)

The precedence
and associativity

File Formats 203

Logical negation (!), Right
Bitwise complement (~),
Unary minus (-)

Each iconv code conversion definition starts with CONVERSION_NAME followed by
one or more semi-colon separated code conversion definition elements:

// a US-ASCII to ISO8859-1 iconv code conversion example:
US-ASCII%ISO8859-1 {

// one or more code conversion definition elements here.

:
:

}

Each code conversion definition element can be any one of the following elements:

direction
condition
operation
map

To have a meaningful code conversion, there should be at least one direction,
operation, or map element in the iconv code conversion definition.

The direction element contains one or more semi-colon separated condition-action
pairs that direct the code conversion:

direction For_US-ASCII_2_ISO8859-1 {

// one or more condition-action pairs here.
:
:

}

Each condition-action pair contains a conditional code conversion that consists of a
condition element and an action element.

condition action

If the pre-defined condition is met, the corresponding action is executed. If there is no
pre-defined condition met, iconv(3C) will return -1 with errno set to EILSEQ. The
condition can be a condition element, a name to a pre-defined condition element, or a
condition literal value, true. The ’true’ condition literal value always yields success
and thus the corresponding action is always executed. The action also can be an action
element or a name to a pre-defined action element.

geniconvtbl(4)

The Syntax

204 man pages section 4: File Formats • Last Revised 18 Feb 2003

The condition element specifies one or more condition expression elements. Since each
condition element can have a name and also can exist stand-alone, a pre-defined
condition element can be referenced by the name at any action pairs later. To be used
in that way, the corresponding condition element should be defined beforehand:

condition For_US-ASCII_2_ISO8859-1 {

// one or more condition expression elements here.
:
:

}

The name of the condition element in the above example is
For_US-ASCII_2_ISO8859-1. Each condition element can have one or more
condition expression elements. If there are more than one condition expression
elements, the condition expression elements are checked from top to bottom to see if
any one of the condition expression elements will yield a true. Any one of the
following can be a condition expression element:

between
escapeseq
expression

The between condition expression element defines one or more comma-separated
ranges:

between 0x0...0x1f, 0x7f...0x9f ;

between 0xa1a1...0xfefe ;

In the first expression in the example above, the covered ranges are 0x0 to 0x1f and
0x7f to 0x9f inclusively. In the second expression, the covered range is the range
whose first byte is 0xa1 to 0xfe and whose second byte is between 0xa1 to 0xfe.
This means that the range is defined by each byte. In this case, the sequence 0xa280
does not meet the range.

The escapeseq condition expression element defines an equal-to condition for one or
more comma-separated escape sequence designators:

// ESC $) C sequence:
escapeseq 0x1b242943;

// ESC $) C sequence or ShiftOut (SO) control character code, 0x0e:

escapeseq 0x1b242943, 0x0e;

The expression can be any one of the following and can be surrounded by a pair of
parentheses, ’(’ and ’)’:

// HEXADECIMAL:
0xa1a1

// DECIMAL
12

geniconvtbl(4)

File Formats 205

// A boolean value, true:
true

// A boolean value, false:
false

// Addition expression:
1 + 2

// Subtraction expression:
10 - 3

// Multiplication expression:
0x20 * 10

// Division expression:
20 / 10

// Remainder expression:
17 % 3

// Left-shift expression:
1 << 4

// Right-shift expression:
0xa1 >> 2

// Bitwise OR expression:
0x2121 | 0x8080

// Exclusive OR expression:
0xa1a1 ^ 0x8080

// Bitwise AND expression:
0xa1 & 0x80

// Equal-to expression:
0x10 == 16

// Inequality expression:
0x10 != 10

// Less-than expression:
0x20 < 25

// Less-than-or-equal-to expression:
10 <= 0x10

// Bigger-than expression:
0x10 > 12

// Bigger-than-or-equal-to expression:
0x10 >= 0xa

// Logical OR expression:
0x10 || false

geniconvtbl(4)

206 man pages section 4: File Formats • Last Revised 18 Feb 2003

// Logical AND expression:
0x10 && false

// Logical negation expression:
! false

// Bitwise complement expression:
~0

// Unary minus expression:

-123

There is a single type available in this expression: integer. The boolean values are two
special cases of integer values. The ’true’ boolean value’s integer value is 1 and the
’false’ boolean value’s integer value is 0. Also, any integer value other than 0 is a true
boolean value. Consequently, the integer value 0 is the false boolean value. Any
boolean expression yields integer value 1 for true and integer value 0 for false as the
result.

Any literal value shown at the above expression examples as operands, that is,
DECIMAL, HEXADECIMAL, and boolean values, can be replaced with another
expression. There are a few other special operands that you can use as well in the
expressions: ’input’, ’inputsize’, ’outputsize’, and variables. input is a
keyword pointing to the current input buffer. inputsize is a keyword pointing to the
current input buffer size in bytes. outputsize is a keyword pointing to the current
output buffer size in bytes. The NAME lexical convention is used to name a variable.
The initial value of a variable is 0. The following expressions are allowed with the
special operands:

// Pointer to the third byte value of the current input buffer:
input[2]

// Equal-to expression with the ’input’:
input == 0x8020

// Alternative way to write the above expression:
0x8020 == input

// The size of the current input buffer size:
inputsize

// The size of the current output buffer size:
outputsize

// A variable:
saved_second_byte

// Assignment expression with the variable:

saved_second_byte = input[1]

geniconvtbl(4)

File Formats 207

The input keyword without index value can be used only with the equal-to operator,
’==’. When used in that way, the current input buffer is consecutively compared with
another operand byte by byte. An expression can be another operand. If the input
keyword is used with an index value n, it is a pointer to the (n+1)th byte from the
beginning of the current input buffer. An expression can be the index. Only a variable
can be placed on the left hand side of an assignment expression.

The action element specifies an action for a condition and can be any one of the
following elements:

direction
operation
map

The operation element specifies one or more operation expression elements:

operation For_US-ASCII_2_ISO8859-1 {

// one or more operation expression element definitions here.
:
:

}

If the name of the operation element, in the case of the above example, For_US
-ASCII_2_ISO8859-1, is either init or reset, it defines the initial operation and
the reset operation of the iconv code conversion:

// The initial operation element:
operation init {

// one or more operation expression element definitions here.
:
:

}

// The reset operation element:
operation reset {

// one or more operation expression element definitions here.
:
:

}

The initial operation element defines the operations that need to be performed in the
beginning of the iconv code conversion. The reset operation element defines the
operations that need to be performed when a user of the iconv(3) function requests a
state reset of the iconv code conversion. For more detail on the state reset, refer to
iconv(3C).

The operation expression can be any one of the following three different expressions
and each operation expression should be separated by an ending semicolon:

geniconvtbl(4)

208 man pages section 4: File Formats • Last Revised 18 Feb 2003

if-else operation expression
output operation expression

control operation expression

The if-else operation expression makes a selection depend on the boolean expression
result. If the boolean expression result is true, the true task that follows the ’if’ is
executed. If the boolean expression yields false and if a false task is supplied, the false
task that follows the ’else’ is executed. There are three different kinds of if-else
operation expressions:

// The if-else operation expression with only true task:
if (expression) {

// one or more operation expression element definitions here.
:
:

}

// The if-else operation expression with both true and false
// tasks:
if (expression) {

// one or more operation expression element definitions here.
:
:

} else {

// one or more operation expression element definitions here.
:
:

}

// The if-else operation expression with true task and
// another if-else operation expression as the false task:
if (expression) {

// one or more operation expression element definitions here.
:
:

} else if (expression) {

// one or more operation expression element definitions here.
:
:

} else {

// one or more operation expression element definitions here.
:
:

}

geniconvtbl(4)

File Formats 209

The last if-else operation expression can have another if-else operation expression as
the false task. The other if-else operation expression can be any one of above three
if-else operation expressions.

The output operation expression saves the right hand side expression result to the
output buffer:

// Save 0x8080 at the output buffer:

output = 0x8080;

If the size of the output buffer left is smaller than the necessary output buffer size
resulting from the right hand side expression, the iconv code conversion will stop with
E2BIG errno and (size_t)-1 return value to indicate that the code conversion needs
more output buffer to complete. Any expression can be used for the right hand side
expression. The output buffer pointer will automatically move forward appropriately
once the operation is executed.

The control operation expression can be any one of the following expressions:

// Return (size_t)-1 as the return value with an EINVAL errno:
error;

// Return (size_t)-1 as the return value with an EBADF errno:
error 9;

// Discard input buffer byte operation. This discards a byte from
// the current input buffer and move the input buffer pointer to
// the 2’nd byte of the input buffer:
discard;

// Discard input buffer byte operation. This discards
// 10 bytes from the current input buffer and move the input
// buffer pointer to the 11’th byte of the input buffer:
discard 10;

// Return operation. This stops the execution of the current
// operation:
return;

// Operation execution operation. This executes the init
// operation defined and sets all variables to zero:
operation init;

// Operation execution operation. This executes the reset
// operation defined and sets all variables to zero:
operation reset;

// Operation execution operation. This executes an operation
// defined and named ’ISO8859_1_to_ISO8859_2’:
operation ISO8859_1_to_ISO8859_2;

// Direction operation. This executes a direction defined and
// named ’ISO8859_1_to_KOI8_R:
direction ISO8859_1_to_KOI8_R;

// Map execution operation. This executes a mapping defined

geniconvtbl(4)

210 man pages section 4: File Formats • Last Revised 18 Feb 2003

// and named ’Map_ISO8859_1_to_US_ASCII’:
map Map_ISO8859_1_to_US_ASCII;

// Map execution operation. This executes a mapping defined
// and named ’Map_ISO8859_1_to_US_ASCII’ after discarding
// 10 input buffer bytes:

map Map_ISO8859_1_to_US_ASCII 10;

In case of init and reset operations, if there is no pre-defined init and/or reset
operations in the iconv code conversions, only system-defined internal init and reset
operations will be executed. The execution of the system-defined internal init and reset
operations will clear the system-maintained internal state.

There are three special operators that can be used in the operation:

printchr expression;
printhd expression;

printint expression;

The above three operators will print out the given expression as a character, a
hexadecimal number, and a decimal number, respectively, at the standard error
stream. These three operators are for debugging purposes only and should be
removed from the final version of the iconv code conversion definition file.

In addition to the above operations, any valid expression separated by a semi-colon
can be an operation, including an empty operation, denoted by a semi-colon alone as
an operation.

The map element specifies a direct code conversion mapping by using one or more
map pairs. When used, usually many map pairs are used to represent an iconv code
conversion definition:

map For_US-ASCII_2_ISO8859-1 {

// one or more map pairs here
:
:

}

Each map element also can have one or two comma-separated map attribute elements
like the following examples:

// Map with densely encoded mapping table map type:
map maptype = dense {

// one or more map pairs here
:
:

}

// Map with hash mapping table map type with hash factor 10.
// Only hash mapping table map type can have hash factor. If
// the hash factor is specified with other map types, it will be

geniconvtbl(4)

File Formats 211

// ignored.
map maptype = hash : 10 {

// one or more map pairs here.
:
:

}

// Map with binary search tree based mapping table map type:
map maptype = binary {

// one more more map pairs here.
:
:

}

// Map with index table based mapping table map type:
map maptype = index {

// one or more map pairs here.
:
:

}

// Map with automatic mapping table map type. If defined,
// system will assign the best possible map type.
map maptype = automatic {

// one or more map pairs here.
:
:

}

// Map with output_byte_length limit set to 2.
map output_byte_length = 2 {

// one or more map pairs here.
:
:

}

// Map with densely encoded mapping table map type and
// output_bute_length limit set to 2:
map maptype = dense, output_byte_length = 2 {

// one or more map pairs here.
:
:

}

geniconvtbl(4)

212 man pages section 4: File Formats • Last Revised 18 Feb 2003

If no maptype is defined, automatic is assumed. If no output_byte_length is defined,
the system figures out the maximum possible output byte length for the mapping by
scanning all the possible output values in the mappings. If the actual output byte
length scanned is bigger than the defined output_byte_length, the geniconvtbl
utility issues an error and stops generating the code conversion binary table(s).

The following are allowed map pairs:

// Single mapping. This maps an input character denoted by
// the code value 0x20 to an output character value 0x21:
0x20 0x21

// Multiple mapping. This maps 128 input characters to 128
// output characters. In this mapping, 0x0 maps to 0x10, 0x1 maps
// to 0x11, 0x2 maps to 0x12, ..., and, 0x7f maps to 0x8f:
0x0...0x7f 0x10

// Default mapping. If specified, every undefined input character
// in this mapping will be converted to a specified character
// (in the following case, a character with code value of 0x3f):
default 0x3f;

// Default mapping. If specified, every undefined input character
// in this mapping will not be converted but directly copied to
// the output buffer:
default no_change_copy;

// Error mapping. If specified, during the code conversion,
// if input buffer contains the byte value, in this case, 0x80,
// the iconv(3) will stop and return (size_t)-1 as the return
// value with EILSEQ set to the errno:

0x80 error;

If no default mapping is specified, every undefined input character in the mapping
will be treated as an error mapping. and thus the iconv(3C) will stop the code
conversion and return (size_t)-1 as the return value with EILSEQ set to the errno.

The syntax of the iconv code conversion definition in extended BNF is illustrated
below:

iconv_conversion_definition
: CONVERSION_NAME ’{’ definition_element_list ’}’
;

definition_element_list
: definition_element ’;’
| definition_element_list definition_element ’;’
;

definition_element
: direction
| condition
| operation
| map
;

geniconvtbl(4)

File Formats 213

direction
: ’direction’ NAME ’{’ direction_unit_list ’}’
| ’direction’ ’{’ direction_unit_list ’}’
;

direction_unit_list
: direction_unit
| direction_unit_list direction_unit
;

direction_unit
: condition action ’;’
| condition NAME ’;’
| NAME action ’;’
| NAME NAME ’;’
| ’true’ action ’;’
| ’true’ NAME ’;’
;

action
: direction
| map
| operation
;

condition
: ’condition’ NAME ’{’ condition_list ’}’
| ’condition’ ’{’ condition_list ’}’
;

condition_list
: condition_expr ’;’
| condition_list condition_expr ’;’
;

condition_expr
: ’between’ range_list
| expr
| ’escapeseq’ escseq_list ’;’
;

range_list
: range_pair
| range_list ’,’ range_pair
;

range_pair
: HEXADECIMAL ’...’ HEXADECIMAL
;

escseq_list
: escseq
| escseq_list ’,’ escseq
;

escseq : HEXADECIMAL
;

map : ’map’ NAME ’{’ map_list ’}’

geniconvtbl(4)

214 man pages section 4: File Formats • Last Revised 18 Feb 2003

| ’map’ ’{’ map_list ’}’
| ’map’ NAME map_attribute ’{’ map_list ’}’
| ’map’ map_attribute ’{’ map_list ’}’
;

map_attribute
: map_type ’,’ ’output_byte_length’ ’=’ DECIMAL
| map_type
| ’output_byte_length’ ’=’ DECIMAL ’,’ map_type
| ’output_byte_length’ ’=’ DECIMAL
;

map_type: ’maptype’ ’=’ map_type_name : DECIMAL
| ’maptype’ ’=’ map_type_name
;

map_type_name
: ’automatic’
| ’index’
| ’hash’
| ’binary’
| ’dense’
;

map_list
: map_pair
| map_list map_pair
;

map_pair
: HEXADECIMAL HEXADECIMAL
| HEXADECIMAL ’...’ HEXADECIMAL HEXADECIMAL
| ’default’ HEXADECIMAL
| ’default’ ’no_change_copy’
| HEXADECIMAL ’error’
;

operation
: ’operation’ NAME ’{’ op_list ’}’
| ’operation’ ’{’ op_list ’}’
| ’operation’ ’init’ ’{’ op_list ’}’
| ’operation’ ’reset’ ’{’ op_list ’}’
;

op_list : op_unit
| op_list op_unit
;

op_unit : ’;’
| expr ’;’
| ’error’ ’;’
| ’error’ expr ’;’
| ’discard’ ’;’
| ’discard’ expr ’;’
| ’output’ ’=’ expr ’;’
| ’direction’ NAME ’;’
| ’operation’ NAME ’;’
| ’operation’ ’init’ ’;’
| ’operation’ ’reset’ ’;’

geniconvtbl(4)

File Formats 215

| ’map’ NAME ’;’
| ’map’ NAME expr ’;’
| op_if_else
| ’return’ ’;’
| ’printchr’ expr ’;’
| ’printhd’ expr ’;’
| ’printint’ expr ’;’
;

op_if_else
: ’if’ ’(’ expr ’)’ ’{’ op_list ’}’
| ’if’ ’(’ expr ’)’ ’{’ op_list ’}’ ’else’ op_if_else
| ’if’ ’(’ expr ’)’ ’{’ op_list ’}’ ’else’ ’{’ op_list ’}’
;

expr : ’(’ expr ’)’
| NAME
| HEXADECIMAL
| DECIMAL
| ’input’ ’[’ expr ’]’
| ’outputsize’
| ’inputsize’
| ’true’
| ’false’
| ’input’ ’==’ expr
| expr ’==’ ’input’
| ’!’ expr
| ’~’ expr
| ’-’ expr
| expr ’+’ expr
| expr ’-’ expr
| expr ’*’ expr
| expr ’/’ expr
| expr ’%’ expr
| expr ’<<’ expr
| expr ’>>’ expr
| expr ’|’ expr
| expr ’^’ expr
| expr ’&’ expr
| expr ’==’ expr
| expr ’!=’ expr
| expr ’>’ expr
| expr ’>=’ expr
| expr ’<’ expr
| expr ’<=’ expr
| NAME ’=’ expr
| expr ’||’ expr
| expr ’&&’ expr

;

EXAMPLE 1 Code conversion from ISO8859-1 to ISO646

ISO8859-1%ISO646 {
// Use dense-encoded internal data structure.
map maptype = dense {

default 0x3f
0x0...0x7f 0x0

};

geniconvtbl(4)

EXAMPLES

216 man pages section 4: File Formats • Last Revised 18 Feb 2003

EXAMPLE 1 Code conversion from ISO8859-1 to ISO646 (Continued)

}

EXAMPLE 2 Code conversion from eucJP to ISO-2022-JP

// Iconv code conversion from eucJP to ISO-2022-JP

#include <sys/errno.h>

eucJP%ISO-2022-JP {
operation init {

codesetnum = 0;
};

operation reset {
if (codesetnum != 0) {

// Emit state reset sequence, ESC (J, for
// ISO-2022-JP.
output = 0x1b284a;

}
operation init;

};

direction {
condition { // JIS X 0201 Latin (ASCII)

between 0x00...0x7f;
} operation {

if (codesetnum != 0) {
// We will emit four bytes.
if (outputsize <= 3) {

error E2BIG;
}
// Emit state reset sequence, ESC (J.
output = 0x1b284a;
codesetnum = 0;

} else {
if (outputsize <= 0) {

error E2BIG;
}

}
output = input[0];

// Move input buffer pointer one byte.
discard;

};

condition { // JIS X 0208
between 0xa1a1...0xfefe;

} operation {
if (codesetnum != 1) {

if (outputsize <= 4) {
error E2BIG;

}
// Emit JIS X 0208 sequence, ESC $ B.
output = 0x1b2442;
codesetnum = 1;

geniconvtbl(4)

File Formats 217

EXAMPLE 2 Code conversion from eucJP to ISO-2022-JP (Continued)

} else {
if (outputsize <= 1) {

error E2BIG;
}

}
output = (input[0] & 0x7f);
output = (input[1] & 0x7f);

// Move input buffer pointer two bytes.
discard 2;

};

condition { // JIS X 0201 Kana
between 0x8ea1...0x8edf;

} operation {
if (codesetnum != 2) {

if (outputsize <= 3) {
error E2BIG;

}
// Emit JIS X 0201 Kana sequence,
// ESC (I.
output = 0x1b2849;
codesetnum = 2;

} else {
if (outputsize <= 0) {

error E2BIG;
}

}
output = (input[1] & 127);

// Move input buffer pointer two bytes.
discard 2;

};

condition { // JIS X 0212
between 0x8fa1a1...0x8ffefe;

} operation {
if (codesetnum != 3) {

if (outputsize <= 5) {
error E2BIG;

}
// Emit JIS X 0212 sequence, ESC $ (D.

output = 0x1b242844;
codesetnum = 3;

} else {
if (outputsize <= 1) {

error E2BIG;
}

}
output = (input[1] & 127);
output = (input[2] & 127);
discard 3;

};

true operation { // error

geniconvtbl(4)

218 man pages section 4: File Formats • Last Revised 18 Feb 2003

EXAMPLE 2 Code conversion from eucJP to ISO-2022-JP (Continued)

error EILSEQ;
};

};

}

/usr/bin/geniconvtbl
the utility geniconvtbl

/usr/lib/iconv/geniconvtbl/binarytables/*.bt
conversion binary tables

/usr/lib/iconv/geniconvtbl/srcs/*
conversion source files for user reference

cpp(1), geniconvtbl(1), iconv(1), iconv(3C), iconv_close(3C),
iconv_open(3C), attributes(5), environ(5)

International Language Environments Guide

The maximum length of HEXADECIMAL and DECIMAL digit length is 128. The
maximum length of a variable is 255. The maximum nest level is 16.

geniconvtbl(4)

FILES

SEE ALSO

NOTES

File Formats 219

group – group file

The group file is a local source of group information. The group file can be used in
conjunction with other group sources, including the NIS maps group.byname and
group.bygid, the NIS+ table group, or group information stored on an LDAP
server. Programs use the getgrnam(3C) routines to access this information.

The group file contains a one-line entry for each group recognized by the system, of
the form:

groupname:password: gid:user-list

where

groupname The name of the group.

gid The group’s unique numerical ID (GID) within the system.

user-list A comma-separated list of users allowed in the group.

The maximum value of the gid field is 2147483647. To maximize interoperability and
compatibility, administrators are recommended to assign groups using the range of
GIDs below 60000 where possible.

If the password field is empty, no password is demanded. During user identification
and authentication, the supplementary group access list is initialized sequentially from
information in this file. If a user is in more groups than the system is configured for,
{NGROUPS_MAX}, a warning will be given and subsequent group specifications will
be ignored.

Malformed entries cause routines that read this file to halt, in which case group
assignments specified further along are never made. To prevent this from happening,
use grpck(1B) to check the /etc/group database from time to time.

Previous releases used a group entry beginning with a ‘+’ (plus sign) or ‘−’ (minus
sign) to selectively incorporate entries from a naming service source (for example, an
NIS map or data from an LDAP server) for group. If still required, this is supported by
specifying group:compat in nsswitch.conf(4). The compat source may not be
supported in future releases. Possible sources are files followed by ldap or
nisplus. This has the effect of incorporating information from an LDAP server or the
entire contents of the NIS+ group table after the group file.

EXAMPLE 1 Sample of a group File.

Here is a sample group file:

root::0:root
stooges:q.mJzTnu8icF.:10:larry,moe,curly

and the sample group entry from nsswitch.conf:

group: files ldap

group(4)

NAME

DESCRIPTION

EXAMPLES

220 man pages section 4: File Formats • Last Revised 22 Jul 2004

EXAMPLE 1 Sample of a group File. (Continued)

With these entries, the group stooges will have members larry, moe, and curly,
and all groups listed on the LDAP server are effectively incorporated after the entry
for stooges.

If the group file was:

root::0:root
stooges:q.mJzTnu8icF.:10:larry,moe,curly
+:

and the group entry from nsswitch.conf:

group: compat

all the groups listed in the NIS group.bygid and group.byname maps would be
effectively incorporated after the entry for stooges.

groups(1), grpck(1B), newgrp(1), getgrnam(3C), initgroups(3C),
nsswitch.conf(4), unistd.h(3HEAD)

System Administration Guide: Basic Administration

group(4)

SEE ALSO

File Formats 221

gsscred.conf – Generic Security Services credential configuration file

/etc/gss/gsscred.conf

The gsscred.conf file contains GSS credential information including options that
can be set by the system administrator.

The options that are in this file include:

SYSLOG_UID_MAPPING=yes

If this option is set to yes, GSS cred to Unix cred mapping results will be logged to
syslog(3C) at level auth.debug.

/etc/gss/gsscred.conf
Contains GSS credential information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

gsscred(1M), gssd(1M), syslog(3C), krb5.conf(4), SEAM(5), attributes(5)

gsscred.conf(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

222 man pages section 4: File Formats • Last Revised 17 Mar 2004

hba.conf – configuration file for the HBAAPI library

The /etc/hba.conf file is used to specify the Vendor-Specific Libraries that are
installed on the system. This file is used by the Common Library to load the
individual VSLs when HBA_LoadLibrary(3HBAAPI) is called. If changes are made
to the file while the library is in use, the library should be freed and reloaded. A
version 1 VSL is compatible only with a version 1 Common Library. A version 2 VSL is
compatible with both a version 1 and a version 2 Common Library.

Each VSL entry is a single line of the form:

"name" "library path"

where:

name is the description of library. The library name should be prepended
with the domain of the manufacturer of the library.

library path is the absolute path to the shared object library file.

EXAMPLE 1 /etc/hba.conf

#
This file contains names and references to HBA libraries
#
Format:
#
<library name> <library pathname>
#
The library name should be prepended with the domain of
the manufacturer or driver author.
com.sun.fchba32 /usr/lib/libsun_fc.so.1

com.sun.fchba64 /usr/lib/sparcv9/libsun_fc.so.1

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

HBA_LoadLibrary(3HBAAPI), libhbaapi(3LIB), attributes(5)

The HBAAPI is provided in both 32– and 64–bit versions, but only one configuration
file is specified. As a result, both 32– and 64–bit VSL libraries must be specified within
the same file. When using the 32–bit Common Library, the 64–bit VSLs will fail to
load. When using the 64–bit Common Library, the 32–bit VSLs will fail to load. These
failures are silently ignored by the Common Library during normal usage, but can
result in warning messages when running client applications in a debugger.

hba.conf(4)

NAME

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

BUGS

File Formats 223

holidays – prime/nonprime table for the accounting system

/etc/acct/holidays

The /etc/acct/holidays file describes which hours are considered prime time and
which days are holidays. Holidays and weekends are considered non-prime time
hours. /etc/acct/holidays is used by the accounting system.

All lines beginning with an "*" are comments.

The /etc/acct/holidays file consists of two sections. The first non-comment line
defines the current year and the start time of prime and non-prime time hours, in the
form:

current_year prime_start non_prime_start

The remaining non-comment lines define the holidays in the form:

month/day company_holiday

Of these two fields, only the month/day is actually used by the accounting system
programs.

The /etc/acct/holidays file must be updated each year.

EXAMPLE 1 Example of the /etc/acct/holidays file.

The following is an example of the /etc/acct/holidays file:

* Prime/Nonprime Table for the accounting system
*
* Curr Prime Non-Prime
* Year Start Start
*

1991 0830 1800
*
* only the first column (month/day) is significant.
*
* month/day Company Holiday
*

1/1 New Years Day
5/30 Memorial Day
7/4 Indep. Day
9/5 Labor Day
11/24 Thanksgiving Day
11/25 day after Thanksgiving
12/25 Christmas
12/26 day after Christmas

acct(1M)

holidays(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

224 man pages section 4: File Formats • Last Revised 28 Mar 1991

hosts – host name database

/etc/inet/hosts

/etc/hosts

The hosts file is a local database that associates the names of hosts with their Internet
Protocol (IP) addresses. The hosts file can be used in conjunction with, or instead of,
other hosts databases, including the Domain Name System (DNS), the NIS hosts
map, the NIS+ hosts table, or information from an LDAP server. Programs use
library interfaces to access information in the hosts file.

The hosts file has one entry for each IP address of each host. If a host has more than
one IP address, it will have one entry for each, on consecutive lines. The format of
each line is:

IP-address official-host-name nicknames . . .

Items are separated by any number of SPACE and/or TAB characters. The first item
on a line is the host’s IP address. The second entry is the host’s official name.
Subsequent entries on the same line are alternative names for the same machine, or
“nicknames.” Nicknames are optional.

For a host with more than one IP address, consecutive entries for these addresses may
contain the same or differing nicknames. Different nicknames are useful for assigning
distinct names to different addresses.

A call to gethostbyname(3NSL) returns a hostent structure containing the union of
all addresses and nicknames from each line containing a matching official name or
nickname.

A ‘#’ indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines that search the file.

Network addresses are written in the conventional “decimal dot” notation and
interpreted using the inet_addr routine from the Internet address manipulation
library, inet(3SOCKET).

This interface supports host names as defined in Internet RFC 952 which states:

A “name” (Net, Host, Gateway, or Domain name) is a text string up to 24 characters
drawn from the alphabet (A-Z), digits (0-9), minus sign (−), and period (.). Note that
periods are only allowed when they serve to delimit components of “domain style
names”. (See RFC 921, “Domain Name System Implementation Schedule,” for
background). No blank or space characters are permitted as part of a name. No
distinction is made between uppercase and lowercase. The first character must be
an alpha character [or a digit. (RFC 1123 relaxed RFC 952’s limitation of the first
character to only alpha characters.)] The last character must not be a minus sign or
period.

hosts(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 225

Although the interface accepts host names longer than 24 characters for the host
portion (exclusive of the domain component), choosing names for hosts that adhere to
the 24 character restriction will insure maximum interoperability on the Internet.

A host which serves as a GATEWAY should have “−GATEWAY“ or “−GW” as part of
its name. Hosts which do not serve as Internet gateways should not use
“−GATEWAY” and “−GW” as part of their names. A host which is a TAC should have
“−TAC” as the last part of its host name, if it is a DoD host. Single character names or
nicknames are not allowed.

EXAMPLE 1 Example of a typical line from the hosts file.

Here is a typical line from the hosts file:

192.9.1.20 gaia # John Smith

gethostbyname(3NSL), inet(3SOCKET), nsswitch.conf(4), resolv.conf(4)

/etc/inet/hosts is the official SVR4 name of the hosts file. The symbolic link
/etc/hosts exists for BSD compatibility.

hosts(4)

EXAMPLES

SEE ALSO

NOTES

226 man pages section 4: File Formats • Last Revised 15 Dec 2004

hosts.equiv, rhosts – trusted remote hosts and users

The /etc/hosts.equiv and .rhosts files provide the “remote authentication”
database for rlogin(1), rsh(1), rcp(1), and rcmd(3SOCKET). The files specify remote
hosts and users that are considered “trusted”. Trusted users are allowed to access the
local system without supplying a password. The library routine ruserok() (see
rcmd(3SOCKET)) performs the authentication procedure for programs by using the
/etc/hosts.equiv and .rhosts files. The /etc/hosts.equiv file applies to the
entire system, while individual users can maintain their own .rhosts files in their
home directories.

These files bypass the standard password-based user authentication mechanism. To
maintain system security, care must be taken in creating and maintaining these files.

The remote authentication procedure determines whether a user from a remote host
should be allowed to access the local system with the identity of a local user. This
procedure first checks the /etc/hosts.equiv file and then checks the .rhosts file
in the home directory of the local user who is requesting access. Entries in these files
can be of two forms. Positive entries allow access, while negative entries deny access.
The authentication succeeds when a matching positive entry is found. The procedure
fails when the first matching negative entry is found, or if no matching entries are
found in either file. The order of entries is important. If the files contain both positive
and negative entries, the entry that appears first will prevail. The rsh(1) and rcp(1)
programs fail if the remote authentication procedure fails. The rlogin program falls
back to the standard password-based login procedure if the remote authentication
fails.

Both files are formatted as a list of one-line entries. Each entry has the form:

hostname [username]

Hostnames must be the official name of the host, not one of its nicknames.

Negative entries are differentiated from positive entries by a ‘−’ character preceding
either the hostname or username field.

If the form:

hostname

is used, then users from the named host are trusted. That is, they may access the
system with the same user name as they have on the remote system. This form may be
used in both the /etc/hosts.equiv and .rhosts files.

If the line is in the form:

hostname username

then the named user from the named host can access the system. This form may be
used in individual .rhosts files to allow remote users to access the system as a
different local user. If this form is used in the /etc/hosts.equiv file, the named
remote user will be allowed to access the system as any local user.

hosts.equiv(4)

NAME

DESCRIPTION

Positive Entries

File Formats 227

netgroup(4) can be used in either the hostname or username fields to match a number
of hosts or users in one entry. The form:

+@netgroup

allows access from all hosts in the named netgroup. When used in the username field,
netgroups allow a group of remote users to access the system as a particular local user.
The form:

hostname +@netgroup

allows all of the users in the named netgroup from the named host to access the
system as the local user. The form:

+@netgroup1 +@netgroup2

allows the users in netgroup2 from the hosts in netgroup1 to access the system as the
local user.

The special character ‘+’ can be used in place of either hostname or username to match
any host or user. For example, the entry

+

will allow a user from any remote host to access the system with the same username.
The entry

+ username

will allow the named user from any remote host to access the system. The entry

hostname +

will allow any user from the named host to access the system as the local user.

Negative entries are preceded by a ‘−’ sign. The form:

−hostname

will disallow all access from the named host. The form:

−@netgroup

means that access is explicitly disallowed from all hosts in the named netgroup. The
form:

hostname −username

disallows access by the named user only from the named host, while the form:

+ −@netgroup

will disallow access by all of the users in the named netgroup from all hosts.

hosts.equiv(4)

Negative Entries

228 man pages section 4: File Formats • Last Revised 23 Jun 1997

To help maintain system security, the /etc/hosts.equiv file is not checked when
access is being attempted for super-user. If the user attempting access is not the
super-user, /etc/hosts.equiv is searched for lines of the form described above.
Checks are made for lines in this file in the following order:

1. +
2. +@netgroup
3. −@netgroup
4. −hostname
5. hostname

The user is granted access if a positive match occurrs. Negative entries apply only to
/etc/hosts.equiv and may be overridden by subsequent .rhosts entries.

If no positive match occurred, the .rhosts file is then searched if the user attempting
access maintains such a file. This file is searched whether or not the user attempting
access is the super-user. As a security feature, the .rhosts file must be owned by the
user who is attempting access. Checks are made for lines in .rhosts in the following
order:

1. +
2. +@netgroup
3. −@netgroup
4. −hostname
5. hostname

/etc/hosts.equiv system trusted hosts and users

~/.rhosts user’s trusted hosts and users

rcp(1), rlogin(1), rsh(1), rcmd(3SOCKET), hosts(4), netgroup(4), passwd(4)

Positive entries in /etc/hosts.equiv that include a username field (either an
individual named user, a netgroup, or ‘+’ sign) should be used with extreme caution.
Because /etc/hosts.equiv applies system-wide, these entries allow one, or a
group of, remote users to access the system as any local user. This can be a security
hole. For example, because of the search sequence, an /etc/hosts.equiv file
consisting of the entries

+
−hostxxx

will not deny access to “hostxxx”.

hosts.equiv(4)

Search Sequence

FILES

SEE ALSO

WARNINGS

File Formats 229

ib – InfiniBand device driver configuration files

The InfiniBand (IB) bus is an I/O transport based on switched fabrics. IB devices are
managed by the ib(7D) nexus driver. There are three categories of InfiniBand devices:

� IB port/IB VPPA/IB HCA_SVC devices
� IB IOC devices
� IB Psuedo devices

The IB port/IB VPPA/IB HCA_SVC devices are enumerated by way of the ib.conf
file. See ib(7D).

The IB IOC devices are enumerated using the InfiniBand Device management class.
See ibdm(7D).

For devices not in these two categories, most notably IB Psuedo devices, the driver
must provide configuration files to inform the system of the IB devices to be created.
Configuration parameters are represented in the form of name value pairs you can
retrieve using the DDI property interfaces. See ddi_prop_op(9F) for details.

Configuration files for IB device drivers must identify the parent driver explicitly as
"ib," and must create a string array property called "unit-address" which is unique to
this entry in the configuration file. Drivers name "ibport" and "ioc" are reserved by
ib(7D) and should not be used.

Each entry in the configuration file creates a prototype devinfo node. Each node is
assigned a unit address which is determined by the value of the "unit-address"
property. This property is only applicable to children of the IB parent and is required.
See driver.conf(4) for further details on configuration file syntax.

Example 1: Sample configuration file

Here is a configuration file called ibgen.conf for an IB device driver that
implements a generic IB driver. This file creates a node called "ibgen."

#
Copyright 2002-2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
#ident "@(#)ibgen.conf 1.3 03/05/01 SMI"

name="ibgen" parent="ib" unit-address="0";

driver.conf(4), ib(7D), ibtl(7D), ddi_prop_op(9F)

ib(4)

NAME

DESCRIPTION

EXAMPLES

SEE ALSO

230 man pages section 4: File Formats • Last Revised 19 Feb 2004

idnkit.pc – meta information data file for libidnkit

/usr/lib/pkgconfig/idnkit.pc

idnkit.pc is the meta information data file for libidnkit(3LIB). Use
pkg-config(1) to retrieve the defined values such as compile and link flags for the
library.

EXAMPLE 1 Using idnkit.pc through pkg-config

The following command yields compile and link flags, if any, for libidnkit(3LIB):

example% pkg-config --cflags --libs idnkit

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWidnd

Interface Stability External

idn_decodename(3EXT), idn_decodename2(3EXT), idn_encodename(3EXT),
libidnkit(3LIB), attributes(5), environ(5), iconv(5)

idnkit.pc(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

File Formats 231

ike.config – configuration file for IKE policy

/etc/inet/ike/config

The /etc/inet/ike/config file contains rules for matching inbound IKE requests.
It also contains rules for preparing outbound IKE requests.

You can test the syntactic correctness of an /etc/inet/ike/config file by using the
-c or -f options of in.iked(1M). You must use the -c option to test a config file.
You may need to use the -f option if it is not in /etc/inet/ike/config.

On any line, an unquoted # character introduces a comment. The remainder of that
line is ignored. Additionally, on any line, an unquoted // sequence introduces a
comment. The remainder of that line is ignored.

There are several types of lexical tokens in the ike.config file:

num
A decimal, hex, or octal number representation is as in ’C’.

IPaddr/prefix/range
An IPv4 or IPv6 address with an optional /NNN suffix, (where NNN is a num) that
indicates an address (CIDR) prefix (for example, 10.1.2.0/24). An optional
/ADDR suffix (where ADDR is a second IP address) indicates an address/mask
pair (for example, 10.1.2.0/255.255.255.0). An optional -ADDR suffix (where
ADDR is a second IPv4 address) indicates an inclusive range of addresses (for
example, 10.1.2.0-10.1.2.255). The / or - can be surrounded by an arbitrary
amount of white space.

XXX | YYY | ZZZ
Either the words XXX, YYY, or ZZZ, for example, {yes,no}.

p1-id-type
An IKE phase 1 identity type. IKE phase 1 identity types include:

dn, DN
dns, DNS
fqdn, FQDN
gn, GN
ip, IP
ipv4
ipv4_prefix
ipv4_range
ipv6
ipv6_prefix
ipv6_range
mbox, MBOX
user_fqdn

"string"
A quoted string.

ike.config(4)

NAME

SYNOPSIS

DESCRIPTION

Lexical
Components

232 man pages section 4: File Formats • Last Revised 30 Oct 2003

Examples include:"Label foo", or "C=US, OU=Sun Microsystems\\, Inc.,
N=olemcd@eng.example.com"

A backslash (\) is an escape character. If the string needs an actual backslash, two
must be specified.

cert-sel
A certificate selector, a string which specifies the identities of zero or more
certificates. The specifiers can conform to X.509 naming conventions.

A cert-sel can also use various shortcuts to match either subject alternative names,
the filename or slot of a certificate in /etc/inet/ike/publickeys, or even the
ISSUER. For example:

"SLOT=0"
"EMAIL=postmaster@domain.org"
"webmaster@domain.org" # Some just work w/o TYPE=
"IP=10.0.0.1"
"10.21.11.11" # Some just work w/o TYPE=
"DNS=www.domain.org"
"mailhost.domain.org" # Some just work w/o TYPE=

"ISSUER=C=US, O=Sun Microsystems\\, Inc., CN=Sun CA"

Any cert-sel preceded by the character ! indicates a negative match, that is, not
matching this specifier. These are the same kind of strings used in ikecert(1M).

ldap-list
A quoted, comma-separated list of LDAP servers and ports.

For example, "ldap1.example.com", "ldap1.example.com:389",
"ldap1.example.com:389,ldap2.example.com".

The default port for LDAP is 389.

parameter-list
A list of parameters.

There are four main types of entries:

� global parameters
� IKE phase 1 transform defaults
� IKE rule defaults
� IKE rules

The global parameter entries are as follows:

cert_root cert-sel
The X.509 distinguished name of a certificate that is a trusted root CA certificate.It
must be encoded in a file in the /etc/inet/ike/publickeys directory. It must
have a CRL in /etc/inet/ike/crls. Multiple cert_root parameters aggregate.

ike.config(4)

File Body Entries

File Formats 233

cert_trust cert-sel
Specifies an X.509 distinguished name of a certificate that is self-signed, or has
otherwise been verified as trustworthy for signing IKE exchanges. It must be
encoded in a file in /etc/inet/ike/publickeys. Multiple cert_trust
parameters aggregate.

expire_timer integer
The number of seconds to let a not-yet-complete IKE Phase I (Main Mode)
negotiation linger before deleting it. Default value: 300 seconds.

ignore_crls
If this keyword is present in the file, in.iked(1M) ignores Certificate Revocation
Lists (CRLs) for root CAs (as given in cert_root)

ldap_server ldap-list
A list of LDAP servers to query for certificates. The list can be additive.

pkcs11_path string
The string that follows is a pathname to a shared object (.so) that implements the
PKCS#11 standard. It is assumed the PKCS#11 library will provide faster public-key
operations than in.iked or other SunOS built-in functionality. For example, the
Sun Crypto Accelerator 1000 has such a library in
/opt/SUNWconn/lib/libpkcs11.so.

retry_limit integer
The number of retransmits before any IKE negotiation is aborted. Default value: 5
times.

retry_timer_init integer or float
The initial interval (in seconds) between retransmits. This interval is doubled until
the retry_timer_max value (see below) is reached. Default value: 0.5 seconds.

retry_timer_max integer or float
The maximum interval (in seconds) between retransmits. The doubling retransmit
interval will stop growing at this limit. Default value: 30 seconds.

Note – This value is never reached with the default configuration. The longest
interval will be 8 (0.5 * 2 ^ (5 - 1)) seconds.

proxy string
The string following this keyword must be a URL for an HTTP proxy, for example,
http://proxy:8080.

socks string
The string following this keyword must be a URL for a SOCKS proxy, for example,
socks://socks-proxy.

use_http
If this keyword is present in the file, in.iked(1M) uses HTTP to retrieve
Certificate Revocation Lists (CRLs).

The following IKE phase 1 transform parameters can be prefigured using file-level
defaults. Values specified within any given transform override these defaults.

ike.config(4)

234 man pages section 4: File Formats • Last Revised 30 Oct 2003

The IKE phase 1 transform defaults are as follows:

p1_lifetime_secs num
The proposed default lifetime, in seconds, of an IKE phase 1 security association
(SA).

p1_nonce_len num
The length in bytes of the phase 1 (quick mode) nonce data. This cannot be
specified on a per-rule basis.

The following IKE rule parameters can be prefigured using file-level defaults. Values
specified within any given rule override these defaults, unless a rule cannot.

p2_nonce_len num
The length in bytes of the phase 2 (quick mode) nonce data. This cannot be
specified on a per-rule basis.

local_id_type p1-id-type
The local identity for IKE requires a type. This identity type is reflected in the IKE
exchange. The type can be one of the following:

� an IP address (for example, 10.1.1.2)
� DNS name (for example, test.domain.com)
� MBOX RFC 822 name (for example, root@domain.com)
� DNX.509 distinguished name (for example, C=US, O=Sun Microsystems\,

Inc., CN=Sun Test cert)

p1_xform ’{’ parameter-list ’}
A phase 1 transform specifies a method for protecting an IKE phase 1 exchange. An
initiator offers up lists of phase 1 transforms, and a receiver is expected to only
accept such an entry if it matches one in a phase 1 rule. There can be several of
these, and they are additive. There must be either at least one phase 1 transform in
a rule or a global default phase 1 transform list. In a configuration file without a
global default phase 1 transform list and a rule without a phase, transform list is an
invalid file. Unless specified as optional, elements in the parameter-list must occur
exactly once within a given transform’s parameter-list:

oakley_group number
The Oakley Diffie-Hellman group used for IKE SA key derivation. Acceptable
values are currently 1 (768-bit), 2 (1024-bit), or 5 (1536-bit).

encr_alg {3des, 3des-cbc, blowfish, des, des-cbc}
An encryption algorithm, as in ipsecconf(1M).

auth_alg {md5, sha, sha1}
An authentication algorithm, as in ipsecconf(1M).

auth_method {preshared, rsa_sig, rsa_encrypt, dss_sig}
The authentication method used for IKE phase 1.

p1_lifetime_secs num
Optional. The lifetime for a phase 1 SA.

ike.config(4)

File Formats 235

p2_lifetime_secs num
If configuring the kernel defaults is not sufficient for different tasks, this parameter
can be used on a per-rule basis to set the IPsec SA lifetimes in seconds.

p2_pfs num
The Oakley Diffie-Hellman group used for IPsec SA key derivation. Acceptable
values are 0 (do not use Perfect Forward Secrecy for IPsec SAs), 1 (768-bit), 2
(1024-bit), and 5 (1536-bit).

An IKE rule starts with a right-curly-brace ({), ends with a left-curly-brace (}), and
has the following parameters in between:

label string
Required parameter. The administrative interface to in.iked looks up phase 1
policy rules with the label as the search string. The administrative interface also
converts the label into an index, suitable for an extended ACQUIRE message from
PF_KEY - effectively tying IPsec policy to IKE policy in the case of a node initiating
traffic. Only one label parameter is allowed per rule.

local_addr <IPaddr/prefix/range>
Required parameter. The local address, address prefix, or address range for this
phase 1 rule. Multiple local_addr parameters accumulate within a given rule.

remote_addr <IPaddr/prefix/range>
Required parameter. The remote address, address prefix, or address range for this
phase 1 rule. Multiple remote_addr parameters accumulate within a given rule.

local_id_type p1-id-type
Which phase 1 identity type I uses. This is needed because a single certificate can
contain multiple values for use in IKE phase 1. Within a given rule, all phase 1
transforms must either use preshared or non-preshared authentication (they cannot
be mixed). For rules with preshared authentication, the local_id_type
parameter is optional, and defaults to IP. For rules which use non-preshared
authentication, the ’local_id_type’ parameter is required. Multiple ’local_id_type’
parameters within a rule are not allowed.

local_id cert-sel
Disallowed for preshared authentication method; required parameter for
non-preshared authentication method. The local identity string or certificate
selector. Multiple local_id parameters accumulate within a given rule.

remote_id cert-sel
Disallowed for preshared authentication method; required parameter for
non-preshared authentication method. Selector for which remote phase 1 identities
are allowed by this rule. Multiple remote_id parameters accumulate within a
given rule. If a single empty string ("") is given, then this accepts any remote ID for
phase 1. It is recommended that certificate trust chains or address enforcement be
configured strictly to prevent a breakdown in security if this value for remote_id
is used.

p2_lifetime_secs num
If configuring the kernel defaults is not sufficient for different tasks, this parameter
can be used on a per-rule basis to set the IPsec SA lifetimes in seconds.

ike.config(4)

236 man pages section 4: File Formats • Last Revised 30 Oct 2003

p2_pfs num
Use perfect forward secrecy for phase 2 (quick mode). If selected, the oakley group
specified is used for phase 2 PFS. Acceptable values are 0 (do not use Perfect
Forward Secrecy for IPsec SAs), 1 (768-bit), 2 (1024-bit), and 5 (1536-bit).

p1_xform { parameter-list }
A phase 1 transform specifies a method for protecting an IKE phase 1 exchange. An
initiator offers up lists of phase 1 transforms, and a receiver is expected to only
accept such an entry if it matches one in a phase 1 rule. There can be several of
these, and they are additive. There must be either at least one phase 1 transform in
a rule or a global default phase 1 transform list. A ike.config file without a
global default phase 1transform list and a rule without a phase 1 transform list is an
invalid file. Elements within the parameter-list; unless specified as optional, must
occur exactly once within a given transform’s parameter-list:

oakley_group number
The Oakley Diffie-Hellman group used for IKE SA key derivation. Acceptable
values are currently 1 (768-bit), 2 (1024-bit), or 5 (1536-bit).

encr_alg {3des, 3des-cbc, blowfish, des, des-cbc}
An encryption algorithm, as in ipsecconf(1M).

auth_alg {md5, sha, sha1}
An authentication algorithm, as specified in ipseckey(1M).

auth_method {preshared, rsa_sig, rsa_encrypt, dss_sig}
The authentication method used for IKE phase 1.

p1_lifetime_secs num
Optional. The lifetime for a phase 1 SA.

EXAMPLE 1 A Sample ike.config File

The following is an example of an ike.config file:

BEGINNING OF FILE

First some global parameters...

certificate parameters...

Root certificates. I SHOULD use a full Distinguished Name.
I must have this certificate in my local filesystem, see ikecert(1m).
cert_root "C=US, O=Sun Microsystems\\, Inc., CN=Sun CA"

Explicitly trusted certs that need no signatures, or perhaps self-signed
ones. Like root certificates, use full DNs for them for now.
cert_trust "EMAIL=root@domain.org"

Where do I send LDAP requests?
ldap_server "ldap1.domain.org,ldap2.domain.org:389"

phase 1 transform defaults...

ike.config(4)

EXAMPLES

File Formats 237

EXAMPLE 1 A Sample ike.config File (Continued)

p1_lifetime_secs 14400
p1_nonce_len 20

Parameters that may also show up in rules.

p1_xform { auth_method preshared oakley_group 5 auth_alg sha
encr_alg 3des }

p2_pfs 2

Use the Sun Crypto Accelerator 1000 to speed up public key operations.
pkcs11_path "/opt/SUNWconn/lib/libpkcs11.so"

Now some rules...

{
label "simple inheritor"
local_id_type ip
local_addr 10.1.1.1
remote_addr 10.1.1.2

}
{

label "simple inheritor IPv6"
local_id_type ipv6
local_addr fe80::a00:20ff:fe7d:6
remote_addr fe80::a00:20ff:fefb:3780

}

{
an index-only rule. If I’m a receiver, and all I
have are index-only rules, what do I do about inbound IKE requests?
Answer: Take them all!

label "default rule"
Use whatever "host" (e.g. IP address) identity is appropriate
local_id_type ipv4

local_addr 0.0.0.0/0
remote_addr 0.0.0.0/0

p2_pfs 5

Now I’m going to have the p1_xforms
p1_xform
{auth_method preshared oakley_group 5 auth_alg md5 encr_alg blowfish }
p1_xform
{auth_method preshared oakley_group 5 auth_alg md5 encr_alg 3des }

After said list, another keyword (or a ’}’) will stop xform parsing.
}

{
Let’s try something a little more conventional.

label "host to .80 subnet"

ike.config(4)

238 man pages section 4: File Formats • Last Revised 30 Oct 2003

EXAMPLE 1 A Sample ike.config File (Continued)

local_id_type ip
local_id "10.1.86.51"

remote_id "" # Take any, use remote_addr for access control.

local_addr 10.1.86.51
remote_addr 10.1.80.0/24

p1_xform
{ auth_method rsa_sig oakley_group 5 auth_alg md5 encr_alg 3des }
p1_xform
{ auth_method rsa_sig oakley_group 5 auth_alg md5 encr_alg blowfish }
p1_xform
{ auth_method rsa_sig oakley_group 5 auth_alg sha1 encr_alg 3des }
p1_xform
{ auth_method rsa_sig oakley_group 5 auth_alg sha1 encr_alg blowfish }

}

{
Let’s try something a little more conventional, but with ipv6.

label "host to fe80::/10 subnet"
local_id_type ip
local_id "fe80::a00:20ff:fe7d:6"

remote_id "" # Take any, use remote_addr for access control.

local_addr fe80::a00:20ff:fe7d:6
remote_addr fe80::/10

p1_xform
{ auth_method rsa_sig oakley_group 5 auth_alg md5 encr_alg 3des }
p1_xform
{ auth_method rsa_sig oakley_group 5 auth_alg md5 encr_alg blowfish }
p1_xform
{ auth_method rsa_sig oakley_group 5 auth_alg sha1 encr_alg 3des }
p1_xform
{ auth_method rsa_sig oakley_group 5 auth_alg sha1 encr_alg blowfish }

}

{
How ’bout something with a different cert type and name?

label "punchin-point"
local_id_type mbox
local_id "ipsec-wizard@domain.org"

remote_id "10.5.5.128"

local_addr 0.0.0.0/0
remote_addr 10.5.5.128

p1_xform
{ auth_method rsa_sig oakley_group 5 auth_alg md5 encr_alg blowfish }

}

ike.config(4)

File Formats 239

EXAMPLE 1 A Sample ike.config File (Continued)

{
label "receiver side"

remote_id "ipsec-wizard@domain.org"

local_id_type ip
local_id "10.5.5.128"

local_addr 10.5.5.128
remote_addr 0.0.0.0/0

p1_xform
{ auth_method rsa_sig oakley_group 5 auth_alg md5 encr_alg blowfish }
NOTE: Specifying preshared null-and-voids the remote_id/local_id
fields.
p1_xform
{ auth_method preshared oakley_group 5 auth_alg md5 encr_alg blowfish}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

ikeadm(1M), in.iked(1M), ikecert(1M), ipseckey(1M), ipsecconf(1M),
attributes(5), random(7D)

Harkins, Dan and Carrel, Dave. RFC 2409, Internet Key Exchange (IKE). Cisco Systems.,
November 1998.

Maughan, Douglas et. al. RFC 2408, Internet Security Association and Key Management
Protocol (ISAKMP). National Security Agency, Ft. Meade, MD. November 1998.

Piper, Derrell. RFC 2407, The Internet IP Security Domain of Interpretation for ISAKMP.
Network Alchemy. Santa Cruz, California. November 1998.

ike.config(4)

ATTRIBUTES

SEE ALSO

240 man pages section 4: File Formats • Last Revised 30 Oct 2003

ike.preshared – pre-shared keys file for IKE

/etc/inet/secret/ike.preshared

The /etc/inet/secret/ike.preshared file contains secret keying material that
two IKE instances can use to authenticate each other. Because of the sensitive nature of
this data, it is kept in the /etc/inet/secret directory, which is only accessible by
root.

Pre-shared keys are delimited by open-curly-brace ({) and close-curly-brace (})
characters. There are five name-value pairs required inside a pre-shared key:

Name Value Example

localidtype IP localidtype IP

remoteidtype IP remoteidtype IP

localid IP-address localid 10.1.1.2

remoteid IP-address remoteid 10.1.1.3

key hex-string 1234567890abcdef

Comment lines with # appearing in the first column are also legal.

Files in this format can also be used by the ikeadm(1M) command to load additional
pre-shared keys into a running an in.iked(1M) process.

EXAMPLE 1 A Sample ike.preshared File

The following is an example of an ike.preshared file:

#
Two pre-shared keys between myself, 10.1.1.2, and two remote
hosts. Note that names are not allowed for IP addresses.
#
A decent hex string can be obtained by performing:
od -x </dev/random | head
#

{
localidtype IP
localid 10.1.1.2
remoteidtype IP
remoteid 10.21.12.4
key 4b656265207761732068657265210c0a

}

{
localidtype IP
localid 10.1.1.2
remoteidtype IP

ike.preshared(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

File Formats 241

EXAMPLE 1 A Sample ike.preshared File (Continued)

remoteid 10.9.1.25
key 536f20776572652042696c6c2c2052656e65652c20616e642043687269732e0a

}

If this file is compromised, all IPsec security associations derived from secrets in this
file will be compromised as well. The default permissions on ike.preshared are
0600. They should stay this way.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

od(1), ikeadm(1M), in.iked(1M), ipseckey(1M), attributes(5), random(7D)

ike.preshared(4)

SECURITY

ATTRIBUTES

SEE ALSO

242 man pages section 4: File Formats • Last Revised 15 Oct 2001

inetd.conf – Internet servers database

/etc/inet/inetd.conf

/etc/inetd.conf

In the current release of the Solaris operating system, the inetd.conf file is no
longer directly used to configure inetd. The Solaris services which were formerly
configured using this file are now configured in the Service Management Facility (see
smf(5)) using inetadm(1M). Any records remaining in this file after installation or
upgrade, or later created by installing additional software, must be converted to
smf(5) services and imported into the SMF repository using inetconv(1M),
otherwise the service will not be available.

For Solaris operating system releases prior to the current release (such as Solaris 9), the
inetd.conf file contains the list of servers that inetd(1M) invokes when it receives
an Internet request over a socket. Each server entry is composed of a single line of the
form:

service-name endpoint-type protocol wait-status uid server-program \

server-arguments

Fields are separated by either SPACE or TAB characters. A ‘#’ (number sign) indicates
the beginning of a comment; characters up to the end of the line are not interpreted by
routines that search this file.

service-name The name of a valid service listed in the services file.
For RPC services, the value of the service-name field
consists of the RPC service name or program number,
followed by a ’/’ (slash) and either a version number or
a range of version numbers, for example, rstatd/2-4.

endpoint-type Can be one of:

stream for a stream socket

dgram for a datagram socket

raw for a raw socket

seqpacket for a sequenced packet socket

tli for all TLI endpoints

protocol A recognized protocol listed in the file
/etc/inet/protocols. For servers capable of
supporting TCP and UDP over IPv6, the following
protocol types are also recognized:

tcp6
udp6

tcp6 and udp6 are not official protocols; accordingly,
they are not listed in the /etc/inet/protocols file.

inetd.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 243

Here the inetd program uses an AF_INET6 type
socket endpoint. These servers can also handle
incoming IPv4 client requests in addition to IPv6 client
requests.

For RPC services, the field consists of the string rpc
followed by a ’/’ (slash) and either a ’*’ (asterisk), one
or more nettypes, one or more netids, or a combination
of nettypes and netids. Whatever the value, it is first
treated as a nettype. If it is not a valid nettype, then it is
treated as a netid. For example, rpc/* for an RPC
service using all the transports supported by the
system (the list can be found in the /etc/netconfig
file), equivalent to saying rpc/visible rpc/ticots
for an RPC service using the Connection-Oriented
Transport Service.

wait-status This field has values wait or nowait. This entry
specifies whether the server that is invoked by inetd
will take over the listening socket associated with the
service, and whether once launched, inetd will wait
for that server to exit, if ever, before it resumes listening
for new service requests. The wait-status for datagram
servers must be set to wait, as they are always
invoked with the orginal datagram socket that will
participate in delivering the service bound to the
specified service. They do not have separate "listening"
and "accepting" sockets. Accordingly, do not configure
UDP services as nowait. This causes a race condition by
which the inetd program selects on the socket and the
server program reads from the socket. Many server
programs will be forked, and performance will be
severely compromised. Connection-oriented services
such as TCP stream services can be designed to be
either wait or nowait status.

uid The user ID under which the server should run. This
allows servers to run with access privileges other than
those for root.

server-program Either the pathname of a server program to be invoked
by inetd to perform the requested service, or the
value internal if inetd itself provides the service.

server-arguments If a server must be invoked with command line
arguments, the entire command line (including
argument 0) must appear in this field (which consists of
all remaining words in the entry). If the server expects
inetd to pass it the address of its peer, for

inetd.conf(4)

244 man pages section 4: File Formats • Last Revised 17 Dec 2004

compatibility with 4.2BSD executable daemons, then
the first argument to the command should be specified
as %A. No more than 20 arguments are allowed in this
field. The %A argument is implemented only for
services whose wait-status value is nowait.

/etc/netconfig network configuration file

/etc/inet/protocols Internet protocols

/etc/inet/services Internet network services

rlogin(1), rsh(1), in.tftpd(1M), inetadm(1M), inetconv(1M), inetd(1M),
services(4), smf(5)

/etc/inet/inetd.conf is the official SVR4 name of the inetd.conf file. The
symbolic link /etc/inetd.conf exists for BSD compatibility.

This man page describes inetd.conf as it was supported in Solaris operating system
releases prior to the current release. The services that were configured by means of
inetd.conf are now configured in the Service Management Facility (see smf(5))
using inetadm(1M).

inetd.conf(4)

FILES

SEE ALSO

NOTES

File Formats 245

inet_type – default Internet protocol type

/etc/default/inet_type

The inet_type file defines the default IP protocol to use. Currently this file is only
used by the ifconfig(1M) and netstat(1M) commands.

The inet_type file can contain a number of <variable>=<value> lines. Currently,
the only variable defined is DEFAULT_IP, which can be assigned a value of
IP_VERSION4, IP_VERSION6, or BOTH.

The output displayed by the ifconfig and netstat commands can be controlled by
the value of DEFAULT_IP set in inet_type file. By default, both commands display
the IPv4 and IPv6 information available on the system. The user can choose to
suppress display of IPv6 information by setting the value of DEFAULT_IP. The
following shows the possible values for DEFAULT_IP and the resulting ifconfig
and netstat output that will be displayed:

IP_VERSION4 Displays only IPv4 related information. The output displayed is
backward compatible with older versions of the ifconfig(1M)
and netstat(1M) commands.

IP_VERSION6 Displays both IPv4 and IPv6 related information for ifconfig
and netstat.

BOTH Displays both IPv4 and IPv6 related information for ifconfig
and netstat.

The command-line options to the ifconfig and netstat commands override the
effect of DEFAULT_IP as set in the inet_type file. For example, even if the value of
DEFAULT_IP is IP_VERSION4, the command

example% ifconfig -a6will display all IPv6 interfaces.

EXAMPLE 1 Suppressing IPv6 Related Output

This is what the inet_type file must contain if you want to suppress IPv6 related
output:

DEFAULT_IP=IP_VERSION4

ifconfig(1M), netstat(1M)

inet_type(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

246 man pages section 4: File Formats • Last Revised 16 Jun 1999

init.d – initialization and termination scripts for changing init states

/etc/init.d

/etc/init.d is a directory containing initialization and termination scripts for
changing init states. These scripts are linked when appropriate to files in the rc?.d
directories, where ‘?’ is a single character corresponding to the init state. See
init(1M) for definitions of the states.

The service management facility (see smf(5)) is the preferred mechanism for service
initiation and termination. The init.d and rc?.d directories are obsolete, and are
provided for compatibility purposes only. Applications launched from these
directories by svc.startd(1M) are incomplete services, and will not be restarted on
failure.

File names in rc?.d directories are of the form [SK]nn<init.d filename>, where S
means start this job, K means kill this job, and nn is the relative sequence number for
killing or starting the job.

When entering a state (init S,0,2,3,etc.) the rc[S0-6] script executes those scripts in
/etc/rc[S0-6].d that are prefixed with K followed by those scripts prefixed with S.
When executing each script in one of the /etc/rc[S0-6] directories, the
/sbin/rc[S0-6] script passes a single argument. It passes the argument ’stop’ for
scripts prefixed with K and the argument ’start’ for scripts prefixed with S. There is no
harm in applying the same sequence number to multiple scripts. In this case the order
of execution is deterministic but unspecified.

Guidelines for selecting sequence numbers are provided in README files located in the
directory associated with that target state. For example, /etc/rc[S0-6].d/README.
Absence of a README file indicates that there are currently no established guidelines.

Do not put /etc/init.d in your $PATH. Having this directory in your $PATH can
cause unexpected behavior. The programs in /etc/init.d are associated with init
state changes and, under normal circumstances, are not intended to be invoked from a
command line.

EXAMPLE 1 Example of /sbin/rc2.

When changing to init state 2 (multi-user mode, network resources not exported),
/sbin/rc2 is initiated by the svc.startd(1M) process. The following steps are
performed by /sbin/rc2.

1. In the directory /etc/rc2.d are files used to stop processes that should not be
running in state 2. The filenames are prefixed with K. Each K file in the directory is
executed (by /sbin/rc2) in alphanumeric order when the system enters init state
2. See example below.

2. Also in the rc2.d directory are files used to start processes that should be running
in state 2. As in Step 1, each S file is executed.

init.d(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

File Formats 247

EXAMPLE 1 Example of /sbin/rc2. (Continued)

Assume the file /etc/init.d/netdaemon is a script that will initiate networking
daemons when given the argument ’start’, and will terminate the daemons if given the
argument ’stop’. It is linked to /etc/rc2.d/S68netdaemon, and to
/etc/rc0.d/K67netdaemon. The file is executed by /etc/rc2.d/S68netdaemon
start when init state 2 is entered and by /etc/rc0.d/K67netdaemon stop when
shutting the system down.

svcs(1), init(1M), svc.startd(1M), smf(5)

Solaris now provides an expanded mechanism, which includes automated restart, for
applications historically started via the init script mechanism. The Service
Management Facility (introduced in smf(5)) is the preferred delivery mechanism for
persistently running applications. Existing init.d scripts will, however, continue to
be executed according to the rules in this manual page. The details of execution in
relation to managed services are available in svc.startd(1M).

/sbin/rc2 has references to the obsolescent rc.d directory. These references are for
compatibility with old INSTALL scripts. New INSTALL scripts should use the init.d
directory for related executables. The same is true for the shutdown.d directory.

init.d(4)

SEE ALSO

NOTES

248 man pages section 4: File Formats • Last Revised 28 Jul 2004

inittab – script for init

The /etc/inittab file controls process dispatching by init. The processes most
typically dispatched by init are daemons.

It is no longer necessary to edit the /etc/inittab file directly. Administrators
should use the Solaris Service Management Facility (SMF) to define services instead.
Refer to smf(5) and the System Administration Guide: Basic Administration for more
information on SMF.

To modify parameters passed to ttymon(1M), use svccfg(1M) to modify the SMF
repository. See ttymon(1M) for details on the available SMF properties.

The inittab file is composed of entries that are position dependent and have the
following format:

id:rstate:action:process

Each entry is delimited by a newline; however, a backslash (\) preceding a newline
indicates a continuation of the entry. Up to 512 characters for each entry are permitted.
Comments may be inserted in the process field using the convention for comments
described in sh(1). There are no limits (other than maximum entry size) imposed on
the number of entries in the inittab file. The entry fields are:

id
One to four characters used to uniquely identify an entry. Do not use the characters
“r” or “t” as the first or only character in this field. These characters are reserved for
the use of rlogin(1) and telnet(1).

rstate
Define the run level in which this entry is to be processed. Run-levels effectively
correspond to a configuration of processes in the system. That is, each process
spawned by init is assigned a run level(s) in which it is allowed to exist. The run
levels are represented by a number ranging from 0 through 6. For example, if the
system is in run level 1, only those entries having a 1 in the rstate field are
processed.

When init is requested to change run levels, all processes that do not have an
entry in the rstate field for the target run level are sent the warning signal SIGTERM
and allowed a 5-second grace period before being forcibly terminated by the kill
signal SIGKILL. The rstate field can define multiple run levels for a process by
selecting more than one run level in any combination from 0 through 6. If no run
level is specified, then the process is assumed to be valid at all run levels 0 through
6.

There are three other values, a, b and c, which can appear in the rstate field, even
though they are not true run levels. Entries which have these characters in the rstate
field are processed only when an init or telinit process requests them to be run
(regardless of the current run level of the system). See init(1M). These differ from
run levels in that init can never enter run level a, b or c. Also, a request for the

inittab(4)

NAME

DESCRIPTION

File Formats 249

execution of any of these processes does not change the current run level.
Furthermore, a process started by an a, b or c command is not killed when init
changes levels. They are killed only if their line in inittab is marked off in the
action field, their line is deleted entirely from inittab, or init goes into
single-user state.

action
Key words in this field tell init how to treat the process specified in the process
field. The actions recognized by init are as follows:

respawn
If the process does not exist, then start the process; do not wait for its
termination (continue scanning the inittab file), and when the process dies,
restart the process. If the process currently exists, do nothing and continue
scanning the inittab file.

wait
When init enters the run level that matches the entry’s rstate, start the process
and wait for its termination. All subsequent reads of the inittab file while
init is in the same run level cause init to ignore this entry.

once
When init enters a run level that matches the entry’s rstate, start the process,
do not wait for its termination. When it dies, do not restart the process. If init
enters a new run level and the process is still running from a previous run level
change, the program is not restarted.

boot
The entry is to be processed only at init’s boot-time read of the inittab file.
init is to start the process and not wait for its termination; when it dies, it does
not restart the process. In order for this instruction to be meaningful, the rstate
should be the default or it must match init’s run level at boot time. This action
is useful for an initialization function following a hardware reboot of the system.

bootwait
The entry is to be processed the first time init goes from single-user to
multi-user state after the system is booted. init starts the process, waits for its
termination and, when it dies, does not restart the process.

powerfail
Execute the process associated with this entry only when init receives a power
fail signal, SIGPWR (see signal(3C)).

powerwait
Execute the process associated with this entry only when init receives a power
fail signal, SIGPWR, and wait until it terminates before continuing any
processing of inittab.

off
If the process associated with this entry is currently running, send the warning
signal SIGTERM and wait 5 seconds before forcibly terminating the process with
the kill signal SIGKILL. If the process is nonexistent, ignore the entry.

inittab(4)

250 man pages section 4: File Formats • Last Revised 9 Dec 2004

ondemand
This instruction is really a synonym for the respawn action. It is functionally
identical to respawn but is given a different keyword in order to divorce its
association with run levels. This instruction is used only with the a, b or c
values described in the rstate field.

sysinit
Entries of this type are executed before init tries to access the console (that is,
before the Console Login: prompt). It is expected that this entry will be used
only to initialize devices that init might try to ask the run level question. These
entries are executed and init waits for their completion before continuing.

process
Specify a command to be executed. The entire process field is prefixed with exec
and passed to a forked sh as sh −c ’exec command’. For this reason, any legal sh
syntax can appear in the process field.

sh(1), who(1), init(1M), svcadm(1M), svc.startd(1M), ttymon(1M), exec(2),
open(2), signal(3C), smf(5)

System Administration Guide: Basic Administration

With the introduction of the service management facility, the system-provided
/etc/inittab file is greatly reduced from previous releases.

The initdefault entry is not recognized in Solaris 10. See smf(5) for information on
SMF milestones, and svcadm(1M), which describes the “svcadm milestone -d”
command; this provides similar functionality to modifying the initdefault entry in
previous versions of the Solaris OS.

inittab(4)

SEE ALSO

NOTES

File Formats 251

ipaddrsel.conf – IPv6 default address selection policy

/etc/inet/ipaddrsel.conf

The ipaddrsel.conf file contains the IPv6 default address selection policy table
used for IPv6 source address selection and the sorting of AF_INET6 addresses
returned from name to address resolution. The mechanism for loading the file, the file
format, and the meaning of the contents are described in ipaddrsel(1M).

EXAMPLE 1 Default /etc/inet/ipaddrsel.conf File

The following is the default /etc/inet/ipaddrsel.conf file:

#
#ident "@(#)ipv6das.conf 1.1 02/07/28 SMI"
#
Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
Prefix Precedence Label
::1/128 50 0
::/0 40 1
2002::/16 30 2
::/96 20 3

::ffff:0.0.0.0/96 10 4

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Evolving

ipaddrsel(1M), attributes(5)

ipaddrsel.conf(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

252 man pages section 4: File Formats • Last Revised 6 Mar 2003

ipf, ipf.conf – IP packet filter rule syntax

A rule file for ipf(1M) can have any name or can be stdin. You can use ipfstat(1M)
output as input to ipf(1M). ipfstat outputs parseable rules, suitable for input to
ipf, when displaying the internal kernel filter lists. Thus, for example, to remove all
filters on input packets, you can enter:

ipfstat -i | ipf -rf -

The IP filter feature uses the grammar shown below to construct filtering rules. The
syntax is simplified for readability. Note that some combinations that match this
grammar are disallowed by the software because they do not make sense (for
example, tcp flags for non-TCP packets).

filter-rule = [insert] action in-out [options] [tos] [ttl]
[proto] ip [group].

insert = "@" decnumber .
action = block | "pass" | log | "count" | skip | auth | call .
in-out = "in" | "out" .
options = [log] [tag] ["quick"] ["on" interface-name

[dup] [froute] [replyto]
tos = "tos" decnumber | "tos" hexnumber .
ttl = "ttl" decnumber .
proto = "proto" protocol .
ip = srcdst [flags] [with withopt] [icmp] [keep] .
group = ["head" decnumber] ["group" decnumber] .

block = "block" [return-icmp[return-code] | "return-rst"] .
auth = "auth" | "preauth" .
log = "log" ["body"] ["first"] ["or-block"] ["level" loglevel] .
tag = "tag" tagid
call = "call" ["now"] function-name .
skip = "skip" decnumber .
dup = "dup-to" interface-name[":"ipaddr] .
froute = "fastroute" | "to" interface-name [":" ipaddr].
replyto = "reply-to" interface-name [":" ipaddr].
protocol = "tcp/udp" | "udp" | "tcp" | "icmp" | decnumber .
srcdst = "all" | fromto .
fromto = "from" ["!"] object "to" ["!"] object .

return-icmp = "return-icmp" | "return-icmp-as-dest" .
object = addr [port-comp | port-range] .
addr = "any" | nummask | host-name ["mask" ipaddr | "mask" hexnumber] .
addr = "any" | "<thishost>" | nummask |

host-name ["mask" ipaddr | "mask" hexnumber] .
port-comp = "port" compare port-num .
port-range = "port" port-num range port-num .
flags = "flags" flag { flag } ["/" flag { flag }] .
with = "with" | "and" .
icmp = "icmp-type" icmp-type ["code" decnumber] .
return-code = "("icmp-code")" .
keep = "keep" "state" | "keep" "frags" .
loglevel = facility"."priority | priority .
nummask = host-name ["/" decnumber] .
host-name = ipaddr | hostname | "any" .
ipaddr = host-num "." host-num "." host-num "." host-num .

ipf(4)

NAME

DESCRIPTION

Grammar

File Formats 253

host-num = digit [digit [digit]] .
port-num = service-name | decnumber .

withopt = ["not" | "no"] opttype [withopt] .
opttype = "ipopts" | "short" | "frag" | "opt" optname .
optname = ipopts ["," optname] .
ipopts = optlist | "sec-class" [secname] .
secname = seclvl ["," secname] .
seclvl = "unclass" | "confid" | "reserv-1" | "reserv-2" | "reserv-3" |

"reserv-4" | "secret" | "topsecret" .
icmp-type = "unreach" | "echo" | "echorep" | "squench" | "redir" |

"timex" | "paramprob" | "timest" | "timestrep" | "inforeq" |
"inforep" | "maskreq" | "maskrep" | decnumber .

icmp-code = decumber | "net-unr" | "host-unr" | "proto-unr" | "port-unr" |
"needfrag" | "srcfail" | "net-unk" | "host-unk" | "isolate" |
"net-prohib" | "host-prohib" | "net-tos" | "host-tos" |
"filter-prohib" | "host-preced" | "cutoff-preced" .

optlist = "nop" | "rr" | "zsu" | "mtup" | "mtur" | "encode" | "ts" |
"tr" | "sec" | "lsrr" | "e-sec" | "cipso" | "satid" | "ssrr" |
"addext" | "visa" | "imitd" | "eip" | "finn" .

facility = "kern" | "user" | "mail" | "daemon" | "auth" | "syslog" |
"lpr" | "news" | "uucp" | "cron" | "ftp" | "authpriv" |
"audit" | "logalert" | "local0" | "local1" | "local2" |
"local3" | "local4" | "local5" | "local6" | "local7" .

priority = "emerg" | "alert" | "crit" | "err" | "warn" | "notice" |
"info" | "debug" .

hexnumber = "0" "x" hexstring .
hexstring = hexdigit [hexstring] .
decnumber = digit [decnumber] .

compare = "=" | "!=" | "<" | ">" | "<=" | ">=" | "eq" | "ne" | "lt" |
"gt" | "le" | "ge" .

range = "<>" | "><" .
hexdigit = digit | "a" | "b" | "c" | "d" | "e" | "f" .
digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .
flag = "F" | "S" | "R" | "P" | "A" | "U" .

Filter rules are checked in order, with the last matching rule determining the treatment
of the packet. An exception to this is the quick option, which is discussed below.

By default, filters are installed at the end of the kernel’s filter lists. Prepending a rule
with @<num> causes it to be inserted as the <num>th entry in the current list. This is
especially useful when modifying and testing active filter rulesets. See ipf(1M) for
more information.

The simplest valid rules are:

block in all
pass in all
log out all
count in all

These rules do not have an effect on filtering, but are listed here to illustrate the
grammar.

Each rule must have an action. The action indicates what to do with the packet if it
matches the filter rule. The IP filter feature recognizes the following actions:

ipf(4)

Filter Rules

Actions

254 man pages section 4: File Formats • Last Revised 23 Dec 2003

block
Indicates that a packet should be flagged to be dropped. In response to blocking a
packet, the filter can be instructed to send a reply packet, either an ICMP packet
(return-icmp), an ICMP packet that fakes being from the original packet’s
destination (return-icmp-as-dest), or a TCP reset (return-rst). An ICMP
packet can be generated in response to any IP packet and its type can optionally be
specified, but a TCP reset can only be used with a rule that is being applied to TCP
packets. When using return-icmp or return-icmp-as-dest, it is possible to
specify the actual unreachable type. That is, whether it is a network unreachable,
port unreachable, or even administratively prohibited. You do this by enclosing the
ICMP code associated with the action in parentheses directly following
return-icmp or return-icmp-as-dest. For example:

block return-icmp(11) ...

The preceding entry causes a return of a Type-Of-Service (TOS) ICMP unreachable
error.

pass
Flag the packet to be let through the filter without any action being taken.

log
Causes the packet to be logged (as described in the LOGGING section, below) and
has no effect on whether the packet will be allowed through the filter.

count
Causes the packet to be included in the accounting statistics kept by the filter and
has no effect on whether the packet will be allowed through the filter. These
statistics are viewable with ipfstat(1M).

call
This action is used to invoke the named function in the kernel, which must conform
to a specific calling interface. Customized actions and semantics can thus be
implemented to supplement those available. This feature is for use by
knowledgeable hackers and is not currently documented.

skip <num>
Causes the filter to skip over the next <num> filter rules. If a rule is inserted or
deleted inside the region being skipped over, then the value of <num> is adjusted
appropriately.

auth
Allows authentication to be performed by a user-space program running and
waiting for packet information to validate. The packet is held for a period of time in
an internal buffer while it waits for the program to return to the kernel the “real”
flags for whether it should be allowed through. Such a program might look at the
source address and request some sort of authentication from the user (such as a
password) before allowing the packet through or telling the kernel to drop it if the
packet is from an unrecognized source.

preauth
Tells the filter that, for packets of this class, it should look in the pre-authenticated
list for further clarification. If no further matching rule is found, the packet will be

ipf(4)

File Formats 255

dropped (the FR_PREAUTH is not the same as FR_PASS). If a further matching rule
is found, the result from that rule is used in instead. This might be used in a
situation where a person logs in to the firewall and it sets up some temporary rules
defining the access for that person.

The word following the action keyword must be either in or out. Each packet
moving through the kernel is either inbound or outbound. “Inbound” means that a
packet has just been received on an interface and is moving towards the kernel’s
protocol processing. “Outbound” means that a packet has been transmitted or
forwarded by the stack and is on its way to an interface. There is a requirement that
each filter rule explicitly state on which side of the I/O it is to be used.

The currently supported options are listed below. Where you use options, you must
use them in the order shown here.

log
If this is the last matching rule, the packet header is written to the ipl log, as
described in the LOGGING section below.

quick
Allows "short-cut" rules to speed up the filter or override later rules. If a packet
matches a filter rule that is marked as quick, this rule will be the last rule checked,
allowing a "short-circuit" path to avoid processing later rules for this packet. The
current status of the packet (after any effects of the current rule) determine whether
it is passed or blocked.

If the quick option is missing, the rule is taken to be a "fall-through" rule, meaning
that the result of the match (block or pass) is saved and that processing will
continue to see if there are any more matches.

on
Allows an interface name to be incorporated into the matching procedure. Interface
names are as displayed by netstat i. If this option is used, the rule matches only
if the packet is going through that interface in the specified direction (in or out). If
this option is absent, the rule is applied to a packet regardless of the interface it is
present on (that is, on all interfaces). Filter rulesets are common to all interfaces,
rather than having a filter list for each interface.

This option is especially useful for simple IP-spoofing protection: packets should be
allowed to pass inbound only on the interface from which the specified source
address would be expected. Others can be logged, or logged and dropped.

dup-to
Causes the packet to be copied, with the duplicate packet sent outbound on a
specified interface, optionally with the destination IP address changed to that
specified. This is useful for off-host logging, using a network sniffer.

to
Causes the packet to be moved to the outbound queue on the specified interface.
This can be used to circumvent kernel routing decisions, and, if applied to an
inbound rule, even to bypass the rest of the kernel processing of the packet. It is

ipf(4)

OPTIONS

256 man pages section 4: File Formats • Last Revised 23 Dec 2003

thus possible to construct a firewall that behaves transparently, like a filtering hub
or switch, rather than a router. The fastroute keyword is a synonym for this
option.

The keywords described in this section are used to describe attributes of the packet to
be used when determining whether rules do or do not match. The following
general-purpose attributes are provided for matching and must be used in the order
shown below.

tos
Packets with different Type-Of-Service values can be filtered. Individual service
levels or combinations can be filtered upon. The value for the TOS mask can be
represented either as a hexadecimal or decimal integer.

ttl
Packets can also be selected by their Time-To-Live value. The value given in the
filter rule must exactly match that in the packet for a match to occur. This value can
be given only as a decimal integer.

proto
Allows a specific protocol to be matched against. All protocol names found in
/etc/protocols are recognized and can be used. However, the protocol can also
be given as a decimal number, allowing for rules to match your own protocols and
for new protocols.

The special protocol keyword tcp/udp can be used to match either a TCP or a
UDP packet and has been added as a convenience to save duplication of
otherwise-identical rules.

IP addresses can be specified in one of two ways: as a numerical address/mask, or as a
hostname mask/netmask. The hostname can be either of the dotted numeric form or a
valid hostname, from the hosts file or DNS (depending on your configuration and
library). There is no special designation for networks, but network names are
recognized. Note that having your filter rules depend on DNS results can introduce an
avenue of attack and is discouraged.

There is a special case for the hostname any, which is taken to be 0.0.0.0/0 (mask
syntax is discussed below) and matches all IP addresses. Only the presence of any has
an implied mask. In all other situations, a hostname must be accompanied by a mask.
It is possible to give any a hostmask, but in the context of this language, it would
accomplish nothing.

The numerical format x/y indicates that a mask of y consecutive 1 bits set is generated,
starting with the MSB, so that a y value of 16 would result in 0xffff0000. The
symbolic x mask y indicates that the mask y is in dotted IP notation or a hexadecimal
number of the form 0x12345678. Note that all the bits of the IP address indicated by
the bitmask must match the address on the packet exactly; there is currently not a way
to invert the sense of the match or to match ranges of IP addresses that do not express
themselves easily as bitmasks.

ipf(4)

Matching
Parameters

File Formats 257

If a port match is included, for either or both of source and destination, then it is only
applied to TCP and UDP packets. If there is no proto match parameter, packets from
both protocols are compared. This is equivalent to proto tcp/udp. When composing
port comparisons, either the service name or an integer port number can be used. Port
comparisons can be done in a number of forms, with a number of comparison
operators, or you can specify port ranges. When the port appears as part of the from
object, it matches the source port number. When it appears as part of the to object, it
matches the destination port number. See EXAMPLES.

The all keyword is essentially a synonym for "from any to any" with no other match
parameters.

Following the source and destination matching parameters, you can use the following
additional parameters:

with
Used to match irregular attributes that some packets might have associated with
them. To match the presence of IP options in general, use with ipopts. To match
packets that are too short to contain a complete header, use with short. To match
fragmented packets, use with frag. For more specific filtering on IP options, you
can list individual options.

Before any parameter used after the with keyword, you can insert the word not or
no to cause the filter rule to match only if the option(s) is not present.

Multiple consecutive with clauses are allowed. Alternatively, you can use the
keyword and in place of with. This alternative is provided to make the rules more
readable ("with ... and ..."). When multiple clauses are listed, all clauses must
match to cause a match of the rule.

flags
Effective only for TCP filtering. Each of the letters possible represents one of the
possible flags that can be set in the TCP header. The association is as follows:

F - FIN
S - SYN
R - RST
P - PUSH
A - ACK
U - URG

The various flag symbols can be used in combination, so that SA matches a
SYN-ACK combination in a packet. There is nothing preventing the specification of
combinations, such as SFR, that would not normally be generated by fully
conformant TCP implementations. However, to guard against unpredictable
behavior, it is necessary to state which flags you are filtering against. To allow this,
it is possible to set a mask indicating against which TCP flags you wish to compare
(that is, those you deem significant). This is done by appending /<flags> to the set
of TCP flags you wish to match against, for example:

ipf(4)

258 man pages section 4: File Formats • Last Revised 23 Dec 2003

... flags S
Becomes flags S/AUPRFS and matches packets with only the SYN flag set.

... flags SA
Becomes flags SA/AUPRFSC and matches any packet with only the SYN and
ACK flags set.

... flags S/SA
Matches any packet with just the SYN flag set out of the SYN-ACK pair, which is
the common establish keyword action. S/SA will not match a packet with
both SYN and ACK set, but will match SFP.

icmp-type
Effective only when used with proto icmp and must not be used in conjunction
with flags. There are a number of types, which can be referred to by an
abbreviation recognized by this language or by the numbers with which they are
associated. The most important type from a security point of view is the ICMP
redirect.

The penultimate parameter that can be set for a filter rule is whether or not to record
historical information for a packet, and what sort to keep. The following information
can be kept:

state
Keeps information about the flow of a communication session. State can be kept for
TCP, UDP, and ICMP packets.

frags
Keeps information on fragmented packets, to be applied to later fragments.

Presence of these parameters allows matching packets to flow straight through, rather
than going through the access control list.

The last pair of parameters control filter rule "grouping". By default, all filter rules are
placed in group 0 if no other group is specified. To add a rule to a non-default group,
the group must first be started by creating a group head. If a packet matches a rule
which is the head of a group, the filter processing then switches to the group, using
that rule as the default for the group. If quick is used with a head rule, rule
processing is not stopped until it has returned from processing the group.

A rule can be both the head for a new group and a member of a non-default group
(head and group can be used together in a rule).

head <n>
Indicates that a new group (number <n>) should be created.

group <n>
Indicates that the rule should be put in group (number <n>) rather than group 0.

When a packet is logged, by means of either the log action or log option, the headers
of the packet are written to the ipl packet logging psuedo-device. Immediately
following the log keyword, you can use the following qualifiers in the order listed
below:

ipf(4)

Keep History

Groups

Logging

File Formats 259

body
Indicates that the first 128 bytes of the packet contents will be logged after the
headers.

first
If log is being used in conjunction with a keep option, it is recommended that you
also apply this option so that only the triggering packet is logged and not every
packet which thereafter matches state information.

or-block
Indicates that, if for some reason, the filter is unable to log the packet (such as the
log reader being too slow), then the rule should be interpreted as if the action was
block for this packet.

level loglevel
Indicates what logging facility and priority (or, if the default facility is used,
priority only) will be used to log information about this packet using ipmon’s -s
option.

You can use ipmon(1M) to read and format the log.

EXAMPLE 1 Using the quick Option

The quick option works well for rules such as:

block in quick from any to any with ipopts

This rule matches any packet with a non-standard header length (IP options present)
and aborts further processing of later rules, recording a match and also indicating that
the packet should be blocked.

EXAMPLE 2 Using the "Fall-through" Nature of Rule Parsing

The "fall-through" rule parsing allows for effects such as the following:

block in from any to any port < 6000
pass in from any to any port >= 6000

block in from any to any port > 6003

These rules set up the range 6000-6003 as being permitted and all others being denied.
Note that the effect of the first rule is overridden by subsequent rules. Another (easier)
way to do the same is:

block in from any to any port 6000 <> 6003

pass in from any to any port 5999 >< 6004

Note that both the "block" and "pass" are needed here to effect a result, because a failed
match on the "block" action does not imply a pass. It implies only that the rule has not
taken effect. To then allow ports lower than 1024, a rule such as:

pass in quick from any to any port < 1024

...would be needed before the first block. To create a new group for processing all
inbound packets on le0/le1/lo0, with the default being to block all inbound
packets, you would use a rule such as:

ipf(4)

EXAMPLES

260 man pages section 4: File Formats • Last Revised 23 Dec 2003

EXAMPLE 2 Using the "Fall-through" Nature of Rule Parsing (Continued)

block in all
block in quick on le0 all head 100
block in quick on le1 all head 200

block in quick on lo0 all head 300

and to then allow ICMP packets in on le0 only, you would use:

pass in proto icmp all group 100

Note that because only inbound packets on le0 are processed by group 100, there is
no need to respecify the interface name. Likewise, you could further breakup
processing of TCP as follows:

block in proto tcp all head 110 group 100

pass in from any to any port = 23 group 110

...and so on. The last line, if written without the groups, would be:

pass in on le0 proto tcp from any to any port = telnet

Note, that if you wanted to specify port = telnet, you would need to specify
proto tcp, because the parser interprets each rule on its own and qualifies all service
and port names with the protocol specified.

� /dev/ipauth
� /dev/ipl
� /dev/ipstate
� /etc/hosts
� /etc/services

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

ipf(1M), ipfstat(1M), ipmon(1M), attributes(5)

ipf(4)

FILES

ATTRIBUTES

SEE ALSO

File Formats 261

ipnat, ipnat.conf – IP NAT file format

ipnat.conf

The format for files accepted by ipnat is described by the following grammar:

ipmap :: = mapblock | redir | map .

map ::= mapit ifname ipmask "->" dstipmask [mapport | mapproxy] mapoptions.
map ::= mapit ifname fromto "->" dstipmask [mapport] mapoptions.
mapblock ::= "map-block" ifname ipmask "->" ipmask [ports] mapoptions.
redir ::= "rdr" ifname ipmask dport "->" ip ["," ip] rdrport rdroptions .

dport ::= "port" portnum ["-" portnum] .
ports ::= "ports" numports | "auto" .
rdrport ::= "port" portnum .
mapit ::= "map" | "bimap" .
fromto ::= "from" object "to" object .
ipmask ::= ip "/" bits | ip "/" mask | ip "netmask" mask .
dstipmask ::= ipmask | "range" ip "-" ip .
mapport ::= "portmap" tcpudp portspec .
mapoptions ::= [tcpudp] ["frag"] [age] [clamp] [mapproxy] .
rdroptions ::= rdrproto [rr] ["frag"] [age] [clamp] [rdrproxy] .

object :: = addr [port-comp | port-range] .
addr :: = "any" | nummask | host-name ["mask" ipaddr | "mask" hexnumber] .
port-comp :: = "port" compare port-num .
port-range :: = "port" port-num range port-num .
rdrproto ::= tcpudp | protocol .

rr ::= "round-robin" .
age ::= "age" decnumber ["/" decnumber] .
clamp ::= "mssclamp" decnumber .
tcpudp ::= "tcp/udp" | protocol .
mapproxy ::= "proxy" "port" port proxy-name ’/’ protocol
rdrproxy ::= "proxy" proxy-name .

protocol ::= protocol-name | decnumber .
nummask ::= host-name ["/" decnumber] .
portspec ::= "auto" | portnumber ":" portnumber .
port ::= portnumber | port-name .
portnumber ::= number { numbers } .
ifname ::= ’A’ - ’Z’ { ’A’ - ’Z’ } numbers .

numbers ::= ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’ .

For standard NAT functionality, a rule should start with map and then proceed to
specify the interface for which outgoing packets will have their source address
rewritten.

Packets that will be rewritten can only be selected by matching the original source
address. When specifying an address for matching, a netmask must be specified with
the IP address.

The address selected for replacing the original is chosen from an IP address/netmask
pair. A netmask of all 1’s, indicating a hostname, is valid. A netmask of thirty-one 1’s
(255.255.255.254) is considered invalid, because there is no space for allocating host IP
addresses after consideration for broadcast and network addresses.

ipnat(4)

NAME

SYNOPSIS

DESCRIPTION

262 man pages section 4: File Formats • Last Revised 23 Dec 2003

When remapping TCP and UDP packets, it is also possible to change the source port
number. Either TCP or UDP or both can be selected by each rule, with a range of port
numbers to remap into given as port-number:port-number.

The following commands are recognized by IP Filter’s NAT code:

map
Used for mapping one address or network to another in an unregulated
round-robin fashion.

rdr
Used for redirecting packets to one IP address and port pair to another.

bimap
Used for setting up bidirectional NAT between an external IP address and an
internal IP address.

map-block
Sets up static IP-address-based translation, based on an algorithm to squeeze the
addresses to be translated into the destination range.

For basic NAT and redirection of packets, the address subject to change is used along
with its protocol to check if a packet should be altered. The packet matching part of the
rule is to the left of the symbol → in each rule.

The IPFilter software allows for complex matching of packets. In place of the address
which is to be translated, an IP address and port number comparison can be made
using the same expressions available with ipf. A simple NAT rule could be written
as:

map de0 10.1.0.0/16 -> 201.2.3.4/32

or as

map de0 from 10.1.0.0/16 to any -> 201.2.3.4/32

As is true of all NAT rules, you can compare against only IP address and port
numbers.

To the right of the → is the address and port specification that will be written into the
packet, provided it has already successfully matched the prior constraints. The case of
redirections (rdr) is the simplest: the new destination address is that specified in the
rule. For map rules, the destination address will be one for which the tuple combining
the new source and destination is known to be unique.

If the packet is either a TCP or UDP packet, the destination and source ports enter into
the comparison also. If the tuple already exists, the IP Filter software increments the
port number first, within the available range specified by portmap, and, if there is no
unique tuple, the source address is incremented within the specified netmask. If a
unique tuple cannot be determined, then the packet will not be translated.

ipnat(4)

Commands

Matching

Translation

File Formats 263

The map-block is more limited in how it searches for a new, free, and unique tuple, in
that it will use an algorithm to determine what the new source address should be,
staying within the range of available ports. The IP address is never changed, nor does
the port number ever exceed its allotted range.

ICMP messages can be divided into two groups, "errors" and "queries". ICMP errors
are generated as a response to another IP packet. IP Filter will take care that ICMP
errors that are the response of a NAT-ed IP packet are handled properly.

For four types of ICMP queries (echo request, timestamp request, information request
and address mask request), IP Filter supports an additional mapping called "ICMP id
mapping". These four types of ICMP queries use a unique identifier called the ICMP
id. This id is set by the process sending the ICMP query and is usually equal to the
process id. The receiver of the ICMP query will use the same id in its response, thus
enabling the sender to recognize that the incoming ICMP reply is intended for him
and is an answer to a query that he made. The "ICMP id mapping" feature modifies
these ICMP ids in a way identical to the modification performed by portmap for TCP
or UDP.

When using the ICMP id mapping feature, you do not need an IP address per host
behind the NAT box that wants to perform ICMP queries. The two numbers that
follow the icmpidmap keyword are the first and the last icmp id numbers that can
be used. There is one important caveat: if you map to an IP address that belongs to the
NAT box itself (notably if you have only a single public IP address), then you must
ensure that the NAT box does not use the icmpidmap range that you specified in the
map rule. Since the ICMP id is usually the process id, it is wise to restrict the largest
permittable process id (PID) on your operating system to a value such as 63999 and
use the range 64000:65535 for ICMP id mapping.

The IP Filter software comes with a few, simple, proxies built into the code that is
loaded into the kernel to allow secondary channels to be opened without forcing the
packets through a user program.

True transparent proxying should be performed using the redirect (rdr) rules
directing ports to localhost (127.0.0.1), with the proxy program doing a lookup
through /dev/ipnat to determine the real source and address of the connection.

Two options for use with rdr are available to support primitive, round-robin-based
load balancing. The first option allows for a rdr to specify a second destination, as
follows:

rdr le0 203.1.2.3/32 port 80 -> 203.1.2.3,203.1.2.4 port 80 tcp

The preceding would send alternate connections to either 203.1.2.3 or 203.1.2.4. In
scenarios where the load is being spread among a larger set of servers, you can use:

rdr le0 203.1.2.3/32 port 80 -> 203.1.2.3,203.1.2.4 port 80 tcp round-robin

rdr le0 203.1.2.3/32 port 80 -> 203.1.2.5 port 80 tcp round-robin

ipnat(4)

ICMPIDMAP
Feature

Kernel Proxies

Transparent
Proxies

Load Balancing

264 man pages section 4: File Formats • Last Revised 23 Dec 2003

In this case, a connection will be redirected to 203.1.2.3, then 203.1.2.4, and then
203.1.2.5 before going back to 203.1.2.3. In accomplishing this, the rule is removed
from the top of the list and added to the end, automatically, as required. This will not
effect the display of rules using ipnat -l, only the internal application order.

EXAMPLE 1 Using the map Command

The following are variations of the map command.

To change IP addresses used internally from network 10 into an ISP-provided 8-bit
subnet at 209.1.2.0 through the ppp0 interface, use the following:

map ppp0 10.0.0.0/8 -> 209.1.2.0/24

An obvious problem is that you are trying to squeeze over sixteen million IP addresses
into a 254-address space. To increase the scope, remapping for TCP and/or UDP, port
remapping can be used, as follows:

map ppp0 10.0.0.0/8 -> 209.1.2.0/24 portmap tcp/udp 1025:65000

The preceding falls only 527,566 "addresses" short of the space available in network 10.
If we combine these rules, they would need to be specified as follows:

map ppp0 10.0.0.0/8 -> 209.1.2.0/24 portmap tcp/udp 1025:65000

map ppp0 10.0.0.0/8 -> 209.1.2.0/24

...so that all TCP/UDP packets were port mapped and only other protocols, such as
ICMP, have their IP address changed. In some instaces, it is more appropriate to use
the keyword auto in place of an actual range of port numbers if you want to
guarantee simultaneous access to all within the given range. However, in the
preceding case, it would default to one port per IP address, because you need to
squeeze 24 bits of address space into eight bits. A good example of how auto is used
is:

map ppp0 172.192.0.0/16 -> 209.1.2.0/24 portmap tcp/udp auto

This would result in each IP address being given a small range of ports to use (252).
The problem here is that the map directive tells the NAT code to use the next
address/port pair available for an outgoing connection, resulting in no easily
discernible relation between external addresses/ports and internal ones. This is
overcome by using map-block as follows:

map-block ppp0 172.192.0.0/16 -> 209.1.2.0/24 ports auto

For example, this would result in 172.192.0.0/24 being mapped to 209.1.2.0/32 with
each address, from 172.192.0.0 to 172.192.0.255 having 252 ports of its own. As
distinguished from the preceding use of map, if, for some reason, the user of (say)
172.192.0.2 wanted 260 simultaneous connections going out, he would be limited to
252 with map-block but would just move on to the next IP address with the map
command.

� /dev/ipnat
� /etc/services

ipnat(4)

EXAMPLES

FILES

File Formats 265

� /etc/hosts

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

ipf(1M), ipnat(1M), ipf(4), hosts(4), attributes(5)

ipnat(4)

ATTRIBUTES

SEE ALSO

266 man pages section 4: File Formats • Last Revised 23 Dec 2003

ipnodes – local database associating names of nodes with IP addresses

/etc/inet/ipnodes

The ipnodes file is a local database that associates the names of nodes with their
Internet Protocol (IP) addresses. IP addresses can be either an IPv4 or an IPv6 address.
The ipnodes file can be used in conjunction with, or instead of, other ipnodes
databases, including the Domain Name System (DNS), the NIS ipnodes map, and the
NIS+ ipnodes table. Programs use library interfaces to access information in the
ipnodes file.

The ipnodes file has one entry for each IP address of each node. If a node has more
than one IP address, it will have one entry for each, on consecutive lines. The format
of each line is:

IP-address official-node-name nicknames...Items are separated by any number of
SPACE and/or TAB characters. The first item on a line is the node’s IP address. The
second entry is the node’s official name. Subsequent entries on the same line are
alternative names for the same machine, or "nicknames." Nicknames are optional.

For a node with more than one IP address, consecutive entries for these addresses may
contain the same or differing nicknames. Different nicknames are useful for assigning
distinct names to different addresses.

A call to getipnodebyname(3SOCKET) returns a hostent structure containing the
union of all addresses and nicknames from each line containing a matching official
name or nickname.

A ‘#’ indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines that search the file.

Network addresses are written in one of two ways:

� The conventional "decimal dot" notation and interpreted using the inet_addr
routine from the Internet address manipulation library, inet(3SOCKET).

� The IP Version 6 protocol [IPV6], defined in RFC 1884 and interpreted using the
inet_pton() routine from the Internet address manipulation library. See
inet(3SOCKET).

These interfaces supports node names as defined in Internet RFC 952 which states:

A "name" (Net, Host, Gateway, or Domain name) is a text string up to 24 characters
drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and period (.). Note that
periods are only allowed when they serve to delimit components of "domain style
names". (See RFC 921, "Domain Name System Implementation Schedule," for
background). No blank or space characters are permitted as part of a name. No
distinction is made between upper and lower case. The first character must be an
alpha character. The last character must not be a minus sign or period.

ipnodes(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 267

Although the interface accepts node names longer than 24 characters for the node
portion (exclusive of the domain component), choosing names for nodes that adhere
to the 24 character restriction will insure maximum interoperability on the Internet.

A node which serves as a GATEWAY should have "-GATEWAY" or "-GW" as part of its
name. Nodes which do not serve as Internet gateways should not use "-GATEWAY"
and "-GW" as part of their names. A node that is a TAC should have "-TAC" as the last
part of its node name, if it is a DoD node. Single character names or nicknames are not
allowed.

RFC 952 has been modified by RFC 1123 to relax the restriction on the first character
being a digit.

EXAMPLE 1 A Typical Line from the ipnodes File

The following is a typical line from the ipnodes file:

2001:0db8:3c4d:55:a00:20ff:fe8e:f3ad myhost # John Smith

getipnodebyname(3SOCKET), inet(3SOCKET), nsswitch.conf(4),
resolv.conf(4), hosts(4)

Braden, B., editor, RFC 1123, Requirements for Internet Hosts – Application and Support,
Network Working Group, October, 1989.

Harrenstien, K., Stahl, M., and Feinler, E., RFC 952, DOD INTERNET HOST TABLE
SPECIFICATION, Network Working Group, October 1985.

Hinden, R., and Deering, S., editors, RFC 1884, IP Version 6 Addressing Architecture,
Network Working Group, December, 1995.

Postel, Jon, RFC 921, Domain Name System Implementation Schedule — Revised, Network
Working Group, October 1984.

IPv4 addresses can be defined in the ipnodes file or in the hosts file. See hosts(4).
The ipnodes file will be searched for IPv4 addresses when using the
getipnodebyname(3SOCKET) API. If no matching IPv4 addresses are found in the
ipnodes file, then the hosts file will be searched. To prevent delays in name
resolution and to keep /etc/inet/ipnodes and /etc/inet/hosts synchronized,
IPv4 addresses defined in the hosts file should be copied to the ipnodes file.

ipnodes(4)

EXAMPLES

SEE ALSO

NOTES

268 man pages section 4: File Formats • Last Revised 15 Dec 2004

ippool, ippool.conf – IP pool file format

ippool.conf

The format for files accepted by ippool(1M) is described by the following grammar:

line ::= table | groupmap .
table ::= "table" role tabletype .
groupmap ::= "group-map" inout role number ipfgroup
tabletype ::= ipftree | ipfhash .

role ::= "role" "=" "ipf" .
inout ::= "in" | "out" .

ipftree ::= "type" "=" "tree" number "{" addrlist "}" .
ipfhash ::= "type" "=" "hash" number hashopts "{" hashlist "}" .

ipfgroup ::= setgroup hashopts "{" grouplist "}" |
hashopts "{" setgrouplist "}" .

setgroup ::= "group" "=" groupname .

hashopts ::= size [seed] | seed .

size ::= "size" "=" number .
seed ::= "seed" "=" number .

addrlist ::= range ["," addrlist] .
grouplist ::= groupentry [";" grouplist] | groupentry ";" |

addrmask ";" | addrmask ";" [grouplist] .

setgrouplist ::= groupentry ";" [setgrouplist] .

groupentry ::= addrmask "," setgroup .

range ::= addrmask | "!" addrmask .

hashlist ::= hashentry ";" [hashlist] .
hashentry ::= addrmask .

addrmask ::= ipaddr | ipaddr "/" mask .

mask ::= number | ipaddr .

groupname ::= number | name .

number ::= digit { digit } .

ipaddr = host-num "." host-num "." host-num "." host-num .
host-num = digit [digit [digit]] .

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" .

name ::= letter { letter | digit } .

The IP pool configuration file is used for defining a single object that contains a
reference to multiple IP address/netmask pairs. A pool can consist of a mixture of
netmask sizes, from 0 to 32.

ippool(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 269

In the current release, only IPv4 addressing is supported in IP pools.

The IP pool configuration file provides for defining two different mechanisms for
improving speed in matching IP addresses with rules. The first, table, defines a
lookup table to provide a single reference in a filter rule to multiple targets. The
second mechanism, group-map, provides a mechanism to target multiple groups
from a single filter line.

The group-map command can be used only with filter rules that use the call
command to invoke either fr_srcgrpmap or fr_dstgrpmap, to use the source or
destination address, respectively, for determining which filter group to jump to next
for continuation of filter packet processing.

Two storage formats are provided: hash tables and tree structure. The hash table is
intended for use with objects that all contain the same netmask or a few, different
sized-netmasks of non-overlapping address space. The tree is designed for supporting
exceptions to a covering mask, in addition to normal searching as you would do with
a table. It is not possible to use the tree data storage type with group-map
configuration entries.

When a pool is defined in the configuration file, it must have an associated role. At
present the only supported role is ipf. Future development might see further
expansion of the use of roles by other sections of IPFilter code.

The following examples show how the pool configuration file is used with the ipf
configuration file to enhance the succinctness of the latter file’s entries.

EXAMPLE 1 Referencing Specific Pool

The following example shows how a filter rule makes reference to a specific pool for
matching of the source address.

pass in from pool/100 to any

The following pool configuration matches IP addresses 1.1.1.1 and any in 2.2.0.0/16,
except for those in 2.2.2.0/24.

table role = ipf type = tree number = 100

{ 1.1.1.1/32, 2.2.0.0/16, !2.2.2.0/24 };

EXAMPLE 2 ipf Configuration Entry

The following ipf.conf excerpt uses the fr_srcgrpmap/fr_dstgrpmap lookups
to use the group-map facility to look up the next group to use for filter processing,
providing the call filter rule is matched.

call now fr_srcgrpmap/1010 in all
call now fr_dstgrpmap/2010 out all
pass in all group 1020
block in all group 1030
pass out all group 2020

block out all group 2040

ippool(4)

Pool Types

Pool Roles

EXAMPLES

270 man pages section 4: File Formats • Last Revised 30 Apr 2004

EXAMPLE 2 ipf Configuration Entry (Continued)

An ippool configuration to work with the preceding ipf.conf segment might look
like the following:

group-map in role = ipf number = 1010
{ 1.1.1.1/32, group = 1020; 3.3.0.0/16, group = 1030; };

group-map out role = ipf number = 2010 group = 2020

{ 2.2.2.2/32; 4.4.0.0/16; 5.0.0.0/8, group = 2040; };

� /dev/ippool
� /etc/ipf/ippool.conf
� /etc/hosts

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWipfu

Interface Stability Evolving

ipf(1M), ipnat(1M), ippool(1M), ipf(4), attributes(5), hosts(4)

ippool(4)

FILES

ATTRIBUTES

SEE ALSO

File Formats 271

issue – issue identification file

The file /etc/issue contains the issue or project identification to be printed as a
login prompt. issue is an ASCII file that is read by program ttymon and then
written to any terminal spawned or respawned, prior to the normal prompt.

/etc/issue

login(1), ttymon(1M)

issue(4)

NAME

DESCRIPTION

FILES

SEE ALSO

272 man pages section 4: File Formats • Last Revised 2 Jan 2002

kadm5.acl – Kerberos access control list (ACL) file

/etc/krb5/kadm5.acl

The ACL file is used by the kadmind(1M) command to determine which principals are
allowed to perform Kerberos administration actions. For operations that affect
principals, the ACL file also controls which principals can operate on which other
principals. The location of the ACL file is determined by the acl_file configuration
variable in the kdc.conf(4) file. The default location is /etc/krb5/kadm5.acl.

For incremental propagation, see kadmind(1M). The ACL file must contain the
kiprop service principal with propagation privileges in order for the slave KDC to
pull updates from the master’s principal database. Refer to the EXAMPLES section for
this case.

The ACL file can contain comment lines, null lines, or lines that contain ACL entries.
Comment lines start with the pound sign (#) and continue until the end of the line.

The order of entries is significant. The first matching entry specifies the principal on
which the control access applies, whether it is on just the principal or on the principal
when it operates on a target principal.

Lines containing ACL entries must have the following format:

principal operation-mask [operation-target]

principal
Specifies the principal on which the operation-mask applies. Can specify either a
partially or fully qualified Kerberos principal name. Each component of the name
can be substituted with a wildcard, using the asterisk (*) character.

operation-mask
Specifies what operations can or cannot be performed by a principal matching a
particular entry. Specify operation-mask as one or more privileges.

A privilege is a string of one or more of the following characters: a, A, c, C, d, D, i, I,
l, L, m, M, p, P, u, U, x, or *. Generally, if the character is lowercase, the privilege is
allowed and if the character is uppercase, the operation is disallowed. The x and *
characters are exceptions to the uppercase convention.

The following privileges are supported:

a Allows the addition of principals or policies in the database.

A Disallows the addition of principals or policies in the database.

c Allows the changing of passwords for principals in the database.

C Disallows the changing of passwords for principals in the database.

d Allows the deletion of principals or policies in the database.

D Disallows the deletion of principals or policies in the database.

kadm5.acl(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 273

i Allows inquiries to the database.

I Disallows inquiries to the database.

l Allows the listing of principals or policies in the database.

L Disallows the listing of principals or policies in the database.

m Allows the modification of principals or policies in the database.

M Disallows the modification of principals or policies in the database.

p Allow the propagation of the principal database.

P Disallow the propagation of the principal database.

u Allows the creation of one-component user principals whose password
can be validated with PAM.

U Negates the u privilege.

x Short for specifying privileges a, d,m,c,i, and l. The same as *.

* Short for specifying privileges a, d,m,c,i, and l. The same as x.

operation-target
Optional. When specified, the privileges apply to the principal when it operates on
the operation-target. For the operation-target, you can specify a partially or fully
qualified Kerberos principal name. Each component of the name can be substituted
by a wildcard, using the asterisk (*) character.

EXAMPLE 1 Specifying a Standard, Fully Qualified Name

The following ACL entry specifies a standard, fully qualified name:

user/instance@realm adm

The operation-mask applies only to the user/instance@realm principal and specifies
that the principal can add, delete, or modify principals and policies, but it cannot
change passwords.

EXAMPLE 2 Specifying a Standard Fully Qualified Name and Target

The following ACL entry specifies a standard, fully qualified name:

user/instance@realm cim service/instance@realm

The operation-mask applies only to the user/instance@realm principal operating on
the service/instance@realm target, and specifies that the principal can change
the target’s password, request information about the target, and modify it.

EXAMPLE 3 Specifying a Name Using a Wildcard

The following ACL entry specifies a name using a wildcard:

user/*@realm ac

kadm5.acl(4)

EXAMPLES

274 man pages section 4: File Formats • Last Revised 26 Apr 2004

EXAMPLE 3 Specifying a Name Using a Wildcard (Continued)

The operation-mask applies to all principals in realm realm whose first component is
user and specifies that the principals can add principals and change passwords.

EXAMPLE 4 Specifying a Name Using a Wildcard and a Target

The following ACL entry specifies a name using a wildcard and a target:

user/*@realm i */instance@realm

The operation-mask applies to all principals in realm realm whose first component is
user and specifies that the principals can perform inquiries on principals whose
second component is instance and realm is realm.

EXAMPLE 5 Specifying Incremental Propagation Privileges

The following ACL entry specifies propagation privileges for the kiprop service
principal:

kiprop/slavehost@realm p

The operation-mask applies to the kiprop service principal for the specified slave
host slavehost in realm realm. This specifies that the associated kiprop service
principal can receive incremental principal updates.

/etc/krb5/kdc.conf
KDC configuration information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWkdcu

Interface Stability Evolving

kpasswd(1), gkadmin(1M), kadmind(1M), kadmin.local(1M), kdb5_util(1M),
kdc.conf(4), attributes(5), pam_krb5_migrate(5), SEAM(5)

kadm5.acl(4)

FILES

ATTRIBUTES

SEE ALSO

File Formats 275

kdc.conf – Key Distribution Center (KDC) configuration file

/etc/krb5/kdc.conf

The kdc.conf file contains KDC configuration information, including defaults used
when issuing Kerberos tickets. This file must reside on all KDC servers. After you
make any changes to the kdc.conf file, stop and restart the krb5kdc daemon on the
KDC for the changes to take effect.

The format of the kdc.conf consists of section headings in square brackets ([]). Each
section contains zero or more configuration variables (called relations), of the form of:

relation = relation-value

or

relation-subsection = {
relation = relation-value
relation = relation-value
}

The kdc.conf file contains one of more of the following three sections:

kdcdefaults
Contains default values for overall behavior of the KDC.

realms
Contains subsections for Kerberos realms, where relation-subsection is the name of a
realm. Each subsection contains relations that define KDC properties for that
particular realm, including where to find the Kerberos servers for that realm.

logging
Contains relations that determine how Kerberos programs perform logging.

The following relation can be defined in the [kdcdefaults] section:

kdc_ports
This relation lists the UDP ports on which the Kerberos server should listen by
default. This list is a comma-separated list of integers. Note that, if the assigned
value is 0, the Kerberos server will not listen on any UDP port. If this relation is not
specified, the Kerberos server listens on port 750 and port 88.

kdc_tcp_ports
This relation lists the TCP ports on which the Kerberos server should listen by
default. This list is a comma-separated list of integers. Note that, if the assigned
value is 0, the Kerberos server will not listen on any TCP port. If this relation is not
specified, the Kerberos server will listen on the kdc TCP port specified in
/etc/services. If this port is not found in /etc/services the Kerberos server
will default to listen on TCP port 88.

kdc_max_tcp_connections
This relation controls the maximum number of TCP connections the KDC will
allow. Note, the minimum value is 10. If this relation is not specified, the Kerberos
server will allow a maximum of 30 TCP connections.

kdc.conf(4)

NAME

SYNOPSIS

DESCRIPTION

The kdcdefaults
Section

276 man pages section 4: File Formats • Last Revised 16 Jun 2004

This section contains subsections for Kerberos realms, where relation-subsection is the
name of a realm. Each subsection contains relations that define KDC properties for
that particular realm.

The following relations can be specified in each subsection:

acl_file
(string) Location of the Kerberos V5 access control list (ACL) file that kadmin uses
to determine the privileges allowed to each principal on the database. The default
location is /etc/krb5/kadm5.acl.

admin_keytab
(string) Location of the keytab file that kadmin uses to authenticate to the
database. The default location is /etc/krb5/kadm5.keytab.

database_name
(string) Location of the Kerberos database for this realm. The default location is
/var/krb5/principal.

default_principal_expiration
(absolute time string) The default expiration date of principals created in this realm.
See the Time Format section in kinit(1) for the valid absolute time formats you
can use for default_principal_expiration.

default_principal_flags
(flag string) The default attributes of principals created in this realm. Some of these
flags are better to set on an individual principal basis through the use of the
attribute modifiers when using the kadmin command to create and modify
principals. However, some of these options can be applied to all principals in the
realm by adding them to the list of flags associated with this relation.

A "flag string" is a list of one or more of the flags listed below preceded by a minus
("-") or a plus ("+") character, indicating that the option that follows should be
enabled or disabled.

Flags below marked with an asterisk ("*") are flags that are best applied on an
individual principal basis through the kadmin or gkadmin interface rather than as
a blanket attribute to be applied to all principals.

postdateable Create postdatable tickets.

forwardable Create forwardable tickets.

tgt-based Allow TGT-based requests.

renewable Create Renewable tickets.

proxiable Create Proxiable tickets.

dup-skey Allow DUP_SKEY requests, this enables user-to-user
authentication.

preauth Require the use of pre-authentication data whenever
principals request TGTs.

kdc.conf(4)

The realms
Section

File Formats 277

hwauth Require the use of hardware-based
pre-authentication data whenever principals request
TGTs.

* allow-tickets Allow tickets to be issued for all principals.

* pwdchange Require principal’s to change their password.

* service Enable or disable a service.

* pwservice Mark principals as password changing principals.

An example of default_principal_flags is shown in EXAMPLES, below.

dict_file
(string) Location of the dictionary file containing strings that are not allowed as
passwords. A principal with any password policy is not allowed to select a
password in the dictionary. The default location is /var/krb5/kadm5.dict.

kadmind_port
(port number) The port that the kadmind daemon is to listen on for this realm. The
assigned port for kadmind is 749.

key_stash_file
(string) Location where the master key has been stored (by kdb5_util stash).
The default location is /var/krb5/.k5.realm, where realm is the Kerberos realm.

kdc_ports
(string) The list of UDP ports that the KDC listens on for this realm. By default, the
value of kdc_ports as specified in the [kdcdefaults] section is used.

kdc_tcp_ports
(string) The list of TCP ports that the KDC listens on (in addition to the UDP ports
specified by kdc_ports) for this realm. By default, the value of kdc_tcp_ports
as specified in the [kdcdefaults] section is used.

master_key_name
(string) The name of the master key.

master_key_type
(key type string) The master key’s key type. This is used to determine the type of
encryption that will encrypt the entries in the principal db. des-cbc-crc,
des3-cbc-sha1, arcfour-hmac-md5, arcfour-hmac-md5-exp,
aes128-cts-hmac-sha1-96, and aes256-cts-hmac-sha1-96 are supported
at this time (des-cbc-crc is the default). Note, if you set this to des3-cbc-sha1
all systems that receive copies of the principal db, such as those running slave
KDC’s, must support des3-cbc-sha1.

max_life
(delta time string) The maximum time period for which a ticket is valid in this
realm. See the Time Format section in kinit(1) for the valid time duration
formats you can use for max_life.

kdc.conf(4)

278 man pages section 4: File Formats • Last Revised 16 Jun 2004

max_renewable_life
(delta time string) The maximum time period during which a valid ticket can be
renewed in this realm. See the Time Format section in kinit(1) for the valid time
duration formats you can use for max_renewable_life.

sunw_dbprop_enable = [true | false]
Enable or disable incremental database propagation. Default is false.

sunw_dbprop_master_ulogsize = N
Specifies the maximum number of log entries available for incremental propagation
to the slave KDC servers. The maximum value that this can be is 2500 entries.
Default value is 1000 entries.

sunw_dbprop_slave_poll = N[s, m, h]
Specifies how often the slave KDC polls for new updates that the master might
have. Default is 2m (two minutes).

supported_enctypes
List of key/salt strings. The default key/salt combinations of principals for
this realm. The key is separated from the salt by a colon (:) or period (.).
Multiple key/salt strings can be used by separating each string with a space. The
salt is additional information encoded within the key that tells what kind of key it
is. Only the normal salt is supported at this time, for example,
des-cbc-crc:normal. If you do not want to enable triple-DES support, you
should set this tag to des-cbc-md5:normal des-cbc-crc:normal. Note that,
if this relation is not specified, the default setting is:

aes256-cts-hmac-sha1-96:normal \ (see note below)
aes128-cts-hmac-sha1-96:normal \
des3-cbc-sha1:normal \
arcfour-hmac-md5:normal \
des-cbc-md5:normal \
des-cbc-crc:normal

Note – The unbundled Strong Cryptographic packages must be installed for the
aes256-cts-hmac-sha1-96:normal enctype to be available for Kerberos.

This section indicates how Kerberos programs perform logging. The same relation can
be repeated if you want to assign it multiple logging methods. The following relations
can be defined in the [logging] section:

kdc
Specifies how the KDC is to perform its logging. The default is
FILE:/var/krb5/kdc.log.

admin_server
Specifies how the administration server is to perform its logging. The default is
FILE:/var/krb5/kadmin.log.

default
Specifies how to perform logging in the absence of explicit specifications.

The [logging] relations can have the following values:

kdc.conf(4)

The logging
Section

File Formats 279

FILE:filename

or

FILE=filename
This value causes the entity’s logging messages to go to the specified file. If the ‘=’
form is used, the file is overwritten. If the ‘:’ form is used, the file is appended to.

STDERR
This value sends the entity’s logging messages to its standard error stream.

CONSOLE
This value sends the entity’s logging messages to the console, if the system
supports it.

DEVICE=devicename
This sends the entity’s logging messages to the specified device.

SYSLOG[:severity[:facility]]
This sends the entity’s logging messages to the system log.

The severity argument specifies the default severity of system log messages. This
default can be any of the following severities supported by the syslog(3C) call,
minus the LOG_ prefix: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR,
LOG_WARNING, LOG_NOTICE, LOG_INFO, and LOG_DEBUG. For example, a value of
CRIT would specify LOG_CRIT severity.

The facility argument specifies the facility under which the messages are logged.
This can be any of the following facilities supported by the syslog(3C) call minus
the LOG_ prefix: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH,
LOG_LPR, LOG_NEWS, LOG_UUCP, LOG_CRON, and LOG_LOCAL0 through
LOG_LOCAL7.

If no severity is specified, the default is ERR. If no facility is specified, the default is
AUTH.

In the following example, the logging messages from the KDC go to the console
and to the system log under the facility LOG_DAEMON with default severity of
LOG_INFO; the logging messages from the administration server are appended to
the /var/krb5/kadmin.log file and sent to the /dev/tty04 device.

[logging]
kdc = CONSOLE
kdc = SYSLOG:INFO:DAEMON
admin_server = FILE:/export/logging/kadmin.log

admin_server = DEVICE=/dev/tty04

EXAMPLE 1 Sample kdc.conf File

The following is an example of a kdc.conf file:

[kdcdefaults]
kdc_ports = 88

kdc.conf(4)

EXAMPLES

280 man pages section 4: File Formats • Last Revised 16 Jun 2004

EXAMPLE 1 Sample kdc.conf File (Continued)

[realms]
ATHENA.MIT.EDU = {

kadmind_port = 749
max_life = 10h 0m 0s
max_renewable_life = 7d 0h 0m 0s
default_principal_flags = +preauth,+forwardable,-postdateable
master_key_type = des-cbc-crc
supported_enctypes = des-cbc-crc:normal

}

[logging]
kdc = FILE:/export/logging/kdc.log

admin_server = FILE:/export/logging/kadmin.log

/etc/krb5/kadm5.acl
List of principals and their kadmin administrative privileges.

/etc/krb5/kadm5.keytab
Keytab for kadmin/admin Principal.

/var/krb5/principal
Kerberos principal database.

/var/krb5/principal.ulog
The update log file for incremental propagation.

/var/krb5/kadm5.dict
Dictionary of strings explicitly disallowed as passwords.

/var/krb5/kdc.log
KDC logging file.

/var/krb5/kadmin.log
Kerberos administration server logging file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWkdcu

Interface Stability Evolving

kpasswd(1), gkadmin(1M), kadmind(1M), kadmin.local(1M), kdb5_util(1M),
kpropd(1M), syslog(3C), kadm5.acl(4), attributes(5), SEAM(5)

kdc.conf(4)

FILES

ATTRIBUTES

SEE ALSO

File Formats 281

keytables – keyboard table descriptions for loadkeys and dumpkeys

These files are used by loadkeys(1) to modify the translation tables used by the
keyboard streams module and generated from those translation tables. See
loadkeys(1).

Any line in the file beginning with # is a comment, and is ignored. # is treated
specially only at the beginning of a line.

Other lines specify the values to load into the tables for a particular keystation. The
format is either:

key number list_of_entries

or

swap number1 with number2

or

key number1 same as number2

or a blank line, which is ignored.

key number list_of_entries

sets the entries for keystation number from the list given. An entry in that list is of the
form

tablename code

where tablename is the name of a particular translation table, or all. The translation
tables are:

base entry when no shifts are active

shift entry when "Shift" key is down

caps entry when "Caps Lock" is in effect

ctrl entry when "Control" is down

altg entry when "Alt Graph" is down

numl entry when "Num Lock" is in effect

up entry when a key goes up

All tables other than up refer to the action generated when a key goes down. Entries in
the up table are used only for shift keys, since the shift in question goes away when
the key goes up, except for keys such as "Caps Lock" or "Num Lock"; the keyboard
streams module makes the key look as if it were a latching key.

A table name of all indicates that the entry for all tables should be set to the specified
value, with the following exception: for entries with a value other than hole, the entry
for the numl table should be set to nonl, and the entry for the up table should be set
to nop.

keytables(4)

NAME

DESCRIPTION

282 man pages section 4: File Formats • Last Revised 18 Feb 2003

The code specifies the effect of the key in question when the specified shift key is
down. A code consists of either:

� A character, which indicates that the key should generate the given character. The
character can either be a single character, a single character preceded by ^ which
refers to a "control character" (for instance, ^c is control-C), or a C-style character
constant enclosed in single quote characters (’), which can be expressed with
C-style escape sequences such as \r for RETURN or \000 for the null character.
Note that the single character may be any character in an 8-bit character set, such
as ISO 8859/1.

� A string, consisting of a list of characters enclosed in double quote characters (").
Note that the use of the double quote character means that a code of double quote
must be enclosed in single quotes.

� One of the following expressions:

shiftkeys+leftshift the key is to be the left-hand "Shift" key

shiftkeys+rightshift the key is to be the right-hand "Shift" key

shiftkeys+leftctrl the key is to be the left-hand "Control" key

shiftkeys+rightctrl the key is to be the right-hand "Control" key

shiftkeys+alt the key is to be the "Alt" shift key

shiftkeys+altgraph the key is to be the "Alt Graph" shift key

shiftkeys+capslock the key is to be the "Caps Lock" key

shiftkeys+shiftlock the key is to be the "Shift Lock" key

shiftkeys+numlock the key is to be the "Num Lock" key

buckybits+systembit the key is to be the "Stop" key in SunView; this is
normally the L1 key, or the SETUP key on the
VT100 keyboard

buckybits+metabit the key is to be the "meta" key. That is, the "Left" or
"Right" key on a Sun-2 or Sun-3 keyboard or the
"diamond" key on a Sun-4 keyboard

compose the key is to be the "Compose" key

ctrlq on the "VT100" keyboard, the key is to transmit the
control-Q character (this would be the entry for the
"Q" key in the ctrl table)

ctrls on the "VT100" keyboard, the key is to transmit the
control-S character (this would be the entry for the
"S" key in the ctrl table)

noscroll on the "VT100" keyboard, the key is to be the "No
Scroll" key

keytables(4)

File Formats 283

string+uparrow the key is to be the "up arrow" key

string+downarrow the key is to be the "down arrow" key

string+leftarrow the key is to be the "left arrow" key

string+rightarrow the key is to be the "right arrow" key

string+homearrow the key is to be the "home" key

fa_acute the key is to be the acute accent "floating accent"
key

fa_cedilla the key is to be the cedilla "floating accent" key

fa_cflex the key is to be the circumflex "floating accent" key

fa_grave the key is to be the grave accent "floating accent"
key

fa_tilde the key is to be the tilde "floating accent" key

fa_umlaut the key is to be the umlaut "floating accent" key

nonl this is used only in the Num Lock table; the key is
not to be affected by the state of Num Lock

pad0 the key is to be the "0" key on the numeric keypad

pad1 the key is to be the "1" key on the numeric keypad

pad2 the key is to be the "2" key on the numeric keypad

pad3 the key is to be the "3" key on the numeric keypad

pad4 the key is to be the "4" key on the numeric keypad

pad5 the key is to be the "5" key on the numeric keypad

pad6 the key is to be the "6" key on the numeric keypad

pad7 the key is to be the "7" key on the numeric keypad

pad8 the key is to be the "8" key on the numeric keypad

pad9 the key is to be the "9" key on the numeric keypad

paddot the key is to be the "." key on the numeric keypad

padenter the key is to be the "Enter" key on the numeric
keypad

padplus the key is to be the "+" key on the numeric keypad

padminus the key is to be the "−" key on the numeric keypad

padstar the key is to be the "*" key on the numeric keypad

padslash the key is to be the "/" key on the numeric keypad

keytables(4)

284 man pages section 4: File Formats • Last Revised 18 Feb 2003

padequal the key is to be the "=" key on the numeric keypad

padsep the key is to be the "," (separator) key on the
numeric keypad

lf(n) the key is to be the left-hand function key n

rf(n) the key is to be the right-hand function key n

tf(n) the key is to be the top function key n

bf(n) the key is to be the "bottom" function key n

nop the key is to do nothing

error this code indicates an internal error; to be used only
for keystation 126, and must be used there

idle this code indicates that the keyboard is idle (that is,
has no keys down); to be used only for all entries
other than the numl and up table entries for
keystation 127, and must be used there

oops this key exists, but its action is not defined; it has
the same effect as nop

reset this code indicates that the keyboard has just been
reset; to be used only for the up table entry for
keystation 127, and must be used there.

swap number1 with number2 exchanges the entries for keystations number1 and
number2.

key number1 same as
number2

sets the entries for keystation number1 to be the
same as those for keystation number2. If the file does
not specify entries for keystation number2, the
entries currently in the translation table are used; if
the file does specify entries for keystation number2,
those entries are used.

EXAMPLE 1 Example of setting multiple keystations.

The following entry sets keystation 15 to be a “hole” (that is, an entry indicating that
there is no keystation 15); sets keystation 30 to do nothing when Alt Graph is down,
generate "!" when Shift is down, and generate "1" under all other circumstances; and
sets keystation 76 to be the left-hand Control key.

key 15 all hole
key 30 base 1 shift ! caps 1 ctrl 1 altg nop
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl

keytables(4)

EXAMPLES

File Formats 285

EXAMPLE 1 Example of setting multiple keystations. (Continued)

EXAMPLE 2 Exchange DELETE and BACKSPACE keys

The following entry exchanges the Delete and Back Space keys on the Type 4
keyboard:

swap 43 with 66

Keystation 43 is normally the Back Space key, and keystation 66 is normally the Delete
key.

EXAMPLE 3 Disable CAPS LOCK key

The following entry disables the Caps Lock key on the Type 3 and U.S. Type 4
keyboards:

key 119 all nop

EXAMPLE 4 Standard translation tables for the U.S. Type 4 keyboard

The following specifies the standard translation tables for the U.S. Type 4 keyboard:

key 0 all hole
key 1 all buckybits+systembit up buckybits+systembit
key 2 all hole
key 3 all lf(2)
key 4 all hole
key 5 all tf(1)
key 6 all tf(2)
key 7 all tf(10)
key 8 all tf(3)
key 9 all tf(11)
key 10 all tf(4)
key 11 all tf(12)
key 12 all tf(5)
key 13 all shiftkeys+altgraph up shiftkeys+altgraph
key 14 all tf(6)
key 15 all hole
key 16 all tf(7)
key 17 all tf(8)
key 18 all tf(9)
key 19 all shiftkeys+alt up shiftkeys+alt
key 20 all hole
key 21 all rf(1)
key 22 all rf(2)
key 23 all rf(3)
key 24 all hole
key 25 all lf(3)
key 26 all lf(4)
key 27 all hole
key 28 all hole
key 29 all ^[
key 30 base 1 shift ! caps 1 ctrl 1 altg nop
key 31 base 2 shift @ caps 2 ctrl ^@ altg nop

keytables(4)

286 man pages section 4: File Formats • Last Revised 18 Feb 2003

EXAMPLE 4 Standard translation tables for the U.S. Type 4 keyboard (Continued)

key 32 base 3 shift # caps 3 ctrl 3 altg nop
key 33 base 4 shift $ caps 4 ctrl 4 altg nop
key 34 base 5 shift % caps 5 ctrl 5 altg nop
key 35 base 6 shift ^ caps 6 ctrl ^^ altg nop
key 36 base 7 shift & caps 7 ctrl 7 altg nop
key 37 base 8 shift * caps 8 ctrl 8 altg nop
key 38 base 9 shift (caps 9 ctrl 9 altg nop
key 39 base 0 shift) caps 0 ctrl 0 altg nop
key 40 base - shift _ caps - ctrl ^_ altg nop
key 41 base = shift + caps = ctrl = altg nop
key 42 base ‘ shift ~ caps ‘ ctrl ^^ altg nop
key 43 all ’\b’
key 44 all hole
key 45 all rf(4) numl padequal
key 46 all rf(5) numl padslash
key 47 all rf(6) numl padstar
key 48 all bf(13)
key 49 all lf(5)
key 50 all bf(10) numl padequal
key 51 all lf(6)
key 52 all hole
key 53 all ’\t’
key 54 base q shift Q caps Q ctrl ^Q altg nop
key 55 base w shift W caps W ctrl ^W altg nop
key 56 base e shift E caps E ctrl ^E altg nop
key 57 base r shift R caps R ctrl ^R altg nop
key 58 base t shift T caps T ctrl ^T altg nop
key 59 base y shift Y caps Y ctrl ^Y altg nop
key 60 base u shift U caps U ctrl ^U altg nop
key 61 base i shift I caps I ctrl ’\t’ altg nop
key 62 base o shift O caps O ctrl ^O altg nop
key 63 base p shift P caps P ctrl ^P altg nop
key 64 base [shift { caps [ctrl ^[altg nop
key 65 base] shift } caps] ctrl ^] altg nop
key 66 all ’\177’
key 67 all compose
key 68 all rf(7) numl pad7
key 69 all rf(8) numl pad8
key 70 all rf(9) numl pad9
key 71 all bf(15) numl padminus
key 72 all lf(7)
key 73 all lf(8)
key 74 all hole
key 75 all hole
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl
key 77 base a shift A caps A ctrl ^A altg nop
key 78 base s shift S caps S ctrl ^S altg nop
key 79 base d shift D caps D ctrl ^D altg nop
key 80 base f shift F caps F ctrl ^F altg nop
key 81 base g shift G caps G ctrl ^G altg nop
key 82 base h shift H caps H ctrl ’\b’ altg nop
key 83 base j shift J caps J ctrl ’\n’ altg nop
key 84 base k shift K caps K ctrl ’\v’ altg nop
key 85 base l shift L caps L ctrl ^L altg nop

keytables(4)

File Formats 287

EXAMPLE 4 Standard translation tables for the U.S. Type 4 keyboard (Continued)

key 86 base ; shift : caps ; ctrl ; altg nop
key 87 base ’\’’ shift ’"’ caps ’\’’ ctrl ’\’’ altg nop
key 88 base ’\\’ shift | caps ’\\’ ctrl ^\ altg nop
key 89 all ’\r’
key 90 all bf(11) numl padenter
key 91 all rf(10) numl pad4
key 92 all rf(11) numl pad5
key 93 all rf(12) numl pad6
key 94 all bf(8) numl pad0
key 95 all lf(9)
key 96 all hole
key 97 all lf(10)
key 98 all shiftkeys+numlock
key 99 all shiftkeys+leftshift up shiftkeys+leftshift
key 100 base z shift Z caps Z ctrl ^Z altg nop
key 101 base x shift X caps X ctrl ^X altg nop
key 102 base c shift C caps C ctrl ^C altg nop
key 103 base v shift V caps V ctrl ^V altg nop
key 104 base b shift B caps B ctrl ^B altg nop
key 105 base n shift N caps N ctrl ^N altg nop
key 106 base m shift M caps M ctrl ’\r’ altg nop
key 107 base , shift < caps , ctrl , altg nop
key 108 base . shift > caps . ctrl . altg nop
key 109 base / shift ? caps / ctrl ^_ altg nop
key 110 all shiftkeys+rightshift up shiftkeys+rightshift
key 111 all ’\n’
key 112 all rf(13) numl pad1
key 113 all rf(14) numl pad2
key 114 all rf(15) numl pad3
key 115 all hole
key 116 all hole
key 117 all hole
key 118 all lf(16)
key 119 all shiftkeys+capslock
key 120 all buckybits+metabit up buckybits+metabit
key 121 base ’ ’ shift ’ ’ caps ’ ’ ctrl ^@ altg ’ ’
key 122 all buckybits+metabit up buckybits+metabit
key 123 all hole
key 124 all hole
key 125 all bf(14) numl padplus
key 126 all error numl error up hole
key 127 all idle numl idle up reset

loadkeys(1)

keytables(4)

SEE ALSO

288 man pages section 4: File Formats • Last Revised 18 Feb 2003

krb5.conf – Kerberos configuration file

/etc/krb5/krb5.conf

The krb5.conf file contains Kerberos configuration information, including the
locations of KDCs and administration daemons for the Kerberos realms of interest,
defaults for the current realm and for Kerberos applications, and mappings of host
names onto Kerberos realms. This file must reside on all Kerberos clients.

The format of the krb5.conf consists of sections headings in square brackets. Each
section may contain zero or more configuration variables (called relations), of the form:

relation= relation-value

or

relation-subsection = {

relation= relation-value
relation= relation-value

}

The krb5.conf file may contain any or all of the following seven sections:

libdefaults
Contains default values used by the Kerberos V5 library.

appdefaults
Contains subsections for Kerberos V5 applications, where relation-subsection is the
name of an application. Each subsection describes application-specific defaults.

realms
Contains subsections for Kerberos realms, where relation-subsection is the name of a
realm. Each subsection contains relations that define the properties for that
particular realm.

domain_realm
Contains relations which map domain names and subdomains onto Kerberos realm
names. This is used by programs to determine what realm a host should be in,
given its fully qualified domain name.

logging
Contains relations which determine how Kerberos programs are to perform
logging.

krb5.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 289

capaths
Contains the authentication paths used with direct (nonhierarchical) cross-realm
authentication. Entries in this section are used by the client to determine the
intermediate realms which may be used in cross-realm authentication. It is also
used by the end-service when checking the transited field for trusted intermediate
realms.

kdc
For a KDC, may contain the location of the kdc.conf file.

The [libdefaults] section may contain any of the following relations:

default_keytab_name
Specifies the default keytab name to be used by application servers such as
telnetd and rlogind. The default is /etc/krb5/krb5.keytab.

default_realm
Identifies the default Kerberos realm for the client. Set its value to your Kerberos
realm.

default_tgs_enctypes
Identifies the supported list of session key encryption types that should be returned
by the KDC. The list may be delimited with commas or whitespace. The supported
encryption types are des3-cbc-sha1, des-cbc-crc, des-cbc-md5,
arcfour-hmac-md5, arcfour-hmac-md5-exp, aes128-cts-hmac-sha1-96,
and aes256-cts-hmac-sha1-96.

default_tkt_enctypes
Identifies the supported list of session key encryption types that should be
requested by the client. The format is the same as for default_tkt_enctypes.
The supported encryption types are des3-cbc-sha1, des-cbc-crc,
des-cbc-md5, arcfour-hmac-md5, arcfour-hmac-md5-exp,
aes128-cts-hmac-sha1-96, and aes256-cts-hmac-sha1-96.

clockskew
Sets the maximum allowable amount of clock skew in seconds that the library will
tolerate before assuming that a Kerberos message is invalid. The default value is
300 seconds, or five minutes.

forwardable = [true | false]
Sets the “forwardable” flag in all tickets. This allows users to transfer their
credentials from one host to another without reauthenticating. This option may also
be set in the [appdefaults] or [realms] section (see below) to limit its use in
particular applications or just to a specific realm.

permitted_enctypes
This relation controls the encryption types for session keys permitted by server
applications that use Kerberos for authentication. In addition, it controls the
encryption types of keys added to a keytab by means of the kadmin(1M) ktadd
command. The default is: aes256-cts-hmac-sha1-96,
aes128-cts-hmac-sha1-96, des3-hmac-sha1, arcfour-hmac-md5,
des-cbc-md5, des-cbc-crc.

krb5.conf(4)

[libdefaults]

290 man pages section 4: File Formats • Last Revised 25 May 2004

proxiable = [true | false]
Sets the "proxiable" flag in all tickets. This allows users to create a proxy ticket
that can be transferred to a kerberized service to allow that service to perform some
function on behalf of the original user. This option may also be set in the
[appdefaults] or [realms] section (see below) to limit its use in particular
applications or just to a specific realm.

renew_lifetime =lifetime
Requests renewable tickets, with a total lifetime of lifetime. The value for lifetime
must be followed immediately by one of the following delimiters:

s seconds

m minutes

h hours

d days

Example:

renew_lifetime = 90m

Do not mix units. A value of “3h30m” will result in an error.

max_lifetime =lifetime
Sets the requested maximum lifetime of the ticket. The values for lifetime follow the
format described for the renew_lifetime option, above.

dns_lookup_kdc
Indicates whether DNS SRV records need to be used to locate the KDCs and the
other servers for a realm, if they have not already been listed in the [realms]
section. Enabling this option does make the machine vulnerable to a certain type of
DoS attack if somone spoofs the DNS records and does a redirect to another server.
This is, however, no worse than a DoS, since the bogus KDC will be unable to
decode anything sent (excepting the initial ticket request, which has no encrypted
data). Also, anything the fake KDC sends out will not be trusted without
verification (the local machine will be unaware of the secret key to be used). If
dns_lookup_kdc is not specified but dns_fallback is, then that value will be
used instead. In either case, values (if present) in the [realms] section override
DNS.

dns_lookup_realm
Indicates whether DNS TXT records need to be used to determine the Kerberos
realm information and/or the host/domain name-to-realm mapping of a host, if
this information is not already present in the krb5.conf file. Enabling this option
might make the host vulnerable to a redirection attack, wherein spoofed DNS
replies persuade a client to authenticate to the wrong realm. In a realm with no
cross-realm trusts, this a DoS attack. If dns_lookup_realm is not specified but
dns_fallback is, then that value will be used instead. In either case, values (if
present) in the [libdefaults] and [domain_realm] sections override DNS.

krb5.conf(4)

File Formats 291

dns_fallback
Generic flag controlling the use of DNS for retrieval of information about Kerberos
servers and host/domain name-to-realm mapping. If both dns_lookup_kdc and
dns_lookup_realm have been specified, this option has no effect.

verify_ap_req_nofail [true | false]
If true, the local keytab file (/etc/krb5/krb5.keytab) must contain an entry
for the local host principal, for example, host/foo.bar.com@FOO.COM. This
entry is needed to verify that the TGT requested was issued by the same KDC that
issued the key for the host principal. If undefined, the behavior is as if this option
were set to true. Setting this value to false leaves the system vulnerable to DNS
spoofing attacks. This parameter may be in the [realms] section to set it on a
per-realm basis, or it may be in the [libdefaults] section to make it a
network-wide setting for all realms.

This section contains subsections for Kerberos V5 applications, where
relation-subsection is the name of an application. Each subsection contains relations that
define the default behaviors for that application.

The following relations may be found in the [appdefaults] section, though not all
relations are recognized by all kerberized applications. Some are specific to particular
applications.

autologin = [true | false]
Forces the application to attempt automatic login by presenting Kerberos
credentials. This is only valid for the telnet application.

encrypt = [true | false]
Forces applications to use encryption by default (after authentication) to protect the
privacy of the sessions. This is valid for the following applications: rlogin, rsh,
rcp, rdist, and telnet.

forward = [true | false]
Forces applications to forward the user’ss credentials (after authentication) to the
remote server. This is valid for the following applications: rlogin, rsh, rcp,
rdist, and telnet.

forwardable = [true | false]
See the description in the [libdefaults] section above. This is used by any
application that creates a ticket granting ticket and also by applications that can
forward tickets to a remote server.

proxiable = [true | false]
See the description in the [libdefaults] section above. This is used by any
application that creates a ticket granting ticket.

renewable = [true | false]
Creates a TGT that can be renewed (prior to the ticket expiration time). This is used
by any application that creates a ticket granting ticket.

krb5.conf(4)

[appdefaults]

292 man pages section 4: File Formats • Last Revised 25 May 2004

no_addresses = [true | false]
Creates tickets with no address bindings. This is to allow tickets to be used across a
NAT boundary or when using multi-homed systems. This option is valid in the
kinit [appdefault] section only.

max_life =lifetime
Sets the maximum lifetime of the ticket, with a total lifetime of lifetime. The values
for lifetime follow the format described in the [libdefaults] section above. This
option is obsolete and will be removed in a future release of the Solaris operating
system.

max_renewable_life =lifetime
Requests renewable tickets, with a total lifetime of lifetime. The values for lifetime
follow the format described in the [libdefaults] section above. This option is
obsolete and will be removed in a future release of the Solaris operating system.

rcmd_protocol = [rcmdv1 | rcmdv2]
Specifies which Kerberized “rcmd” protocol to use when using the Kerberized
rlogin(1), rsh(1), rcp(1), or rdist(1) programs. The default is to use "rcmdv2"
by default, as this is the more secure and more recent update of the protocol.
However, when talking to older MIT or SEAM-based “rcmd” servers, it may be
necessary to force the new clients to use the older "rcmdv1" protocol. This option is
valid only for the following applications: rlogin, rcp, rsh, and rdist.

gkadmin = {
help_url = http://localhost:8888/ab2/coll.384.1/SEAM

}

The following application defaults can be set to true or false:

kinit
forwardable = true
proxiable = true
renewable = true
no_addresses = true
max_life = delta_time
max_renewable_life = delta_time

See kinit(1) for the valid time duration formats you can specify for delta_time.

In the following example, kinit will get forwardable tickets by default and telnet
has three default behaviors specified:

[appdefaults]
kinit = {

forwardable = true
}

telnet = {
forward = true
encrypt = true
autologin = true

}

The application defaults specified here are overridden by those specified in the
[realms] section.

krb5.conf(4)

File Formats 293

This section contains subsections for Kerberos realms, where relation-subsection is the
name of a realm. Each subsection contains relations that define the properties for that
particular realm. The following relations may be specified in each [realms]
subsection:

kdc
The name of a host running a KDC for that realm. An optional port number
(separated from the hostname by a colon) may be included.

admin_server
Identifies the host where the Kerberos administration daemon (kadmind) is
running. Typically, this is the master KDC.

application defaults
Application defaults that are specific to a particular realm can be specified within a
[realms] subsection. Realm-specific application defaults override the global
defaults specified in the [appdefaults] section.

auth_to_local_realm
For use in the default realm, non-default realms can be equated with the default
realm for authenticated name-to-local name mapping.

kpasswd_server
Identifies the host where the Kerberos password-changing server is running.
Typically, this is the same as host indicated in the admin_server. If this parameter
is omitted, the host in admin_server is used. You can also specify a port number
if the server indicated by kpasswd_server runs on a port other than 464 (the
default). The format of this parameter is: hostname[:port].

kpasswd_protocol
Identifies the protocol to be used when communicating with the server indicated by
kpasswd_server. By default, this parameter is defined to be RPCSEC_GSS, which
is the protocol used by SEAM-based administration servers. To be able to change a
principal’s password stored on non-SEAM-based Kerberos server, such as Microsoft
Active Directory or MIT Kerberos, this value should be SET_CHANGE. This
indicates that a non-RPC– based protocol will be used to communicate the
password change request to the server in the kpasswd_server entry.

verify_ap_req_nofail [true | false]
If true, the local keytab file (/etc/krb5/krb5.keytab) must contain an entry
for the local host principal, for example, host/foo.bar.com@FOO.COM. This
entry is needed to verify that the TGT requested was issued by the same KDC that
issued the key for the host principal. If undefined, the behavior is as if this option
were set to true. Setting this value to false leaves the system vulnerable to DNS
spoofing attacks. This parameter may be in the [realms] section to set it on a
per-realm basis, or it may be in the [libdefaults] section to make it a
network-wide setting for all realms.

The parameters “forwardable”, “proxiable”, and “renew_lifetime” as
described in the [libdefaults] section (see above) are also valid in the [realms]
section.

krb5.conf(4)

[realms]

294 man pages section 4: File Formats • Last Revised 25 May 2004

Notice that kpasswd_server and kpasswd_protocol are realm-specific
parameters. Most often, you need to specify them only when using a non-SEAM-based
Kerberos server. Otherwise, the change request is sent over RPCSEC_GSS to the SEAM
administration server.

This section provides a translation from a domain name or hostname to a Kerberos
realm name. The relation can be a host name, or a domain name, where domain names
are indicated by a period (‘.’) prefix. relation-value is the Kerberos realm name for that
particular host or domain. Host names and domain names should be in lower case.

If no translation entry applies, the host’s realm is considered to be the hostname’s
domain portion converted to upper case. For example, the following
[domain_realm] section maps crash.mit.edu into the TEST.ATHENA.MIT.EDU
realm:

[domain_realm]
.mit.edu = ATHENA.MIT.EDU
mit.edu = ATHENA.MIT.EDU
crash.mit.edu = TEST.ATHENA.MIT.EDU
.fubar.org = FUBAR.ORG

fubar.org = FUBAR.ORG

All other hosts in the mit.edu domain will map by default to the ATHENA.MIT.EDU
realm, and all hosts in the fubar.org domain will map by default into the
FUBAR.ORG realm. Note the entries for the hosts mit.edu and fubar.org. Without
these entries, these hosts would be mapped into the Kerberos realms EDU and ORG,
respectively.

This section indicates how Kerberos programs are to perform logging. There are two
types of relations for this section: relations to specify how to log and a relation to
specify how to rotate kdc log files.

The following relations may be defined to specify how to log. The same relation can be
repeated if you want to assign it multiple logging methods.

admin_server
Specifies how to log the Kerberos administration daemon (kadmind). The default is
FILE:/var/krb5/kadmin.log.

default
Specifies how to perform logging in the absence of explicit specifications otherwise.

kdc
Specifies how the KDC is to perform its logging. The default is
FILE:/var/krb5/kdc.log.

The admin_server, default, and kdc relations may have the following values:

FILE:filename
FILE=filename

This value causes the entity’s logging messages to go to the specified file. If the ‘=’
form is used, the file is overwritten. If the ‘:’ form is used, the file is appended to.

krb5.conf(4)

[domain_realm]

[logging]

File Formats 295

STDERR
This value causes the entity’s logging messages to go to its standard error stream.

CONSOLE
This value causes the entity’s logging messages to go to the console, if the system
supports it.

DEVICE=devicename
This causes the entity’s logging messages to go to the specified device.

SYSLOG[:severity[:facility]]
This causes the entity’s logging messages to go to the system log.

The severity argument specifies the default severity of system log messages. This may
be any of the following severities supported by the syslog(3C) call, minus the LOG_
prefix: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING, LOG_NOTICE,
LOG_INFO, and LOG_DEBUG. For example, a value of CRIT would specify LOG_CRIT
severity.

The facility argument specifies the facility under which the messages are logged. This
may be any of the following facilities supported by the syslog(3C) call minus the
LOG_ prefix: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH, LOG_LPR,
LOG_NEWS, LOG_UUCP, LOG_CRON, and LOG_LOCAL0 through LOG_LOCAL7.

If no severity is specified, the default is ERR. If no facility is specified, the default is
AUTH.

The following relation may be defined to specify how to rotate kdc log files if the
FILE: value is being used to log:

kdc_rotate
A relation subsection that enables kdc logging to be rotated to multiple files based
on a time interval. This can be used to avoid logging to one file, which may grow
too large and bring the KDC to a halt.

The time interval for the rotation is specified by the period relation. The number of
log files to be rotated is specified by the versions relation. Both the period and
versions (described below) should be included in this subsection. And, this
subsection applies only if the kdc relation has a FILE: value.

The following relations may be specified for the kdc_rotate relation subsection:

period=delta_time
Specifies the time interval before a new log file is created. See the TimeFormats
section in kinit(1) for the valid time duration formats you can specify for
delta_time. If period is not specified or set to "never", no rotation will occur.

Specifying a time interval does not mean that the log files will be rotated at the time
interval based on real time. This is because the time interval is checked at each attempt
to write a record to the log, or when logging is actually occurring. Therefore, rotation
occurs only when logging has actually occurred for the specified time interval.

krb5.conf(4)

296 man pages section 4: File Formats • Last Revised 25 May 2004

versions=number
Specifies how many previous versions will be saved before the rotation begins. A
number will be appended to the log file, starting with 0 and ending with (number -
1). For example, if versions is set to 2, up to three logging files will be created
(filename, filename.0, and filename.1) before the first one is overwritten to begin the
rotation.

Notice that if versions is not specified or set to 0, only one log file will be created,
but it will be overwritten whenever the time interval is met.

In the following example, the logging messages from the Kerberos administration
daemon will go to the console. The logging messages from the KDC will be appended
to the /var/krb5/kdc.log, which will be rotated between twenty-one log files with
a specified time interval of a day.

[logging]
admin_server = CONSOLE
kdc = FILE:/export/logging/kadmin.log
kdc_rotate = {

period = 1d
versions = 20

}

In order to perform direct (non-hierarchical) cross-realm authentication, a database is
needed to construct the authentication paths between the realms. This section defines
that database.

A client will use this section to find the authentication path between its realm and the
realm of the server. The server will use this section to verify the authentication path
used by the client, by checking the transited field of the received ticket.

There is a subsection for each participating realm, and each subsection has relations
named for each of the realms. The relation-value is an intermediate realm which may
participate in the cross-realm authentication. The relations may be repeated if there is
more than one intermediate realm. A value of ’.’ means that the two realms share keys
directly, and no intermediate realms should be allowed to participate.

There are n**2 possible entries in this table, but only those entries which will be
needed on the client or the server need to be present. The client needs a subsection
named for its local realm, with relations named for all the realms of servers it will
need to authenticate with. A server needs a subsection named for each realm of the
clients it will serve.

For example, ANL.GOV, PNL.GOV, and NERSC.GOV all wish to use the ES.NET realm
as an intermediate realm. ANL has a sub realm of TEST.ANL.GOV, which will
authenticate with NERSC.GOV but not PNL.GOV. The [capath] section for ANL.GOV
systems would look like this:

[capaths]
ANL.GOV = {

TEST.ANL.GOV = .
PNL.GOV = ES.NET

krb5.conf(4)

[capaths]

File Formats 297

NERSC.GOV = ES.NET
ES.NET = .

}

TEST.ANL.GOV = {
ANL.GOV = .

}

PNL.GOV = {
ANL.GOV = ES.NET

}

NERSC.GOV = {
ANL.GOV = ES.NET

}

ES.NET = {
ANL.GOV = .

}

The [capath] section of the configuration file used on NERSC.GOV systems would
look like this:

[capaths]
NERSC.GOV = {

ANL.GOV = ES.NET
TEST.ANL.GOV = ES.NET
TEST.ANL.GOV = ANL.GOV
PNL.GOV = ES.NET
ES.NET = .

}

ANL.GOV = {
NERSC.GOV = ES.NET

}

PNL.GOV = {
NERSC.GOV = ES.NET

}

ES.NET = {
NERSC.GOV = .

}

TEST.ANL.GOV = {
NERSC.GOV = ANL.GOV
NERSC.GOV = ES.NET

}

In the above examples, the ordering is not important, except when the same relation is
used more than once. The client will use this to determine the path. (It is not important
to the server, since the transited field is not sorted.)

EXAMPLE 1 Sample file

Here is an example of a generic krb5.conf file:

[libdefaults]
default_realm = ATHENA.MIT.EDU

krb5.conf(4)

EXAMPLES

298 man pages section 4: File Formats • Last Revised 25 May 2004

EXAMPLE 1 Sample file (Continued)

default_tkt_enctypes = des-cbc-crc
default_tgs_enctypes = des-cbc-crc

[realms]
ATHENA.MIT.EDU = {

kdc = kerberos.mit.edu
kdc = kerberos-1.mit.edu
kdc = kerberos-2.mit.edu
admin_server = kerberos.mit.edu
auth_to_local_realm = KRBDEV.ATHENA.MIT.EDU

}

FUBAR.ORG = {
kdc = kerberos.fubar.org
kdc = kerberos-1.fubar.org
admin_server = kerberos.fubar.org

}

[domain_realm]
.mit.edu = ATHENA.MIT.EDU

mit.edu = ATHENA.MIT.EDU

/var/krb5/kdc.log KDC logging file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

kinit(1), rcp(1), rdist(1), rlogin(1), rsh(1), syslog(3C), SEAM(5),
attributes(5)

If the krb5.conf file is not formatted properly, the telnet command will fail.
However, the dtlogin and login commands will still succeed, even if the
krb5.conf file is specified as required for the commands. If this occurs, the following
error message will be displayed:

Error initializing krb5: Improper format of item

To bypass any other problems that may occur, you should fix the file as soon as
possible.

The max_life and max_renewable_life options are obsolete and will be removed
in a future release of the Solaris operating system.

krb5.conf(4)

FILES

ATTRIBUTES

SEE ALSO

NOTES

File Formats 299

ldapfilter.conf – configuration file for LDAP filtering routines

/etc/opt/SUNWconn/ldap/current/ldapfilter.conf

The ldapfilter.conf file contains information used by the LDAP filtering routines.

Blank lines and lines that begin with a hash character (#) are treated as comments and
ignored. The configuration information consists of lines that contain one to five tokens.
Tokens are separated by white space, and double quotes can be used to include white
space inside a token.

The file consists of a sequence of one or more filter sets. A filter set begins with a line
containing a single token called a tag.

The filter set consists of a sequence of one or more filter lists. The first line in a filter
list must contain four or five tokens: the value pattern, the delimiter list, a filtertemplate, a
match description, and an optional search scope. The value pattern is a regular expression
that is matched against the value passed to the LDAP library call to select the filter list.

The delimiter list is a list of the characters (in the form of a single string) that can be
used to break the value into distinct words.

The filter template is used to construct an LDAP filter (see description below)

The match description is returned to the caller along with a filter as a piece of text that
can be used to describe the sort of LDAP search that took place. It should correctly
compete both of the following phrases: "One match description match was found for ..."
and "Three match description matches were found for...."

The search scope is optional, and should be one of base, onelevel, or subtree. If
search scope is not provided, the default is subtree.

The remaining lines of the filter list should contain two or three tokens, a filter template,
a match description and an optional search scope.

The filter template is similar in concept to a printf(3C) style format string. Everything
is taken literally except for the character sequences:

%v Substitute the entire value string in place of the %v.

%v$ Substitute the last word in this field.

%vN Substitute word N in this field (where N is a single digit 1-9).
Words are numbered from left to right within the value starting at
1.

%vM-N Substitute the indicated sequence of words where M and N are
both single digits 1-9.

%vN- Substitute word N through the last word in value where N is
again a single digit 1-9.

ldapfilter.conf(4)

NAME

SYNOPSIS

DESCRIPTION

300 man pages section 4: File Formats • Last Revised 9 Jul 2003

EXAMPLE 1 An LDAP Filter Configuration File

The following LDAP filter configuration file contains two filter sets, example1 and
example2 onelevel, each of which contains four filter lists.

ldap filter file
#
example1
"=" " " "%v" "arbitrary filter"
"[0-9][0-9–]*" " " "(telephoneNumber=*%v)" "phone number"

"@" " " "(mail=%v)" "email address"

"^.[. _].*" ". _" "(cn=%v1* %v2-)" "first initial"

".*[. _].$" ". _" "(cn=%v1-*)" "last initial"

"[. _]" ". _" "(|(sn=%v1-)(cn=%v1-))" "exact"
"(|(sn~=%v1-)(cn~=%v1-))" "approximate"

".*" ". " "(|(cn=%v1)(sn=%v1)(uid=%v1))" "exact"
"(|(cn~=%v1)(sn~=%v1))" "approximate"

"example2 onelevel"
"^..$" " " "(|(o=%v)(c=%v)(l=%v)(co=%v))" "exact" "onelevel"

"(|(o~=%v)(c~=%v)(l~=%v)(co~=%v))" "approximate"
"onelevel"

" " " " "(|(o=%v)(l=%v)(co=%v)" "exact" "onelevel"
"(|(o~=%v)(l~=%v)(co~=%v)" "approximate" "onelevel"

"." " " "(associatedDomain=%v)" "exact" "onelevel"

".*" " " "(|(o=%v)(l=%v)(co=%v)" "exact" "onelevel"

"(|(o~=%v)(l~=%v)(co~=%v)" "approximate" "onelevel"

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap

Stability Level Evolving

ldap_getfilter(3LDAP), ldap_ufn(3LDAP), attributes(5)

ldapfilter.conf(4)

EXAMPLES

ATTRIBUTES

SEE ALSO

File Formats 301

ldapsearchprefs.conf – configuration file for LDAP search preference routines

/etc/opt/SUNWconn/ldap/current/ldapsearchprefs.conf

The ldapsearchprefs.conf file contains information used by LDAP when
searching the directory. Blank lines and lines that start with a hash (’#’) character are
treated as comments and ignored. Non-comment lines contain one or more tokens.
Tokens are separated by white space, and double quotes can be used to include white
space inside a token.

Search preferences are typically used by LDAP-based client programs to specify what
a user may search for, which attributes are searched, and which options are available
to the user.

The first non-commment line specifies the version of the template information and
must contain the token Version followed by an integer version number. For example:

Version 1

The current version is 1, so the above example is always the correct opening line.

The remainder of the file consists of one or more search preference configurations. The
first line of a search preference is a human-readable name for the type of object being
searched for, for example People or Organizations. This name is stored in the
so_objtypeprompt member of the ldap_searchobj structure (see
ldap_searchprefs(3LDAP)). For example:

People

specifies a label for a search preference designed to find X.500 entries for people.

The next line specifies a list of options for this search object. The only option currently
allowed is "internal" which means that this search object should not be presented
directly to a user. Options are placed in the so_options member of the ldap_searchobj
structure and can be tested using the LDAP_IS_SEARCHOBJ_OPTION_SET() macro.
Use "" if no special options are required.

The next line specifes a label to use for "Fewer Choices" searches. "Fewer Choices"
searches are those where the user’s input is fed to the ldap_filter routines to determine
an appropriate filter to use. This contrasts with explicitly-constructed LDAP filters, or
"More Choices" searches, where the user can explicitly construct an LDAP filter.

For example:

"Search For:"

can be used by LDAP client programs to label the field into which the user can type a
"Fewer Choices" search.

The next line specifies an LDAP filter prefix to append to all "More Choices" searched.
This is typically used to limit the types of entries returned to those containing a
specific object class. For example:

ldapsearchprefs.conf(4)

NAME

SYNOPSIS

DESCRIPTION

302 man pages section 4: File Formats • Last Revised 9 Jul 2003

"(&(objectClass=person)"

would cause only entries containing the object class person to be returned by a search.
Note that parentheses may be unbalanced here, since this is a filter prefix, not an entire
filter.

The next line is an LDAP filter tag which specifies the set of LDAP filters to be applied
for "Fewer Choices" searching. The line

"x500-People"

would tell the client program to use the set of LDAP filters from the ldap filter
configuration file tagged "x500-People".

The next line specifies an LDAP attribute to retrieve to help the user choose when
several entries match the search terms specified. For example:

"title"

specifies that if more than one entry matches the search criteria, the client program
should retrieve the title attribute that and present that to the user to allow them to
select the appropriate entry. The next line specifies a label for the above attribute, for
example,

"Title:"

Note that the values defined so far in the file are defaults, and are intended to be
overridden by the specific search options that follow.

The next line specifies the scope of the LDAP search to be performed. Acceptable
values are subtree, onelevel, and base.

The next section is a list of "More Choices" search options, terminated by a line
containing only the string END. For example:

"Common Name" cn 11111 "" ""
"Surname" sn 11111 "" ""
"Business Phone" "telephoneNumber" 11101 "" ""

END

Each line represents one method of searching. In this example, there are three ways of
searching - by Common Name, by Surname, and by Business Phone number. The first
field is the text which should be displayed to user. The second field is the attribute
which will be searched. The third field is a bitmap which specifies which of the match
types are permitted for this search type. A "1" value in a given bit position indicates
that a particular match type is valid, and a "0" indicates that is it not valid. The fourth
and fifth fields are, respectively, the select attribute name and on-screen name for the
selected attribute. These values are intended to override the defaults defined above. If
no specific values are specified, the client software uses the default values above.

The next section is a list of search match options, terminated by a a line containing
only the string END. Example:

ldapsearchprefs.conf(4)

File Formats 303

"exactly matches" "(%a=%v))"
"approximately matches" "(%a~=%v))"
"starts with" "(%a=%v*))"
"ends with" "(%a=*%v))"
"contains" "(%a=*%v*))"

END

In this example, there are five ways of refining the search. For each method, there is an
LDAP filter suffix which is appended to the ldap filter.

EXAMPLE 1 A Sample Configuration Using Search Preference for “people”

The following example illustrates one possible configuration of search preferences for
"people".

Version number
Version 1
Name for this search object
People
Label to place before text box user types in
"Search For:"
Filter prefix to append to all "More Choices" searches
"(&(objectClass=person)"
Tag to use for "Fewer Choices" searches - from ldapfilter.conf file
"x500-People"
If a search results in > 1 match, retrieve this attribute to help
user distinguish between the entries...
multilineDescription
...and label it with this string:
"Description"
Search scope to use when searching
subtree
Follows a list of "More Choices" search options. Format is:
Label, attribute, select-bitmap, extra attr display name, extra attr ldap name
If last two are null, "Fewer Choices" name/attributes used
"Common Name" cn 11111 "" ""
"Surname" sn 11111 "" ""
"Business Phone" "telephoneNumber" 11101 "" ""
"E-Mail Address" "mail" 11111 "" ""
"Uniqname" "uid" 11111 "" ""
END
Match types
"exactly matches" "(%a=%v))"
"approximately matches" "(%a~=%v))"
"starts with" "(%a=%v*))"
"ends with" "(%a=*%v))"
"contains" "(%a=*%v*))"

END

In this example, the user may search for People. For "fewer choices" searching, the tag
for the ldapfilter.conf(4) file is "x500-People".

ldapsearchprefs.conf(4)

EXAMPLES

304 man pages section 4: File Formats • Last Revised 9 Jul 2003

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap

Stability Level Evolving

ldap_searchprefs(3LDAP) , attributes(5)

ldapsearchprefs.conf(4)

ATTRIBUTES

SEE ALSO

File Formats 305

ldaptemplates.conf – configuration file for LDAP display template routines

/etc/opt/SUNWconn/ldap/current/ldaptemplates.conf

The ldaptemplates.conf file contains information used by the LDAP display
routines.

Blank lines and lines that start with a hash character (’#’) are treated as comments and
ignored. Non-comment lines contain one or more tokens. Tokens are separated by
white space, and double quotes can be used to include white space inside a token.

The first non-commment line specifies the version of the template information and
must contain the token Version followed by an integer version number. For example,

Version 1

The current version is 1, so the above example is always the correct first line.

The remainder of the file consists of one or more display templates. The first two lines
of the display template each contain a single token that specifies singular and plural
names for the template in a user-friendly format. For example,

"Person"

"People"

specifies appropriate names for a template designed to display person information.

The next line specifies the name of the icon or similar element that is associated with
this template. For example,

"person icon"

The next line is a blank-separated list of template options. "" can be used if no options
are desired. Available options are: addable (it is appropriate to allow entries of this
type to be added), modrdn (it is appropriate to offer the modify rdn operation),
altview (this template is an alternate view of another template). For example,

"addable" "modrdn"

The next portion of the template is a list of X.500 object classes that is used to
determine whether the template should be used to display a given entry. The object
class information consists of one or more lines, followed by a terminating line that
contains the single token END. Each line contains one or more object class names, all of
which must be present in a directory entry. Multiple lines can be used to associate
more than one set of object classes with a given template. For example,

emailPerson
orgPerson

END

means that the template is appropriate for display of emailPerson entries or
orgPerson entries.

ldaptemplates.conf(4)

NAME

SYNOPSIS

DESCRIPTION

306 man pages section 4: File Formats • Last Revised 9 Jul 2003

The next line after the object class list is the name of the attribute to authenticate as to
make changes (use "" if it is appropriate to authenticate as the entry itself). For
example,

"owner"

The next line is the default attribute to use when naming a new entry, for example,

"cn"

The next line is the distinguished name of the default location under which new
entries are created. For example,

"o=XYZ, c=US"

The next section is a list of rules used to assign default values to new entries. The list
should be terminated with a line that contains the single token END. Each line in this
section should either begin with the token constant and be followed by the name of
the attribute and a constant value to assign, or the line should begin with addersdn
followed by the name of an attribute whose value will be the DN of the person who
has authenticated to add the entry. For example,

constant associatedDomain XYZ.us
addersdn seeAlso

END

The last portion of the template is a list of items to display. It consists of one or more
lines, followed by a terminating line that contains the single token END. Each line is
must begin with the token samerow or the token item

It is assumed that each item appears on a row by itself unless it was preceded by a
samerow line (in which case it should be displayed on the same line as the previous
item, if possible). Lines that begin with samerow should not have any other tokens on
them.

Lines that begin with item must have at least three more tokens on them: an item
type, a label, and an attribute name. Any extra tokens are taken as extra arguments.

The item type token must be one of the following strings:

cis case-ignore string attributes

mls multiline string attributes

mail RFC-822 conformant mail address attributes

dn distinguished name pointer attributes

bool Boolean attributes

jpeg JPEG photo attributes

jpegbtn a button that will retrieve and show a JPEG photo attribute

fax FAX T.4 format image attributes

ldaptemplates.conf(4)

File Formats 307

faxbtn a button that will retrieve and show a FAX photo attribute

audiobtn audio attributes

time UTC time attributes

date UTC time attributes where only the date portion should be shown

url labeled Uniform Resource Locator attributes

searchact define an action that will do a directory search for other entries

linkact define an action which is a link to another display template

protected for an encrypted attribute, with values displayed as asterisks

An example of an item line for the drink attribute (displayed with label "Work
Phone"):

item cis "Work Phone" telephoneNumber

EXAMPLE 1 A Sample Configuration File Containing a Template that Displays People Entries

The following template configuration file contains a templates for display of people
entries.

#
LDAP display templates
#
Version must be 1 for now
#
Version 1
#
Person template
"Person"
"People"

name of the icon that is associated with this template
"person icon"

blank-separated list of template options ("" for none)
"addable"

#
objectclass list
person
END

#
name of attribute to authenticate as ("" means auth as this entry)
""

#
default attribute name to use when forming RDN of a new entry
#
"cn"

ldaptemplates.conf(4)

EXAMPLES

308 man pages section 4: File Formats • Last Revised 9 Jul 2003

EXAMPLE 1 A Sample Configuration File Containing a Template that Displays People
Entries (Continued)

#
default location when adding new entries (DN; "" means no default)
"o=XYZ, c=US"

#
rules used to define default values for new entries
END

#
list of items for display
item jpegbtn "View Photo" jpegPhoto "Next Photo"
item audiobtn "Play Sound" audio
item cis "Also Known As" cn
item cis "Title" title
item mls "Work Address" postalAddress
item cis "Work Phone" telephoneNumber
item cis "Fax Number" facsimileTelephoneNumber
item mls "Home Address" homePostalAddress
item cis "Home Phone" homePhone
item cis "User ID" uid
item mail "E-Mail Address" mail
item cis "Description" description
item dn "See Also" seeAlso

END

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWlldap

Stability Level Evolving

ldap_disptmpl(3LDAP), ldap_entry2text(3LDAP), attributes(5)

ldaptemplates.conf(4)

ATTRIBUTES

SEE ALSO

File Formats 309

llc2 – LLC2 Configuration file

/etc/llc2/default/llc2.*

The llc2 files contain information needed by LLC2 to establish the appropriate links to
the underlying MAC layer drivers as well as the parameters necessary to configure the
LLC (Logical Link Control) Class II Station Component structures for that link.

The comments are made up of one or more lines starting with the "#" character in
column 1.

The main section consists of keyword/value pairs of the form keyword=value, used to
initialize the particular adapter.

A sample of the llc2 is presented below:

devicename=/dev/dnet
deviceinstance=1
llc2_on=1 # LLC2: On/Off on this device
deviceloopback=1
timeinterval=0 # LLC2: Timer Multiplier
acktimer=2 # LLC2: Ack Timer
rsptimer=2 # LLC2: Response Timer
polltimer=4 # LLC2: Poll Timer
rejecttimer=6 # LLC2: Reject Timer
rembusytimer=8 # LLC2: Remote Busy Timer
inacttimer=30 # LLC2: Inactivity Timer
maxretry=6 # LLC2: Maximum Retry Value
xmitwindowsz=14 # LLC2: Transmit Window Size
rcvwindowsz=14 # LLC2: Receive Window Size

The llc2.ppa file contains 4 parameters directly related to the underlying MAC-level
driver. These are the name of the physical device, the instance of the device, whether
LLC2 can be used with this device, and whether the device is capable of looping back
data addressed to the node’s unique MAC address, broadcast address, or multicast
addresses.

Setting the llc2_on parameter to 1 means that LLC2 can be used with this device;
setting it to 0 means otherwise. Setting the loopback parameter to 1 means that the
LLC2 module will loop back data addressed to this node’s unique MAC address or to
a broadcast/multicast address.

The most likely use is for a media that cannot receive its own transmissions (for
example, ethernet) or when the MAC-level driver intentionally does not loop back
data addressed to the local node under the assumption that the upper layers have
already done so.

The LLC2 contains ten parameters in the configuration file
(/etc/llc2/default/llc2.ppa) that apply to configurations using the Host-Based
LLC2 component for connection-oriented operation over an Ethernet, Token Ring, or
FDDI media.

The ten parameters break down into the following four groups:

llc2(4)

NAME

SYNOPSIS

DESCRIPTION

MAC specific
Parameters

Host-Based LLC2
Parameters

310 man pages section 4: File Formats • Last Revised 7 Feb 2000

� Six parameters deal with timer settings for managing the flow of LLC elements of
procedure (PDUs) on a data link connection.

� One parameter is the multiplier that is used to determine the period of the interval
timer for the station. A value of 1 means that each tick count represents 100
milliseconds; 5 means each tick count is 500 milliseconds. Should the parameter be
omitted, the default value is 5, except for Token Ring links which use a default of
1.

� One parameter indicates how many times an operation should be retried on a data
link connection.

� Two parameters are for controlling the number of unacknowledged I PDUs to send
or receive on a data link connection.

Additional information on these parameters can be found in ISO 8802-2:1989, Section
7.8.

The following table of Logical Link Control Parameters provides the LLC
configuration parameter names, default values, and ranges.

Parameter Description Default Range

timeinterval The timer ticks in 100 ms intervals. This
parameter is used to scale the following 5
timer parameters.

5, except TPR -
1

0 - 10

acktimer The connection acknowledgment timer
length in (100 * timeinterval) ms.

2 > 0

rsptimer The response acknowledgment timer
length in (100 * timeinterval) ms.

2 > 0

polltimer The connection poll timer length in (100 *
timeinterval) ms.

4 > 0

rejecttimer The connection reject timer length in (100 *
timeinterval) ms.

6 > 0

rembusytimer The connection remote busy timer length
in (100 * timeinterval) ms.

8 > 0

llc2(4)

File Formats 311

Parameter Description Default Range

inacttimer The connection inactivity timer length in
(100 * timeinterval) ms.

30 > 0

maxretry The maximum number of retries of an
action on a connection.

6 0 - 100

xmitwindowsz The maximum number of
unacknowledged I-format protocol data
units that can be transmitted on a
connection before awaiting an
acknowledgment.

14 0 - 127

rcvwindowsz The maximum number of
unacknowledged I-format protocol data
units that can be received on a connection
before an acknowledgment is sent.

14 0 - 127

Default values are set when the following conditions are true:

� The parameter is not set by the user.

� The user requests a default /etc/llc2/default/llc2.instance file, where
instance is the sequence number, starting with 0, of the adapter as detected by
ifconfig(1M). For example, if there are 3 adapters on the machine, the default
configuration files will be named in order as /etc/llc2/default/llc2.0,
/etc/llc2/default/llc2.1, and /etc/llc2/default/llc2.2.

� The user codes a value of 0 for a parameter.

acktimer The acktimer parameter is used to manage the following sample
sequences:

1. Attempting to establish, reset, or disconnect a connection.

SABME start acknowledgment timer
or -------------------------------->

DISC

The acknowledgment timer expires before the receipt of a
response.

SABME start acknowledgment timer
or -------------------------------->

DISC

stop acknowledgment timer
<-------------------------------- UA

2. Sending an FRMR in response to a received PDU of dubious
distinction:

llc2(4)

Timer Parameter
Descriptions

312 man pages section 4: File Formats • Last Revised 7 Feb 2000

PDU with invalid N(R)
or

I PDU with invalid N(S)
or

<------------------- PDU of invalid length
or

unexpected UA PDU
or

response PDU with
invalid P/F setting

start acknowledgment timer
FRMR -------------------------------->

Acknowledgment timer expires before the receipt of a PDU.

start acknowledgment timer
FRMR -------------------------------->

stop acknowledgment timer
SABME, FRMR

<------------------------------- DISC, or DM

3. There is also a special case of the acknowledgment timer,
referred to in this implementation as the response
acknowledgment timer (rsptimer). It is used when sending
an I PDU.

start response acknowledgement timer
I -------------------------------------->

Response acknowledgment timer expires before the receipt of
an acknowledgment.

start poll timer
RR -------------------------------->

polltimer The polltimer parameter is used to manage situations where a
Supervisory command PDU (RR, RNR, or REJ) is sent with the
P/F bit set. This type of PDU is typically sent when:

� There has been a period of inactivity on a connection in
information transfer mode.

� The remote node must be notified of a local busy condition
occurring in information transfer mode.

The expiration of the poll timer causes another Supervisory
command PDU (which may be of a different type than the first) to
be sent with the P/F bit set, provided the retry count has not
exceeded the maximum retry value. This timer, then, provides an
extended retry mechanism for a connection in information transfer
mode.

llc2(4)

File Formats 313

rejecttimer The rejecttimer parameter controls the frequency with which a
REJ PDU is sent to a remote node from which an I PDU with an
unexpected N(S) was received and which has not corrected the
situation by sending an I PDU with the expected N(S).

<----------------------- I PDU with
unexpected N(S)

start reject timer
REJ ------------------------>

Reject timer expires before the receipt of an I PDU with an
expected N(S).

start reject and poll timer
REJ ----------------------------->

stop reject and poll timer
<--------------------------- I PDU with

expected N(S)

rembusytimer The rembusytimer parameter is used to determine how long the
local node should wait, after the remote node sends an RNR to
indicate it is busy, before sending a Supervisory PDU with the P/F
bit set to solicit the current state of the remote node. If the remote
node indicates that it has cleared its busy condition before the
timer expires, the local node stops the remote busy timer.

inacttimer The inacttimer parameter controls how much time is allowed to
elapse on a connection in information transfer mode between the
issuing of command PDUs by the local node. If the inactivity timer
expires because a command PDU has not been generated in the
configured time interval, a Supervisory PDU with the P/F bit set is
sent to the remote node to solicit its current state, provided that
the connection is in information transfer mode. Each time a
command PDU is sent by the local node, the inactivity timer is
restarted.

The following rules of thumb should apply for the timer parameters:

� The acktimer, rsptimer, and polltimer parameters should have small
relative values to allow for quick recovery from common transient error conditions
on a connection.

� The rejecttimer and rembusytimer parameters should have intermediate
relative values to allow the local and remote nodes time to recover without
resorting to possibly unnecessary polling cycles.

� The inacttimer parameter should be set to a large relative value to provide a
safety net in information transfer mode.

You may need to shift the values for the timer parameters to higher values if bridges
are included in the network or a user application requires a substantial amount of time
to respond to connection establishment requests or handle information flow.

llc2(4)

314 man pages section 4: File Formats • Last Revised 7 Feb 2000

The maxretry parameter determines the number of times a recovery operation is
performed before notifying the user that an error has occurred on a connection.
Typical examples of its use include the following:

� When the remote node fails to respond to a SABME sent by the local node to
establish or reset the connection, the SABME is resent each time the
acknowledgment timer expires, up to maxretry number of times.

� In information transfer mode, if the response acknowledgment timer expires after
an I PDU has been sent, an RR with the P/F bit set is sent (and resent each time the
poll timer expires) until the remote node responds or maxretry number of RRs
have been sent.

In general, the maxretry value should not need to be large. Since the
acknowledgment and poll timers are typically used in recovery operations that
involve the maxretry parameter, the product of maxretry and either acktimer,
rsptimer, or polltimer gives a rough estimate of the length of time allotted for the
connection to attempt internal error recovery before notifying the user.

rcvwindowsz The rcvwindowsz parameter is used to set the receive window
size for I PDUs received locally on a connection. This value should
agree with the transmit window size set for the connection at the
remote node. If the local rcvwindowsz is greater than the remote
transmit window size, I PDUs sent by the remote node are not
acknowledged quickly. If the local rcvwindowsz is less than the
remote transmit window size, there is a greater risk of the local
node generating FRMR PDUs, requiring intervention by the user
application when transient errors on the connection require the
remote node to retransmit an I PDU. REJ PDUs are recovered
internally.

xmitwindowsz The xmitwindowsz parameter sets the local transmit window size
for a connection. It denotes the number of unacknowledged I
PDUs that the local node may have outstanding. The configured
value should match the receive window size for the connection at
the remote node, based on the same reasoning as for the
rcvwindowsz parameter.

In many cases, the values assigned to rcvwindowsz and xmitwindowsz for adapters
on a server node will depend on the transmit and receive window sizes specified for
another LLC implementation on a client node. In cases where this LLC
implementation is resident in both nodes, larger values for these parameters are useful
in environments where much of the activity on a connection consists of file transfer
operations. Smaller values are warranted if analysis of LLC2 connection component
statistics reveals that connections are entering local or remote busy state frequently.

/etc/llc2/default/llc2.*

llc2_autoconfig(1), llc2_config(1), ifconfig(1M), llc2(7D)

llc2(4)

Maximum Retry
Parameter

Description

Window Size
Parameter

Descriptions

FILES

SEE ALSO

File Formats 315

logadm.conf – configuration file for logadm command

/etc/logadm.conf

/etc/logadm.conf is the default configuration file for the log management tool
logadm(1M). Comments are allowed using the pound character (#) and extend to the
end of line. Each non-comment line has the form:

logname options

where logname is the name of the entry and options are the default command line
options for the logadm command. The name of the entry may be the same as the
name of the log file, or a log file name may be given in the options section of the entry.
Long lines may be folded using a backslash followed by a newline to continue an
entry on the next line. Single or double quotes may be used to protect spaces or
alternate-style quotes in strings.

The preferred method for changing /etc/logadm.conf is to use the -V, -w, and -r
options to the logadm(1M) command, which allow you to lookup an entry, write an
entry, or remove an entry from /etc/logadm.conf.

A full description of how and when /etc/logadm.conf is used and sample entries
are found in logadm(1M).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

logadm(1M), attributes(5)

logadm.conf(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

316 man pages section 4: File Formats • Last Revised 6 Dec 2001

logindevperm, fbtab – login-based device permissions

/etc/logindevperm

The /etc/logindevperm file contains information that is used by login(1) and
ttymon(1M) to change the owner, group, and permissions of devices upon logging
into or out of a console device. By default, this file contains lines for the keyboard,
mouse, audio, and frame buffer devices.

The owner of the devices listed in /etc/logindevperm is set to the owner of the
console by login(1). The group of the devices is set to the owner’s group specified in
/etc/passwd. The permissions are set as specified in /etc/logindevperm.

Fields are separated by TAB and/or SPACE characters. Blank lines and comments can
appear anywhere in the file; comments start with a hashmark, ‘ # ’, and continue to the
end of the line.

The first field specifies the name of a console device (for example, /dev/console).
The second field specifies the permissions to which the devices in the device_list field
(third field) will be set. These permissions must be expressed in octal format. For
example, O774. A device_list is a colon-separated list of device names. Note that a
device name must be a /dev link. A device entry that is a directory name and ends
with "/*" specifies all entries in the directory (except "." and ".."). For example,
"/dev/fbs/*" specifies all frame buffer devices.

Once the devices are owned by the user, their permissions and ownership can be
changed using chmod(1) and chown(1), as with any other user-owned file.

Upon logout the owner and group of these devices will be reset by ttymon(1M) to
owner root and root’s group as specified in /etc/passwd (typically other). The
permissions are set as specified in the /etc/logindevperm file.

/etc/passwd File that contains user group information.

chmod(1), chown(1), login(1), ttymon(1M), passwd(4)

/etc/logindevperm provides a superset of the functionality provided by
/etc/fbtab in SunOS 4.x releases.

logindevperm(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

NOTES

File Formats 317

loginlog – log of failed login attempts

After five unsuccessful login attempts, all the attempts are logged in the file
/var/adm/loginlog. This file contains one record for each failed attempt. Each
record contains the login name, tty specification, and time.

This is an ASCII file. Each field within each entry is separated from the next by a
colon. Each entry is separated from the next by a new-line.

By default, loginlog does not exist, so no logging is done. To enable logging, the log
file must be created with read and write permission for owner only. Owner must be
root and group must be sys.

/var/adm/loginlog

login(1), passwd(1)

loginlog(4)

NAME

DESCRIPTION

FILES

SEE ALSO

318 man pages section 4: File Formats • Last Revised 3 Jul 1990

lutab – list of boot environments

/etc/lutab

The file /etc/lutab is a list of the boot environments (BEs) configured on a system.
There are two entries for each BE. These entries have the following form:

BE_id:BE_name:completion_flag:0
BE_id:root_slice:root_device:1

The fields in the lutab entries are described as follows:

BE_id A unique, internally generated id for a BE.

BE_name The user-assigned name of a BE.

completion_flag Indicates whether the BE is complete (C) or incomplete (NC). A
complete BE is one that is not involved in any copy or upgrade
operation. A BE can be activated or compared only when it is
complete.

0 Indicates first of two lines.

BE_id As described above.

root_slice Designation of the root slice.

root_device Device on which the root slice is mounted.

1 Indicates second of two lines.

The lutab file must not be edited by hand. Any user modification to this file will
result in the incorrect operation of live upgrade.

lu(1M), luactivate(1M), lucreate(1M), lucurr(1M), lufslist(1M),
lustatus(1M), luupgrade(1M), attributes(5), live_upgrade(5)

The lutab file is not a public interface. The format and contents of lutab are subject
to change. Use lufslist(1M) and lustatus(1M) to obtain information about BEs.

lutab(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

WARNINGS

File Formats 319

magic – file command’s magic number file

/etc/magic

The file(1) command identifies the type of a file using, among other tests, a test for
whether the file begins with a certain magic number. The /etc/magic file, or a file
specified as an option-argument to the -m or -M options of file(1), specifies what
magic numbers are to be tested for, what message to print if a particular magic
number is found, and additional information to extract from the file.

Each line of the file specifies a position-sensitive test to perform. A test compares the
data starting at a particular offset in the file with a 1-byte, 2-byte, 4–byte, or 8-byte
numeric value or string. If the test succeeds, a message is printed. The line consists of
the following fields (separated by tabs): offset type value message

offset A number specifying the offset, in bytes, into the file of the data
which is to be tested.

type The type of the data to be tested. The possible values are:

byte, d1, dC
A one-byte signed value.

short, d2, dS
A 2-byte signed value.

long, d4, dI, dL, d
A 4-byte signed value.

llong, d8
An 8–byte signed value

ubyte, u1, uC
A one-byte unsigned value.

ushort, u2, uS
A 2–byte unsigned value.

ulong, u4, uI, uL, u
A 4–byte unsigned value.

ullong, u8
An 8–byte unsigned value.

string, s
A string of bytes.

All type specifiers, except for string and s, may be followed by a
mask specifier of the form &number. If a mask specifier is given, the
value is AND’ed with the number before any comparisons are
done. The number is specified in C form. For instance, 13 is
decimal, 013 is octal, and 0x13 is hexadecimal.

magic(4)

NAME

SYNOPSIS

DESCRIPTION

320 man pages section 4: File Formats • Last Revised 6 Feb 2004

value The value to be compared with the value from the file. If the type
is numeric, this value is specified in C form. If it is a string, it is
specified as a C string with the usual escapes permitted (for
instance, \n for NEWLINE).

Numeric values may be preceded by a character indicating the
operation to be performed, as follows:

= The value from the file must equal the specified value.

< The value from the file must be less than the specified
value.

> The value from the file must be greater than the
specified value.

& All the bits in the specified value must be set in the
value from the file.

^ At least one of the bits in the specified value must not
be set in the value from the file.

x Any value will match.

If the character is omitted, it is assumed to be “=”.

For comparison of numeric values, the sign and size of both the
value in the file and the value from the value field of the magic
entry will match that of the corresponding type field. If there is a
non-zero mask (&) in the type field, the comparison will be
unsigned.

For string values, the byte string from the file must match the
specified byte string. The byte string from the file which is
matched is the same length as the specified byte string. If the value
is a string, it can contain the following sequences:

\character
The backslash-escape sequences \\, \a, \b, \f, \n, \r, \t, \v.

\octal
Octal sequences that can be used to represent characters with
specific coded values. An octal sequence consists of a backslash
followed by the longest sequence of one, two, or three
octal-digit characters (01234567).

message The message to be printed if the comparison succeeds. If the string
contains a printf(3C) format specification, the value from the file
(with any specified masking performed) is printed using the
message as the format string.

magic(4)

File Formats 321

Some file formats contain additional information which is to be printed along with the
file type. A line which begins with the character “>” indicates additional tests and
messages to be printed. If the test on the line preceding the first line with a “>”
succeeds, the tests specified in all the subsequent lines beginning with “>” are
performed, and the messages are printed if the tests succeed. The next line which does
not begin with a “>” terminates this.

/etc/magic

file(1), file(1B), printf(3C)

In Solaris 9 and prior releases, the file utility may have performed unsigned
comparisons for types byte, short, and long. Old user-defined magic files, which
were specified with the -m option, will need modification of byte, short, and long
entries to their corresponding unsigned types (ubyte, ushort, or ulong) for those
entries for which all of the following are true:

� The entry uses the “<” or the “>” operator.
� The type field does not contain a non-zero mask.
� The intention of the entry is to test unsigned values.

For example, if the following entry is expected to match any non-zero, one-byte value
from the file, including values for which the sign bit is on:

#offset type value message

0 byte >0 this matches any non-zero value

then that entry should be changed to:

0 ubyte >0 this matches any non-zero value

In Solaris 7 through Solaris 9, when applying tests for magic file entries whose type
field is the numeric type “short” or “long”, the file utility in the x86 environment
would switch the byte order of the numeric values read. Starting in Solaris 10, the byte
order will not be switched on x86. A test for a numeric value whose byte order is
identical in both little- and big-endian architectures may require two magic file entries,
to ensure that the test correctly identifies files in both environments. For example, a
magic file entry that will match on a big-endian system may look like this:

0 long 0xf00000ff extended accounting file

Its corresponding magic file entry that will match the same value on a little-endian
system would look like this:

0 long 0xff0000f0 extended accounting file

There should be more than one level of subtests, with the level indicated by the
number of ‘>’ at the beginning of the line.

magic(4)

FILES

SEE ALSO

NOTES

BUGS

322 man pages section 4: File Formats • Last Revised 6 Feb 2004

mddb.cf – metadevice state database replica locations

/etc/lvm/mddb.cf

The /etc/lvm/mddb.cf file is created when the metadb(1M) command is invoked.
You should never directly edit this file.

The file /etc/lvm/mddb.cf is used by the metainit(1M) command to find the
locations of the metadevice state databases replicas. The metadb command creates the
file and updates it each time it is run. Similar information is entered in the
/kernel/drv/md.conf file.

Each metadevice state database replica has a unique entry in the /etc/lvm/mddb.cf
file. Each entry contains the driver and minor unit numbers associated with the block
physical device where a replica is stored. Each entry also contains the block number of
the master block, which contains a list of all other blocks in the replica.

Entries in the /etc/lvm/mddb.cf file are of the form: driver_name minor_t daddr_t
checksum where driver_name and minor_t represent the device number of the physical

device storing this replica. daddr_t is the disk block address. checksum is used to make
certain the entry has not been corrupted. A pound sign (#) introduces a comment.

EXAMPLE 1 Sample File

The following example shows a mddb.cf file.

#metadevice database location file do not hand edit
#driver minor_t daddr_t device id checksum
sd 152 16 id1,sd@SSEAGATE_JDD288110MC9LH/a -2613

In the example above, the value for daddr_t indicates that the offset from the start of
a given partition is 16 disk blocks from the start of that partition.

/etc/lvm/mddb.cf

/kernel/drv/md.conf

mdmonitord(1M), metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M),
metarecover(1M), metarename(1M), metareplace(1M), metaroot(1M),
metassist(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M),
md.cf(4), md.tab(4), attributes(5), md(7D)

Solaris Volume Manager Administration Guide

mddb.cf(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

File Formats 323

md.tab, md.cf – Solaris Volume Manager utility files

/etc/lvm/md.tab

/etc/lvm/md.cf

The file /etc/lvm/md.tab can be used by metainit(1M) and metadb(1M) to
configure metadevices, hot spare pools, and metadevice state database replicas in a
batch-like mode. Solaris Volume Manager does not store configuration information in
the /etc/lvm/md.tab file. You can use:

metastat -p > /etc/lvm/md.tab

to create this file. Edit it by hand using the instructions in the md.tab.4 file. Similarly,
if no hot spares are in use, the cp md.cf md.tab command generates an acceptable
version of the md.tab file, with the editing caveats previously mentioned.

When using the md.tab file, each metadevice, hot spare pool, or state database replica
in the file must have a unique entry. Entries can include the following: simple
metadevices (stripes, concatenations, and concatenations of stripes); mirrors, soft
partitions, and RAID5 metadevices; hot spare pools; and state database replicas.
Because md.tab contains only entries that you enter in it, do not rely on the file for
the current configuration of metadevices, hot spare pools, and replicas on the system
at any given time.

Tabs, spaces, comments (by using a pound sign, #), and continuation of lines (by using
a backslash-newline), are allowed.

Typically, you set up metadevices according to information specified on the command
line by using the metainit command. Likewise, you set up state database replicas
with the metadb command.

An alternative to the command line is to use the md.tab file. Metadevices and state
database replicas can be specified in the md.tab file in any order, and then activated
in a batch-like mode with the metainit and metadb commands.

If you edit the md.tab file, you specify one complete configuration entry per line.
Metadevices are defined using the same syntax as required by the metainit
command. You then run the metainit command with either the -a option, to
activate all metadevices in the md.tab file, or with the metadevice name
corresponding to a specific configuration entry.

metainit does not maintain the state of the volumes that would have been created
when metainit is run with both the -a and -n flags. If a device d0 is created in the
first line of the md.tab file, and a later line in md.tab assumes the existence of d0,
the later line will fail when metainit -an runs (even if it would succeed with
metainit -a).

md.tab(4)

NAME

SYNOPSIS

DESCRIPTION

324 man pages section 4: File Formats • Last Revised 15 Dec 2004

State database replicas are defined in the /etc/lvm/md.tab file as follows: mddb
number options [slice...] Where mddb number is the characters mddb followed by a
number of two or more digits that identifies the state database replica. slice is a
physical slice. For example: mddb05 /dev/dsk/c0t1d0s2. The file
/etc/lvm/md.cf is a backup of the configuration used for disaster recovery.
Whenever the Volume Manager configuration is changed, this file is automatically
updated (except when hot sparing occurs). You should not directly edit this file.

EXAMPLE 1 Concatenation

All drives in the following examples have the same size of 525 Mbytes.

This example shows a metadevice, /dev/md/dsk/d7, consisting of a concatenation of
four disks.

#
(concatenation of four disks)
#

d7 4 1 c0t1d0s0 1 c0t2d0s0 1 c0t3d0s0 1 c0t4d0s0

The number 4 indicates there are four individual stripes in the concatenation. Each
stripe is made of one slice, hence the number 1 appears in front of each slice. Note that
the first disk sector in all of the above devices contains a disk label. To preserve the
labels on devices /dev/dsk/c0t2d0s0, /dev/dsk/c0t3d0s0, and
/dev/dsk/c0t4d0s0, the metadisk driver must skip at least the first sector of those
disks when mapping accesses across the concatenation boundaries. Since skipping
only the first sector would create an irregular disk geometry, the entire first cylinder of
these disks will be skipped. This allows higher level file system software to optimize
block allocations correctly.

EXAMPLE 2 Stripe

This example shows a metadevice, /dev/md/dsk/d15, consisting of two slices.

#
(stripe consisting of two disks)
#

d15 1 2 c0t1d0s2 c0t2d0s2 -i 32k

The number 1 indicates that one stripe is being created. Because the stripe is made of
two slices, the number 2 follows next. The optional -i followed by 32k specifies the
interlace size will be 32 Kbytes. If the interlace size were not specified, the stripe
would use the default value of 16 Kbytes.

EXAMPLE 3 Concatenation of Stripes

This example shows a metadevice, /dev/md/dsk/d75, consisting of a concatenation
of two stripes of three disks.

md.tab(4)

EXAMPLES

File Formats 325

EXAMPLE 3 Concatenation of Stripes (Continued)

#
(concatenation of two stripes, each consisting of three disks)
#
d75 2 3 c0t1d0s2 c0t2d0s2 c0t3d0s2 -i 16k \

3 c1t1d0s2 c1t2d0s2 c1t3d0s2 -i 32k

On the first line, the -i followed by 16k specifies that the stripe’s interlace size is 16
Kbytes. The second set specifies the stripe interlace size will be 32 Kbytes. If the
second set did not specify 32 Kbytes, the set would use default interlace value of 16
Kbytes. The blocks of each set of three disks are interlaced across three disks.

EXAMPLE 4 Mirroring

This example shows a three-way mirror, /dev/md/dsk/d50, consisting of three
submirrors. This mirror does not contain any existing data.

#
(mirror)
#
d50 -m d51
d51 1 1 c0t1d0s2
d52 1 1 c0t2d0s2

d53 1 1 c0t3d0s2

In this example, a one-way mirror is first defined using the -m option. The one-way
mirror consists of submirror d51. The other two submirrors, d52 and d53, are
attached later using the metattach command. The default read and write options in
this example are a round-robin read algorithm and parallel writes to all submirrors.
The order in which mirrors appear in the /etc/lvm/md.tab file is unimportant.

EXAMPLE 5 RAID5

This example shows a RAID5 metadevice, d80, consisting of three slices:

#
(RAID devices)
#

d80 -r c0t1d0s1 c1t0d0s1 c2t0d0s1 -i 20k

In this example, a RAID5 metadevice is defined using the -r option with an interlace
size of 20 Kbytes. The data and parity segments will be striped across the slices,
c0t1d0s1, c1t0d0s1, and c2t0d0s1.

md.tab(4)

326 man pages section 4: File Formats • Last Revised 15 Dec 2004

EXAMPLE 6 Soft Partition

This example shows a soft partition, d85, that reformats an entire 9 GB disk. Slice 0
occupies all of the disk except for the few Mbytes taken by slice 7, which is space
reserved for a state database replica. Slice 7 will be a minimum of 4Mbytes, but could
be larger, depending on the disk geometry. d85 sits on c3t4d0s0.

Drives are repartitioned when they are added to a diskset only if Slice 7 is not set up
correctly. A small portion of each drive is reserved in Slice 7 for use by Volume
Manager. The remainder of the space on each drive is placed into Slice 0. Any existing
data on the disks is lost after repartitioning. After adding a drive to a diskset, you can
repartition the drive as necessary. However, Slice 7 should not be moved, removed, or
overlapped with any other partition.

Manually specifying the offsets and extents of soft partitions is not recommended. This
example is included for to provide a better understanding of the file if it is
automatically generated and for completeness.

#
(Soft Partitions)

d85 -p -e c3t4d0 9g

In this example, creating the soft partition and required space for the state database
replica occupies all 9 GB of disk c3t4d0.

EXAMPLE 7 Soft Partition

This example shows the command used to re-create a soft partition with two extents,
the first one starting at offset 20483 and extending for 20480 blocks and the second
extent starting at 135398 and extending for 20480 blocks:

#
(Soft Partitions)
#

d1 -p c0t3d0s0 -o 20483 -b 20480 -o 135398 -b 20480

EXAMPLE 8 Hot Spare

This example shows a three-way mirror, /dev/md/dsk/d10, consisting of three
submirrors and three hot spare pools.

#
(mirror and hot spare)
#
d10 -m d20
d20 1 1 c1t0d0s2 -h hsp001
d30 1 1 c2t0d0s2 -h hsp002
d40 1 1 c3t0d0s2 -h hsp003
hsp001 c2t2d0s2 c3t2d0s2 c1t2d0s2
hsp002 c3t2d0s2 c1t2d0s2 c2t2d0s2

hsp003 c1t2d0s2 c2t2d0s2 c3t2d0s2

md.tab(4)

File Formats 327

EXAMPLE 8 Hot Spare (Continued)

In this example, a one-way mirror is first defined using the -m option. The submirrors
are attached later using the metattach(1M) command. The hot spare pools to be
used are tied to the submirrors with the -h option. In this example, there are three
disks used as hot spares, defined in three separate hot spare pools. The hot spare pools
are given the names hsp001, hsp002, and hsp003. Setting up three hot spare pools
rather than assigning just one hot spare with each component helps to maximize the
use of hardware. This configuration enables the user to specify that the most desirable
hot spare be selected first, and improves availability by having more hot spares
available. At the end of the entry, the hot spares to be used are defined. Note that,
when using the md.tab file, to associate hot spares with metadevices, the hot spare
spool does not have to exist prior to the association. Volume Manager takes care of the
order in which metadevices and hot spares are created when using the md.tab file.

EXAMPLE 9 State Database Replicas

This example shows how to set up an initial state database and three replicas on a
server that has three disks.

#
(state database and replicas)
#

mddb01 -c 3 c0t1d0s0 c0t2d0s0 c0t3d0s0

In this example, three state database replicas are stored on each of the three slices.
Once the above entry is made in the /etc/lvm/md.tab file, the metadb command
must be run with both the -a and -f options. For example, typing the following
command creates one state database replicas on three slices:

metadb -a -f mddb01

� /etc/lvm/md.tab
� /etc/lvm/md.cf

mdmonitord(1M), metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M),
metarecover(1M), metarename(1M), metareplace(1M), metaroot(1M),
metassist(1M), metaset(1M), metastat(1M), metasync(1M), metattach(1M),
md.cf(4), mddb.cf(4), attributes(5), md(7D)

Solaris Volume Manager Administration Guide

Recursive mirroring is not allowed; that is, a mirror cannot appear in the definition of
another mirror.

Recursive logging is not allowed.

Stripes and RAID5 metadevices must contains slices or soft partitions only.

md.tab(4)

FILES

SEE ALSO

LIMITATIONS

328 man pages section 4: File Formats • Last Revised 15 Dec 2004

Mirroring of RAID5 metadevices is not allowed.

Soft partitions can be built directly on slices or can be the top level (accessible by
applications directly), but cannot be in the middle, with other metadevices above and
below them.

Trans metadevices have been replaced by UFS logging. Existing trans devices are not
logging--they pass data directly through to the underlying device. See
mount_ufs(1M) for more information about UFS logging.

md.tab(4)

NOTES

File Formats 329

mech, qop – mechanism and QOP files

/etc/gss/mech

/etc/gss/qop

The /etc/gss/mech and /etc/gss/qop files contain tables showing installed
security mechanisms and the Quality of Protection (QOP) associated with them,
respectively. As security mechanisms are installed on the system, entries are added to
these two files. Contents of these files may be accessed either manually or
programmatically. For example, manually with cat(1) or more(1), or
programmatically with either rpc_gss_get_mechanisms(3NSL) or
rpc_gss_get_mech_info(3NSL).

The /etc/gss/mech file contains five fields:

mechanism name
ASCII string representing the mechanism.

object identifier
RPC OID for this mechanism.

shared library
Shared library which implements the services provided by this mechanism.

kernel module
Kernel module which implements the services provided by this mechanism.

library options (optional field)
Optional parameters that are interpreted by the individual mechanism with which
they are associated. Specific supported options are described in the documentation
for the individual mechanism, if any. Not all mechanisms have support for optional
parameters. library options must be enclosed in brackets ([]) so they may be
differentiated from the optional kernel module entries.

The /etc/gss/qop file contains three fields:

QOP string
Name, in ASCII, of this Quality of Protection.

QOP value
Numeric value by which RPC identifies this QOP.

mechanism name
ASCII string representing the mechanism with which this QOP is associated.

EXAMPLE 1 A Typical Entry in /etc/gss/mech

This is a typical entry in a /etc/gss/mech file:

kerberosv5 1.2.840.113554.1.2.2 mech_krb5.so kmech_krb5

EXAMPLE 2 A Typical Entry in /etc/gss/qop

This is a typical entry in a /etc/gss/qop file:

GSS_KRB5_CONF_C_QOP_DES 0 kerberosv5

mech(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

330 man pages section 4: File Formats • Last Revised 13 May 2003

rpc(3NSL), rpc_gss_get_mechanisms(3NSL), rpc_gss_get_mech_info(3NSL),
rpcsec_gss(3NSL)

ONC+ Developer’s Guide

mech(4)

SEE ALSO

File Formats 331

meddb – mediator data file

/etc/lvm/meddb

The file /etc/lvm/meddb is a data file used by rpc.metamedd(1M) to store the
mediator data used in 2–string HA configurations.

/etc/lvm/meddb

rpc.metamedd(1M)

Sun Cluster 3.0 Collection

Solaris Volume Manager Administration Guide

meddb(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

332 man pages section 4: File Formats • Last Revised 20 September 2000

mipagent.conf – configuration file for Mobile IP mobility agent

/etc/inet/mipagent.conf

/etc/inet/mipagent.conf is the configuration file used to initialize the Mobile IP
mobility agent described in mipagent(1M). Three sample configuration files are
located in the /etc/inet directory:

/etc/inet/mipagent.conf-sample
/etc/inet/mipagent.conf.ha-sample
/etc/inet/mipagent.conf.fa-sample

Blank lines are ignored. Lines beginning with the hash character (#) are treated as
comments. Sections are denoted by identifiers in brackets. Each section can contain
multiple attribute-value pairs. The syntax of an attribute-value pair is an identifier,
followed by an equal sign (=), followed by a value.

The following sections and the following attribute-value pairs must be present in
/etc/inet/mipagent.conf:

[General]
This section contains the Version attribute.

Version
Version is required. For the current release of Mobile IP in Solaris, Version
must be 1. Consequently, the default value is 1.

[Advertisements interface]
This section identifies the interfaces that serve as Mobile IP mobility agents. interface
is the interface name of the advertising interface. Advertising interface name must
be specified in the mipagent.conf file, if the interface is already configured. interface
attribute has two components, device name and device number, that is,
interface=eri0 indicates device name is eri and the device number is 0. The device
number part of interface attribute can also have a special symbol * , which indicates
support of advertisments on interfaces that are configured after the mipagent has
started. For example, if eri0 and eri1 are defined specifically on the
mipagent.conf file, then the advertisement should be done based on that
configuration. If eri* is present in an Advertisements section, then * represents
dynamic interfaces. * represents those interfaces that are not already configured in
the mipagent.conf file and are newly created on the system while mipagent is
running. One or more of the following attribute-value pairs might be found in this
section:

AdvLifeTime
Lifetime, in seconds, advertised in the ICMP router discovery portion of an
agent advertisement. See RFC 1256. The default value is 300.

RegLifeTime
Lifetime, in seconds, advertised in the mobility extension of an agent
advertisement. The default value is 300.

mipagent.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 333

AdvFrequency
The frequency at which agent advertisements are sent and when different entries
are aged. This interval must be less than one-third of AdvLifeTime. The
recommended value for AdvFrequency is 1 when AdvLimitSolicited is set
to yes.The default value is 4.

AdvInitCount
The initial number of unsolicited advertisements which are sent when an
interface first starts advertising. If this value is set to zero, no unsolicited
advertisements are sent out on the interface. The default value is 1.

AdvLimitUnsolicited
Determines whether the interface performs limited or unlimited unsolicited
agent advertisements. The agent always responds to the agent solicitations in
both cases.

yes If the value is set to yes, then the interface performs AdvInitCount
number of advertisements when it comes up and then it stops
sending unsolicited advertisements.

no When the value is set to no, the interface performs periodic and
unlimited number of unsolicited advertisements. The default value
for AdvLimitUnsolicited is no. When AdvLimitUnsolicited
is set to the default value, advInitCount is also set to its default
value.

HomeAgent
Indicates if this agent can act as a home agent. The default value is yes.

ForeignAgent
Indicates if this agent can act as a foreign agent. The default value is yes.

registrationRequired
Indicates whether or not registration with a foreign agent is required. If set to
yes, then registration is required, even when using a co-located care-of-address.
The default value for this label is no, thus the advertisement flag does not set the
“R” bit by default.

PrefixFlags
Enables the prefix length extension. The default value is yes.

NAIExt
Enables the Network Access Identifier (NAI) extension. The default value is yes.

ReverseTunnel
Indicates if this interface supports reverse tunneling as specified in RFC 3024.
ReverseTunnel can contain one of the following values:

no or neither Indicates this interface does not support reverse tunneling.

FA Indicates only the foreign agent supports reverse tunneling.

HA Indicates only the home agent supports reverse tunneling.

mipagent.conf(4)

334 man pages section 4: File Formats • Last Revised 18 Feb 2003

yes or both Indicates that both foreign and home agents support reverse
tunneling as specified in RFC 3024.

The default value for ReverseTunnel is no.

ReverseTunnelRequired
Indicates if this interface will require reverse tunneling as specified in RFC 3024.
ReverseTunnelRequired can contain one of the following values:

no or neither Indicates this interface will not require reverse tunneling.

FA Indicates only the foreign agent will require a reverse tunnel.

HA Indicates only the home agent will require a reverse tunnel.

yes or both Indicates that both foreign and home agents will require a
reverse tunnel.

The default value for ReverseTunnelRequired is no.

[GlobalSecurityParameters]
This section defines the global security parameters that will be used to authenticate
mobile nodes. MN-HA authentication is always enabled. This section may contain
one or more the of the following attribute-value pairs:

Challenge Enables the foreign agent challenge extension. The
default value is no.

HA-FAAuth Enables home agent - foreign agent authentication.
The default value is yes.

MN-FAAuth Enables mobile node - foreign agent authentication.
The default value is no.

MaxClockSkew The maximum allowable difference in clocks, in
seconds, that will be tolerated. This is used for
replay protection. The default value is 300.

KeyDistribution This attribute defines where keys are found. The
default for this Version of Solaris Mobile IP
software is files.

[SPI number]
These sections define multiple Security Parameter Indices (SPIs). One section is
required for each security context. These SPI values are used in the Address
section to define the security used for a particular mobile node or agent. In this
section, both the Key and ReplayMethod attributes must be present.

Key The hexadecimal representation of the key used for
authentication.

ReplayMethod The replay method. Possible values are timestamps or none.

mipagent.conf(4)

File Formats 335

[Pool number]
These sections define address pools for dynamically assigned IP addresses. The
Start and Length attributes both must be present.

Start The beginning range of the IP address from which to allocate an
IP address in dotted quad notation.

Length The length of the IP address range.

[Address NAI | IPaddr |node-default]
This section defines the security policy used for each host for which an NAI or IP
address is specified in the section header. The keyword node-default is used to
create a single entry that can be used by any mobile node that has the correct SPI
and associated keying information. This section specifies the SPI, and in the case of
mobile nodes, pool numbers for NAI addresses.

Type Indicates whether the address entry specifies a mobile node or a
mobility agent.

SPI The SPI used for this Address.

Pool The Pool used for this NAI address. The Pool keyword may
only be present if the Type operand is set to mobile node.

The following entries are valid only for Addresss sections where type = agent:

IPsecRequest The IPsec policies to add to the global IPsec policy
file so as to be enforced for Registration Requests to
and from this mobility agent peer. These are the
IPsec properties which foreign agent’s apply, and
which home agents permit.

IPsecReply The IPsec policis to add to the global IPsec policy
file so as to be enforced for Registration Replies to
and from this mobility agent peer. These are the
IPsec properties which home agents apply, and
which foreign agents permit.

IPsecTunnel The IPsec policies to enforce on all tunnel traffic with
this mobility agent peer. These are the IPsec
properties which home agent’s apply, and which
foreign agents permit.

Mobility agents can be functioning as home agents for some mobile nodes, and as
foreign agents for others. To allow for different policy configurations as both a
home agent for some mobile nodes, and as a foreign agent for other mobile nodes
all using the same mobility agent peer, apply and permit policies need to be
specified for the same entry. This is achieved by using a colon (:) to separte the
IPsec policies. For example:

IPsecRequest apply {properties} : permit {properties}

mipagent.conf(4)

336 man pages section 4: File Formats • Last Revised 18 Feb 2003

This configuration for IPsecRequest could indicate a set of properties that are to be
applied when sending regisration requests, and a different property to enforce
when receiving registration requests in a session with the same mobility agent peer.

EXAMPLE 1 Configuration for Providing Mobility Services on One Interface

The following example shows the configuration file for a mobility agent that provides
mobility services on one interface (eri0). The mobility agent acts both as a home
agent as well as a foreign agent on that interface. It includes the prefix length in its
advertisements. Its home and foreign agent functions support reverse tunneling, but
only the foreign agent requires that a reverse tunnel be configured.

The mobility agent has IPsec relationships with two mobilty agent peers, 192.168.10.1 -
with which it will be a foreignagent peer, and 192.168.10.2 - with which it will be a
home- agent peer.

All registration request packets being sent to 192.168.10.1 will use md5 as the IPsec
authentication algorithm, and all registration replies from 192.168.10.1 must be
protected using md5 as the IPsec authentication algorithm. Should a tunnel be
established with this mobility agent peer, all tunnel traffic must arrive using md5 as an
encryption authentication algorithm, and must also be encrypted using triple-DES. If a
reverse tunnel is configured, all reverse tunnel traffic will be sent using md5 as the
encryption authentication algorithm, and will also be enctrypted using triple-DES.

Identically, all registration requeset packets being received from 192.168.10.2 must be
protected using md5 as the IPsec authentication algorithm, and all registration replies
sent to 192.168.10.2 will use md5 as the IPsec authentication algorithm. Should a
tunnel be established with 192.168.10.2, all tunnel traffic sent will be protected using
md5 as the encryption authentication algorithm, and will also be encrypted using
triple-DES. Should a reverse tunnel be configured as well, tunnel traffic must arrive
secured with md5 as the encryption authentication algorithm, and must also have
been encrypted using triple-DES as the encryption algorithm.

Any registration or tunnel traffic that does not conform to these policies will be silently
dropped by IPsec. Note that ipsec Keys are managed through IPsec. See ipsec(7P).

The mobility agent provides home agent services to three mobile nodes:
192.168.10.17, 192.168.10.18, and the NAI address
user@defaultdomain.com.The configuration file also indicates that it provides
foreign agent service on any PPP interfaces that are dynamically created after the
mipagent starts.

With the first mobile node, the agent uses an SPI of 257 (decimal) and a shared secret
key that is six bytes long containing alternate bytes that are 0 and 255 (decimal). For
the second mobile node, the SPI is 541 (decimal), the key is 10 bytes, and it contains
the decimal values 11 through 20 in those bytes. The first mobile node uses no replay
protection, and the second uses timestamps. The third mobile node uses NAI and
gets its address from Pool 1.

mipagent.conf(4)

EXAMPLES

File Formats 337

EXAMPLE 1 Configuration for Providing Mobility Services on One Interface (Continued)

The mobile node will also need to be configured with the same security association
that is specified in the home agent’s configuration file.

start of file
[General]
Version = 1

[Advertisements eri0]
AdvLifeTime = 200
RegLifetime = 200
AdvFrequency = 5
AdvInitCount = 1
AdvLimitUnsolicited = no
AdvertiseOnBcast = yes
HomeAgent = yes
ForeignAgent = yes
PrefixFlags = yes
ReverseTunnel = both
ReverseTunnelRequired = FA

[Advertisements hme1]
ForeignAgent = yes
HomeAgent = yes
registrationRequired = yes

Advertisements over PPP interfaces that are created
while the mipagent is running. Note we are doing limited
unsolicited advertisements here.

[Advertisements sppp*]
homeagent = no
foreignagent = yes
PrefixFlags = 1
reglifetime = 200
advlifetime = 200
advFrequency = 1
advInitCount = 2
advLimitUnsolicited = yes
reverseTunnel = yes
reverseTunnelReq = no

[GlobalSecurityParameters]
HA-FAAuth = no
MN-FAAuth = no
KeyDistribution = files

[SPI 257]
Key = 00ff00ff00ff
ReplayMethod = none

[SPI 541]
Key = 0b0c0d0e0f1011121314
ReplayMethod = timestamps

mipagent.conf(4)

338 man pages section 4: File Formats • Last Revised 18 Feb 2003

EXAMPLE 1 Configuration for Providing Mobility Services on One Interface (Continued)

[Pool 1]
Start = 192.168.167.1
Length = 250

[Address 192.168.10.1]
Type = agent
SPI = 257
IPsecRequest = apply {auth_algs md5 sa shared}
IPsecReply = permit {auth_algs md5}
IPsecTunnel = permit {encr_auth_algs md5 encr_algs 3des}

[Address 192.168.10.2]
Type = agent
SPI = 257
IPsecRequest = permit {auth_algs md5}
IPsecReply = apply {auth_algs md5 sa shared}
IPsecTunnel = apply {encr_auth_algs md5 encr_algs 3des}

[Address 192.168.10.17]
Type = node
SPI = 257

[Address 192.168.10.18]
Type = node
SPI = 541

[Address user@defaultdomain.com]
Type = node
SPI = 541
Pool = 1

[Address node-default]
Type = node
SPI = 541
Pool = 1

#end of file

/etc/inet/mipagent.conf Configuration file for Mobile IP
mobility agent

/etc/inet/mipagent.conf-sample Sample configuration file for
mobility agents.

/etc/inet/mipagent.conf.ha-sample Sample configuration file for home
agent functionality.

/etc/inet/mipagent.conf.fa-sample Sample configuration file for
foreign agent functionality.

mipagent.conf(4)

FILES

File Formats 339

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWmipr

mipagent(1M), mipagentconfig(1M), attributes(5), ipsec(7P)

Deering, S., Editor. RFC 1256, ICMP Router Discovery Messages. Network Working
Group. September 1991.

Montenegro, G., editor. RFC 3024, Reverse Tunneling for Mobile IP, revised. The Internet
Society. January, 2001.

Perkins, C., Editor. RFC 2002, IP Mobility Support. Network Working Group. October
1996.

The base Mobile IP protocol, RFC 2002, does not address the problem of scalable key
distribution and treats key distribution as an orthogonal issue. The Solaris Mobile IP
software utilizes manually configured keys only, specified in a configuration file.

The * symbol for the interface number determines only those interfaces that are newly
configured while mipagent is running. Thus the symbol * in the interface excludes
any preconfigured interfaces in the system. Interfaces that are already configured in
the system need to be specifically mentioned in the mipagent.conf file for
advertisement on those interfaces.

The AdvLimitUnsolicited parameter is useful when someone wants to limit
unsolicited advertisements on the interface. Limited unsolicited agent advertisment is
required for some wireless mobile IP usage.

Note that IPsec protection requires keying information that depends on the algorithms
being used. IPsec manages its own keys, whether they are manually configured, or
managed with some other mechanism such as Internet Key Exchange (IKE). See
ipsec(7P).

mipagent.conf(4)

ATTRIBUTES

SEE ALSO

NOTES

340 man pages section 4: File Formats • Last Revised 18 Feb 2003

mnttab – mounted file system table

The file /etc/mnttab is really a file system that provides read-only access to the
table of mounted file systems for the current host. /etc/mnttab is read by programs
using the routines described in getmntent(3C). Mounting a file system adds an entry
to this table. Unmounting removes an entry from this table. Remounting a file system
causes the information in the mounted file system table to be updated to reflect any
changes caused by the remount. The list is maintained by the kernel in order of mount
time. That is, the first mounted file system is first in the list and the most recently
mounted file system is last. When mounted on a mount point the file system appears
as a regular file containing the current mnttab information.

Each entry is a line of fields separated by TABs in the form:

special mount_point fstype options time

where:

special The name of the resource that has been mounted.

mount_point The pathname of the directory on which the filesystem is mounted.

fstype The file system type of the mounted file system.

options The mount options. See respective mount file system man page in
the SEE ALSO section below.

time The time at which the file system was mounted.

Examples of entries for the special field include the pathname of a block-special device,
the name of a remote file system in the form of host:pathname, or the name of a swap
file, for example, a file made with mkfile(1M).

The following ioctl(2) calls are supported:

MNTIOC_NMNTS
Returns the count of mounted resources in the current snapshot in the uint32_t
pointed to by arg.

MNTIOC_GETDEVLIST
Returns an array of uint32_t’s that is twice as long as the length returned by
MNTIOC_NMNTS. Each pair of numbers is the major and minor device number for
the file system at the corresponding line in the current /etc/mnttab snapshot. arg
points to the memory buffer to receive the device number information.

MNTIOC_SETTAG
Sets a tag word into the options list for a mounted file system. A tag is a notation
that will appear in the options string of a mounted file system but it is not
recognized or interpreted by the file system code. arg points to a filled in
mnttagdesc structure, as shown in the following example:

uint_t mtd_major; /* major number for mounted fs */
uint_t mtd_minor; /* minor number for mounted fs */
char *mtd_mntpt; /* mount point of file system */

mnttab(4)

NAME

DESCRIPTION

IOCTLS

File Formats 341

char *mtd_tag; /* tag to set/clear */

If the tag already exists then it is marked as set but not re-added. Tags can be at
most MAX_MNTOPT_TAG long.

Use of this ioctl is restricted to processes with the {PRIV_SYS_MOUNT} privilege.

MNTIOC_CLRTAG
Marks a tag in the options list for a mounted file system as not set. arg points to the
same structure as MNTIOC_SETTAG, which identifies the file system and tag to be
cleared.

Use of this ioctl is restricted to processes with the {PRIV_SYS_MOUNT} privilege.

EFAULT The arg pointer in an MNTIOC_ ioctl call pointed to
an inaccessible memory location or a character pointer
in a mnttagdesc structure pointed to an inaccessible
memory location.

EINVAL The tag specified in a MNTIOC_SETTAG call already
exists as a file system option, or the tag specified in a
MNTIOC_CLRTAG call does not exist.

ENAMETOOLONG The tag specified in a MNTIOC_SETTAG call is too long
or the tag would make the total length of the option
string for the mounted file system too long.

EPERM The calling process does not have
{PRIV_SYS_MOUNT} privilege and either a
MNTIOC_SETTAG or MNTIOC_CLRTAG call was made.

/etc/mnttab
Usual mount point for mnttab file system

/usr/include/sys/mntio.h
Header file that contains IOCTL definitions

mkfile(1M), mount_cachefs(1M), mount_hsfs(1M), mount_nfs(1M),
mount_pcfs(1M), mount_ufs(1M), mount(1M), ioctl(2), read(2), poll(2),
stat(2), getmntent(3C)

The mnttab file system provides the previously undocumented dev=xxx option in the
option string for each mounted file system. This is provided for legacy applications
that might have been using the dev=information option.

Using dev=option in applications is strongly discouraged. The device number string
represents a 32-bit quantity and might not contain correct information in 64-bit
environments.

Applications requiring device number information for mounted file systems should
use the getextmntent(3C) interface, which functions properly in either 32- or 64-bit
environments.

mnttab(4)

ERRORS

FILES

SEE ALSO

WARNINGS

342 man pages section 4: File Formats • Last Revised 20 Dec 2003

The snapshot of the mnttab information is taken any time a read(2) is performed at
offset 0 (the beginning) of the mnttab file. The file modification time returned by
stat(2) for the mnttab file is the time of the last change to mounted file system
information. A poll(2) system call requesting a POLLRDBAND event can be used to
block and wait for the system’s mounted file system information to be different from
the most recent snapshot since the mnttab file was opened.

mnttab(4)

NOTES

File Formats 343

mod_ipp – Embedded Internet Print Protocol (IPP) listener for the Apache HTTP
server

/usr/apache/libexec/mod_ipp.so

The mod_ipp module implements RFCs 2910 and 2911 to provide an IPP handling
service for the Apache HTTP server. When loaded on the Apache server, mod_ipp
processes all HTTP requests with MIME types of application/ipp. The mod_ipp
module also processes additional configuration directives to enable or disable portions
of the protocol support.

The following is a list of configuration directives that apply to the Apache IPP
Listening service:

� ipp-conformance (automatic|1.0|1.1)

� ipp-operation (operation) (enable|disable)

enable|disable

The values true, yes, on, enable are considered to be synonymous and will
enable support for the named operation. All other values will disable support
for the named operation.

The following is a list of IPP handling service operations:

print-job
This operation is a required IPP operation that allows client systems to submit a
print job with a single document embedded in the data stream. This operation is
primarily used from the IPP support Microsoft has provided for its Windows
(9X/ME/NT/2K/XP).

print-uri
This is an optional IPP operation that allows client systems to submit a print job
with a reference (URL) for a single document. This operation is currently not
supported by the mod_ipp Apache Module.

validate-job
This is a required IPP operation that allows client systems to simulate the
submission of a print job to verify that the server is capable of handling the job.
This operation is supported by mod_ipp.

create-job
This is an optional IPP operation that allows client systems to submit a print job.
The operation is used with the send-document and send-uri operations.

get-jobs
This is a required IPP operation that allows client systems to retrieve a list of print
jobs from the print service.

get-printer-attributes
This is a required IPP operation that allows client systems to retrieve attributes
from the print service that describes the named printer object.

mod_ipp(4)

NAME

SYNOPSIS

DESCRIPTION

Using
Configuration

Directives

Operations

344 man pages section 4: File Formats • Last Revised 26 Nov 2003

pause-printer
This an optional IPP operation that allows client systems to stop job processing on
the named print queue.

resume-printer
This is an optional IPP operation that allows client systems to resume job
processing on the named print queue.

purge-jobs
This is an optional IPP operation that allows client systems to cancel all print jobs
on the named print queue.

send-document
This is a required IPP operation that allows client systems to add documents to
print jobs created with the create-job operation, but not yet submitted.

send-uri
This is an optional IPP operation that allows a client system to add a document
reference (URI) to a print job created with the create-job operation, but not yet
submitted. This operation is currently not supported by the mod_ipp Apache
Module.

cancel-job
This is a required IPP operation that allows client systems to cancel print jobs.

get-job-attributes
This is a required IPP operation that allows client systems to retrieve attributes that
describe a print job from the print service.

hold-job
This is an optional IPP operation that allows client systems to hold print jobs.

release-job
This is an optional IPP operation that allows client systems to release print jobs.

restart-job
This is an optional IPP operation that allows client systems to restart print jobs.

all
This is a place holder for enabling or disabling support for all IPP operations
implemented by the mod_ipp Apache module.

required
This is a place holder for enabling or disabling support for the required IPP
operations implemented by the mod_ipp Apache module.

EXAMPLE 1 Using a Configuration File to Start a Standalone Apache Server

The following configuration file can be used to start a standalone Apache server to
respond to IPP request sent to port 631.

ServerType standalone
ServerRoot "/usr/apache"
PidFile /var/run/httpd-standalone-ipp.pid

mod_ipp(4)

EXAMPLES

File Formats 345

EXAMPLE 1 Using a Configuration File to Start a Standalone Apache Server (Continued)

ErrorLog /var/lp/logs/ipp-errors

Timeout 300
KeepAlive On
MaxKeepAliveRequests 100
KeepAliveTimeout 15

MinSpareServers 1
MaxSpareServers 3
StartServers 1
MaxClients 150
MaxRequestsPerChild 0

LoadModule ipp_module libexec/mod_ipp.so

ClearModuleList
AddModule mod_ipp.c
AddModule mod_so.c

Port 631

User lp
Group lp

ServerAdmin lp@localhost
DefaultType application/ipp

<IFModule mod_app>
<Location />

ipp-operation all on
</Location>

</IFModule mod_app>

A more restrictive configuration might include the following parameters:

<IFModule mod_app>
<Location />

ipp-operation all offn
ipp-operation required on

</Location>

</IFModule mod_app>

See attributes(5) or descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWipplu

Interface Stability External

man(1), catman(1M), attributes(5)

Herriot, R., Ed., Butler, S., Moore, P., Turner, R., Wenn, J. RFC 2910, Internet Printing
Protocol/1.1: Encoding and Transport. Network Working Group. September 2000.

mod_ipp(4)

ATTRIBUTES

SEE ALSO

346 man pages section 4: File Formats • Last Revised 26 Nov 2003

Hastings, T., Ed., Herriot, R., deBry, R., Isaacson, S., Powell, P. RFC 2911, Internet
Printing Protocol/1.1: Model and Semantics. Network Working Group. September 2000.

http://www.apache.org

Configuration file directives are processed in the order listed in the config file. The
default behavior is to enable support for all operations implemented in the mod_ipp
Apache module.

Since the Apache IPP listening service implements some capabilities that are more of
operator features, it may not be desirable to enable all IPP operations without
requiring user authentication on the Apache listening service.

The following is an example of a more reasonable configuration for Apache IPP
servers without user authentication enabled:

ipp-operations all disabled

ipp-operations required enabled

The printers and jobs available under this service can be accessed using URIs of the
following form:

printer:
http://server[:port]/printers/{queue}
ipp://server[:port]/printers/{queue}

job:
http://server[:port]/printers/{queue}/{job-id}

ipp://server[:port]/printers/{queue}/{job-id}

631 is the default IPP port and implied when the URI scheme is ipp. However, some
client implementations do not recognize the ipp URI scheme and require
http://server:631/... instead. For example, Microsoft’s IPP client
implementation does not recognize the ipp scheme.

In addition to the documentation and man pages included with Solaris, more
information is available at http://www.apache.org

The httpd(8) man page and other Apache man pages are provided with the
programming modules. To view the Apache manual pages with the man command,
add /usr/apache/man to the MANPATH environment variable. See man(1) for more
information. Running catman(1M) on the Apache manual pages is not supported.

mod_ipp(4)

NOTES

File Formats 347

http://www.apache.org
http://www.apache.org

ncad_addr – name of the Solaris Network Cache and Accelerator (NCA) socket utility
library

/usr/lib/ncad_addr.so

ncad_addr.so is the Solaris Network Cache and Accelerator (NCA) socket utility
library. Use this library with a web server to avoid support for the PF_NCA family type
socket. The web server can take advantage of NCA functionality.

Interpose the ncad_addr interfaces before the interfaces in libsocket by setting the
environment variable LD_PRELOAD to ncad_addr.so so that it is preloaded before
libsocket.so.1. The ncad_addr.so interfaces will be interposed only if NCA is
enabled. See ncakmod(1).

EXAMPLE 1 Interposing ncad_addr

Using Bourne shell syntax as an example, set LD_PRELOAD as shown below to
interpose the ncad_addr socket utility libary:

LD_PRELOAD=/usr/lib/ncad_addr.so /usr/bin/httpd

/usr/lib/ncad_addr.so ncad_addr socket utility library shared object

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar (32–bit)

SUNWncarx (64–bit)

Interface Stability Unstable

nca(1), ncab2clf(1), ncakmod(1), socket(3SOCKET), nca.if(4),
ncakmod.conf(4), attributes(5)

Only applications that use the NCA feature, for example, web servers, should
interpose this library.

ncad_addr(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

348 man pages section 4: File Formats • Last Revised 18 Feb 2003

nca.if – the NCA configuration file that specifies physical interfaces

/etc/nca/nca.if

Specify the physical interfaces for which the Solaris Network Cache and Accelerator
(“NCA”) feature will be configured in the nca.if configuration file. List the physical
interfaces in the file, one per line. To configure NCA to listen on all physical interfaces
present on the system backed by a hostname.{interface_name}, then list only an
asterik (“*”) in nca.if.

When the ncakmod(1) initialization script is invoked during system boot, it will
attempt to configure each physical interface specified in the nca.if file by using
ncaconfd(1M). Note that there must be an accompanying
hostname.{interface_name} file and an entry in /etc/hosts for the contents of
hostname.{interface_name}.

You must reboot in order to implement changes to the nca.if file.

EXAMPLE 1 nca.if on x86

The following is an example of an nca.if file that would be used on an x86 system:

iprb1
iprb6

iprb8

EXAMPLE 2 nca.if on SPARC

The following is an example of an nca.if file that would be used on a SPARC
system:

hme2
hme3

hme4

EXAMPLE 3 Configuring NCA to Listen on All Physical Interfaces

The following example shows the contents of an nca.if file that would be used to
configure either platform to listen on all physical interfaces present on the system:

*

/etc/nca/nca.if Lists the physical interfaces on which NCA will run.

/etc/hostname.{}{0-9} Lists all physical interfaces configured on the server.

/etc/hosts Lists all host names associated with the server. Entries
in this file must match with entries in
/etc/hostname.{}{0–9} for NCA to function.

nca.if(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

x86

SPARC

All Platforms

FILES

File Formats 349

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

nca(1), ncab2clf(1), ncakmod(1), ifconfig(1M), ncakmod.conf(4),
ncalogd.conf(4), attributes(5)

System Administration Guide: IP Services

nca.if(4)

ATTRIBUTES

SEE ALSO

350 man pages section 4: File Formats • Last Revised 18 Feb 2003

ncakmod.conf – the ncakmod configuration file

/etc/nca/ncakmod.conf

The ncakmod.conf file is used to configure the Solaris Network Cache and
Accelerator (“NCA”) kernel module. The file contains two fields, key and value.

The status key is used to indicate if the user wants to have NCA turned on as a
feature. If the value of status key is enabled, then the NCA kernel module will be
pushed on to the specified interfaces. If the value of the status key is disabled,
then the NCA kernel module will not be pushed on to any interfaces . The default is
disabled.

The httpd_door_path key specifies the path name of the Solaris Door RPC
mechanism that will be used to communicate with the http daemon. The default
value is /var/run/nca_httpd_1.door.

Use the nca_active key to indicate whether to allow NCA to actively open outgoing
TCP connections. The default value for nca_active is disabled. If set to enabled,
ncaconfd sets up NCA for each interface and then operates as a daemon, allowing
NCA to make outgoing TCP connections. This functionality is possible only by using
the doors interface to NCA. A web server that uses the sockets interface with PF_NCA
or ncad_addr.so cannot connect by means of nca_active.

NCA supports the logging of in-kernel cache hits. See ncalogd.conf(4). NCA stores
logs in a binary format. Use the ncab2clf(1) utility to convert the log from a binary
format to the Common Log File format.

In order to implement changes to the ncakmod.conf file, you will need to reboot.

EXAMPLE 1 A Sample ncakmod.conf File

The following is a sample ncakmod.conf file:

#
NCA Kernel Module Configuration File
#
status=disabled
httpd_door_path=/var/run/nca_httpd_1.door
nca_active=disabled

/etc/nca/ncakmod.conf The NCA kernel module configuration file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

nca(1), ncab2clf(1), ncakmod(1), door_create(3DOOR), nca.if(4),
ncad_addr(4), ncalogd.conf(4), attributes(5)

ncakmod.conf(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

File Formats 351

System Administration Guide: IP Services

ncakmod.conf(4)

352 man pages section 4: File Formats • Last Revised 28 Sep 2001

ncalogd.conf – NCA logging configuration file

/etc/nca/ncalogd.conf

The ncalogd.conf is used to configure Solaris Network Cache and Accelerator
(“NCA”) logging. The file contains two fields, key and value.

The status key is used to indicate if the user wants to have NCA logging turned on.
If the value of status key is enabled, then NCA logging will be turned on. If the
value of the status key is disabled, then NCA logging will not be invoked. The
default value is disabled.

The logd_path_name key specifies the absolute pathname of the log file. The log file
must be a raw device without a filesystem or a file on a local file system. The default
value is /var/nca/log. logd_path_name can also contain a whitespace-delimited
list of values for multiple log files to a maximum of 16. If you specify multiple log
files, you must enclose the list in quotation marks (“). With multiple files, NCA
logging moves to the next file on the list once the file size specified by
logd_file_size has been reached. When the last file is full, NCA logging rotates
back to the first file in the list. A pointer to the current log file is stored in
/var/nca/current.

The logd_file_size key specifies the value of the file size, in bytes, allowed for
each log file specified in by the logd_path_name key. The default value is 1000000
bytes.

In order to implement changes to the ncalogd.conf file, you will need to stop and
start NCA logging or reboot.

NCA stores logs in a binary format. Use the ncab2clf(1) utility to convert the log
from a binary format to the Common Log File format.

EXAMPLE 1 A Sample ncalogd.conf File

The following is a sample ncalogd.conf file that specifies three log files:

#
NCA Log Daemon Configuration File
#

status=enabled
logd_path_name="/var/nca/log1 /var/nca/log2 /var/nca/log3"
logd_file_size=1000000

Note that there is no NCA logging daemon. Logging is performed as one of the
functions of the NCA software.

/etc/nca/ncalogd.conf Lists configuration parameters for
NCAlogging.

ncalogd.conf(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

File Formats 353

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWncar

Interface Stability Evolving

nca(1), ncab2clf(1), ncakmod(1), dd(1M), door_create(3DOOR), nca.if(4),
ncakmod.conf(4), attributes(5)

System Administration Guide: IP Services

ncalogd.conf(4)

ATTRIBUTES

SEE ALSO

354 man pages section 4: File Formats • Last Revised 22 Jan 2002

ncaport.conf – ncaport configuration file

/etc/nca/ncaport.conf

The ncaport.conf file is used to configure the IP addresses and ports that the
Solaris Network Cache and Acceleration (NCA) kernel module services. The file
contains two fields, key and value, in the format of ncaport=ipaddress/port. IPv4
addresses must be in the dot notation d.d.d.d. IPv6 addresses must be in one of the
three conventional forms (see inet_pton(3SOCKET)). If an asterisk (*) is used for an
IP address, it is interpreted as INADDR_ANY, which matches any IP address.

A web server uses the environment variable LD_PRELOAD and the ncaport.conf
configuration file to convert an AF_INET socket to an AF_NCA socket. LD_PRELOAD
enables the NCA socket utility library to be loaded before libsocket.so.1. See the
ncad_addr(4) for details. When a web server issues the bind(3SOCKET) system call,
it is intercepted by the interposition library ncad_addr.so. If the bind address is in
the ncaport.conf file, the AF_INET socket is converted to a AF_NCA socket.

EXAMPLE 1 Sample ncaport.conf File

The following is a sample ncaport.conf file:

#
NCA Kernel Module Port Configuration File
#
ncaport=1080:0:0:0:8:800:200C:417A/100
ncaport=192.168.84.71/80
ncaport=*/9000

nca(1), bind(3SOCKET), inet_pton(3SOCKET), ncad_addr(4), attributes(5)

For those web servers that use AF_NCA sockets, the NCA port configuration described
here has no effect.

NCA does not currently support IPv6. Any IPv6 addresses in the file ncaport.conf
are ignored.

ncaport.conf(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

NOTES

File Formats 355

ndpd.conf – configuration file for IPv6 router autoconfiguration

/etc/inet/ndpd.conf

The ndpd.conf file contains configuration information for in.ndpd(1M). On a host,
this file does not need to exist or can be empty. The file has one configuration entry per
line; note that lines can be extended with a backslash (\) followed by a NEWLINE.
There are four forms of configuration entries which are identified by the first field on
the line: ifdefault, prefixdefault, if, or prefix. The ifdefault and if
entries set interface configuration variables. The former establishes the routing
behavior for all interfaces, the latter sets per-interface parameters. Any ifdefault
entries must precede any if entries in the file.

The prefixdefault and prefix entries control prefix configuration variables.
prefixdefault establishes the default behavior for all prefix advertisements on all
interfaces. The prefix keyword advertises per-prefix information. Any
prefixdefault entries must precede any prefix entries in the file.

Each ifdefault entry is composed of a single line of the form:

ifdefault [if-variable-name value]*

Each if entry is composed of a single line of the form:

if interface [if-variable-name value]*

Each prefixdefault entry is composed of a single line of the form:

prefixdefault [prefix-variable-name value]*

Each prefix entry is composed of a single line of the form:

prefix prefix/prefix_length interface [prefix-variable-name value]*

Fields are separated by either SPACE or TAB characters. A ‘#’ (number sign) indicates
the beginning of a comment. Characters up to the end of the line are not interpreted
by routines that search this file.

interface
The name of a network interface, for example, eri0.

prefix
An IPv6 address in standard hexadecimal notation, for example, fec0:0:0:1::0.

prefix_length
A number between 0 and 128.

if-variable-name
An interface variable. Below is the list of interface variables applicable to routers
only along with their default values and units as discussed in RFC 2461 and RFC
2462. The Tmp* variables apply to hosts and routers. The Tmp* variables configure
temporary address functionality as defined in RFC 3041.

Variable Name Default Unit

ndpd.conf(4)

NAME

SYNOPSIS

DESCRIPTION

356 man pages section 4: File Formats • Last Revised 17 Sept 2004

AdvSendAdvertisements false Boolean
DupAddrDetectTransmits 1 Counter
MaxRtrAdvInterval 600 Seconds
MinRtrAdvInterval 200 Seconds
AdvManagedFlag false Boolean
AdvOtherConfigFlag false Boolean
AdvLinkMTU 0 Bytes
AdvReachableTime 0 Milliseconds
AdvRetransTimer 0 Milliseconds
AdvCurHopLimit see below Counter

AdvDefaultLifetime 1800 Seconds

These variables are described as follows:

AdvSendAdvertisements
Indicates whether the node should send out advertisements and respond to
router solicitations. You need to explicitly configure this value to turn on router
advertisement functions.

DupAddrDetectTransmits
Defines the number of consecutive Neighbor Solicitation messages that the
Neighbor Discovery protocol should send during Duplicate Address Detection of
the local node’s address.

MaxRtrAdvInterval
Specifies the maximum time to wait between sending unsolicited multicast
advertisements.

MinRtrAdvInterval
Specifies the minimum amount of time to wait between sending unsolicited
multicast advertisements.

AdvManagedFlag
Indicates the value to be placed in the “Manage address configuration” flag in
the Router Advertisement.

AdvOtherConfigFlag
Indicates the value to be placed in the “Other stateful configuration” flag in the
Router Advertisement.

AdvLinkMTU
Specifies an MTU value to be sent by the router. The default of zero indicates that
the router does not specify MTU options.

AdvReachableTime
Specifies the value in the Reachable Time field in the advertisement messages
sent by the router.

AdvRetransTimer
Specifies the value in the Retrans Timer field in the advertisement messages sent
by the router.

AdvCurHopLimit
Specifies the value to be placed in the current hop limit field in the advertisement
messages sent by the router. The default is the current diameter of the Internet.

ndpd.conf(4)

File Formats 357

AdvDefaultLifetime
Specifies the default lifetime of the router advertisements.

Listed below is the interface variable that applies to both hosts and routers.

Variable Name Default Unit

StatelessAddrConf true Boolean
TmpAddrsEnabled false Boolean
TmpValidLifetime 604800 Seconds

(1 week)
TmpPreferredLifetime 86400 Seconds

(1 day)
TmpRegenAdvance 5 Seconds

TmpMaxDesyncFactor 600 Seconds

StatelessAddrConf
Controls whether the system configures its IPv6 addresses by means of the
Stateless Address Autoconfiguration mechanism described in RFC 2462. If
enabled hosts (the default) autoconfigure addresses based on prefixes advertised
by routers, routers will only autoconfigure addresses based on the prefixes they
advertise themselves. In other words, even when enabled, routers do not
autoconfigure addresses based on prefixes that other routers advertise. If you
specify false for this variable, then the address must be configured manually.

TmpAddrsEnabled
Indicates whether a temporary address should be created for all interfaces or for
a particular interface of a node.

TmpValidLifetime
Sets the valid lifetime for a temporary address.

TmpPreferredLifetime
Sets the preferred lifetime of a temporary address.

TmpRegenAdvance
Specifies the lead time in advance of address deprecation for generation of a new
temporary address.

TmpMaxDesyncFactor
Sets the upper bound on the DesyncFactor, which is a random value that is used
to shorten the preferred lifetime so that clients do not regenerate an address at
the same time.

The variable

prefix-variable-name
A prefix variable as discussed in RFC 2461 and RFC 2462. The following lists the
each interface variable and its default value and unit:

ndpd.conf(4)

358 man pages section 4: File Formats • Last Revised 17 Sept 2004

Variable Name Default Unit

AdvValidLifetime 2592000 Seconds

AdvOnLinkFlag true Boolean

AdvPreferredLifetime 604800 Seconds

AdvAutonomousFlag true Boolean

AdvValidExpiration not set Date/Time

AdvPreferredExpiration not set Date/TIme

These variables are described as follows:

AdvValidLifetime
Specifies the valid lifetime of the prefix that is being configured.

AdvOnLinkFlag
Specifies the value to be placed in the on-link flag (“L-bit”) field in the Prefix
Information option.

AdvPreferredLifetime
Specifies the value to be placed in the Preferred Lifetime in the Prefix
Information option.

AdvAutonomousFlag
Specifies the value to be placed in the Autonomous Flag field in the Prefix
Information option.

AdvValidExpiration
Specifies the valid expiration date of the prefix.

AdvPreferredExpiration
Specifies the preferred expiration date of the prefix.

The AdvValidExpiration and AdvPreferredExpiration variables are used
to specify that the lifetime should be decremented in real time as specified in RFC
2461. If an Expiration variable is set, it takes precedence over the corresponding
AdvValidLifetime or AdvPreferredLifetime variable setting.

value
The value is a function of the unit. Boolean values are true, false, on, off, 1, or
0.

Values in seconds can have characters appended for day (d), hour h), minute (m)
and second (s). The default is seconds. For example, 1h means 1 hour. This is
equivalent to the value 3600.

Values in milliseconds can have characters appended for day (d),hour (h), minute
(m) second (s), and millisecond (ms). The default is milliseconds. For example, 1h is
equivalent to the value 3600000.

ndpd.conf(4)

File Formats 359

Date/time values are strings that use the recommended ISO date format described
as “%Y-%m-%d %R”, which represents a 4 digit year, a dash character, a numeric
month, a dash character, and a numeric day of the month, followed by one or more
whitespace characters and finally a 24 hour clock with hours, a colon, and minutes.
For example, 1999-01-31 20:00 means 8pm January 31 in 1999. Since the
date/time values contain a space, use single or double quotes to declare the value.
For example:

prefixdefault AdvPreferredExpiration ’1999-01-31 20:00’

EXAMPLE 1 Sending Router Advertisements for all Interfaces

The following example can be used to send router advertisements out to all interfaces:

Send router advertisements out all interfaces
ifdefault AdvSendAdvertisements on
prefixdefault AdvOnLinkFlag on AdvAutonomousFlag on

Advertise a (bogus) global prefix and a site
local prefix on three interfaces using the default lifetimes
prefix 2:0:0:9255::0/64 eri0
prefix fec0:0:0:9255::0/64 eri0

prefix 2:0:0:9256::0/64 eri1
prefix fec0:0:0:9256::0/64 eri1

prefix 2:0:0:9259::0/64 eri2

prefix fec0:0:0:9259::0/64 eri2

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Evolving

in.ndpd(1M), routeadm(1M), attributes(5), icmp6(7P), ip6(7P)

Narten, T., Nordmark, E., and Simpson, W. RFC 2461, Neighbor Discovery for IP Version
6 (IPv6). The Internet Society. December 1998.

Thomson, S., and Narten, T. RFC 2462, IPv6 Stateless Address Autoconfiguration. The
Internet Society. December 1998.

Narten, T., and Draves, R. RFC 3041, Privacy Extensions for Stateless Address
Autoconfiguration in IPv6. The Internet Society. January 2001.

System Administration Guide: IP Services

ndpd.conf(4)

EXAMPLES

ATTRIBUTES

SEE ALSO

360 man pages section 4: File Formats • Last Revised 17 Sept 2004

netconfig – network configuration database

/etc/netconfig

The network configuration database, /etc/netconfig, is a system file used to store
information about networks that are connected to the system. The netconfig
database and the routines that access it (see getnetconfig(3NSL)) are part of the
Network Selection component. The Network Selection component also includes
getnetpath(3NSL) routines to provide application-specific network search paths.
These routines access the netconfig database based on the environment variable
NETPATH. See environ(5).

netconfig contains an entry for each network available on the system. Entries are
separated by newlines. Fields are separated by whitespace and occur in the order in
which they are described below. Whitespace can be embedded as ‘‘\blank’’ or ‘‘\tab’’.
Backslashes may be embedded as ‘‘\\’’. Lines in /etc/netconfig that begin with a
(hash) in column 1 are treated as comments.

Each of the valid lines in the netconfig database correspond to an available
transport. Each entry is of the form:

network ID semantics flag protocol-family

protocol-name network-device translation-libraries

network ID A string used to uniquely identify a network. network
ID consists of non-null characters, and has a length of
at least 1. No maximum length is specified. This
namespace is locally significant and the local system
administrator is the naming authority. All network IDs
on a system must be unique.

semantics The semantics field is a string identifying the
‘‘semantics’’ of the network, that is, the set of services it
supports, by identifying the service interface it
provides. The semantics field is mandatory. The
following semantics are recognized.

tpi_clts Transport Provider Interface,
connectionless

tpi_cots Transport Provider Interface,
connection oriented

tpi_cots_ord Transport Provider Interface,
connection oriented, supports
orderly release.

flag The flag field records certain two-valued (‘‘true’’ and
‘‘false’’) attributes of networks. flag is a string
composed of a combination of characters, each of

netconfig(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 361

which indicates the value of the corresponding
attribute. If the character is present, the attribute is
‘‘true.’’ If the character is absent, the attribute is ‘‘false.’’
‘‘-’’ indicates that none of the attributes are present.
Only one character is currently recognized:

v Visible (‘‘default’’) network. Used
when the environment variable
NETPATH is unset.

protocol family The protocol family and protocol name fields are provided
for protocol-specific applications. The protocol family
field contains a string that identifies a protocol family.
The protocol family identifier follows the same rules as
those for network IDs; the string consists of non-null
characters, it has a length of at least 1, and there is no
maximum length specified. A ‘‘−’’ in the protocol family
field indicates that no protocol family identifier applies
(the network is experimental). The following are
examples:

loopback Loopback (local to host).

inet Internetwork: UDP, TCP, and the
like.

inet6 Internetwork over IPv6: UDP, TCP,
and the like.

implink ARPANET imp addresses

pup PUP protocols: for example, BSP

chaos MIT CHAOS protocols

ns XEROX NS protocols

nbs NBS protocols

ecma European Computer Manufacturers
Association

datakit DATAKIT protocols

ccitt CCITT protocols, X.25, and the like.

sna IBM SNA

decnet DECNET

dli Direct data link interface

lat LAT

hylink NSC Hyperchannel

netconfig(4)

362 man pages section 4: File Formats • Last Revised 18 Nov 2003

appletalk Apple Talk

nit Network Interface Tap

ieee802 IEEE 802.2; also ISO 8802

osi Umbrella for all families used by
OSI (for example, protosw lookup)

x25 CCITT X.25 in particular

osinet AFI = 47, IDI = 4

gosip U.S. Government OSI

protocol name The protocol name field contains a string that identifies a
protocol. The protocol name identifier follows the same
rules as those for network IDs; that is, the string consists
of non-NULL characters, it has a length of at least 1,
and there is no maximum length specified. A ‘‘−’’
indicates that none of the names listed apply. The
following protocol names are recognized.

tcp Transmission Control Protocol

udp User Datagram Protocol

icmp Internet Control Message Protocol

network device The network device is the full pathname of the device
used to connect to the transport provider. Typically, this
device will be in the /dev directory. The network device
must be specified.

translation libraries The name-to-address translation libraries support a
‘‘directory service’’ (a name-to-address mapping
service) for the network. A ‘‘−’’ in this field indicates
the absence of any translation libraries. This has a special
meaning for networks of the protocol family inet : its
name-to-address mapping is provided by the name
service switch based on the entries for hosts and
services in nsswitch.conf(4). For networks of
other families, a ‘‘−’’ indicates non-functional
name-to-address mapping. Otherwise, this field
consists of a comma-separated list of pathnames to
dynamically linked libraries. The pathname of the
library can be either absolute or relative. See
dlopen(3C).

Each field corresponds to an element in the struct netconfig structure. struct
netconfig and the identifiers described on this manual page are defined in
<netconfig.h>. This structure includes the following members:

netconfig(4)

File Formats 363

char *nc_netid Network ID, including NULL
terminator.

unsigned long nc_semantics Semantics.

unsigned long nc_flag Flags.

char *nc_protofmly Protocol family.

char *nc_proto Protocol name.

char *nc_device Full pathname of the network
device.

unsigned long nc_nlookups Number of directory lookup
libraries.

char **nc_lookups Names of the name-to-address
translation libraries.

unsigned long nc_unused[9] Reserved for future expansion.

The nc_semantics field takes the following values, corresponding to the semantics
identified above:

NC_TPI_CLTS
NC_TPI_COTS
NC_TPI_COTS_ORD

The nc_flag field is a bitfield. The following bit, corresponding to the attribute
identified above, is currently recognized. NC_NOFLAG indicates the absence of any
attributes.

NC_VISIBLE

EXAMPLE 1 A Sample netconfig File

Below is a sample netconfig file:

#
The "Network Configuration" File.
#
Each entry is of the form:
#
<networkid> <semantics> <flags> <protofamily> <protoname> <device>
<nametoaddrlibs>
#
The "-" in <nametoaddrlibs> for inet family transports indicates
redirection to the name service switch policies for "hosts" and
"services". The "-" may be replaced by nametoaddr libraries that
comply with the SVr4 specs, in which case the name service switch
will not be used for netdir_getbyname, netdir_getbyaddr,
gethostbyname, gethostbyaddr, getservbyname, and getservbyport.
There are no nametoaddr_libs for the inet family in Solaris anymore.

netconfig(4)

EXAMPLES

364 man pages section 4: File Formats • Last Revised 18 Nov 2003

EXAMPLE 1 A Sample netconfig File (Continued)

#
udp6 tpi_clts v inet6 udp /dev/udp6 -
tcp6 tpi_cots_ord v inet6 tcp /dev/tcp6 -
udp tpi_clts v inet udp /dev/udp -
tcp tpi_cots_ord v inet tcp /dev/tcp -
rawip tpi_raw - inet - /dev/rawip -
ticlts tpi_clts v loopback - /dev/ticlts straddr.so
ticotsord tpi_cots_ord v loopback - /dev/ticotsord straddr.so
ticots tpi_cots v loopback - /dev/ticots straddr.so

<netconfig.h>

dlopen(3C), getnetconfig(3NSL), getnetpath(3NSL), nsswitch.conf(4)

System Administration Guide: IP Services

netconfig(4)

FILES

SEE ALSO

File Formats 365

netgroup – list of network groups

/etc/netgroup

A netgroup defines a network-wide group of hosts and users. Use a netgroup to
restrict access to shared NFS filesystems and to restrict remote login and shell access.

Network groups are stored in a network information services, such as LDAP, NIS, or
NIS+, not in a local file.

This manual page describes the format for a file that is used to supply input to a
program such as ldapaddent(1M) for LDAP, makedbm(1M) for NIS, or
nisaddent(1M) for NIS+. These programs build maps or tables used by their
corresponding network information services.

Each line of the file defines the name and membership of a network group. The line
should have the format:

groupname member ...

The items on a line can be separated by a combination of one or more spaces or tabs.

The groupname is the name of the group being defined. This is followed by a list of
members of the group. Each member is either another group name, all of whose
members are to be included in the group being defined, or a triple of the form:

(hostname,username,domainname)

In each triple, any of the three fields hostname, username, and domainname, can be
empty. An empty field signifies a wildcard that matches any value in that field. Thus:

everything (, ,this.domain)

defines a group named "everything" for the domain "this.domain" to which every host
and user belongs.

The domainname field refers to the domain in which the triple is valid, not the domain
containing the host or user. In fact, applications using netgroup generally do not
check the the domainname. Therefore, using

(,,domain)

is equivalent to

(,,)

You can also use netgroups to control NFS mount access (see share_nfs(1M)) and to
control remote login and shell access (see hosts.equiv(4)). You can also use them to
control local login access (see passwd(4), shadow(4), and compat in
nsswitch.conf(4)).

netgroup(4)

NAME

SYNOPSIS

DESCRIPTION

366 man pages section 4: File Formats • Last Revised 22 Jul 2004

When used for these purposes, a host is considered a member of a netgroup if the
netgroup contains any triple in which the hostname field matches the name of the
host requesting access and the domainname field matches the domain of the host
controlling access.

Similarly, a user is considered a member of a netgroup if the netgroup contains any
triple in which the username field matches the name of the user requesting access and
the domainname field matches the domain of the host controlling access.

Note that when netgroups are used to control NFS mount access, access is granted
depending only on whether the requesting host is a member of the netgroup.
Remote login and shell access can be controlled both on the basis of host and user
membership in separate netgroups.

/etc/netgroup Used by a network information service’s utility to
construct a map or table that contains netgroup
information. For example, ldapaddent(1M) uses
/etc/netgroup to construct an LDAP container.

Note that the netgroup information must always be stored in a network information
service, such as LDAP, NIS, or NIS+. The local file is only used to construct a map or
table for the network information service. It is never consulted directly.

nis+(1), ldapaddent(1M), makedbm(1M), nisaddent(1M), share_nfs(1M),
innetgr(3C), hosts(4), hosts.equiv(4), nsswitch.conf(4), passwd(4),
shadow(4)

netgroup requires a network information service such as LDAP, NIS, or NIS+.

Applications may make general membership tests using the innetgr() function. See
innetgr(3C).

Because the "-" character will not match any specific username or hostname, it is
commonly used as a placeholder that will match only wildcarded membership
queries. So, for example:

onlyhosts (host1,-,our.domain) (host2,-,our.domain)

onlyusers (-,john,our.domain) (-,linda,our.domain)

effectively define netgroups containing only hosts and only users, respectively. Any
other string that is guaranteed not to be a legal username or hostname will also suffice
for this purpose.

Use of placeholders will improve search performance.

When a machine with multiple interfaces and multiple names is defined as a member
of a netgroup, one must list all of the names. See hosts(4). A manageable way to do
this is to define a netgroup containing all of the machine names. For example, for a
host "gateway" that has names "gateway-subnet1" and "gateway-subnet2" one may
define the netgroup:

netgroup(4)

FILES

SEE ALSO

NOTES

File Formats 367

gateway (gateway-subnet1, ,our.domain) (gateway-subnet2, ,our.domain)

and use this netgroup “gateway” whenever the host is to be included in another
netgroup.

netgroup(4)

368 man pages section 4: File Formats • Last Revised 22 Jul 2004

netid – netname database

/etc/netid

The netid file is a local source of information on mappings between netnames (see
secure_rpc(3NSL)) and user ids or hostnames in the local domain. The netid file
can be used in conjunction with, or instead of, the network source: NIS or NIS+. The
publickey entry in the nsswitch.conf (see nsswitch.conf(4)) file determines
which of these sources will be queried by the system to translate netnames to local
user ids or hostnames.

Each entry in the netid file is a single line of the form:

netname uid:gid, gid, gid . . .

or

netname 0:hostname

The first entry associates a local user id with a netname. The second entry associates a
hostname with a netname.

The netid file field descriptions are as follows:

netname The operating system independent network name for the user or
host. netname has one of two formats. The format used to specify a
host is of the form:

unix.hostname@domain

where hostname is the name of the host and domain is the
network domain name.

The format used to specify a user id is of the form:

unix.uid@domain

where uid is the numerical id of the user and domain is the network
domain name.

uid The numerical id of the user (see passwd(4)). When specifying a
host name, uid is always zero.

group The numerical id of the group the user belongs to (see group(4)).
Several groups, separated by commas, may be listed for a single
uid.

hostname The local hostname (see hosts(4)).

Blank lines are ignored. Any part of a line to the right of a ‘#’ symbol is treated as a
comment.

netid(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 369

EXAMPLE 1 A sample netid file.

Here is a sample netid file:

unix.789@West.Sun.COM 789:30,65
unix.123@Bldg_xy.Sun.COM 123:20,1521
unix.candlestick@campus1.bayarea.EDU 0:candlestick

/etc/group groups file

/etc/hosts hosts database

/etc/netid netname database

/etc/passwd password file

/etc/publickey public key database

netname2user(3NSL), secure_rpc(3NSL), group(4), hosts(4),
nsswitch.conf(4), passwd(4), publickey(4)

netid(4)

EXAMPLES

FILES

SEE ALSO

370 man pages section 4: File Formats • Last Revised 23 May 1994

netmasks – network mask database

/etc/inet/netmasks

/etc/netmasks

The netmasks file contains network masks used to implement IP subnetting. It
supports both standard subnetting as specified in RFC-950 and variable length
subnetting as specified in RFC-1519. When using standard subnetting there should be
a single line for each network that is subnetted in this file with the network number,
any number of SPACE or TAB characters, and the network mask to use on that
network. Network numbers and masks may be specified in the conventional IP ‘.’
(dot) notation (like IP host addresses, but with zeroes for the host part). For example,

128.32.0.0 255.255.255.0

can be used to specify that the Class B network 128.32.0.0 should have eight bits of
subnet field and eight bits of host field, in addition to the standard sixteen bits in the
network field.

When using variable length subnetting, the format is identical. However, there should
be a line for each subnet with the first field being the subnet and the second field being
the netmask that applies to that subnet. The users of the database, such as
ifconfig(1M), perform a lookup to find the longest possible matching mask. It is
possible to combine the RFC-950 and RFC-1519 form of subnet masks in the netmasks
file. For example,

128.32.0.0 255.255.255.0
128.32.27.0 255.255.255.240
128.32.27.16 255.255.255.240
128.32.27.32 255.255.255.240
128.32.27.48 255.255.255.240
128.32.27.64 255.255.255.240
128.32.27.80 255.255.255.240
128.32.27.96 255.255.255.240
128.32.27.112 255.255.255.240
128.32.27.128 255.255.255.240
128.32.27.144 255.255.255.240
128.32.27.160 255.255.255.240
128.32.27.176 255.255.255.240
128.32.27.192 255.255.255.240
128.32.27.208 255.255.255.240
128.32.27.224 255.255.255.240
128.32.27.240 255.255.255.240
128.32.64.0 255.255.255.192

can be used to specify different netmasks in different parts of the 128.32.0.0 Class B
network number. Addresses 128.32.27.0 through 128.32.27.255 have a subnet mask
with 28 bits in the combined network and subnet fields (often referred to as the subnet
field) and 4 bits in the host field. Furthermore, addresses 128.32.64.0 through
128.32.64.63 have a 26 bits in the subnet field. Finally, all other addresses in the range
128.32.0.0 through 128.32.255.255 have a 24 bit subnet field.

netmasks(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 371

Invalid entries are ignored.

ifconfig(1M), inet(7P)

Postel, Jon, and Mogul, Jeff, Internet Standard Subnetting Procedure, RFC 950, Network
Information Center, SRI International, Menlo Park, Calif., August 1985.

V. Fuller, T. Li, J. Yu, K. Varadhan, Classless Inter-Domain Routing (CIDR): an Address
Assignment and Aggregation Strategy, RFC 1519, Network Information Center, SRI
International, Menlo Park, Calif., September 1993.

T. Pummill, B. Manning, Variable Length Subnet Table For IPv4, RFC 1878, Network
Information Center, SRI International, Menlo Park, Calif., December 1995.

/etc/inet/netmasks is the official SVr4 name of the netmasks file. The symbolic
link /etc/netmasks exists for BSD compatibility.

netmasks(4)

SEE ALSO

NOTES

372 man pages section 4: File Formats • Last Revised 7 Jan 1997

netrc – file for ftp remote login data

The .netrc file contains data for logging in to a remote host over the network for file
transfers by ftp(1). This file resides in the user’s home directory on the machine
initiating the file transfer. Its permissions should be set to disallow read access by
group and others (see chmod(1)).

The following tokens are recognized; they may be separated by SPACE, TAB, or
NEWLINE characters:

machine name Identify a remote machine name. The auto-login process searches
the .netrc file for a machine token that matches the remote
machine specified on the ftp command line or as an open
command argument. Once a match is made, the subsequent
.netrc tokens are processed, stopping when the EOF is reached
or another machine token is encountered.

default Same as machine name, except that default matches any name.
There can be only one default token, and it must be after all
machine tokens. The default token is normally used as follows:

default login anonymous password user@site

Such an entry gives the user automatic anonymous ftp login to
machines not specified in .netrc.

login name Identify a user on the remote machine. If this token is present, the
auto-login process will initiate a login using the specified name.

password string Supply a password. If this token is present, the auto-login process
will supply the specified string if the remote server requires a
password as part of the login process. Note: if this token is present
in the .netrc file, ftp will abort the auto-login process if the
.netrc is readable by anyone besides the user.

account string Supply an additional account password. If this token is present,
the auto-login process supplies the specified string if the remote
server requires an additional account password. If the remote
server does not require an additional account password, the
auto-login process will initiate an ACCT command.

macdef name Define a macro. This token functions the same as ftp macdef. A
macro is defined with the specified name; its contents begin with
the next .netrc line and continue until a null line (consecutive
NEWLINE characters) is encountered. If a macro named init is
defined, it is automatically executed as the last step in the
auto-login process.

EXAMPLE 1 A Sample .netrc File

A .netrc file containing the following line:

netrc(4)

NAME

DESCRIPTION

EXAMPLES

File Formats 373

EXAMPLE 1 A Sample .netrc File (Continued)

machine ray login demo password mypassword

allows an autologin to the machine ray using the login name demo with password
mypassword.

~/.netrc

chmod(1), ftp(1), in.ftpd(1M)

netrc(4)

FILES

SEE ALSO

374 man pages section 4: File Formats • Last Revised 3 Jul 1990

networks – network name database

/etc/inet/networks

/etc/networks

The networks file is a local source of information regarding the networks which
comprise the Internet. The networks file can be used in conjunction with, or instead of,
other networks sources, including the NIS maps networks.byname and
networks.byaddr and the NIS+ table networks. Programs use the
getnetbyname(3SOCKET) routines to access this information.

The network file has a single line for each network, with the following information:

official-network-name network-number aliases

Items are separated by any number of SPACE or TAB characters. A ‘#’ indicates the
beginning of a comment. Characters up to the end of the line are not interpreted by
routines which search the file. This file is normally created from the official network
database maintained at the Network Information Control Center (NIC), though local
changes may be required to bring it up to date regarding unofficial aliases and/or
unknown networks.

Network numbers may be specified in the conventional dot (‘.’) notation using the
inet_network routine from the Internet address manipulation library, inet(7P).
Network names may contain any printable character other than a field delimiter,
NEWLINE, or comment character.

getnetbyaddr(3SOCKET), getnetbyname(3SOCKET), inet(3SOCKET),
nsswitch.conf(4), inet(7P)

The official SVR4 name of the networks file is /etc/inet/networks. The symbolic
link /etc/networks exists for BSD compatibility.

The network number in networks database is the host address shifted to the right by
the number of 0 bits in the address mask. For example, for the address
24.132.47.86 that has a mask of fffffe00, its network number is 803351. This is
obtained when the address is shifted right by 9 bits. The address maps to 12.66.23.
The trailing 0 bits should not be specified. The network number here is different from
that described in netmasks(4). For this example, the entry in netmasks would be
24.132.46.0 fffffe00.

networks(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

File Formats 375

nfs – file containing parameter values for NFS-related daemons

/etc/default/nfs

The nfs file resides in directory /etc/default and provides startup parameters for
the nfsd(1M) and lockd(1M) daemons.

The nfs file format is ASCII; comment lines begin with the crosshatch (#) character.
Parameters consist of a keyword followed by an equals (=) sign followed by the
parameter value, of the form:

keyword=value

The following parameters are currently supported in the nfs file:

NFS_CLIENT_VERSMIN=num
NFS_CLIENT_VERSMAX=num

The NFS client only uses NFS versions in the range specified by these variables.
Valid values or versions are: 2, 3, and 4. By default these variables are unspecified
(commented out) and the client’s default minimum is Version 2. The default
maximum is Version 4. You can override this range on a per-mount basis by using
the -o vers= option to mount_nfs(1M).

NFS_SERVER_VERSMIN=num
NFS_SERVER_VERSMAX=num

The NFS server only uses NFS versions in the range specified by these variables.
Valid values or versions are: 2, 3, and 4. As with the client, the default is to leave
these variables commented out and the default minimum version is 2, while the
default maximum version is 4.

NFS_SERVER_DELEGATION=on | off
By default, this variable is commented out and the NFS server provides delegations
to clients. The user can turn off delegations for all exported filesystems by setting
this variable to off (case-sensitive). This variable only applies to NFS Version 4.

NFSMAPID_DOMAIN=domain-string
By default, the nfsmapid uses the DNS domain of the system. This setting
overrides the default. This domain is used for identifying user and group attribute
strings in the NFS Version 4 protocol. Clients and servers must match with this
domain for operation to proceed normally. This variable only applies to NFS
Version 4. See "Setting NFSMAPID_DOMAIN," below for further details.

NFSD_MAX_CONNECTIONS=num
Sets the maximum number of concurrent, connection-oriented connections. The
default is unlimited and is obtained by not setting (that is, commenting out)
NFSD_MAX_CONNECTIONS. Equivalent to the -c option in nfsd.

NFSD_LISTEN_BACKLOG=num
Set connection queue length for the NFS over a connection-oriented transport. The
default value is 32, meaning 32 entries in the queue. Equivalent to the -l option in
nfsd.

nfs(4)

NAME

SYNOPSIS

DESCRIPTION

376 man pages section 4: File Formats • Last Revised 13 Oct 2004

NFSD_PROTOCOL=ALL
Start nfsd over the specified protocol only. Equivalent to the -p option in nfsd.
ALL is equivalent to -a on the nfsd command line. Mutually exlusive of
NFSD_DEVICE. One or the other of NFSD_DEVICE and NFSD_PROTOCOL must be
commented out. For the UDP protocol, only version 2 and version 3 service is
established. NFS Version 4 is not supported for the UDP protocol.

NFSD_DEVICE=devname
Start NFS daemon for the transport specified by the given device only. Equivalent
to the -t option in nfsd. Mutually exclusive of NFSD_PROTOCOL. One or the other
of NFSD_DEVICE and NFSD_PROTOCOL must be commented out.

NFSD_SERVERS=num
Maximum number of concurrent NFS requests. Equivalent to last numeric
argument on the nfsd command line. The default is 16.

LOCKD_LISTEN_BACKLOG=num
Set connection queue length for lockd over a connection-oriented transport. The
default and minimum value is 32.

LOCKD_SERVERS=num
Maximum number of concurrent lockd requests. The default is 20.

LOCKD_RETRANSMIT_TIMEOUT=num
Retransmit timeout, in seconds, before lockd retries. The default is 5.

GRACE_PERIOD=num
Grace period, in seconds, that all clients (both NLM and NFSv4) have to reclaim
locks after a server reboot. This parameter also controls the NFSv4 lease interval
and overrides the deprecated setting LOCKD_GRACE_PERIOD. The default is 90.

LOCKD_GRACE_PERIOD=num
Deprecated. Same as GRACE_PERIOD=num above. The default is 90.

As described above, the setting for NFSMAPID_DOMAIN overrides the domain used by
nfsmapid(1M) for building and comparing outbound and inbound attribute strings,
respectively. This setting overrides any other mechanism for setting the NFSv4
domain. In the absence of a NFSMAPID_DOMAIN setting, the nfsmapid(1M) daemon
determines the NFSv4 domain as follows:

� If a properly configured /etc/resolv.conf (see resolv.conf(4)) exists,
nfsmapid queries specified nameserver(s) for the domain.

� If a properly configured /etc/resolv.conf (see resolv.conf(4)) exists, but
the queried nameserver does not have a proper record of the domain name,
nfsmapid attempts to obtain the domain name through the BIND interface (see
resolver(3RESOLV)).

� If no /etc/resolv.conf exists, nfsmapid falls back on using the configured
domain name (see domainname(1M)), which is returned with the leading domain
suffix removed. For example, for widgets.sales.acme.com, sales.acme.com
is returned.

nfs(4)

Setting
NFSMAPID_DOMAIN

File Formats 377

� If /etc/resolv.conf does not exist, no domain name has been configured (or no
/etc/defaultdomain exists), nfsmapid falls back on obtaining the domain
name from the host name, if the host name contains a fully qualified domain name
(FQDN).

If a domainname is still not obtained following all of the preceding steps, nfsmapid
will have no domain configured. This results in the following behavior:

� Outbound "owner" and "owner_group" attribute strings are encoded as literal id’s.
For example, the UID 12345 is encoded as 12345.

� nfsmapid ignores the “domain” portion of the inbound attribute string and
performs name service lookups only for the user or group. If the user/group exists
in the local system name service databases, then the proper uid/gid will be
mapped even when no domain has been configured.

This behavior implies that the same administrative user/group domain exists
between NFSv4 client and server (that is, the same uid/gid’s for users/groups on
both client and server). In the case of overlapping id spaces, the inbound attribute
string could potentially be mapped to the wrong id. However, this is not
functionally different from mapping the inbound string to nobody, yet provides
greater flexibility.

lockd(1M), mount_nfs(1M), nfsd(1M), nfsmapid(1M)

System Administration Guide: Network Services

nfs(4)

SEE ALSO

378 man pages section 4: File Formats • Last Revised 13 Oct 2004

nfslog.conf – NFS server logging configuration file

/etc/nfs/nfslog.conf

The nfslog.conf file specifies the location of the NFS server logs, as well as the
location of the private work files used by the NFS server and nfslogd(1M) daemon
during logging. Each entry in the file consists of a mandatory tag identifier and one or
more parameter identifiers. The parameter identifier specifies the value or location of
the specific parameter. For instance, the parameter identifier
"log=/var/nfs/logs/serverLog" specifies the location of the NFS server activity
log. The mandatory tag identifier serves as an index into the
/etc/nfs/nfslog.conf file to identify the various parameters to be used. At
export time, the share_nfs(1M) command specifies the NFS server logging
parameters to use by associating a tag from the /etc/nfs/nfslog.conf file to the
exported file system. It is legal for more than one file system to be exported using the
same logging tag identifier.

NFS server logging is not supported on Solaris machines that are using NFS Version 4.

A "global" tag identifier is included in /etc/nfs/nfslog.conf. It specifies the
default set of values to be used during logging. If no tag identifier is specified at
export time, then the values in the "global" entry are used. The "global" values can be
modified by updating this entry in /etc/nfs/nfslog.conf.

Each entry in the file must contain a mandatory tag identifier and at least one
parameter/value pair. If a parameter is not specified in a given entry, the global value
of the parameter will be used. The exact entry syntax follows:

<tag> [defaultdir=<path>] [log=<path><file>] \

[fhtable=<path><file>] [buffer=<path><file>] [logformat=basic|extended]

defaultdir=<path>
Specifies the directory where the logging files and working files will be placed. This
path is prepended to all relative paths specified in other parameters.

log=<path><file>
Specifies the location of the user-readable log file. The log will be located in the
defaultdir, unless <path> is an absolute path.

fhtable=<path><file>
Specifies the location of the private file handle to path mapping database files.
These database files are for the private use of the NFS server kernel module and the
nfslogd daemon. These files will be located in the defaultdir, unless <path> is
an absolute path. These database files are permanently stored in the file system.
Consult nfslogd(1M) for information on pruning the database files.

buffer=<path><file>
Specifies the location of the private work buffer file used by the NFS server kernel
module to record raw RPC information. This file is later processed by the nfslog
daemon, which in turn generates the user-readable log file. This work buffer file
will be located in the defaultdir, unless <path> is an absolute path.

nfslog.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 379

logformat=basic|extended
Sets the format of the user-readable log file. If not specified, the basic format is
used. The basic format is compatible with log files generated by the Washington
University FTPd. The extended format provides a more detailed log, which
includes directory modification operations not included in the basic format, such as
mkdir, rmdir and remove. Note that the extended format is not compatible with
Washington University’s FTPd log format.

EXAMPLE 1 Using the global Tag

The "global" tag may be modified so that all exported file systems that enabled logging
use a common set of parameters that conform to the specific needs of the user. These
values are used until a specific tag identifier overrides them.

global defaultdir=/var/nfs log=logs/nfslog \
fhtable=tables/fhtable buffer=buffers/nfslog_workbuffer \
logformat=basic

EXAMPLE 2 Overriding the Global defaultdir and logformat

Because log files can become very large, it may be desirable to store the logs and
working files in separate file systems. This can be easily accomplished by simply
specifying a different defaultdir for every file system exported by means of a
unique tag:

engineering defaultdir=/engineering/logging \
logformat=extended

accounting defaultdir=/accounting/logging

marketing defaultdir=/marketing/logging

File systems shared with the engineering identifier will have their logs and workfiles
located in /engineering/logging. For instance, the log file will be located at
/engineering/logging/logs/nfslog. Note that the engineering log file will be
stored in the extended format, while the rest of the log files will remain in the basic
format.

Any of the parameters can be updated in a tag identifier, which overrides the global
settings.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnfssr

nfslogd(1M), share_nfs(1M), attributes(5)

Logs, work files, and file handle to path mapping database can become very large. Be
aware of appropriate placement within the file system name space. See nfslogd(1M))
for information on pruning the database files and cycling logs.

nfslog.conf(4)

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

380 man pages section 4: File Formats • Last Revised 2 Dec 2004

nfssec.conf – list NFS security modes

/etc/nfssec.conf

The nfssec.conf file lists the NFS security modes supported on a system. These
modes are defined in nfssec(5).

The nfssec.conf file should not be edited by a user.

nfssec(5)

nfssec.conf(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

File Formats 381

nisfiles – NIS+ database files and directory structure

/var/nis

The Network Information Service Plus (NIS+) uses a memory based, replicated
database. This database uses a set of files in the /var/nis directory for checkpointing
to table storage and for maintaining a transaction log. Additionally, the NIS+ server
and client use files in this directory to store binding and state information.

The NIS+ service implements an authentication and authorization system that is built
upon Secure RPC. In this implementation, the service uses a table named
cred.org_dir.domain-name to store the public and private keys of principals that
are authorized to access the NIS+ namespace. It stores group access information in the
subdomain groups_dir.domain-name as group objects. These two tables appear as
files in the /var/nis/data directory on the NIS+ server.

Unlike the previous versions of the network information service, in NIS+, the
information in the tables is initially loaded into the service from the ASCII files on the
server and then updated using NIS+ utilities. See nistbladm(1). Some sites may wish
to periodically regenerate the ASCII files for archival purposes. To do this, a script
should be added in the crontab(1) of the server that lists these tables and creates the
ASCII file from the result.

Note that except for the NIS_COLDSTART and NIS_SHARED_DIRCACHE file, no other
files should be manipulated by commands such as cp(1), mv(1) or rm(1). The
transaction log file keeps logs of all changes made, and hence the files cannot be
manipulated independently.

The files described below are stored in the /var/nis directory:

NIS_COLDSTART Contains NIS+ directory objects that are to be
preloaded into the NIS+ cache at startup time. This file
is usually created at NIS+ installation time. See
nisinit(1M) or nisclient(1M).

NIS_SHARED_DIRCACHE Contains the current cache of NIS+ bindings being
maintained by the cache manager. The contents can be
viewed with nisshowcache(1M).

client_info Contains configuration information, for example,
preferred servers, options, and the like, for
nis_cachemgr(1M) and potentially other NIS+ clients
on the system. It is manipulated by the
nisprefadm(1M) command.

.pref_servers A cached copy of preferred server information. It is
maintained by nis_cachemgr. Do not edit this file
manually.

trans.log Contains a transaction log that is maintained by the
NIS+ service. It can be viewed using the nislog(1M)
command. This file contains holes. Its apparent size

nisfiles(4)

NAME

SYNOPSIS

DESCRIPTION

382 man pages section 4: File Formats • Last Revised 18 Dec 2001

may be a lot higher than its actual size. There is only
one transaction log per server.

data.dict A dictionary that is used by the NIS+ database to locate
its files. It is created by the default NIS+ database
package.

data.dict.log The log file for the database dictionary. When the
server is checkpointed, this file will be deleted. See the
discussion of the -C option of nisping(1M).

data Contains databases that the server uses.

data/root.object On root servers, this file contains a directory object that
describes the root of the name space.

data/parent.object On root servers, this file contains a directory object that
describes the parent namespace. This file is created by
the nisinit(1M) command.

data/table_name For each table in the directory there is a file with the
same name that stores the information about that table.
If there are subdirectories within this directory, the
database for the table is stored in the file,
table_name.subdirectory.

data/table_name.log Contains the database log for the table table_name. The
log file maintains the state of individual transactions to
each database. When a database has been
checkpointed, that is, all changes have been made to
the data/table_name stable storage, this log file will be
deleted.

Currently, NIS+ does not automatically do
checkpointing. The system administrator may want to
do nisping-C operations periodically, perhaps once a
day, to checkpoint the log file. This can be done either
through a cron(1M) job, or manually.

data/root_dir On root servers, this file stores the database associated
with the root directory. It is similar to other table
databases. The corresponding log file is called
root_dir.log.

data/cred.org_dir Table containing the credentials of principals in this
NIS+ domain.

data/groups_dir Table containing the group authorization objects
needed by NIS+ to authorize group access.

nisfiles(4)

File Formats 383

data/serving_list Contains a list of all NIS+ directories that are being
served by the NIS+ server on this server. When this
server is added or deleted from any NIS+ directory
object, this file is updated by the server.

cp(1), crontab(1), mv(1), nis(1), nis_cachemgr(1M), niscat(1), nismatch(1),
nistbladm(1), rm(1), cron(1M), nisclient(1M), nisinit(1M), nislog(1M),
nisping(1M), nisprefadm(1M), nisshowcache(1M), nis_objects(3NSL)

NIS+ might not be supported in future releases of the Solaris™ Operating
Environment. Tools to aid the migration from NIS+ to LDAP are available in the
Solaris 9 operating environment. For more information, visit
http://www.sun.com/directory/nisplus/transition.html.

nisfiles(4)

SEE ALSO

NOTES

384 man pages section 4: File Formats • Last Revised 18 Dec 2001

http://www.sun.com/directory/nisplus/transition.html

NIS+LDAPmapping – configuration file for mapping between NIS+ and LDAP

/var/nis/NIS+LDAPmapping

The /var/nis/NIS+LDAPmapping configuration file contains the mapping between
NIS+ objects, particularly table entries, and LDAP entries and attributes. This
information can come from LDAP, from this file, from the rpc.nisd(1M) command
line, or from a combination of all three. The values in this file supersede those
obtained from the LDAP server, but values from the command line supersede those in
the file.

Each line in the file can be up to 8191 bytes long, not counting the newline. There can
be an indefinite number of continuation lines. A continuation is indicated by a ’\’
(backslash) in the last position, immediately before the newline of a line. Characters
are escaped, that is, exempted from special interpretation, when preceeded by a
backslash character.

The ’#’ (hash) character starts a comment. White space is either ASCII space or a
horizontal tab. In general, lines consist of optional white space, an attribute name, at
least one white space character, and an attribute value.

The default rpc.nisd(4) configuration file at /etc/default/rpc.nisd and the
template file at /var/nis/NIS+LDAPmapping.template are sufficient for the
minimum NIS+ installation. The following assumptions are made:

1. The NIS+ standard directories, tables, and groups created by nissetup(1M) or
nisserver(1M) should be mapped. However, the timezone.org_dir and
client_info.org_dir tables should not be mapped.

2. The NIS+ objects for which the rpc.nisd is a master are mapped both to and
from LDAP.

3. Those NIS+ objects for which the rpc.nisd is a replica are mapped from LDAP.

4. The LDAP server is running on the local machine, and it can be reached at port 389
on the 127.0.0.1 IP address.

5. The authentication method is none, meaning that all LDAP calls, whether for
reading or writing, are unauthenticated. There is no transport layer security.

6. The default values for TTLs and LDAP container locations and object classes are
valid.

7. The LDAP server supports RFC 2307bis. You want to use the RFC 2307bis object
classes and attributes. See NOTES

8. The nisplusObject attribute, the nisplusObjectContainer object class, and
the ou=nisPlus container have been created.

NIS+LDAPmapping(4)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION
Getting Started

File Formats 385

9. You do not need to store or retrieve table entry owner, group owner, entry access
rights, or entry object TTL in or from LDAP. For more information on these
pseudo-columns, see the discussion of zo_owner, and the like, in the description
of the nisplusLDAPcolumnFromAttribute attribute.

10. NIS+ principal names and RPC netnames (the cname and auth_name columns,
respectively, in the cred.org_dir table) should be derived from the owner of the
cred table. For example, if the owner is npadm.my.dom.ain., the cname and
auth_name values for entries created from LDAP data will be of the form:

user-or-host.my.dom.ain.

and

unix.uid-or-host@my.dom.ain

respectively.

If these assumptions are true, you can enable mapping by copying the
/var/nis/NIS+LDAPmapping.template file to /var/nis/NIS+LDAPmapping
and restart the rpc.nisd. If you want to either upload NIS+ data to LDAP, or
download LDAP data to NIS+, see the description of the
nisplusLDAPinitialUpdateAction attribute on rpc.nisd(4).

If one or more of the assumptions are false, do the following:

1. To remove mappings, identify the database id of the NIS+ object that should not be
mapped, then delete or comment out the nisplusLDAPdatabaseIdMapping,
nisplusLDAPentryTtl, nisplusLDAPobjectDN,
nisplusLDAPattributeFromColumn, and
nisplusLDAPcolumnFromAttribute attributes for that database id.

To add mappings, find an existing mapping for a NIS+ object similar to the one
you want to map, and then use that mapping as a template to create the
nisplusLDAPdatabaseIdMapping, nisplusLDAPentryTtl,
nisplusLDAPobjectDN, nisplusLDAPattributeFromColumn, and
nisplusLDAPcolumnFromAttribute attributes for the new mapping. The new
mapping must have a unique database id.

To enable mapping of the timezone or client_info tables, consult your LDAP
server documentation about how to create attributes and object classes, and set up
the following. The following is LDIF data for ldapadd(1). Attribute and object
class OIDs are examples only.

For client_info:

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.12.0 \

NAME ’nisplusClientInfoAttr’ \
DESC ’NIS+ client_info table client column’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.12.1 \

NIS+LDAPmapping(4)

386 man pages section 4: File Formats • Last Revised 13 Feb 2003

NAME ’nisplusClientInfoInfo’ \
DESC ’NIS+ client_info table info column’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.12.2 \
NAME ’nisplusClientInfoFlags’ \
DESC ’NIS+ client_info table flags column’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

dn: cn=schema
changetype: modify
add: objectclasses
objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.13.0 \

NAME ’nisplusClientInfoData’ \
DESC ’NIS+ client_info table data’ \
SUP top STRUCTURAL MUST (cn) \
MAY (nisplusClientInfoAttr $ nisplusClientInfoInfo $ nisplusClientInfoFlags))

For the ou=ClientInfo container, substitute your actual search base for
searchBase):

dn: ou=ClientInfo,searchBase
ou: ClientInfo
objectClass: top

objectClass: organizationalUnit

For timezone:

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.15.0 NAME ’nisplusTimeZone’ \

DESC ’tzone column from NIS+ timezone table’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

dn: cn=schema
changetype: modify
add: objectclasses
objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.16.0 NAME ’nisplusTimeZoneData’ \

DESC ’NIS+ timezone table data’ \
SUP top STRUCTURAL MUST (cn) \

MAY (nisplusTimeZone $ description))

For the ou=Timezone container:

dn: ou=Timezone,searchBase
ou: Timezone
objectClass: top

objectClass: organizationalUnit

Uncomment the mapping attributes for timezone and client_info in the
mapping file, and restart the the rpc.nisd(1M) daemon.

2. To disable write mapping, edit the nisplusLDAPobjectDN value for the
appropriate database id. Remove the writeObjectSpec value, leaving only the
the readObjectSpec value. Make sure there are no trailing colons.

NIS+LDAPmapping(4)

File Formats 387

To disable read mapping, remove the readObjectSpec, leaving the database id,
two colons, and the writeObjectSpec value.

3. Replicas cannot write-map objects. Remove disable read mapping, remove
mapping entirely for the relevant database ids, as described above.

4. Change the preferredServerList value to the correct server address(es) and
port(s). If configuration data is retrieved fromLDAP, also edit the
nisplusLDAPpreferredServerList value.

5. Edit the authenticationMethod attribute value to the authentication method
that you want to use. If configuration data is retrieved from LDAP, edit the
nisplusLDAPconfigAuthenticationMethod value. If the method is anything
other than none, you will need to specify one or more of the following, depending
upon the method.

nisplusLDAPconfigProxyUser
nisplusLDAPproxyUser The bind-DN to use for authentication.

nisplusLDAPconfigProxyPassword
nisplusLDAPproxyPasswordThe password or key for the bind-DN and method.

Make sure that the file containing the password or
key is protected from access by unauthorized users.

To use transport layer security, set nisplusLDAPconfigTLS or
nisplusLDAPTLS to ssl, and set
nisplusLDAPconfigTLSCertificateDBPath or
nisplusLDAPTLSCertificateDBPath to the file containing the certificate DB.
In order to successfully use authentication and transport layer security, the server
must also support the chosen values.

6. To change the TTLs, edit the nisplusLDAPentryTtl for the appropriate database
id.

To change LDAP container locations or object classes, edit the
nisplusLDAPobjectDN value for the appropriate database id.

7. To determine which object classes and attributes are supported, consult your LDAP
server documentation. If you are using the iPlanet directory server, see
idsconfig(1M) for information to set up RFC 2307bis object classes and attributes.

8. Refer to your LDAP server documentation for how to create attributes and object
classes, and set up the following:

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.1.0 NAME ’nisplusObject’ \

DESC ’An opaque representation of a NIS+ object’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 SINGLE-VALUE)

dn: cn=schema
changetype: modify
add: objectclasses
objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.2.0 NAME ’nisplusObjectContainer’ \

NIS+LDAPmapping(4)

388 man pages section 4: File Formats • Last Revised 13 Feb 2003

SUP top STRUCTURAL DESC ’Abstraction of a NIS+ object’ \
MUST (cn $ nisplusObject))

ou=nisPlus is a container assumed to reside at the defaultSearchBase. See
rpc.nisd(4). The following LDIF input to ldapadd(1) will create the
ou=nisPlus container. Replace dc=some,dc=domain with your actual base.

dn: ou=nisPlus,dc=some,dc=domain
ou: nisPlus
objectClass: top

objectClass: organizationalUnit

The nisplusObjectContainer, nisplusObject, and ou=nisPlus labels are
suggestions. If you change nisplusObjectContainer, or ou=nisPlus, edit the
mapping file to reflect this. To change nisplusObject, for example, to
myObject, add nisplusObject=myObject to the filterAttrValList and
attrValList portions of the readObjectSpec and writeObjectSpec of the
nisplusLDAPobjectDN value for the mapping. See the description of
nisplusLDAPobjectDN below.

9. Refer to your LDAP server documentation for how to create attributes and object
classes, and set up the following. The following is LDIF data for ldapadd(1).
Attribute and object class OIDs are examples only.

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.4.0 NAME ’nisplusEntryOwner’ \

DESC ’Opaque representation of NIS+ entry owner’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.4.1 NAME ’nisplusEntryGroup’ \
DESC ’Opaque representation of NIS+ entry group’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.4.2 NAME ’nisplusEntryAccess’ \
DESC ’Opaque representation of NIS+ entry access’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.4.3 NAME ’nisplusEntryTtl’ \
DESC ’Opaque representation of NIS+ entry TTL’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

dn: cn=schema
changetype: modify
add: objectclasses
objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.5.0 NAME ’nisplusEntryData’ \

SUP top STRUCTURAL DESC ’NIS+ entry object non-column data’ \
MUST (cn) MAY (nisplusEntryOwner $ nisplusEntryGroup $ \

nisplusEntryAccess $ nisplusEntryTtl))

Edit the mapping file to enable storing entry owner, group, access, and TTL in
LDAP. The template mapping file /var/nis/NIS+LDAPmapping.template has
commented-out sections for the passwd and cred database ids that show how this
can be done.

NIS+LDAPmapping(4)

File Formats 389

10. To preserve the cname and auth_name column data when cred.org_dir entries
are stored in NIS+, you can create the nisplusPrincipalName and
nisplusNetname attributes. See your LDAP server documentation for how to
create attributes and object classes, and set up the following:

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.7.0 NAME ’nisplusPrincipalName’ \

DESC ’NIS+ principal name’ \
EQUALITY caseIgnoreIA5Match SINGLE-VALUE \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.9.0 NAME ’nisplusNetname’ \
DESC ’Secure RPC netname’ \
EQUALITY caseIgnoreIA5Match SINGLE-VALUE \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

dn: cn=schema
changetype: modify
add: objectclasses
objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.10.0 NAME ’nisplusAuthName’ \

SUP top AUXILLIARY DESC ’NIS+ authentication identifiers’ \

MAY (nisplusPrincipalName $ nisplusNetname))

Edit the mapping file to use the new nisplusPrincipalName and
nisplusNetname. The template /var/nis/NIS+LDAPmapping file contains
commented-out sections that support the nisplusPrincipalName and
nisplusNetname attributes. See the nisplusLDAPobjectDN,
nisplusLDAPattributeFromColumn and
nisplusLDAPcolumnFromAttribute attribute values for the credlocal,
creduser, and crednode database ids .

The following attributes are recognized. Any values specified for these attributes in
the file, including an empty value, override values obtained from LDAP.

There are several attributes that can have multiple values, one for each database id.
Depending on the source, the multiple values are specified in the following ways:

LDAP Multi-valued attributes, where each value corresponds to one
database id.

File One line, which may be continued, for each value (database id).
The line starts with the name of the attribute

Command -x option for each value (database id).

Unless otherwise noted, all elements of the syntaxes below may be surrounded by
white space. Separator characters and white space must be escaped if they are part of
syntactic elements.

NIS+LDAPmapping(4)

Attributes for Data
Mapping

390 man pages section 4: File Formats • Last Revised 13 Feb 2003

nisplusLDAPdatabaseIdMapping
Maps a database id to a NIS+ object. If the object name is not fully qualified, that is,
it does not end in a dot, the nisplusLDAPbaseDomain is appended. See
rpc.nisd(4). There is no default value. The syntax of the value is:

databaseId ":" objectspec

where

databaseId Label identifying a subset of a NIS+ object for mapping
purposes.

objectspec objectname | "[" indexlist "]" tablename

objectname The name of a NIS+ object (including tables)

tablename The name of a NIS+ table

indexlist colspec ["," colspec]

colspec colname "=" colvalue

colname The name of a column in the table

colvalue colvaluestring | \" colvaluestring \"

The [indexlist]tablename form is intended for those cases where it is
necessary to select a subset of a NIS+ table. The subset are those NIS+ entries that
match the indexlist. If there are multiple indexed specifications for a particular
NIS+ table, they are tried in the order retrieved until one matches. Note that
retrieval order usually is unspecified for multi-valued LDAP attributes. Hence, if
using indexed specifications when nisplusLDAPdatabaseIdMapping is
retrieved from LDAP, make sure that the subset match is unambiguous.

If the colvaluestring contains white space or commas, it must either be
surrounded by double quotes, or the special characters must be escaped.Wildcards
are allowed in the colvaluestring. If the objectname or tablename is not
fully qualified, the nisplusLDAPbaseDomain value is appended. If the
objectname is empty the value of nisplusLDAPbaseDomain is substituted.

The following example shows how to associate the passwd database id with the
passwd.org_dir table:

passwd:passwd.org_dir

The following example shows how to associate the LOCAL entries in the
cred.org_dir table with the credlocal database id:

credlocal:[auth_type=LOCAL]cred.org_dir

The following example shows how to use the creduser database id for those
entries in the cred.org_dir table that represent credentials (keys) for users. That
is, they have a netname (auth_name) of the type unix.<numeric-id>@domain.

NIS+LDAPmapping(4)

File Formats 391

creduser:[auth_type="D*",auth_name="unix.[0-9]*"]cred.org_dir

nisplusLDAPentryTtl
Establish TTLs for NIS+ entries derived from LDAP. The syntax of the value is:

databaseId ":" initialTTLlo ":" initialTTLhi ":" runningTTL

initialTTLlo The lower limit for the initial TTL (in seconds) for
data read from disk when the rpc.nisd starts, or
from LDAP during an initial down-load. See
rpc.nisd(4) for the description of the
nisplusLDAPinitialUpdate attribute. If
initialTTLhi also is specified, the actual
initialTTL will be randomly selected from the
interval initialTTLlo to initialTTLhi,
inclusive. If the field is left empty, it yields the
default value of 1800 seconds.

initialTTLhi The upper limit for the initial TTL. If left empty, it
defaults to 5400.

runningTTL The TTL (in seconds) for data retrieved from LDAP
while the rpc.nisd is running. Leave the field
empty to obtain the default value of 3600 seconds.

If there is no specification of TTLs for a particular databaseId, the default values
are used. If the initialTTLlo and initialTTLhi have the same value, the effect
will be that all data known to the rpc.nisd at startup times out at the same time.
Depending on NIS+ data lookup patterns, this could cause spikes in
rpc.nisd-to-LDAP traffic. In order to avoid that, you can specify different
initialTTLlo and initialTTLhi values and obtain a spread in initial TTLs.
The NIS+ object TTL is a separate and distinct entity used for other purposes,
notably the TTL of NIS+ directory objects in the shared directory cache managed by
the nis_cachemgr(1M). There is no connection between the
nisplusLDAPentryTtl and object TTL values for a NIS+ object.

The following example shows how to specify that entries in the NIS+ hosts table
read from LDAP should be valid for four hours. When the rpc.nisd restarts, the
disk database entries are valid for between two and three hours.

hosts:7200:10800:14400

nisplusLDAPobjectDN
Specifies the connection between a databaseId and the LDAP directory. The
syntax of the value is:

databaseId ":" objectDN *(";" objectDN)

objectDN readObjectSpec [":"[writeObjectSpec]]

readObjectSpec [baseAndScope [filterAttrValList]]

NIS+LDAPmapping(4)

392 man pages section 4: File Formats • Last Revised 13 Feb 2003

writeObjectSpec [baseAndScope [attrValList [":"
deleteDisp]]]

baseAndScope [baseDN] ["?" [scope]]

filterAttrValList ["?" [filter | attrValList]]

scope "base" | "one" | "sub"

attrValList attribute "=" value *("," attribute "="
value)

deleteDisp "always" | perDbId | "never"

perDbId "dbid" "=" delDatabaseId

delDatabaseId database id per
nisplusLDAPdatabaseIdMapping above.

The baseDN defaults to the value of the defaultSearchBase attribute. If the
baseDN ends in a comma, the defaultSearchBase is appended.

scope defaults to one. It has no meaning and is ignored in a writeObjectSpec.
The filter is an LDAP search filter. There is no default value. The attrValList
is a list of attribute and value pairs. There is no default value. As a convenience, if
an attrValList is specified in a readObjectSpec, it is converted to a search
filter by ANDing together the attributes and values. For example, the attribute and
value list:

objectClass=posixAccount,objectClass=shadowAccount

is converted to the filter:

(&(objectClass=posixAccount)(objectClass=shadowAccount))

Entry objects are mapped by means of the relevant table mapping rules in the
nisplusLDAPattributeFromColumn and
nisplusLDAPcolumnFromAttribute attributes. Entry objects do not have
explicit nisplusLDAPobjectDN attributes.

If a writeObjectSpec is omitted, and there is no trailing colon, the effect is to not
attempt writes at all. If there is a trailing colon after the readObjectSpec, it is
implied that the writeObjectSpec is the same as the readObjectSpec.

Note that writes only are attempted by a master server for the mapped NIS+ object.
Replicas silently ignore any writeObjectSpec:s.

The deleteDisp specifies how NIS+ object deletion should be reflected in LDAP.
The following values are recognized:

always Always attempt to remove the LDAP entry. This is
the default.

NIS+LDAPmapping(4)

File Formats 393

dbid=delDatabaseId Set the mapped entries to values specified by the
nisplusLDAPattributeFromColumn attribute
values for delDatabaseId. This only makes sense
for the databaseId:s corresponding to NIS+ tables
or subsets of tables. For other NIS+ objects, if dbid=
is specified, the action will be always. In the
delDatabaseId, deletion of individual attributes
can be specified by leaving the RHS of the = in a
mapping rule empty. The delDatabaseId rule set
should specify a dn. Otherwise, the rpc.nisd
might try to derive a dn by performing an LDAP
lookup on the attributes and values from the rule set,
quite possibly with unexpected results.

never Upon NIS+ object deletion, the corresponding LDAP
data is left unchanged. If the NIS+ object is an entry,
this means that the only effect of the deletion is to
temporarily remove it from the rpc.nisd’s cache.

The following is an example of how to get the ipnodes table entries from the
ou=Hosts container under the default search base, and write to the same place.

ipnodes:ou=Hosts,?one?objectClass=ipHost:

The following example shows how to obtain the passwd table entries from the
ou=People containers under the default search base, and also from
dc=another,dc=domain. The latter is an example of the equivalent of and
replacement for a NIS+ table path. Writes should only be attempted to the first
objectDN. NIS+ entry deletions for the first objectDN are not reflected in LDAP:

passwd:ou=People,?one?objectClass=shadowAccount,\
objectClass=posixAccount::never;\

ou=People,dc=another,dc=domain,?one?\
objectClass=shadowAccount,\

objectClass=posixAccount

The following example shows how to obtain the passwd table entries from the
ou=People container under the default search base. Upon NIS+ entry deletion,
update the LDAP entry per the passwd_delete database id:

passwd:ou=People,?one?objectClass=shadowAccount,\
objectClass=posixAccount::\

dbid=passwd_delete

where nisplusLDAPattributeFromColumn for passwd_delete could be:

passwd_delete:\
dn=("uid=%s,", name), \
uid=name, \
userPassword=("*NP*"), \
uidNumber=uid, \
gidNumber=gid, \

NIS+LDAPmapping(4)

394 man pages section 4: File Formats • Last Revised 13 Feb 2003

gecos=("INVALID: %s", gcos), \
homeDirectory=home, \
loginShell=("/bin/false"), \
(shadowLastChange,shadowMin,shadowMax, \
shadowWarning, shadowInactive,shadowExpire, \
shadowFlag)=(shadow, ":"), \
nisplusEntryOwner=zo_owner, \
nisplusEntryGroup=zo_group, \

nisplusEntryAccess=zo_access

nisplusLDAPcolumnFromAttribute
Specifies how a NIS+ table and column value is derived from LDAP attribute
values. The syntax is:

databaseId ":" colattrspec *("," colattrspec)

The format of colattrspec is shown below in the discussion of the column and
attribute conversion syntax.

The following is an example of how to map by direct copy and assignment the
value of the ipHostNumber attribute to the addr column:

addr=ipHostNumber

Formats for the column and attribute conversion syntax are discussed below,
including examples of complex attribute to column conversions..

There are four special pseudo-columns that are used to indicate non-column entry
object data:

zo_owner The NIS+ principal that owns the entry object. By default, the
zo_owner value is inherited from the table.

zo_group The NIS+ group owner of the entry object. By default, the
zo_group value is inherited from the table.

zo_access The NIS+ access rights to the entry. Table column rights are
stored in the table. By default, the zo_access value is inherited
from the table.

zo_ttl The NIS+ TTL for the entry. This is not the TTL for the entry
when cached by the rpc.nisd. By default, the zo_ttl value is
inherited from the table.

The default /var/nis/NIS+LDAPmapping.template assumes the existence of
the following corresponding LDAP attributes in the containers for the passwd and
cred tables:

nisplusEntryOwner
nisplusEntryGroup
nisplusEntryAccess
nisplusEntryTtl

NIS+LDAPmapping(4)

File Formats 395

These attributes are not part of any schema specified in an RFC or similar
document. They must be created if they are to be used. They are assumed to belong
to the as nisplusEntryData object class, and they contain a single string value.
The format of this string is private, and subject to change without notice.

For most tables, the non-column entry data can be inherited from the containing
table, and the pseudo-columns should be left unmapped. Notable exceptions are the
passwd and cred tables, if individual users have access to modify their own
passwd and cred entries. This would usually be the case if the site is not running the
rpc.nispasswdd(1M) daemon.

nisplusLDAPattributeFromColumn
Specifies how an LDAP attribute value is derived from NIS+ table and column
values. The syntax is:

databaseId ":" colattrspec *("," colattrspec)

The format of colattrspec is shown below in the discussion of the column and
attribute conversion syntax.

As a special case, if the dn attribute value derived from a colattrspec ends in a
comma (’,’), the baseDN from the writeObjectSpec is appended.

The following is an example of how to map the value of the addr column to the
ipHostNumber attribute by direct copy and assignment:

ipHostNumber=addr

All relevant attributes, including the dn, must be specified. Non-column entry
object data can be mapped as noted under the discussion of
nisplusLDAPcolumnFromAttribute above.

The general format of a colattrspec is:

colattrspec = lhs "=" rhs
lhs = lval | namespeclist
rhs = rval | [namespec]

namespeclist = namespec | "(" namespec *("," namespec) ")"

The lval and rval syntax are defined below at Values. The format of a namespec is:

namespec ["ldap:"] attrspec [searchTriple] |
["nis+:"] colspec [objectspec]

colspec column | "(" column ")"

attrspec attribute | "(" attribute ")"

searchTriple ":" [baseDN] ["?" [scope] ["?" [filter]]]

baseDN Base DN for search

filter LDAP search filter

NIS+LDAPmapping(4)

Column and
Attribute

Conversion Syntax

396 man pages section 4: File Formats • Last Revised 13 Feb 2003

objectspec objectspec per
nisplusLDAPdatabaseIdMapping

The repository specification in a namespec defaults as follows:

� For assignments to a column, nis+: on the LHS, ldap: on the RHS. NIS+ column
values on the RHS are those that exist before the NIS+ entry is modified.

� For assignments to an attribute, ldap: on the LHS, nis+: on the RHS. LDAP
attribute values on the RHS are those that exist before the LDAP entry is modified.

Enclosing the column or attribute name in parenthesis denotes a list of column or
attribute values. For attributes, the meaning is the list of all attributes of that name,
and the interpretation depends on the context. See the discussion at Values. This list
specification is ignored when a searchTriple or objectspec is supplied.

For columns, the (colname) syntax is used to map multiple attribute instances to
multiple NIS+ entries.

The searchTriple can be used to specify an attribute from a location other than the
read or write target. The defaults are as follows:

baseDN If omitted, the default is the current objectDN. If the baseDN
ends in a comma, the value of the defaultSearchBase attribute
is appended.

scope one

filter Empty

Similarly, the objectspec can be used to specify a column value from a NIS+ table
other than the one implicitly indicated by the databaseId. If searchTriple or
objectspec is explicitly specified in a namespec, the retrieval or assignment,
whether from or to LDAP or NIS+, is performed without checking if read and write
are enabled for the LDAP container or NIS+ table.

Omitting the namespec in an rhs is only allowed if the lhs is one or more attributes.
The effect is to delete the specified attribute(s). In all other situations, an omitted
namespec means that the rule is ignored.

The filter can be a value. See Values. For example, to find the ipHostNumber
using the cn, you could specify the following in the filter field:

ldap:ipHostNumber:?one?("cn=%s", (cname, "%s.*"))

In order to remove ambiguity, the unmodified value of a single column or attribute
must be specified as the following when used in the filter field.

("%s", namespec)

NIS+LDAPmapping(4)

File Formats 397

If the filter is not specified, the scope will be base, and the baseDN is assumed to
be the DN of the entry that contains the attribute to be retrieved or modified. To use
previously existing column or attribute values in the mapping rules requires a lookup
to find those values. Obviously, this will add to the time required to perform the
modification. Also, there is a window between the time when a value is retrieved, and
then slightly later, stored back. If the values have changed in the mean time, the
change may be overwritten.

When colattrspecs are grouped into rule sets, in the value of a
nisplusLDAPcolumnFromAttribute or nisplusLDAPattributeFromColumn
attribute, the evaluation of the colattrspecs proceed in the listed order. However,
evaluation may be done in parallel for multiple colattrspecs. If there is an error
when evaluating a certain colattrspec, including retrieval or assignment of entry
or column values, the extent to which the other colattrspec rules are evaluated is
unspecified

Where wildcard support is available, it is of the following limited form:

* Matches any number of characters.

[x] Matches the character x.

[x-y] Matches any character in the range x to y, inclusive..

Combinations such as [a-cA-C0123] are also allowed.This example would match
any one of a, b, c, A, B, C, 0, 1, 2, or 3.

substringextract = "(" namespec "," matchspec ")"
name = column or attribute name

matchspec = \" formatstring \"

The matchspec is a string like the sscanf(3C) format string, except that there may
be at most one format specifier, a single %s. The output value of the
substringextract is the substring matching the location of the %s.

If there is no %s in the formatstring, it must instead be a single character, which is
assumed to be a field separator for the namespec. The output values are the field
values. Wild cards are supported. If there is no match, the output value is the empty
string, "".

For example, if the column cname has the value user.some.domain.name., the
value of the expression:

(cname, "%s.*")

is user, which can be used to extract the user name from a NIS+ principal name.

Similarly, use this expression to extract the third of the colon-separated fields of the
shadow column:

(shadow, "*:*:%s:*")

NIS+LDAPmapping(4)

Wildcards

Substring
Extraction

398 man pages section 4: File Formats • Last Revised 13 Feb 2003

This form can be used to extract all of the shadow fields. However, a simpler way to
specify that special case is:

(shadow, ":")

lval = "(" formatspec "," namespec *("," namespec) ")"
rval = "(" formatspec ["," namelist ["," elide]] ")"
namelist = name_or_sse *("," name_or_sse)
name_or_sse = namespec | substringextract
formatspec = \" formatstring \"
formatstring = A string combining text and % field specifications
elide =\" singlechar \"

singlechar = Any character

This syntax is used to produce rval values that incorporate column or attribute
values, in a manner like sprintf(3C), or to perform assignments to lval like
sscanf(3C). One important restriction is that the format specifications,% plus a single
character, use the designations from ber_printf(3LDAP). Thus, while %s is used to
extract a string value, %i causes BER conversion from an integer. Formats other than
%s, for instance, %i, are only meaningfully defined in simple format strings without
any other text.

The following ber_printf() format characters are recognized:

b i B n o s

If there are too few format specifiers, the format string may be repeated as needed.

When used as an lval, there is a combination of pattern matching and assignment,
possibly to multiple columns or attributes.

For example, in an assignment to an attribute, if the value of the addr column is
1.2.3.4, the rval:

("ipNetworkNumber=%s,", addr)

produces the value ipNetworkNumber=1.2.3.4,, while:

("(%s,%s,%s)", host, user, domain)

results in (assuming host="xyzzy", user="-", domain="x.y.z")
"(xyzzy,-,x.y.z)". The elide character feature is used with attribute lists. For
example:

("%s,", (mgrprfc822mailmember), ",")

concatenates all mgrprfc822mailmember values into one comma-separated string,
and then elides the final trailing comma. Thus, for

mgrprfc822mailmember=usera
mgrprfc822mailmember=userb

mgrprfc822mailmember=userc

the value would be usera,userb,userc.

NIS+LDAPmapping(4)

Values

File Formats 399

If the NIS+ column intval is in binary format, that is, the B column flag is set, and it
is to be interpreted as an integer, the following:

("%i", intval)

produces a value suitable for assignment to an integer-valued attribute.

The nisPublicKey attribute encodes the algorithm type and number (equivalent to
the auth_type column) and the public key as a single string such as
{dh192-0}xxxxxxxx (public key truncated for clarity). The following will extract the
corresponding auth_type and public_data values:

("{%s}%s", auth_type, public_data)

As a special case, to combine an LHS extraction with an RHS implicit list creates
multiple entries and values. For example,

("(%s,%s,%s)", host, user, domain)=(nisNetgroupTriple)

creates one NIS+ entry for each nisNetgroupTriple value.

The assignment syntax, also found at Column and Attribute Conversion Syntax , is as
follows:

colattrspec = lhs "=" rhs
lhs = lval | namespeclist
rhs = rval | namespec

namespeclist = namespec | "(" namespec *("," namespec) ")"

By using the syntax defined above, the general form of a simple assignment, which is
a one-to-one mapping of column to attribute, would be:

("%s", colname)=("%s", attrname)

As a convenient short-hand, this can also be written as:

colname=attrname

A list specification, which is a name enclosed in parenthesis, can be used to make
many-to-many assignments. The expression:

(colname)=(attrname)

where there are multiple instances of attrname, creates one NIS+ entry for each such
instance, differentiated by their colname values. The following combinations of lists
are allowed, but they are not particularly useful:

(attrname)=(colname) Equivalent to attrname=colname

attrname=(colname) Equivalent to attrname=colname

(colname)=attrname Equivalent to colname=attrname

colname=(attrname) Equivalent to colname=attrname

NIS+LDAPmapping(4)

Assignments

400 man pages section 4: File Formats • Last Revised 13 Feb 2003

If a multi-valued RHS is assigned to a single-valued LHS, the LHS value will be the
first of the RHS values. If the RHS is an attribute list, the first attribute is the first one
returned by the LDAP server when queried. Otherwise, the definition of “first” is
implementation dependent.

Finally, the LHS might be an explicit list of columns or attributes, such as:

(name1,name2,name3)

If the RHS is single-valued, this assigns the RHS value to all entities in the list. If the
RHS is multi-valued, the first value is assigned to the first entity of the list, the second
value to the second entity, and so on. Excess values or entities are silently ignored.

EXAMPLE 1 Assigning an Attribute Value to a Column

The following example illustrates how to assign the value of the ipHostNumber
attribute to the addr column

addr=ipHostNumber

EXAMPLE 2 Creating Multiple NIS+ Entries from Multi-Valued LDAP Attributes

An LDAP entry with:

cn=name1
cn=name2

cn=name3

and the following assignments:

cname=cn

(name)=(cn

creates three NIS+ entries (other attributes/columns omitted for clarity):

cname=name1, name=name1
cname=name1, name=name2

cname=name1, name=name3

EXAMPLE 3 Assigning String Constants

The following expression sets the auth_type column to LOCAL:

auth_type=("LOCAL")

EXAMPLE 4 Splitting Column Values to Multi-Valued Attributes

The expansion column contains a comma-separated list of alias member names. In
the following example, the expression assigns each such member name to an instance
of mgrprfc822mailmember:

(mgrprfc822mailmember)=(expansion, ",")

NIS+LDAPmapping(4)

EXAMPLES

File Formats 401

EXAMPLE 5 Splitting Column Values to Multiple Attributes

The shadow column contains a colon-separated list of fields. The following assigns the
value of the first field to shadowLastChange, the value of the second field to
shadowMin, and so forth.

(shadowLastChange,shadowMin,shadowMax,shadowWarning,\

shadowInactive,shadowExpire,shadowFlag)=(shadow, ":")

/var/nis/NIS+LDAPmapping
Default mapping file used by rpc.nisd(1M).

/var/nis/NIS+LDAPmapping.template
Template file covering the standard NIS+ directories and tables.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisr

Interface Stability Obsolete

nisldapmaptest(1M), nisserver(1M), nissetup(1M), rpc.nisd(1M),
ber_printf(3LDAP), rpc.nisd(4), attributes(5)

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)

RFC 2307bis is an IETF informational document in draft stage that defines an approach
for using LDAP as a naming service.

NIS+LDAPmapping(4)

FILES

ATTRIBUTES

SEE ALSO

NOTES

402 man pages section 4: File Formats • Last Revised 13 Feb 2003

NISLDAPmapping – mapping file used by the NIS server components

/var/yp/NISLDAPmapping

The NISLDAPmapping file specifies the mapping between NIS map entries and
equivalent Directory Information Tree (DIT) entries. The syntax of this file is based on
the equivalent NIS+ to LDAP mapping file, NIS+LDAPmapping(4).

The presence of /var/yp/NISLDAPmapping on a NIS master server causes that
server to obtain NIS data from LDAP. See ypserv(4). If /var/yp/NISLDAPmapping
is present but the connection configuration file that is defined in
/etc/default/ypserv cannot be found, a warning is logged. See ypserv(1M).

NIS slave servers always obtain their data from a NIS master server, whether or not
that server is getting data from LDAP, and ignore the /var/yp/NISLDAPmapping
file.

A simple NISLDAPmapping file is created using inityp2l(1M). You can customize
your NISLDAPmapping file as you require.

Each attribute defined below can be specified in/var/yp/NISLDAPmappingLDAP or
as an LDAP attribute. If both are specified, then the attribute in
/var/yp/NISLDAPmapping (including empty values) takes precedence.

A continuation is indicated by a ’\’ (backslash) in the last position, immediately before
the newline of a line. Characters are escaped, that is, exempted from special
interpretation, when preceeded by a backslash character.

The ’#’ (hash) character starts a comment. White space is either ASCII space or a
horizontal tab. In general, lines consist of optional white space, an attribute name, at
least one white space character, and an attribute value.

Repeated fields, with separator characters, are described by the following syntax:

One or more entries
entry:entry:entry

entry[":"...]

Zero or more entries

[entry":"...]

Attributes generally apply to one more more NIS maps. Map names can be specified
either on their own,that is in passwd.byname, in which case they apply to all
domains, or for individual NIS domains, for example, in
passwd.byname,example.sun.uk. Where a map is mentioned in more than one
attribute, both versions are applied. If any parts of the attributes are in conflict, the
domain specific version takes precedence over the non-domain specific version.

NISLDAPmapping(4)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

File Syntax

Attributes

File Formats 403

Each domain specific attributes must appear in NISLDAPmapping before any related
non-domain specific attribute. If non-domain specific attributes appear first, behavior
may be unpredictable. Errors are logged when non-domain specific attributes are
found first.

You can associate a group of map names with a databaseId. In effect, a macro is
expanded to the group of names. Use this mechanism where the same group of names
is used in many attributes or where domain specific map names are used. Then, you
can make any changes to the domain name in one place.

Unless otherwise noted, all elements of the syntaxes below may be surrounded by
white space. Separator characters and white space must be escaped if they are part of
syntactic elements.

The following attributes are recognized.

nisLDAPdomainContext
The context to use for a NIS domain.

The syntax for nisLDAPdomainContext is:

NISDomainName ":" context

The following is an example of the nisLDAPdomainContext attribute:

domain.one : dc=site, dc=company, dc=com

The mapping file should define the context for each domain before any other
attribute makes use of the NISDomainName specified for that domain.

nisLDAPyppasswddDomains
Lists the domains for which password changes should be made. NIS password
change requests do not specify the domains in which any given password should
be changed. In traditional NIS this information is effectively hard coded in the NIS
makefile.

The syntax for the nisLDAPyppasswddDomains attribute is:

domainname[" "...]

nisLDAPdatabaseIdMapping
Sets up an alias for a group of NIS map names. There is no default value.

The syntax for the nisLDAPdatabaseIdMapping attribute is:

databaseId ":" ["["indexlist"]"] mapname[" "...]

where

databaseId = Label identifying a (subset of a) NIS
object for mapping purposes.

indexlist = fieldspec[","...]
fieldspec = fieldname "=" fieldvalue
fieldname = The name of a entry field as defined in

NISLDAPmapping(4)

404 man pages section 4: File Formats • Last Revised 21 Apr 2003

nisLDAPnameFields.

fieldvalue = fieldvaluestring | \" fieldvaluestring \"

indexlist is used for those cases where it is necessary to select a subset of entries
from a NIS map. The subset are those NIS entries that match the indexlist. If
there are multiple specifications indexed for a particular NIS map, they are tried in
the order retrieved until one matches. Note that retrieval order usually is
unspecified for multi-valued LDAP attributes. Hence, if using indexed
specifications when nisLDAPdatabaseIdMapping is retrieved from LDAP, make
sure that the subset match is unambiguous.

If the fieldvaluestring contains white space or commas, it must either be
surrounded by double quotes, or the special characters must be escaped. Wildcards
are allowed in the fieldvaluestring. See Wildcards

To associate the passwd.byname and passwd.byuid maps with the passwd
databaseId:

passwd:passwd.byname passwd.byuid

The passwd and passwd.adjunct databaseIds receive special handling. In
addition to its normal usage, passwd defines which maps yppasswdd is to update
when a passwd is changed. In addition to its normal usage passwd.adjunct
defines which maps yppasswdd is to update when an adjunct passwd is changed.

You may not alias a single map name to a different name, as the results are
unpredictable.

nisLDAPentryTtl
Establish TTLs for NIS entries derived from LDAP.

The syntax for the nisLDAPentryTtl attribute is:

mapName[" "...]":"

initialTTLlo ":" initialTTLhi ":" runningTTL

where

initialTTLlo The lower limit for the initial TTL (in seconds) for
data read from LDAP when the ypserv starts. If the
initialTTLhi also is specified, the actual
initialTTL will be randomly selected from the
interval initialTTLlo to initialTTLhi ,
inclusive. Leaving the field empty yields the default
value of 1800 seconds.

initialTTLhi The upper limit for the initial TTL. If left empty,
defaults to 5400.

runningTTL The TTL (in seconds) for data retrieved from LDAP
while the ypserv is running. Leave the field empty to
obtain the default value of 3600 seconds.

NISLDAPmapping(4)

File Formats 405

If there is no specification of TTLs for a particular map, the default values are used.

If the initialTTLlo and initialTTLhi have the same value, the effect will be
that all data known to the ypserv at startup times out at the same time. Depending
on NIS data lookup patterns, this could cause spikes in ypserv-to-LDAP traffic. In
order to avoid that, you can specify different initialTTLlo and initialTTLhi
values, and obtain a spread in initial TTLs.

The following is an example of the nisLDAPentryTtl attribute used to specify
that entries in the NIS host maps read from LDAP should be valid for four hours.
When ypserv restarts, the disk database entries are valid for between two and
three hours.

hosts.byname hosts.byaddr:7200:10800:14400

nisLDAPobjectDN
Specifies the connection between a group of NIS maps and the LDAP directory.
This attribute also defines the ’order’ of the NIS maps. When NIS maps are bulk
copied to or from the DIT, they are processed in the same order as related
nisLDAPobjectDN attributes appear in /var/yp/NISLDAPmapping.

The syntax for the nisLDAPobjectDN attribute is:

mapName[" "...] ":" objectDN *(";" objectDN)

where

objectDN = readObjectSpec [":"[writeObjectSpec]]
readObjectSpec = [baseAndScope [filterAttrValList]]
writeObjectSpec = [baseAndScope [attrValList]]
baseAndScope = [baseDN] ["?" [scope]]
filterAttrValList = ["?" [filter | attrValList]]]
scope = "base" | "one" | "sub"
attrValList = attribute "=" value

*("," attribute "=" value)

The baseDN defaults to the value of the nisLDAPdomainContext attribute for the
accessed domain. If the baseDN ends in a comma, the nisLDAPdomainContext
value is appended.

scope defaults to one. scope has no meaning and is ignored in a
writeObjectSpec.

The filter is an LDAP search filter and has no default value.

The attrValList is a list of attribute and value pairs. There is no default value.

As a convenience, if an attrValList is specified in a readObjectSpec, it is
converted to a search filter by ANDing together the attributes and the values. For
example, the attribute and value list:

objectClass=posixAccount,objectClass=shadowAccount

is converted to the filter:

NISLDAPmapping(4)

406 man pages section 4: File Formats • Last Revised 21 Apr 2003

(&(objectClass=posixAccount)\

(objectClass=shadowAccount))

Map entries are mapped by means of the relevant mapping rules in the
nisLDAPnameFields and nisLDAPattributeFromField .

If a writeObjectSpec is omitted, the effect is one of the following:

� If there is no trailing colon after the readObjectSpec, then there is no write at
all.

� If there is a colon after the readObjectSpec, then writeObjectSpec equals
readObjectSpec.

The following is an example of a nisLDAPobjectDN attribute declaration that gets
the hosts.byaddr map entries from the ou=Hosts container under the default
search base and writes to the same place.

hosts.byaddr:ou=Hosts,?one?objectClass=ipHost:

The following is an example of a nisLDAPobjectDN attribute declaration that
obtains passwd map entries from the ou=People containers under the default
search base, and also from dc=another,dc=domain.

passwd:ou=People,?one?\
objectClass=shadowAccount,\
objectClass=posixAccount:;\

ou=People,dc=another,dc=domain,?one?\
objectClass=shadowAccount,\

objectClass=posixAccount

nisLDAPnameFields
Specifies the content of entries in a NIS map and how they should be broken into
named fields. nisLDAPnameFields is required because unlike NIS+, NIS maps do
not store information in named fields.

The syntax for the nisLDAPnameFields attribute is as follows:

"nisLDAPnameFields" mapName ":" "(" matchspec "," fieldNames ")"
fieldName = nameOrArrayName[","...]
nameOrArrayName = Name of field or ’array’ of repeated fields.

matchspec = \" formatString \"

formatString may contains a list of %s and %a elements each of which represents
a single named field or a list of repeated fields. A %a field is interpreted as an IPv4
address or an IPv6 address in preferred format. If an IPv6 address in non preferred
format is found, then it is converted and a warning is logged.

Where there are a list of repeated fields, the entire list is stored as one entry. The
fields are broken up into individual entries, based on the internal separator, at a
latter stage. Other characters represent separators which must be present. Any
separator, including whitespace, specified by the formatString, may be
surrounded by a number of whitespace and tab characters. The whitespace and tab
characters are ignored.

NISLDAPmapping(4)

File Formats 407

Regardless of the content of this entry some fieldNames are reserved:

rf_key The DBM key value

rf_ipkey The DBM key value handled as an IP address. See
the discussion of %a fields.

rf_comment Everything following the first occurance of a symbol.
rf_comment is defined by nisLDAPcommentChar.

rf_domain The name of the domain in which the current NIS
operation is being carried out.

rf_searchipkey The rf_searchkey value handled as an IP address.
See the discussion of %a fields above.

rf_searchkey See the description under
nisLDAPattributeFromField below.

For example, the rpc.bynumber map has the format:

name number alias[" "...]

The NIS to LDAP system is instructed to break it into a name, a number, and an
array of alias field by the following entry in the mapping file:

nisLDAPnameFields rpc.bynumber : \

"%s %s %s", name,number,aliases)

nisLDAPsplitFields
Defines how a field, or list of fields, named by nisLDAPnameFields is split into
subfields. The original field is compared with each line of this attribute until one
matches. When a match is found named subfields are generated. In latter
operations subfield names can be used in the same way as other field names.

The syntax for the nisLDAPsplitFields attribute is as follows:

"nisLDAPsplitFields" fieldName ":" splitSpec[","...]
splitSpec = "(" matchspec "," subFieldNames ")"
fieldName = Name of a field from nisLDAPnameFields
subFieldNames = subFieldname[","...]

matchspec = \" formatString \"

The netgroup memberTriples can have format (host, user, domain) or
groupname. The format is specified by the attribute:

nisLDAPsplitField memberTriple: \
("(%s,%s,%s)", host, user, domain) , \

("%s", group)

Later operations can then use field names host, user, domain, group or
memberTriple. Because lines are processed in order, if host, user and domain
are found, group will not be generated.

NISLDAPmapping(4)

408 man pages section 4: File Formats • Last Revised 21 Apr 2003

Several maps and databaseIds may contain fields that are to be split in the same
way. As a consequence, the names of fields to be split must be unique across all
maps and databaseIds.

Only one level of spliting is supported.That is, a subfield cannot be split into further
subfields.

nisLDAPrepeatedFieldSeparators
Where there is a list of repeated, splitable fields,
nisLDAPrepeatedFieldSeparators specifies which characters separate
instances of the splitable field.

The syntax for the nisLDAPrepeatedFieldSeparators attribute is as follows:

"nisLDAPrepeatedFieldSeparators" fieldName \"sepChar[...]\"

sepChar = A separator character.

The default value is space or tab. If repeated splitable fields are adjacent, that is,
there is no separating character, then the following should be specified:

nisLDAPrepeatedFieldSeparators netIdEntry: ""

nisLDAPcommentChar
Specifies which character represents the start of the special comment field in a
given NIS map. If this attribute is not present then the default comment character #
is used.

To specify that a map uses a asterix to mark the start of comments.

nisLDAPcommentChar mapname : ’*’

If a map cannot contain comments, then the following attribute should be specified.

nisLDAPcommentChar mapname : ’’

nisLDAPmapFlags
Indicates if YP_INTERDOMAIN or YP_SECURE entries should be created in a map.
Using nisLDAPmapFlags is equivalent to running makedbm(1M) with the -b or
the -s option. When a map is created from the contents of the DIT, the mapping file
attribute is the only source for the YP_INTERDOMAIN or YP_SECURE entries.

The syntax for the nisLDAPmapFlags attribute is as follows:

"nisLDAPmapFlags" mapname ":" ["b"]["s"]

By default neither entry is created.

nisLDAPfieldFromAttribute
Specifies how a NIS entries field values are derived from LDAP attribute values.

The syntax for the nisLDAPfieldFromAttribute attribute is as follows:

mapName ":" fieldattrspec *("," fieldattrspec)

NISLDAPmapping(4)

File Formats 409

The format of fieldattrspec is shown below at Field and Attribute Conversion
Syntax.

To map by direct copy and assignment the value of the ipHostNumber attribute to
the addr named field, for example:

addr=ipHostNumber

Formats for the named field and attribute conversion syntax are discussed below,
including examples of complex attribute to field conversions.

nisLDAPattributeFromField
Specifies how an LDAP attribute value is derived from a NIS entriy field value.

The syntax for the nisLDAPattributeFromField attribute is as follows:

mapName ":" fieldattrspec *("," fieldattrspec)

The format of fieldattrspec is shown below at Field and Attribute Conversion
Syntax.

As a special case, if the dn attribute value derived from a fieldattrspec ends in
a comma (“,”), the domains context from nisLDAPdomainContext is appended.

Use the following example to map the value of the addr field to the
ipHostNumber attribute by direct copy and assignment:

ipHostNumber=addr

All relevant attributes, including the dn, must be specified.

For every map it must be possible to rapidly find a DIT entry based on its key.
There are some maps for which a NIS to LDAP mapping for the key is not
desirable, so a key mapping cannot be specified. In these cases a mapping that uses
the reserved rf_searchkey must be specified. Mappings that use this field name
are ignored when information is mapped into the DIT.

The general format of a fieldattrspec is:

fieldattrspec = lhs "=" rhs
lhs = lval | namespeclist
rhs = rval | [namespec]

namespeclist = namespec | "(" namespec *("," namespec) ")"

The lval and rval syntax are defined below at Values. The format of a namespec is:

namespec

["ldap:"] attrspec [searchTriple] | ["yp:"] fieldname

[mapspec]

fieldname

field | "(" field ")"

NISLDAPmapping(4)

Field and Attribute
Conversion Syntax

410 man pages section 4: File Formats • Last Revised 21 Apr 2003

attrspec

attribute | "(" attribute ")"

searchTriple

":" [baseDN] ["?" [scope] ["?" [filter]]]

baseDN Base DN for search

filter LDAP search filter

mapspec Map name

The repository specification in a namespec defaults is as follows:

� For assignments to a field:

on the LHS yp

on the RHS ldap

NIS field values on the RHS are those that exist before the NIS entry is modified.

� For assignments to an attribute:

on the LHS ldap

on the RHS yp

Attribute values on the RHS are those that exist before the LDAP entry is modified.

When the field or attribute name is enclosed in parenthesis, it denotes a list of field or
attribute values. For attributes, the meaning is the list of all attributes of that name,
and the interpretation depends on the context. See the discussion at Values. The list
specification is ignored when a searchTriple or mapspec is supplied.

For fields, the fieldname syntax is used to map multiple attribute instances to
multiple NIS entries.

The searchTriple can be used to specify an attribute from a location other than the
read or write target. The defaultvalues are as follows:

baseDN If baseDN is omitted, the default is the current objectDN. If the
baseDN ends in a comma, the context of the domain is appended
from nisLDAPdomainContext .

scope one

filter Empty

Similarly, the mapspec can be used to specify a field value from a NIS map other than
the one implicitly indicated by the mapName. If searchTriple or mapspec is
explicitly specified in a namespec, the retrieval or assignment, whether from or to
LDAP or NIS, is performed without checking if read and write are enabled for the
LDAP container or NIS map.

NISLDAPmapping(4)

File Formats 411

The ommision of the namespec in an rhs is only allowed if the lhs is one or more
attributes. The effect is to delete the specified attribute(s). In all other situations, an
omitted namespec means that the rule is ignored.

The filter can be a value. See Values. For example, to find the ipHostNumberthat
uses the cn, you specify the following in the filter field:

ldap:ipHostNumber:?one?("cn=%s", (cname, "%s.*"))

In order to remove ambiguity, the unmodified value of a single field or attribute must
be specified as the following when used in the filter field.

("%s", namespec)

If the filter is not specified, the scope will be base, and the baseDN is assumed to
be the DN of the entry that contains the attribute to be retrieved or modified. To use
previously existing field or attribute values in the mapping rules requires a lookup to
find those values. Obviously, this adds to the time required to perform the
modification. Also, there is a window between the time when a value is retrieved and
then slightly later stored back. If the values have changed in the mean time, the
change may be overwritten.

When fieldattrspecs are grouped into rule sets, in the value of a
nisLDAPfieldFromAttribute or nisLDAPattributeFromField attribute, the
evaluation of the fieldattrspecs proceed in the listed order. However, evaluation
may be done in parallel for multiple fieldattrspecs. If there is an error when
evaluating a certain fieldattrspec, including retrieval or assignment of entry or
field values, the extent to which the other fieldattrspec rules are evaluated is
unspecified.

Where wildcard support is available, it is of the following limited form:

* Matches any number of characters

[x] Matches the character x

[x-y] Matches any character in the range x to y, inclusive

Combinations such as [a-cA-C0123] are also allowed, which would match any one
of a, b, c, A, B, C, 0, 1, 2, or 3.

substringextract = "(" namespec "," matchspec ")"
name = field or attribute name

matchspec =

The matchspec is a string like the sscanf(3C) format string, except that there may
be at most one format specifier, a single %s. The output value of the
substringextract is the substring that matches the location of the %s.

NISLDAPmapping(4)

Wildcards

Substring
Extraction

412 man pages section 4: File Formats • Last Revised 21 Apr 2003

If there is no %s in the formatstring, it must instead be a single character, which is
assumed to be a field separator for the namespec. The output values are the field
values. Wild cards are supported. If there is no match, the output value is the empty
string, "".

For example, if the fieldcname has the value user.some.domain.name., the
value of the expression:

(cname, "%s.*")

is user, which can be used to extract the user name from a NIS principal name.

Similarly, use this expression to extract the third of the colon-separated fields of the
shadow field:

(shadow, "*:*:%s:*")

This form can be used to extract all of the shadow fields. However, a simpler way to
specify that special case is:

(shadow, ":")

lval = "(" formatspec "," namespec *("," namespec) ")"
rval = "(" formatspec ["," namelist ["," elide]] ")"

namelist = name_or_sse *("," name_or_sse)
name_or_sse = namespec | removespec | substringextract
removespec = list_or_name "-" namespec
list_or_name = "(" namespec ")" | namespec
formatspec =
formatstring = A string combining text and % field specifications
elide =

singlechar = Any character

The syntax above is used to produce rval values that incorporate field or attribute
values, in a manner like sprintf(3C), or to perform assignments to lval like
sscanf(3C). One important restriction is that the format specifications,% plus a single
character, use the designations from ber_printf(3LDAP). Thus, while %s is used to
extract a string value, %i causes BER conversion from an integer. Formats other than
%s, for instance, %i, are only meaningfully defined in simple format strings without
any other text.

The following ber_printf() format characters are recognized:

b i n o s

If there are too few format specifiers, the format string may be repeated as needed.

When used as an lval, there is a combination of pattern matching and assignment,
possibly to multiple fields or attributes.

In an assignment to an attribute, if the value of the addr field is 1.2.3.4, the rval:

NISLDAPmapping(4)

Values

File Formats 413

("ipNetworkNumber=%s,", addr)

produces the value ipNetworkNumber=1.2.3.4,, while:

("(%s,%s,%s)", host, user, domain)

results in:

(assuming host="xyzzy", user="-", domain="x.y.z")

"(xyzzy,-,x.y.z)"

The elide character feature is used with attribute lists. So:

("%s,", (mgrprfc822mailmember), ",")

concatenates all mgrprfc822mailmember values into one comma-separated string,
and then elides the final trailing comma. Thus, for

mgrprfc822mailmember=usera
mgrprfc822mailmember=userb

mgrprfc822mailmember=userc

the value would be:

usera,userb,userc

As a special case, to combine an LHS extraction with an RHS implicit list creates
multiple entries and values. So

("(%s,%s,%s)", host, user, domain)=(nisNetgroupTriple)

creates one NIS entry for each nisNetgroupTriple value.

The ’removespec’ form is used to exclude previously assigned fields values from a
list. So, if an LDAP entry contains:

name: foo
cn: foo
cn: foo1

cn: foo2

and the mapping file specifies :

myName = name, \

myAliases = ("%s ", (cn) - yp:myName, " ")

then the following assignments are carried out:

1. Assign value foo to myName
2. Assign value foo foo1 foo2 to myAliases
3. Remove value of myName from value myAliases

This results in the field values myName is set to foo, and myAliases is set to foo1
foo2.

NISLDAPmapping(4)

414 man pages section 4: File Formats • Last Revised 21 Apr 2003

The assignment syntax, also found at Field and Attribute Conversion Syntax, is as
follows:

fieldattrspec = lhs "=" rhs
lhs = lval | namespeclist
rhs = rval | namespec

namespeclist = namespec | "(" namespec *("," namespec) ")"

The general form of a simple assignment, which is a one-to-one mapping of field to
attribute, is:

("%s", fieldname)=("%s", attrname)

As a convenient shorthand, this can also be written as:

fieldname=attrname

A list specification, which is a name enclosed in parenthesis, can be used to make
many-to-many assignments. The expression:

(fieldname)=(attrname)

where there are multiple instances of attrname, creates one NIS entry for each such
instance, differentiated by their fieldname values. The following combinations of
lists are allowed, but they are not particularly useful:

(attrname)=(fieldname) Equivalent to attrname=fieldname

attrname=(fieldname) Equivalent to attrname=fieldname

(fieldname)=attrname Equivalent to fieldname=attrname

fieldname=(attrname) Equivalent to fieldname=attrname

If a multi-valued RHS is assigned to a single-valued LHS, the LHS value will be the first
of the RHS values. If the RHS is an attribute list, the first attribute is the first one
returned by the LDAP server when queried. Otherwise, the definition of "first" is
implementation dependent.

Finally, the LHS can be an explicit list of fields or attributes, such as:

(name1,name2,name3)

If the RHS is single-valued, this assigns the RHS value to all entities in the list. If the
RHS is multi-valued, the first value is assigned to the first entity of the list, the second
value to the second entity, and so on. Excess values or entities are silently ignored.

EXAMPLE 1 Assigning an Attribute Value to a Field

The following example illustrates how to assign the value of the ipHostNumber
attribute to the addr field

addr=ipHostNumber

NISLDAPmapping(4)

Assignments

EXAMPLES

File Formats 415

EXAMPLE 2 Creating Multiple NIS Entries from Multi-Valued LDAP Attributes

An LDAP entry with:

cn=name1
cn=name2

cn=name3

and the following assignments:

cname=cn

(name)=(cn)

creates three NIS entries. Other attributes and fields are omitted for clarity.

cname=name1, name=name1
cname=name1, name=name2

cname=name1, name=name3

EXAMPLE 3 Assigning String Constants

The following expression sets the passwd field to x:

passwd=("x")

EXAMPLE 4 Splitting Field Values to Multi-Valued Attributes

The expansion field contains a comma-separated list of alias member names. In the
following example, the expression assigns each member name to an instance of
mgrprfc822mailmember:

(mgrprfc822mailmember)=(expansion, ",")

/var/yp/NISLDAPmapping Mapping file used by the NIS server
components

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWypu

Interface Stability Obsolete

inityp2l(1M), makedbm(1M), ypserv(1M), ber_printf(3LDAP), sprintf(3C),
sscanf(3C), NIS+LDAPmapping(4), ypserv(4), attributes(5)

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)

NISLDAPmapping(4)

FILES

ATTRIBUTES

SEE ALSO

416 man pages section 4: File Formats • Last Revised 21 Apr 2003

nodename – local source for system name

/etc/nodename

When a machine is standalone or its IP address is configured locally, the
/etc/nodename file contains the system name. By convention, the system name is
the same as the hostname associated with the IP address of the primary network
interface, for example, hostname.hme0.

If the machine’s network configuration is delivered by the RPC bootparams protocol,
the /etc/nodename file is not used, as the system name is delivered by the remote
service.

Given a system name value, regardless of source, the uname utility invoked with the
-S option is used to set the system name of the running system.

If the machine’s network configuration is delivered by the DHCP protocol, the
/etc/nodename file is used only if the DHCP server does not provide a value for the
Hostname option (DHCP standard option code 12).

A system name configured in /etc/nodename should be unique within the system’s
name service domain in order to ensure that any network services provided by the
system will operate correctly.

Given a system name value, regardless of source, the uname utility invoked with the
-S option is used to set the system name of the running system.

EXAMPLE 1 Syntax

The syntax for nodename consists of a single line containing the system’s name. For
example, for a system named myhost:

myhost

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

nis+(1), uname(1), named(1M), ypbind(1M), attributes(5)

The nodename file is modified by Solaris installation and de-installation scripts.

nodename(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

NOTES

File Formats 417

nologin – message displayed to users attempting to log on in the process of a system
shutdown

/etc/nologin

The /etc/nologin file contains the message displayed to users attempting to log on
to a machine in the process of being shutdown. After displaying the contents of the
nologin file, the login procedure terminates, preventing the user from logging onto
the machine.

This procedure is preferable to terminating a user’s session by shutdown shortly after
the user has logged on.

Logins by super-user are not affected by this procedure.

The message contained in the nologin file is editable by super-user. A typical
nologin file contains a message similar to:

NO LOGINS: System going down in 10 minutes.

login(1), rlogin(1), telnet(1), shutdown(1M)

nologin(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

418 man pages section 4: File Formats • Last Revised 21 Dec 1995

note – specify legal annotations

/usr/lib/note

Each file in this directory contains the NOTE (also _NOTE) annotations legal for a single
tool. The name of the file, by convention, should be the tool vendor’s stock name,
followed by a hyphen, followed by the tool name. For example, for Sun’s lock_lint
tool the filename should be SUNW-lock_lint.

The file should contain the names of the annotations understood by the tool, one per
line. For example, if a tool understands the following annotations:

NOTE(NOT_REACHED)
NOTE(MUTEX_PROTECTS_DATA(list_lock, list_head))

then its file in /usr/lib/note should contain the entries:

NOT_REACHED
MUTEX_PROTECTS_DATA

Blank lines, and lines beginning with a pound (#), are ignored.

While /usr/lib/note is the default directory tools search for such files, they can be
made to search other directories instead simply by setting environment variable
NOTEPATH to contain the paths, separated by colons, of directories to be searched, e.g.,
/usr/mytool/note:/usr/lib/note.

These files are used by such tools whenever they encounter NOTEs they do not
understand. If a file in /usr/lib/note contains the annotation, then it is valid. If no
such file contains the annotation, then the tool should issue a warning complaining
that it might be invalid.

NOTEPATH specify paths to be searched for annotation files. Paths are
separated by colons (“:”).

NOTE(3EXT)

note(4)

NAME

SYNOPSIS

DESCRIPTION

USAGE

ENVIRONMENT
VARIABLES

SEE ALSO

File Formats 419

notrouter – flag to turn off IPv4 routing

/etc/notrouter

The /etc/notrouter file is no longer used as of the current release of the Solaris
operating system. IPv4 forwarding is disabled by default and can be enabled using
routeadm(1M).

routeadm(1M)

notrouter(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

420 man pages section 4: File Formats • Last Revised 10 Sep 2004

nscd.conf – name service cache daemon configuration

/etc/nscd.conf

The nscd.conf file contains the configuration information for nscd(1M). Each line
specifies either an attribute and a value, or an attribute, cachename, and a value. Fields are
separated either by SPACE or TAB characters. A ‘#’ (number sign) indicates the
beginning of a comment; characters up to the end of the line are not interpreted by
nscd.

cachename is represented by hosts, ipnodes, passwd, group, exec_attr,
prof_attr, or user_attr.

attribute supports the following:

logfile debug-file-name Specifies name of the file to which
debug info should be written. Use
/dev/tty for standard output.

debug-level value Sets the debug level desired. value
may range from 0 (the default) to
10. Use of this option causes
nscd(1M) to run in the foreground
and not become a daemon. Note
that the output of the debugging
command is not likely to remain
the same from release-to-release;
scripts should not rely on its
format.

enable-cache cachename value Enables or disables the specified
cache. value may be either yes or
no.

positive-time-to-live cachename value Sets the time-to-live for positive
entries (successful queries) in the
specified cache. value is in integer
seconds. Larger values increase
cache hit rates and reduce mean
response times, but increase
problems with cache coherence.
Note that sites that push (update)
NIS maps nightly can set the value
to be the equivalent of 12 hours or
more with very good performance
implications.

negative-time-to-live cachename value Sets the time-to-live for negative
entries (unsuccessful queries) in the
specified cache. value is in integer

nscd.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 421

seconds. Can result in significant
performance improvements if there
are several files owned by uids
(user IDs) not in system databases;
should be kept small to reduce
cache coherency problems.

suggested-size cachename value Sets the suggested number of hash
buckets in the specified cache. This
parameter should be changed only
if the number of entries in the
cache exceeds the suggested size by
more than a factor of four or five.
Since this is the internal hash table
size, value should remain a prime
number for optimum efficiency.

keep-hot-count cachename value This attribute allows the
administrator to set the number of
entries nscd(1M) is to keep current
in the specified cache. value is an
integer number which should
approximate the number of entries
frequently used during the day.

check-files cachename value Enables or disables checking the
file belonging to the specified
cachename for changes. If enabled
(which is the default), changes in
the corresponding file cause the
cache to be invalidated within 10
seconds. Can be disabled if files are
never modified for a slight
performance boost, particularly
over NFS. value may be either yes
or no.

nscd(1M), group(4), hosts(4), ipnodes(4), passwd(4)

nscd.conf(4)

SEE ALSO

422 man pages section 4: File Formats • Last Revised 13 May 2004

nss – configuration file for initgroups

/etc/default/nss

The /etc/default/nss configuration file provides methods for initgroups(3C)
lookup method. The file also provides a method to disable address sorting by name
lookup functions. The file controls the behavior of the name service switch routines
outside of the source database mappings provided by the /etc/nsswitch.conf file.

/etc/default/nss supports the following options:

NETID_AUTHORITATIVE
Changes the behavior of the name service lookups to use the netid table in
response to the initgroups() call. The netid table is provided by the LOCAL
entries of the NIS+ cred.org_dir table. By default, initgroups() uses the
group table. When NETID_AUTHORITATIVE is set to TRUE, initgroups() uses
netid as the source for supplementary groups rather than the group table.

The name service administrator must ensure that the netid table contains valid
supplementary group information for users. Not all name services can
automatically keep the members listed in the group table in sync with the netid
table.

SORT_ADDRS
If this option is set to FALSE, the sorting of addresses is disabled on addresses that
are returned by name lookup functions such as initgroups(),
gethostbyname(3NSL), netdir_getbyname(3NSL), getaddrinfo(3SOCKET),
and getipnodebyname(3SOCKET). Setting this option to FALSE is useful when
the order of addresses returned by the nameserver needs to be maintained. To use
the DNS round robin feature, for example, address sorting by name lookup
functions should be disabled.

By default, address sorting is enabled.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Evolving

getaddrinfo(3SOCKET), gethostbyname(3NSL), getipnodebyname(3SOCKET),
initgroups(3C), netdir_getbyname(3NSL), nsswitch.conf(4), attributes(5)

nss(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

File Formats 423

nsswitch.conf – configuration file for the name service switch

/etc/nsswitch.conf

The operating system uses a number of databases of information about hosts, ipnodes,
users (passwd and shadow), and groups. Data for these can come from a variety of
sources: hostnames and host addresses, for example, can be found in /etc/hosts,
NIS, NIS+, LDAP, or DNS. Zero or more sources may be used for each database; the
sources and their lookup order are specified in the /etc/nsswitch.conf file.

The following databases use the switch file:

Database Used By

aliases sendmail(1M)

auth_attr getauthnam(3SECDB)

automount automount(1M)

bootparams rpc.bootparamd(1M)

ethers ethers(3SOCKET)

group getgrnam(3C)

hosts gethostbyname(3NSL). See Interaction with
netconfig.

ipnodes getaddrinfo(3SOCKET)

netgroup innetgr(3C)

netmasks ifconfig(1M)

networks getnetbyname(3SOCKET)

passwd getpwnam(3C), getspnam(3C), getauusernam(3BSM),
getusernam(3SECDB)

printers lp(1), lpstat(1), cancel(1), lpr(1B), lpq(1B),
lprm(1B), in.lpd(1M), lpadmin(1M), lpget(1M),
lpset(1M)

prof_attr getprofnam(3SECDB), getexecprof(3SECDB)

project getprojent(3PROJECT),
getdefaultproj(3PROJECT), inproj(3PROJECT),
newtask(1), setproject(3PROJECT)

protocols getprotobyname(3SOCKET)

publickey getpublickey(3NSL), secure_rpc(3NSL)

rpc getrpcbyname(3NSL)

nsswitch.conf(4)

NAME

SYNOPSIS

DESCRIPTION

424 man pages section 4: File Formats • Last Revised 5 Apr 2004

Database Used By

services getservbyname(3SOCKET).

See Interaction with netconfig.

The following sources may be used:

Source Uses

files /etc/hosts, /etc/passwd, /etc/inet/ipnodes,
/etc/shadow

nis NIS(YP)

nisplus NIS+

ldap LDAP

dns Valid only for hosts and ipnodes. Uses the Internet
Domain Name Service.

compat Valid only for passwd and group. Implements "+" and
"-". See Interaction with +/- syntax.

user Valid only for printers. Implements support for
${HOME}/.printers.

There is an entry in /etc/nsswitch.conf for each database. Typically these entries
will be simple, such as "protocols: files" or "networks: files nisplus".
However, when multiple sources are specified, it is sometimes necessary to define
precisely the circumstances under which each source will be tried. A source can return
one of the following codes:

Status Meaning

SUCCESS Requested database entry was found.

UNAVAIL Source is not configured on this system or internal
failure.

NOTFOUND Source responded “no such entry”

TRYAGAIN Source is busy or not responding, might respond to
retries.

For each status code, two actions are possible:

nsswitch.conf(4)

File Formats 425

Action Meaning

continue Try the next source in the list.

return Return now.

Additionally, for TRYAGAIN only, the following actions are possible:

Action Meaning

forever Retry the current source forever.

n Retry the current source n more times, where n is an
integer between 0 and MAX_INT (that is, 2.14 billion).
After n retries has been exhausted, the action will
continue to the next source.

The complete syntax of an entry is:

<entry> ::= <database> ":" [<source> [<criteria>]]*
<criteria> ::= "[" <criterion>+ "]"
<criterion> ::= <status> "=" <action>

<status> ::= "success" | "notfound" | "unavail" | "tryagain"

For every status except TRYAGAIN, the action syntax is:

<action> ::= "return" | "continue"

For the TRYAGAIN status, the action syntax is:

<action> ::= "return" | "continue" | "forever" | <n>

<n> ::= 0...MAX_INT

Each entry occupies a single line in the file. Lines that are blank, or that start with
white space, are ignored. Everything on a line following a # character is also ignored;
the # character can begin anywhere in a line, to be used to begin comments. The
<database> and <source> names are case-sensitive, but <action> and <status> names
are case-insensitive.

The library functions contain compiled-in default entries that are used if the
appropriate entry in nsswitch.conf is absent or syntactically incorrect.

The default criteria for DNS and the NIS server in “DNS-forwarding mode” (and DNS
server not responding or busy) is [SUCCESS=return NOTFOUND=continue
UNAVAIL=continue TRYAGAIN=continue].

The default criteria for all other sources is [SUCCESS=return NOTFOUND=continue
UNAVAIL=continue TRYAGAIN=forever].

nsswitch.conf(4)

426 man pages section 4: File Formats • Last Revised 5 Apr 2004

The default, or explicitly specified, criteria are meaningless following the last source in
an entry; and they are ignored, since the action is always to return to the caller
irrespective of the status code the source returns.

In order to ensure that they all return consistent results, gethostbyname(3NSL),
getaddrinfo(3SOCKET), getservbyname(3SOCKET), and
netdir_getbyname(3NSL) functions are all implemented in terms of the same
internal library function. This function obtains the system-wide source lookup policy
for hosts, ipnodes, and services based on the inet family entries in
netconfig(4) and uses the switch entries only if the netconfig entries have a "-" in the
last column for nametoaddr libraries. See the NOTES section in
gethostbyname(3NSL) and getservbyname(3SOCKET) for details.

The NIS+ server can be run in "YP-compatibility mode", where it handles NIS (YP)
requests as well as NIS+ requests. In this case, the clients get much the same results
(except for getspnam(3C)) from the "nis" source as from "nisplus"; however, "nisplus"
is recommended instead of "nis".

The NIS (YP) server can be run in "DNS-forwarding mode", where it forwards lookup
requests to DNS for host-names and -addresses that do not exist in its database. In this
case, specifying "nis" as a source for "hosts" is sufficient to get DNS lookups; "dns"
need not be specified explicitly as a source.

In SunOS 5.3 (Solaris 2.3) and compatible versions, the NIS+ server in
"NIS/YP-compatibility mode" can also be run in "DNS-forwarding mode" (see
rpc.nisd(1M)). Forwarding is effective only for requests originating from its YP
clients; "hosts" policy on these clients should be configured appropriately.

When password aging is turned on, only a limited set of possible name services are
permitted for the passwd: database in the /etc/nsswitch.conf file:

passwd: files

passwd: files nis

passwd: files nisplus

passwd: files ldap

passwd: compat

passwd_compat: nisplus

passwd_compat: ldap

Any other settings will cause the passwd(1) command to fail when it attempts to
change the password after expiration and will prevent the user from logging in. These
are the only permitted settings when password aging has been turned on. Otherwise,
you can work around incorrect passwd: lines by using the -r repository argument
to the passwd(1) command and using passwd -r repository to override the
nsswitch.conf settings and specify in which name service you want to modify your
password.

nsswitch.conf(4)

Interaction with
netconfig

YP-compatibility
Mode

Interaction with
server in

DNS-forwarding
Mode

Interaction with
Password Aging

File Formats 427

Releases prior to SunOS 5.0 did not have the name service switch but did allow the
user some policy control. In /etc/passwd one could have entries of the form +user
(include the specified user from NIS passwd.byname), -user (exclude the specified
user) and + (include everything, except excluded users, from NIS passwd.byname).
The desired behavior was often "everything in the file followed by everything in NIS",
expressed by a solitary + at the end of /etc/passwd. The switch provides an
alternative for this case ("passwd: files nis") that does not require + entries in
/etc/passwd and /etc/shadow (the latter is a new addition to SunOS 5.0, see
shadow(4)).

If this is not sufficient, the NIS/YP compatibility source provides full +/- semantics. It
reads /etc/passwd for getpwnam(3C) functions and /etc/shadow for
getspnam(3C) functions and, if it finds +/- entries, invokes an appropriate source. By
default, the source is "nis", but this may be overridden by specifying "nisplus" or
“ldap” as the source for the pseudo-database passwd_compat.

Note that in compat mode, for every /etc/passwd entry, there must be a
corresponding entry in the /etc/shadow file.

The NIS/YP compatibility source also provides full +/- semantics for group; the
relevant pseudo-database is group_compat.

The compiled-in default entries for all databases use NIS (YP) as the enterprise level
name service and are identical to those in the default configuration of this file:

passwd: files nis

group: files nis

hosts: nis [NOTFOUND=return] files

ipnodes: nis [NOTFOUND=return] files

networks: nis [NOTFOUND=return] files

protocols: nis [NOTFOUND=return] files

rpc: nis [NOTFOUND=return] files

ethers: nis [NOTFOUND=return] files

netmasks: nis [NOTFOUND=return] files

bootparams: nis [NOTFOUND=return] files

publickey: nis [NOTFOUND=return] files

netgroup: nis

automount: files nis

aliases: files nis

services: files nis

nsswitch.conf(4)

Interaction with
+/- syntax

Useful
Configurations

428 man pages section 4: File Formats • Last Revised 5 Apr 2004

printers: user files nis nisplus

auth_attr files nis

prof_attr files nis

project files nis

The policy "nis [NOTFOUND=return] files" implies "if nis is UNAVAIL, continue on to
files, and if nis returns NOTFOUND, return to the caller; in other words, treat nis as
the authoritative source of information and try files only if nis is down." This, and
other policies listed in the default configuration above, are identical to the hard-wired
policies in SunOS releases prior to 5.0.

If compatibility with the +/- syntax for passwd and group is required, simply modify
the entries for passwd and group to:

passwd: compat

group: compat

If NIS+ is the enterprise level name service, the default configuration should be
modified to use nisplus instead of nis for every database on client machines. The
file /etc/nsswitch.nisplus contains a sample configuration that can be copied to
/etc/nsswitch.conf to set this policy.

If LDAP is the enterprise level name service, the default configuration should be
modified to use ldap instead of nis for every database on client machines. The file
/etc/nsswitch.ldap contains a sample configuration that can be copied to
/etc/nsswitch.conf to set this policy.

If the use of +/- syntax is desired in conjunction with nisplus, use the following four
entries:

passwd: compat

passwd_compat: nisplus OR ldap

group: compat

group_compat: nisplus OR ldap

In order to get information from the Internet Domain Name Service for hosts that are
not listed in the enterprise level name service, NIS+ or LDAP, use the following
configuration and set up the /etc/resolv.conf file (see resolv.conf(4) for more
details):

hosts: nisplus dns [NOTFOUND=return] files

or

hosts: ldap dns [NOTFOUND=return] files

nsswitch.conf(4)

File Formats 429

Many of the databases have enumeration functions: passwd has getpwent(), hosts
has gethostent(), and so on. These were reasonable when the only source was
files but often make little sense for hierarchically structured sources that contain
large numbers of entries, much less for multiple sources. The interfaces are still
provided and the implementations strive to provide reasonable results, but the data
returned may be incomplete (enumeration for hosts is simply not supported by the
dns source), inconsistent (if multiple sources are used), formatted in an unexpected
fashion (for a host with a canonical name and three aliases, the nisplus source will
return four hostents, and they may not be consecutive), or very expensive
(enumerating a passwd database of 5,000 users is probably a bad idea). Furthermore,
multiple threads in the same process using the same reentrant enumeration function
(getXXXent_r() are supported beginning with SunOS 5.3) share the same
enumeration position; if they interleave calls, they will enumerate disjoint subsets of
the same database.

In general, the use of the enumeration functions is deprecated. In the case of passwd,
shadow, and group, it may sometimes be appropriate to use fgetgrent(),
fgetpwent(), and fgetspent() (see getgrnam(3C), getpwnam(3C), and
getspnam(3C), respectively), which use only the files source.

A source named SSS is implemented by a shared object named nss_SSS.so.1 that
resides in /usr/lib.

/etc/nsswitch.conf Configuration file.

/usr/lib/nss_compat.so.1 Implements "compat" source.

/usr/lib/nss_dns.so.1 Implements "dns" source.

/usr/lib/nss_files.so.1 Implements "files" source.

/usr/lib/nss_nis.so.1 Implements "nis" source.

/usr/lib/nss_nisplus.so.1 Implements "nisplus" source.

/usr/lib/nss_ldap.so.1 Implements "ldap" source.

/usr/lib/nss_user.so.1 Implements "user" source.

/etc/netconfig Configuration file for netdir(3NSL)
functions that redirects hosts/devices policy
to the switch.

/etc/nsswitch.files Sample configuration file that uses "files"
only.

/etc/nsswitch.nis Sample configuration file that uses "files"
and "nis".

/etc/nsswitch.nisplus Sample configuration file that uses "files"
and "nisplus".

/etc/nsswitch.ldap Sample configuration file that uses "files"
and "ldap".

nsswitch.conf(4)

Enumeration -
getXXXent()

FILES

430 man pages section 4: File Formats • Last Revised 5 Apr 2004

/etc/nsswitch.dns Sample configuration file that uses “files”
and “dns” (but only for hosts:).

ldap(1), newtask(1), nis+(1), passwd(1), automount(1M), ifconfig(1M),
rpc.bootparamd(1M), rpc.nisd(1M), sendmail(1M),
getauusernam(3BSM)getgrnam(3C), getnetgrent(3C), getpwnam(3C),
getspnam(3C), gethostbyname(3NSL), getpublickey(3NSL),
getrpcbyname(3NSL), netdir(3NSL), secure_rpc(3NSL),
getprojent(3PROJECT), getdefaultproj(3PROJECT), inproj(3PROJECT),
setproject(3PROJECT), getauthnam(3SECDB), getexecprof(3SECDB),
getprofnam(3SECDB), getusernam(3SECDB), ethers(3SOCKET),
getaddrinfo(3SOCKET), getnetbyname(3SOCKET),
getprotobyname(3SOCKET), getservbyname(3SOCKET), netconfig(4),
project(4), resolv.conf(4), ypfiles(4)

Within each process that uses nsswitch.conf, the entire file is read only once; if the
file is later changed, the process will continue using the old configuration.

The use of both nis and nisplus as sources for the same database is strongly
discouraged since both the name services are expected to store similar information
and the lookups on the database may yield different results depending on which name
service is operational at the time of the request. The same applies for using ldap
along with nis or nisplus.

Misspelled names of sources and databases will be treated as legitimate names of
(most likely nonexistent) sources and databases.

The following functions do not use the switch: fgetgrent(3C),
fgetprojent(3PROJECT), fgetpwent(3C), fgetspent(3C), getpw(3C),
putpwent(3C), shadow(4).

nsswitch.conf(4)

SEE ALSO

NOTES

File Formats 431

order – package installation order description file

The package installation order file, .order, is an ASCII file specifying the order in
which packages must be installed based on their prerequisite dependencies. Any
package with prerequisite dependencies must be installed after any packages it lists as
a prerequisite dependency in its depend file.

A .order file is required for the OS product. The .order file must reside in the
top-level directory containing the product.

The ordering is specified as a list of package identifiers, from the first package to be
installed to the last, one package identifier per line.

The depend file supports incompatible and reverse dependencies. These dependency
types are not recognized in the order file.

cdtoc(4), clustertoc(4), depend(4), packagetoc(4), pkginfo(4)

order(4)

NAME

DESCRIPTION

NOTES

SEE ALSO

432 man pages section 4: File Formats • Last Revised 24 Feb 1993

ott – FACE object architecture information

The FACE object architecture stores information about object-types in an ASCII file
named .ott (object type table) that is contained in each directory. This file describes
all of the objects in that directory. Each line of the .ott file contains information about
one object in pipe-separated fields. The fields are (in order):

name the name of the actual system file.

dname the name that should be displayed to the user, or a dot
if it is the same as the name of the file.

description the description of the object, or a dot if the description
is the default (the same as object-type).

object-type the FACE internal object type name.

flags object specific flags.

mod time the time that FACE last modified the object. The time is
given as number of seconds since 1/1/1970, and is in
hexadecimal notation.

object information an optional field, contains a set of semi-colon separated
name=value fields that can be used by FACE to store
any other information necessary to describe this object.

.ott is created in any directory opened by FACE.

ott(4)

NAME

DESCRIPTION

FILES

File Formats 433

packagetoc – package table of contents description file

The package table of contents file, .packagetoc, is an ASCII file containing all of the
information necessary for installing a product release distributed in package form. It
centralizes and summarizes all of the relevant information about each package in the
product. This allows the install software to quickly read one file to obtain all of the
relevant information about each package instead of having to examine each package at
run time to obtain this information. The .packagetoc file resides in the top-level
directory containing the product.

If a .packagetoc file exists for a product, there must also be a .order file.

Each entry in the .packagetoc file is a line that establishes the value of a parameter
in the following form:

PARAM=value

A line starting with a pound-sign, ‘‘#’’, is considered a comment and is ignored.

Parameters are grouped by package. The start of a package description is defined by a
line of the form:

PKG=value

There is no order implied or assumed for specifying the parameters for a package with
the exception of the PKG parameter, which must appear first. Only one occurrence of a
parameter is permitted per package.

The parameters recognized are described below. Those marked with an asterisk are
mandatory.

PKG* The package identifier, for example, SUNWaccu. The
maximum length of the identifier is nine characters. All
the characters must be alphanumeric. The first
character must be alphabetic. install, new, and all
are reserved identifiers.

PKGDIR* The name of the directory containing the package. This
directory is relative to the directory containing the
product.

NAME* The full name of the package.

VENDOR The name of the package’s vendor.

VERSION The version of the package.

PRODNAME The name of the product to which this package
belongs.

PRODVERS The version of the product to which this package
belongs.

packagetoc(4)

NAME

DESCRIPTION

434 man pages section 4: File Formats • Last Revised 19 Nov 2002

SUNW_PKGTYPE The package type. Valid values are:

root indicates that the package will be installed
in the / file system. The root packages are
the only packages installed during dataless
client installations. The root packages are
spooled during a server installation to allow
the later installation of diskless clients.

usr indicates that the package will be installed
in the /usr file system.

kvm indicates that the package will be installed
in the /usr/platform file system.

ow indicates a package that is part of the
bundled OpenWindows product release. If
no SUNW_PKGTYPE macro is present, the
package is assumed to be of type usr.

ARCH* The architecture(s) supported by the package. This
macro is taken from the package’s pkginfo(4) file and
is subject to the same length and formatting
constraints.

The install program currently assumes that exactly one
architecture token is specified for a package. For
example, ARCH=sparc.sun4u is acceptable, but
ARCH=sparc.sun4u, sparc.sun4m is not.

DESC A detailed textual description of the package.

BASEDIR* The default installation base directory of the package.

SUNW_PDEPEND A dependency specification for a prerequisite package.
Each prerequisite dependency must appear as a
separate macro. See depend(4) for more information
on dependencies and instance specifications.

SUNW_IDEPEND A dependency specification for an incompatible
package. Each incompatible dependency should appear
as a separate macro. See depend(4) for more
information on dependencies and instance
specifications.

SUNW_RDEPEND A dependency specification for a reversed package
dependency. Each reverse dependency should appear
as a separate macro. See depend(4) for more
information on dependencies and instance
specifications.

CATEGORY The category of the package.

packagetoc(4)

File Formats 435

SUNW_LOC Indicates that this package contains localizations for
other packages. Such localization packages are treated
as special case packages. Each package which has a
SUNW_LOC macro must have a corresponding
SUNW_PKGLIST macro. The value specified by this
macro should be a valid locale.

SUNW_PKGLIST A comma separated list of package identifiers.
Currently this macro is used to indicate which
packages are localized by a localization package.

ROOTSIZE* The space used by the package in the / file system.

USRSIZE* The space used by the package in the /usr subtree of
the file system.

VARSIZE* The space used by the package in the /var subtree of
the file system.

OPTSIZE* The space used by the package in the /opt subtree of
the file system.

EXPORTSIZE* The space used by the package in the /export subtree
of the file system.

USROWNSIZE* The space used by the package in the /usr/openwin
subtree of the file system.

SPOOLEDSIZE* The space used by the spooled version of this package.
This is used during the setup of a server by the initial
system installation programs.

All sizes are specified in bytes. Default disk partitions and file system sizes are derived
from the values provided: accuracy is important.

EXAMPLE 1 A Sample .packagetoc File

The following is an example package entry in a .packagetoc file.

#ident "@(#)packagetoc.4 1.2 92/04/28"
PKG=SUNWaccr
PKGDIR=SUNWaccr
NAME=System Accounting, (Root)
VENDOR=Sun Microsystems, Inc.
VERSION=8.1
PRODNAME=SunOS
PRODVERS=5.0beta2
SUNW_PKGTYPE=root
ARCH=sparc
DESC=System Accounting, (Root)
BASEDIR=/
CATEGORY=system
ROOTSIZE=11264
VARSIZE= 15360
OPTSIZE=0

packagetoc(4)

EXAMPLES

436 man pages section 4: File Formats • Last Revised 19 Nov 2002

EXAMPLE 1 A Sample .packagetoc File (Continued)

EXPORTSIZE=0
USRSIZE=0

USROWNSIZE=0

cdtoc(4), clustertoc(4), depend(4), order(4), pkginfo(4), pkgmap(4)

The parameters NAME, VENDOR, VERSION, PRODNAME, PRODVERS, SUNW_PKGTYPE,
SUNW_LOC, SUNW_PKGLIST, ARCH, DESC, BASEDIR, and CATEGORY are assumed to
have been taken directly from the package’s pkginfo(4) file. The length and
formatting restrictions placed on the values for these parameters are identical to those
for the corresponding entries in the pkginfo(4) file.

The value specified for the parameter PKGDIR should not exceed 255 characters.

The value specified for the parameters ROOTSIZE, VARSIZE, OPTSIZE, EXPORTSIZE,
USRSIZE and USROWNSIZE must be a single integer value. The values can be derived
from the package’s pkgmap file by counting all space consumed by any files installed
in the applicable file system. The space includes that used for directory entries and
any UFS overhead that exists because of the way the files are represented (directory
allocation scheme; direct, indirect, double indirect blocks; fragments; etc.)

The following kinds of entries in the pkgmap(4) file should be included in the space
derivation:

f regular file

c character special file

b block special file

p pipe

l hard link

s symbolic link

x, d directory

i packaging installation script or information file (copyright, depend,
postinstall, postremove)

packagetoc(4)

SEE ALSO

NOTES

File Formats 437

packingrules – packing rules file for cachefs and filesync

$HOME/.packingrules

$HOME/.packingrules is a packing rules file for filesync and cachefspack.
$HOME/.packingrules contains a list of directories and files that are to be packed
and synchronized. It also contains a list of directories and files that are to be
specifically excluded from packing and synchronization. See filesync(1) and
cachefspack(1M).

The $HOME/.packingrules file is automatically created if users invoke filesync
with filename arguments. By using filesync options, users can augment the packing
rules in $HOME/.packingrules.

Many users choose to manually create the packing rules file and edit it by hand. Users
can edit $HOME/.packingrules (using any editor) to permanently change the
$HOME/.packingrules file, or to gain access to more powerful options that are not
available from the command line (such as IGNORE commands). It is much easier to
enter complex wildcard expressions by editing the $HOME/.packingrules file.

Blank lines and lines that begin with a pound sign (‘#’) are ignored.

Any line can be continued by placing a backslash (‘\’) immediately before the
NEWLINE.

All other lines in the $HOME/.packingrules file have one of the following formats:

PACKINGRULES major. minor. This line is not actually
required, but it should be the first line of
every packing rules file. This line identifies
the packing rules file for the file(1)
command and specifies a format version
number. The current version number is 1.1.
See file(1).

BASE directory-1 [directory-2] This line identifies a directory (or pair of
directories) under which files should be
packed and synchronized. At least one
directory name must be specified. For rules
that are to be used by filesync a second
directory name (where the copies are to be
kept) must also be specified. The arguments
must be fully qualified path names, and
may include environment variables.

LIST name . . . This line enumerates a list of files and
sub-directories (beneath the current BASE)
that are to be kept synchronized. This
specification is recursive, in that specifying
the name of a directory automatically

packingrules(4)

NAME

SYNOPSIS

DESCRIPTION

438 man pages section 4: File Formats • Last Revised 23 Dec 1996

includes all files and subdirectories it
contains. Regular expressions (as described
in glob and gmatch) are permitted. See
glob(1) and gmatch(3GEN).

IGNORE name . . . This line enumerates a list of files that are
not to be kept synchronized. Regular
expressions (using glob and gmatch) are
permitted.

There are important differences between the arguments to LIST and IGNORE
statements. The arguments to a LIST statement can contain slashes and are
interpreted as file names relative to the BASE directories. The arguments to an IGNORE
statement are simpler names or expressions that cannot contain slashes. An IGNORE
statement will not override a LIST statement. IGNORE statements only exclude files
that are found beneath LISTed directories.

If the first name argument to a LIST statement begins with an exclamation point (‘!’),
the remainder of the statement will be executed as a command. The command will be
run in the current BASE directory. The output of the command will be treated as a list
of newline separated file names to be packed/synchronized. The resulting file names
will be interpreted relative to the enclosing BASE directory.

If the first name argument to an IGNORE statement begins with an exclamation point
(‘!’), the remainder of the statement will be executed as a command. The command
will be run in the current BASE directory. The command will be expected to figure out
which names should not be synchronized. The output of the command will be treated
as a list of newline separated file names that should be excluded from the packing and
synchronization list.

Commands will be broken into distinct arguments and run directly with sh -c.
Blanks can be embedded in an argument by escaping them with a backslash (‘\’) or
enclosing the argument in double quotes (‘ " ’). Double quotes can be passed in
arguments by escaping the double quotes with a backslash (‘\’).

LIST lines only apply to the BASE statement that precedes them. IGNORE lines can
appear before any BASE statement (in which case they apply to all BASEs) or after a
BASE statement (in which case they only apply to the BASE that precedes them). Any
number of these statements can occur in any combination. The order is not important.

EXAMPLE 1 A sample $HOME.packingrules file.

The use of these statements is illustrated in the following $HOME.packingrules file.

#
junk files, not worth copying
#
IGNORE core *.o *.bak *%
#
most of the stuff I want to keep in sync is in my $HOME
#

packingrules(4)

EXAMPLES

File Formats 439

EXAMPLE 1 A sample $HOME.packingrules file. (Continued)

BASE /net/bigserver/export/home/myname $HOME
everything in my work sub-directory should be maintained
LIST work
a few of my favorite mail boxes should be replicated
LIST m/incoming
LIST m/action
LIST m/pending
#
I like to carry around a couple of project directories
but skip all the postscript output
#
BASE /net/bigserver/export/projects $HOME/projects
LIST poindexter epiphany
IGNORE *.ps
#
the foonly package should always be kept on every machine
#
BASE /net/bigserver/opt/foonly /opt/foonly
LIST !cat .packinglist
#
and the latest executables for the standard build environment
#
BASE /net/bigserver/export/buildenv $HOME/buildenv
LIST !find . -type f -a -perm -111 -a -print

file(1), filesync(1), cachefspack(1M)

packingrules(4)

SEE ALSO

440 man pages section 4: File Formats • Last Revised 23 Dec 1996

pam.conf – configuration file for pluggable authentication modules

/etc/pam.conf

pam.conf is the configuration file for the Pluggable Authentication Module
architecture, or PAM. A PAM module provides functionality for one or more of four
possible services: authentication, account management, session management, and
password management.

authentication service module Provides functionality to authenticate a user
and set up user credentials.

account management module Provides functionality to determine if the
current user’s account is valid. This
includes checking for password and
account expiration, as well as verifying
access hour restrictions.

session management module Provides functionality to set up and
terminate login sessions.

password management module Provides functionality to change a user’s
authentication token or password.

Each of the four service modules can be implemented as a shared library object which
can be referenced in the pam.conf configuration file.

The pam.conf file contains a listing of services. Each service is paired with a
corresponding service module. When a service is requested, its associated module is
invoked. Each entry has the following format:

service_name module_type control_flag module_path options

The following is an example of a pam.conf configuration file with support for
authentication, account management, session management and password
management modules (See the pam.conf file that is shipped with your system for the
contents of this file):

login auth requisite pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth required pam_unix_auth.so.1
login auth required pam_dial_auth.so.1

other account requisite pam_roles.so.1
other account required pam_unix_account.so.1

other session required pam_unix_session.so.1

other password required pam_dhkeys.so.1
other password requisite pam_authtok_get.so.1
other password requisite pam_authtok_check.so.1

other password required pam_authtok_store.so.1

pam.conf(4)

NAME

SYNOPSIS

DESCRIPTION

Simplified
pam.conf

Configuration File

File Formats 441

service_name denotes the service (for example, login, dtlogin, or rlogin). The
keyword, other, indicates the module all other applications which have not been
specified should use. The other keyword can also be used if all services of the same
module_type have the same requirements.

In the example, since all of the services use the same session module, they could have
been replaced by a single other line.

module_type denotes the service module type: authentication (auth), account
management (account), session management (session), or password management
(password).

The control_flag field determines the behavior of stacking.

The module_path field specifies the relative pathname to a shared library object which
implements the service functionality. If the pathname is not absolute, it is assumed to
be relative to /usr/lib/security/$ISA/.

The ISA token is replaced by an implementation defined directory name which
defines the path relative to the calling program’s instruction set architecture.

The options field is used by the PAM framework layer to pass module specific options
to the modules. It is up to the module to parse and interpret the options.

This field can be used by the modules to turn on debugging or to pass any module
specific parameters such as a TIMEOUT value. The options supported by the modules
are documented in their respective manual pages.

When a service_name of the same module_type is defined more than once, the service is
said to be stacked. Each module referenced in the module_path for that service is then
processed in the order that it occurs in the configuration file. The control_flag field
specifies the continuation and failure semantics of the modules, and can contain one of
the following values:

binding If the service module returns success and no preceding required
modules returned failures, immediately return success without
calling any subsequent modules. If a failure is returned, treat the
failure as a required module failure, and continue to process the
PAM stack.

optional If the service module returns success, record the success, and
continue to process the PAM stack. If a failure is returned, and it is
the first optional module failure, save the failure code as an
optional failure. Continue to process the PAM stack.

required If the service module returns success, record the success, and
continue to process the PAM stack. If a failure is returned, and it is
the first required failure, save the failure code as a required
failure. Continue to process the PAM stack.

pam.conf(4)

Integrating
Multiple

Authentication
Services With

Stacking

442 man pages section 4: File Formats • Last Revised 21 July 2004

requisite If the service module returns success, record the success, and
continue to process the PAM stack. If a failure is returned,
immediately return the first non-optional failure value recorded
without calling any subsequent modules. That is, return this
failure unless a previous required service module failed. If a
previous required service module failed, then return the first of
those values.

sufficient If the service module return success and no preceding required
modules returned failures, immediately return success without
calling any subsequent modules. If a failure is returned, treat the
failure as an optional module failure, and continue to process the
PAM stack.

If the PAM stack runs to completion, that is, neither a requisite module failed, nor
a binding or sufficient module success stops it, success is returned if no required
modules failed and at least one required, requisite, optional module succeeded. If no
module succeeded and a required or binding module failed, the first of those errors is
returned. If no required or binding module failed and an optional module failed, the
first of the option module errors is returned. If no module in the stack succeeded or
failed, that is, all modules returned an ignore status, a default error based on module
type, for example, “User account expired,” is returned.

All errors in pam.conf entries are logged to syslog as LOG_AUTH | LOG_CRIT
errors. The use of a service with an error noted in the pam.conf entry for that service
will fail. The system administrator will need to correct the noted errors before that
service may be used. If no services are available or the pam.conf file is missing, the
system administrator may enter system maintenance mode to correct or restore the
file.

The following is a sample configuration file that stacks the su, login, and rlogin
services.

su auth required pam_inhouse.so.1
su auth requisite pam_authtok_get.so.1
su auth required pam_dhkeys.so.1
su auth required pam_unix_auth.so.1

login auth requisite pam_authtok_get.so.1
login auth required pam_dhkeys.so.1
login auth required pam_unix_auth.so.1
login auth required pam_dial_auth.so.1
login auth optional pam_inhouse.so.1

rlogin auth sufficient pam_rhosts_auth.so.1
rlogin auth requisite pam_authtok_get.so.1
rlogin auth required pam_dhkeys.so.1

rlogin auth required pam_unix_auth.so.1

pam.conf(4)

File Formats 443

In the case of su, the user is authenticated by the inhouse and authtok_get,
dhkeys, and unix_auth authentication modules. Because the inhouse and the
other authentication modules are required and requisite, respectively, an error is
returned back to the application if any module fails. In addition, if the requisite
authentication (pam_authtok_get authentication) fails, the other authentication
modules are never invoked, and the error is returned immediately back to the
application.

In the case of login, the required keyword for control_flag requires that the user be
allowed to login only if the user is authenticated by all the service modules. If
pam_unix_auth authentication fails, control continues to proceed down the stack,
and the inhouse authentication module is invoked. inhouse authentication is
optional by virtue of the optional keyword in the control_flag field. The user can still
log in even if inhouse authentication fails, assuming the modules stacked above
succeeded.

In the case of rlogin, the sufficient keyword for control_flag specifies that if the
rhosts authentication check succeeds, then PAM should return success to rlogin
and rlogin should not prompt the user for a password. The other authentication
modules, which are in the stack, will only be invoked if the rhosts check fails. This
gives the system administrator the flexibility to determine if rhosts alone is sufficient
enough to authenticate a remote user.

Some modules return PAM_IGNORE in certain situations. In these cases the PAM
framework ignores the entire entry in pam.conf regardless of whether or not it is
binding, requisite, required, optional, or sufficient.

The specific service names and module types for each service should be documented
in the man page for that service. For instance, the sshd(1M) man page lists all of the
PAM service names and module types for the sshd command.

The PAM configuration file does not dictate either the name or the location of the
service specific modules. The convention, however, is the following:

pam_module_name.so.x File that implements various function of
specific authentication services. As the
relative pathname specified,
/usr/lib/security/$ISA is prepended
to it.

/etc/pam.conf Configuration file

/usr/lib/$ISA/libpam.so.1 File that implements the PAM framework
library

See attributes(5) for descriptions of the following attributes:

pam.conf(4)

Utilities and Files

ATTRIBUTES

444 man pages section 4: File Formats • Last Revised 21 July 2004

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See Below.

The format is Stable. The contents has no stability attributes.

login(1), passwd(1), in.ftpd(1M), in.rlogind(1M), in.rshd(1M),
in.telnetd(1M), in.uucpd(1M), init(1M), rpc.rexd(1M), sac(1M),
ttymon(1M), su(1M), pam(3PAM), syslog(3C), libpam(3LIB), attributes(5),
environ(5), pam_authtok_check(5), pam_authtok_get(5),
pam_authtok_store(5), pam_dhkeys(5), pam_krb5(5), pam_passwd_auth(5),
pam_unix_account(5), pam_unix_auth(5), pam_unix_session(5)

The pam_unix module is no longer supported. Similar functionality is provided by
pam_authtok_check(5), pam_authtok_get(5), pam_authtok_store(5),
pam_dhkeys(5), pam_passwd_auth(5), pam_unix_account(5),
pam_unix_auth(5), and pam_unix_session(5).

With the removal of the pam_unix module, the SunOS delivered PAM service
modules no longer need or support the “use_first_pass” or “try_first_pass”
options. This functionality is provided by stacking pam_authtok_get(5) above a
module that requires a password.

pam.conf(4)

SEE ALSO

NOTES

File Formats 445

passwd – password file

/etc/passwd

The file /etc/passwd is a local source of information about users’ accounts. The
password file can be used in conjunction with other naming sources, such as the NIS
maps passwd.byname and passwd.bygid, data from the NIS+ passwd table, or
password data stored on an LDAP server. Programs use the getpwnam(3C) routines to
access this information.

Each passwd entry is a single line of the form:

username:password:uid:
gid:gcos-field:home-dir:
login-shell

where

username is the user’s login name. It is recommended that this field conform
to the checks performed by pwck(1M).

password is an empty field. The encrypted password for the user is in the
corresponding entry in the /etc/shadow file. pwconv(1M) relies
on a special value of ’x’ in the password field of /etc/passwd. If
this value of ’x’ exists in the password field of /etc/passwd, this
indicates that the password for the user is already in
/etc/shadow and should not be modified.

uid is the user’s unique numerical ID for the system.

gid is the unique numerical ID of the group that the user belongs to.

gcos-field is the user’s real name, along with information to pass along in a
mail-message heading. (It is called the gcos-field for historical
reasons.) An ‘‘&’’ (ampersand) in this field stands for the login
name (in cases where the login name appears in a user’s real
name).

home-dir is the pathname to the directory in which the user is initially
positioned upon logging in.

login-shell is the user’s initial shell program. If this field is empty, the default
shell is /usr/bin/sh.

The maximum value of the uid and gid fields is 2147483647. To maximize
interoperability and compatibility, administrators are recommended to assign users a
range of UIDs and GIDs below 60000 where possible.

The password file is an ASCII file that resides in the /etc directory. Because the
encrypted passwords on a secure system are always kept in the shadow file,
/etc/passwd has general read permission on all systems and can be used by
routines that map between numerical user IDs and user names.

passwd(4)

NAME

SYNOPSIS

DESCRIPTION

446 man pages section 4: File Formats • Last Revised 28 Jul 2004

Blank lines are treated as malformed entries in the passwd file and cause consumers
of the file , such as getpwnam(3C), to fail.

The password file can contain entries beginning with a ‘+’ (plus sign) or ’-’ (minus
sign) to selectively incorporate entries from another naming service source, such as
NIS, NIS+, or LDAP.

A line beginning with a ’+’ means to incorporate entries from the naming service
source. There are three styles of the ’+’ entries in this file. A single + means to insert all
the entries from the alternate naming service source at that point, while a +name
means to insert the specific entry, if one exists, from the naming service source. A
+@netgroup means to insert the entries for all members of the network group netgroup
from the alternate naming service. If a +name entry has a non-null password, gcos,
home-dir, or login-shell field, the value of that field overrides what is contained in the
alternate naming service. The uid and gid fields cannot be overridden.

A line beginning with a ‘−’ means to disallow entries from the alternate naming
service. There are two styles of ‘-‘ entries in this file. –name means to disallow any
subsequent entries (if any) for name (in this file or in a naming service), and –@netgroup
means to disallow any subsequent entries for all members of the network group
netgroup.

This is also supported by specifying ‘‘passwd : compat’’ in nsswitch.conf(4). The
"compat" source might not be supported in future releases. The preferred sources are
files followed by the identifier of a name service, such as nis or ldap. This has the
effect of incorporating the entire contents of the naming service’s passwd database or
password-related information after the passwd file.

Note that in compat mode, for every /etc/passwd entry, there must be a
corresponding entry in the /etc/shadow file.

Appropriate precautions must be taken to lock the /etc/passwd file against
simultaneous changes if it is to be edited with a text editor; vipw(1B) does the
necessary locking.

EXAMPLE 1 Sample passwd File

The following is a sample passwd file:

root:x:0:1:Super-User:/:/sbin/sh

fred:6k/7KCFRPNVXg:508:10:& Fredericks:/usr2/fred:/bin/csh

and the sample password entry from nsswitch.conf:

passwd: files ldap

In this example, there are specific entries for users root and fred to assure that they
can login even when the system is running single-user. In addition, anyone whose
password information is stored on an LDAP server will be able to login with their
usual password, shell, and home directory.

passwd(4)

EXAMPLES

File Formats 447

EXAMPLE 1 Sample passwd File (Continued)

If the password file is:

root:x:0:1:Super-User:/:/sbin/sh
fred:6k/7KCFRPNVXg:508:10:& Fredericks:/usr2/fred:/bin/csh

+

and the password entry in nsswitch.conf is:

passwd: compat

then all the entries listed in the NIS passwd.byuid and passwd.byname maps will
be effectively incorporated after the entries for root and fred. If the the password
entry in nsswitch.conf is:

passwd_compat: ldap

passwd: compat

then all password-related entries stored on the LDAP server will be incorporated after
the entries for root and fred.

The following is a sample passwd file when shadow does not exist:

root:q.mJzTnu8icf.:0:1:Super-User:/:/sbin/sh
fred:6k/7KCFRPNVXg:508:10:& Fredericks:/usr2/fred:/bin/csh
+john:
+@documentation:no-login:

+::::Guest

The following is a sample passwd file when shadow does exist:

root:##root:0:1:Super-User:/:/sbin/sh
fred:##fred:508:10:& Fredericks:/usr2/fred:/bin/csh
+john:
+@documentation:no-login:

+::::Guest

In this example, there are specific entries for users root and fred, to assure that they
can log in even when the system is running standalone. The user john will have his
password entry in the naming service source incorporated without change, anyone in
the netgroup documentation will have their password field disabled, and anyone
else will be able to log in with their usual password, shell, and home directory, but
with a gcos field of Guest

passwd(4)

448 man pages section 4: File Formats • Last Revised 28 Jul 2004

/etc/nsswitch.conf

/etc/passwd

/etc/shadow

chgrp(1), chown(1), finger(1), groups(1), login(1), newgrp(1), nispasswd(1),
passwd(1), sh(1), sort(1), domainname(1M), getent(1M), in.ftpd(1M),
passmgmt(1M), pwck(1M), pwconv(1M), su(1M), useradd(1M), userdel(1M),
usermod(1M), a64l(3C), crypt(3C), getpw(3C), getpwnam(3C), getspnam(3C),
putpwent(3C), group(4), hosts.equiv(4), nsswitch.conf(4), shadow(4),
environ(5), unistd.h(3HEAD)

System Administration Guide: Basic Administration

passwd(4)

FILES

SEE ALSO

File Formats 449

pathalias – alias file for FACE

/usr/vmsys/pathalias

The pathalias files contain lines of the form alias=path where path can be one or
more colon-separated directories. Whenever a FACE (Framed Access Command
Environment, see face(1)) user references a path not beginning with a ‘‘/’’, this file is
checked. If the first component of the pathname matches the left-hand side of the
equals sign, the right-hand side is searched much like $PATH variable in the system.
This allows users to reference the folder $HOME/FILECABINET by typing
filecabinet.

There is a system-wide pathalias file called $VMSYS/pathalias, and each user
can also have local alias file called $HOME/pref/pathalias. Settings in the user
alias file override settings in the system-wide file. The system-wide file is shipped
with several standard FACE aliases, such as filecabinet, wastebasket,
preferences, other_users, etc.

$HOME/pref/pathalias

$VMSYS/pathalias

face(1)

Unlike command keywords, partial matching of a path alias is not permitted,
however, path aliases are case insensitive. The name of an alias should be alphabetic,
and in no case can it contain special characters like ‘‘/’’, ‘‘\’’, or ‘‘=’’. There is no
particular limit on the number of aliases allowed. Alias files are read once, at login,
and are held in core until logout. Thus, if an alias file is modified during a session, the
change will not take effect until the next session.

pathalias(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

NOTES

450 man pages section 4: File Formats • Last Revised 3 Jul 1990

path_to_inst – device instance number file

/etc/path_to_inst

/etc/path_to_inst records mappings of physical device names to instance
numbers.

The instance number of a device is encoded in its minor number, and is the way that a
device driver determines which of the possible devices that it may drive is referred to
by a given special file.

In order to keep instance numbers persistent across reboots, the system records them
in /etc/path_to_inst.

This file is read only at boot time, and is updated by add_drv(1M) and
drvconfig(1M).

Note that it is generally not necessary for the system administrator to change this file,
as the system will maintain it.

The system administrator can change the assignment of instance numbers by editing
this file and doing a reconfiguration reboot. However, any changes made in this file
will be lost if add_drv(1M) or drvconfig(1M) is run before the system is rebooted.

Each instance entry is a single line of the form:

"physical name" instance number "driver binding name"

where

physical name is the absolute physical pathname of a device. This
pathname must be enclosed in double quotes.

instance number is a decimal or hexadecimal number.

driver binding name is the name used to determine the driver for the device.
This name may be a driver alias or a driver name. The
driver binding name must be enclosed in double
quotes.

EXAMPLE 1 Sample path_to_inst Entries

Here are some sample path_to_inst entries:

"/iommu@f,e0000000" 0 "iommu"
"/iommu@f,e0000000/sbus@f,e0001000" 0 "sbus"
"/iommu@f,e0000000/sbus@f,e0001000/sbusmem@e,0" 14 "sbusmem"
"/iommu@f,e0000000/sbus@f,e0001000/sbusmem@f,0" 15 "sbusmem"
"/iommu@f,e0000000/sbus@f,e0001000/ledma@f,400010" 0 "ledma"
"/obio/serial@0,100000" 0 "zs"
"/SUNW,sx@f,80000000" 0 "SUNW,sx"

path_to_inst(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

File Formats 451

EXAMPLE 1 Sample path_to_inst Entries (Continued)

/etc/path_to_inst

add_drv(1M), boot(1M), drvconfig(1M), mknod(1M)

If the file is removed the system may not be bootable (as it may rely on information
found in this file to find the root, usr or swap device). If it does successfully boot, it
will regenerate the file, but after rebooting devices may end up having different minor
numbers than they did before, and special files created via mknod(1M) may refer to
different devices than expected.

For the same reasons, changes should not be made to this file without careful
consideration.

This document does not constitute an API. path_to_inst may not exist or may have
a different content or interpretation in a future release. The existence of this notice
does not imply that any other documentation that lacks this notice constitutes an API.

path_to_inst(4)

FILES

SEE ALSO

WARNINGS

NOTES

452 man pages section 4: File Formats • Last Revised 2 Nov 1995

pci – configuration files for PCI device drivers

The Peripheral Component Interconnect (PCI) bus is a little endian bus. PCI devices
are self-identifying — that is to say the PCI device provides configuration parameters to
the system, which allows the system to identify the device and its driver. The
configuration parameters are represented in the form of name-value pairs that can be
retrieved using the DDI property interfaces. See ddi_prop_lookup(9F) for details.

The PCI bus properties are derived from PCI configuration space, or supplied by the
Fcode PROM, if it exists. Therefore, driver configuration files are not necessary for
these devices.

On some occasions, drivers for PCI devices can use driver configuration files to
provide driver private properties through the global property mechanism. See
driver.conf(4) for further details. Driver configuration files can also be used to
augment or override properties for a specific instance of a driver.

All bus drivers of class pci recognize the following properties:

reg An arbitrary length array where each element of the array consists
of a 5-tuple of 32-bit values. Each array element describes a
logically contiguous mappable resource on the PCI bus.

The first three values in the 5-tuple describe the PCI address of the
mappable resource. The first tuple contains the following
information:

Bits 0 - 7 8-bit register number

Bits 8 - 10 3-bit function number

Bits 11 - 15 5-bit device number

Bits 16 - 23 8-bit bus number

Bits 24 - 25 2-bit address space
type identifier

The address space type identifier can be interpreted as follows:

0x0 configuration space

0x1 I/O space

0x2 32-bit memory space
address

0x3 64-bit memory space
address

pci(4)

NAME

DESCRIPTION

File Formats 453

The bus number is a unique identifying number assigned to each
PCI bus within a PCI domain.

The device number is a unique identifying number assigned to
each PCI device on a PCI bus. Note that a device number is unique
only within the set of device numbers for a particular bus.

Each PCI device can have one to eight logically independent
functions, each with its own independent set of configuration
registers. Each function on a device is assigned a function number.
For a PCI device with only one function, the function number
must be 0.

The register number field selects a particular register within the set
of configuration registers corresponding to the selected function.

The second and third values in the reg property 5-tuple specify
the 64-bit address of the mappable resource within the PCI address
domain. The second 32-bit tuple corresponds to the high order
four bytes of the 64-bit address. The third 32-bit tuple corresponds
to the low order bytes.

The fourth and fifth 32-bit values in the 5-tuple reg property
specify the size of the mappable resource. The size is a 64-bit
value, where the fourth tuple corresponds to the high order bytes
of the 64-bit size and the fifth corresponds to the low order.

The driver can refer to the elements of this array by index, and
construct kernel mappings to these addresses using
ddi_regs_map_setup(9F). The index into the array is passed as
the rnumber argument of ddi_regs_map_setup(9F).

At a high-level interrupt context, you can use the ddi_get* and
ddi_put* family of functions to access I/O and memory space.
However, access to configuration space is not allowed when
running at a high-interrupt level.

interrupts This property consists of a single-integer element array. Valid
interrupt property values are 1, 2, 3, and 4. This value is derived
directly from the contents of the device’s
configuration-interrupt-pin register.

A driver should use an index value of 0 when registering its
interrupt handler with ddi_add_intr(9F).

All PCI devices support the reg property. The device number and function number as
derived from the reg property are used to construct the address part of the device
name under /devices.

Only devices that generate interrupts support an interrupts property.

pci(4)

454 man pages section 4: File Formats • Last Revised 4 Mar 1997

Occasionally it might be necessary to override or augment the configuration
information supplied by a PCI device. This change can be achieved by writing a driver
configuration file that describes a prototype device node specification containing the
additional properties required.

For the system to merge the prototype node specification into an actual device node,
certain conditions must be met.

� First, the name property must be identical. The value of the name property needs
to match the binding name of the device. The binding name is the name chosen by
the system to bind a driver to a device and is either an alias associated with the
driver or the hardware node name of the device.

� Second, the parent property must identify the PCI bus.

� Third, the unit-address property must identify the card. The format of the
unit-address property is:

DD[,F]

where DD is the device number and F is the function number. If the function number is
0, only DD is specified.

EXAMPLE 1 A sample configuration file.

An example configuration file called ACME,scsi-hba.conf for a PCI driver called
ACME,scsi-hba follows:

#
Copyright (c) 1995, ACME SCSI Host Bus Adaptor
ident "@(#)ACME,scsi-hba.conf 1.1 96/02/04"
name="ACME,scsi-hba" parent="/pci@1,0/pci@1f,4000"

unit-address="3" scsi-initiator-id=6;
hba-advanced-mode="on";
hba-dma-speed=10;

In this example, a property scsi-initiator-id specifies the SCSI bus initiator id that the
adapter should use, for just one particular instance of adapter installed in the machine.
The name property identifies the driver and the parent property to identify the
particular bus the card is plugged into. This example uses the parent’s full path name
to identify the bus. The unit-address property identifies the card itself, with device
number of 3 and function number of 0.

Two global driver properties are also created: hba-advanced-mode (which has the
string value on) and hba-dma-speed (which has the value 10 M bit/s). These
properties apply to all device nodes of the ACME,scsi-hba. The following is an
example configuration file called ACME,foo.conf for a PCI driver called ACME,foo;

pci(4)

EXAMPLES

File Formats 455

EXAMPLE 1 A sample configuration file. (Continued)

#
Copyright (c) 1996, ACME Foo driver
ident "@(#)ACME,foo.conf 1.1 95/11/14"
name="ACME,foo" class="pci" unit-address="3,1"

debug-mode=12;

In this example, we provide a property debug-mode for all instances of the
ACME,foo driver with parents of class pci and device and function numbers of 3 and
1, respectively.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC, x86

driver.conf(4), attributes(5), ddi_add_intr(9F), ddi_prop_lookup(9F),
ddi_regs_map_setup(9F)

Writing Device Drivers

IEEE 1275 PCI Bus Binding

pci(4)

ATTRIBUTES

SEE ALSO

456 man pages section 4: File Formats • Last Revised 4 Mar 1997

pcmcia – PCMCIA nexus driver

The PCMCIA nexus driver supports PCMCIA card client device drivers. There are no
user-configurable options for this driver.

/kernel/misc/pcmcia pcmcia driver

pcmciad(1M)

pcmcia(4)

NAME

DESCRIPTION

FILES

SEE ALSO

File Formats 457

phones – remote host phone number database

/etc/phones

The file /etc/phones contains the system-wide private phone numbers for the
tip(1) program. /etc/phones is normally unreadable, and so may contain
privileged information. The format of /etc/phones is a series of lines of the form:

<system-name>[\t]*<phone-number>.

The system name is one of those defined in the remote(4) file and the phone number
is constructed from [0123456789−=*%]. The ‘=’ and ‘*’ characters are indicators to
the auto call units to pause and wait for a second dial tone (when going through an
exchange). The ‘=’ is required by the DF02-AC and the ‘*’ is required by the
BIZCOMP 1030.

Comment lines are lines containing a ‘#’ sign in the first column of the line.

Only one phone number per line is permitted. However, if more than one line in the
file contains the same system name tip(1) will attempt to dial each one in turn, until
it establishes a connection.

/etc/phones

tip(1), remote(4)

phones(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

458 man pages section 4: File Formats • Last Revised 14 Jan 1992

pkginfo – package characteristics file

pkginfo is an ASCII file that describes the characteristics of the package along with
information that helps control the flow of installation. It is created by the software
package developer.

Each entry in the pkginfo file is a line that establishes the value of a parameter in the
following form:

PARAM="value"

There is no required order in which the parameters must be specified within the file.
The PKG, NAME, ARCH, VERSION and CATEGORY parameters are mandatory. Other
parameters are optional.

pkginfo provides optional parameters and an environment variable in support of the
zones (multiple Solaris environments) feature. See zones(5).

The following paramaters are mandatory:

ARCH
A comma-separated list of alphanumeric tokens that indicate the architecture
associated with the package. The pkgmk(1) tool can be used to create or modify this
value when actually building the package. The maximum length of a token is 16
characters and it cannot include a comma.

Solaris’s installation software meaningfully uses only one architecture token of the
form:

<instruction_set_architecture>[.<platform_group>]

where platform_group is intended only for Solaris installation packages. Third party
application software should restrict itself to ARCH values from the following
Solaris-supported instruction set architectures (uname -p): sparc, i386, and ppc.
Examples of Solaris’ platform groups (uname -m) are sun4u for the SPARC
instruction set and i86pc for the i386 instruction set. See uname(1) and isalist(1)
for more details.

CATEGORY
A comma-separated list of categories under which a package can be displayed. A
package must at least belong to the system or application category. Categories are
case-insensitive and can contain only alphanumerics. Each category is limited in
length to 16 characters.

NAME
Text that specifies the package name (maximum length of 256 ASCII characters).
Use the NAME parameter as the foundation for describing the functionality and
purpose of the package; spell out any acronyms and avoid internal product/project
code names. The DESC parameter can then be used to expand the descriptive
information. Use the NAME parameter to state as specifically as possible the use of
the package, why a user would need to load it, and so on.

pkginfo(4)

NAME

DESCRIPTION

File Formats 459

PKG
Abbreviation for the package being installed. All characters in the abbreviation
must be alphanumeric. You can also use the − and + characters in the abbreviation.
The first character cannot be numeric, a + or a -.

The abbreviation is limited to a maximum length of 32 characters. install, new,
and all are reserved abbreviations. It is customary to make the first four letters
unique to your company, such as the company’s stock symbol.

VERSION
Text that specifies the current version associated with the software package. The
maximum length is 256 ASCII characters and the first character cannot be a left
parenthesis. The pkgmk(1) tool can be used to create or modify this value when
actually building the package. Current Solaris software practice is to assign this
parameter monotonically increasing Dewey decimal values of the form:

<major_revision>.<minor_revision>[.<micro_revision>]

where all the revision fields are integers. The versioning fields can be extended to
an arbitrary string of numbers in Dewey-decimal format, if necessary.

The following parameters are optional:

BASEDIR
The pathname to a default directory where "relocatable" files can be installed. If
blank, the package is not relocatable and any files that have relative pathnames are
not installed. An administrator can override the default directory.

CLASSES
A space-separated list of classes defined for a package. The order of the list
determines the order in which the classes are installed. Classes listed first are
installed first (on a media by media basis). This parameter can be modified by the
request script.

DESC
Text that describes the package (maximum length of 256 ASCII characters). This
parameter value is used to provide the installer with a description of what the
package contains and should build on the description provided in the NAME
parameter. Try to make the two parameters work together so that a pkginfo -l
provides a fairly comprehensive textual description of the package.

EMAIL
An electronic address where further information is available or bugs can be
reported (maximum length of 256 ASCII characters).

HOTLINE
Phone number and/or mailing address where further information can be received
or bugs can be reported (maximum length of 256 ASCII characters).

INTONLY
Indicates that the package should only be installed interactively when set to any
non-null value.

pkginfo(4)

460 man pages section 4: File Formats • Last Revised 3 Dec 2004

ISTATES
A list of allowable run states for package installation (for example, "S s 1" allows
run states of S, s or 1). The Solaris operating environment supports the run levels
s, S, 0, 1, 2, 3, 5, and 6. Applicable run levels for this parameter are s, S, 1, 2, and
3. See init(1M) for details.

MAXINST
The maximum number of package instances that should be allowed on a machine
at the same time. By default, only one instance of a package is allowed. This
parameter must be set in order to have multiple instances of a package. In order to
support multiple instances of packages (for example, packages that differ in their
ARCH or VERSION parameter value), the value of this parameter must be high
enough to allow for all instances of a given package, including multiple versions
coexisting on a software server.

ORDER
A list of classes defining the order in which they should be put on the medium.
Used by pkgmk(1) in creating the package. Classes not defined in this field are
placed on the medium using the standard ordering procedures.

PSTAMP
Production stamp used to mark the pkgmap(4) file on the output volumes. Provides
a means for distinguishing between production copies of a version if more than one
is in use at a time. If PSTAMP is not defined, the default is used. The default consists
of the UNIX system machine name followed by the string "YYYYMMDDHHMMSS"
(year, month, date, hour, minutes, seconds).

RSTATES
A list of allowable run states for package removal (for example, "S s 1" allows run
states of S, s or 1). The Solaris operating environment supports the run levels s, S,
0, 1, 2, 3, 5, and 6. Applicable run levels for this parameter are s, S, 1, 2, and 3 See
init(1M) for details.

SUNW_ISA
Solaris-only optional parameter that indicates a software package contains 64–bit
objects if it is set to sparcv9. If this parameter is not set, the default ISA
(instruction set architecture) is set to the value of the ARCH parameter.

SUNW_LOC
Solaris-only optional parameter used to indicate a software package containing
localization files for a given product or application. The parameter value is a
comma-separated list of locales supported by a package. It is only used for
packages containing localization files, typically the message catalogues. The
allowable values for this string field are those found in the table of Standard Locale
Names located in the International Language Environments Guide.

SUNW_LOC="<locale_name>,<locale_name>,..,<locale_name>"

where

<locale_name>::= <language>[_<territory>][.<codeset>]
<language>::= the set of names from ISO 639

pkginfo(4)

File Formats 461

<territory>::= the set of territories specified
in ISO 3166
<codeset>::= is a string corresponding to the coded

character set

Since a value of C specifies the traditional UNIX system behavior (American
English, en_US), packages belonging to the C locale are viewed as non-localized
packages, and thus must not have SUNW_LOC and SUNW_PKGLIST included in their
pkginfo file. See also the SUNW_LOC parameter in packagetoc(4) and
setlocale(3C) for more information. This keyword is not recognized by the
add-on software utility Software Manager.

SUNW_PKG_DIR
A value set by pkgadd that contains the location of the installing package. This
value is provided to any install time package procedure scripts that need to know
where the installing package is located. This parameter should never be set
manually from within a pkginfo file.

SUNW_PKG_ALLZONES
Defines whether a package, when installed, must be installed and must be identical
in all zones. Assigned value can be true or false. The default value is false.
The setting of SUNW_PKG_ALLZONES has the effects described below.

If set to true, the following conditions are in effect:

� The package must be installed in the global zone.
� The package must be installed in any non-global zone that is created.
� The package must be identical in all zones.
� The package can be installed only by the global zone administrator.
� The package cannot be installed by a non-global zone administrator.

If set to false, the following conditions are in effect:

� The package is not required to be installed in all zones.
� The package is not required to be identical across all zones.
� The package can be installed by the global zone administrator or by a

non-global zone administrator.

Packages that must be identical across all zones must set this variable to true. This
would include packages that deliver components that are part of the core operating
system, or that are dependent on interfaces exported by the core operating system,
or that deliver device drivers, or runtime libraries that use or export operating
system interfaces that are not guaranteed to be stable across minor releases.

Packages that deliver components that are not part of the core operating system
(such as application programs) that can be different between any two zones must
set this variable to false.

With respect to SUNW_PKG_ALLZONES, keep in mind the following:

� Use of pkgadd in the global zone installs packages in all zones unless -G is
specified, in which case packages are installed in the global zone only. The
setting of SUNW_PKG_ALLZONES does not change this behavior. For example, a

pkginfo(4)

462 man pages section 4: File Formats • Last Revised 3 Dec 2004

package that has a setting of SUNW_PKG_ALLZONES=false is not installed in
the global zone only.

� The SUNW_PKG_ALLZONES attribute controls whether a package must be
installed in all zones (and must be the same in all zones) when it is installed.

� Use of the -G option to pkgadd with a package that has
SUNW_PKG_ALLZONES=true is an error and causes installation of that package
to fail.

SUNW_PKG_HOLLOW
Defines whether a package should be visible in any non-global zone if that package
is required to be installed and be identical in all zones (for example, a package that
has SUNW_PKG_ALLZONES=true). Assigned value can be true or false. The
default value is false. The package is not required to be installed, but if it is
installed, the setting of SUNW_PKG_HOLLOW has the effects described below.

Packages that must be identical across all zones must set this variable to true. This
would include packages that deliver components that are part of the core operating
system, or that are dependent on interfaces exported by the core operating system,
or that deliver device drivers, or runtime libraries that use or export operating
system interfaces that are not guaranteed to be stable across minor releases. All
other packages must set this variable to false.

If set to true, the following conditions are in effect:

� When installed in the global zone, all components of the package are installed.
� Directories are created, files are installed, and class action and other scripts are

run as appropriate when the package is installed.
� Directories and files are removed, and class action and other scripts are run as

appropriate when the package is removed.
� When installed in a non–global zone, the package is recognized as having been

installed, but no components of the package are installed. No directories are
created, no files are installed, and no class action or other install scripts are run
when the package is installed.

� When removed from a non–global zone, the package is recognized as not having
been completely installed. No directories are created, or files are removed, and
no class action or other install scripts are run when the package is removed.

� The package is recognized as being installed in all zones for purposes of
dependency checking by other packages that rely on this package being
installed.

If SUNW_PKG_ALLZONES is set to false, the value of this variable has no meaning.
It is a package construction error to set SUNW_PKG_ALLZONES to false, then set
SUNW_PKG_HOLLOW to true.

SUNW_PKG_THISZONE
Defines whether a package must be installed in the current zone only. Assigned
value can be true or false. The default value is false. The setting of
SUNW_PKG_THISZONE has the effects described below.

If set to true, the following conditions are in effect:

pkginfo(4)

File Formats 463

� The package is installed in the current zone only.
� If installed in the global zone, the package is not added to any currently existing

or yet-to-be-created non-global zones. This is the same behavior that would
occur if the -G option were specified to pkgadd.

If set to false, the following conditions are in effect:

� If pkgadd is run in a non-global zone, the package is installed in the current
zone only.

� If pkgadd is run in the global zone, the package is installed in the global zone,
and is also installed in all currently installed non-global zones. In addition, the
package will be propagated to all future, newly installed non-global zones.

SUNW_PKGLIST
Solaris-only optional parameter used to associate a localization package to the
package(s) from which it is derived. It is required whenever the SUNW_LOC
parameter is defined. This parameter value is an comma-separated list of package
abbreviations of the form:

SUNW_PKGLIST="pkg1[:version],pkg2[:version],..."

where version (if specified) should match the version string in the base package
specified (see VERSION parameter in this manual page). When in use,
SUNW_PKGLIST helps determine the order of package installation. The packages
listed in the parameter are installed before the localization package in question is
installed. When left blank, SUNW_PKGLIST=" ", the package is assumed to be
required for the locale to function correctly. See the SUNW_PKGLIST parameter in
packagetoc(4) for more information. This keyword is not recognized by the
add-on software utility Software Manager.

SUNW_PKGTYPE
Solaris-only parameter for Sun internal use only. Required for packages part of the
The Solaris operating environment releases which install into the /, /usr,
/usr/kvm, and /usr/openwin file systems. The The Solaris operating
environment installation software must know which packages are part of which file
system to properly install a server/client configuration. The currently allowable
values for this parameter are root, usr, kvm, and ow. If no SUNW_PKGTYPE
parameter is present, the package is assumed to be of BASEDIR= /opt.
SUNW_PKGTYPE is optional only for packages which install into the /opt name
space as is the case for the majority of Solaris add-on software. See the
SUNW_PKGTYPE parameter in packagetoc(4) for further information.

SUNW_PKGVERS
Solaris-only parameter indicating of version of the Solaris operating environment
package interface.

SUNW_PKGVERS="<sunw_package_version>"

where <unw_package_version> has the form x.y[.z] and x, y, and z are integers. For
packages built for this release and previous releases, use SUNW_PKGVERS="1.0".

pkginfo(4)

464 man pages section 4: File Formats • Last Revised 3 Dec 2004

SUNW_PRODNAME
Solaris-only parameter indicating the name of the product this package is a part of
or comprises (maximum length of 256 ASCII characters). A few examples of
currently used SUNW_PRODNAME values are: "SunOS", "OpenWindows", and
"Common Desktop Environment".

SUNW_PRODVERS
Solaris-only parameter indicating the version or release of the product described in
SUNW_PRODNAME (maximum length of 256 ASCII characters). For example, where
SUNW_PRODNAME="SunOS", and the Solaris 2.x Beta release, this string could be
"5.x BETA", while for the Solaris 2.x FCS release, the string would be "5.x". For
Solaris 8, the string is "5.8". If the SUNW_PRODNAME parameter is NULL, so should
be the SUNW_PRODVERS parameter.

ULIMIT
If set, this parameter is passed as an argument to the ulimit(1) command (see
limit(1)), which establishes the maximum size of a file during installation.

VENDOR
Used to identify the vendor that holds the software copyright (maximum length of
256 ASCII characters).

VSTOCK
The vendor stock number, if any, that identifies this product (maximum length of
256 ASCII characters).

The following environment variable is available to package class action scripts and to
preinstall, postinstall, and check installation scripts.

SUNW_PKG_INSTALL_ZONENAME
This variable is set by individual package class action scripts , by pre- and
post-installation scripts, and by check installation scripts.

If this variable is not set, the system does not support the zones(5) feature. If the
variable is set to global, the package is being installed to or removed from the
global zone. If the variable is not set to global, the package is being installed to or
removed from the non–global zone named ${SUNW_PKG_INSTALL_ZONENAME}.

EXAMPLE 1 A Sample pkginfo File

Here is a sample pkginfo file:

SUNW_PRODNAME="SunOS"
SUNW_PRODVERS="5.5"
SUNW_PKGTYPE="usr"
SUNW_PKG_ALLZONES=false
SUNW_PKG_HOLLOW=false
PKG="SUNWesu"
NAME="Extended System Utilities"
VERSION="11.5.1"
ARCH="sparc"
VENDOR="Sun Microsystems, Inc."
HOTLINE="Please contact your local service provider"

pkginfo(4)

ENVIRONMENT
VARIABLES

EXAMPLES

File Formats 465

EXAMPLE 1 A Sample pkginfo File (Continued)

EMAIL=""
VSTOCK="0122c3f5566"
CATEGORY="system"
ISTATES="S 2"

RSTATES="S 2"

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability See entries below

PKG value Evolving

VERSION value Evolving

NAME value Evolving

DESC value Evolving

ARCH value Evolving

CATEGORY value Evolving

BASEDIR value Evolving

ISTATES value Evolving

RSTATES value Evolving

MAXINST value Evolving

SUNW_PKG_ALLZONES Evolving

SUNW_PKG_HOLLOW Evolving

SUNW_PKG_THISZONE Evolving

SUNW_PRODNAME Evolving

SUNW_PRODVERS Evolving

SUNW_PKGVERS Evolving

SUNW_PKGTYPE Unstable

SUNW_LOC Evolving

SUNW_PKGLIST Evolving

SUNW_PKG_DIR Evolving

pkginfo(4)

ATTRIBUTES

466 man pages section 4: File Formats • Last Revised 3 Dec 2004

isalist(1), limit(1), pkgmk(1), uname(1), init(1M), setlocale(3C),
clustertoc(4), order(4), packagetoc(4), pkgmap(4), attributes(5), zones(5)

Application Packaging Developer’s Guide

International Language Environments Guide

Developers can define their own installation parameters by adding a definition to this
file. A developer-defined parameter must begin with a capital letter.

Trailing white space after any parameter value is ignored. For example, VENDOR="Sun
Microsystems, Inc." is the same as VENDOR="Sun Microsystems, Inc. ".

pkginfo(4)

SEE ALSO

NOTES

File Formats 467

pkgmap – package contents description file

pkgmap is an ASCII file that provides a complete listing of the package contents. It is
automatically generated by pkgmk(1) using the information in the prototype(4) file.

Each entry in pkgmap describes a single ‘‘deliverable object file.’’ A deliverable object
file includes shell scripts, executable objects, data files, directories, and so forth. The
entry consists of several fields of information, each field separated by a space. The
fields are described below and must appear in the order shown.

part An optional field designating the part number in which the object
resides. A part is a collection of files and is the atomic unit by
which a package is processed. A developer can choose the criteria
for grouping files into a part (for example, based on class). If no
value is defined in this field, part 1 is assumed.

ftype A one-character field that indicates the file type. Valid values are
listed below. File types are divided between those that are not to
be modified and those that are modifiable.

Files of the following types must never be modified:

b block special device

c character special device

d directory

f a standard executable file, data file, or other type of file,
the contents of which must never be modified.

i information file (such as a file containing a copyright,
list of dependencies, or package information) or
installation script (such as checkinstall, class action
[i.], pre/post install/remove), the contents of which
must never be modified.

l linked file

p named pipe

s symbolic link

x an exclusive directory accessible only by this package

Files of the following types can be modified:

e An editable file, intended to be edited (selectively
modified) after installation. An editable file is expected
to change on installation or removal, can be shared by
several packages, and must be installed by a class
action script. Examples are a configuration file or a list
of users.

pkgmap(4)

NAME

DESCRIPTION

468 man pages section 4: File Formats • Last Revised 13 Feb 2004

v A volatile file, intended to be overwritten or appended
to after installation. A volatile file is not expected to
change on installation or removal, is not preserved
between installations, and can be installed by a class
action script. Examples are a log file or a lock file.

Following package installation, the contents of files of all types
except e and v must not change. Any file that is subject to change
should be marked as e or v.

class The installation class to which the file belongs. This name must
contain only alphanumeric characters and be no longer than 12
characters. It is not specified if the ftype is i (information file).

pathname pathname may contain variables of the form $variable that support
install-time configuration of the file. variable may be embedded in
the pathname structure. (See prototype(4) for definitions of
variable specifications.)

Do not use the following reserved words in pathname, since they
are applied by pkgadd(1M) using a different mechanism:

PKG_INSTALL_ROOT
BASEDIR
CLIENT_BASEDIR

major The major device number. The field is only specified for block or
character special devices.

minor The minor device number. The field is only specified for block or
character special devices.

mode The octal mode of the file (for example, 0664). A question mark (?)
indicates that the mode will be left unchanged, implying that the
file already exists on the target machine. This field is not used for
linked files, packaging information files, or non-installable files.

The mode can contain a variable specification. (See prototype(4)
for definitions of variable specifications.)

owner The owner of the file (for example, bin or root). The field is
limited to 14 characters in length. A question mark (?) indicates
that the owner will be left unchanged, implying that the file
already exists on the target machine. This field is not used for
linked files or non-installable files. It is used optionally with a
package information file. If used, it indicates with what owner an
installation script will be executed.

The owner can contain a variable specification. (See prototype(4)
for definitions of variable specifications.)

pkgmap(4)

File Formats 469

group The group to which the file belongs (for example, "bin" or "sys").
The field is limited to 14 characters in length. A question mark (?)
indicates that the group will be left unchanged, implying that the
file already exists on the target machine. This field is not used for
linked files or non-installable files. It is used optionally with a
package information file. If used, it indicates with what group an
installation script will be executed.

The group can contain a variable specification. (See prototype(4)
for definitions of variable specifications.)

size The actual size of the file in bytes. This field is not specified for
named pipes, special devices, directories or linked files.

cksum The checksum of the file contents. This field is not specified for
named pipes, special devices, directories, or linked files.

modtime The time of last modification, as reported by the stat(2) function
call. This field is not specified for named pipes, special devices,
directories, or linked files.

Each pkgmap file must have one line that provides information about the number of
parts, maximum size of parts that make up the package, and, optionally, the size of the
package after compression (where size is given in 512-byte blocks). This line is in the
following format:

: number_of_parts maximum_part_size compressed_pkg_size

Lines that begin with ‘‘#’’ are comment lines and are ignored.

When files are saved during installation before they are overwritten, they are normally
just copied to a temporary pathname. However, for files whose mode includes execute
permission (but which are not editable), the existing version is linked to a temporary
pathname and the original file is removed. This allows processes which are executing
during installation to be overwritten.

EXAMPLE 1 A sample pkgmap file

: 2 500
1 i pkginfo 237 1179 541296672
1 b class1 /dev/diskette 17 134 0644 root other
1 c class1 /dev/rdiskette 17 134 0644 root other
1 d none bin 0755 root bin
1 f none bin/INSTALL 0755 root bin 11103 17954 541295535
1 f none bin/REMOVE 0755 root bin 3214 50237 541295541
1 l none bin/UNINSTALL=bin/REMOVE
1 f none bin/cmda 0755 root bin 3580 60325 541295567
1 f none bin/cmdb 0755 root bin 49107 51255 541438368
1 f class1 bin/cmdc 0755 root bin 45599 26048 541295599
1 f class1 bin/cmdd 0755 root bin 4648 8473 541461238
1 f none bin/cmde 0755 root bin 40501 1264 541295622
1 f class2 bin/cmdf 0755 root bin 2345 35889 541295574

pkgmap(4)

EXAMPLES

470 man pages section 4: File Formats • Last Revised 13 Feb 2004

EXAMPLE 1 A sample pkgmap file (Continued)

1 f none bin/cmdg 0755 root bin 41185 47653 541461242
2 d class2 data 0755 root bin
2 p class1 data/apipe 0755 root other
2 d none log 0755 root bin
2 v none log/logfile 0755 root bin 41815 47563 541461333
2 d none save 0755 root bin
2 d none spool 0755 root bin
2 d none tmp 0755 root bin

pkgmk(1), pkgadd(1M), stat(2), pkginfo(4), prototype(4)

Application Packaging Developer’s Guide

The pkgmap file may contain only one entry per unique pathname.

pkgmap(4)

SEE ALSO

NOTES

File Formats 471

platform – directory of files specifying supported platforms

.platform

The Solaris operating environment release includes the .platform directory, a new
directory on the Solaris CD image. This directory contains files (created by Sun and
Solaris OEMs) that define platform support. These files are generically referred to as
platform definition files. They provide a means to map different platform types into a
platform group.

Platform definition files in the .platform directory are used by the installation software
to ensure that software appropriate for the architecture of the system will be installed.

Sun provides a platform definition file named .platform/Solaris . This file is the
only one that can define platform groups to which other platform definition files can
refer. For example, an OEM platform definition file can refer to any platform group
specified in the Solaris platform definition file.

Other platform definition files are delivered by OEMs. To avoid name conflicts, OEMs
will name their platform definition file with an OEM-unique string. OEMs should use
whatever string they use to make their package names unique. This unique string is
often the OEM’s stock symbol.

Comments are allowed in a platform definition file. A "#" begins a comment and can
be placed anywhere on a line.

Platform definition files are composed of keyword-value pairs, and there are two
kinds of stanzas in the file: platform group definitions and platform identifications.

� Platform group definitions:

The keywords in a platform group definition stanza are:

PLATFORM_GROUP The PLATFORM_GROUP keyword must be the first keyword in
the platform group definition stanza. The value assigned to this
keyword is the name of the platform group, for example:

PLATFORM_GROUP=sun4c

The PLATFORM_GROUP name is an arbitrary name assigned to a
group of platforms. However, PLATFORM_GROUP typically
equals the output of the uname -m command.
PLATFORM_GROUP value cannot have white space and is
limited to 256 ASCII characters.

INST_ARCH The instruction set architecture of all platforms in the platform
group, for example:

INST_ARCH=sparc

platform(4)

NAME

SYNOPSIS

DESCRIPTION

472 man pages section 4: File Formats • Last Revised 19 Nov 2002

The INST_ARCH keyword value must be the value returned by
the uname -p command on all platforms in the platform
group.

� Platform identifications:

The keywords in a platform identification stanza are:

PLATFORM_NAME The PLATFORM_NAME keyword must be the first
keyword in the platform identification stanza. The
PLATFORM_NAME is the name assigned to the
platform, for example:

PLATFORM_NAME=SUNW,SPARCstation-5

Typically, this name is the same as the value
returned by the uname -icommand on the
machine, but it need not be the same.

The PLATFORM_NAME value cannot have white
space and is limited to 256 ASCII characters. If it
contains parentheses, it must contain only balanced
parentheses. For example. the string "foo(bar)foo" is
a valid value for this keyword, but "foo(bar" is not.

The other keywords in the platform identification
stanza can be in any order, as long as the
PLATFORM_NAME keyword is first.

PLATFORM_ID The value returned by the uname -i command on
the machine, for example:

PLATFORM_ID=SUNW,SPARCstation-5

MACHINE_TYPE The value returned by the uname -m command on
the machine, for example:

MACHINE_TYPE=sun4c

IN_PLATFORM_GROUP The platform group of which the platform is a
member, for example:

IN_PLATFORM_GROUP=sun4c

The platform group name must be specified in the
same file as the platform identification stanza or in
the platform definition file with the name
.platform/Solaris .

platform(4)

File Formats 473

The IN_PLATFORM_GROUP keyword is optional. A
platform doesn’t have to belong to a platform
group. If a platform is not explicitly assigned to a
platform group, it essentially forms its own
platform group, where the platform group name is
the PLATFORM_NAME value. The
IN_PLATFORM_GROUP value typically equals the
output of the uname -m command.
IN_PLATFORM_GROUP value cannot have white
space and is limited to 256 ASCII characters.

INST_ARCH The instruction set architecture of the platform, for
example:

INST_ARCH=sparc

This field is only required if the platform does not
belong to a platform group. The INST_ARCH
keyword value must be the value returned by the
uname -i command on all platforms in the
platform group.

The installation program will remain compatible with the old Solaris CD format. If a
Solaris CD image does not contain any platform definition files, the installation and
upgrade programs will select the packages to be installed based on machine type, that
is, the value returned by the uname -p command.

EXAMPLE 1 Platform Group Definitions

The following example shows platform group definitions from the
.platform/Solaris platform definition file.

#
PLATFORM_GROUP=sun4u

INST_ARCH=sparc

EXAMPLE 2 Platform Identification Stanzas

The following example shows platform identification stanzas, which define systems
that belong in a platform group, from the .platform/Solaris platform definition
file.

#
PLATFORM_NAME=SUNW,SunFire
PLATFORM_ID=SUNW,SunFire
IN_PLATFORM_GROUP=sun4u
PLATFORM_NAME=SUNW,Ultra-80
PLATFORM_ID=SUNW,Ultra-80
IN_PLATFORM_GROUP=sun4u
#
PLATFORM_NAME=SUNW,SunFire

platform(4)

COMPATIBILITY

EXAMPLES

474 man pages section 4: File Formats • Last Revised 19 Nov 2002

EXAMPLE 2 Platform Identification Stanzas (Continued)

PLATFORM_ID=SUNW,SunFire
IN_PLATFORM_GROUP=sun4u
#
PLATFORM_NAME=SUNW,Ultra-80
PLATFORM_ID=SUNW,Ultra-80

IN_PLATFORM_GROUP=sun4u

The .platform directory must reside as / cd_image/Solaris_vers/.platform,
where

cd_image Is the path to the mounted Solaris CD (/cdrom/cdrom0/s0 by
default) or the path to a copy of the Solaris CD on a disk.

Solaris_vers Is the version of Solaris, for example, Solaris_2.9.

Typically, a platform identification stanza contains either a PLATFORM_ID or a
MACHINE_TYPE stanza, but not both.

If both are specified, both must match for a platform to be identified as this platform
type. Each platform identification stanza must contain either a PLATFORM_ID value or
a MACHINE_TYPE value. If a platform matches two different platform identification
stanzas—one which matched on the value of PLATFORM_ID and one which matched
on the value of MACHINE_TYPE , the one that matched on PLATFORM_ID will take
precedence.

The .platform directory is part of the Solaris CD image, whether that be the Solaris
CD or a copy of the Solaris CD on a system’s hard disk.

platform(4)

FILES

NOTES

File Formats 475

plot – graphics interface

Files of this format are interpreted for various devices by commands described in
plot(1B). A graphics file is a stream of plotting instructions. Each instruction consists
of an ASCII letter usually followed by bytes of binary information. The instructions
are executed in order. A point is designated by four bytes representing the x and y
values; each value is a signed integer. The last designated point in an l, m, n, or p
instruction becomes the ‘‘current point’’ for the next instruction.

m Move: the next four bytes give a new current point.

n Cont: draw a line from the current point to the point given by the next four
bytes. See plot(1B).

p Point: plot the point given by the next four bytes.

l Line: draw a line from the point given by the next four bytes to the point
given by the following four bytes.

t Label: place the following ASCII string so that its first character falls on the
current point. The string is terminated by a NEWLINE.

a Arc: the first four bytes give the center, the next four give the starting point,
and the last four give the end point of a circular arc. The least significant
coordinate of the end point is used only to determine the quadrant. The arc
is drawn counter-clockwise.

c Circle: the first four bytes give the center of the circle, the next two the
radius.

e Erase: start another frame of output.

f Linemod: take the following string, up to a NEWLINE, as the style for
drawing further lines. The styles are ‘‘dotted,’’ ‘‘solid,’’ ‘‘longdashed,’’
‘‘shortdashed,’’ and ‘‘dotdashed.’’ Effective only in plot 4014 and plot
ver.

s Space: the next four bytes give the lower left corner of the plotting area; the
following four give the upper right corner. The plot will be magnified or
reduced to fit the device as closely as possible.

Space settings that exactly fill the plotting area with unity scaling appear
below for devices supported by the filters of plot(1B). The upper limit is
just outside the plotting area.

In every case the plotting area is taken to be square; points outside may be displayable
on devices whose face is not square.

4014 space(0, 0, 3120, 3120);

ver space(0, 0, 2048, 2048);

300, 300s space(0, 0, 4096, 4096);

plot(4B)

NAME

DESCRIPTION

476 man pages section 4: File Formats • Last Revised 18 Feb 2003

450 space(0, 0, 4096, 4096);

graph(1), plot(1B)

plot(4B)

SEE ALSO

File Formats 477

policy.conf – configuration file for security policy

/etc/security/policy.conf

The policy.conf file provides the security policy configuration for user-level
attributes. Each entry consists of a key/value pair in the form:

key=value

The following keys are defined:

AUTHS_GRANTED Specify the default set of authorizations
granted to all users. This entry is
interpreted by chkauthattr(3SECDB).
The value is one or more comma-separated
authorizations defined in auth_attr(4).

PROFS_GRANTED Specify the default set of profiles granted to
all users. This entry is interpreted by
chkauthattr(3SECDB) and
getexecuser(3SECDB). The value is one
or more comma-separated profiles defined
in prof_attr(4).

PRIV_DEFAULT and PRIV_LIMIT Settings for these keys determine the
default privileges that users have. (See
privileges(5).) If these keys are not set,
the default privileges are taken from the
inherited set. PRIV_DEFAULT determines
the default set on login. PRIV_LIMIT
defines the limit set on login. Users can
have privileges assigned or taken away
through use of user_attr(4). Privileges
can also be assigned to profiles, in which
case users who have those profiles can
exercise the assigned privileges through
pfexec(1).

For maximum future compatibility, the
privilege specifications should always
include basic or all. Privileges should
then be removed using negation. See
EXAMPLES. By assigning privileges in this
way, you avoid a situation where, following
an addition of a currently unprivileged
operation to the basic privilege set, a user
unexpectedly does not have the privileges
he needs to perform that now-privileged
operation.

policy.conf(4)

NAME

SYNOPSIS

DESCRIPTION

478 man pages section 4: File Formats • Last Revised 16 Mar 2004

Note that removing privileges from the
limit set requires extreme care, as any set-uid
root program might suddenly fail because it
lacks certain privilege(s). Note also that
dropping basic privileges from the default
privilege set can cause unexpected failure
modes in applications.

LOCK_AFTER_RETRIES=YES|NO Specifies whether a local account is locked
after the count of failed logins for a user
equals or exceeds the allowed number of
retries as defined by RETRIES in
/etc/default/login. The default value
for users is NO. Individual account overrides
are provided by user_attr(4).

CRYPT_ALGORITHMS_ALLOW Specify the algorithms that are allowed for
new passwords and is enforced only in
crypt_gensalt(3C).

CRYPT_ALGORITHMS_DEPRECATE Specify the algorithm for new passwords
that is to be deprecated. For example, to
deprecate use of the traditional UNIX
algorithm, specify
CRYPT_ALGORITHMS_DEPRECATE=__unix__
and change CRYPT_DEFAULT= to another
algorithm, such as CRYPT_DEFAULT=1 for
BSD and Linux MD5.

CRYPT_DEFAULT Specify the default algorithm for new
passwords. The Solaris default is the
traditional UNIX algorithm. This is not
listed in crypt.conf(4) since it is internal
to libc. The reserved name __unix__ is
used to refer to it.

The key/value pair must appear on a single line, and the key must start the line. Lines
starting with # are taken as comments and ignored. Option name comparisons are
case-insensitive.

Only one CRYPT_ALGORITHMS_ALLOW or CRYPT_ALGORITHMS_DEPRECATE value
can be specified. Whichever is listed first in the file takes precedence. The algorithm
specified for CRYPT_DEFAULT must either be specified for
CRYPT_ALGORITHMS_ALLOW or not be specified for
CRYPT_ALGORITHMS_DEPRECATE. If CRYPT_DEFAULT is not specified, the default is
__unix__.

EXAMPLE 1 Defining a Key/Value Pair

AUTHS_GRANTED=solaris.date

policy.conf(4)

EXAMPLES

File Formats 479

EXAMPLE 1 Defining a Key/Value Pair (Continued)

EXAMPLE 2 Specifying Privileges

As noted above, you should specify privileges through negation, specifying all for
PRIV_LIMIT and basic for PRIV_DEFAULT, then subtracting privileges, as shown
below.

PRIV_LIMIT=all,!sys_linkdir

PRIV_DEFAULT=basic,!file_link_any

The first line, above, takes away only the sys_linkdir privilege. The second line
takes away only the file_link privilege. These privilege specifications will be
unaffected by any future addition of privileges that might occur.

/etc/user_attr Defines extended user attributes.

/etc/security/auth_attr Defines authorizations.

/etc/security/prof_attr Defines profiles.

/etc/security/policy.conf Defines policy for the system.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Interface Stability Evolving

login(1), pfexec(1), chkauthattr(3SECDB), getexecuser(3SECDB),
auth_attr(4), crypt.conf(4), prof_attr(4), user_attr(4), attributes(5),
privileges(5)

policy.conf(4)

FILES

ATTRIBUTES

SEE ALSO

480 man pages section 4: File Formats • Last Revised 16 Mar 2004

power.conf – Power Management configuration information file

/etc/power.conf

The power.conf file is used by the Power Management configuration program
pmconfig(1M), to initialize the settings for Power Management. If you make changes
to this file, you must run pmconfig(1M) manually for the changes to take effect.

The dtpower(1M) GUI allows the configuration of a subset of parameters allowed by
this file. For ease-of-use, it is recommended that you use dtpower(1M) to configure
the parameters. See the EXAMPLES section for information on disabling Power
Management.

Power Management addresses two specific management scenarios: management of
individual devices and management of the whole system. An individual device is
power managed if the device supports multiple power levels and if the device driver
uses Power Management interfaces provided by the kernel to save device power when
the device is idle.

All entries in the power.conf file are processed in the order that they occur in the
file.

Devices with drivers that use the automatic device Power Management interfaces are
automatically power managed if the autopm entry is enabled.The autopm entry is
described near the end of this section. The pm-components property describes the
Power Management model of a device driver to the Power Management framework.
See pm-components(9P) for more information.

When a component has been idle at a given power level for its threshold time, the
power level of the component will be reduced to the next lower power level of that
component, if any. For devices which implement multiple components, each
component is power-managed independently.

Default thresholds for components of automatically power managed devices are
computed by the Power Management framework based on the system idleness
threshold. By default, all components of the device are powered off if they have all
been idle for the system’s idleness threshold. The default system idleness threshold is
determined by the applicable United States Environmental Protection Agency’s (EPA)
Energy Star Memorandum of Understanding. See the NOTES section of this manual page
for more information.

To set the system idleness threshold, use one of the following entries:

system-threshold threshold

system-threshold always-on

where threshold is the value of the system idleness threshold in hours, minutes or
seconds as indicated by a trailing h, m or s (defaulting to seconds if only a number is
given). If always-on is specified, then by default, all devices will be left at full power.

power.conf(4)

NAME

SYNOPSIS

DESCRIPTION

Automatic Device
Power

Management

File Formats 481

To override the default device component thresholds assigned by the Power
Management framework, a device-thresholds entry may be used. A
device-thresholds entry sets thresholds for a specific automatically
power-managed device or disables automatic Power Management for the specific
device.

A device-thresholds entry has the form:

device-thresholds phys_path (threshold ...) ...

or

device-thresholds phys_path threshold

or

device-thresholds phys_path always-on

where phys_path specifies the physical path (libdevinfo(3LIB)) of a specific device.
For example, /pci@8,600000/scsi@4/ssd@w210000203700c3ee,0 specifies the
physical path of a disk. A symbolic link into the /devices tree, for example
/dev/dsk/c1t1d0s0, is also accepted. The thresholds apply (or keeping the device
always on applies) to the specific device only.

In the first form above, each threshold value represents the number of hours, minutes
or seconds, depending on a trailing h, m or s with a default to seconds, to spend idle at
the corresponding power level before power will be reduced to the next lower level of
that component. Parentheses are used to group thresholds per component, with the
first (leftmost) group being applied to component 0, the next to component 1, and the
like. Within a group, the last (rightmost) number represents the time to be idle in the
highest power level of the component before going to the next-to-highest level, while
the first (leftmost) number represents the time to be idle in the next-to-lowest power
level before going to the lowest power level.

If the number of groups does not match the number of components exported by the
device (by means of pm-components(9P) property), or the number of thresholds in a
group is not one less than the number of power levels the corresponding component
supports, then an error message will be printed and the entry will be ignored.

For example, assume a device called xfb exports the components Frame Buffer and
Monitor. Component Frame Buffer has two power levels: Off and On. Component
Monitor has four power levels: Off, Suspend, Standby, and On.

The following device-thresholds entry:

device-thresholds /pci@f0000/xfb@0 (0) (3m 5m 15m)

would set the threshold time for the Monitor component of the specific xfb card to go
from On to Standby in 15 minutes, the threshold for Monitor to go from Standby to
Suspendin 5 minutes, and the threshold for Monitor to go from Suspend to Off in 3
minutes. The threshold for Frame Buffer to go from On to Off will be 0 seconds.

power.conf(4)

482 man pages section 4: File Formats • Last Revised 05 Dec 2003

In the second form above, where a single threshold value is specified without
parentheses, the threshold value represents a maximum overall time within which the
entire device should be powered down if it is idle. Because the system does not know
about any internal dependencies there may be among a device’s components, the
device may actually be powered down sooner than the specified threshold, but will not
take longer than the specified threshold, provided that all device components are idle.

In the third form above, all components of the device are left at full power.

Device Power Management entries are only effective if there is no user process
controlling the device directly. For example, X Windows systems directly control frame
buffers. The entries in the power.conf file are effective only when X Windows is not
running.

Dependencies among devices may also be defined. A device depends upon another if
none of its components may have their power levels reduced unless all components of
the other device are powered off. A dependency may be indicated by an entry of the
form:

device-dependency dependent_phys_path phys_path [phys_path ...]

where dependent_phys_path is the path name (as above) of the device that is kept up by
the others, and the phys_path entries specify the devices that keep it up. A symbolic
link into the /devices tree, such as /dev/fb, is also accepted. This entry is needed
only for logical dependents for the device. A logical dependent is a device that is not
physically connected to the power managed device (for example, the display and the
keyboard). Physical dependents are automatically considered and need not be
included.

In addition to listing dependents by physical path, an arbitrary group of devices can
be made dependent upon another device by specifying a property dependency using
the following syntax:

device-dependency-property property phys_path [phys_path ...]

where each device that exports the property property will be kept up by the devices
named by phys_path(s). A symbolic link into the /devices tree (such as /dev/fb) is
accepted as well as a pathname for phys_path.

For example, the following entry ensures that every device that exports the boolean
property named removable-media is kept up when the console framebuffer is up.
See removable-media(9P).

This entry keeps removable media from being powered down unless the
console framebuffer and monitor are powered down
(See removable-media(9P))
#

device-dependency-property removable-media /dev/fb

An autopm entry may be used to enable or disable automatic device Power
Management on a system-wide basis. The format of the autopm entry is:

autopm behavior

power.conf(4)

File Formats 483

Acceptable behavior values are described in the following:

default The behavior of the system will depend upon its model. Desktop
models that fall under the United States Environmental Protection
Agency’s Energy Star Memorandum of Understanding #3 will have
automatic device Power Management enabled, and all others will
not. See the NOTES section of this manual page for more
information.

enable Automatic device Power Management will be started when this
entry is encountered.

disable Automatic device Power Management will be stopped when this
entry is encountered.

The system Power Management entries control Power Management of the entire
system using the suspend-resume feature. When the system is suspended, the
complete current state is saved on the disk before power is removed. On reboot, the
system automatically starts a resume operation and the system is restored to the state
it was in prior to suspend.

The system can be configured to do an automatic shutdown (autoshutdown) using the
suspend-resume feature by an entry of the following form:

autoshutdown idle_time start_time finish_time behavior

idle_time specifies the time in minutes that system must have been idle before it will be
automatically shutdown. System idleness is determined by the inactivity of the system
and can be configured as discussed below.

start_time and finish_time (each in hh:mm) specify the time period during which the
system may be automatically shutdown. These times are measured from the start of
the day (12:00 a.m.). If the finish_time is less than or equal to the start_time, the period
span from midnight to the finish_time and from the start_time to the following
midnight. To specify continuous operation, the finish_time may be set equal to the
start_time.

Acceptable behavior values are described in the following:

shutdown The system will be shut down automatically when it has been idle
for the number of minutes specified in the idle_time value and the
time of day falls between the start_time and finish_time values.

noshutdown The system is never shut down automatically.

autowakeup If the hardware has the capability to do autowakeup, the system
is shut down as if the value were shutdown and the system will
be restarted automatically the next time the time of day equals
finish_time.

power.conf(4)

System Power
Management

484 man pages section 4: File Formats • Last Revised 05 Dec 2003

default The behavior of the system will depend upon its model. Desktop
models that fall under the United States Enviromental Protection
Agency’s Energy Star Memorandum of Understanding #2 will have
automatic shutdown enabled, as if behavior field were set to
shutdown, and all others will not. See NOTES.

unconfigured The system will not be shut down automatically. If the system has
just been installed or upgraded, the value of this field will be
changed upon the next reboot.

You can use the following format to configure the system’s notion of idleness:

idleness_parameter value

Where idleness_parameter can be:

ttychars If the idleness_parameter is ttychars, the value field will be
interpreted as the maximum number of tty characters that can pass
through the ldterm module while still allowing the system to be
considered idle. This value defaults to 0 if no entry is provided.

loadaverage If the idleness_parameter is loadaverage, the (floating point) value
field will be interpreted as the maximum load average that can be
seen while still allowing the system to be considered idle. This
value defaults to 0.04 if no entry is provided.

diskreads If the idleness_parameter is diskreads, the value field will be
interpreted as the maximum number of disk reads that can be
perform by the system while still allowing the system to be
considered idle. This value defaults to 0 if no entry is provided.

nfsreqs If the idleness_parameter is nfsreqs, the value field will be
interpreted as the maximum number of NFS requests that can be
sent or received by the system while still allowing the system to be
considered idle. Null requests, access requests, and getattr
requests are excluded from this count. This value defaults to 0 if
no entry is provided.

idlecheck If the idleness_parameter is idlecheck, the value must be
pathname of a program to be executed to determine if the system
is idle. If autoshutdown is enabled and the console keyboard,
mouse, tty, CPU (as indicated by load average), network (as
measured by NFS requests) and disk (as measured by read
activity) have been idle for the amount of time specified in the
autoshutdown entry specified above, and the time of day falls
between the start and finish times, then this program will be
executed to check for other idleness criteria. The value of the idle
time specified in the above autoshutdown entry will be passed to

power.conf(4)

File Formats 485

the program in the environment variable PM_IDLETIME. The
process must terminate with an exit code that represents the
number of minutes that the process considers the system to have
been idle.

There is no default idlecheck entry.

When the system is suspended, the current system state is saved on the disk in a
statefile. An entry of following form can be used to change the location of statefile:

statefile pathname

where pathname identifies a block special file, for example, /dev/dsk/c1t0d0s2, or
is the absolute pathname of a local ufs file. If the pathname specifies a block special
file, it can be a symbolic link as long as it does not have a file system mounted on it. If
pathname specifies a local ufs file, it cannot be a symbolic link. If the file does not
exist, it will be created during the suspend operation. All the directory components of
the path must already exist.

The actual size of statefile depends on a variety of factors, including the size of system
memory, the number of loadable drivers/modules in use, the number and type of
processes running, and the amount of user memory that has been locked down. It is
recommended that statefile be placed on a file system with at least 10 Mbytes of free
space. In case there is no statefile entry at boot time, an appropriate new entry is
automatically created by the system.

EXAMPLE 1 Disabling Automatic Device Power Management

To disable automatic device Power Management, change the following line in the
/etc/power.conf file

autopm default

to read:

autopm disable

Then run pmconfig or reboot. See pmconfig(1M) for more information.

You can also use dtpower to disable automatic device Power Management. See
dtpower(1M) for more information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpmr

Interface stability Evolving

power.conf(4)

EXAMPLES

ATTRIBUTES

486 man pages section 4: File Formats • Last Revised 05 Dec 2003

pmconfig(1M), powerd(1M), sys-unconfig(1M), uadmin(2), libdevinfo(3LIB),
attributes(5), cpr(7), ldterm(7M), pm(7D), pm-components(9P),
removable-media(9P)

Writing Device Drivers

Solaris Common Desktop Environment: User’s Guide

SPARC desktop models first shipped after October 1, 1995 and before July 1, 1999
comply with the United States Enviromental Protection Agency’s Energy Star
Memorandum of Understanding #2 guidelines and have autoshutdownenabled by
default after 30 minutes of system idleness. This is achieved by default keyword of
autoshutdown entry behave as shutdown for these machines. The user is prompted
to confirm this default behavior at system installation reboot, or during the first reboot
after the system is unconfigured by sys-unconfig(1M).

SPARC desktop models first shipped after July 1, 1999 comply with the United States
Enviromental Protection Agency’s Energy Star Memorandum of Understanding #3
guidelines and have autoshutdowndisabled by default, with autopm enabled after
30 minutes of idleness. This is achieved by interpreting default keyword of autopm
entry behavior as enabled for these machines. User is not prompted to confirm this
default behavior.

To determine the version of the EPA’s Energy Star Memorandum applicable to your
machine, use:

prtconf -pv | grep -i energystar

Absence of a property indicates no Energy Star guidelines are applicable to your
machine.

System Power Management (suspend-resume) is currently supported only on a
limited set of hardware platforms. Please see the book Solaris Common Desktop
Environment: User’s Guide for a complete list of platforms that support system Power
Management. See uname(2) to programatically determine if the machine supports
suspend-resume.

power.conf(4)

SEE ALSO

NOTES

File Formats 487

printers – user-configurable printer alias database

$HOME/.printers

The $HOME/.printers file is a simplified version of the system
/etc/printers.conf file. See printers.conf(4). Users create the
$HOME/.printers file in their home directory. This optional file is customizable by
the user.

The $HOME/.printers file performs the following functions:

1. Sets personal aliases for all print commands.

2. Sets the interest list for the lpget, lpstat, and cancel commands. See
lpget(1M), lpstat(1) and cancel(1).

3. Sets the default printer for the lp, lpr, lpq, and lprm commands. See lp(1),
lpr(1B), lpq(1B), and lprm(1B).

Use a line or full screen editor to create or modify the $HOME/.printers file.

Each entry in $HOME/.printers describes one destination. Entries are one line
consisting of two fields separated by either BLANKs or TABs and terminated by a
NEWLINE. Format for an entry in $HOME/.printers varies according to the
purpose of the entry.

Empty lines can be included for readability. Entries may continue on to multiple lines
by adding a backslash (‘\’) as the last character in the line. The $HOME/.printers
file can include comments. Comments have a pound sign (‘#’) as the first character in
the line, and are terminated by a NEWLINE.

Specify the alias or aliases in the first field. Separate multiple aliases by a pipe sign
(‘|’). Specify the destination in the second field. A destination names a printer or class
of printers, See lpadmin(1M). Specify the destination using atomic or POSIX-style
(server:destination) names. See printers.conf(4) for information regarding the
naming conventions for atomic names, and standards(5) for information regarding
POSIX.

Specify _all in the first field. Specify the list of destinations for the interest list in the
second field. Separate each destinations by a comma (‘,’). Specify destinations using
atomic or POSIX-style (server:destination) names. See printers.conf(4) for
information regarding the naming conventions for atomic and names. This list of
destinations can refer to an alias defined in $HOME/.printers.

Specify _default in the first field. Specify the default destination in the second field.
Specify the default destination using atomic or POSIX-style (server:destination) names.
See printers.conf(4) for information regarding the naming conventions for atomic
names. The default destination may refer to an alias defined in $HOME/.printers.

The print client commands locate destination information based on the “printers”
database entry in the /etc/nsswitch.conf file. See nsswitch.conf(4).

The default destination is located differently depending on the command.

printers(4)

NAME

SYNOPSIS

DESCRIPTION

Entries

Setting Personal
Aliases

Setting the Interest
List for lpget,

lpstat and cancel

Setting the Default
Destination

Locating
Destination
Information
Locating the

Personal Default
Destination488 man pages section 4: File Formats • Last Revised 23 May 2003

The lp command locates the default destination in the following order:

1. lp command’s -d destination option.
2. LPDEST environment variable.
3. PRINTER environment variable.
4. _default destination in $HOME/.printers.
5. _default destination in /etc/printers.conf.

The lpr, lpq, and lprm commands locate the default destination in the following
order:

1. lpr command’s -P destination option.
2. PRINTER environment variable.
3. LPDEST environment variable.
4. _default destination in $HOME/.printers.
5. _default destination in /etc/printers.conf.

The lpget, lpstat, and cancel commands locate the interest list in the following
order:

1. _all list in $HOME/.printers.
2. _all list in /etc/printers.conf.

EXAMPLE 1 Setting the interest list

The following entry sets the interest list to destinations ps, secure, and dog at server
west and finance_ps:

_all ps,secure,west:dog/finance_ps

EXAMPLE 2 Setting aliases to a printer

The following entry sets the aliases ps, lp, and lw to sparc_printer:

ps|lp|lw sparc_printer

EXAMPLE 3 Setting an alias as a default destination

The following entry sets the alias pcl to hplj and sets it as the default destination:

pcl|_default hplj

EXAMPLE 4 Setting an alias to a server destination

The following entry sets the alias secure to destination catalpa at server tabloid:

secure tabloid:catalpa

EXAMPLE 5 Setting an alias to a site destination

The following entry sets the alias insecure to destination legal_ps:

insecure legal_ps

printers(4)

Locating the
Interest List for

lpget, lpstat, and
cancel

EXAMPLES

File Formats 489

EXAMPLE 5 Setting an alias to a site destination (Continued)

$HOME/.printers User-configurable printer database.

/etc/printers.conf System printer configuration database.

printers.conf.byname NIS version of /etc/printers.conf.

printers.org_dir NIS+ version of /etc/printers.conf.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

Stability Level Stable

cancel(1), lp(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), lpadmin(1M), lpget(1M),
nsswitch.conf(4), printers.conf(4), attributes(5), standards(5)

System Administration Guide: Basic Administration

$HOME/.printers is referenced by the printing commands before further name
resolution is made in /etc/printers.conf or the name service. If the alias
references a destination defined in /etc/printers.conf, it is possible that the
destination is defined differently on different systems. This could cause output to be
sent to an unintended destination if the user is logged in to a different system.

printers(4)

FILES

ATTRIBUTES

SEE ALSO

NOTES

490 man pages section 4: File Formats • Last Revised 23 May 2003

printers.conf – system printing configuration database

/etc/printers.conf

printers.conf.byname

printers.org_dir

The printers.conf file is the system printing configuration database. System
administrators use printers.conf to describe destinations for the print client
commands and the print protocol adaptor. A destination names a printer or class of
printers. See lpadmin(1M). The LP print spooler uses private LP configuration data
for represented in the printers.conf database.

Each entry in printers.conf describes one destination. Entries are one line
consisting of any number of fields separated by colons (‘:’) and terminated by a
NEWLINE. The first field of each entry specifies the name of the destination and
aliases to which the entry describes. Specify one or more names or aliases of the
destination in this first field. Specify the destination using atomic names. POSIX-style
names are not acceptable. See standards(5). Separate destination names by pipe
signs (‘|’).

Two destination names are reserved for special use in the first entry. Use _all to
specify the interest list for lpget, lpstat, and cancel. Use _default to specify the
default destination.

The remaining fields in an entry are key=value pairs. See Specifying
Configuration Options for details regarding key=value pairs.

Empty lines can be included for readability. Entries may continue on to multiple lines
by adding a backslash (‘\’) as the last character in the line. printers.conf can
include comments. Comments have a pound sign (‘#’) as the first character in the line,
and are terminated by a NEWLINE. Use the lpset command to create or modify
printers.conf. See lpset(1M). Do not make changes in printers.conf by using
an editor.

key=value pairs are configuration options defined by the system administrator. key and
value may be of arbitrary length. Separate key and value by the equal (‘=’) character.

Client/Server Configuration Options

The following client/server configuration options (represented as key=value pairs) are
supported:

bsdaddr=server,destination[,Solaris]
Sets the server and destination name. Sets if the client generates protocol extensions
for use with the lp command (see lp(1)). Solaris specifies a Solaris print server
extension. If Solaris is not specified, no protocol extensions are generated. server
is the name of the host containing the queue for destination. destination is the atomic
name by which the server knows the destination.

printers.conf(4)

NAME

SYNOPSIS

NIS

NIS+

DESCRIPTION

Entries

Specifying
Configuration

Options

File Formats 491

use=destination
Sets the destination to continue searching for configuration information. destination
is an atomic or Posix-style name (server:printer).

all=destination_list
Sets the interest list for the lpget, lpstat, and cancel commands. destination_list
is a comma-separated list of destinations. Specify destination using atomic or
Posix–style names (server:printer). See lpget(1M), lpstat(1), and
cancel(1).

General Server Options

The following general server configuration options (represented as key=value pairs) are
supported:

spooling-type=spooler[,version]
Sets the type of spooler under which a destination is configured. Dynamically loads
translation support for the back-end spooling system from
/usr/lib/print/bsd-adaptor/bsd_spooler.so[.version]. Specify spooler as
lpsched, cascade, or test. lpsched is used as a default for locally attached
destinations. cascade is used as a default for destination spooled on a remote host.
Use test for the test module to allow the capture of print requests. If using a
versioned spooler module, version specifies the version of the translation module.

spooling-type-path=dir_list
Sets the location of translation support for the type of spooler defined by the
spooling-type key. Locates translation support for the for the type of spooler
under which a destination is configured. dir_list is a comma-separated list of
absolute pathnames to the directories used to locate translation support for the
spooling system set by the spooling-type key.

LP Server Options

The following LP configuration options (represented as key=value pairs) are supported:

user-equivalence=true|false
Sets whether or not usernames are considered equivalent when cancelling a print
request submitted from a different host in a networked environment. true means
that usernames are considered equivalent, and permits users to cancel a print
requests submitted from a different host. user-equivalence is set to false by
default. false means that usernames are not considered equivalent, and does not
permit users cancel a print request submitted from a different host. If
user-equivalence is set to false, print requests can only be cancelled by the
users on the host on whichs the print prequest was generated or by the superuser
on the print server.

Test Configuration Options

The following test configuration options (represented as key=value pairs) are
supported:

printers.conf(4)

492 man pages section 4: File Formats • Last Revised 6 Feb 2004

test-spooler-available=true|false
Sets whether or not the protocol adaptor accepts connection requests to the test
adaptor for the destination. true means that the protocol adaptor accepts
connection requests to the test adaptor for the destination.
test-spooler-available is set to true by default. false means that the
protocol adaptor does not accept connection requests to the test adaptor for the
destination.

test-log=dir
Sets the location of the log file generated by the test translation module. Specify dir
as an absolute pathname.

test-dir=dir
Sets the directory to be used during execution of the test translation module.
Specify dir as an absolute pathname.

test-access=true|false
Sets whether or not the requesting client has access to the test translation module.
true means that the requesting client has access to the test translation module.
test-access is set to true by default. false means that the requesting client
does not have access to the test translation module.

test-accepting=true|false
Sets whether or not the configured destination is accepting job submission requests.
true means that the configured destination is accepting job submission requests.
test-accepting is set to true by default. false means that the configured
destination is not accepting job submission requests.

test-restart=true|false
Sets whether or not a protocol request to restart the destination will be honored or
return an error. true means that a protocol request to restart the destination will be
honored. test-restart is set to true by default. false means that a protocol
request to restart the destination return an error.

test-submit=true|false
Sets whether or not a protocol request to submit a job to a destination will be
honored or return an error. true means that a protocol request to submit a job to a
destination will be honored. test-submit is set to true by default. false means
that a protocol request to submit a job to a destination will not be honored.

test-show-queue-file=file
Sets the name of the file whose contents are to be returned as the result of a status
query. Specify file as an absolute pathname.

test-cancel-cancel-file=file
Sets the name of the file whose contents are returned as the result of a cancellation
request. Specify file as an absolute pathname.

The print client commands and the print protocol adaptor locate destination
information based on the “printers” database entry in the /etc/nsswitch.conf file.
See nsswitch.conf(4).

Locating the Personal Default Destination

printers.conf(4)

Locating
Destination
Information

File Formats 493

The default destination is located differently depending on the command.

The lp command locates the default destination in the following order:

1. lp command’s -d destination option.
2. LPDEST environment variable.
3. PRINTER environment variable.
4. _default destination in $HOME/.printers.
5. _default destination in /etc/printers.conf.

The lpr, lpq, and lprm commands locate the default destination in the following
order:

1. lpr command’s -P destination option.
2. PRINTER environment variable.
3. LPDEST environment variable.
4. _default destination in $HOME/.printers.
5. _default destination in /etc/printers.conf.

Locating the Interest List for lpstat, lpget, and cancel

The lpget, lpstat, and cancel commands locate the interest list in the following
order:

1. _all list in $HOME/.printers.
2. _all list in /etc/printers.conf.

EXAMPLE 1 Setting the interest list

The following entry sets the interest list for the lpget, lpstat and cancel
commands to printer1, printer2 and printer3:

_all:all=printer1,printer2,printer3

EXAMPLE 2 Setting the server name

The following entry sets the server name to server and and printer name to
ps_printer for destinations printer1 and ps. It does not generate protocol
extensions.

printer1|ps:bsdaddr=server,ps_printer

EXAMPLE 3 Setting server name and destination name

The following entry sets the server name to server and destination name to
pcl_printer, for destination printer2. It also generates Solaris protocol
extensions.

printer2:bsdaddr=server,pcl_printer,Solaris

EXAMPLE 4 Setting server name and destination name with continuous search

The following entry sets the server name to server and destination name to
new_printer, for destination printer3. It also sets the printer3 to continue
searching for configuration information to printer another_printer.

printers.conf(4)

EXAMPLES

494 man pages section 4: File Formats • Last Revised 6 Feb 2004

EXAMPLE 4 Setting server name and destination name with continuous search
(Continued)

printer3:bsdaddr=server,new_printer:use=another_printer

EXAMPLE 5 Setting default destination

The following entry sets the default destination to continue searching for
configuration information to destination printer1.

_default:use=printer1

EXAMPLE 6 Defining the printer table in NIS+

The following command sets up the printer table printers.org_dir. This
command must be run as root.

nistbladm -c -D access=n+r,o+rmcd,g+rmcd,w+r printers \
printer_name=S,o+rmcd,g+r,w+r printer_host=S,o+rmcd,g+r,w+r \

description=,o+rmcd,g+r,w+r printers.org_dir.‘domainname‘.

Once the definition has been set, confirm that the permissions are set properly:

niscat -o printers.org_dir
Object Name : printers
Owner : ppp.example.com.
Group : admin.example.com.
Domain : org_dir.example.com.
Access Rights : r---rmcdrmcdr---
Time to Live : 12:0:0
Object Type : TABLE
Table Type : printers
Number of Columns : 3
Character Separator :
Search Path :
Columns :
[0] Name : printer_name
Attributes : (SEARCHABLE, TEXTUAL DATA, CASE SENSITIVE)
Access Rights : ----rmcdr---r---
[1] Name : printer_host
Attributes : (SEARCHABLE, TEXTUAL DATA, CASE SENSITIVE)
Access Rights : ----rmcdr---r---
[2] Name : description
Attributes : (TEXTUAL DATA)

Access Rights : ----rmcdr---r---

Use the Admintool or the nisaddent command to populate the printers table.

/etc/printers.conf
System configuration database.

$HOME/.printers
User-configurable printer database.

printers.conf.byname (NIS)
NIS version of /etc/printers.conf.

printers.conf(4)

FILES

File Formats 495

printers.org_dir (NIS+)
NIS+ version of /etc/printers.conf.

/usr/lib/print/bsd-adaptor/bsd_spooler.so*
Spooler translation modules.

/usr/lib/print/in.lpd
BSD print protocol adapter.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpcu

Stability Level Stable

cancel(1), lp(1), lpq(1B), lpr(1B), lprm(1B), lpstat(1), in.lpd(1M),
lpadmin(1M), lpget(1M), lpset(1M), nsswitch.conf(4), printers(4),
attributes(5), standards(5)

System Administration Guide: Basic Administration

printers.conf(4)

ATTRIBUTES

SEE ALSO

496 man pages section 4: File Formats • Last Revised 6 Feb 2004

priv_names – privilege definition file

/etc/security/priv_names

The priv_names file, located in /etc/security, defines the privileges with which
a process can be associated. See privileges(5) for the privilege definitions. In that
man page, privileges correspond to privilege names in priv_names as shown in the
following examples:

name in privileges(5) Name in priv_names

PRIV_FILE_CHOWN file_chown

PRIV_FILE_CHOWN_SELF file_chown_self

PRIV_FILE_DAC_EXECUTE file_dac_execute

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesu

Interface Stability Evolving

ppriv(1), attributes(5), privileges(5)

priv_names(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

File Formats 497

proc – /proc, the process file system

/proc is a file system that provides access to the state of each process and
light-weight process (lwp) in the system. The name of each entry in the /proc
directory is a decimal number corresponding to a process-ID. These entries are
themselves subdirectories. Access to process state is provided by additional files
contained within each subdirectory; the hierarchy is described more completely below.
In this document, ‘‘/proc file’’ refers to a non-directory file within the hierarchy
rooted at /proc. The owner of each /proc file and subdirectory is determined by the
user-ID of the process.

/proc can be mounted on any mount point, in addition to the standard /proc mount
point, and can be mounted several places at once. Such additional mounts are allowed
in order to facilitate the confinement of processes to subtrees of the file system via
chroot(1M) and yet allow such processes access to commands like ps(1).

Standard system calls are used to access /proc files: open(2), close(2), read(2), and
write(2) (including readv(2), writev(2), pread(2), and pwrite(2)). Most files
describe process state and can only be opened for reading. ctl and lwpctl (control)
files permit manipulation of process state and can only be opened for writing. as
(address space) files contain the image of the running process and can be opened for
both reading and writing. An open for writing allows process control; a read-only
open allows inspection but not control. In this document, we refer to the process as
open for reading or writing if any of its associated /proc files is open for reading or
writing.

In general, more than one process can open the same /proc file at the same time.
Exclusive open is an advisory mechanism provided to allow controlling processes to
avoid collisions with each other. A process can obtain exclusive control of a target
process, with respect to other cooperating processes, if it successfully opens any
/proc file in the target process for writing (the as or ctl files, or the lwpctl file of
any lwp) while specifying O_EXCL in the open(2). Such an open will fail if the target
process is already open for writing (that is, if an as, ctl, or lwpctl file is already
open for writing). There can be any number of concurrent read-only opens; O_EXCL is
ignored on opens for reading. It is recommended that the first open for writing by a
controlling process use the O_EXCL flag; multiple controlling processes usually result
in chaos.

If a process opens one of its own /proc files for writing, the open succeeds regardless
of O_EXCL and regardless of whether some other process has the process open for
writing. Self-opens do not count when another process attempts an exclusive open. (A
process cannot exclude a debugger by opening itself for writing and the application of
a debugger cannot prevent a process from opening itself.) All self-opens for writing
are forced to be close-on-exec (see the F_SETFD operation of fcntl(2)).

Data may be transferred from or to any locations in the address space of the traced
process by applying lseek(2) to position the as file at the virtual address of interest
followed by read(2) or write(2) (or by using pread(2) or pwrite(2) for the
combined operation). The address-map file /proc/pid/map can be read to determine

proc(4)

NAME

DESCRIPTION

498 man pages section 4: File Formats • Last Revised 30 Sept 2004

the accessible areas (mappings) of the address space. I/O transfers may span
contiguous mappings. An I/O request extending into an unmapped area is truncated
at the boundary. A write request beginning at an unmapped virtual address fails with
EIO; a read request beginning at an unmapped virtual address returns zero (an
end-of-file indication).

Information and control operations are provided through additional files.
<procfs.h> contains definitions of data structures and message formats used with
these files. Some of these definitions involve the use of sets of flags. The set types
sigset_t, fltset_t, and sysset_t correspond, respectively, to signal, fault, and
system call enumerations defined in <sys/signal.h>, <sys/fault.h>, and
<sys/syscall.h>. Each set type is large enough to hold flags for its own
enumeration. Although they are of different sizes, they have a common structure and
can be manipulated by these macros:

prfillset(&set); /* turn on all flags in set */
premptyset(&set); /* turn off all flags in set */
praddset(&set, flag); /* turn on the specified flag */
prdelset(&set, flag); /* turn off the specified flag */

r = prismember(&set, flag); /* != 0 iff flag is turned on */

One of prfillset() or premptyset() must be used to initialize set before it is
used in any other operation. flag must be a member of the enumeration
corresponding to set.

Every process contains at least one light-weight process, or lwp. Each lwp represents a
flow of execution that is independently scheduled by the operating system. All lwps in
a process share its address space as well as many other attributes. Through the use of
lwpctl and ctl files as described below, it is possible to affect individual lwps in a
process or to affect all of them at once, depending on the operation.

When the process has more than one lwp, a representative lwp is chosen by the
system for certain process status files and control operations. The representative lwp is
a stopped lwp only if all of the process’s lwps are stopped; is stopped on an event of
interest only if all of the lwps are so stopped (excluding PR_SUSPENDED lwps); is in a
PR_REQUESTED stop only if there are no other events of interest to be found; or,
failing everything else, is in a PR_SUSPENDED stop (implying that the process is
deadlocked). See the description of the status file for definitions of stopped states.
See the PCSTOP control operation for the definition of ‘‘event of interest’’.

The representative lwp remains fixed (it will be chosen again on the next operation) as
long as all of the lwps are stopped on events of interest or are in a PR_SUSPENDED
stop and the PCRUN control operation is not applied to any of them.

When applied to the process control file, every /proc control operation that must act
on an lwp uses the same algorithm to choose which lwp to act upon. Together with
synchronous stopping (see PCSET), this enables a debugger to control a multiple-lwp
process using only the process-level status and control files if it so chooses. More
fine-grained control can be achieved using the lwp-specific files.

proc(4)

File Formats 499

The system supports two process data models, the traditional 32-bit data model in
which ints, longs and pointers are all 32 bits wide (the ILP32 data model), and on
some platforms the 64-bit data model in which longs and pointers, but not ints, are 64
bits in width (the LP64 data model). In the LP64 data model some system data types,
notably size_t, off_t, time_t and dev_t, grow from 32 bits to 64 bits as well.

The /proc interfaces described here are available to both 32-bit and 64-bit controlling
processes. However, many operations attempted by a 32-bit controlling process on a
64-bit target process will fail with EOVERFLOW because the address space range of a
32-bit process cannot encompass a 64-bit process or because the data in some 64-bit
system data type cannot be compressed to fit into the corresponding 32-bit type
without loss of information. Operations that fail in this circumstance include reading
and writing the address space, reading the address-map file, and setting the target
process’s registers. There is no restriction on operations applied by a 64-bit process to
either a 32-bit or a 64-bit target processes.

The format of the contents of any /proc file depends on the data model of the
observer (the controlling process), not on the data model of the target process. A 64-bit
debugger does not have to translate the information it reads from a /proc file for a
32-bit process from 32-bit format to 64-bit format. However, it usually has to be aware
of the data model of the target process. The pr_dmodel field of the status files
indicates the target process’s data model.

To help deal with system data structures that are read from 32-bit processes, a 64-bit
controlling program can be compiled with the C preprocessor symbol _SYSCALL32
defined before system header files are included. This makes explicit 32-bit fixed-width
data structures (like cstruct stat32) visible to the 64-bit program. See
types32.h(3HEAD).

At the top level, the directory /proc contains entries each of which names an existing
process in the system. These entries are themselves directories. Except where
otherwise noted, the files described below can be opened for reading only. In addition,
if a process becomes a zombie (one that has exited but whose parent has not yet
performed a wait(3C) upon it), most of its associated /proc files disappear from the
hierarchy; subsequent attempts to open them, or to read or write files opened before
the process exited, will elicit the error ENOENT.

Although process state and consequently the contents of /proc files can change from
instant to instant, a single read(2) of a /proc file is guaranteed to return a sane
representation of state; that is, the read will be atomic with respect to the state of the
process. No such guarantee applies to successive reads applied to a /proc file for a
running process. In addition, atomicity is not guaranteed for I/O applied to the as
(address-space) file for a running process or for a process whose address space
contains memory shared by another running process.

A number of structure definitions are used to describe the files. These structures may
grow by the addition of elements at the end in future releases of the system and it is
not legitimate for a program to assume that they will not.

proc(4)

DIRECTORY
STRUCTURE

500 man pages section 4: File Formats • Last Revised 30 Sept 2004

A given directory /proc/pid contains the following entries. A process can use the
invisible alias /proc/self if it wishes to open one of its own /proc files (invisible in
the sense that the name ‘‘self’’ does not appear in a directory listing of /proc obtained
from ls(1), getdents(2), or readdir(3C)).

A directory containing references to the contracts held by the process. Each entry is a
symlink to the contract’s directory under /system/contract. See contract(4).

Contains the address-space image of the process; it can be opened for both reading
and writing. lseek(2) is used to position the file at the virtual address of interest and
then the address space can be examined or changed through read(2) or write(2) (or
by using pread(2) or pwrite(2) for the combined operation).

A write-only file to which structured messages are written directing the system to
change some aspect of the process’s state or control its behavior in some way. The seek
offset is not relevant when writing to this file. Individual lwps also have associated
lwpctl files in the lwp subdirectories. A control message may be written either to the
process’s ctl file or to a specific lwpctl file with operation-specific effects. The effect
of a control message is immediately reflected in the state of the process visible through
appropriate status and information files. The types of control messages are described
in detail later. See CONTROL MESSAGES.

Contains state information about the process and the representative lwp. The file
contains a pstatus structure which contains an embedded lwpstatus structure for
the representative lwp, as follows:

typedef struct pstatus {
int pr_flags; /* flags (see below) */
int pr_nlwp; /* number of active lwps in the process */
int pr_nzomb; /* number of zombie lwps in the process */
pid_tpr_pid; /* process id */
pid_tpr_ppid; /* parent process id */
pid_tpr_pgid; /* process group id */
pid_tpr_sid; /* session id */
id_t pr_aslwpid; /* obsolete */
id_t pr_agentid; /* lwp-id of the agent lwp, if any */
sigset_t pr_sigpend; /* set of process pending signals */
uintptr_t pr_brkbase; /* virtual address of the process heap */
size_t pr_brksize; /* size of the process heap, in bytes */
uintptr_t pr_stkbase; /* virtual address of the process stack */
size_tpr_stksize; /* size of the process stack, in bytes */
timestruc_t pr_utime; /* process user cpu time */
timestruc_t pr_stime; /* process system cpu time */
timestruc_t pr_cutime; /* sum of children’s user times */
timestruc_t pr_cstime; /* sum of children’s system times */
sigset_t pr_sigtrace; /* set of traced signals */
fltset_t pr_flttrace; /* set of traced faults */
sysset_t pr_sysentry; /* set of system calls traced on entry */
sysset_t pr_sysexit; /* set of system calls traced on exit */
char pr_dmodel; /* data model of the process */
taskid_t pr_taskid; /* task id */
projid_t pr_projid; /* project id */
zoneid_t pr_zoneid; /* zone id */
lwpstatus_t pr_lwp; /* status of the representative lwp */

proc(4)

STRUCTURE OF
/proc/pid

contracts

as

ctl

status

File Formats 501

} pstatus_t;

pr_flags is a bit-mask holding the following process flags. For convenience, it also
contains the lwp flags for the representative lwp, described later.

PR_ISSYS process is a system process (see PCSTOP).

PR_VFORKP process is the parent of a vforked child (see PCWATCH).

PR_FORK process has its inherit-on-fork mode set (see PCSET).

PR_RLC process has its run-on-last-close mode set (see PCSET).

PR_KLC process has its kill-on-last-close mode set (see PCSET).

PR_ASYNC process has its asynchronous-stop mode set (see PCSET).

PR_MSACCT Set by default in all processes to indicate that microstate
accounting is enabled. However, this flag has been deprecated and
no longer has any effect. Microstate accounting may not be
disabled; however, it is still possible to toggle the flag.

PR_MSFORK Set by default in all processes to indicate that microstate
accounting will be enabled for processes that this parent forks().
However, this flag has been deprecated and no longer has any
effect. It is possible to toggle this flag; however, it is not possible to
disable microstate accounting.

PR_BPTADJ process has its breakpoint adjustment mode set (see PCSET).

PR_PTRACE process has its ptrace-compatibility mode set (see PCSET).

pr_nlwp is the total number of active lwps in the process. pr_nzomb is the total
number of zombie lwps in the process. A zombie lwp is a non-detached lwp that has
terminated but has not been reaped with thr_join(3C) or pthread_join(3C).

pr_pid, pr_ppid, pr_pgid, and pr_sid are, respectively, the process ID, the ID of
the process’s parent, the process’s process group ID, and the process’s session ID.

pr_aslwpid is obsolete and is always zero.

pr_agentid is the lwp-ID for the /proc agent lwp (see the PCAGENT control
operation). It is zero if there is no agent lwp in the process.

pr_sigpend identifies asynchronous signals pending for the process.

pr_brkbase is the virtual address of the process heap and pr_brksize is its size in
bytes. The address formed by the sum of these values is the process break (see
brk(2)). pr_stkbase and pr_stksize are, respectively, the virtual address of the
process stack and its size in bytes. (Each lwp runs on a separate stack; the
distinguishing characteristic of the process stack is that the operating system will grow
it when necessary.)

proc(4)

502 man pages section 4: File Formats • Last Revised 30 Sept 2004

pr_utime, pr_stime, pr_cutime, and pr_cstime are, respectively, the user CPU
and system CPU time consumed by the process, and the cumulative user CPU and
system CPU time consumed by the process’s children, in seconds and nanoseconds.

pr_sigtrace and pr_flttrace contain, respectively, the set of signals and the set
of hardware faults that are being traced (see PCSTRACE and PCSFAULT).

pr_sysentry and pr_sysexit contain, respectively, the sets of system calls being
traced on entry and exit (see PCSENTRY and PCSEXIT).

pr_dmodel indicates the data model of the process. Possible values are:

PR_MODEL_ILP32 process data model is ILP32.

PR_MODEL_LP64 process data model is LP64.

PR_MODEL_NATIVE process data model is native.

The pr_taskid, pr_projid, and pr_zoneid fields contain respectively, the
numeric IDs of the task, project, and zone in which the process was running.

The constant PR_MODEL_NATIVE reflects the data model of the controlling process,
that is, its value is PR_MODEL_ILP32 or PR_MODEL_LP64 according to whether the
controlling process has been compiled as a 32-bit program or a 64-bit program,
respectively.

pr_lwp contains the status information for the representative lwp:

typedef struct lwpstatus {
int pr_flags; /* flags (see below) */
id_t pr_lwpid; /* specific lwp identifier */
short pr_why; /* reason for lwp stop, if stopped */
short pr_what; /* more detailed reason */
short pr_cursig; /* current signal, if any */
siginfo_t pr_info; /* info associated with signal or fault */
sigset_t pr_lwppend; /* set of signals pending to the lwp */
sigset_t pr_lwphold; /* set of signals blocked by the lwp */
struct sigaction pr_action; /* signal action for current signal */
stack_t pr_altstack; /* alternate signal stack info */
uintptr_t pr_oldcontext; /* address of previous ucontext */
short pr_syscall; /* system call number (if in syscall) */
short pr_nsysarg; /* number of arguments to this syscall */
int pr_errno; /* errno for failed syscall */
long pr_sysarg[PRSYSARGS]; /* arguments to this syscall */
long pr_rval1; /* primary syscall return value */
long pr_rval2; /* second syscall return value, if any */
char pr_clname[PRCLSZ]; /* scheduling class name */
timestruc_t pr_tstamp; /* real-time time stamp of stop */
timestruc_t pr_utime; /* lwp user cpu time */
timestruc_t pr_stime; /* lwp system cpu time */
uintptr_t pr_ustack; /* stack boundary data (stack_t) address */
ulong_t pr_instr; /* current instruction */
prgregset_t pr_reg; /* general registers */
prfpregset_t pr_fpreg; /* floating-point registers */

} lwpstatus_t;

proc(4)

File Formats 503

pr_flags is a bit-mask holding the following lwp flags. For convenience, it also
contains the process flags, described previously.

PR_STOPPED The lwp is stopped.

PR_ISTOP The lwp is stopped on an event of interest (see PCSTOP).

PR_DSTOP The lwp has a stop directive in effect (see PCSTOP).

PR_STEP The lwp has a single-step directive in effect (see PCRUN).

PR_ASLEEP The lwp is in an interruptible sleep within a system call.

PR_PCINVAL The lwp’s current instruction (pr_instr) is undefined.

PR_DETACH This is a detached lwp (see pthread_create(3C) and
pthread_join(3C)).

PR_DAEMON This is a daemon lwp (see pthread_create(3C)).

PR_ASLWP This flag is obsolete and is never set.

PR_AGENT This is the /proc agent lwp for the process.

pr_lwpid names the specific lwp.

pr_why and pr_what together describe, for a stopped lwp, the reason for the stop.
Possible values of pr_why and the associated pr_what are:

PR_REQUESTED indicates that the stop occurred in response to a stop directive,
normally because PCSTOP was applied or because another lwp
stopped on an event of interest and the asynchronous-stop flag
(see PCSET) was not set for the process. pr_what is unused in this
case.

PR_SIGNALLED indicates that the lwp stopped on receipt of a signal (see
PCSTRACE); pr_what holds the signal number that caused the
stop (for a newly-stopped lwp, the same value is in pr_cursig).

PR_FAULTED indicates that the lwp stopped on incurring a hardware fault (see
PCSFAULT); pr_what holds the fault number that caused the stop.

PR_SYSENTRY
PR_SYSEXIT indicate a stop on entry to or exit from a system call (see

PCSENTRY and PCSEXIT); pr_what holds the system call
number.

PR_JOBCONTROL indicates that the lwp stopped due to the default action of a job
control stop signal (see sigaction(2)); pr_what holds the
stopping signal number.

PR_SUSPENDED indicates that the lwp stopped due to internal synchronization of
lwps within the process. pr_what is unused in this case.

proc(4)

504 man pages section 4: File Formats • Last Revised 30 Sept 2004

pr_cursig names the current signal, that is, the next signal to be delivered to the
lwp, if any. pr_info, when the lwp is in a PR_SIGNALLED or PR_FAULTED stop,
contains additional information pertinent to the particular signal or fault (see
<sys/siginfo.h>).

pr_lwppend identifies any synchronous or directed signals pending for the lwp.
pr_lwphold identifies those signals whose delivery is being blocked by the lwp (the
signal mask).

pr_action contains the signal action information pertaining to the current signal (see
sigaction(2)); it is undefined if pr_cursig is zero. pr_altstack contains the
alternate signal stack information for the lwp (see sigaltstack(2)).

pr_oldcontext, if not zero, contains the address on the lwp stack of a ucontext
structure describing the previous user-level context (see ucontext.h(3HEAD)). It is
non-zero only if the lwp is executing in the context of a signal handler.

pr_syscall is the number of the system call, if any, being executed by the lwp; it is
non-zero if and only if the lwp is stopped on PR_SYSENTRY or PR_SYSEXIT, or is
asleep within a system call (PR_ASLEEP is set). If pr_syscall is non-zero,
pr_nsysarg is the number of arguments to the system call and pr_sysarg contains
the actual arguments.

pr_rval1, pr_rval2, and pr_errno are defined only if the lwp is stopped on
PR_SYSEXIT or if the PR_VFORKP flag is set. If pr_errno is zero, pr_rval1 and
pr_rval2 contain the return values from the system call. Otherwise, pr_errno
contains the error number for the failing system call (see <sys/errno.h>).

pr_clname contains the name of the lwp’s scheduling class.

pr_tstamp, if the lwp is stopped, contains a time stamp marking when the lwp
stopped, in real time seconds and nanoseconds since an arbitrary time in the past.

pr_utime is the amount of user level CPU time used by this LWP.

pr_stime is the amount of system level CPU time used by this LWP.

pr_ustack is the virtual address of the stack_t that contains the stack boundaries
for this LWP. See getustack(2) and _stack_grow(3C).

pr_instr contains the machine instruction to which the lwp’s program counter
refers. The amount of data retrieved from the process is machine-dependent. On
SPARC based machines, it is a 32-bit word. On x86 based machines, it is a single byte.
In general, the size is that of the machine’s smallest instruction. If PR_PCINVAL is set,
pr_instr is undefined; this occurs whenever the lwp is not stopped or when the
program counter refers to an invalid virtual address.

pr_reg is an array holding the contents of a stopped lwp’s general registers.

proc(4)

File Formats 505

SPARC On SPARC-based machines, the predefined constants
R_G0 ... R_G7, R_O0 ... R_O7, R_L0 ... R_L7, R_I0 ...
R_I7, R_PC, R_nPC, and R_Y can be used as indices to
refer to the corresponding registers; previous register
windows can be read from their overflow locations on
the stack (however, see the gwindows file in the
/proc/pid/lwp/lwpid subdirectory).

SPARC V8 (32-bit) For SPARC V8 (32-bit) controlling processes, the
predefined constants R_PSR, R_WIM, and R_TBR can be
used as indices to refer to the corresponding special
registers. For SPARC V9 (64-bit) controlling processes,
the predefined constants R_CCR, R_ASI, and R_FPRS
can be used as indices to refer to the corresponding
special registers.

x86 On x86 based machines, the predefined constants SS,
UESP, EFL, CS, EIP, ERR, TRAPNO, EAX, ECX, EDX, EBX,
ESP, EBP, ESI, EDI, DS, ES, FS, and GS can be used as
indices to refer to the corresponding registers.

pr_fpreg is a structure holding the contents of the floating-point registers.

SPARC registers, both general and floating-point, as seen by a 64-bit controlling
process are the V9 versions of the registers, even if the target process is a 32-bit (V8)
process. V8 registers are a subset of the V9 registers.

If the lwp is not stopped, all register values are undefined.

Contains miscellaneous information about the process and the representative lwp
needed by the ps(1) command. psinfo is accessible after a process becomes a zombie.
The file contains a psinfo structure which contains an embedded lwpsinfo
structure for the representative lwp, as follows:

typedef struct psinfo {
int pr_flag; /* process flags (DEPRECATED: see below) */
int pr_nlwp; /* number of active lwps in the process */
int pr_nzomb; /* number of zombie lwps in the process */
pid_t pr_pid; /* process id */
pid_t pr_ppid; /* process id of parent */
pid_t pr_pgid; /* process id of process group leader */
pid_t pr_sid; /* session id */
uid_t pr_uid; /* real user id */
uid_t pr_euid; /* effective user id */
gid_t pr_gid; /* real group id */
gid_t pr_egid; /* effective group id */
uintptr_t pr_addr; /* address of process */
size_t pr_size; /* size of process image in Kbytes */
size_t pr_rssize; /* resident set size in Kbytes */
dev_t pr_ttydev; /* controlling tty device (or PRNODEV) */
ushort_t pr_pctcpu; /* % of recent cpu time used by all lwps */
ushort_t pr_pctmem; /* % of system memory used by process */

proc(4)

psinfo

506 man pages section 4: File Formats • Last Revised 30 Sept 2004

timestruc_t pr_start; /* process start time, from the epoch */
timestruc_t pr_time; /* cpu time for this process */
timestruc_t pr_ctime; /* cpu time for reaped children */
char pr_fname[PRFNSZ]; /* name of exec’ed file */
char pr_psargs[PRARGSZ]; /* initial characters of arg list */
int pr_wstat; /* if zombie, the wait() status */
int pr_argc; /* initial argument count */
uintptr_t pr_argv; /* address of initial argument vector */
uintptr_t pr_envp; /* address of initial environment vector */
char pr_dmodel; /* data model of the process */
lwpsinfo_t pr_lwp; /* information for representative lwp */
taskid_t pr_taskid; /* task id */
projid_t pr_projid; /* project id */
poolid_t pr_poolid; /* pool id */
zoneid_t pr_zoneid; /* zone id */
ctid_t pr_contract; /* process contract id */

} psinfo_t;

Some of the entries in psinfo, such as pr_addr, refer to internal kernel data
structures and should not be expected to retain their meanings across different
versions of the operating system.

psinfo_t.pr_flag is a deprecated interface that should no longer be used.
Applications currently relying on the SSYS bit in pr_flag should migrate to checking
PR_ISSYS in the pstatus structure’s pr_flags field.

pr_pctcpu and pr_pctmem are 16-bit binary fractions in the range 0.0 to 1.0 with the
binary point to the right of the high-order bit (1.0 == 0x8000). pr_pctcpu is the
summation over all lwps in the process.

pr_lwp contains the ps(1) information for the representative lwp. If the process is a
zombie, pr_nlwp, pr_nzomb, and pr_lwp.pr_lwpid are zero and the other fields of
pr_lwp are undefined:

typedef struct lwpsinfo {
int pr_flag; /* lwp flags (DEPRECATED: see below) */
id_t pr_lwpid; /* lwp id */
uintptr_t pr_addr; /* internal address of lwp */
uintptr_t pr_wchan; /* wait addr for sleeping lwp */
char pr_stype; /* synchronization event type */
char pr_state; /* numeric lwp state */
char pr_sname; /* printable character for pr_state */
char pr_nice; /* nice for cpu usage */
short pr_syscall; /* system call number (if in syscall) */
char pr_oldpri; /* pre-SVR4, low value is high priority */
char pr_cpu; /* pre-SVR4, cpu usage for scheduling */
int pr_pri; /* priority, high value = high priority */
ushort_t pr_pctcpu; /* % of recent cpu time used by this lwp */
timestruc_t pr_start; /* lwp start time, from the epoch */
timestruc_t pr_time; /* cpu time for this lwp */
char pr_clname[PRCLSZ]; /* scheduling class name */
char pr_name[PRFNSZ]; /* name of system lwp */
processorid_t pr_onpro; /* processor which last ran this lwp */
processorid_t pr_bindpro; /* processor to which lwp is bound */
psetid_t pr_bindpset; /* processor set to which lwp is bound */

proc(4)

File Formats 507

} lwpsinfo_t;

Some of the entries in lwpsinfo, such as pr_addr, pr_wchan, pr_stype,
pr_state, and pr_name, refer to internal kernel data structures and should not be
expected to retain their meanings across different versions of the operating system.

lwpsinfo_t.pr_flag is a deprecated interface that should no longer be used.

pr_pctcpu is a 16-bit binary fraction, as described above. It represents the CPU time
used by the specific lwp. On a multi-processor machine, the maximum value is 1/N,
where N is the number of CPUs.

pr_contract is the id of the process contract of which the process is a member. See
contract(4) and process(4).

Contains a description of the credentials associated with the process:

typedef struct prcred {
uid_t pr_euid; /* effective user id */
uid_t pr_ruid; /* real user id */
uid_t pr_suid; /* saved user id (from exec) */
gid_t pr_egid; /* effective group id */
gid_t pr_rgid; /* real group id */
gid_t pr_sgid; /* saved group id (from exec) */
int pr_ngroups; /* number of supplementary groups */
gid_t pr_groups[1]; /* array of supplementary groups */

} prcred_t;

The array of associated supplementary groups in pr_groups is of variable length; the
cred file contains all of the supplementary groups. pr_ngroups indicates the
number of supplementary groups. (See also the PCSCRED and PCSCREDX control
operations.)

Contains a description of the privileges associated with the process:

typedef struct prpriv {
uint32_t pr_nsets; /* number of privilege set */
uint32_t pr_setsize; /* size of privilege set */
uint32_t pr_infosize; /* size of supplementary data */
priv_chunk_t pr_sets[1]; /* array of sets */

} prpriv_t;

The actual dimension of the pr_sets[] field is

pr_sets[pr_nsets][pr_setsize]

which is followed by additional information about the process state pr_infosize
bytes in size.

The full size of the structure can be computed using PRIV_PRPRIV_SIZE(prpriv_t
*).

proc(4)

cred

priv

508 man pages section 4: File Formats • Last Revised 30 Sept 2004

Contains an array of sigaction structures describing the current dispositions of
all signals associated with the traced process (see sigaction(2)). Signal numbers are
displaced by 1 from array indices, so that the action for signal number n appears in
position n-1 of the array.

Contains the initial values of the process’s aux vector in an array of auxv_t structures
(see <sys/auxv.h>). The values are those that were passed by the operating system
as startup information to the dynamic linker.

This file exists only on x86 based machines. It is non-empty only if the process has
established a local descriptor table (LDT). If non-empty, the file contains the array of
currently active LDT entries in an array of elements of type struct ssd, defined in
<sys/sysi86.h>, one element for each active LDT entry.

Contains information about the virtual address map of the process. The file contains
an array of prmap structures, each of which describes a contiguous virtual address
region in the address space of the traced process:

typedef struct prmap {
uintptr_tpr_vaddr; /* virtual address of mapping */
size_t pr_size; /* size of mapping in bytes */
char pr_mapname[PRMAPSZ]; /* name in /proc/pid/object */
offset_t pr_offset; /* offset into mapped object, if any */
int pr_mflags; /* protection and attribute flags */
int pr_pagesize; /* pagesize for this mapping in bytes */
int pr_shmid; /* SysV shared memory identifier */

} prmap_t;

pr_vaddr is the virtual address of the mapping within the traced process and
pr_size is its size in bytes. pr_mapname, if it does not contain a null string, contains
the name of a file in the object directory (see below) that can be opened read-only to
obtain a file descriptor for the mapped file associated with the mapping. This enables
a debugger to find object file symbol tables without having to know the real path
names of the executable file and shared libraries of the process. pr_offset is the
64-bit offset within the mapped file (if any) to which the virtual address is mapped.

pr_mflags is a bit-mask of protection and attribute flags:

MA_READ mapping is readable by the traced process.

MA_WRITE mapping is writable by the traced process.

MA_EXEC mapping is executable by the traced process.

MA_SHARED mapping changes are shared by the mapped object.

MA_ISM mapping is intimate shared memory (shared MMU resources)

MAP_NORESERVE mapping does not have swap space reserved (mapped with
MAP_NORESERVE)

MA_SHM mapping System V shared memory

proc(4)

sigact

auxv

ldt

map

File Formats 509

A contiguous area of the address space having the same underlying mapped object
may appear as multiple mappings due to varying read, write, and execute attributes.
The underlying mapped object does not change over the range of a single mapping.
An I/O operation to a mapping marked MA_SHARED fails if applied at a virtual
address not corresponding to a valid page in the underlying mapped object. A write to
a MA_SHARED mapping that is not marked MA_WRITE fails. Reads and writes to
private mappings always succeed. Reads and writes to unmapped addresses fail.

pr_pagesize is the page size for the mapping, currently always the system pagesize.

pr_shmid is the shared memory identifier, if any, for the mapping. Its value is −1 if
the mapping is not System V shared memory. See shmget(2).

Contains information about the reserved address ranges of the process. The file
contains an array of prmap structures, as defined above for the map file. Each structure
describes a contiguous virtual address region in the address space of the traced
process that is reserved by the system in the sense that an mmap(2) system call that
does not specify MAP_FIXED will not use any part of it for the new mapping.
Examples of such reservations include the address ranges reserved for the process
stack and the individual thread stacks of a multi-threaded process.

A symbolic link to the process’s current working directory. See chdir(2). A
readlink(2) of /proc/pid/cwd yields a null string. However, it can be opened,
listed, and searched as a directory, and can be the target of chdir(2).

A symbolic link to the process’s root directory. /proc/pid/root can differ from the
system root directory if the process or one of its ancestors executed chroot(2) as
super user. It has the same semantics as /proc/pid/cwd.

A directory containing references to the open files of the process. Each entry is a
decimal number corresponding to an open file descriptor in the process.

If an entry refers to a regular file, it can be opened with normal file system semantics
but, to ensure that the controlling process cannot gain greater access than the
controlled process, with no file access modes other than its read/write open modes in
the controlled process. If an entry refers to a directory, it can be accessed with the same
semantics as /proc/pid/cwd. An attempt to open any other type of entry fails with
EACCES.

A directory containing read-only files with names corresponding to the pr_mapname
entries in the map and pagedata files. Opening such a file yields a file descriptor for
the underlying mapped file associated with an address-space mapping in the process.
The file name a.out appears in the directory as an alias for the process’s executable
file.

The object directory makes it possible for a controlling process to gain access to the
object file and any shared libraries (and consequently the symbol tables) without
having to know the actual path names of the executable files.

proc(4)

rmap

cwd

root

fd

object

510 man pages section 4: File Formats • Last Revised 30 Sept 2004

A directory containing symbolic links to files opened by the process. The directory
includes one entry for cwd and root. The directory also contains a numerical entry
for each file descriptor in the fd directory, and entries matching those in the object
directory. If this information is not avilable, any attempt to read the contents of the
symbolic link will fail. This is most common for files that do not exist in the filesystem
namespace (such as FIFOs and sockets), but can also happen for regular files. For the
file descriptor entries, the path may be different from the one used by the process to
open the file.

Opening the page data file enables tracking of address space references and
modifications on a per-page basis.

A read(2) of the page data file descriptor returns structured page data and atomically
clears the page data maintained for the file by the system. That is to say, each read
returns data collected since the last read; the first read returns data collected since the
file was opened. When the call completes, the read buffer contains the following
structure as its header and thereafter contains a number of section header structures
and associated byte arrays that must be accessed by walking linearly through the
buffer.

typedef struct prpageheader {
timestruc_t pr_tstamp; /* real time stamp, time of read() */
ulong_t pr_nmap; /* number of address space mappings */
ulong_t pr_npage; /* total number of pages */

} prpageheader_t;

The header is followed by pr_nmap prasmap structures and associated data arrays.
The prasmap structure contains the following elements:

typedef struct prasmap {
uintptr_t pr_vaddr; /* virtual address of mapping */
ulong_t pr_npage; /* number of pages in mapping */
char pr_mapname[PRMAPSZ]; /* name in /proc/pid/object */
offset_t pr_offset; /* offset into mapped object, if any */
int pr_mflags; /* protection and attribute flags */
int pr_pagesize; /* pagesize for this mapping in bytes */
int pr_shmid; /* SysV shared memory identifier */

} prasmap_t;

Each section header is followed by pr_npage bytes, one byte for each page in the
mapping, plus 0-7 null bytes at the end so that the next prasmap structure begins on
an eight-byte aligned boundary. Each data byte may contain these flags:

PG_REFERENCED page has been referenced.

PG_MODIFIED page has been modified.

If the read buffer is not large enough to contain all of the page data, the read fails with
E2BIG and the page data is not cleared. The required size of the read buffer can be
determined through fstat(2). Application of lseek(2) to the page data file descriptor
is ineffective; every read starts from the beginning of the file. Closing the page data file
descriptor terminates the system overhead associated with collecting the data.

proc(4)

path

pagedata

File Formats 511

More than one page data file descriptor for the same process can be opened, up to a
system-imposed limit per traced process. A read of one does not affect the data being
collected by the system for the others. An open of the page data file will fail with
ENOMEM if the system-imposed limit would be exceeded.

Contains an array of prwatch structures, one for each watched area established by
the PCWATCH control operation. See PCWATCH for details.

Contains process usage information described by a prusage structure which contains
at least the following fields:

typedef struct prusage {
id_t pr_lwpid; /* lwp id. 0: process or defunct */
int pr_count; /* number of contributing lwps */
timestruc_t pr_tstamp; /* real time stamp, time of read() */
timestruc_t pr_create; /* process/lwp creation time stamp */
timestruc_t pr_term; /* process/lwp termination time stamp */
timestruc_t pr_rtime; /* total lwp real (elapsed) time */
timestruc_t pr_utime; /* user level CPU time */
timestruc_t pr_stime; /* system call CPU time */
timestruc_t pr_ttime; /* other system trap CPU time */
timestruc_t pr_tftime; /* text page fault sleep time */
timestruc_t pr_dftime; /* data page fault sleep time */
timestruc_t pr_kftime; /* kernel page fault sleep time */
timestruc_t pr_ltime; /* user lock wait sleep time */
timestruc_t pr_slptime; /* all other sleep time */
timestruc_t pr_wtime; /* wait-cpu (latency) time */
timestruc_t pr_stoptime; /* stopped time */
ulong_t pr_minf; /* minor page faults */
ulong_t pr_majf; /* major page faults */
ulong_t pr_nswap; /* swaps */
ulong_t pr_inblk; /* input blocks */
ulong_t pr_oublk; /* output blocks */
ulong_t pr_msnd; /* messages sent */
ulong_t pr_mrcv; /* messages received */
ulong_t pr_sigs; /* signals received */
ulong_t pr_vctx; /* voluntary context switches */
ulong_t pr_ictx; /* involuntary context switches */
ulong_t pr_sysc; /* system calls */
ulong_t pr_ioch; /* chars read and written */

} prusage_t;

Microstate accounting is now continuously enabled. While this information was
previously an estimate, if microstate accounting were not enabled, the current
information is now never an estimate represents time the process has spent in various
states.

Contains a prheader structure followed by an array of lwpstatus structures, one
for each active lwp in the process (see also /proc/pid/lwp/lwpid/lwpstatus,
below). The prheader structure describes the number and size of the array entries
that follow.

proc(4)

watch

usage

lstatus

512 man pages section 4: File Formats • Last Revised 30 Sept 2004

typedef struct prheader {
long pr_nent; /* number of entries */
size_t pr_entsize; /* size of each entry, in bytes */

} prheader_t;

The lwpstatus structure may grow by the addition of elements at the end in future
releases of the system. Programs must use pr_entsize in the file header to index
through the array. These comments apply to all /proc files that include a prheader
structure (lpsinfo and lusage, below).

Contains a prheader structure followed by an array of lwpsinfo structures, one for
eachactive and zombie lwp in the process. See also
/proc/pid/lwp/lwpid/lwpsinfo, below.

Contains a prheader structure followed by an array of prusage structures, one for
each active lwp in the process, plus an additional element at the beginning that
contains the summation over all defunct lwps (lwps that once existed but no longer
exist in the process). Excluding the pr_lwpid, pr_tstamp, pr_create, and
pr_term entries, the entry-by-entry summation over all these structures is the
definition of the process usage information obtained from the usage file. (See also
/proc/pid/lwp/lwpid/lwpusage, below.)

A directory containing entries each of which names an active or zombie lwp within the
process. These entries are themselves directories containing additional files as
described below. Only the lwpsinfo file exists in the directory of a zombie lwp.

A given directory /proc/pid/lwp/lwpid contains the following entries:

Write-only control file. The messages written to this file affect the specific lwp rather
than the representative lwp, as is the case for the process’s ctl file.

lwp-specific state information. This file contains the lwpstatus structure for the
specific lwp as described above for the representative lwp in the process’s status file.

lwp-specific ps(1) information. This file contains the lwpsinfo structure for the
specific lwp as described above for the representative lwp in the process’s psinfo file.
The lwpsinfo file is accessible after an lwp becomes a zombie.

This file contains the prusage structure for the specific lwp as described above for the
process’s usage file.

This file exists only on SPARC based machines. If it is non-empty, it contains a
gwindows_t structure, defined in <sys/regset.h>, with the values of those SPARC
register windows that could not be stored on the stack when the lwp stopped.
Conditions under which register windows are not stored on the stack are: the stack
pointer refers to nonexistent process memory or the stack pointer is improperly
aligned. If the lwp is not stopped or if there are no register windows that could not be
stored on the stack, the file is empty (the usual case).

proc(4)

lpsinfo

lusage

lwp

STRUCTURE OF
/proc/pid/lwp/

lwpidlwpctl

lwpstatus

lwpsinfo

lwpusage

gwindows

File Formats 513

Extra state registers. The extra state register set is architecture dependent; this file is
empty if the system does not support extra state registers. If the file is non-empty, it
contains an architecture dependent structure of type prxregset_t, defined in
<procfs.h>, with the values of the lwp’s extra state registers. If the lwp is not
stopped, all register values are undefined. See also the PCSXREG control operation,
below.

This file exists only for 64-bit SPARC V9 processes. It contains an asrset_t structure,
defined in <sys/regset.h>, containing the values of the lwp’s platform-dependent
ancillary state registers. If the lwp is not stopped, all register values are undefined. See
also the PCSASRS control operation, below.

A directory which contains references to the active templates for the lwp, named by
the contract type. Changes made to an active template descriptor do not affect the
original template which was activated, though they do affect the active template. It is
not possible to activate an active template descriptor. See contract(4).

Process state changes are effected through messages written to a process’s ctl file or
to an individual lwp’s lwpctl file. All control messages consist of a long that names
the specific operation followed by additional data containing the operand, if any.

Multiple control messages may be combined in a single write(2) (or writev(2)) to a
control file, but no partial writes are permitted. That is, each control message,
operation code plus operand, if any, must be presented in its entirety to the write(2)
and not in pieces over several system calls. If a control operation fails, no subsequent
operations contained in the same write(2) are attempted.

Descriptions of the allowable control messages follow. In all cases, writing a message
to a control file for a process or lwp that has terminated elicits the error ENOENT.

When applied to the process control file, PCSTOP directs all lwps to stop and waits for
them to stop, PCDSTOP directs all lwps to stop without waiting for them to stop, and
PCWSTOP simply waits for all lwps to stop. When applied to an lwp control file,
PCSTOP directs the specific lwp to stop and waits until it has stopped, PCDSTOP
directs the specific lwp to stop without waiting for it to stop, and PCWSTOP simply
waits for the specific lwp to stop. When applied to an lwp control file, PCSTOP and
PCWSTOP complete when the lwp stops on an event of interest, immediately if already
so stopped; when applied to the process control file, they complete when every lwp
has stopped either on an event of interest or on a PR_SUSPENDED stop.

PCTWSTOP is identical to PCWSTOP except that it enables the operation to time out, to
avoid waiting forever for a process or lwp that may never stop on an event of interest.
PCTWSTOP takes a long operand specifying a number of milliseconds; the wait will
terminate successfully after the specified number of milliseconds even if the process or
lwp has not stopped; a timeout value of zero makes the operation identical to
PCWSTOP.

proc(4)

xregs

asrs

templates

CONTROL
MESSAGES

PCSTOP
PCDSTOP
PCWSTOP

PCTWSTOP

514 man pages section 4: File Formats • Last Revised 30 Sept 2004

An ‘‘event of interest’’ is either a PR_REQUESTED stop or a stop that has been specified
in the process’s tracing flags (set by PCSTRACE, PCSFAULT, PCSENTRY, and
PCSEXIT). PR_JOBCONTROL and PR_SUSPENDED stops are specifically not events of
interest. (An lwp may stop twice due to a stop signal, first showing PR_SIGNALLED if
the signal is traced and again showing PR_JOBCONTROL if the lwp is set running
without clearing the signal.) If PCSTOP or PCDSTOP is applied to an lwp that is
stopped, but not on an event of interest, the stop directive takes effect when the lwp is
restarted by the competing mechanism. At that time, the lwp enters a PR_REQUESTED
stop before executing any user-level code.

A write of a control message that blocks is interruptible by a signal so that, for
example, an alarm(2) can be set to avoid waiting forever for a process or lwp that
may never stop on an event of interest. If PCSTOP is interrupted, the lwp stop
directives remain in effect even though the write(2) returns an error. (Use of
PCTWSTOP with a non-zero timeout is recommended over PCWSTOP with an
alarm(2).)

A system process (indicated by the PR_ISSYS flag) never executes at user level, has
no user-level address space visible through /proc, and cannot be stopped. Applying
one of these operations to a system process or any of its lwps elicits the error EBUSY.

Make an lwp runnable again after a stop. This operation takes a long operand
containing zero or more of the following flags:

PRCSIG clears the current signal, if any (see PCCSIG).

PRCFAULT clears the current fault, if any (see PCCFAULT).

PRSTEP directs the lwp to execute a single machine instruction. On
completion of the instruction, a trace trap occurs. If FLTTRACE is
being traced, the lwp stops; otherwise, it is sent SIGTRAP. If
SIGTRAP is being traced and is not blocked, the lwp stops. When
the lwp stops on an event of interest, the single-step directive is
cancelled, even if the stop occurs before the instruction is executed.
This operation requires hardware and operating system support
and may not be implemented on all processors. It is implemented
on SPARC and x86 based machines.

PRSABORT is meaningful only if the lwp is in a PR_SYSENTRY stop or is
marked PR_ASLEEP; it instructs the lwp to abort execution of the
system call (see PCSENTRY and PCSEXIT).

PRSTOP directs the lwp to stop again as soon as possible after resuming
execution (see PCDSTOP). In particular, if the lwp is stopped on
PR_SIGNALLED or PR_FAULTED, the next stop will show
PR_REQUESTED, no other stop will have intervened, and the lwp
will not have executed any user-level code.

proc(4)

PCRUN

File Formats 515

When applied to an lwp control file, PCRUN clears any outstanding directed-stop
request and makes the specific lwp runnable. The operation fails with EBUSY if the
specific lwp is not stopped on an event of interest or has not been directed to stop or if
the agent lwp exists and this is not the agent lwp (see PCAGENT).

When applied to the process control file, a representative lwp is chosen for the
operation as described for /proc/pid/status. The operation fails with EBUSY if the
representative lwp is not stopped on an event of interest or has not been directed to
stop or if the agent lwp exists. If PRSTEP or PRSTOP was requested, the representative
lwp is made runnable and its outstanding directed-stop request is cleared; otherwise
all outstanding directed-stop requests are cleared and, if it was stopped on an event of
interest, the representative lwp is marked PR_REQUESTED. If, as a consequence, all
lwps are in the PR_REQUESTED or PR_SUSPENDED stop state, all lwps showing
PR_REQUESTED are made runnable.

Define a set of signals to be traced in the process. The receipt of one of these signals by
an lwp causes the lwp to stop. The set of signals is defined using an operand
sigset_t contained in the control message. Receipt of SIGKILL cannot be traced; if
specified, it is silently ignored.

If a signal that is included in an lwp’s held signal set (the signal mask) is sent to the
lwp, the signal is not received and does not cause a stop until it is removed from the
held signal set, either by the lwp itself or by setting the held signal set with PCSHOLD.

The current signal, if any, is cleared from the specific or representative lwp.

The current signal and its associated signal information for the specific or
representative lwp are set according to the contents of the operand siginfo structure
(see <sys/siginfo.h>). If the specified signal number is zero, the current signal is
cleared. The semantics of this operation are different from those of kill(2) in that the
signal is delivered to the lwp immediately after execution is resumed (even if it is
being blocked) and an additional PR_SIGNALLED stop does not intervene even if the
signal is traced. Setting the current signal to SIGKILL terminates the process
immediately.

If applied to the process control file, a signal is sent to the process with semantics
identical to those of kill(2). If applied to an lwp control file, a directed signal is sent
to the specific lwp. The signal is named in a long operand contained in the message.
Sending SIGKILL terminates the process immediately.

A signal is deleted, that is, it is removed from the set of pending signals. If applied to
the process control file, the signal is deleted from the process’s pending signals. If
applied to an lwp control file, the signal is deleted from the lwp’s pending signals. The
current signal (if any) is unaffected. The signal is named in a long operand in the
control message. It is an error (EINVAL) to attempt to delete SIGKILL.

Set the set of held signals for the specific or representative lwp (signals whose delivery
will be blocked if sent to the lwp). The set of signals is specified with a sigset_t
operand. SIGKILL and SIGSTOP cannot be held; if specified, they are silently ignored.

proc(4)

PCSTRACE

PCCSIG

PCSSIG

PCKILL

PCUNKILL

PCSHOLD

516 man pages section 4: File Formats • Last Revised 30 Sept 2004

Define a set of hardware faults to be traced in the process. On incurring one of these
faults, an lwp stops. The set is defined via the operand fltset_t structure. Fault
names are defined in <sys/fault.h> and include the following. Some of these may
not occur on all processors; there may be processor-specific faults in addition to these.

FLTILL illegal instruction

FLTPRIV privileged instruction

FLTBPT breakpoint trap

FLTTRACE trace trap (single-step)

FLTWATCH watchpoint trap

FLTACCESS memory access fault (bus error)

FLTBOUNDS memory bounds violation

FLTIOVF integer overflow

FLTIZDIV integer zero divide

FLTFPE floating-point exception

FLTSTACK unrecoverable stack fault

FLTPAGE recoverable page fault

When not traced, a fault normally results in the posting of a signal to the lwp that
incurred the fault. If an lwp stops on a fault, the signal is posted to the lwp when
execution is resumed unless the fault is cleared by PCCFAULT or by the PRCFAULT
option of PCRUN. FLTPAGE is an exception; no signal is posted. The pr_info field in
the lwpstatus structure identifies the signal to be sent and contains machine-specific
information about the fault.

The current fault, if any, is cleared; the associated signal will not be sent to the specific
or representative lwp.

These control operations instruct the process’s lwps to stop on entry to or exit from
specified system calls. The set of system calls to be traced is defined via an operand
sysset_t structure.

When entry to a system call is being traced, an lwp stops after having begun the call to
the system but before the system call arguments have been fetched from the lwp.
When exit from a system call is being traced, an lwp stops on completion of the
system call just prior to checking for signals and returning to user level. At this point,
all return values have been stored into the lwp’s registers.

If an lwp is stopped on entry to a system call (PR_SYSENTRY) or when sleeping in an
interruptible system call (PR_ASLEEP is set), it may be instructed to go directly to
system call exit by specifying the PRSABORT flag in a PCRUN control message. Unless
exit from the system call is being traced, the lwp returns to user level showing EINTR.

proc(4)

PCSFAULT

PCCFAULT

PCSENTRY
PCSEXIT

File Formats 517

Set or clear a watched area in the controlled process from a prwatch structure
operand:

typedef struct prwatch {
uintptr_t pr_vaddr; /* virtual address of watched area */
size_t pr_size; /* size of watched area in bytes */
int pr_wflags; /* watch type flags */

} prwatch_t;

pr_vaddr specifies the virtual address of an area of memory to be watched in the
controlled process. pr_size specifies the size of the area, in bytes. pr_wflags
specifies the type of memory access to be monitored as a bit-mask of the following
flags:

WA_READ read access

WA_WRITE write access

WA_EXEC execution access

WA_TRAPAFTER trap after the instruction completes

If pr_wflags is non-empty, a watched area is established for the virtual address
range specified by pr_vaddr and pr_size. If pr_wflags is empty, any
previously-established watched area starting at the specified virtual address is cleared;
pr_size is ignored.

A watchpoint is triggered when an lwp in the traced process makes a memory
reference that covers at least one byte of a watched area and the memory reference is
as specified in pr_wflags. When an lwp triggers a watchpoint, it incurs a watchpoint
trap. If FLTWATCH is being traced, the lwp stops; otherwise, it is sent a SIGTRAP
signal; if SIGTRAP is being traced and is not blocked, the lwp stops.

The watchpoint trap occurs before the instruction completes unless WA_TRAPAFTER
was specified, in which case it occurs after the instruction completes. If it occurs before
completion, the memory is not modified. If it occurs after completion, the memory is
modified (if the access is a write access).

Physical i/o is an exception for watchpoint traps. In this instance, there is no
guarantee that memory before the watched area has already been modified (or in the
case of WA_TRAPAFTER, that the memory following the watched area has not been
modified) when the watchpoint trap occurs and the lwp stops.

pr_info in the lwpstatus structure contains information pertinent to the
watchpoint trap. In particular, the si_addr field contains the virtual address of the
memory reference that triggered the watchpoint, and the si_code field contains one
of TRAP_RWATCH, TRAP_WWATCH, or TRAP_XWATCH, indicating read, write, or execute
access, respectively. The si_trapafter field is zero unless WA_TRAPAFTER is in
effect for this watched area; non-zero indicates that the current instruction is not the
instruction that incurred the watchpoint trap. The si_pc field contains the virtual
address of the instruction that incurred the trap.

proc(4)

PCWATCH

518 man pages section 4: File Formats • Last Revised 30 Sept 2004

A watchpoint trap may be triggered while executing a system call that makes
reference to the traced process’s memory. The lwp that is executing the system call
incurs the watchpoint trap while still in the system call. If it stops as a result, the
lwpstatus structure contains the system call number and its arguments. If the lwp
does not stop, or if it is set running again without clearing the signal or fault, the
system call fails with EFAULT. If WA_TRAPAFTER was specified, the memory reference
will have completed and the memory will have been modified (if the access was a
write access) when the watchpoint trap occurs.

If more than one of WA_READ, WA_WRITE, and WA_EXEC is specified for a watched
area, and a single instruction incurs more than one of the specified types, only one is
reported when the watchpoint trap occurs. The precedence is WA_EXEC, WA_READ,
WA_WRITE (WA_EXEC and WA_READ take precedence over WA_WRITE), unless
WA_TRAPAFTER was specified, in which case it is WA_WRITE, WA_READ, WA_EXEC
(WA_WRITE takes precedence).

PCWATCH fails with EINVAL if an attempt is made to specify overlapping watched
areas or if pr_wflags contains flags other than those specified above. It fails with
ENOMEM if an attempt is made to establish more watched areas than the system can
support (the system can support thousands).

The child of a vfork(2) borrows the parent’s address space. When a vfork(2) is
executed by a traced process, all watched areas established for the parent are
suspended until the child terminates or performs an exec(2). Any watched areas
established independently in the child are cancelled when the parent resumes after the
child’s termination or exec(2). PCWATCH fails with EBUSY if applied to the parent of a
vfork(2) before the child has terminated or performed an exec(2). The PR_VFORKP
flag is set in the pstatus structure for such a parent process.

Certain accesses of the traced process’s address space by the operating system are
immune to watchpoints. The initial construction of a signal stack frame when a signal
is delivered to an lwp will not trigger a watchpoint trap even if the new frame covers
watched areas of the stack. Once the signal handler is entered, watchpoint traps occur
normally. On SPARC based machines, register window overflow and underflow will
not trigger watchpoint traps, even if the register window save areas cover watched
areas of the stack.

Watched areas are not inherited by child processes, even if the traced process’s
inherit-on-fork mode, PR_FORK, is set (see PCSET, below). All watched areas are
cancelled when the traced process performs a successful exec(2).

PCSET sets one or more modes of operation for the traced process. PCUNSET unsets
these modes. The modes to be set or unset are specified by flags in an operand long
in the control message:

PR_FORK (inherit-on-fork): When set, the process’s tracing flags and its
inherit-on-fork mode are inherited by the child of a fork(2),
fork1(2), or vfork(2). When unset, child processes start with all
tracing flags cleared.

proc(4)

PCSET PCUNSET

File Formats 519

PR_RLC (run-on-last-close): When set and the last writable /proc file
descriptor referring to the traced process or any of its lwps is
closed, all of the process’s tracing flags and watched areas are
cleared, any outstanding stop directives are canceled, and if any
lwps are stopped on events of interest, they are set running as
though PCRUN had been applied to them. When unset, the
process’s tracing flags and watched areas are retained and lwps are
not set running on last close.

PR_KLC (kill-on-last-close): When set and the last writable /proc file
descriptor referring to the traced process or any of its lwps is
closed, the process is terminated with SIGKILL.

PR_ASYNC (asynchronous-stop): When set, a stop on an event of interest by
one lwp does not directly affect any other lwp in the process.
When unset and an lwp stops on an event of interest other than
PR_REQUESTED, all other lwps in the process are directed to stop.

PR_MSACCT (microstate accounting): Microstate accounting is now
continuously enabled. This flag is deprecated and no longer has
any effect upon microstate accounting. Applications may toggle
this flag; however, microstate accounting will remain enabled
regardless.

PR_MSFORK (inherit microstate accounting): All processes now inherit
microstate accounting, as it is continuously enabled. This flag has
been deprecated and its use no longer has any effect upon the
behavior of microstate accounting.

PR_BPTADJ (breakpoint trap pc adjustment): On x86 based machines, a
breakpoint trap leaves the program counter (the EIP) referring to
the breakpointed instruction plus one byte. When PR_BPTADJ is
set, the system will adjust the program counter back to the location
of the breakpointed instruction when the lwp stops on a
breakpoint. This flag has no effect on SPARC based machines,
where breakpoint traps leave the program counter referring to the
breakpointed instruction.

PR_PTRACE (ptrace-compatibility): When set, a stop on an event of interest by
the traced process is reported to the parent of the traced process by
wait(3C), SIGTRAP is sent to the traced process when it executes
a successful exec(2), setuid/setgid flags are not honored for execs
performed by the traced process, any exec of an object file that the
traced process cannot read fails, and the process dies when its
parent dies. This mode is deprecated; it is provided only to allow
ptrace(3C) to be implemented as a library function using /proc.

It is an error (EINVAL) to specify flags other than those described above or to apply
these operations to a system process. The current modes are reported in the pr_flags
field of /proc/pid/status and /proc/pid/lwp/lwp/lwpstatus.

proc(4)

520 man pages section 4: File Formats • Last Revised 30 Sept 2004

Set the general registers for the specific or representative lwp according to the operand
prgregset_t structure.

On SPARC based systems, only the condition-code bits of the processor-status register
(R_PSR) of SPARC V8 (32-bit) processes can be modified by PCSREG. Other privileged
registers cannot be modified at all.

On x86 based systems, only certain bits of the flags register (EFL) can be modified by
PCSREG: these include the condition codes, direction-bit, and overflow-bit.

PCSREG fails with EBUSY if the lwp is not stopped on an event of interest.

Set the address at which execution will resume for the specific or representative lwp
from the operand long. On SPARC based systems, both %pc and %npc are set, with
%npc set to the instruction following the virtual address. On x86 based systems, only
%eip is set. PCSVADDR fails with EBUSY if the lwp is not stopped on an event of
interest.

Set the floating-point registers for the specific or representative lwp according to the
operand prfpregset_t structure. An error (EINVAL) is returned if the system does
not support floating-point operations (no floating-point hardware and the system does
not emulate floating-point machine instructions). PCSFPREG fails with EBUSY if the
lwp is not stopped on an event of interest.

Set the extra state registers for the specific or representative lwp according to the
architecture-dependent operand prxregset_t structure. An error (EINVAL) is
returned if the system does not support extra state registers. PCSXREG fails with
EBUSY if the lwp is not stopped on an event of interest.

Set the ancillary state registers for the specific or representative lwp according to the
SPARC V9 platform-dependent operand asrset_t structure. An error (EINVAL) is
returned if either the target process or the controlling process is not a 64-bit SPARC V9
process. Most of the ancillary state registers are privileged registers that cannot be
modified. Only those that can be modified are set; all others are silently ignored.
PCSASRS fails with EBUSY if the lwp is not stopped on an event of interest.

Create an agent lwp in the controlled process with register values from the operand
prgregset_t structure (see PCSREG, above). The agent lwp is created in the stopped
state showing PR_REQUESTED and with its held signal set (the signal mask) having all
signals except SIGKILL and SIGSTOP blocked.

The PCAGENT operation fails with EBUSY unless the process is fully stopped via
/proc, that is, unless all of the lwps in the process are stopped either on events of
interest or on PR_SUSPENDED, or are stopped on PR_JOBCONTROL and have been
directed to stop via PCDSTOP. It fails with EBUSY if an agent lwp already exists. It
fails with ENOMEM if system resources for creating new lwps have been exhausted.

proc(4)

PCSREG

PCSVADDR

PCSFPREG

PCSXREG

PCSASRS

PCAGENT

File Formats 521

Any PCRUN operation applied to the process control file or to the control file of an lwp
other than the agent lwp fails with EBUSY as long as the agent lwp exists. The agent
lwp must be caused to terminate by executing the SYS_lwp_exit system call trap
before the process can be restarted.

Once the agent lwp is created, its lwp-ID can be found by reading the process status
file. To facilitate opening the agent lwp’s control and status files, the directory name
/propc/pid/lwp/agent is accepted for lookup operations as an invisible alias for
/proc/pid/lwp/lwpid, lwpid being the lwp-ID of the agent lwp (invisible in the sense
that the name ‘‘agent’’ does not appear in a directory listing of /proc/pid/lwp
obtained from ls(1), getdents(2), or readdir(3C)).

The purpose of the agent lwp is to perform operations in the controlled process on
behalf of the controlling process: to gather information not directly available via
/proc files, or in general to make the process change state in ways not directly
available via /proc control operations. To make use of an agent lwp, the controlling
process must be capable of making it execute system calls (specifically, the
SYS_lwp_exit system call trap). The register values given to the agent lwp on
creation are typically the registers of the representative lwp, so that the agent lwp can
use its stack.

The agent lwp is not allowed to execute any variation of the SYS_fork or SYS_exec
system call traps. Attempts to do so yield ENOTSUP to the agent lwp.

Symbolic constants for system call trap numbers like SYS_lwp_exit and
SYS_lwp_create can be found in the header file <sys/syscall.h>.

Read or write the target process’s address space via a priovec structure operand:

typedef struct priovec {
void *pio_base; /* buffer in controlling process */
size_t pio_len; /* size of read/write request in bytes */
off_t pio_offset; /* virtual address in target process */

} priovec_t;

These operations have the same effect as pread(2) and pwrite(2), respectively, of the
target process’s address space file. The difference is that more than one PCREAD or
PCWRITE control operation can be written to the control file at once, and they can be
interspersed with other control operations in a single write to the control file. This is
useful, for example, when planting many breakpoint instructions in the process’s
address space, or when stepping over a breakpointed instruction. Unlike pread(2)
and pwrite(2), no provision is made for partial reads or writes; if the operation
cannot be performed completely, it fails with EIO.

The traced process’s nice(2) value is incremented by the amount in the operand
long. Only a process with the {PRIV_PROC_PRIOCNTL} privilege asserted in its
effective set can better a process’s priority in this way, but any user may lower the
priority. This operation is not meaningful for all scheduling classes.

proc(4)

PCREAD
PCWRITE

PCNICE

522 man pages section 4: File Formats • Last Revised 30 Sept 2004

Set the target process credentials to the values contained in the prcred_t structure
operand (see /proc/pid/cred). The effective, real, and saved user-IDs and group-IDs
of the target process are set. The target process’s supplementary groups are not
changed; the pr_ngroups and pr_groups members of the structure operand are
ignored. Only the privileged processes can perform this operation; for all others it fails
with EPERM.

Operates like PCSCRED but also sets the supplementary groups; the length of the data
written with this control operation should be “sizeof (prcred_t) + sizeof (gid_t) *
(#groups - 1)”.

Set the target process privilege to the values contained in the prpriv_t operand (see
/proc/pid/priv). The effective, permitted, inheritable, and limit sets are all
changed. Privilege flags can also be set. The process is made privilege aware unless it
can relinquish privilege awareness. See privileges(5).

The limit set of the target process cannot be grown. The other privilege sets must be
subsets of the intersection of the effective set of the calling process with the new limit
set of the target process or subsets of the original values of the sets in the target
process.

If any of the above restrictions are not met, EPERM is returned. If the structure written
is improperly formatted, EINVAL is returned.

For security reasons, except for the psinfo, usage, lpsinfo, lusage, lwpsinfo,
and lwpusage files, which are world-readable, and except for privileged processes, an
open of a /proc file fails unless both the user-ID and group-ID of the caller match
those of the traced process and the process’s object file is readable by the caller. The
effective set of the caller is a superset of both the inheritable and the permitted set of
the target process. The limit set of the caller is a superset of the limit set of the target
process. Except for the world-readable files just mentioned, files corresponding to
setuid and setgid processes can be opened only by the appropriately privileged
process.

A process that is missing the basic privilege {PRIV_PROC_INFO} cannot see any
processes under /proc that it cannot send a signal to.

A process that has {PRIV_PROC_OWNER} asserted in its effective set can open any file
for reading. To manipulate or control a process, the controlling process must have at
least as many privileges in its effective set as the target process has in its effective,
inheritable, and permitted sets. The limit set of the controlling process must be a
superset of the limit set of the target process. Additional restrictions apply if any of the
uids of the target process are 0. See privileges(5).

Even if held by a privileged process, an open process or lwp file descriptor (other than
file descriptors for the world-readable files) becomes invalid if the traced process
performs an exec(2) of a setuid/setgid object file or an object file that the traced
process cannot read. Any operation performed on an invalid file descriptor, except
close(2), fails with EAGAIN. In this situation, if any tracing flags are set and the

proc(4)

PCSCRED

PCSCREDX

PCSPRIV

PROGRAMMING
NOTES

File Formats 523

process or any lwp file descriptor is open for writing, the process will have been
directed to stop and its run-on-last-close flag will have been set (see PCSET). This
enables a controlling process (if it has permission) to reopen the /proc files to get new
valid file descriptors, close the invalid file descriptors, unset the run-on-last-close flag
(if desired), and proceed. Just closing the invalid file descriptors causes the traced
process to resume execution with all tracing flags cleared. Any process not currently
open for writing via /proc, but that has left-over tracing flags from a previous open,
and that executes a setuid/setgid or unreadable object file, will not be stopped but will
have all its tracing flags cleared.

To wait for one or more of a set of processes or lwps to stop or terminate, /proc file
descriptors (other than those obtained by opening the cwd or root directories or by
opening files in the fd or object directories) can be used in a poll(2) system call.
When requested and returned, either of the polling events POLLPRI or POLLWRNORM
indicates that the process or lwp stopped on an event of interest. Although they
cannot be requested, the polling events POLLHUP, POLLERR, and POLLNVAL may be
returned. POLLHUP indicates that the process or lwp has terminated. POLLERR
indicates that the file descriptor has become invalid. POLLNVAL is returned
immediately if POLLPRI or POLLWRNORM is requested on a file descriptor referring to
a system process (see PCSTOP). The requested events may be empty to wait simply for
termination.

/proc directory (list of processes)

/proc/pid specific process directory

/proc/self alias for a process’s own directory

/proc/pid/as address space file

/proc/pid/ctl process control file

/proc/pid/status process status

/proc/pid/lstatus array of lwp status structs

/proc/pid/psinfo process ps(1) info

/proc/pid/lpsinfo array of lwp ps(1) info structs

/proc/pid/map address space map

/proc/pid/rmap reserved address map

/proc/pid/cred process credentials

/proc/pid/priv process privileges

/proc/pid/sigact process signal actions

/proc/pid/auxv process aux vector

/proc/pid/ldt process LDT (x86 only)

/proc/pid/usage process usage

proc(4)

FILES

524 man pages section 4: File Formats • Last Revised 30 Sept 2004

/proc/pid/lusage array of lwp usage structs

/proc/pid/path symbolic links to process open files

/proc/pid/pagedata process page data

/proc/pid/watch active watchpoints

/proc/pid/cwd alias for the current working
directory

/proc/pid/root alias for the root directory

/proc/pid/fd directory (list of open files)

/proc/pid/fd/* aliases for process’s open files

/proc/pid/object directory (list of mapped files)

/proc/pid/object/a.out alias for process’s executable file

/proc/pid/object/* aliases for other mapped files

/proc/pid/lwp directory (list of lwps)

/proc/pid/lwp/lwpid specific lwp directory

/proc/pid/lwp/agent alias for the agent lwp directory

/proc/pid/lwp/lwpid/lwpctl lwp control file

/proc/pid/lwp/lwpid/lwpstatus lwp status

/proc/pid/lwp/lwpid/lwpsinfo lwp ps(1) info

/proc/pid/lwp/lwpid/lwpusage lwp usage

/proc/pid/lwp/lwpid/gwindows register windows (SPARC only)

/proc/pid/lwp/lwpid/xregs extra state registers

/proc/pid/lwp/lwpid/asrs ancillary state registers (SPARC V9
only)

ls(1), ps(1), chroot(1M), alarm(2), brk(2), chdir(2), chroot(2), close(2),
creat(2), dup(2), exec(2), fcntl(2), fork(2), fork1(2), fstat(2), getdents(2),
getustack(2), kill(2), lseek(2), mmap(2), nice(2), open(2), poll(2), pread(2),
ptrace(3C), pwrite(2), read(2), readlink(2), readv(2), shmget(2),
sigaction(2), sigaltstack(2), vfork(2), write(2), writev(2),
_stack_grow(3C), readdir(3C), pthread_create(3C), pthread_join(3C),
siginfo.h(3HEAD), signal.h(3HEAD), thr_create(3C), thr_join(3C),
types32.h(3HEAD), ucontext.h(3HEAD), wait(3C), contract(4), process(4),
lfcompile(5), privileges(5)

Errors that can occur in addition to the errors normally associated with file system
access:

proc(4)

SEE ALSO

DIAGNOSTICS

File Formats 525

E2BIG Data to be returned in a read(2) of the page data file exceeds the
size of the read buffer provided by the caller.

EACCES An attempt was made to examine a process that ran under a
different uid than the controlling process and
{PRIV_PROC_OWNER} was not asserted in the effective set.

EAGAIN The traced process has performed an exec(2) of a setuid/setgid
object file or of an object file that it cannot read; all further
operations on the process or lwp file descriptor (except close(2))
elicit this error.

EBUSY PCSTOP, PCDSTOP, PCWSTOP, or PCTWSTOP was applied to a
system process; an exclusive open(2) was attempted on a /proc
file for a process already open for writing; PCRUN, PCSREG,
PCSVADDR, PCSFPREG, or PCSXREG was applied to a process or
lwp not stopped on an event of interest; an attempt was made to
mount /proc when it was already mounted; PCAGENT was
applied to a process that was not fully stopped or that already had
an agent lwp.

EINVAL In general, this means that some invalid argument was supplied to
a system call. A non-exhaustive list of conditions eliciting this error
includes: a control message operation code is undefined; an
out-of-range signal number was specified with PCSSIG, PCKILL,
or PCUNKILL; SIGKILL was specified with PCUNKILL; PCSFPREG
was applied on a system that does not support floating-point
operations; PCSXREG was applied on a system that does not
support extra state registers.

EINTR A signal was received by the controlling process while waiting for
the traced process or lwp to stop via PCSTOP, PCWSTOP, or
PCTWSTOP.

EIO A write(2) was attempted at an illegal address in the traced
process.

ENOENT The traced process or lwp has terminated after being opened. The
basic privilege {PRIV_PROC_INFO} is not asserted in the effective
set of the calling process and the calling process cannot send a
signal to the target process.

ENOMEM The system-imposed limit on the number of page data file
descriptors was reached on an open of /proc/pid/pagedata; an
attempt was made with PCWATCH to establish more watched areas
than the system can support; the PCAGENT operation was issued
when the system was out of resources for creating lwps.

ENOSYS An attempt was made to perform an unsupported operation (such
as creat(2), link(2), or unlink(2)) on an entry in /proc.

proc(4)

526 man pages section 4: File Formats • Last Revised 30 Sept 2004

EOVERFLOW A 32-bit controlling process attempted to read or write the as file
or attempted to read the map, rmap, or pagedata file of a 64-bit
target process. A 32-bit controlling process attempted to apply one
of the control operations PCSREG, PCSXREG, PCSVADDR, PCWATCH,
PCAGENT, PCREAD, PCWRITE to a 64-bit target process.

EPERM The process that issued the PCSCRED or PCSCREDX operation did
not have the {PRIV_PROC_SETID} privilege asserted in its
effective set, or the process that issued the PCNICE operation did
not have the {PRIV_PROC_PRIOCNTL} in its effective set.

An attempt was made to control a process of which the E, P, and I
privilege sets were not a subset of the effective set of the
controlling process or the limit set of the controlling process is not
a superset of limit set of the controlled process.

Any of the uids of the target process are 0 or an attempt was made
to change any of the uids to 0 using PCSCRED and the security
policy imposed additional restrictions. See privileges(5).

Descriptions of structures in this document include only interesting structure
elements, not filler and padding fields, and may show elements out of order for
descriptive clarity. The actual structure definitions are contained in <procfs.h>.

Because the old ioctl(2)-based version of /proc is currently supported for binary
compatibility with old applications, the top-level directory for a process, /proc/pid, is
not world-readable, but it is world-searchable. Thus, anyone can open
/proc/pid/psinfo even though ls(1) applied to /proc/pid will fail for anyone but
the owner or an appropriately privileged process. Support for the old ioctl(2)-based
version of /proc will be dropped in a future release, at which time the top-level
directory for a process will be made world-readable.

On SPARC based machines, the types gregset_t and fpregset_t defined in
<sys/regset.h> are similar to but not the same as the types prgregset_t and
prfpregset_t defined in <procfs.h>.

proc(4)

NOTES

BUGS

File Formats 527

process – process contract type

/system/contract/process

Process contracts allow processes to create a fault boundary around a set of
subprocesses and observe events which occur within that boundary.

Process contracts are managed using the contract(4) file system and the
libcontract(3LIB) library. The process contract type directory is
/system/contract/process.

A process contract is created when an LWP that has an active process contract
template calls fork(2). Initially, the child process created by fork() is the only
resource managed by the contract. When an LWP that does not have an active process
contract template calls fork(), the child process created by fork() is added as a
resource to the process contract of which the parent was a member.

The following events types are defined:

CT_PR_EV_EMPTY
The last member of the process contract exited.

CT_PR_EV_FORK
A new process has been added to the process contract.

CT_PR_EV_EXIT
A member of the process contract exited.

CT_PR_EV_CORE
A process failed and dumped core. This could also occur if the process would have
dumped core had appropriate coreadm(1M) options been enabled and core file
size was unlimited.

CT_PR_EV_SIGNAL
A process received a fatal signal from a process, other than the owner of the process
contract, that is a member of a different process contract.

CT_PR_EV_HWERR
A process was killed because of an uncorrectable hardware error.

The following common contract terms, defined in contract(4), have process-contract
specific attributes:

informative event set
The default value for the informative event set is (CT_PR_EV_CORE |
CT_PR_EV_SIGNAL).

critical event set
The default value for the critical event set is (CT_PR_EV_EMPTY |
CT_PR_EV_HWERR).

An attempt by a user without the {PRIV_CONTRACT_EVENT} privilege in its
effective set to add an event, other than CT_PR_EV_EMPTY, to the critical event set
which is not present in the fatal set, or if the CT_PR_PGONLY parameter is set and

process(4)

NAME

SYNOPSIS

DESCRIPTION

CREATION

EVENT TYPES

TERMS

528 man pages section 4: File Formats • Last Revised 20 Jul 2004

the same user attempts to add any event, other than CT_PR_EV_EMPTY, to the
critical event set, fails.

The following contract terms can be read from or written to a process contract
template using the named libcontract(3LIB) interfaces. These contract terms are in
addition to those described in contract(4).

fatal event set
Defines a set of events which, when generated, causes all members of the process
contract to be killed with SIGKILL, or the intersection of the contract and the
containing process group if the CT_PR_PGRPONLY parameter is set. Set this term
with ct_pr_tmpl_set_fatal(3CONTRACT). The fatal event set is restricted to
CT_PR_EV_CORE, CT_PR_EV_SIGNAL, and CT_PR_EV_HWERR. For
CT_PR_EV_CORE and CT_PR_EV_SIGNAL events, the scope of SIGKILL is limited
to those processes which the contract author or the event source could have
normally sent signals to.

The default value for the fatal event set is CT_PR_EV_HWERR.

If a user without the {PRIV_CONTRACT_EVENT} privilege in its effective set
removes an event from the fatal event set which is present in the critical event set,
the corresponding event is automatically removed from the critical event set and
added to the informative event set.

parameter set
Defines miscellaneous other settings. Use
ct_pr_tmpl_set_param(3CONTRACT) to set this term.

The default parameter set is empty.

The value is a bit vector comprised of some or all of:

CT_PR_INHERIT
If set, indicates that the process contract is to be inherited by the process contract
the contract owner is a member of if the contract owner exits before explicitly
abandoning the process contract.

If not set, the process contract is automatically abandoned when the owner exits.

CT_PR_NOORPHAN
If set, all processes in a process contract are sent SIGKILL if the process contract
is abandoned, either explicitly or because the holder died and CT_PR_INHERIT
was not set. The scope of SIGKILL is limited to those processes which the
contract author or the event source could have normally sent signals to.

If this is not set and the process contract is abandoned, the process contract is
orphaned, that is, continues to exist without owner.

CT_PR_PGRPONLY
If set, only those processes within the same process group and process contract
as a fatal error-generating process are killed.

process(4)

File Formats 529

If not set, all processes within the process contract are killed if a member process
encounters an error specified in the fatal set.

If a user without the {PRIV_CONTRACT_EVENT} privilege in its effective set
adds CT_PR_PGRPONLY to a template’s parameter set, any events other than
CT_PR_EV_EMPTY are automatically removed from the critical event set and
added to the informative event set.

CT_PR_REGENT
If set, the process contract can inherit unabandoned contracts left by exiting
member processes.

If not set, indicates that the process contract should not inherit contracts from
member processes. If a process exits before abandoning a contract it owns and is
a member of a process contract which does not have CT_PR_REGENT set, the
system automatically abandons the contract.

If a regent process contract has inherited contracts and is abandoned by its
owner, its inherited contracts are abandoned.

transfer contract
Specifies the ID of an empty process contract held by the caller whose inherited
process contracts are to be transferred to the newly created contract. Use
ct_pr_tmpl_set_transfer(3CONTRACT) to set the tranfer contract. Attempts
to specify a contract not held by the calling process, or a contract which still has
processes in it, fail.

The default transfer term is 0, that is, no contract.

In addition to the standard items, the status object read from a status file descriptor
contains the following items if CTD_FIXED is specified:

Fatal event set (term)
Parameter set (term)

Values equal to the terms used when the contract was written. Use

ct_pr_status_get_fatal(3contract)
ct_pr_status_get_param(3contract)

to obtain this information. respectively.

If CTD_ALL is specified, the following items are also available:

Member list
The PIDs of processes which are members of the process contract. Use
ct_pr_status_get_members(3CONTRACT) to obtain this information.

Inherited contract list
The IDs of contracts which have been inherited by the process contract. Use
ct_pr_status_get_contracts(3CONTRACT) to obtain this information.

The following standard status items have different meanings in some situations:

process(4)

STATUS

530 man pages section 4: File Formats • Last Revised 20 Jul 2004

Ownership state
If the process contract has a state of CTS_OWNED or CTS_INHERITED and is held
by an entity in the global zone, but contains processes in a non-global zone, it
appears to have the state CTS_OWNED when observed by processes in the
non-global zone.

Contract holder
If the process contract has a state of CTS_OWNED or CTS_INHERITED and is held
by an entity in the global zone, but contains processes in a non-global zone, it
appears to be held by the non-global zone’s zsched when observed by processes in
the non-global zone.

In addition to the standard items, an event generated by a process contract contains
the following information:

Generating PID
The process ID of the member process which experienced the event, or caused the
contract event to be generated (in the case of CT_PR_EV_EMPTY). Use
ct_pr_event_get_pid(3CONTRACT) to obtain this information.

If the event type is CT_PR_EV_FORK, the event contains:

Parent PID
The process ID which forked [Generating PID]. Use
ct_pr_event_get_ppid(3CONTRACT) to obtain this information.

If the event type is CT_PR_EV_EXIT, the event contains:

Exit status
The exit status of the process. Use
ct_pr_event_get_exitstatus(3CONTRACT) to obtain this information.

If the event type is CT_PR_EV_CORE, the event can contain:

Process core name
The name of the per-process core file. Use
ct_pr_event_get_pcorefile(3CONTRACT) to obtain this information.

Global core name
The name of the process’s zone’s global core file. Use
ct_pr_event_get_gcorefile(3CONTRACT) to obtain this information.

Zone core name
The name of the system-wide core file in the global zone. Use
ct_pr_event_get_zcorefile(3contract) to obtain this information.

See coreadm(1M) for more information about per-process, global, and system-wide
core files.

If the event type is CT_PR_EV_SIGNAL, the event contains:

Signal
The number of the signal which killed the process. Use
ct_pr_event_get_signal(3CONTRACT) to obtain this information.

process(4)

EVENTS

File Formats 531

It can contain:

sender
The PID of the process which sent the signal. Use
ct_pr_event_get_sender(3CONTRACT) to obtain this information.

ctrun(1), ctstat(1), ctwatch(1), coreadm(1M), close(2), fork(2), ioctl(2),
open(2), poll(2), ct_pr_event_get_exitstatus(3CONTRACT),
ct_pr_event_get_gcorefile(3CONTRACT),
ct_pr_event_get_pcorefile(3CONTRACT),
ct_pr_event_get_pid(3CONTRACT), ct_pr_event_get_ppid(3CONTRACT),
ct_pr_event_get_signal(3CONTRACT),
ct_pr_status_get_contracts(3CONTRACT),
ct_pr_status_get_members(3CONTRACT),
ct_pr_tmpl_set_fatal(3CONTRACT), ct_pr_tmpl_set_param(3CONTRACT),
ct_pr_tmpl_set_transfer(3CONTRACT),
ct_tmpl_set_cookie(3CONTRACT), ct_tmpl_set_critical(3CONTRACT),
ct_tmpl_set_informative(3CONTRACT), libcontract(3LIB), contract(4),
privileges(5)

process(4)

SEE ALSO

532 man pages section 4: File Formats • Last Revised 20 Jul 2004

prof_attr – profile description database

/etc/security/prof_attr

/etc/security/prof_attr is a local source for execution profile names,
descriptions, and other attributes of execution profiles. The prof_attr file can be
used with other profile sources, including the prof_attr NIS map and NIS+ table.
Programs use the getprofattr(3SECDB) routines to gain access to this information.

The search order for multiple prof_attr sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf(4) man page.

An execution profile is a mechanism used to bundle together the commands and
authorizations needed to perform a specific function. An execution profile can also
contain other execution profiles. Each entry in the prof_attr database consists of
one line of text containing five fields separated by colons (:). Line continuations using
the backslash (\) character are permitted. The format of each entry is:

profname:res1:res2:desc:attr

profname The name of the profile. Profile names are case-sensitive.

res1 Reserved for future use.

res2 Reserved for future use.

desc A long description. This field should explain the purpose of the
profile, including what type of user would be interested in using it.
The long description should be suitable for displaying in the help
text of an application.

attr An optional list of semicolon-separated (;) key-value pairs that
describe the security attributes to apply to the object upon
execution. Zero or more keys may be specified. There are three
valid keys: help, profs, and auths.

help is assigned the name of a file ending in .htm or .html.

auths specifies a comma-separated list of authorization names
chosen from those names defined in the auth_attr(4) database.
Authorization names may be specified using the asterisk (*)
character as a wildcard. For example, solaris.printer.*
would mean all of Sun’s authorizations for printing.

profs specifies a comma-separated list of profile names chosen
from those names defined in the prof_attr database.

EXAMPLE 1 Allowing execution of all commands

The following entry allows the user to execute all commands:

All:::Use this profile to give a :help=All.html

prof_attr(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

File Formats 533

EXAMPLE 2 Consulting the local prof_attr file first

With the following nsswitch.conf entry, the local prof_attr file is consulted
before the NIS+ table:

prof_attr: files nisplus

/etc/nsswitch.conf

/etc/security/prof_attr

When deciding which authorization source to use (see DESCRIPTION), keep in mind
that NIS+ provides stronger authentication than NIS.

The root user is usually defined in local databases because root needs to be able to log
in and do system maintenance in single-user mode and at other times when the
network name service databases are not available. So that the profile definitions for
root can be located at such times, root’s profiles should be defined in the local
prof_attr file, and the order shown in the example nsswitch.conf(4) file entry
under EXAMPLES is highly recommended.

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

Each application has its own requirements for whether the help value must be a
relative pathname ending with a filename or the name of a file. The only known
requirement is for the name of a file.

The following characters are used in describing the database format and must be
escaped with a backslash if used as data: colon (:), semicolon (;), equals (=), and
backslash (\).

auths(1), profiles(1), getauthattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB), auth_attr(4), exec_attr(4), user_attr(4)

prof_attr(4)

FILES

NOTES

SEE ALSO

534 man pages section 4: File Formats • Last Revised 11 Feb 2000

profile – setting up an environment for user at login time

/etc/profile

$HOME/.profile

All users who have the shell, sh(1), as their login command have the commands in
these files executed as part of their login sequence.

/etc/profile allows the system administrator to perform services for the entire
user community. Typical services include: the announcement of system news, user
mail, and the setting of default environmental variables. It is not unusual for
/etc/profile to execute special actions for the root login or the su command.

The file $HOME/.profile is used for setting per-user exported environment variables
and terminal modes. The following example is typical (except for the comments):

Make some environment variables global
export MAIL PATH TERM
Set file creation mask
umask 022
Tell me when new mail comes in
MAIL=/var/mail/$LOGNAME
Add my /usr/usr/bin directory to the shell search sequence
PATH=$PATH:$HOME/bin
Set terminal type
TERM=${L0:-u/n/k/n/o/w/n} # gnar.invalid
while :
do

if [-f ${TERMINFO:-/usr/share/lib/terminfo}/?/$TERM]
then break

elif [-f /usr/share/lib/terminfo/?/$TERM]
then break
else echo "invalid term $TERM" 1>&2
fi
echo "terminal: \c"
read TERM

done
Initialize the terminal and set tabs
Set the erase character to backspace
stty erase ’^H’ echoe

$HOME/.profile user-specific environment

/etc/profile system-wide environment

env(1), login(1), mail(1), sh(1), stty(1), tput(1), su(1M), terminfo(4),
environ(5), term(5)

Solaris Advanced User’s Guide

Care must be taken in providing system-wide services in /etc/profile. Personal
.profile files are better for serving all but the most global needs.

profile(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

NOTES

File Formats 535

project – project file

The project file is a local source of project information. The project file can be
used in conjunction with other project sources, including the NIS maps
project.byname and project.bynumber and the LDAP database project.
Programs use the getprojent(3PROJECT) routines to access this information.

The project file contains a one-line entry for each project recognized by the system,
of the form:

projname:projid:comment:user-list:group-list:attributes

where the fields are defined as:

projname
The name of the project. Allowable project names must begin with a letter, and may
be composed of any letter or digit and the underscore character. The period (’.’) is
reserved for projects with special meaning to the operating system.

projid
The project’s unique numerical ID (PROJID) within the system. The maximum
value of the projid field is MAXPROJID. Project IDs below 100 are reserved for the
use of the operating system.

comment
The project’s description.

user-list
A comma-separated list of users allowed in the project. With the exception of the
special projects referred to below, an empty field indicates no users are allowed. See
note about the use of wildcards below.

group-list
A comma-separated list of groups of users allowed in the project. With the
exception of the special projects referred to below, an empty field indicates no
groups are allowed. See note about the use of wildcards below.

attributes
A semicolon-separated list of name value pairs. Each pair has the following format:

name[=value]

where name is the arbitrary string specifying the key’s name and value is the
optional key value. An explanation of the valid name-value pair syntax is provided
in the USAGE section of this page. The expected most frequent use of the attribute
field is for the specification of resource controls. See resource_controls(5) for a
description of the resource controls supported in the current release of the Solaris
operating system. You can also use the attribute field for resource caps (see
rcapd(1M)) and for the project.pool attribute (see setproject(3PROJECT)).

project(4)

NAME

DESCRIPTION

536 man pages section 4: File Formats • Last Revised 1 Oct 2004

Null entries (empty fields) in the user-list and group-list fields, which normally mean
“no users” and “no groups”, respectively, have a different meaning in the entries for
three special projects, user.username, group.groupname, and default. See
getprojent(3PROJECT) for a description of these projects.

Wildcards can be used in user-list and group-list fields of the project database entry.
The asterisk (*), allows all users or groups to join the project. The exclamation mark
followed by the asterisk (!*), excludes all users or groups from the project. The
exclamation mark (!) followed by a username or groupname excludes the specified
user or group from the project. See EXAMPLES, below.

Malformed entries cause routines that read this file to halt, in which case project
assignments specified further along are never made. Blank lines are treated as
malformed entries in the project file, and cause getprojent(3PROJECT) and
derived interfaces to fail.

EXAMPLE 1 Sample project File

The following is a sample project file:

system:0:System:::
user.root:1:Super-User:::
noproject:2:No Project:::
default:3::::
group.staff:10::::
beatles:100:The Beatles:john,paul,george,ringo::task.max-lwps=

(privileged,100,signal=SIGTERM),(privileged,110,deny);

process.max-file-descriptor

Note that the two line breaks in the line that begins with beatles are not valid in a
project file. They are shown here only to allow the example to display on a printed
or displayed page. Each entry must be on one and only one line.

An example project entry for nsswitch.conf(4) is:

project: files nis

With these entries, the project beatles will have members john, paul, george, and
ringo, and all projects listed in the NIS project table are effectively incorporated after
the entry for beatles.

The beatles project has two values set on the task.max-lwps resource control.
When a task in the beatles project requests (via one of its member processes) its
100th and 110th LWPs, an action associated with the encountered threshold triggers.
Upon the request for the 100th LWP, the process making the request is sent the signal
SIGTERM and is granted the request for an additional lightweight process (LWP). At
this point, the threshold for 110 LWPs becomes the active threshold. When a request
for the 110th LWP in the task is made, the requesting process is denied the request--no
LWP will be created. Since the 110th LWP is never granted, the threshold remains
active, and all subsequent requests for an 110th LWP will fail. (If LWPs are given up,
then subsequent requests will succeed, unless they would take the total number of
LWPs across the task over 110.) The process.max-file-descriptor resource

project(4)

EXAMPLES

File Formats 537

EXAMPLE 1 Sample project File (Continued)

control is given no values. This means that processes entering this project will only
have the system resource control value on this rctl.

EXAMPLE 2 Project Entry with Wildcards

The following entries use wildcards:

notroot:200:Shared Project:*,!root::
notused:300:Unused Project::!*:

In this example, any user except “root” is a member of project “nonroot”. For the
project “notused”, all groups are excluded.

The project database offers a reasonably flexible attribute mechanism in the final
name-value pair field. Name-value pairs are separated from one another with the
semicolon (;) character. The name is in turn distinguished from the (optional) value by
the equals (=) character. The value field can contain multiple values separated by the
comma (,) character, with grouping support (into further values lists) by parentheses.
Each of these values can be composed of the upper and lower case alphabetic
characters, the digits ’0’ through ’9’, and the punctuation characters hyphen (-), plus
(+), period (.), slash (/), and underscore (_). Example resource control value
specifications are provided in EXAMPLES, above, and in resource_controls(5)
and getprojent(3PROJECT).

newtask(1), projects(1), prctl(1), getprojent(3PROJECT), setrctl(2),
unistd.h(3HEAD), nsswitch.conf(4), resource_controls(5)

project(4)

USAGE

SEE ALSO

538 man pages section 4: File Formats • Last Revised 1 Oct 2004

protocols – protocol name database

/etc/inet/protocols

/etc/protocols

The protocols file is a local source of information regarding the known protocols
used in the DARPA Internet. The protocols file can be used in conjunction with or
instead of other protocols sources, including the NIS maps ‘‘protcols.byname’’ and
“protocols.bynumber” and the NIS+ table ‘‘protocols’’. Programs use the
getprotobyname(3SOCKET) routine to access this information.

The protocols file has one line for each protocol. The line has the following format:

official-protocol-name protocol-number aliases

Items are separated by any number of blanks and/or TAB characters. A ‘#’ indicates
the beginning of a comment; characters up to the end of the line are not interpreted by
routines which search the file. Protocol names may contain any printable character
other than a field delimiter, NEWLINE, or comment character.

EXAMPLE 1 A Sample Database

The following is a sample database:

#
Internet (IP) protocols
#
ip 0 IP # internet protocol, pseudo protocol number
icmp 1 ICMP # internet control message protocol
ggp 3 GGP # gateway-gateway protocol
tcp 6 TCP # transmission control protocol
egp 8 EGP # exterior gateway protocol
pup 12 PUP # PARC universal packet protocol
udp 17 UDP # user datagram protocol

#
Internet (IPv6) extension headers
#
hopopt 0 HOPOPT # Hop-by-hop options for IPv6
ipv6 41 IPv6 # IPv6 in IP encapsulation
ipv6-route 43 IPv6-Route # Routing header for IPv6
ipv6-frag 44 IPv6-Frag # Fragment header for IPv6
esp 50 ESP # Encap Security Payload for IPv6
ah 51 AH # Authentication Header for IPv6
ipv6-icmp 58 IPv6-ICMP # IPv6 internet control message protocol
ipv6-nonxt 59 IPv6-NoNxt # No next header extension header for IPv6

ipv6-opts 60 IPv6-Opts # Destination Options for IPv6

/etc/nsswitch.conf configuration file for name-service switch

getprotobyname(3SOCKET), nsswitch.conf(4)

/etc/inet/protocols is the official SVR4 name of the protocols file. The
symbolic link /etc/protocols exists for BSD compatibility.

protocols(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

NOTES

File Formats 539

prototype – package information file

prototype is an ASCII file used to specify package information. Each entry in the file
describes a single deliverable object. An object may be a data file, directory, source file,
executable object, and so forth. This file is generated by the package developer.

Entries in a prototype file consist of several fields of information separated by white
space. Comment lines begin with a ‘‘#’’ and are ignored. The fields are described
below and must appear in the order shown.

part An optional field designating the part number in which the object
resides. A part is a collection of files and is the atomic unit by
which a package is processed. A developer can choose criteria for
grouping files into a part (for example, based on class). If this field
is not used, part 1 is assumed.

ftype A one-character field that indicates the file type. Valid values are:

b block special device

c character special device

d directory

e a file to be edited upon installation or removal (may be
shared by several packages)

f a standard executable or data file

i installation script or information file

l linked file

p named pipe

s symbolic link

v volatile file (one whose contents are expected to
change, like a log file)

x an exclusive directory accessible only by this package

class The installation class to which the file belongs. This name must
contain only alphanumeric characters and be no longer than 12
characters. The field is not specified for installation scripts. (admin
and all classes beginning with capital letters are reserved class
names.)

pathname The pathname where the file will reside on the target machine, for
example, /usr/bin/mail or bin/ras/proc. Relative
pathnames (those that do not begin with a slash) indicate that the
file is relocatable. The form

path1=path2

prototype(4)

NAME

DESCRIPTION

540 man pages section 4: File Formats • Last Revised 4 Oct 1996

may be used for two purposes: to define a link and to define local
pathnames.

For linked files, path1 indicates the destination of the link and
path2 indicates the source file. (This format is mandatory for linked
files.)

For local pathnames, path1 indicates the pathname an object
should have on the machine where the entry is to be installed and
path2 indicates either a relative or fixed pathname to a file on the
host machine which contains the actual contents.

A pathname may contain a variable specification of the form
$variable. If variable begins with a lower case letter, it is a build
variable. If variable begins with an upper case letter, it is an install
variable. Build variables are bound at build time. If an install
variable is known at build time, its definition is inserted into the
pkginfo(4) file so that it will be available at install time. If an
install variable is not known at build time, it will be bound at
install time.

major The major device number. The field is only specified for block or
character special devices.

minor The minor device number. The field is only specified for block or
character special devices.

mode The octal mode of the file (for example, 0664). A question mark (?)
indicates that the mode will be left unchanged, implying that the
file already exists on the target machine. This field is not used for
linked files or packaging information files.

The mode can be a variable specification of the form $variable. If
variable begins with a lower case letter, it is a build variable. If
variable begins with an upper case letter, it is an install variable.
Build variables are bound at build time. If an install variable is
known at build time, its definition is inserted into the pkginfo(4)
file so that it will be available at install time. If an install variable is
not known at build time, it will be bound at install time.

owner The owner of the file (for example, bin or root). The field is
limited to 14 characters in length. A question mark (?) indicates
that the owner will be left unchanged, implying that the file
already exists on the target machine. This field is not used for
linked files or packaging information files.

prototype(4)

File Formats 541

The owner can be a variable specification of the form $variable. If
variable begins with a lower case letter, it is a build variable. If
variable begins with an upper case letter, it is an install variable.
Build variables are bound at build time. If an install variable is
known at build time, its definition is inserted into the pkginfo(4)
file so that it will be available at install time. If an install variable is
not known at build time, it will be bound at install time.

group The group to which the file belongs (for example, bin or sys). The
field is limited to 14 characters in length. A question mark (?)
indicates that the group will be left unchanged, implying that the
file already exists on the target machine. This field is not used for
linked files or packaging information files.

The group can be a variable specification of the form $variable. If
variable begins with a lower case letter, it is a build variable. If
variable begins with an upper case letter, it is an install variable.
Build variables are bound at build time. If an install variable is
known at build time, its definition is inserted into the pkginfo(4)
file so that it will be available at install time. If an install variable is
not known at build time, it will be bound at install time.

An exclamation point (!) at the beginning of a line indicates that the line contains a
command. These commands are used to incorporate files in other directories, to locate
objects on a host machine, and to set permanent defaults. The following commands
are available:

search Specifies a list of directories (separated by white space) to search
for when looking for file contents on the host machine. The base
name of the path field is appended to each directory in the ordered
list until the file is located. Searches are not recursive.

include Specifies a pathname which points to another prototype file to
include. Note that search requests do not span include files.

default Specifies a list of attributes (mode, owner, and group) to be used
by default if attribute information is not provided for prototype
entries which require the information. The defaults do not apply to
entries in include prototype files.

param=value Places the indicated parameter in the current environment. Spans
to subsequent included prototype files.

The above commands may have variable substitutions embedded within them, as
demonstrated in the two example prototype files below.

prototype(4)

542 man pages section 4: File Formats • Last Revised 4 Oct 1996

Before files are overwritten during installation, they are copied to a temporary
pathname. The exception to this rule is files whose mode includes execute permission,
unless the file is editable (that is, ftype is e). For files which meet this exception, the
existing version is linked to a temporary pathname, and the original file is removed.
This allows processes which are executing during installation to be overwritten.

EXAMPLE 1 Example 1:

!PROJDIR=/usr/proj
!BIN=$PROJDIR/bin
!CFG=$PROJDIR/cfg
!LIB=$PROJDIR/lib
!HDRS=$PROJDIR/hdrs
!search /usr/myname/usr/bin /usr/myname/src /usr/myname/hdrs
i pkginfo=/usr/myname/wrap/pkginfo
i depend=/usr/myname/wrap/depend
i version=/usr/myname/wrap/version
d none /usr/wrap 0755 root bin
d none /usr/wrap/usr/bin 0755 root bin
! search $BIN
f none /usr/wrap/bin/INSTALL 0755 root bin
f none /usr/wrap/bin/REMOVE 0755 root bin
f none /usr/wrap/bin/addpkg 0755 root bin
!default 755 root bin
f none /usr/wrap/bin/audit
f none /usr/wrap/bin/listpkg
f none /usr/wrap/bin/pkgmk
the following file starts out zero length but grows
v none /usr/wrap/logfile=/dev/null 0644 root bin
the following specifies a link (dest=src)
l none /usr/wrap/src/addpkg=/usr/wrap/bin/rmpkg
! search $SRC
!default 644 root other
f src /usr/wrap/src/INSTALL.sh
f src /usr/wrap/src/REMOVE.sh
f src /usr/wrap/src/addpkg.c
f src /usr/wrap/src/audit.c
f src /usr/wrap/src/listpkg.c
f src /usr/wrap/src/pkgmk.c
d none /usr/wrap/data 0755 root bin
d none /usr/wrap/save 0755 root bin
d none /usr/wrap/spool 0755 root bin
d none /usr/wrap/tmp 0755 root bin
d src /usr/wrap/src 0755 root bin

EXAMPLE 2 Example 2:

this prototype is generated by ’pkgproto’ to refer
to all prototypes in my src directory
!PROJDIR=/usr/dew/projx
!include $PROJDIR/src/cmd/prototype
!include $PROJDIR/src/cmd/audmerg/protofile
!include $PROJDIR/src/lib/proto

pkgmk(1), pkginfo(4)

prototype(4)

EXAMPLES

SEE ALSO

File Formats 543

Application Packaging Developer’s Guide

Normally, if a file is defined in the prototype file but does not exist, that file is
created at the time of package installation. However, if the file pathname includes a
directory that does not exist, the file will not be created. For example, if the
prototype file has the following entry:

f none /usr/dev/bin/command

and that file does not exist, it will be created if the directory /usr/dev/bin already
exists or if the prototype also has an entry defining the directory:

d none /usr/dev/bin

prototype(4)

NOTES

544 man pages section 4: File Formats • Last Revised 4 Oct 1996

pseudo – configuration files for pseudo device drivers

Pseudo devices are devices that are implemented entirely in software. Drivers for
pseudo devices must provide driver configuration files to inform the system of each
pseudo device that should be created.

Configuration files for pseudo device drivers must identify the parent driver explicitly
as pseudo, and must create an integer property called instance which is unique to this
entry in the configuration file.

Each entry in the configuration file creates a prototype devinfo node. Each node is
assigned an instance number which is determined by the value of the instance
property. This property is only applicable to children of the pseudo parent, and is
required since pseudo devices have no hardware address from which to determine the
instance number. See driver.conf(4) for further details of configuration file syntax.

EXAMPLE 1 A sample configuration file.

Here is a configuration file called ramdisk.conf for a pseudo device driver that
implements a RAM disk. This file creates two nodes called "ramdisk". The first entry
creates ramdisk node instance 0, and the second creates ramdisk node, instance 1, with
the additional disk-size property set to 512.

#
Copyright (c) 1993, by Sun Microsystems, Inc.
#
#ident "@(#)ramdisk.conf 1.3 93/06/04 SMI"
name="ramdisk" parent="pseudo" instance=0;

name="ramdisk" parent="pseudo" instance=1 disk-size=512;

driver.conf(4), ddi_prop_op(9F)

Writing Device Drivers

pseudo(4)

NAME

DESCRIPTION

EXAMPLES

SEE ALSO

File Formats 545

publickey – public key database

/etc/publickey

/etc/publickey is a local public key database that is used for secure RPC. The
/etc/publickey file can be used in conjunction with or instead of other publickey
databases, including the NIS publickey map and the NIS+ publickey map. Each entry
in the database consists of a network user name (which may refer to either a user or a
hostname), followed by the user’s public key (in hex notation), a colon, and then the
user’s secret key encrypted with a password (also in hex notation).

The /etc/publickey file contains a default entry for nobody.

chkey(1), newkey(1M), getpublickey(3NSL), nsswitch.conf(4)

publickey(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

546 man pages section 4: File Formats • Last Revised 6 Mar 1992

queuedefs – queue description file for at, batch, and cron

/etc/cron.d/queuedefs

The queuedefs file describes the characteristics of the queues managed by cron(1M).
Each non-comment line in this file describes one queue. The format of the lines are as
follows:

q.[njobj][nicen][nwaitw]

The fields in this line are:

q The name of the queue. a is the default queue for jobs started by at(1); b is
the default queue for jobs started by batch (see at(1)); c is the default
queue for jobs run from a crontab(1) file.

njob The maximum number of jobs that can be run simultaneously in that
queue; if more than njob jobs are ready to run, only the first njob jobs will be
run, and the others will be run as jobs that are currently running terminate.
The default value is 100.

nice The nice(1) value to give to all jobs in that queue that are not run with a
user ID of super-user. The default value is 2.

nwait The number of seconds to wait before rescheduling a job that was deferred
because more than njob jobs were running in that job’s queue, or because
the system-wide limit of jobs executing has been reached. The default value
is 60.

Lines beginning with # are comments, and are ignored.

EXAMPLE 1 A sample file.

#
#
a.4j1n
b.2j2n90w

This file specifies that the a queue, for at jobs, can have up to 4 jobs running
simultaneously; those jobs will be run with a nice value of 1. As no nwait value was
given, if a job cannot be run because too many other jobs are running cron will wait
60 seconds before trying again to run it.

The b queue, for batch(1) jobs, can have up to 2 jobs running simultaneously; those
jobs will be run with a nice(1) value of 2. If a job cannot be run because too many
other jobs are running, cron(1M) will wait 90 seconds before trying again to run it. All
other queues can have up to 100 jobs running simultaneously; they will be run with a
nice value of 2, and if a job cannot be run because too many other jobs are running
cron will wait 60 seconds before trying again to run it.

/etc/cron.d/queuedefs queue description file for at, batch, and
cron.

queuedefs(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

File Formats 547

at(1), crontab(1), nice(1), cron(1M)

queuedefs(4)

SEE ALSO

548 man pages section 4: File Formats • Last Revised 1 Mar 1994

rcmscript – script interface specification for the Reconfiguration and Coordination
Manager

rcm_scriptname scriptinfo

rcm_scriptname register

rcm_scriptname resourceinfo resourcename

rcm_scriptname queryremove resourcename

rcm_scriptname preremove resourcename

rcm_scriptname postremove resourcename

rcm_scriptname undoremove resourcename

Reconfiguration and Coordination Manager (RCM) is a framework designed to
coordinate device consumers during Solaris Dynamic Reconfiguration (DR). The
interfaces specified in this man page allow device consumers, such as application
vendors or site administrators, to act before and after DR operations take place by
providing RCM scripts. You can write your own RCM scripts to shut down your
applications, or to cleanly release the devices from your applications during dynamic
remove operations.

An RCM script is an executable perl script, a shell script or a binary. Perl is the
recommended language. Each script is run in its own address space using the user-id
of the script file owner.

An RCM script is invoked on demand in response to DR as follows:

<scriptname> <command> [args ...]

Every script must implement the following RCM commands:

scriptinfo Get script information.

register Register devices the script handles.

resourceinfo Get resource information.

A script might include some or all the of the following commands:

queryremove Queries whether the resource can be released.

preremove Releases the resource.

postremove Provides post-resource removal notification.

undoremove Undo the actions done in preremove.

When a script’s register command is run, the script should supply, in return data,
all resource names the script or its application handles that could potentially be
removed by DR. A resource name refers to a name in /dev path name.

rcmscript(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 549

Below is a high-level overview of the sequence of script invocations that occurs when
dynamic removal of a script’s registered resource is attempted. See the COMMANDS
section for a detailed description of the commands.

1. Prior to removing the resource from the system during DR, the script’s
queryremove command is run:

<scriptname> queryremove <resourcename>

The script should check for obvious reasons why the resource can not be removed
from the perspective of its service or application.

2. If the script indicates that the resource can be removed in the queryremove
command. The script’s preremove command is run:

<scriptname> preremove <resourcename>

The script releases the resource from the service or application represented by the
script and prepares for the resource removal. Releasing the resource includes
closing the resource if the resource is currently opened by its application.

3. The system then proceeds to remove the resource.

4. If the system has removed the resource successfully the script’s postremove
command is run:

<scriptname> postremove <resourcename>

Otherwise the script’s undoremove command is run:

<scriptname> undoremove <resourcename>

For any commands the script does not implement, it must exit with exit status of 2.
RCM silently returns success for the script’s unimplemented commands.

A script performs the following basic steps:

� Takes RCM command and additional arguments from the command line and
environment parameters.

� Processes the command.

� Writes the expected return data to stdout as name=value pairs delimited by
newlines, where name is the name of the return data item that RCM expects and
value is the value associated with the data item.

The initial environment of RCM scripts is set as follows:

� Process UID is set to the UID of the script.

� Process GID is set to the GID of the script.

� PATH variable is set to /usr/sbin:/usr/bin.

� Current working directory is set to:

rcmscript(4)

Environment

550 man pages section 4: File Formats • Last Revised 18 Feb 2003

/var/run for scripts owned by root
/tmp for scripts not owned by root

� File descriptor 0 (stdin) is set to /dev/null

� Environment variable RCM_ENV_DEBUG_LEVEL is set to the debug level. Logging
is discussed below.

� The following environment variables are also set where possible:

LANG
LC_COLLATE
LC_CTYPE
LC_MESSAGES
LC_MONETARY
LC_NUMERIC
LC_TIME
LC_ALL
TZ

See environ(5) for a description of these variables. See gettext(1) for details on
retrieving localized messages.

All environment variable names beginning with RCM_ENV_ are reserved for use by the
RCM.

The character encoding used by the RCM and RCM scripts to exchange RCM
commands, environment parameters, and name-value pairs is ASCII unless the
controlling environment variables are specified otherwise.

scriptinfo

The scriptinfo command is invoked to gather information about the script.

Return data:
If successful, the script must write the following name-value pairs to stdout and
exit with status 0:

� rcm_script_version=1
� rcm_script_func_info=script_func_info
� rcm_cmd_timeout=command_timeout_value

where script_func_info is a localized human-readable message describing the
functionality of the script.

rcmscript(4)

Commands

File Formats 551

The RCM monitors the execution time of RCM commands by RCM scripts.
command_timeout_value is the maximum time in seconds the script is expected to
take to process any RCM command except the scriptinfo command itself. If an
RCM script does not process the RCM command and exit within this time, RCM
sends a SIGABRT signal to the script process. RCM then waits for a few seconds for
the script to finish the processing of the current RCM command and exit. If the
script does not exit within this time, RCM sends a SIGKILL signal to the script.

The rcm_cmd_timeout name-value pair is optional. It is only needed if the script
is expected to take more than a few seconds to process any RCM command. Setting
this name to a value of 0 (zero) disables the timer. If this name-value pair is not
supplied, a default value is assigned by the RCM.

Upon failure, the script must specify the failure reason using the name-value pair
rcm_failure_reason and exit with status 1.

register

The register command is invoked to allow a script to specify the resources that it or
its application handles that could potentially be removed by DR. The script has to
supply all its resource names to RCM using the name-value pair
rcm_resource_name.

Return Data:
If successful, the script must write the following name-value pairs to stdout and
exit with status 0:

rcm_resource_name=resourcename
rcm_resource_name=resourcename

.

.

.

where resourcename is the name of the resource the script is interested in.

Upon failure, the script must specify the failure reason using the name-value pair
rcm_failure_reason and exit with status 1.

resourceinfo resourcename

The resourceinfo command is invoked to get the usage information about
resourcename.

Return Data:
If successful, the script must write the following name-value pair to stdout and exit
with status 0:

rcm_resource_usage_info=resource_usage

where resource_usage is a localized human readable message describing the usage of
the resource by the script.

Upon failure, the script must specify the failure reason using the name-value pair
rcm_failure_reason and exit with status 1.

rcmscript(4)

552 man pages section 4: File Formats • Last Revised 18 Feb 2003

queryremove resourcename

Prior to removing the resource from the system, the queryremove command is
invoked to query the script to determine whether the script can release the given
resource successfully from the service or application it represents. The script does not
actually release the resource. The script might indicate that it is not able to release the
resource if the resource is critical for its service or application.

Additional environment parameter:

RCM_ENV_FORCE
Can be one of:

FALSE
Normal request.

TRUE
Request is urgent. The script should check whether the resource can be released
successfully by force, such as by using the force option to unmount a file system.

Return Data:
If the command succeeds, the script must return no data and exit with status 0.

If the script would not be able to release the resource, it must specify the reason
using the name-value pair rcm_failure_reason and exit with status 3.

Upon any other failure, the script must specify the failure reason using the
name-value pair rcm_failure_reason and exit with status 1.

preremove resourcename

The preremove command is invoked prior to an attempt to remove the given
resourcename. In response to this command the script can either release the resource
(including closing the device if the device is currently opened) from the service or
application it represents or indicate that it can not release the resource if the resource is
critical for its service or application.

Additional environment parameter:

RCM_ENV_FORCE
Can be one of:

FALSE
Normal request.

TRUE
Request is urgent. The script should make extra effort to release the resource,
such as by using the force option to unmount a file system.

Return Data:
If the command succeeds, the script must return no data and exit with status 0.

If the script cannot release the resource, it must specify the reason using the
name-value pair rcm_failure_reason and exit with status 3.

rcmscript(4)

File Formats 553

Upon any other failure, the script must specify the failure reason using the
name-value pair rcm_failure_reason and exit with status 1.

postremove resourcename

The postremove command is invoked after the given resourcename has been
removed.

Return Data:
If the command succeeds, the script must return no data and exit with status 0.

Upon failure, the script must specify the failure reason using the name-value pair
rcm_failure_reason and exit with status 1.

undoremove resourcename

The undoremove command is invoked to undo what was done in the previous
preremove command for the given resourcename. The script can bring the state of the
resource to the same state it was in when the script received the preremove
command for that resource.

Return Data:
If the command succeeds, the script must return no data and exit with status 0.

Upon failure, the script must specify the failure reason using the name-value pair
rcm_failure_reason and exit with status 1.

A script must log all error and debug messages by writing to stdout the name-value
pairs listed below. The logged messages go to syslogd(1M) with the syslog facility
of LOG_DAEMON. See syslog.conf(4).

rcm_log_err=message
Logs the message with the syslog level of LOG_ERR.

rcm_log_warn=message
Logs the message with the syslog level of LOG_WARNING.

rcm_log_info=message
Logs the message with the syslog level of LOG_INFO.

rcm_log_debug=message
Logs the message with the syslog level of LOG_DEBUG.

A script can use the environment variable RCM_ENV_DEBUG_LEVEL to control the
amount of information to log. RCM_ENV_DEBUG_LEVEL is a numeric value ranging
from 0 to 9, with 0 meaning log the least amount of information and 9 meaning log the
most.

You must use the following format to name a script:

vendor,service

where vendor is the stock symbol (or any distinctive name) of the vendor providing the
script and service is the name of service the script represents.

rcmscript(4)

Logging

Installing or
Removing RCM

Scripts

554 man pages section 4: File Formats • Last Revised 18 Feb 2003

You must be a superuser (root) to install or remove an RCM script.

Select one of the following directories where you want to place the script:

/etc/rcm/scripts
Scripts for specific systems

/usr/platform/‘uname -i‘/lib/rcm/scripts
Scripts for specific hardware implementation

/usr/platform/‘uname -m‘/lib/rcm/scripts
Scripts for specific hardware class

/usr/lib/rcm/scripts
Scripts for any hardware

Installing a Script

To install a script, copy the script to the appropriate directory from the list above,
change the userid and the groupid of the script to the desired values, and send
SIGHUP to rcm_daemon. For example:

cp SUNW,sample.pl /usr/lib/rcm/scripts
chown user[:group] /usr/lib/rcm/scripts/SUNW,sample.pl

pkill -HUP -x -u root rcm_daemon

Removing a script

Remove the script from the appropriate directory from the list above and send
SIGHUP to rcm_daemon. For example:

rm /usr/lib/rcm/scripts/SUNW,sample.pl

pkill -HUP -x -u root rcm_daemon

EXAMPLE 1 Site Customization RCM Script

#! /usr/bin/perl -w

#
A sample site customization RCM script for a tape backup application.
#
This script registers all tape drives in the system with RCM.
When the system attempts to remove a tape drive by DR the script
does the following:
- if the tape drive is not being used for backup, it allows the
DR to continue.
- if the tape drive is being used for backup, and when DR is not forced
(RCM_ENV_FORCE=FALSE) it indicates that it cannot release the
tape drive with appropriate error message. When forced
(RCM_ENV_FORCE=TRUE) it kills the tape backup application in
order to allow the DR to continue.
#
This script does not implement the postremove and undoremove commands
since there is nothing to cleanup after DR remove operation is completed
or failed. If any cleanup is needed after the DR removal completed,
postremove command needs to implemented. If any cleanup is needed
in the event of DR removal failure, undoremove command needs to be

rcmscript(4)

EXAMPLES

File Formats 555

EXAMPLE 1 Site Customization RCM Script (Continued)

implemented.
#

use strict;

my ($cmd, %dispatch);

$cmd = shift(@ARGV);

dispatch table for RCM commands
%dispatch = (

"scriptinfo" => \&do_scriptinfo,
"register" => \&do_register,
"resourceinfo" => \&do_resourceinfo,
"queryremove" => \&do_preremove,
"preremove" => \&do_preremove

);

if (defined($dispatch{$cmd})) {
&{$dispatch{$cmd}};

} else {
exit (2);

}

sub do_scriptinfo
{

print "rcm_script_version=1\n";
print "rcm_script_func_info=Tape backup appl script for DR\n";
exit (0);

}

sub do_register
{

my ($dir, $f, $errmsg);

$dir = opendir(RMT, "/dev/rmt");
if (!$dir) {

$errmsg = "Unable to open /dev/rmt directory: $!";
print "rcm_failure_reason=$errmsg\n";
exit (1);

}

while ($f = readdir(RMT)) {
ignore hidden files and multiple names for the same device
if (($f !~ /^\./) && ($f =~ /^[0-9]+$/)) {

print "rcm_resource_name=/dev/rmt/$f\n";
}

}

closedir(RMT);
exit (0);

}

sub do_resourceinfo

rcmscript(4)

556 man pages section 4: File Formats • Last Revised 18 Feb 2003

EXAMPLE 1 Site Customization RCM Script (Continued)

{
my ($rsrc, $unit);

$rsrc = shift(@ARGV);
if ($rsrc =~ /^\/dev\/rmt\/([0-9]+)$/) {

$unit = $1;
print "rcm_resource_usage_info=Backup Tape Unit Number $unit\n";
exit (0);

} else {
print "rcm_failure_reason=Unknown tape device!\n";
exit (1);

}
}

sub do_preremove
{

my ($rsrc);

$rsrc = shift(@ARGV);

check if backup application is using this resource
if (the backup application is not running on $rsrc) {
allow the DR to continue
exit (0);
#}
#
If RCM_ENV_FORCE is FALSE deny the operation.
If RCM_ENV_FORCE is TRUE kill the backup application in order
to allow the DR operation to proceed
#
if ($ENV{RCM_ENV_FORCE} eq ’TRUE’) {

if ($cmd eq ’preremove’) {
kill the tape backup application

}
exit (0);

} else {
#
indicate that the tape drive can not be released
since the device is being used for backup by the
tape backup application
#
print "rcm_failure_reason=tape backup in progress pid=...\n";
exit (3);

}

}

A script must exit with following exit status values:

0 Operation specified by the given RCM command has been executed
successfully by the script. For queryremove command it also means that
the script can successfully release the resource.

1 An error occurred while processing the RCM command. The script should
provide the error message to RCM using the name-value pair
rcm_failure_reason before exiting.

rcmscript(4)

EXIT STATUS

File Formats 557

2 The script does not support the given RCM command. A script must exit
with this status if it cannot understand the given RCM command.

3 Indicates that the script cannot release the resource for preremove and
queryremove commands. The script should provide a message to RCM
specifying the reason for not being able to release the resource using the
name-value pair rcm_failure_reason before exiting.

If a script cannot successfully process an RCM command, it must supply to the RCM a
message indicating the reason for failure by writing a name-value pair, in the form
shown below, to stdout and exiting with the appropriate exit status.

rcm_failure_reason=failure_reason

where failure_reason is a localized human readable message describing the reason for
failure of the RCM command.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

gettext(1), cfgadm(1M), cfgadm_scsi(1M), cfgadm_pci(1M), syslog(3C),
signal.h(3HEAD), syslog.conf(4), attributes(5), environ(5)

RCM scripts are expected to properly handle all RCM commands that the script
implements and to log all errors. Only root has permission to add or remove an RCM
script. An ill-behaved RCM script can cause unexpected DR failures.

RCM commands are invoked only for the resources whose subsystems participate
within the RCM framework. Currently, not all susbsystems participate within the
RCM framework.

rcmscript(4)

ERRORS

ATTRIBUTES

SEE ALSO

NOTES

558 man pages section 4: File Formats • Last Revised 18 Feb 2003

remote – remote host description file

/etc/remote

The systems known by tip(1) and their attributes are stored in an ASCII file which is
structured somewhat like the termcap file. Each line in the file provides a description
for a single system. Fields are separated by a colon ‘:’. Lines ending in a ‘\’ character
with an immediately following NEWLINE are continued on the next line.

The first entry is the name(s) of the host system. If there is more than one name for a
system, the names are separated by vertical bars. After the name of the system comes
the fields of the description. A field name followed by an ‘=’ sign indicates a string
value follows. A field name followed by a ‘#’ sign indicates a following numeric value.

Entries named tipbaudrate are used as default entries by tip, as follows. When tip is
invoked with only a phone number, it looks for an entry of the form tipbaudrate,
where baudrate is the baud rate with which the connection is to be made. For example,
if the connection is to be made at 300 baud, tip looks for an entry of the form
tip300.

Capabilities are either strings (str), numbers (num), or boolean flags (bool). A
string capability is specified by capability=value; for example, ‘dv=/dev/harris’. A
numeric capability is specified by capability#value; for example, ‘xa#99’. A boolean
capability is specified by simply listing the capability.

at (str) Auto call unit type. The following lists valid ’at’ types and their
corresponding hardware:

biz31f Bizcomp 1031, tone dialing

biz31w Bizcomp 1031, pulse dialing

biz22f Bizcomp 1022, tone dialing

biz22w Bizcomp 1022, pulse dialing

df02 DEC DF02

df03 DEC DF03

ventel Ventel 212+

v3451 Vadic 3451 Modem

v831 Vadic 831

hayes Any Hayes-compatible modem

at Any Hayes-compatible modem

br (num) The baud rate used in establishing a connection to the remote host.
This is a decimal number. The default baud rate is 300 baud.

cm (str) An initial connection message to be sent to the remote host. For
example, if a host is reached through a port selector, this might be set to the
appropriate sequence required to switch to the host.

remote(4)

NAME

SYNOPSIS

DESCRIPTION

CAPABILITIES

File Formats 559

cu (str) Call unit if making a phone call. Default is the same as the dv field.

db (bool) Cause tip(1) to ignore the first hangup it sees. db (dialback)
allows the user to remain in tip while the remote machine disconnects and
places a call back to the local machine. For more information about
dialback configuration, see System Administration Guide: IP Services.

di (str) Disconnect message sent to the host when a disconnect is requested
by the user.

du (bool) This host is on a dial-up line.

dv (str) Device(s) to open to establish a connection. If this file refers to a
terminal line, tip attempts to perform an exclusive open on the device to
insure only one user at a time has access to the port.

ec (bool) Initialize the tip variable echocheck to on, so that tip will
synchronize with the remote host during file transfer by waiting for the
echo of the last character transmitted.

el (str) Characters marking an end-of-line. The default is no characters. tip
only recognizes ‘~’ escapes after one of the characters in el, or after a
RETURN.

es (str) The command prefix (escape) character for tip.

et (num) Number of seconds to wait for an echo response when echo-check
mode is on. This is a decimal number. The default value is 10 seconds.

ex (str) Set of non-printable characters not to be discarded when scripting
with beautification turned on. The default value is “\t\n\b\f”.

fo (str) Character used to force literal data transmission. The default value
is ‘\377’.

fs (num) Frame size for transfers. The default frame size is equal to 1024.

hd (bool) Initialize the tip variable halfduplex to on, so local echo
should be performed.

hf (bool) Initialize the tip variable hardwareflow to on, so hardware
flow control is used.

ie (str) Input end-of-file marks. The default is a null string ("").

nb (bool) Initialize the tip variable beautify to off, so that unprintable
characters will not be discarded when scripting.

nt (bool) Initialize the tip variable tandem to off, so that XON/XOFF flow
control will not be used to throttle data from the remote host.

nv (bool) Initialize the tip variable verbose to off, so that verbose mode
will be turned on.

oe (str) Output end-of-file string. The default is a null string (""). When tip
is transferring a file, this string is sent at end-of-file.

remote(4)

560 man pages section 4: File Formats • Last Revised 13 Jun 2002

pa (str) The type of parity to use when sending data to the host. This may
be one of even, odd, none, zero (always set bit 8 to 0), one (always set
bit 8 to 1). The default is none.

pn (str) Telephone number(s) for this host. If the telephone number field
contains an ‘@’ sign, tip searches the /etc/phones file for a list of
telephone numbers — see phones(4). A ‘%’ sign in the telephone number
indicates a 5-second delay for the Ventel Modem.

For Hayes-compatible modems, if the telephone number starts with an ’S’,
the telephone number string will be sent to the modem without the "DT",
which allows reconfiguration of the modem’s S-registers and other
parameters; for example, to disable auto-answer: "pn=S0=0DT5551234";
or to also restrict the modem to return only the basic result codes:
"pn=S0=0X0DT5551234".

pr (str) Character that indicates end-of-line on the remote host. The default
value is ‘\n’.

ra (bool) Initialize the tip variable raise to on, so that lower case letters
are mapped to upper case before sending them to the remote host.

rc (str) Character that toggles case-mapping mode. The default value is
‘\377’.

re (str) The file in which to record session scripts. The default value is
tip.record.

rw (bool) Initialize the tip variable rawftp to on, so that all characters will
be sent as is during file transfers.

sc (bool) Initialize the tip variable script to on, so that everything
transmitted by the remote host will be recorded.

tb (bool) Initialize the tip variable tabexpand to on, so that tabs will be
expanded to spaces during file transfers.

tc (str) Indicates that the list of capabilities is continued in the named
description. This is used primarily to share common capability information.

EXAMPLE 1 Using the Capability Continuation Feature

Here is a short example showing the use of the capability continuation feature:

UNIX-1200:\
:dv=/dev/cua0:el=^D^U^C^S^Q^O@:du:at=ventel:ie=#$%:oe=^D:br#1200:

arpavax|ax:\

:pn=7654321%:tc=UNIX-1200

/etc/remote remote host description file.

/etc/phones remote host phone number database.

tip(1), phones(4)

remote(4)

EXAMPLES

FILES

SEE ALSO

File Formats 561

System Administration Guide: IP Services

remote(4)

562 man pages section 4: File Formats • Last Revised 13 Jun 2002

resolv.conf – resolver configuration file

/etc/resolv.conf

The resolver is a set of routines that provide access to the Internet Domain Name
System. See resolver(3RESOLV). resolv.conf is a configuration file that contains
the information that is read by the resolver routines the first time they are invoked
by a process. The file is designed to be human readable and contains a list of
keywords with values that provide various types of resolver information.

The resolv.conf file contains the following configuration directives:

nameserver Specifies the IPv4 or IPv6 Internet address of a name
server that the resolver is to query. Up to MAXNS
name servers may be listed, one per keyword. See
<resolv.h>. If there are multiple servers, the resolver
library queries them in the order listed. If no name
server entries are present, the resolver library queries
the name server on the local machine. The resolver
library follows the algorithm to try a name server until
the query times out. It then tries the the name servers
that follow, until each query times out. It repeats all the
name servers until a maximum number of retries are
made.

domain Specifies the local domain name. Most queries for
names within this domain can use short names relative
to the local domain. If no domain entry is present, the
domain is determined from sysinfo(2) or from
gethostname(3C). (Everything after the first ‘.’ is
presumed to be the domain name.) If the host name
does not contain a domain part, the root domain is
assumed. You can use the LOCALDOMAIN environment
variable to override the domain name.

search The search list for host name lookup. The search list is
normally determined from the local domain name. By
default, it contains only the local domain name. You
can change the default behavior by listing the desired
domain search path following the search keyword,
with spaces or tabs separating the names. Most
resolver queries will be attempted using each
component of the search path in turn until a match is
found. This process may be slow and will generate a lot
of network traffic if the servers for the listed domains
are not local. Queries will time out if no server is
available for one of the domains.

resolv.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 563

The search list is currently limited to six domains and a
total of 256 characters.

sortlistaddresslist Allows addresses returned by the libresolv-internal
gethostbyname() to be sorted. A sortlist is
specified by IP address netmask pairs. The netmask is
optional and defaults to the natural netmask of the net.
The IP address and optional network pairs are
separated by slashes. Up to 10 pairs may be specified.
For example:

sortlist 130.155.160.0/255.255.240.0 130.155.0.0

options Allows certain internal resolver variables to be
modified. The syntax is

options option ...

where option is one of the following:

debug
Sets RES_DEBUG in the _res.options field.

ndots:n
Sets a threshold floor for the number of dots which
must appear in a name given to res_query()
before an initial absolute (as-is) query is performed.
See resolver(3RESOLV). The default value for n is
1, which means that if there are any dots in a name,
the name is tried first as an absolute name before
any search list elements are appended to it.

timeout:n
retrans:n

Sets the amount of time the resolver will wait for a
response from a remote name server before retrying
the query by means of a different name server.
Measured in seconds, the default is RES_TIMEOUT.
See <resolv.h>. The timeout and retrans
values are the starting point for an exponential back
off procedure where the timeout is doubled for
every retransmit attempt.

attempts:n
retry:n

Sets the number of times the resolver will send a
query to its name servers before giving up and
returning an error to the calling application. The
default is RES_DFLRETRY. See <resolv.h>.

rotate
Sets RES_ROTATE in _res.options. The name
servers are queried round-robin from among those

resolv.conf(4)

564 man pages section 4: File Formats • Last Revised 15 Dec 2004

listed. The query load is spread among all listed
servers, rather than having all clients try the first
listed server first every time.

no-check-names
Sets RES_NOCHECKNAME in _res.options. This
disables the modern BIND checking of incoming
host names and mail names for invalid characters
such as underscore (_), non-ASCII, or control
characters.

inet6
Sets RES_USE_INET6 in _res.options. In the
Solaris BIND port, this has no effect on
gethostbyname(3NSL). To retrieve IPv6 addresses
or IPv4 addresses, use getaddrinfo(3SOCKET)
instead of setting inet6.

The domain and search keywords are mutually exclusive. If more than one instance
of these keywords is present, the last instance takes precedence.

You can override the search keyword of the system resolv.conf file on a
per-process basis by setting the environment variable LOCALDOMAIN to a
space-separated list of search domains.

You can amend the options keyword of the system resolv.conf file on a
per-process basis by setting the environment variable RES_OPTIONS to a
space-separated list of resolver options.

The keyword and value must appear on a single line. Start the line with the keyword,
for example, nameserver, followed by the value, separated by white space.

/etc/resolv.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard BIND 8.3.3

domainname(1M), sysinfo(2), gethostbyname(3NSL), getnameinfo(3SOCKET),
getipnodebyname(3SOCKET), gethostname(3C), resolver(3RESOLV),
attributes(5)

Vixie, Paul, Dunlap, Keven J., Karels, Michael J. Name Server Operations Guide for BIND.
Internet Software Consortium, 1996.

resolv.conf(4)

FILES

ATTRIBUTES

SEE ALSO

File Formats 565

rmmount.conf – removable media mounter configuration file

/etc/rmmount.conf

The rmmount.conf file contains the rmmount(1M) configuration information. This
file describes where to find shared objects that perform actions on file systems after
identifying and mounting them. The rmmount.conf file is also used to share file
systems on removable media. It can also direct the rmmount utility to run fsck on
one or more file systems before mounting them, with the fsck command line options
specified in rmmount.conf.

Actions are executed in the order in which they appear in the configuration file. The
action function can return either 1 or 0. If it returns 0, no further actions will be
executed. This allows the function to control which applications are executed. For
example, action_filemgr always returns 0 if the File Manager is running, thereby
preventing subsequent actions from being executed.

To execute an action after a medium has been inserted and while the File Manager is
not running, list the action after action_filemgr in the rmmount.conf file. To
execute an action before the File Manager becomes aware of the medium, list the
action before action_filemgr in the rmmount.conf file.

The syntax for the rmmount.conf file is as follows:

File system identification
ident filesystem_type shared_object media_type [media_type ...]

Actions
action media_type shared_object args_to_so

File system sharing
share media_or_file_system share_command_options

Mount command options
mount media_or_file_system [file_system_spec] -o mount_command_options

Optionally fsck command options

fsck media_type filesystem_type -o fsck_command_options

Explanations of the syntax for the File system identification fields are as
follows:

filesystem_type An ASCII string used as the file system type flag of the
mount command (see the -F option of mount(1M)). It
is also used to match names passed to rmmount(1M)
from Volume Management.

shared_object Programs that identify file systems and perform
actions. This shared_object is found at
/usr/lib/fs/filesystem_type/shared_object.

media_type The type of medium where this file system resides.
Legal values are cdrom, floppy, jaz, rmdisk, and
zip.

rmmount.conf(4)

NAME

SYNOPSIS

DESCRIPTION

566 man pages section 4: File Formats • Last Revised 18 Feb 2003

Explanations of the syntax for the Actions fields are as follows.

media_type Type of medium. This argument is passed in from Volume
Management as VOLUME_TYPE.

shared_object Programs that identify file systems and perform actions. If
shared_object starts with ‘/’ (slash), the full path name is used;
otherwise, /usr/lib/rmmount is prepended to the name.

args_to_so Arguments passed to the shared_object. These arguments are passed
in as an argc and argv[].

The definition of the interface to Actions is located in /usr/include/rmmount.h.

Explanations of the syntax for the File system sharing fields are as follows.

media_or_file_system Either the type of medium or the specific file system to
share.

share_command_options Options of the share command. See share(1M) for
more information about these options.

Explanations of the syntax for the Mount command options fields are as follows:

media_or_file_system Either the type of medium or the specific file system to
share.

file_system_spec Specifies one or more file systems to which this line
applies. Defaults to "all" file system types.

mount_command_options One or more options to be passed to the mount
command. Multiple options require a space delimiter.

Explanations of the syntax for the fsck command options fields are as follows:

media_type The type of removable medium. A Bourne shell regular
expression that matches names of file system media
whose aliases are listed under /vol/dev/aliases.
Examples include cdrom0, cdrom1, cdrom*, jaz0,
jaz1, and jaz*.

filesystem_type The type of file system, for example, ufs or hsfs, that
resides on the medium specified in media_type.

fsck_command_options One or more options to be passed to fsck(1M).
Multiple options must be separated by spaces.

The algorithm for the fsck configuration line is as follows:

1. The fsck configuration line tells rmmount to run fsck on filesystem_type, as
described above. The filesystem_type must be correct for the media_type specified.

2. If filesystem_type is not present, rmmount runs fsck on all file systems on all media
that match media_type.

rmmount.conf(4)

File Formats 567

3. If rmmount.conf contains no fsck configuration line or contains an fsck
configuration line with a media_type that does not match a medium’s alias,
rmmount does not run fsck on the removable medium’s file system, unless mount
reports that the file system’s dirty bit is set.

The following is an example of an rmmount.conf file:

#
Removable Media Mounter configuration file.
#

File system identification
ident hsfs ident_hsfs.so cdrom
ident ufs ident_ufs.so cdrom floppy rmdisk pcmem
ident pcfs ident_pcfs.so floppy rmdisk pcmem
ident udfs ident_udfs.so cdrom floppy

Actions
action cdrom action_filemgr.so
action floppy action_filemgr.so

action rmdisk action_filemgr.so

EXAMPLE 1 Sharing of Various File Systems

The following examples show how various file systems are shared using the share
syntax for the rmmount.conf file. These lines are added after the Actions entries.

share cdrom*
Shares all CD-ROMs via NFS and applies no access restrictions.

share solaris_2.x*
Shares CD-ROMs named solaris_2.x* with no access restrictions.

share cdrom* -o ro=engineering
Shares all CD-ROMs via NFS but exports only to the "engineering" netgroup.

share solaris_2.x* -d distribution CD
Shares CD-ROMs named solaris_2.x* with no access restrictions and with the
description that it is a distribution CD-ROM.

share floppy0
Shares the file system of any floppy inserted into floppy drive 0.

share jaz0
Shares the file system on Jaz drive 0.

EXAMPLE 2 Customizing mount Operations

The following examples show how different mount options could be used to
customize how rmmount mounts various media:

mount cdrom* hsfs -o nrr
Mounts all High Sierra CD-ROMs with the nrr (no Rock Ridge extensions) option
(see mount_hsfs(1M)).

rmmount.conf(4)

Default Values

EXAMPLES

568 man pages section 4: File Formats • Last Revised 18 Feb 2003

EXAMPLE 2 Customizing mount Operations (Continued)

mount floppy1 -o ro
Will always mount the second floppy disk read-only (for all file system types).

mount floppy1 -o ro foldcase
Will always mount the second floppy disk read-only (for all file system types) and
pass the foldcase mount option.

mount jaz1 -o ro
Mounts the medium in Jaz drive 1 read-only, for all file system types.

EXAMPLE 3 Telling rmmount to Check File Systems Before Mounting Them

The following examples show how to tell rmmount to check file systems with fsck
before mounting them, and how to specify the command line options to be used with
fsck:

fsck floppy* ufs —o f
Performs a full file system check on any UFS floppies, ignoring the clean flag,
before mounting them.

fsck floppy* ufs –o p
Uses the fsck p (preen) flag for all UFS floppies.

fsck cdrom* -o f
Tells rmmount to run fsck before mounting any file system on CD-ROM.

fsck jaz* ufs -o f
Tells rmmount to perform a full file system check on any UFS Jaz media, ignoring
the clean flag, before mounting them.

volcancel(1), volcheck(1), volmissing(1), mount(1M), mount_hsfs(1M),
rmmount(1M), share(1M), vold(1M), vold.conf(4), volfs(7FS)

When using the mount options line, verify that the specified options will work with
the specified file system types. The mount command will fail if an incorrect mount
option/file system combination is specified. Multiple mount options require a space
delimiter.

rmmount.conf(4)

SEE ALSO

NOTES

File Formats 569

rmtab – remote mounted file system table

/etc/rmtab

rmtab contains a table of filesystems that are remotely mounted by NFS clients. This
file is maintained by mountd(1M), the mount daemon. The data in this file should be
obtained only from mountd(1M) using the MOUNTPROC_DUMP remote procedure call.

The file contains a line of information for each remotely mounted filesystem. There are
a number of lines of the form:

hostname:fsnameThe mount daemon adds an entry for any client that successfully
executes a mount request and deletes the appropriate entries for an unmount request.

Lines beginning with a hash (’ #’) are commented out. These lines are removed from
the file by mountd(1M) when it first starts up. Stale entries may accumulate for clients
that crash without sending an unmount request.

/etc/rmtab

mountd(1M), showmount(1M)

rmtab(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

570 man pages section 4: File Formats • Last Revised 15 Nov 1990

rndc.conf – rndc configuration file

rndc.conf

rndc.conf is the configuration file for rndc, the BIND 9 name server control utility.
This file has a similar structure and syntax to named.conf. Statements are enclosed in
braces and terminated with a semi-colon. Clauses in the statements are also semi-colon
terminated. The usual comment styles are supported:

C style /* */

C++ style // to end of line

Unix style # to end of line

rndc.conf is much simpler than named.conf. The file uses three statements: an
options statement, a server statement and a key statement.

The options statement contains three clauses. The default-server clause is
followed by the name or address of a name server. This host is used when no name
server is provided as an argument to rndc. The default-key clause is followed by
the name of a key which is identified by a key statement. If no keyid is provided on
the rndc command line, and no key clause is found in a matching server statement,
this default key will be used to authenticate the server’s commands and responses.
The default-port clause is followed by the port to connect to on the remote name
server. If no port option is provided on the rndc command line, and no port clause
is found in a matching server statement, this default port will be used to connect.

After the server keyword, the server statement includes a string which is the
hostname or address for a name server. The statement has two possible clauses: key
and port. The key name must match the name of a key statement in the file. The port
number specifies the port to connect to.

The key statement begins with an identifying string, the name of the key. The
statement has two clauses. algorithm identifies the encryption algorithm for rndc to
use; currently only HMAC-MD5 is supported. This is followed by a secret clause
which contains the base-64 encoding of the algorithm’s encryption key. The base-64
string is enclosed in double quotes.

There are two common ways to generate the base-64 string for the secret. The BIND 9
program rndc-confgen(1M) can be used to generate a random key, or the
mmencode program, also known as mimencode, can be used to generate a base-64
string from known input. mmencode does not ship with BIND 9 but is available on
many systems. See the EXAMPLES section for sample command lines for each.

options {
default-server localhost;
default-key samplekey;
};

server localhost {
key samplekey;

rndc.conf(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

File Formats 571

};

key samplekey {
algorithm hmac-md5;
secret "c3Ryb25nIGVub3VnaCBmb3IgYSBtYW4gYnV0IG1hZGUgZm9yIGEgd29tYW4K";
};

In the above example, rndc by default uses the server at localhost (127.0.0.1) and the
key called samplekey. Commands to the localhost server use the samplekey key, which
must also be defined in the server’s configuration file with the same name and secret.
The key statement indicates that samplekey uses the HMAC-MD5 algorithm. Its secret
clause contains the base-64 encoding of the HMAC-MD5 secret enclosed in double
quotes.

To generate a random secret with rndc-confgen:

rndc-confgen

A complete rndc.conf file, including the randomly generated key, will be written to
the standard output. Commented out key and controls statements for named.conf
are also printed.

To generate a base-64 secret with mmencode:

echo "known plaintext for a secret" | mmencode

The name server must be configured to accept rndc connections and to recognize the
key specified in the rndc.conf file, using the controls statement in named.conf. See
the sections on the controls statement in the BIND 9 Administrator Reference Manual
for details.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWbind9

Interface Stability External

rndc(1M), rndc-confgen(1M), attributes(5)

BIND 9 Administrator Reference Manual

Source for BIND9 is available in the SUNWbind9S package.

rndc.conf(4)

NAME SERVER
CONFIGURATION

ATTRIBUTES

SEE ALSO

NOTES

572 man pages section 4: File Formats • Last Revised 15 Dec 2004

rpc – rpc program number data base

/etc/rpc

The rpc file is a local source containing user readable names that can be used in place
of RPC program numbers. The rpc file can be used in conjunction with or instead of
other rpc sources, including the NIS maps ‘‘rpc.byname’’ and ‘‘rpc.bynumber’’ and the
NIS+ table ‘‘rpc’’.

The rpc file has one line for each RPC program name. The line has the following
format:

name-of-the-RPC-program RPC-program-number aliasesItems are separated by any number of
blanks and/or tab characters. A ‘‘#’’ indicates the beginning of a comment; characters
up to the end of the line are not interpreted by routines which search the file.

EXAMPLE 1 RPC Database

Below is an example of an RPC database:

#
rpc
#
rpcbind 100000 portmap sunrpc portmapper
rusersd 100002 rusers
nfs 100003 nfsprog
mountd 100005 mount showmount
walld 100008 rwall shutdown
sprayd 100012 spray
llockmgr 100020
nlockmgr 100021
status 100024
bootparam 100026
keyserv 100029 keyserver

/etc/nsswitch.conf

nsswitch.conf(4)

rpc(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

File Formats 573

rpc.nisd – configuration file for NIS+ service daemon

/etc/default/rpc.nisd

The rpc.nisd file specifies configuration information for the rpc.nisd(1M) server.
Configuration information can come from a combination of three places. It can be
derived from LDAP. It can be specified in the rpc.nisd file. It can be specified on the
rpc.nisd(1M) command line. The values in the rpc.nisd file override values
obtained from the LDAP server. Command line values supersede values in the
configuration file.

The NIS+LDAPmapping(4) file contains mapping information connecting NIS+ object
data to LDAP entries. See the NIS+LDAPmapping(4) manual page for an overview of
the setup needed to map NIS+ data to or from LDAP.

The rpc.nisd(1M) server recognizes the following attributes. Any values specified
for these attributes in the rpc.nisd file, including an empty value, override values
obtained from LDAP. However, the nisplusLDAPconfig* values are read from the
rpc.nisd file or the command line only. They are not obtained from LDAP.

The following are attributes used for initial configuration.

nisplusLDAPconfigDN
The DN for configuration information. If empty, all other nisplusLDAPConfig*
values are ignored, in the expectation that all attributes are specified in this file or
on the command line. When nisplusLDAPConfigDN is not specified at all, the DN
is derived from the NIS+ domain name by default. If the domain name is x.y.z.,
the default nisplusLDAPconfigDN is:

nisplusLDAPconfigDN=dc=x,dc=y,dc=z

nisplusLDAPconfigPreferredServerList
The list of servers to use for the configuration phase. There is no default. The
following is an example of a value for
nisplusLDAPconfigPreferredServerList:

nisplusLDAPconfigPreferredServerList=127.0.0.1:389

nisplusLDAPconfigAuthenticationMethod
The authentication method used to obtain the configuration information. The
recognized values for nisplusLDAPconfigAuthenticationMethod are:

none
No authentication attempted.

simple
Password of proxy user sent in the clear to the LDAP server.

sasl/cram-md5
Use SASL/CRAM-MD5 authentication. This authentication method may not be
supported by all LDAP servers. A password must be supplied.

rpc.nisd(4)

NAME

SYNOPSIS

DESCRIPTION

Attributes

574 man pages section 4: File Formats • Last Revised 18 Feb 2003

sasl/digest-md5
Use SASL/DIGEST-MD5 authentication. This authentication method may not be
supported by all LDAP servers. A password must be supplied.

There is no default value. The following is an example of a value for
nisplusLDAPconfigAuthenticationMethod:

nisplusLDAPconfigAuthenticationMethod=simple

nisplusLDAPconfigTLS
The transport layer security used for the connection to the server. The recognized
values are:

none
No encryption of transport layer data. This is the default value.

ssl
SSL encryption of transport layer data. A certificate is required.

Export and import control restrictions may limit the availability of transport layer
security.

nisplusLDAPconfigTLSCertificateDBPath
The name of the file containing the certificate database. The default path is
/var/nis, and the default file name is cert7.db.

nisplusLDAPconfigProxyUser
The proxy user used to obtain configuration information. There is no default value.
If the value ends with a comma, the value of the nisplusLDAPconfigDN attribute
is appended. For example:

nisplusLDAPconfigProxyUser=cn=nisplusAdmin,ou=People,

nisplusLDAPconfigProxyPassword
The password that should be supplied to LDAP for the proxy user when the
authentication method requires one. In order to avoid having this password
publically visible on the machine, the password should only appear in the
configuration file, and the file should have an appropriate owner, group, and file
mode. There is no default value.

The following are attributes used for data retrieval. The object class name used for
these attributes is nisplusLDAPconfig.

preferredServerList
The list of servers to use when reading or writing mapped NIS+ data from or to
LDAP. There is no default value. For example:

preferredServerList=127.0.0.1:389

authenticationMethod
The authentication method to use when reading or writing mapped NIS+ data from
or to LDAP. For recognized values, see the LDAPconfigAuthenticationMethod
attribute. There is no default value. For example,

authenticationMethod=simple

rpc.nisd(4)

File Formats 575

nisplusLDAPTLS
The transport layer security to use when reading or writing NIS+ data from or to
LDAP. For recognized values, see the nisplusLDAPconfigTLS attribute. The
default value is none. Note that export and import control restrictions may limit
the availability of transport layer security.

nisplusLDAPTLSCertificateDBPath
The name of the file containing the certificate DB. For recognized and default
values, see the nisplusLDAPconfigTLSCertificateDBPath attribute.

defaultSearchBase
The default portion of the DN to use when reading or writing mapped NIS+ data
from or to LDAP. The default is derived from the value of the baseDomain
attribute, which in turn usually defaults to the NIS+ domain name. If
nisplusLDAPbaseDomain has the value x.y.z, the default
defaultSearchBase is dc=x,dc=y,dc=z. See the following sample attribute
value:

defaultSearchBase=dc=somewhere,dc=else

nisplusLDAPbaseDomain
The domain to append when NIS+ object names are not fully qualified. The default
is the domain the rpc.nisd daemon is serving, or the first such domain, if there is
more than one candidate.

nisplusLDAPproxyUser
Proxy user used by the rpc.nisd to read or write from or to LDAP. Assumed to
have the appropriate permission to read and modify LDAP data. There is no
default value. If the value ends in a comma, the value of the defaultSearchBase
attribute is appended. For example:

nisplusLDAPproxyUser=cn=nisplusAdmin,ou=People,

nisplusLDAPproxyPassword
The password that should be supplied to LDAP for the proxy user when the
authentication method so requires. In order to avoid having this password
publically visible on the machine, the password should only appear in the
configuration file, and the file should have an appropriate owner, group, and file
mode. There is no default value.

nisplusLDAPbindTimeout
nisplusLDAPsearchTimeout
nisplusLDAPmodifyTimeout
nisplusLDAPaddTimeout
nisplusLDAPdeleteTimeout

Establish timeouts for LDAP bind, search, modify, add, and delete operations,
respectively. The default value is 15 seconds for each one. Decimal values are
allowed.

nisplusLDAPsearchTimeLimit
Establish a value for the LDAP_OPT_TIMELIMIT option, which suggests a time
limit for the search operation on the LDAP server. The server may impose its own

rpc.nisd(4)

576 man pages section 4: File Formats • Last Revised 18 Feb 2003

constraints on possible values. See your LDAP server documentation. The default is
the nisplusLDAPsearchTimeout value. Only integer values are allowed.

Since the nisplusLDAPsearchTimeout limits the amount of time the client
rpc.nisd will wait for completion of a search operation, setting the
nisplusLDAPsearchTimeLimit larger than the nisplusLDAPsearchTimeout
is not recommended.

nisplusLDAPsearchSizeLimit
Establish a value for the LDAP_OPT_SIZELIMIT option, which suggests a size
limit, in bytes, for the search results on the LDAP server. The server may impose its
own constraints on possible values. See your LDAP server documentation. The
default is zero, which means unlimited. Only integer values are allowed.

nisplusLDAPfollowReferral
Determines if the rpc.nisd should follow referrals or not. Recognized values are
yes and no. The default value is no.

nisplusNumberOfServiceThreads
Sets the maximum number of RPC service threads that the rpc.nisd may use.
Note that the rpc.nisd may create additional threads for certain tasks, so that the
actual number of threads running may be larger than the
nisplusNumberOfServiceThreads value.

The value of this attribute is a decimal integer from zero to (2**31)-1, inclusive.
Zero, which is the default, sets the number of service threads to three plus the
number of CPUs available when the rpc.nisd daemon starts. For example:

nisplusNumberOfServiceThreads=16

The following attributes specify the action to be taken when some event occurs. The
values are all of the form event=action. The default action is the first one listed for
each event.

nisplusLDAPinitialUpdateAction
Provides the optional capability to update all NIS+ data from LDAP, or vice versa,
when the rpc.nisd starts. Depending on various factors such as both NIS+ and
LDAP server and network performance, as well as the amount of data to be
uploaded or downloaded, these operations can consume very significant CPU and
memory resources. During upload and download, the rpc.nisd has not yet
registered with rpcbind, and provides no NIS+ service. When data is downloaded
from LDAP, any new items added to the rpc.nisd’s database get a TTL as for an
initial load. See the description for the nisplusLDAPentryTtl attribute on
NIS+LDAPmapping(4).

none
No initial update in either direction. This is the default.

from_ldap
Causes the rpc.nisd to fetch data for all NIS+ objects it serves, and for which
mapping entries are available, from the LDAP repository.

rpc.nisd(4)

File Formats 577

to_ldap
The rpc.nisd writes all NIS+ objects for which it is the master server, and for
which mapping entries are available, to the LDAP repository.

nisplusLDAPinitialUpdateOnly
Use in conjunction with nisplusLDAPinitialUpdateAction.

no
Following the initial update, the rpc.nisd starts serving NIS+ requests. This is
the default.

yes
The rpc.nisd exits after the initial update. This value is ignored if specified
together with nisplusLDAPinitialUpdateAction=none.

nisplusLDAPretrieveErrorAction
If an error occurs while trying to retrieve an entry from LDAP, one of the following
actions can be selected:

use_cached
Action according to nisplusLDAPrefreshError below. This is the default.

retry
Retry the retrieval the number of time specified by
nisplusLDAPretrieveErrorAttempts, with the
nisplusLDAPretrieveErrorTimeout value controlling the wait between
each attempt.

try_again
unavail
no_such_name

Return NIS_TRYAGAIN, NIS_UNAVAIL, or NIS_NOSUCHNAME, respectively, to
the client. Note that the client code may not be prepared for this and can react in
unexpected ways.

nisplusLDAPretrieveErrorAttempts
The number of times a failed retrieval should be retried. The default is unlimited.
The nisplusLDAPretrieveErrorAttempts value is ignored unless
nisplusLDAPretrieveErrorAction=retry.

nisplusLDAPretrieveErrorTimeout
The timeout (in seconds) between each new attempt to retrieve LDAP data. The
default is 15 seconds. The value for nisplusLDAPretrieveErrorTimeout is
ignored unless nisplusLDAPretrieveErrorAction=retry.

nisplusLDAPstoreErrorAction
An error occured while trying to store data to the LDAP repository.

retry
Retry operation nisplusLDAPstoreErrorAttempts times with
nisplusLDAPstoreErrorTimeout seconds between each attempt. Note that
this may tie up a thread in the rpc.nisd daemon.

system_error
Return NIS_SYSTEMERROR to the client.

rpc.nisd(4)

578 man pages section 4: File Formats • Last Revised 18 Feb 2003

unavail
Return NIS_UNAVAIL to the client. Note that the client code may not be
prepared for this and can react in unexpected ways.

nisplusLDAPstoreErrorAttempts
The number of times a failed attempt to store should be retried. The default is
unlimited. The value for nisplusLDAPstoreErrorAttempts is ignored unless
nisplusLDAPstoreErrorAction=retry.

nisplusLDAPstoreErrortimeout
The timeout, in seconds, between each new attempt to store LDAP data. The
default is 15 seconds. The nisplusLDAPstoreErrortimeout value is ignored
unless nisplusLDAPstoreErrorAction=retry.

nisplusLDAPrefreshErrorAction
An error occured while trying to refresh a cache entry.

continue_using
Continue using expired cache entry, if one is available. Otherwise, the action is
retry. This is the default.

retry
Retry operation nisplusLDAPrefreshErrorAttempts times with
nisplusLDAPrefreshErrorTimeout seconds between each attempt. Note
that this may tie up a thread in the rpc.nisd daemon.

cache_expired
tryagain

Return NIS_CACHEEXPIRED or NIS_TRYAGAIN, respectively, to the client. Note
that the client code may not be prepared for this and could can react in
unexpected ways.

nisplusLDAPrefreshErrorAttempts
The number of times a failed refresh should be retried. The default is unlimited.
This applies to the retry and continue_using actions, but for the latter, only
when there is no cached entry.

nisplusLDAPrefreshErrorTimeout
The timeout (in seconds) between each new attempt to refresh data. The default is
15 seconds. The value for nisplusLDAPrefreshErrorTimeout applies to the
retry and continue_using actions.

nisplusThreadCreationErrorAction
The action to take when an error occured while trying to create a new thread. This
only applies to threads controlled by the rpc.nisd daemon not to RPC service
threads. An example of threads controlled by the rpc.nisd daemon are those
created to serve nis_list(3NSL) with callback, as used by niscat(1) to
enumerate tables.

pass_error
Pass on the thread creation error to the client, to the extent allowed by the
available NIS+ error codes. The error might be NIS_NOMEMORY, or another
resource shortage error. This action is the default.

rpc.nisd(4)

File Formats 579

retry
Retry operation nisplusThreadCreationErrorAttempts times, waiting
nisplusThreadCreationErrorTimeout seconds between each attempt.
Note that this may tie up a thread in the rpc.nisd daemon.

nisplusThreadCreationErrorAttempts
The number of times a failed thread creation should be retried. The default is
unlimited. The value for nisplusThreadCreationErrorAttempts is ignored
unless the nisplusThreadCreationErrorAction=retry.

nisplusThreadCreationErrorTimeout
The number of seconds to wait between each new attempt to create a thread. The
default is 15 seconds. Ignored unless
nisplusThreadCreationErrorAction=retry.

nisplusDumpError
An error occured during a full dump of a NIS+ directory from the master to a
replica. The replica can:

retry
Retry operation nisplusDumpErrorAttempts times waiting
nisplusDumpErrorTimeout seconds between each attempt. Note that this
may tie up a thread in the rpc.nisd.

rollback
Try to roll back the changes made so far before retrying per the retry action. If
the rollback fails or cannot be performed due to the selected
ResyncServiceAction level, the retry action is selected.

nisplusDumpErrorAttempts
The number of times a failed full dump should be retried. The default is unlimited.
When the number of retry attempts has been used up, the full dump is abandoned,
and will not be retried again until a resync fails because no update time is available.

nisplusDumpErrorTimeout
The number of seconds to wait between each attempt to execute a full dump. The
default is 120 seconds.

nisplusResyncService
Type of NIS+ service to be provided by a replica during resync, that is, data transfer
from NIS+ master to NIS+ replica. This includes both partial and full resyncs.

from_copy
Service is provided from a copy of the directory to be resynced while the resync
is in progress. Rollback is possible if an error occurs. Note that making a copy of
the directory may require a significant amount of time, depending on the size of
the tables in the directory and available memory on the system.

directory_locked
While the resync for a directory is in progress, it is locked against access.
Operations to the directory are blocked until the resync is done. Rollback is not
possible.

rpc.nisd(4)

580 man pages section 4: File Formats • Last Revised 18 Feb 2003

from_live
The replica database is updated in place. Rollback is not possible. If there are
dependencies between individual updates in the resync, clients may be exposed
to data inconsistencies during the resync. In particular, directories or tables may
disappear for a time during a full dump.

nisplusUpdateBatching
How updates should be batched together on the master.

accumulate
Accumulate updates for at least nisplusUpdateBatchingTimeout seconds.
Any update that comes in before the timeout has occured will reset the timeout
counter. Thus, a steady stream of updates less than
nisplusUpdateBatchingTimeout seconds apart could delay pinging
replicas indefinitely.

bounded_accumulate
Accumulate updates for at least nisplusUpdateBatchingTimeout seconds.
The default value for timeout is 120 seconds. Incoming updates do not reset
the timeout counter, so replicas will be informed once the initial timeout has
expired.

none
Updates are not batched. Instead, replicas are informed immediately of any
update. While this should maximize data consistency between master and
replicas, it can also cause considerable overhead on both master and replicas.

nisplusUpdateBatchingTimeout
The minimum time (in seconds) during which to accumulate updates. Replicas will
not be pinged during this time. The default is 120 seconds.

nisplusLDAPmatchFetchAction
A NIS+ match operation, that is, any search other than a table enumeration, will
encounter one of the following situations:

1. Table believed to be entirely in cache, and all cached entries are known to be
valid. The cached tabled data is authoritative for the match operation.

2. Table wholly or partially cached, but there may be individual entries that have
timed out.

3. No cached entries for the table. Always attempt to retrieve matching data from
LDAP.

When the table is wholly or partially cached, the action for the
nisplusLDAPmatchFetchAction attribute controls whether or not the LDAP
repository is searched:

no_match_only Only go to LDAP when there is no match at all on
the search of the available NIS+ data, or the match
includes at least one entry that has timed out.

always Always make an LDAP lookup.

never Never make an LDAP lookup.

rpc.nisd(4)

File Formats 581

nisplusMaxRPCRecordSize
Sets the maximum RPC record size that NIS+ can use over connection oriented
transports. The minimum record size is 9000, which is the default. The default
value will be used in place of any value less than 9000. The value of this attribute is
a decimal integer from 9000 to 231, inclusive.

Most attributes described on this man page, as well as those from
NIS+LDAPmapping(4), can be stored in LDAP. In order to do so, you will need to add
the following definitions to your LDAP server, which are described here in LDIF
format suitable for use by ldapadd(1). The attribute and object class OIDs are
examples only.

dn: cn=schema
changetype: modify
add: attributetypes
OIDattributetypes: (1.3.6.1.4.1.11.1.3.1.1.1 NAME ’defaultSearchBase’ \

DESC ’Default LDAP base DN used by a DUA’ \
EQUALITY distinguishedNameMatch \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.12 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.11.1.3.1.1.2 NAME ’preferredServerList’ \
DESC ’Preferred LDAP server host addresses used by DUA’ \
EQUALITY caseIgnoreMatch \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.11.1.3.1.1.6 NAME ’authenticationMethod’ \
DESC ’Authentication method used to contact the DSA’ \
EQUALITY caseIgnoreMatch \

SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE)

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.0 \

NAME ’nisplusLDAPTLS’ \
DESC ’Transport Layer Security’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.1 \
NAME ’nisplusLDAPTLSCertificateDBPath’ \
DESC ’Certificate file’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.2 \
NAME ’nisplusLDAPproxyUser’ \
DESC ’Proxy user for data store/retrieval’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.3 \
NAME ’nisplusLDAPproxyPassword’ \
DESC ’Password/key/shared secret for proxy user’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.4 \
NAME ’nisplusLDAPinitialUpdateAction’ \
DESC ’Type of initial update’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.5 \
NAME ’nisplusLDAPinitialUpdateOnly’ \
DESC ’Exit after update ?’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.6 \

rpc.nisd(4)

Storing
Configuration

Attributes in
LDAP

582 man pages section 4: File Formats • Last Revised 18 Feb 2003

NAME ’nisplusLDAPretrieveErrorAction’ \
DESC ’Action following an LDAP search error’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.7 \
NAME ’nisplusLDAPretrieveErrorAttempts’ \
DESC ’Number of times to retry an LDAP search’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.8 \
NAME ’nisplusLDAPretrieveErrorTimeout’ \
DESC ’Timeout between each search attempt’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.9 \
NAME ’nisplusLDAPstoreErrorAction’ \
DESC ’Action following an LDAP store error’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.10 \
NAME ’nisplusLDAPstoreErrorAttempts’ \
DESC ’Number of times to retry an LDAP store’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.11 \
NAME ’nisplusLDAPstoreErrorTimeout’ \
DESC ’Timeout between each store attempt’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.12 \
NAME ’nisplusLDAPrefreshErrorAction’ \
DESC ’Action when refresh of NIS+ data from LDAP fails’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.13 \
NAME ’nisplusLDAPrefreshErrorAttempts’ \
DESC ’Number of times to retry an LDAP refresh’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.14 \
NAME ’nisplusLDAPrefreshErrorTimeout’ \
DESC ’Timeout between each refresh attempt’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.15 \
NAME ’nisplusNumberOfServiceThreads’ \
DESC ’Max number of RPC service threads’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.16 \
NAME ’nisplusThreadCreationErrorAction’ \
DESC ’Action when a non-RPC-service thread creation fails’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.17 \
NAME ’nisplusThreadCreationErrorAttempts’ \
DESC ’Number of times to retry thread creation’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.18 \
NAME ’nisplusThreadCreationErrorTimeout’ \
DESC ’Timeout between each thread creation attempt’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.19 \
NAME ’nisplusDumpErrorAction’ \
DESC ’Action when a NIS+ dump fails’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.20 \
NAME ’nisplusDumpErrorAttempts’ \
DESC ’Number of times to retry a failed dump’ \

rpc.nisd(4)

File Formats 583

SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.21 \

NAME ’nisplusDumpErrorTimeout’ \
DESC ’Timeout between each dump attempt’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.22 \
NAME ’nisplusResyncService’ \
DESC ’Service provided during a resync’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.23 \
NAME ’nisplusUpdateBatching’ \
DESC ’Method for batching updates on master’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.24 \
NAME ’nisplusUpdateBatchingTimeout’ \
DESC ’Minimum time to wait before pinging replicas’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.25 \
NAME ’nisplusLDAPmatchFetchAction’ \
DESC ’Should pre-fetch be done ?’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.26 \
NAME ’nisplusLDAPbaseDomain’ \
DESC ’Default domain name used in NIS+/LDAP mapping’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.27 \
NAME ’nisplusLDAPdatabaseIdMapping’ \
DESC ’Defines a database id for a NIS+ object’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.28 \
NAME ’nisplusLDAPentryTtl’ \
DESC ’TTL for cached objects derived from LDAP’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.29 \
NAME ’nisplusLDAPobjectDN’ \
DESC ’Location in LDAP tree where NIS+ data is stored’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.30 \
NAME ’nisplusLDAPcolumnFromAttribute’ \
DESC ’Rules for mapping LDAP attributes to NIS+ columns’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.42.18.31 \
NAME ’nisplusLDAPattributeFromColumn’ \
DESC ’Rules for mapping NIS+ columns to LDAP attributes’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

dn: cn=schema
changetype: modify
add: objectclasses
objectclasses: (1.3.6.1.4.1.42.2.27.5.42.42.19.0 NAME ’nisplusLDAPconfig’ \

DESC ’NIS+/LDAP mapping configuration’ \
SUP top STRUCTURAL MUST (cn) \
MAY (preferredServerList $ defaultSearchBase $

authenticationMethod $ nisplusLDAPTLS $
nisplusLDAPTLSCertificateDBPath $
nisplusLDAPproxyUser $ nisplusLDAPproxyPassword $
nisplusLDAPinitialUpdateAction $
nisplusLDAPinitialUpdateOnly $

rpc.nisd(4)

584 man pages section 4: File Formats • Last Revised 18 Feb 2003

nisplusLDAPretrieveErrorAction $
nisplusLDAPretrieveErrorAttempts $
nisplusLDAPretrieveErrorTimeout $
nisplusLDAPstoreErrorAction $
nisplusLDAPstoreErrorAttempts $
nisplusLDAPstoreErrorTimeout $
nisplusLDAPrefreshErrorAction $
nisplusLDAPrefreshErrorAttempts $
nisplusLDAPrefreshErrorTimeout $
nisplusNumberOfServiceThreads $
nisplusThreadCreationErrorAction $
nisplusThreadCreationErrorAttempts $
nisplusThreadCreationErrorTimeout $
nisplusDumpErrorAction $
nisplusDumpErrorAttempts $
nisplusDumpErrorTimeout $
nisplusResyncService $ nisplusUpdateBatching $
nisplusUpdateBatchingTimeout $
nisplusLDAPmatchFetchAction $
nisplusLDAPbaseDomain $
nisplusLDAPdatabaseIdMapping $
nisplusLDAPentryTtl $
nisplusLDAPobjectDN $
nisplusLDAPcolumnFromAttribute $

nisplusLDAPattributeFromColumn))

Create a file containing the following LDIF data. Substitute your actual search base for
searchBase, and your fully qualified domain name for domain:

dn: cn=domain,searchBase
cn: domain
objectClass: top

objectClass: nisplusLDAPconfig

Use this file as input to the ldapadd(1) command in order to create the NIS+/LDAP
configuration entry. Initially, the entry is empty. You can use the ldapmodify(1)
command to add configuration attributes.

EXAMPLE 1 Creating a NIS+/LDAP Configuration Entry

To set the nisplusNumberOfServiceThreads attribute to 32, create the following
file and use it as input to ldapmodify(1):

dn: cn=domain,searchBase
nisplusNumberOfServiceThreads: 32

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWnisr

Interface Stability Obsolete

nisldapmaptest(1M), rpc.nisd(1M), NIS+LDAPmapping(4), attributes(5)

rpc.nisd(4)

EXAMPLES

ATTRIBUTES

SEE ALSO

File Formats 585

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)

rpc.nisd(4)

586 man pages section 4: File Formats • Last Revised 18 Feb 2003

rpld.conf – Remote Program Load (RPL) server configuration file

/etc/rpld.conf

The /etc/rpld.conf file contains the configuration information for operation of
rpld, the RPL-based network boot server. It is a text file containing keyword-value
pairs and comment.

The keyword-value pairs specify the value to use for parameters used by the RPL
server. Comments can be entered by starting the line using the # character. The user
can add comments to the file for customized configurations.

Alternate RPL server configuration files can be specified when running the RPL server
by supplying a configuration file similar to the default configuration file.

All keywords are case-sensitive. Not all keywords must be present. (However, note
that the end keyword at the end of the file must be present.) If a keyword is not
present, internal defaults, which are the default values described here, will be used.
Keyword-value pairs are specified by:

keyword = value

DebugLevel Specify the number of error, warning, and information messages to
be generated while the RPL server is running. The valid range is
0-9. A value of 0 means no message at all, while a value of 9 will
generate the most messages. The default is 0. Note that it is best to
limit the value to 8 or below; use of level 9 may generate so many
debug messages that the performance of the RPL server may be
impacted.

DebugDest A numeric value specifying where to send the messages to:

0 = standard output
1 = syslogd
2 = log file

The default is 2.

MaxClients A numeric value specifying the maximum number of simultaneous
network boot clients to be in service. A value of −1 means
unlimited except where system resources is the limiting factor.
Any positive value will set a limit on the number of clients to be in
service at the same time unless system resource constraints come
in before the limit. The default is −1.

BackGround A numeric value indicating whether the RPL server should run in
the background or not. A 0 means run in the background and a 1
means do not run in the background. The difference is whether the
server will relinquish the controlling terminal or not. The default is
1.

rpld.conf(4)

NAME

SYNOPSIS

DESCRIPTION

Keywords

File Formats 587

FrameSize The default size of data frames to be used to send bootfile data to
the network boot clients. This size should not exceed the limits
imposed by the underlying physical media. For
ethernet/802.3, the maximum physical frame size is 1500
octets. The default is 1500. Note that the protocol overhead of
LLC1 and RPL is 32 octets, resulting in a maximum data length of
1468 octets.

LogFile The log file to which messages will be sent if DebugDest is set to
2 (the default). The default file is var/spool/rpld.log.

StartDelay The initial delay factor to use to control the speed of downloading.
In the default mode of operation, the downloading process does
not wait for a positive acknowledgment from the client before the
next data frame is sent. In the case of a fast server and slow client,
data overrun can result and requests for retransmission will be
frequent. By using a delay factor, the speed of data transfer is
controlled to avoid retransmission requests. Note that the unit of
delay is machine dependent and bears no correlation with the
actual time delayed.

DelayGran Delay granularity. If the initial delay factor is not suitable and the
rate of downloading is either too fast or too slow, retransmission
requests from the clients will be used to adjust the delay factor
either upward (to slow down the data rate) or downward (to
speed up the data rate). The delay granularity is used as the delay
delta for adjustment.

end Keyword at the end of the file. It must be present.

/etc/rpld.conf

/usr/sbin/rpld

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

rpld(1M), attributes(5)

rpld.conf(4)

FILES

ATTRIBUTES

SEE ALSO

588 man pages section 4: File Formats • Last Revised 03 Dec 2003

rt_dptbl – real-time dispatcher parameter table

The process scheduler (or dispatcher) is the portion of the kernel that controls
allocation of the CPU to processes. The scheduler supports the notion of scheduling
classes where each class defines a scheduling policy, used to schedule processes within
that class. Associated with each scheduling class is a set of priority queues on which
ready to run processes are linked. These priority queues are mapped by the system
configuration into a set of global scheduling priorities which are available to processes
within the class. The dispatcher always selects for execution the process with the
highest global scheduling priority in the system. The priority queues associated with a
given class are viewed by that class as a contiguous set of priority levels numbered
from 0 (lowest priority) to n (highest priority—a configuration dependent value). The
set of global scheduling priorities that the queues for a given class are mapped into
might not start at zero and might not be contiguous, depending on the configuration.

The real-time class maintains an in-core table, with an entry for each priority level,
giving the properties of that level. This table is called the real-time dispatcher
parameter table (rt_dptbl). The rt_dptbl consists of an array
(config_rt_dptbl[]) of parameter structures (struct rtdpent_t), one for each
of the n priority levels. The structure are accessed via a pointer, (rt_dptbl), to the
array. The properties of a given priority level i are specified by the ith parameter
structure in this array (rt_dptbl[i]).

A parameter structure consists of the following members. These are also described in
the /usr/include/sys/rt.h header file.

rt_globpri The global scheduling priority associated with this priority level.
The rt_globpri values cannot be changed with
dispadmin(1M).

rt_quantum The length of the time quantum allocated to processes at this level
in ticks (hz). The time quantum value is only a default or starting
value for processes at a particular level as the time quantum of a
real-time process can be changed by the user with the priocntl
command or the priocntl system call.

In the high resolution clock mode (hires_tick set to 1), the
value of hz is set to 1000. Increase quantums to maintain the same
absolute time quantums.

An administrator can affect the behavior of the real-time portion of the scheduler by
reconfiguring the rt_dptbl. There are two methods available for doing this:
reconfigure with a loadable module at boot-time or by using dispadmin(1M) at
run-time.

rt_dptbl(4)

NAME

DESCRIPTION

File Formats 589

The rt_dptbl can be reconfigured with a loadable module which contains a new real
time dispatch table. The module containing the dispatch table is separate from the RT
loadable module which contains the rest of the real time software. This is the only
method that can be used to change the number of real time priority levels or the set of
global scheduling priorities used by the real time class. The relevant procedure and
source code is described in the EXAMPLES section.

The rt_quantum values in the rt_dptbl can be examined and modified on a
running system using the dispadmin(1M) command. Invoking dispadmin for the
real-time class allows the administrator to retrieve the current rt_dptbl
configuration from the kernel’s in-core table, or overwrite the in-core table with values
from a configuration file. The configuration file used for input to dispadmin must
conform to the specific format described below.

Blank lines are ignored and any part of a line to the right of a # symbol is treated as a
comment. The first non-blank, non-comment line must indicate the resolution to be
used for interpreting the time quantum values. The resolution is specified as

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the resolution
used is the reciprocal of res in seconds. (For example, RES=1000 specifies millisecond
resolution.) Although very fine (nanosecond) resolution may be specified, the time
quantum lengths are rounded up to the next integral multiple of the system clock’s
resolution.

The remaining lines in the file are used to specify the rt_quantum values for each of
the real-time priority levels. The first line specifies the quantum for real-time level 0,
the second line specifies the quantum for real-time level 1. There must be exactly one
line for each configured real-time priority level. Each rt_quantum entry must be
either a positive integer specifying the desired time quantum (in the resolution given
by res), or the value -2 indicating an infinite time quantum for that level.

EXAMPLE 1 A Sample dispadmin Configuration File

The following excerpt from a dispadmin configuration file illustrates the format.
Note that for each line specifying a time quantum there is a comment indicating the
corresponding priority level. These level numbers indicate priority within the
real-time class, and the mapping between these real-time priorities and the
corresponding global scheduling priorities is determined by the configuration
specified in the RT_DPTBL loadable module. The level numbers are strictly for the
convenience of the administrator reading the file and, as with any comment, they are
ignored by dispadmin on input. dispadmin assumes that the lines in the file are
ordered by consecutive, increasing priority level (from 0 to the maximum configured
real-time priority). The level numbers in the comments should normally agree with
this ordering; if for some reason they don’t, however, dispadmin is unaffected.

Real-Time Dispatcher Configuration File
RES=1000

rt_dptbl(4)

rt_dptbl Loadable
Module

dispadmin
Configuration File

EXAMPLES

590 man pages section 4: File Formats • Last Revised 15 Oct 2002

EXAMPLE 1 A Sample dispadmin Configuration File (Continued)

TIME QUANTUM PRIORITY
(rt_quantum)LEVEL
100# 0
100# 1
100# 2
100# 3
100# 4
100# 5
90 # 6
90 # 7
.. .
.. .
.. .
10# 58

10# 59

EXAMPLE 2 Replacing The rt_dptbl Loadable Module

In order to change the size of the real time dispatch table, the loadable module which
contains the dispatch table information will have to be built. It is recommended that
you save the existing module before using the following procedure.

1. Place the dispatch table code shown below in a file called rt_dptbl.c An
example of an rt_dptbl.c file follows.

2. Compile the code using the given compilation and link lines supplied.

cc -c -0 -D_KERNEL rt_dptbl.c

ld -r -o RT_DPTBL rt_dptbl.o

3. Copy the current dispatch table in /usr/kernel/sched to RT_DPTBL.bak.

4. Replace the current RT_DPTBL in /usr/kernel/sched.

5. You will have to make changes in the /etc/system file to reflect the changes to
the sizes of the tables. See system(4). The rt_maxpri variable may need
changing. The syntax for setting this is:

set RT:rt_maxpri=(class-specific value for maximum real-time priority)

6. Reboot the system to use the new dispatch table.

Great care should be used in replacing the dispatch table using this method. If you
don’t get it right, the system may not behave properly.

The following is an example of a rt_dptbl.c file used for building the new
rt_dptbl.

/* BEGIN rt_dptbl.c */
#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/rt.h>

rt_dptbl(4)

File Formats 591

EXAMPLE 2 Replacing The rt_dptbl Loadable Module (Continued)

#include <sys/rtpriocntl.h>
/*
* This is the loadable module wrapper.
*/
#include <sys/modctl.h>
extern struct mod_ops mod_miscops;
/*
* Module linkage information for the kernel.
*/
static struct modlmisc modlmisc = {

&mod_miscops, "realtime dispatch table"
};
static struct modlinkage modlinkage = {

MODREV_1, &modlmisc, 0
};
_init()
{

return (mod_install(&modlinkage));
}
_info (struct modinfo *modinfop)
{

return (mod_info(&modlinkage, modinfop));
}
rtdpent_t config_rt_dptbl[] = {

/* prilevel Time quantum */

100,100,
101,100,
102,100,
103,100,
104,100,
105,100,
106,100,
107,100,
108,100,
109,100,
110,80,
111,80,
112,80,
113,80,
114,80,
115,80,
116,80,
117,80,
118,80,
119,80,
120,60,
121,60,
122,60,
123,60,
124,60,
125,60,
126,60,

rt_dptbl(4)

592 man pages section 4: File Formats • Last Revised 15 Oct 2002

EXAMPLE 2 Replacing The rt_dptbl Loadable Module (Continued)

127,60,
128,60,
129,60,
130,40,
131,40,
132,40,
133,40,
134,40,
135,40,
136,40,
137,40,
138,40,
139,40,
140,20,
141,20,
142,20,
143,20,
144,20,
145,20,
146,20,
147,20,
148,20,
149,20,
150,10,
151,10,
152,10,
153,10,
154,10,
155,10,
156,10,
157,10,
158,10,
159,10,

};
/*
* Return the address of config_rt_dptbl
*/ rtdpent_t *

rt_getdptbl()
{

return (config_rt_dptbl);

}

priocntl(1), dispadmin(1M), priocntl(2), system(4)

System Administration Guide: Basic Administration

Programming Interfaces Guide

rt_dptbl(4)

SEE ALSO

File Formats 593

sasl_appname.conf – SASL options and configuration file

/etc/sasl/appname.conf

The /etc/sasl/appname.conf file is a user-supplied configuration file that supports
user set options for server applications.

You can modify the behavior of libsasl and its plug-ins for server applications by
specifying option values in /etc/sasl/appname.conf file, where appname is the
application defined name of the application. For sendmail, the file would be
/etc/sasl/Sendmail.conf. See your application documentation for information
on the application name.

Options that you set in a appname.conf file do not override SASL options specified by
the application itself.

The format for each option setting is:

option_name:value.

You can comment lines in the file by using a leading #.

The SASL library supports the following options for server applications:

auto_transition When set to yes, plain users and login
plug-ins are automatically transitioned to
other mechanisms when they do a
successful plaintext authentication. The
default value for auto_transition is no.

auxprop_plugin A space-separated list of names of auxiliary
property plug-ins to use. By default, SASL
will use or query all available auxiliary
property plug-ins.

canon_user_plugin The name of the canonical user plug-in to
use. By default, the value of
canon_user_plugin is INTERNAL, to
indicated the use of built-in plug-ins..

log_level An integer value for the desired level of
logging for a server, as defined in
<sasl.h>. This sets the log_level in the
sasl_server_params_t struct in
/usr/include/sasl/saslplug.h. The
default value for log_level is 1 to
indicate SASL_LOG_ERR.

mech_list Whitespace separated list of SASL
mechanisms to allow, for example,
DIGEST-MD5 GSSAPI. The mech_list

sasl_appname.conf(4)

NAME

SYNOPSIS

DESCRIPTION

594 man pages section 4: File Formats • Last Revised 14 Oct 2003

option is used to restrict the mechanisms to
a subset of the installed plug-ins. By
default, SASL will use all available
mechanisms.

pw_check Whitespace separated list of mechanisms
used to verify passwords that are used by
sasl_checkpass(3SASL). The default
value for pw_check is auxprop.

reauth_timeout This SASL option is used by the server
DIGEST-MD5 plug-in. The value of
reauth_timeout is the length in time (in
minutes) that authentication information
will be cached for a fast reauthorization. A
value of 0 will disable reauthorization. The
default value of reauth_timeout is 1440
(24 hours).

server_load_mech_list A space separated list of mechanisms to
load. If in the process of loading server
plug-ns no desired mechanisms are
included in the plug-in, the plug-in will be
unloaded. By default, SASL loads all server
plug-ins.

user_authid If the value of user_authid is yes, then
the GSSAPI will acquire the client
credentials rather than use the default
credentials when it creates the GSS client
security context. The default value of
user_authid is no, whereby SASL uses
the default client Kerberos identity.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

attributes(5)

sasl_appname.conf(4)

ATTRIBUTES

SEE ALSO

File Formats 595

sbus – configuration files for SBus device drivers

The SBus is a geographically addressed peripheral bus present on many SPARC
hardware platforms. SBus devices are self-identifying — that is to say the SBus card
itself provides information to the system so that it can identify the device driver that
needs to be used. The device usually provides additional information to the system in
the form of name-value pairs that can be retrieved using the DDI property interfaces.
See ddi_prop_op(9F) for details.

The information is usually derived from a small Forth program stored in the FCode
PROM on the card, so driver configuration files should be completely unnecessary for
these devices. However, on some occasions, drivers for SBus devices may need to use
driver configuration files to augment the information provided by the SBus card. See
driver.conf(4) for further details.

When they are needed, configuration files for SBus device drivers should identify the
parent bus driver implicitly using the class keyword. This removes the dependency on
the particular bus driver involved since this may be named differently on different
platforms.

All bus drivers of class sbus recognise the following properties:

reg An arbitrary length array where each element of the array consists
of a 3-tuple of integers. Each array element describes a logically
contiguous mappable resource on the SBus.

The first integer of each tuple specifies the slot number the card is
plugged into. The second integer of each 3-tuple specifies the offset
in the slot address space identified by the first element. The third
integer of each 3-tuple specifies the size in bytes of the mappable
resource.

The driver can refer to the elements of this array by index, and
construct kernel mappings to these addresses using
ddi_map_regs(9F). The index into the array is passed as the
rnumber argument of ddi_map_regs().

You can use the ddi_get* and ddi_put* family of functions to
access register space from a high-level interrupt context.

interrupts An arbitrary length array where each element of the array consists
of a single integer. Each array element describes a possible SBus
interrupt level that the device might generate.

The driver can refer to the elements of this array by index, and
register interrupt handlers with the system using
ddi_add_intr(9F). The index into the array is passed as the
inumber argument of ddi_add_intr().

sbus(4)

NAME

DESCRIPTION

596 man pages section 4: File Formats • Last Revised 31 Dec 1996

registers An arbitrary length array where each element of the array consists
of a 3-tuple of integers. Each array element describes a logically
contiguous mappable resource on the SBus.

The first integer of each tuple should be set to −1, specifying that
any SBus slot may be matched. The second integer of each 3-tuple
specifies the offset in the slot address space identified by the first
element. The third integer of each 3-tuple specifies the size in bytes
of the mappable resoure.

The registers property can only be used to augment an
incompletely specified reg property with information from a
driver configuration file. It may only be specified in a driver
configuration file.

All SBus devices must provide reg properties to the system. The first two integer
elements of the reg property are used to construct the address part of the device name
under /devices.

Only devices that generate interrupts need to provide interrupts properties.

Occasionally, it may be necessary to override or augment the configuration
information supplied by the SBus device. This can be achieved by writing a driver
configuration file that describes a prototype device information (devinfo) node
specification, containing the additional properties required.

For the system to merge the information, certain conditions must be met. First, the
name property must be the same. Second, either the first two integers (slot number
and offset) of the two reg properties must be the same, or the second integer (offset)
of the reg and registers properties must be the same.

In the event that the SBus card has no reg property at all, the self-identifying
information cannot be used, so all the details of the card must be specified in a driver
configuration file.

EXAMPLE 1 A sample configuration file.

Here is a configuration file for an SBus card called SUNW,netboard. The card already
has a simple FCode PROM that creates name and reg properties, and will have a
complete set of properties for normal use once the driver and firmware is complete.

In this example, we want to augment the properties given to us by the firmware. We
use the same name property, and use the registers property to match the firmware
reg property. That way we don’t have to worry about which slot the card is really
plugged into.

We want to add an interrupts property while we are developing the firmware and
driver so that we can start to experiment with interrupts. The device can generate
interrupts at SBus level 3. Additionally, we want to set a debug-level property to 4.

sbus(4)

EXAMPLES

File Formats 597

EXAMPLE 1 A sample configuration file. (Continued)

#
Copyright (c) 1992, by Sun Microsystems, Inc.
#ident "@(#)SUNW,netboard.conf 1.4 92/03/10 SMI"
#
name="SUNW,netboard" class="sbus"

registers=-1,0x40000,64,-1,0x80000,1024
interrupts=3 debug-level=4;

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture SPARC

driver.conf(4), attributes(5), ddi_add_intr(9F), ddi_map_regs(9F),
ddi_prop_op(9F)

Writing Device Drivers

The wildcarding mechanism of the registers property matches every instance of
the particular device attached to the system. This may not always be what is wanted.

sbus(4)

ATTRIBUTES

SEE ALSO

WARNINGS

598 man pages section 4: File Formats • Last Revised 31 Dec 1996

sccsfile – format of an SCCS history file

An SCCS file is an ASCII file consisting of six logical parts:

checksum Character count used for error detection.

delta table Log containing version info and statistics about each delta.

usernames Login names and/or group IDs of users who may add deltas.

flags Definitions of internal keywords.

comments Arbitrary descriptive information about the file.

body the Actual text lines intermixed with control lines.

Each section is described in detail below.

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of
heading) character (octal 001). This character is hereafter referred to as the control
character, and will be represented as ‘^A’. If a line described below is not depicted as
beginning with the control character, it cannot do so and still be within SCCS file
format.

Entries of the form ddddd represent a five digit string (a number between 00000 and
99999).

The checksum is the first line of an SCCS file. The form of the line is:

^A hddddd

The value of the checksum is the sum of all characters, except those contained in the
first line. The ^Ah provides a magic number of (octal) 064001.

The delta table consists of a variable number of entries of the form:

^As inserted /deleted/unchanged
^Ad type sid yr/mo/da hr:mi:se username serial-number predecessor-sn
^Ai include-list
^Ax exclude-list
^Ag ignored-list
^Am mr-number
...
^Ac comments ...
...

^Ae

The first line (^As) contains the number of lines inserted/deleted/unchanged
respectively. The second line (^Ad) contains the type of the delta (normal: D and
removed: R), the SCCS ID of the delta, the date and time of creation of the delta, the
user-name corresponding to the real user ID at the time the delta was created, and the
serial numbers of the delta and its predecessor, respectively. The ^Ai, ^Ax, and ^Ag
lines contain the serial numbers of deltas included, excluded, and ignored,
respectively. These lines do not always appear.

sccsfile(4)

NAME

DESCRIPTION

Conventions

Checksum

Delta Table

File Formats 599

The ^Am lines (optional) each contain one MR number associated with the delta. The
^Ac lines contain comments associated with the delta.

The ^Ae line ends the delta table entry.

The list of user-names and/or numerical group IDs of users who may add deltas to
the file, separated by NEWLINE characters. The lines containing these login names
and/or numerical group IDs are surrounded by the bracketing lines ^Au and ^AU. An
empty list allows anyone to make a delta.

Flags are keywords that are used internally (see sccs-admin(1) for more information
on their use). Each flag line takes the form:

^Af flag
optional text

The following flags are defined in order of appearance:

^Af t type-of-program
Defines the replacement for the %T% ID keyword.

^Af v program-name
Controls prompting for MR numbers in addition to comments. If the optional text is
present, it defines an MR number validity checking program.

^Af i
Indicates that the ‘No id keywords’ message is to generate an error that
terminates the SCCS command. Otherwise, the message is treated as a warning
only.

^Af b
Indicates that the -b option may be used with the SCCS get command to create a
branch in the delta tree.

^Af m module-name
Defines the first choice for the replacement text of the %M% ID keyword.

^Af f floor
Defines the “floor” release, that is, the release below which no deltas may be added.

^Af c ceiling
Defines the “ceiling” release, that is, the release above which no deltas may be
added.

^Af d default-sid
The d flag defines the default SID to be used when none is specified on an SCCS
get command.

^Af n
The n flag enables the SCCS delta command to insert a “null” delta (a delta that
applies no changes) in those releases that are skipped when a delta is made in a new
release (for example, when delta 5.1 is made after delta 2.7, releases 3 and 4 are
skipped).

sccsfile(4)

User Names

Flags

600 man pages section 4: File Formats • Last Revised 30 Sep 2002

^Af j
Enables the SCCS get command to allow concurrent edits of the same base SID.

^Af l lock-releases
Defines a list of releases that are locked against editing.

^Af q user-defined
Defines the replacement for the %Q% ID keyword.

^Af e 0|1
The e flag indicates whether a source file is encoded or not. A 1 indicates that the
file is encoded. Source files need to be encoded when they contain control
characters, or when they do not end with a NEWLINE. The e flag allows files that
contain binary data to be checked in.

Arbitrary text surrounded by the bracketing lines ^At and ^AT. The comments section
typically will contain a description of the file’s purpose.

The body consists of text lines and control lines. Text lines do not begin with the
control character, control lines do. There are three kinds of control lines: insert, delete,
and end, represented by:

^AI ddddd
^AD ddddd
^AE ddddd

respectively. The digit string is the serial number corresponding to the delta for the
control line.

sccs-admin(1), sccs-cdc(1), sccs-comb(1), sccs-delta(1), sccs-get(1),
sccs-help(1), sccs-prs(1), sccs-prt(1), sccs-rmdel(1), sccs-sact(1),
sccs-sccsdiff(1), sccs-unget(1), sccs-val(1), sccs(1), what(1)

sccsfile(4)

Comments

Body

SEE ALSO

File Formats 601

scsi – configuration files for SCSI target drivers

The architecture of the Solaris SCSI subsystem distinguishes two types of device
drivers: SCSI target drivers, and SCSI host adapter drivers. Target drivers like sd(7D)
and st(7D) manage the device on the other end of the SCSI bus. Host adapter drivers
manage the SCSI bus on behalf of all the devices that share it.

Drivers for host adapters provide a common set of interfaces for target drivers. These
interfaces comprise the Sun Common SCSI Architecture (SCSA) which are
documented as part of the Solaris DDI/DKI. See scsi_ifgetcap(9F),
scsi_init_pkt(9F), and scsi_transport(9F) for further details of these, and
associated routines.

Depending on the interconnect (transport), SCSI target devices are either
self-identifying or rely on driver.conf(4) entries to be recognized by the system.
For self-identifying target devices the driver binding is chosen based on the IEEE-1275
like ’compatible’ forms of the target devices. Currently only the Fibre Channel
interconnects, fcp(7D), ifp(7D), scsi_vhci(7D), sf(7D), are self-identifying. You
must specify other ipossible interconnects target devices by using the target driver
driver.conf(4) configuration files.

Host adapter drivers that dynamically create self-identifying target device children
establish a "compatible" property on each child. The "compatible" property is an
ordered array of strings, each string is a compatible "form". High precedence forms are
defined first. For a particular device, the highest precedence form that has an
established driver alias selects the driver for the device. Driver associations to
compatible forms, called aliases, are administered by way of add_drv(1M),
update_drv(1M), and rem_drv(1M) utilities.

The forms for self-identifying SCSI target devices are derived from the SCSI target
device’s INQUIRY data. A diverse set of forms is defined, allowing for flexibility in
binding.

From the SCSI INQUIRY data, three types of information are extracted: scsi_dtype,
flag bits, and SCSI_ASCII vendor product revision.

The scsi_dtype is the first component of most forms. It is represented as two hex
digits. For nodes that represent embedded secondary functions, such as an embedded
enclosure service or media changer, additional forms are generated that contain the
dtype of the secondary function followed by the dtype of the device in which the
secondary function is embedded.

For forms that use flag bits, all applicable flags are concatenated (in alphabetical order)
into a single flags string. Removable media is represented by a flag. For forms that use
the SCSI_ASCII INQUIRY vendor, product, and revision fields, a one-way conversion
algorithm translates SCSI_ASCII to a IEEE 1275 compatible string.

It is possible that a device might change the INQUIRY data it returns over time as a
result of a device initialization sequence or in response to out-of-band management. A
device node’s "compatible" property is based on the INQUIRY data when the device
node was created.

scsi(4)

NAME

DESCRIPTION

Self-Identifying

602 man pages section 4: File Formats • Last Revised 26 Sep 2004

The following forms, in high to low precedence order, are defined for SCSI target
device nodes.

scsiclass,DDEEFFF.vVVVVVVVV.pPPPPPPPPPPPPPPPP.rRRRR (1 *1&2)
scsiclass,DDEE.vVVVVVVVV.pPPPPPPPPPPPPPPPP.rRRRR (2 *1)
scsiclass,DDFFF.vVVVVVVVV.pPPPPPPPPPPPPPPPP.rRRRR (3 *2)
scsiclass,DD.vVVVVVVVV.pPPPPPPPPPPPPPPPP.rRRRR (4)
scsiclass,DDEEFFF.vVVVVVVVV.pPPPPPPPPPPPPPPPP (5 *1&2)
scsiclass,DDEE.vVVVVVVVV.pPPPPPPPPPPPPPPPP (6 *1)
scsiclass,DDFFF.vVVVVVVVV.pPPPPPPPPPPPPPPPP (7 *2)
scsiclass,DD.vVVVVVVVV.pPPPPPPPPPPPPPPPP (8)
scsiclass,DDEEFFF (9 *1&2)
scsiclass,DDEE (10 *1)
scsiclass,DDFFF (11 *2)
scsiclass,DD (12)
scsiclass (13)

*1 only produced on a secondary function node

*2 only produced on a node with flags

where:

v
Is the letter v. Denotes the beginning of VVVVVVVV.

VVVVVVVV
Translated scsi_vendor: SCSI standard INQUIRY data “Vendor identification”
SCSI_ASCII field (bytes 8-15).

p
Is the letter p. Denotes the beginning of PPPPPPPPPPPPPPPP.

PPPPPPPPPPPPPPPP
Translated scsi_product: SCSI standard INQUIRY data "Product identification"
SCSI_ASCII field (bytes 16-31).

r
Is the letter r. Denotes the beginning of RRRR.

RRRR
Translated scsi_revision: SCSI standard INQUIRY data "Product revision level"
SCSI_ASCII field (bytes 32-35).

DD
Is a two digit ASCII hexadecimal number. The value of the two digits is based one
the SCSI "Peripheral device type" command set associated with the node. On a
primary node this is the scsi_dtype of the primary command set; on a secondary
node this is the scsi_dtype associated with the embedded function command set.

EE
Same encoding used for DD. This form is only generated on secondary function
nodes. The DD function is embedded in an EE device.

FFF
Concatenation, in alphabetical order, of the flag characters below. The following
flag characters are defined:

scsi(4)

File Formats 603

R Removable media: Used when scsi_rmb is set

Forms using FFF are only be generated if there are applicable flag characters.

Solaris might create additional compatible forms not described. These forms are for
Solaris internal use only. Any additional use of these forms is discouraged. Future
releases of Solaris might not produce these forms.

Configuration files for SCSI target drivers should identify the host adapter driver
implicitly using the class keyword to remove any dependency on the particular host
adapter involved.

All host adapter drivers of class scsi recognize the following properties:

target Integer-valued SCSI target identifier that this driver claims.

lun Integer-valued SCSI logical unit number (LUN) that this driver
claims.

All SCSI target driver configuration file device definitions must provide target and
lun properties. These properties are used to construct the address part of the device
name under /devices.

The SCSI target driver configuration files shipped with Solaris have entries for LUN 0
only. For devices that support other LUNs, such as some CD changers, the system
administrator can edit the driver configuration file to add entries for other LUNs.

EXAMPLE 1 An Example Configuration File for a SCSI Target Driver

The following is an example configuration file for a SCSI target driver called
toaster.conf.

#
Copyright (c) 1992, by Sun Microsystems, Inc.
#
#ident "@(#)toaster.conf 1.2 92/05/12 SMI"

name="toaster" class="scsi" target=4 lun=0;

Add the following lines to sd.conf for a six- CD changer on target 3, with LUNs 0
to 5.

name="sd" class="scsi" target=3 lun=1;
name="sd" class="scsi" target=3 lun=2;
name="sd" class="scsi" target=3 lun=3;
name="sd" class="scsi" target=3 lun=4;

name="sd" class="scsi" target=3 lun=5;

It is not necessary to add the line for LUN 0, as it already exists in the file shipped
with Solaris.

scsi(4)

driver.conf

EXAMPLES

604 man pages section 4: File Formats • Last Revised 26 Sep 2004

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWckr

Interface Stability Evolving

add_drv(1M), rem_drv(1M), update_drv(1M), driver.conf(4), attributes(5),
fcp(7D), ifp(7D), scsi_vhci(7D), sd(7D), sf(7D), st(7D), scsi_ifgetcap(9F),
scsi_init_pkt(9F), scsi_transport(9F)

Writing Device Drivers

ANS X3T9.2/82-2 SMALL COMPUTER SYSTEM INTERFACE (SCSI-1)

ANS X3T9.2/375D Small Computer System Interface - 2 (SCSI-2)

ANS X3T10/994D SCSI-3 Architecture Model (SAM)

IEEE 1275 SCSI Target Device Binding

With driver.conf(4) configuration, you need to ensure that the target and lun
values claimed by your target driver do not conflict with existing target drivers on the
system. For example, if the target is a direct access device, the standard sd.conf file
usually makes sd claim it before any other driver has a chance to probe it.

scsi(4)

ATTRIBUTES

SEE ALSO

NOTES

File Formats 605

securenets – configuration file for NIS security

/var/yp/securenets

The /var/yp/securenets file defines the networks or hosts which are allowed
access to information by the Network Information Service (“NIS”).

The format of the file is as follows:

� Lines beginning with the ‘‘#’’ character are treated as comments.

� Otherwise, each line contains two fields separated by white space. The first field is
a netmask, the second a network.

� The netmask field may be either 255.255.255.255 (IPv4),
ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff (IPv6) , or the string ‘‘host’’
indicating that the second field is a specific host to be allowed access.

Both ypserv(1M) and ypxfrd(1M) use the /var/yp/securenets file. The file is
read when the ypserv(1M) and ypxfrd(1M) daemons begin. If
/var/yp/securenets is present, ypserv(1M) and ypxfrd(1M) respond only to IP
addresses in the range given. In order for a change in the /var/yp/securenets file
to take effect, you must kill and restart any active daemons using ypstop(1M) and
ypstart(1M).

An important thing to note for all the examples below is that the server must be
allowed to access itself. You accomplish this either by the server being part of a subnet
that is allowed to access the server, or by adding an individual entry, as the following:

hosts 127.0.0.1

EXAMPLE 1 Access for Individual Entries

If individual machines are to be give access, the entry could be:

255.255.255.255 192.9.1.20

or

host 192.0.1.20

EXAMPLE 2 Access for a Class C Network

If access is to be given to an entire class C network, the entry could be:

255.255.255.0 192.9.1.0

EXAMPLE 3 Access for a Class B Network

The entry for access to a class B network could be:

255.255.0.0 9.9.0.0

EXAMPLE 4 Access for an Invidual IPv6 Address

Similarly, to allow access for an individual IPv6 address:

securenets(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

606 man pages section 4: File Formats • Last Revised 26 Apr 1999

EXAMPLE 4 Access for an Invidual IPv6 Address (Continued)

ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff fec0::111:abba:ace0:fba5e:1

or

host fec0::111:abba:ace0:fba5e:1

EXAMPLE 5 Access for all IPv6 Addresses Starting with fe80

To allow access for all IPv6 addresses starting with fe80:

ffff:: fe80::

/var/yp/securenets Configuration file for NIS security.

ypserv(1M), ypstart(1M), ypstop(1M), ypxfrd(1M)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages
(YP). The functionality of the two remains the same; only the name has changed. The
name Yellow Pages is a registered trademark in the United Kingdom of British
Telecommunications plc, and may not be used without permission.

securenets(4)

FILES

SEE ALSO

NOTES

File Formats 607

service_bundle – service manifest file format

/usr/share/lib/xml/dtd/service_bundle.dtd.1

The service management facility, described in smf(5), utilizes an XML-based file
format to marshal the description of a set of services or service instances between
systems. This file is known as a service bundle. The primary form of a service bundle
is the inventory of services that are provided by a package, which is called a "service
manifest".

The DTD describing the service_bundle is provided at
/usr/share/lib/xml/dtd/service_bundle.dtd.1. service_bundle
documents can also use the XML Inclusions (XInclude) facility to merge multiple
documents into one. A service_bundle document manipulator must therefore
support the functionality defined by the XInclude specification.

A complete service description consists of the following:

� A set of properties that identify the service and identify its restarter

� A set of properties that identify each instance

� A set of framework property groups that describe the framework’s understanding
of each instance

� A set of method property groups as required by svc.startd(1M), or by a
delegated restarter

� Additional optional method property groups

� A set of dependency property groups

� An optional group of properties that indicate services to which dependencies on
the described service were added

� A set of application property groups or application-specific typed property groups
containing application configuration data

� A template that describes supporting information about this service, such as a
description and links to documentation.

The document type definition for the service bundle provides markup to define each
of these aspects of a service description, as well as a number of entities that identify
regular features in describing a service, such as the <create_default_instance>
tag.

The attributes and tags are fully described in the commented DTD. The services
supplied with the operating system, stored under /var/svc/manifest, provide
examples of correctly formed service descriptions.

The description tags in the template element for a service are internationalizable.
Service developers wishing to provided localized descriptions of their services can
elect to deliver a set of loctext element in the description, like

service_bundle(4)

NAME

SYNOPSIS

DESCRIPTION

Localization in the
Template Element

608 man pages section 4: File Formats • Last Revised 30 Aug 2004

<common_name>
<loctext xml:lang="C">extended accounting<loctext>
<loctext xml:lang="fr_CA">...</loctext>
<loctext xml:lang="ja">...</loctext>
....

</common_name>

Alternatively, service developers can choose to deliver multiple manifests in the
naming scheme

/var/svc/manifest/[category]/[service].[locale].xml

which define only the localized template elements for that service. For instance

/var/svc/manifest/system/accounting.ja.xml

would contain, inside the template element, the following for the service’s common
name

<common_name>
<loctext xml:lang="ja">...</loctext>

</common_name>

Importing this file would create the service if not defined, or augment the existing
template with the additional localized entries.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsu

Stability Evolving

svcadm(1M), svccfg(1M), svc.startd(1M), libscf(3LIB), attributes(5),
locale(5), smf(5)

Nested service_bundle elements must be of the same type.

service_bundle(4)

ATTRIBUTES

SEE ALSO

NOTES

File Formats 609

service_provider.conf – service provider configuration file

service_provider.conf

service_provider.conf contains information about the device type that the
service provider supports. This information includes the pathname of the service
provider library, the library version and other library characteristics that are required
by the system administrative command, datadm(1M). datadm(1M) puts this
information in the DAT static register file, dat.conf(4).

The datadm program enumerates each device entry into a list of interface adapters,
that is, interfaces to external network that are available to uDAPL consumers. This
new list of interface adapters is appended to other service providers’ information in
the DAT static registry, dat.conf. You can do this is you invoke the datadm program
with the -a option and the pathname of the service_provider.conf file.

Each entry in the service_provider.conf is a single line of 7 fields.

The following shows the order of the fields in a service_provider.conf entry:

"driver_name" "API_version" "threadsafe_library | nonthreadsafe_library"\
"default_version | nondefault_version" "service_provider_library_pathname"\
"service_provider_version" "service_provider_instance_data"\

The fields are defined as follows:

driver_name
Specifies a driver name in the format of driver_name=value pair, for example,
driver_name=tavor.

API_version
Specifies the API version of the service provide library: For example,
"u"major.minor is u1.2.

threadsafe_library | nonthreadsafe_librar
Specifies a threadsafe or non-threadsafe library.

default_version | nondefault_version
Specifies a default or non-default version of library. A service provider can offer
several versions of the library. If so, one version is designated as default with the
rest as nondefault.

service_provider_library_pathname
Specifies the pathname of the library image.

service_provider_version
Specifies the version of the service provider. By convention, specify the company
stock symbol as the service provider, followed by major and minor version
numbers, for example, SUNW1.0.

service_provider_instance_data
Specifies the service provider instance data.

service_provider.conf(4)

NAME

SYNOPSIS

DESCRIPTION

610 man pages section 4: File Formats • Last Revised 18 Jun 2004

EXAMPLE 1 Using a Logical Device Name

The following example service_provider.conf entry uses a logical device name:

#
Sample service_provider.conf entry showing an uDAPL 1.2 service
provider, udapl_tavor.so.1 supporting a device with a driver named tavor
#

driver_name=tavor u1.2 nonthreadsafe default udapl_tavor.so.1 SUNW.1.0 ""

EXAMPLE 2 Using a Physical Device Name

The following example service_provider.conf uses a physical device name:

#
Sample service_provider.conf entry showing an uDAPL 1.2
service provider, udapl_tavor.so.1 supporting a device named
pci15b3,5a44 that can be located under /devices
#
pci15b3,5a44 u1.2 nonthreadsafe default /usr/lib/tavor/udapl_tavor.so.1

SUNWudaplt1.0 ""

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability Evolving

datadm(1M), dat.conf(4), attributes(5)

service_provider.conf(4)

EXAMPLES

ATTRIBUTES

SEE ALSO

File Formats 611

services – Internet services and aliases

/etc/inet/services

/etc/services

The services file is a local source of information regarding each service available
through the Internet. The services file can be used in conjunction with or instead of
other services sources, including the NIS maps “services.byname” and the NIS+ table
“services.“ Programs use the getservbyname(3SOCKET) routines to access this
information.

The services file contains an entry for each service. Each entry has the form:

service-name port/protocol aliases

service-name This is the official Internet service name.

port/protocol This field is composed of the port number and protocol
through which the service is provided, for instance,
512/tcp.

aliases This is a list of alternate names by which the service
might be requested.

Fields can be separated by any number of SPACE and/or TAB characters. A number
sign (#) indicates the beginning of a comment; any characters that follow the comment
character up to the end of the line are not interpreted by routines which search the file.

Service names may contain any printable character other than a field delimiter, a
NEWLINE, or a comment character.

Any changes to a port assignment do not affect the actual port registration of the
service.

/etc/nsswitch.conf configuration file for name-service switch

getservbyname(3SOCKET), inetd.conf(4), nsswitch.conf(4)

/etc/inet/services is the official SVR4 name of the services file. The symbolic
link /etc/services exists for BSD compatibility.

services(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

NOTES

612 man pages section 4: File Formats • Last Revised 12 Oct 2000

shadow – shadow password file

/etc/shadow is an access-restricted ASCII system file that stores users’ encrypted
passwords and related information. The shadow file can be used in conjunction with
other shadow sources, including the NIS maps passwd.byname and passwd.byuid
and the NIS+ table passwd. Programs use the getspnam(3C) routines to access this
information.

The fields for each user entry are separated by colons. Each user is separated from the
next by a newline. Unlike the /etc/passwd file, /etc/shadow does not have
general read permission.

Each entry in the shadow file has the form:

username:password:lastchg:min:max:warn:inactive:expire:flagThe fields are defined as follows:

username The user’s login name (UID).

password An encrypted password for the user generated by crypt(3C), a
lock string to indicate that the login is not accessible, or no string,
which shows that there is no password for the login.

The lock string is defined as *LK* in the first four characters of the
password field.

lastchg The number of days between January 1, 1970, and the date that the
password was last modified.

min The minimum number of days required between password
changes. This field must be set to 0 or above to enable password
aging.

max The maximum number of days the password is valid.

warn The number of days before password expires that the user is
warned.

inactive The number of days of inactivity allowed for that user. This is
counted on a per-machine basis; the information about the last
login is taken from the machine’s lastlog file.

expire An absolute date specifying when the login may no longer be
used.

flag Failed login count in low order four bits; remainder reserved for
future use, set to zero.

The encrypted password consists of at most CRYPT_MAXCIPHERTEXTLEN characters
chosen from a 64-character alphabet (., /, 0−9, A−Z, a−z). Two additional special
characters, “$” and “,”, can also be used and are defined in crypt(3C). To update this
file, use the passwd(1), useradd(1M), usermod(1M), or userdel(1M) commands.

shadow(4)

NAME

DESCRIPTION

File Formats 613

In order to make system administration manageable, /etc/shadow entries should
appear in exactly the same order as /etc/passwd entries; this includes ‘‘+’’ and ‘‘-’’
entries if the compat source is being used (see nsswitch.conf(4)).

/etc/shadow shadow password file

/etc/passwd password file

/etc/nsswitch.conf name-service switch configuration file

/var/adm/lastlog time of last login

login(1), passwd(1), useradd(1M), userdel(1M), usermod(1M), crypt(3C),
crypt_gensalt(3C), getspnam(3C), putspent(3C), nsswitch.conf(4),
passwd(4), pam_unix_account(5), pam_unix_auth(5)

If password aging is turned on in any name service the passwd: line in the
/etc/nsswitch.conf file must have a format specified in the nsswitch.conf(4)
man page.

If the /etc/nsswitch.conf passwd policy is not in one of the supported formats,
logins will not be allowed upon password expiration because the software does not
know how to handle password updates under these conditions. See
nsswitch.conf(4) for additional information.

shadow(4)

FILES

SEE ALSO

NOTES

614 man pages section 4: File Formats • Last Revised 10 Mar 2004

sharetab – shared file system table

sharetab resides in directory /etc/dfs and contains a table of local resources
shared by the share command.

Each line of the file consists of the following fields:

pathname resource fstype specific_options description

where

pathname Indicate the path name of the shared resource.

resource Indicate the symbolic name by which remote systems
can access the resource.

fstype Indicate the file system type of the shared resource.

specific_options Indicate file-system-type-specific options that were
given to the share command when the resource was
shared.

description Describe the shared resource provided by the system
administrator when the resource was shared.

share(1M)

sharetab(4)

NAME

DESCRIPTION

SEE ALSO

File Formats 615

shells – shell database

/etc/shells

The shells file contains a list of the shells on the system. Applications use this file to
determine whether a shell is valid. See getusershell(3C). For each shell a single
line should be present, consisting of the shell’s path, relative to root.

A hash mark (#) indicates the beginning of a comment; subsequent characters up to
the end of the line are not interpreted by the routines which search the file. Blank lines
are also ignored.

The following default shells are used by utilities: /bin/bash, /bin/csh, /bin/jsh,
/bin/ksh, /bin/pfcsh, /bin/pfksh, /bin/pfsh, /bin/sh, /bin/tcsh,
/bin/zsh, /sbin/jsh, /sbin/sh, /usr/bin/bash, /usr/bin/csh,
/usr/bin/jsh, /usr/bin/ksh, /usr/bin/pfcsh, /usr/bin/pfksh,
/usr/bin/pfsh, and /usr/bin/sh, /usr/bin/tcsh, /usr/bin/zsh. Note that
/etc/shells overrides the default list.

Invalid shells in /etc/shells may cause unexpected behavior (such as being unable
to log in by way of ftp(1)).

/etc/shells lists shells on system

vipw(1B), ftpd(1M), sendmail(1M), getusershell(3C), aliases(4)

shells(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

616 man pages section 4: File Formats • Last Revised 4 Jun 2001

slp.conf – configuration file for Service Location Protocol agents

/etc/inet/slp.conf

slp.conf provides all Service Location Protocol (“SLP”) agents with their
operational configuration. slpd(1M) reads slp.conf on startup. Service Agents
(“SAs”) and User Agents (“UAs”) read slp.conf on invocation of the SA and UA
library routines; configuration parameters are then cached on a per-process basis. All
SA’s must use the same set of properties as slpd on the local machine, since slpd
acts as an SA server.

The configuration file format consists of a newline-delimited list of zero or more
property definitions. Each property definition corresponds to a particular configurable
SLP, network, or other parameter in one or more of the three SLP agents. The file
format grammar is shown in RFC 2234 as follows:

config-file = line-list
line-list = line / line line-list
line = property-line / comment-line
comment-line = ("#" / ";") 1*allchar newline
property-line = property newline
property = tag "=" value-list
tag = prop / prop "." tag
prop = 1*tagchar
value-list = value / value "," value-list
value = int / bool /

"(" value-list ")" / string
int = 1*DIGIT
bool = "true" / "false" / "TRUE" / "FALSE"
newline = CR / (CRLF)
string = 1*stringchar
tagchar = DIGIT / ALPHA / tother / escape
tother = %x21-%x2d / %x2f /

%x3a / %x3c-%x40 /
%x5b-%x60 / %7b-%7e
; i.e., all characters except ‘.’,
; and ‘=’.

stringchar = DIGIT / ALPHA / sother / escape
sother = %x21-%x29 / %x2a-%x2b /

%x2d-%x2f / %x3a-%x40 /
%x5b-%x60 / %7b-%7e
; i.e., all characters except ‘,’

allchar = DIGIT / ALPHA / HTAB / SP
escape = "\" HEXDIG HEXDIG

; Used for reserved characters

The properties fall into one of the following categories:

� DA Configuration
� Static Scope Configuration
� Tracing and Logging
� Serialized Proxy Registrations
� Networking Configuration Parameters
� UA Configuration

slp.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 617

The following are configuration properties and their parameters for DAs:

net.slp.isDA

Setting Type Boolean

Default Value False

Range of Values True or False

A boolean that indicates whether slpd(1M) is to act as a DA. If False, slpd(1M)
is not run as a DA.

net.slp.DAHeartBeat

Setting Type Integer

Default Value 10800 seconds (3 hours)

Range of Values 2000 – 259200000 seconds

A 32–bit integer giving the number of seconds for the passive DA advertisement
heartbeat. The default value is 10800 seconds. This property is ignored if
net.slp.isDA is False.

net.slp.DAAttributes

Setting Type List of Strings

Default Value Unassigned

Range of Values List of Attribute Tag/Value List Pairs

A comma-separated list of parenthesized attribute tag/value list pairs that the DA
must advertise in DA advertisements. The property must be in the SLP attribute list
wire format, which requires that you use a backslash (“\”) to escape reserved
characters. See RFC 2608 for more information on reserved characters, or refer to
the System Administration Guide: Network Services.

The following properties and their parameters allow you to configure various aspects
of scope and DA handling:

net.slp.useScopes

Setting Type List of Strings

Default Value Default, for SA and DA; unassigned for UA.

Range of Values List of Strings

A list of strings indicating either the scopes that a UA or an SA is allowed to use
when making requests, or the scopes a DA must support. If not present for the DA
and SA, the default scope Default is used. If not present for the UA, then the user
scoping model is in force, in which active and passive DA or SA discovery are used
for scope discovery. The scope Default is used if no other information is available.
If a DA or SA gets another scope in a request, a SCOPE_NOT_SUPPORTED error is

slp.conf(4)

DA Configuration

Static Scope
Configuration

618 man pages section 4: File Formats • Last Revised 18 Feb 2003

returned, unless the request was multicast, in which case it is dropped. If a DA
receives another scope in a registration, a SCOPE_NOT_SUPPORTED error will be
returned. Unlike other properties, this property is "read-only", so attempts to
change it programmatically after the configuration file has been read are ignored.

net.slp.DAAddresses

Setting Type List of Strings

Default Value Unassigned

Range of Values IPv4 addresses or host names

A list of IP addresses or DNS-resolvable names that denote the DAs to use for
statically configured UAs and SAs. The property is read by slpd(1M), and
registrations are forwarded to the DAs. The DAs are provided to UAs upon request.
Unlike other properties, this property is "read-only", so attempts to change it after
the configuration file has been read are ignored.

The following grammar describes the property:

addr-list = addr / addr "," addr-list
addr = fqdn / hostnumber
fqdn = ALPHA / ALPHA *[anum / "-"] anum
anum = ALPHA / DIGIT

hostnumber = 1*3DIGIT 3("." 1*3DIGIT)

The following is an example using this grammar:

sawah,mandi,sambal

IP addresses can be used instead of host names in networks where DNS is not
deployed, but network administrators are reminded that using IP addresses will
complicate machine renumbering, since the SLP configuration property files in
statically configured networks will have to be changed.

These properties direct tracing and logging information to be sent to syslogd at the
LOG_INFO priority. These properties affect slpd(1M) only.

net.slp.traceDATraffic

Setting Type Boolean

Default Value False

Range of Values True or False

Set net.slp.traceDATraffic to True to enable logging of DA traffic by slpd.

net.slp.traceMsg

Setting Type Boolean

Default Value False

Range of Values True or False

slp.conf(4)

Tracing and
Logging

File Formats 619

Set net.slp.traceMsg to True to display details about SLP messages. The fields
in all incoming messages and outgoing replies are printed by slpd.

net.slp.traceDrop

Setting Type Boolean

Default Value False

Range of Values True or False

Set this property to True to display details when an SLPmessage is dropped by
slpd for any reason.

net.slp.traceReg

Setting Type Boolean

Default Value False

Range of Values True or False

Set this property to True to display the table of service advertisements when a
registration or deregistration is processed by slpd.

The following properties control reading and writing serialized registrations.

net.slp.serializedRegURL

Setting Type String

Default Value Unassigned

Range of Values Valid URL

A string containing a URL pointing to a document, which contains serialized
registrations that should be processed when the slpd starts up.

The properties that follow allow you to set various network configuration parameters:

net.slp.isBroadcastOnly

Setting Type Boolean

Default Value False

Range of Values True or False

A boolean that indicates if broadcast should be used instead of multicast.

net.slp.multicastTTL

Setting Type Positive Integer

Default Value 255

slp.conf(4)

Serialized Proxy
Registrations

Networking
Configuration

Parameters

620 man pages section 4: File Formats • Last Revised 18 Feb 2003

Range of Values A positive integer from 1 to 255.

A positive integer less than or equal to 255 that defines the multicast TTL.

net.slp.DAActiveDiscoveryInterval

Setting Type Integer

Default Value 900 seconds (15 minutes)

Range of Values From 300 to 10800 seconds

A 16–bit positive integer giving the number of seconds between DA active
discovery queries. The default value is 900 seconds (15 minutes). If the property is
set to zero, active discovery is turned off. This is useful when the DAs available are
explicitly restricted to those obtained from the net.slp.DAAddresses property.

net.slp.multicastMaximumWait

Setting Type Integer

Default Value 15000 milliseconds (15 seconds)

Range of Values 1000 to 60000 milliseconds

A 32–bit integer giving the maximum value for the sum of the
net.slp.multicastTimeouts values and net.slp.DADiscoveryTimeouts
values in milliseconds.

net.slp.multicastTimeouts

Setting Type List of Integers

Default Value 3000,3000,3000,3000

Range of Values List of Positive Integers

A list of 32–bit integers used as timeouts, in milliseconds, to implement the
multicast convergence algorithm. Each value specifies the time to wait before
sending the next request, or until nothing new has been learned from two
successive requests. In a fast network the aggressive values of
1000,1250,1500,2000,4000 allow better performance. The sum of the list must
equal net.slp.multicastMaximumWait.

net.slp.passiveDADetection

Setting Type Boolean

Default Value True

Range of Values True or False

A boolean indicating whether slpd should perform passive DA detection.

net.slp.DADiscoveryTimeouts

Setting Type List of Integers.

slp.conf(4)

File Formats 621

Default Value 2000,2000,2000,2000,3000,4000

Range of Values List of Positive Integers

A list of 32–bit integers used as timeouts, in milliseconds, to implement the
multicast convergence algorithm during active DA discovery. Each value specifies
the time to wait before sending the next request, or until nothing new has been
learned from two successive requests. The sum of the list must equal
net.slp.multicastMaximumWait.

net.slp.datagramTimeouts

Setting Type List of Integers

Default Value 3000,3000,3000

Range of Values List of Positive Integers

A list of 32–bit integers used as timeouts, in milliseconds, to implement unicast
datagram transmission to DAs. The nth value gives the time to block waiting for a
reply on the nth try to contact the DA.

net.slp.randomWaitBound

Setting Type Integer

Default Value 1000 milliseconds (1 second)

Range of Values 1000 to 3000 milliseconds

Sets the upper bound for calculating the random wait time before attempting to
contact a DA.

net.slp.MTU

Setting Type Integer

Default Value 1400

Range of Values 128 to 8192

A 16–bit integer that specifies the network packet size, in bytes. The packet size
includes IP and TCP or UDP headers.

net.slp.interfaces

Setting Type List of Strings

Default Value Default interface

Range of Values IPv4 addresses or host names

List of strings giving the IP addresses or host names of the network interface cards
on which the DA or SA should listen on port 427 for multicast, unicast UDP, and
TCP messages. The default value is unassigned, indicating that the default network
interface card should be used. An example is:

slp.conf(4)

622 man pages section 4: File Formats • Last Revised 18 Feb 2003

195.42.42.42,195.42.142.1,195.42.120.1

The example machine has three interfaces on which the DA should listen. Note that
if IP addresses are used, the property must be renumbered if the network is
renumbered.

The following configuration parameters apply to the UA:

net.slp.locale

Setting Type String

Default Value en

Range of Values See RFC 1766 for a list of the locale language tag
names.

A RFC 1766 Language Tag for the language locale. Setting this property causes the
property value to become the default locale for SLP messages.

net.slp.maxResults

Setting Type Integer

Default Value -1

Range of Values –1, positive integer

A 32 bit-integer that specifies the maximum number of results to accumulate and
return for a synchronous request before the timeout, or the maximum number of
results to return through a callback if the request results are reported
asynchronously. Positive integers and -1 are legal values. If the value of
net.slp.maxResults is -1, all results should be returned.

net.slp.typeHint

Setting Type List of Strings

Default Value Unassigned

Range of Values Service type names

A list of service type names. In the absence of any DAs, UAs perform SA discovery
to find scopes. If the net.slp.typeHint property is set, only SA’s advertising
types on the list respond. Note that UAs set this property programmatically. It is
not typically set in the configuration file. The default is unassigned, meaning do not
restrict the type.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpr

slp.conf(4)

UA Configuration

ATTRIBUTES

File Formats 623

ATTRIBUTE TYPE ATTRIBUTE VALUE

CSI Enabled

Interface Stability Standard

slpd(1M), slpd.reg(4), slp_api(3SLP), slp(7P)

System Administration Guide: Network Services

Alvestrand, H.RFC 1766: Tags for the Identification of Languages. Network Working
Group. March 1995.

Crocker, D., Overell, P.RFC 2234, Augmented BNF for Syntax Specifications: ABNF. The
Internet Society. 1997.

Kempf, J. and Guttman, E. RFC 2614, An API for Service Location. The Internet Society.
June 1999.

slp.conf(4)

SEE ALSO

624 man pages section 4: File Formats • Last Revised 18 Feb 2003

slpd.reg – serialized registration file for the service location protocol daemon (slpd)

/etc/inet/slpd.reg

The serialized registration file contains a group of registrations that slpd(1M)
registers when it starts. These registrations are primarily for older service programs
that do not internally support SLP and cannot be converted. The character format of
the registration file is required to be ASCII. To use serialized registrations, set the
net.slp.serializedRegURL property in slp.conf(4) to point at a valid
slpd.reg file. The syntax of the serialized registration file, in ABNF format (see RFC
2234), is as follows:

ser-file = reg-list
reg-list = reg / reg reg-list
reg = creg / ser-reg
creg = comment-line ser-reg
comment-line = ("#" / ";") 1*allchar newline
ser-reg = url-props [slist] [attr-list] newline
url-props = surl "," lang "," ltime ["," type] newline
surl = ;The registration’s URL. See

; [8] for syntax.
lang = 1*8ALPHA ["-" 1*8ALPHA]

;RFC 1766 Language Tag see [6].
ltime = 1*5DIGIT

; A positive 16-bit integer
; giving the lifetime
; of the registration.

type = ; The service type name, see [7]
; and [8] for syntax.

slist = "scopes" "=" scope-list newline
scope-list = scope-name / scope-name "," scope-list
scope = ; See grammar of [7] for

; scope-name syntax.
attr-list = attr-def / attr-def attr-list
attr-def = (attr / keyword) newline
keyword = attr-id
attr = attr-id "=" attr-val-list
attr-id = ;Attribute id, see [7] for syntax.
attr-val-list = attr-val / attr-val "," attr-val-list
attr-val = ;Attribute value, see [7] for syntax
allchar = char / WSP
char = DIGIT / ALPHA / other
other = %x21-%x2f / %x3a-%x40 /

%x5b-%x60 / %7b-%7e
; All printable, nonwhitespace US-ASCII
; characters.

newline = CR / (CRLF)

The syntax for attributes and attribute values requires that you use a backslash to
escape special characters, in addition to non-ASCII characters, as specified in RFC
2608. The slpd command handles serialized registrations exactly as if they were
registered by an SA. In the url-props production, the type token is optional. If the
type token is present for a service: URL, a warning is signalled, and the type name is
ignored. If the maximum lifetime of 65535 seconds is specified, the registration is
taken to be permanent, and it is continually refreshed by the DA or SA server until it
exits.

slpd.reg(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 625

Scopes can be included in a registration by including an attribute definition with tag
scopes followed by a comma-separated list of scope names immediately after the
url-props production. If the optional scope-list is present, the registations are
made in the indicated scopes; otherwise, they are registered in the scopes with which
the DA or SA server was configured through the net.slp.useScopes property. If
any conflicts occur between the scope list and the net.slp.useScopes property, an
error message is issued by way of syslog(3C). Refer to information regarding
LOG_INFO in syslog(3C).

Service advertisements are separated by a single blank line. Additionally, the file must
end with a single blank line.

EXAMPLE 1 Using a Serialized Registration File

The following serialized registration file shows an instance of the service type foo,
with a lifetime of 65535 seconds, in the en locale, with scope somescope:

register foo
service:foo://fooserver/foopath,en,65535
scopes=somescope
description=bogus
security=kerberos_v5
location=headquarters

next registration...

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWslpr

CSI Enabled

Interface Stability Standard

slpd(1M), slp_api(3SLP), syslog(3C), slp.conf(4), attributes(5)

Crocker, D. and Overell, P., RFC 2234, Augmented BNF for Syntax Specifications: ABNF,
The Internet Society, November 1997.

Guttman, E., Perkins, C., Veizades, J., and Day, M., RFC 2608, Service Location Protocol,
Version 2, The Internet Society, June 1999.

Kempf, J. and Guttman, E., RFC 2614, An API for Service Location, The Internet Society,
June 1999.

slpd.reg(4)

EXAMPLES

ATTRIBUTES

SEE ALSO

626 man pages section 4: File Formats • Last Revised 17 Nov 1999

snmp.conf – configuration file for the Net-SNMP applications

snmp.conf

The file snmp.conf defines how the Net-SNMP applications operate. Tokens that can
be put in the file are described in the DIRECTIVES section below.

If you are storing sensitive information, such as passphrases, in snmp.conf, make
sure you make the file readable only by user.

Before modifying snmp.conf, make sure to read the snmp_config(4) manual page,
which describes the effects of the Net-SNMP configuration files, where they are
located, and how they all work together.

The snmp.conf file supports the following directives:

mibdirs (mib-dirs| +mib-dirs)
Look for text MIBs to parse in the colon-separated list of directories. If the directive
value starts with a plus sign, it prepends this list to the default directory list
compiled into the application. Note that the value specified here can be overridden
by the MIBDIRS environment variable.

mibs (mib-tokens| +mib-tokens)
Specifies a colon-separated list of MIB tokens that represent textual MIB files that
are to be found and parsed. If the directive value starts with a plus sign, it prepends
this list to the default MIB token list compiled into the application. The special
keyword of ALL forces all MIBs files found to be read. Note that the value specified
here can be overridden by the MIBS environment variable.

mibfile file
Specifies a text MIB file to read and parse, in addition to the list read from the MIBs
token. Note that the value specified here can be overridden by the MIBFILES
environment variable.

persistentDir directory
The directory where snmpd and snmptrapd store their persistent data files.

defaultPort port
The default port number that all SNMP applications and daemons should use.

defVersion (1 | 2c | 3)
The default SNMP version to use. The default value is 3.

defCommunity string
The default SNMPv1 and SNMPv2c community string to use. The default value is
the empty string, "".

defSecurityName string
The default SNMPv3 USM security name you want to use for SNMPv3 requests.

defContext string
The default SNMPv3 context name you want to use.

defPassphrase string
defAuthPassphrase string

snmp.conf(4)

NAME

SYNOPSIS

DESCRIPTION

DIRECTIVES

File Formats 627

defPrivPassphrase string
The default SNMPv3 USM passphrase(s) to use. If it is specified, defPassphrase
is used for both authentication and privacy pass phrases.

defAuthType MD5 | SHA
The SNMPv3 USM authentication type to use. The default value is MD5.

defPrivType DES
The SNMPv3 USM privacy type to use. Currently, DES is the only possible value.

defSecurityLevel noAuthNoPriv | authNoPriv | authPriv
The SNMPv3 default security level to use. The default is authPriv.

showMibErrors (1 | yes | true | 0 | no | false)
Determines whether to display text MIB parsing errors when commands are run.

strictCommentTerm (1 | yes | true | 0 | no | false)
Determines whether parsing of MIBs should be strict about comment termination.
A double hyphen ("--") terminates a comment if this is true. Many MIBs have
broken comments in them, hence this option.

mibAllowUnderline (1 | yes | true | 0 | no | false)
Allow underline characters in MIBs (ordinarily illegal).

mibWarningLevel integerValue
Specifies the minimum warning level of the warnings printed by the MIB parser.

printNumericEnums (1 | yes | true | 0 | no | false)
Equivalent to -Oe.

printNumericOids (1 | yes | true | 0 | no | false)
Equivalent to -On.

dontBreakdownOids (1 | yes | true | 0 | no | false)
Equivalent to -Ob.

escapeQuotes (1 | yes | true | 0 | no | false)
Equivalent to -OE.

quickPrinting (1 | yes | true | 0 | no | false)
Equivalent to -Oq.

dontPrintUnits (1 | yes | true | 0 | no | false)
Equivalent to -OU.

printHexText (1 | yes | true | 0 | no | false)
Equivalent to -OT.

suffixPrinting (0 | 1 | 2)
If the value is 1, this directive is equivalent to -Os. If the value is 2, it is equivalent
to -OS.

oidOutputFormat (1 | 2 | 3 | 4 | 5 | 6)
Maps -O options as follows:

-Os=1
-OS=2

snmp.conf(4)

628 man pages section 4: File Formats • Last Revised 26 Aug 2003

-Of=3
-On=4

-Ou=5

The value 6 has no matching -O option. It suppresses output.

extendedIndex (1 | yes | true | 0 | no | false)
Equivalent to -OX.

noRangeCheck (1 | yes | true | 0 | no | false)
Disables the validation of values that is done by snmpset(1M) before issuing the
request to the agent. Equivalent to -Ir.

noDisplayHint (1 | yes | true | 0 | no | false)
Disables the use of DISPLAY-HINT information when parsing indices and values
to set. Equivalent to -Ih.

dumpPacket (1 | yes | true | 0 | no | false)
Determines whether commands should dump packets by default.

doDebugging (1 | 0)
Turns on debugging for all applications run if set to 1.

debugTokens token[,token...]
Specifies the debugging tokens that should be displayed. See snmpcmd(1M) for
debugging usage details.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsmcmd

Interface Stability External

snmpcmd(1M), snmpset(1M), snmp_config(4), attributes(5)

snmp.conf(4)

ATTRIBUTES

SEE ALSO

File Formats 629

snmp_config – overview of Net-SNMP configuration files

snmp_config

This page gives an overview of the various configuration files used by the Net-SNMP
software that is shipped with the Solaris operating system.

In a configuration file, lines beginning with a hash character (#) are treated as a
comment and are not parsed.

By default, the Net-SNMP applications look for configuration files in the following
directories in the order listed:

1. /etc/sma/snmp
2. /usr/sfw/lib
3. $HOME/.snmp

In each of these directories, the Net-SNMP applications look for files with the
extensions .conf and local.conf, in that order.

The default search path described above can be overridden by setting the environment
variable SNMPCONFPATH to a colon-separated list of directories. SNMPCONFPATH is
used to allow users to place configuration files in specific directories for their
application needs. Currently defaulted to /etc/sma/snmp and
/usr/local/share/snmp.

Applications that store persistent data will also look in the /var/net-snmp directory
for configuration files.

You can switch in mid-file the configuration type that the parser is supposed to be
reading. For example, assume you want to turn on packet dumping output for the
agent by default, but you do not want to turn on packet dumping for the rest of the
applications (such as snmpget and snmpwalk). Normally, to enable packet dumping,
you would enter a line such as the one below in the snmp.conf file:

dumpPacket true

Such a line turns on packet dumping for all of the applications. Instead, you can put
the same line in the snmpd.conf file so that it applies only to the snmpd daemon.
However, you need to tell the parser to expect this line. You do this by putting a
special, type-specification token inside square brackets. For example, inside your
snmpd.conf file you can enter:

[snmp] dumpPacket true

This tells the parser to parse the line as if it were inside a snmp.conf file instead of an
snmpd.conf file. If you want to parse multiple lines rather than just one, you can
make the context switch apply to the remainder of the file or until the next context
switch directive by putting the special token on a line by itself:

make this file handle snmp.conf tokens:
[snmp]
dumpPacket true

snmp_config(4)

NAME

SYNOPSIS

DESCRIPTION

Search Order

Switching
Configuration

Types in Mid-File

630 man pages section 4: File Formats • Last Revised 16 Jan 2004

logTimestamp true
return to our original snmpd.conf tokens:
[snmpd]

rocommunity mypublic

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsmcmd

Interface Stability External

snmpd.conf(4), attributes(5), sma_snmp(5)

snmp_config(4)

ATTRIBUTES

SEE ALSO

File Formats 631

snmpd.conf – configuration file for the Net-SNMP agent

/etc/sma/snmp/snmpd.conf

snmpd.conf is the configuration file that defines how the Net-SNMP agent operates.
This file can contain any of the directives found in the DIRECTIVES section below.
snmpd.conf is not required for the agent to operate and respond to requests.

It is recommended that you read the snmp_config(4) manual page, which describes
how the Net-SNMP configuration files operate, where they are located, and how they
work together. You might also find it useful to examine the snmpconf utility (a perl
script). This utility enables you to build an snmpd.conf file by prompting you for
information. See the snmpconf(1M) manual page for more information.

The Net-SNMP agent can be forced to reread its configuration files in either of two
ways:

� An snmpset of integer(1) to:

UCD-SNMP-MIB::versionUpdateConfig.0(.1.3.6.1.4.1.2021.100.11.0)

� A kill -HUP signal sent to the snmpd agent process.

The Net-SNMP agent reports much of its information through queries to the
1.3.6.1.4.1.2021 section of the MIB tree. Every MIB in this section has the following
table entries in it.

.1 -- index
The table’s index numbers for each of the directives listed below.

.2 -- name
The name of the given table entry. It is recommended that this name be unique, but
is not required to be.

.100 -- errorFlag
A flag returning the integer value 1 or 0 if an error is detected for this table entry.

.101 -- errorMsg
This is a DISPLAY-STRING describing any error triggering the errorFlag above.

.102 -- errorFix
If this entry is set to the integer value of 1 and the errorFlag defined above is
indeed a 1, a program or script will get executed with the table entry name from
above as the argument. The program to be executed is configured in the config.h
file at compile time.

proc name
proc name max
proc name max min

Checks to see if processes called NAME are running on the agent machine. An error
flag (1) and a description message are then passed to the 1.3.6.1.4.1.2021.2.1.100 and
1.3.6.1.4.1.2021.2.1.101 MIB columns (respectively) if the name’d program is not
found in the process table as reported by /usr/bin/ps -e.

snmpd.conf(4)

NAME

SYNOPSIS

DESCRIPTION

Extensible MIB

Directives

632 man pages section 4: File Formats • Last Revised 10 Oct 2003

If max and min are not specified, max is assumed to be infinity and min is assumed
to be 1.

If max is specified but min is not specified, min is assumed to be 0.

procfix name prog args
Registers a command that knows how to fix errors with the given process name.
When 1.3.6.1.4.1.2021.2.1.102 for a given name’d program is set to the integer value
of 1, this command will be called. It defaults to a compiled value set using the
PROCFIXCMD definition in the config.h file.

exec name prog args
exec mibnum name prog args

If mibnum is not specified, the agent executes the named prog with arguments of
args and returns the exit status and the first line of the stdout output of the prog
program to queries of the 1.3.6.1.4.1.2021.8.1.100 and 1.3.6.1.4.1.2021.8.1.101 mib
columns (respectively). All stdout output beyond the first line is silently truncated.

If mibnum is specified, it acts as above but returns the exit status to mibnum.100.0
and the entire stdout output to the table mibnum.101 in a MIB table. In this case, the
mibnum.101 mib contains the entire stdout output, one MIB table entry per line of
output (that is, the first line is output as mibnum.101.1, the second at mibnum.101.2,
and so forth).

The mibnum must be specified in dotted-integer notation and cannot be specified as
.iso.org.dod.internet... (this would instead be .1.3.6.1...).

The agent caches the exit status and stdout of the executed program for 30 seconds
after the initial query. This is to increase speed and maintain consistency of
information for consecutive table queries. The cache can be flushed by a snmp-set
request of integer(1) to 1.3.6.1.4.1.2021.100.VERCLEARCACHE.

execfix name prog args
Registers a command that knows how to fix errors with the given exec or sh name.
When 1.3.6.1.4.1.2021.8.1.102 for a given name’d entry is set to the integer value of 1,
this command will be called. It defaults to a compiled value set using the
EXECFIXCMD definition in the config.h file.

disk path
disk path [minspace | minpercent%]

Checks the named disks mounted at path for available disk space. If the disk space
is less than minspace (kilobytes) if specified or less than minpercent (%) if a percent
sign is specified, or DEFDISKMINIMUMSPACE (kilobytes) if not specified, the
associated entry in the 1.3.6.1.4.1.2021.9.1.100 MIB table will be set to (1) and a
descriptive error message will be returned to queries of 1.3.6.1.4.1.2021.9.1.101.

load max1
load max1 max5
load max1 max5 max15

Checks the load average of the machine and returns an error flag (1) and a
text-string error message to queries of 1.3.6.1.4.1.2021.10.1.100 and

snmpd.conf(4)

File Formats 633

1.3.6.1.4.1.2021.10.1.101 (respectively) when the 1-minute, 5-minute, or 15-minute
averages exceed the associated maximum values. If any of the max1, max5, or max15
values are unspecified, they default to a value of DEFMAXLOADAVE.

file file [maxsize]
Monitors file sizes and makes sure they do not grow beyond a certain size (in
kilobytes). maxsize defaults to infinite if not specified, and only monitors the size
without reporting errors about it. A maximum of 20 files can be monitored.

Any errors in obtaining the information described above are reported by means of the
1.3.6.1.4.1.2021.101.1.100 flag and the 1.3.6.1.4.1.2021.101.1.101 text-string description.

To enable AgentX support in the SNMP master agent, insert a line containing the
following elements in your snmpd.conf file:

master agentx
See README.agentx for further details.

AgentXSocket addr
This defines the address at which the master agent listens at. The default is
/var/agentx/master. By default the Unix Domain socket is accessible only to
subagents which have the same userid as the agent. The other supported transports
are TCP and UDP. The transport specifier format can be obtained in snmpcmd(1m).
Note that it is a possible security risk to expose the master agent listening address
through TCP/UDP. See section 9 of RFC 2741 for more details.

AgentXTimeout addr
Defines the timeout period for an AgentX request. Default is 1 second.

AgentXRetries addr
Defines the number of retries for an AgentX request. Default is 5 retries.

You can also put the parameter listed below in your subagent.conf file (where
subagent is the name you used in your init_snmp("subagent") API call.

agentPingInterval num
The presence of this parameter makes the subagent try to reconnect every num
seconds to the master if it ever becomes disconnected.

To enable an SMUX-based subagent, such as gated, use the smuxpeer configuration
entry:

smuxpeer OID password
For gated, a useful entry would be:

smuxpeer .1.3.6.1.4.1.4.1.3 secret

If the agent is built with support for the UCD-DLMOD-MIB, it is capable of loading
agent MIB modules dynamically at startup through the dlmod directive and during
run-time through use of the UCD-DLMOD-MIB. The following directive loads the
shared object module file path, which uses the module name prefix name.

dlmod name path

snmpd.conf(4)

ERRORS

AGENTX
Subagents

SMUX Subagents

Dynamically
Loadable Modules

634 man pages section 4: File Formats • Last Revised 10 Oct 2003

snmpd supports the View-Based Access Control Model (VACM) as defined in RFC
2575. To this end, it recognizes the following keywords in the configuration file:

� com2sec
� group
� access
� view

In addition snmpd recognizes some easier-to-use wrapper directives:

� rocommunity
� rwcommunity
� rouser
� rwuser

If IPv6 support has been enabled, the rocommunity6 and rwcommunity6 tokens are
also available. This section defines how to configure the snmpd program to accept
various types and levels of access.

rouser user [noauth|auth|priv] [OID]
rwuser user [noauth|auth|priv] [OID]

Creates an SNMPv3 USM user in the VACM access configuration tables. It is more
efficient (and powerful) to use the combined group, access, and view directives, but
these wrapper directives are much simpler.

The minimum level of authentication and privacy the user must use is specified by
the first token (which defaults to auth). The OID parameter restricts access for that
user to everything below the given OID.

rocommunity community [source] [OID]
rwcommunity community [source] [OID]

Create read-only and read-write communities that can be used to access the agent.
They are a quick wrapper around the more complex and powerful com2sec,
group, access, and view directive lines. They are not as efficient as these, because
groups are not created, so the tables are potentially larger. These directives are not
recommended for complex environments. If your environment is relatively simple
or you can sustain a small negative performance impact, use these directives.

The format of the source token is described in the com2sec directive section below.
The OID token restricts access for that community to everything below that given
OID.

rocommunity6 community [source] [OID]
rwcommunity6 community [source] [OID]

The equivalent directives to the rocommunity and rwcommunity directives for
the transport domain UDPIPv6. They are valid only in specifying UDPIPv6 as the
transport domain.

The format of the source token is described in the com2sec directive section below.
The OID token restricts access for that community to everything below that given
OID.

snmpd.conf(4)

Access Control

File Formats 635

com2sec name source community
Specifies the mapping from a source/community pair to a security name. source can
be a hostname, a subnet, or the word default. A subnet can be specified as
IP/mask or IP/bits. The first source/community combination that matches the
incoming packet is selected.

com2sec6 name source community
The IPv6 version of com2sec. A subnet can be specified as IPv6/IPv6mask or
IPv6/bits. Valid only in specifing UDPIPv6 as the transport domain.

group name model security
Defines the mapping from securitymodel/securityname to a group. model is one of v1,
v2c, or usm.

access name context model level prefx read write notify
Maps from group/security and model/security level to a view. model is one of any,
v1, v2c, or usm. level is one of noauth, auth, or priv. prefx specifies how context
should be matched against the context of the incoming PDU, either exact or prefix.
read, write and notify specifies the view to be used for the corresponding access. For
v1 or v2c access, level will be noauth, and context will be empty.

view name type subtree [mask]
Defines the named view. type is either included or excluded. mask is a list of hex
octets, separated by a period (.) or a colon (:). The mask defaults to ff if not
specified.

Use of the mask allows you to control access to one row in a table in a relatively
simple way. As an example, as an ISP you might consider giving each customer
access to his or her own interface:

view cust1 included interfaces.ifTable.ifEntry.ifIndex.1 ff.a0
view cust2 included interfaces.ifTable.ifEntry.ifIndex.2 ff.a0

interfaces.ifTable.ifEntry.ifIndex.1 == .1.3.6.1.2.1.2.2.1.1.1

ff.a0 == 11111111.10100000

These entries cover up and include the row index, yet still allow the user to vary the
field of the row.

The following are VACM examples:

sec.name source community
com2sec local localhost private
com2sec mynet 10.10.10.0/24 public
com2sec public default public
com2sec6 mynet fec0::/64 public

sec.model sec.name
group mygroup v1 mynet
group mygroup v2c mynet
group mygroup usm mynet
group local v1 local
group local v2c local
group local usm local

snmpd.conf(4)

636 man pages section 4: File Formats • Last Revised 10 Oct 2003

group public v1 public
group public v2c public
group public usm public

incl/excl subtree mask
view all included .1 80
view system included system fe
view mib2 included .iso.org.dod.internet.mgmt.mib-2 fc

context sec.model sec.level prefix read write notify
access mygroup "" any noauth exact mib2 none none
access public "" any noauth exact system none none

access local "" any noauth exact all all all

The default configuration of the agent, as shipped, is functionally equivalent to the
following entries:

com2sec public default public
group public v1 public
group public v2c public
group public usm public
view all included .1

access public "" any noauth exact all none none

Please note rwuser, rouser, rwcommunity, and rocommunity entries take precedence
over vacm group entries that have the same user/community names.

engineID string
The snmpd agent needs to be configured with an engineID to be able to respond
to SNMPv3 messages. With this configuration file line, the engineID will be
configured from string. The default value of the engineID is configured with the
first IP address found for the hostname of the machine.

createUser username (MD5|SHA) authpassphrase [DES] [privpassphrase]
MD5 and SHA are the authentication types to use, but you must have built the
package with OpenSSL installed in order to use SHA. The only privacy protocol
currently supported is DES. If the privpassphrase is not specified, it is assumed to be
the same as privpassphrase. Note that the users created will be useless unless they
are also added to the VACM access control tables described above.

Note – The minimum pass phrase length is 8 characters.

SNMPv3 users can be created at runtime using the snmpusm(1M) command.

Rather than figuring out the intricacies of this directive, run:

net-snmp-config --create-snmpv3-user

This command constructs a correctly formed line and inserts the line in the right
place.

This directive should be placed into the /var/net-snmp/snmpd.conf file instead
of the other normal locations. The reason is that the information is read from the file
and then the line is removed (eliminating the storage of the master password for

snmpd.conf(4)

Default VACM
Model

SNMPv3
Configuration

File Formats 637

that user) and replaced with the key that is derived from it. This key is a localized
key, so that if it is stolen it cannot be used to access other agents. If the password is
stolen, however, other agents are compromised.

syslocation string
syscontact string
sysname string

Sets the system location, system contact, or system name for the agent. This
information is reported in the system group the mibII tree. Ordinarily, these
objects (sysLocation.0, sysContact.0 and sysName.0) are read-write.
However, specifying the value for one of these objects by giving the appropriate
token makes the corresponding object read-only and attempts to set the value of the
object will result in a notWritable error response.

sysservices number
Sets the value of the system.sysServices.0 object. For a host, a useful value is
72.

sysdescr string
sysobjectid oid

Sets the system description or object ID for the agent. Although these values are not
SNMP-writable, it is conceivable that a network administrator might want to
configure them to something other than the default values.

agentaddress [<transport-specifier>:]<transport-address>[,...]
Makes the agent listen on the specified comma-separated list of listening addresses
instead of the default behavior, which is to listen on UDP port 161 on all IPv4
interfaces. See the section LISTENING ADDRESSES in the snmpd(1M) manual page
for more information about the format of listening addresses. For example,
specifying:

agentaddress 161,tcp:161,localhost:9161

...will make the agent listen on UDP port 161 on all IPv4 interfaces, TCP port 161 on
all IPv4 interfaces and UDP port 9161 only on the interface associated with the
localhost address.

agentgroup groupid
Change to groupid after opening a port. The groupid can refer to a group by name or,
if the group number starts with a hash sign (#), a number. For example, specifying
agentgroup snmp causes the agent to run as the snmp group; agentgroup #10
makes the agent to run as the group with groupid 10.

agentuser uid
Change to uid after opening a port. The uid can refer to a user by name or, if the
user number starts with a hash sign (#), a number. For example, specifying
agentuser snmp causes the agent to run as the snmp user; agentuser #10
causes the agent to run as the user with userid 10.

interface name type speed
For interfaces where the agent fails to guess correctly on the type and speed, this
directive can supply additional information. type is a type value as given in the
IANAifType-MIB.

snmpd.conf(4)

Setting System
Information

638 man pages section 4: File Formats • Last Revised 10 Oct 2003

ignoredisk string
This directive ensures that an agent does not timeoout for disk string. When
scanning for available disk devices, the agent might block in trying to open all
possible disk devices. This might lead to a timeout when walking the device tree.
The occurrence of such timeouts is highly unpredictable.

If you experience such behavior, you might add this directive and give all device
names not to be checked (that is, opened). You might have more than one such
directive in your configuration file specifying all devices not to be opened. You
might also specify those devices using wildcards similar to the syntax you can use
in a Bourne shell, as shown in the examples below.

The following are example ignoredisk directives:

The following directive prevents the device /dev/rdsk/c0t2d0 from being
scanned:

ignoredisk /dev/rdsk/c0t2d0

The following directive prevents all devices /dev/rdsk/c0tXd0 except
/dev/rdsk/c0t6d0 from being scanned.

ignoredisk /dev/rdsk/c0t[!6]d0

For most systems, the following directive is similar:

ignoredisk /dev/rdsk/c0t[0-57-9a-f]d0

The following directive prevents all devices whose device names start with
/dev/rdsk/c1 from being scanned.

ignoredisk /dev/rdsk/c1\(**

The following directive prevents all devices /dev/rdsk/cXt0d0 (where X can be
any character) from being scanned.

ignoredisk /dev/rdsk/c?t0d0

You can use more than one such wildcard expression in a such directive.

storageUseNFS number
Setting storageUseNFS to 1 causes all NFS and NFS-like file systems to be
marked as Network Disks in the hrStorageTable. This is according to RFC
2790. Not setting storageUseNFS or setting it to 2 causes NFS and NFS-like file
systems to be marked as Fixed Disks, as it has been in previous versions of the
ucd-snmp SNMP agent.

authtrapenable number
Setting authtrapenable to 1 enables generation of authentication failure traps.
The default value is disabled(2). Ordinarily, the corresponding object
(snmpEnableAuthenTraps.0) is read-write, but setting its value by means of this
token makes the object read-only and attempts to set the value of the object will
result in a notWritable error response.

snmpd.conf(4)

File Formats 639

override oid type value
This directive allows you to override a particular OID with a different value (and
possibly a different type of value). For example:

override -rw sysDescr.0 octet_str "my own sysDescr"

The preceding line sets the sysDescr.0 value to "my own sysDescr" as well as
make it modifiable with SNMP SETs. The latter result is illegal according to the MIB
specifications.

Note that care must be taken when using this directive. For example, if you try to
override a property of the third interface in the ifTable with a new value and
later the numbering within the ifTable changes its index ordering, you will obtain
unexpected results.

Valid types are:

� integer
� uinteger
� octet_str
� bit_str
� object_id
� counter
� gauge
� null

Note that setting an object to null effectively makes it inaccessible. No value needs
to be given if the object type is null.

trapcommunity string
Defines the default community string to be used when sending traps. Note that this
command must be used prior to any of the three commands (immediately
following) that are intended use this community string.

trapsink host[community [port]]
trap2sink host[community [port]]
informsink host[community [port]]

Define the hosts to receive traps (or inform notifications with informsink). The
daemon sends a Cold Start trap when it starts up. If enabled, it also sends traps on
authentication failures. You can specify multiple trapsink, trap2sink and
informsink lines to specify multiple destinations. Use trap2sink to send
SNMPv2 traps and informsink to send inform notifications. If community is not
specified, the string from a preceding trapcommunity directive will be used. If
port is not specified, the well-known SNMP trap port (162) will be used.

trapsess [snmpcmd_args] host
A more generic trap configuration token that allows any type of trap destination to
be specified with any version of SNMP. See the SNMP command manual page for
further details on the arguments that can be passed as snmpcmd_args . In addition to
the arguments listed there, the special argument -Ci specifies that you want inform
notifications to be used instead of unacknowledged traps. This requires that you

snmpd.conf(4)

Setting Up Traps
and Informing

Destinations

640 man pages section 4: File Formats • Last Revised 10 Oct 2003

specify a version number of v2c or v3 as well.

proxy [-Cn contextname] [snmpcmd_args] host oid [remoteoid]
This token specifies that any incoming requests under oid should be proxied to
another host. If contextname is specified, it assigns the proxied tree to a particular
context name within the local agent. This is the correct way to query multiple
agents through a single proxy, by assigning each remote agent to a different context
name. After that, you can use:

snmpwalk -n contextname1

...to walk one remote proxied agent and:

snmpwalk -n contextname2

to walk another, assuming you are using SNMPv3 to talk to the proxy. (SNMPv1
and SNMPv2c context mappings are not currently supported.) Optionally, relocate
the local OID tree to the new location at the remoteoid. To authenticate host you
should use the appropriate set of snmpcmd_args. See the SNMP command manual
pages for details.

The following are examples of proxy support:

assigns the entire mib tree on remotehost1 to the context of the
same name:
proxy -Cn remotehost1 -v 1 -c public remotehost1 .1.3

same as preceding, but for remotehost 2
proxy -Cn remotehost2 -v 1 -c public remotehost2 .1.3

proxies only the ucdavis enterprises tree to the remote host using snmpv1
proxy -v 1 -c public remotehost .1.3.6.1.4.1.2021

uses v3 to access remotehost and converts the remote .1.3.6.1.2.1.1
oid to local .1.3.6.1.3.10 oid (another way to access mulitple hosts
without using contexts)

proxy -v 3 -l noAuthNoPriv -u user remotehost .1.3.6.1.3.10 .1.3.6.1.2.1.1

pass miboid exec
Passes entire control of miboid to the exec program. The exec program is called in one
of the following ways:

exec -g miboid
exec -n miboid

These call lines are compared to SNMP get and getnext requests. It is
expected that the exec program will take the arguments passed to it and return
the appropriate response through its stdout.

The first line of stdout should be the miboid of the returning value. The second
line should be the type of value returned, where type is one of the text strings:
string, integer, unsigned, objectid, timeticks, ipaddress, or gauge.
The third line of stdout should be the value corresponding with the returned
type.

snmpd.conf(4)

Proxy Support

Pass-Through
Control

File Formats 641

For example, if a script was to return the value integer value "42" in response to
a request for .1.3.6.1.4.100, the script should return the following three lines:

.1.3.6.1.4.100
integer

42

To indicate that the script is unable to comply with the request because of an
end-of-MIB condition or an invalid request, simply exit and return no output to
stdout. An SNMP error will be generated corresponding to the SNMP
noSuchName response.

exec -s miboid type value
For SNMP set requests, use the call method shown above. The type passed to the
exec program is one of the text strings: integer, counter, gauge, timeticks,
ipaddress, objid, or string. This string indicates the type of value passed in
the next argument.

With no return to stdout, you can assume the set to have been successful.
Otherwise, return one of the following error strings to signal an error: either
not-writable or wrong-type. In the latter case the appropriate error response
will be generated.

By default, the only community allowed to write (that is, issue an snmpset) to
your script will be the "private" community or community #2, if defined differently
by the community token discussed above. Which communities are allowed write
access are controlled by the RWRITE definition in the snmplib/snmp_impl.h
source file.

The following is an example of this directive, from snmpd.conf:

pass .1.3.6.1.4.1.2021.255 /path/to/local/passtest

pass_persist miboid exec
Passes entire control of miboid to the exec program. Similar to pass, but the exec
program continues to run after the initial request is answered. Also, both pass and
pass_persist block till they return.

Upon initialization, exec is passed the string "PING\n" in stdin; it should respond
by sending "PONG\n" to stdout.

For get and getnext requests, exec program is passed two lines, the command
(get or getnext) and the miboid. It should return three lines, the MIB OID, the
type of value returned, and the value associated with the returned type.

For example, if the value for .1.3.6.1.4.100 was requested, the following 2 lines
would be passed in to stdin:

get

.1.3.6.1.4.100

To return the value of, say, 42, the script would write to stdout:

snmpd.conf(4)

642 man pages section 4: File Formats • Last Revised 10 Oct 2003

.1.3.6.1.4.100
integer

42

To indicate that the script is unable to comply with the request due to an
end-of-MIB condition or an invalid request, print "NONE\n" to stdout.

The following is an example of this directive, in snmpd.conf:

pass_persist .1.3.6.1.4.1.2021.255 /path/to/local/pass_persisttest

Caution – This implementation has not been extensively tested and is additionally not
known to be entirely complete. The concepts defined here should function
appropriately. However, but no promises are made at this time.

If your agent was compiled with support for the DISMAN-EVENT-MIB you have
support for having the agent check its own data at regular intervals and to send out
traps when certain conditions occur. You can enable DISMAN-EVENT-MIB by running
the net-snmp configure script with the following argument:

--with-mib-modules=disman/event-mib

Traps are sent when expressions are first noticed, not once per evaluation. Once a test
expression fires a trap, the test will have to fail again before a new trap is sent. See the
DISMAN-EVENT-MIB documentation for more details. This can be configured either
using the MIB tables themselves or by using these special key words:

agentSecName name
The DISMAN-EVENT-MIB support requires a valid user name with which to scan
your agent. You can specify this name either by using the agentSecName token or
by explicitly listing one on the monitor lines (with the -u switch) described below.
Either way, you must also specify a rouser line (or equivalent access control
settings) with the same security name. For example, entries such as the following:

agentSecName internal

rouser internal

...enable the directives below to work correctly.

monitor [options] name expression
This token tells the agent to monitor itself for problems based on expression.
expression is a simple expression based on an OID, a comparison operator (!=, ==,
<, <=, >, >=) and an integer value (see the examples below). name is an arbitrary
name of your choosing for administrative purposes only. options include the
following possibilities:

-r frequency
Monitors the given expression every frequency seconds. The default is 600 (10
minutes).

-u secname
Use the secname security name for scanning the local host. This secname must
then be given access control rights by means of the rouser snmpd.conf token

snmpd.conf(4)

Sending Traps on
Errors

File Formats 643

or similar mechanism for this expression to be valid. If not specified, it uses the
default security name specified by the agentsecname snmpd.conf token.
Either the -u flag or a valid agentsecname token must be specified and that
name must be given proper access control rights with a rouser token.

-o OID
Specifies additional object values to be delivered in the resulting trap, in
addition to the normal trap objects. This option is useful for obtaining other
columns in the table for the row that triggered the expression. See the examples
below for more details.

The following example configuration checks the hrSWRunPerfTable table (listing
running processes) for any process that is consuming more than10 Mb of memory.
It performs this check every 600 seconds (the default). For every process it finds
exceeding the limit, it will send out exactly one notification. In addition to the
normal hrSWRunPerfMem OID and value sent in the trap, the hrSWRunName object
will also be sent. Note that the hrSWRunName object occurs in a different table, but
since the indexes to the two tables are the same, you achieve the desired result.

rouser me
monitor -u me -o sysUpTime.0 -o hrSWRunName "high process memory" \

hrSWRunPerfMem > 10000

The preceding line would produce a trap which, when formatted by snmptrapd,
would display as follows:

2002-04-05 13:33:53 localhost.localdomain [udp:127.0.0.1:32931]:
sysUpTimeInstance = Timeticks: (1629) 0:00:16.29 snmpTrapOID.0 = \
OID: mteTrigger Fired mteHotTrigger = high process memory \
mteHotTargetName = mteHotContextName = mteHotOID = \
OID: hrSWRunPerfMem.1968 mteHotValue = \

28564 hrSWRunName.1968 = "xemacs"

The preceding shows an xemacs process using 28 Mb of resident memory.

defaultMonitors yes
By default, the agent and the DISMAN-EVENT-MIB support are not functional until
configured. A typical use of the agent to watch several tables within the
UCD-SNMP-MIB that are designed specifically for reporting problems. If the
defaultMonitors yes line is put into the snmpd.conf file, accompanied by an
appropriate agentSecName line and an rouser line, the following monitoring
conditions will be installed:

monitor -o prNames -o prErrMessage "process table" prErrorFlag != 0
monitor -o memErrorName -o memSwapErrorMsg "memory" memSwapError != 0
monitor -o extNames -o extOutput "extTable" extResult != 0
monitor -o dskPath -o dskErrorMsg "dskTable" dskErrorFlag != 0
monitor -o laNames -o laErrMessage "laTable" laErrorFlag != 0

monitor -o fileName -o fileErrorMsg "fileTable" fileErrorFlag != 0

snmpd.conf(4)

644 man pages section 4: File Formats • Last Revised 10 Oct 2003

If you are trying to figure out aspects of the various MIB modules, including some that
you might have added yourself, the following might help you produce useful
debugging information. Read the snmpd(1M) manual page for information on the -D
flag. Then use the following configuration snmpd.conf token, combined with the -D
flag, to produce useful output:

injectHandler handler modulename

The preceding inserts new handlers into the section of the MIB tree referenced by
modulename. The types of handlers available for insertion are:

debug
Displays copious debugging information when -Dhelper:debug is passed to the
snmpd application.

read_only
Forces turning off write support for the given module.

serialize
If a module is failing to handle multiple requests properly (using the new 5.0
module API), this forces the module to receive only one request at a time.

bulk_to_next
If a module registers to handle getbulk support, but for some reason is failing to
implement it properly, this module converts all getbulk requests to getnext
requests before the final module receives it.

To figure out into which modules you can inject entities, snmpwalk the
nsModuleTable. This gives you a list of all named modules registered within the
agent.

See the example.conf file in the top level source directory for a detailed example of
how the information in this man page is used in real examples.

� /etc/sma/snmp/snmpd.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsmmgr

Interface Stability External

snmpd(1M), snmp_config(4), attributes(5)

snmpd.conf(4)

Debugging and
Other Extensibility

Notes

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

File Formats 645

snmptrapd.conf – configuration file for the Net-SNMP trap daemon

snmptrapd.conf

The snmptrapd.conf file is the configuration file that defines how the Net-SNMP
trap-receiving daemon (snmptrapd(1M)) operates when it receives a trap. These files
can contain any of the directives found in the Directives section, below. This file is not
required for the daemon to operate, receive, or report traps. It is used solely as a
method of providing extensibility to the trap daemon.

There can be multiple snmptrapd.conf files on a single machine.

Before creating or modifying a snmptrapd.conf file, read snmp_config(4). This
page describes how the Net-SNMP configuration files work, individually and together,
and where they are located.

traphandle OID | default program [args...]
The traphandle configuration directive configures the snmptrapd program to
launch an external program any time it receives a trap matching the OID token. If
the OID token is the word default, then any trap not matching any other trap
handler will call the default one instead. The program is fed details about the trap
to its standard input, in the following format, one entry per line:

hostname
The name of the host that sent the trap, as determined by
gethostbyaddr(3NSL).

ipaddress
The IP address of the host that sent the trap.

varbinds
A list of variable bindings that describe the trap and the variables enclosed in it.
The first token on the line, delimited by a space, is the OID. The remainder of the
line is its value. The first OID should be system.sysUpTime.0. The second
should be the ...snmpTrap.snmpTrapOID.0 OID. The remaining OIDs, with
the possible exception of the last one, are the variable bindings contained within
the trap. For SNMPv1 traps, the very last OID will be the
...snmpTrap.snmpTrapEnterprise OID and its value. Essentially, SNMPv1
traps have been converted to the SNMPv2 trap PDU type by the method
described in the SNMPv1/SNMPv2/SNMPv3 coexistence document (RFC 2576).

dontRetainLogs true
Turns off the support for the NOTIFICATION-LOG-MIB and thus does not retain
logged traps. Normally, the snmptrapd program keeps a certain number of traps
in memory so that they can be retrieved by querying the nlmLogTable and
nlmLogvariableTable tables. See snmptrapd(1M) and the
NOTIFICATION-LOG-MIB for details.

createUser username (MD5|SHA) authpassphrase [DES]
See snmpd.conf(4) for a description of how to create SNMPv3 users. The process
of creating users is similar to creating users for other SNMP versions. For SNMPv3,
the configuration file name changes to snmptrapd.conf from snmpd.conf.

snmptrapd.conf(4)

NAME

SYNOPSIS

DESCRIPTION

Directives

646 man pages section 4: File Formats • Last Revised 16 Jan 2004

format1 format
The format used to print a SNMPv1 TRAP message. See snmptrapd(1M) for the
layout characters available.

format2 format
The format used to print a SNMPv2 TRAP2 or INFORM message. Note that the
SNMPv3 protocol uses SNMPv2-style TRAPs and INFORMs.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability External

snmptrapd(1M), syslog(3C), snmpd.conf(4), snmp_variables(4),
snmp_config(4), attributes(5), sma_snmp(5)

In the current release, the daemon blocks on the executing traphandle commands.
This behavior is subject to change in a future release.

snmptrapd.conf(4)

ATTRIBUTES

SEE ALSO

NOTES

File Formats 647

snmp_variables – format of specifying variable names to SNMP tools

system.sysdescr.0

Variable names for SNMP are in the format of Object Identifiers (ASN.1). There are
several methods of representation. Each variable name is given in the format of
A.B.C.D...., where A, B, C, and D are subidentifiers in one of two forms of notation.
Each subidentifier can be encoded as a decimal integer or a symbol as found in the
RFC 1066 MIB. The case of the symbols is not significant. If there is no leading period
(.) in the variable name, the name will be formed as if having been preceded with
iso.org.dod.internet.mgmt.mib. .

A period must be placed before the first variable if the user is to fully specify the
name. For example:

1.1.0
system.sysDescr.0

1.sysDescr.0

...all refer to the same variable name. Likewise:

.1.3.6.1.2.1.1.1.0

.iso.org.dod.internet.mgmt.mib.system.sysdescr.0

.1.3.6.1.2.1.1.sysdescr.0

...all refer to the same variable name.

The description of the variables in the MIB is given in the set of MIB files defined by
the MIBS environment variable (or the default list defined at compilation time) and the
MIB files in the /etc/sma/snmp/mibs directory (or the MIBDIRS environment
variable).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability External

snmpd.conf(4), attributes(5), sma_snmp(5)

RFC 1065, RFC 1066, RFC 1067, ISO IS 8824 (ASN.1)

snmp_variables(4)

NAME

SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

648 man pages section 4: File Formats • Last Revised 16 Jan 2004

sock2path – file that maps sockets to transport providers

/etc/sock2path

The socket mapping file, /etc/sock2path, is a system file that contains the
mappings between the socket(3SOCKET) call parameters and the transport provider
driver. Its format is described on the soconfig(1M) manual page.

The init(1M) utility uses the soconfig utility with the sock2path file during the
booting sequence.

EXAMPLE 1 A Sample sock2path File

The following is a sample sock2path file:

Family Type Protocol Path
2 2 0 /dev/tcp
2 2 6 /dev/tcp

26 2 0 /dev/tcp6
26 2 6 /dev/tcp6

2 1 0 /dev/udp
2 1 17 /dev/udp

26 1 0 /dev/udp6
26 1 17 /dev/udp6

1 2 0 /dev/ticotsord
1 6 0 /dev/ticotsord
1 1 0 /dev/ticlts

2 4 0 /dev/rawip
26 4 0 /dev/rawip6

24 4 0 /dev/rts

27 4 2 /dev/keysock

soconfig(1M), socket(3SOCKET)

Network Interfaces Programmer’s Guide

sock2path(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

File Formats 649

space – disk space requirement file

space is an ASCII file that gives information about disk space requirements for the
target environment. The space file defines space needed beyond what is used by
objects defined in the prototype(4) file; for example, files which will be installed
with the installf(1M) command. The space file should define the maximum
amount of additional space that a package will require.

The generic format of a line in this file is:

pathname blocks inodes

Definitions for the fields are as follows:

pathname Specify a directory name which may or may not be the mount
point for a filesystem. Names that do not begin with a slash (’/’)
indicate relocatable directories.

blocks Define the number of disk blocks required for installation of the
files and directory entries contained in the pathname (using a
512-byte block size).

inodes Define the number of inodes required for installation of the files
and directory entries contained in the pathname.

EXAMPLE 1 A sample file.

extra space required by config data which is
dynamically loaded onto the system

data 500 1

installf(1M), prototype(4)

Application Packaging Developer’s Guide

space(4)

NAME

DESCRIPTION

EXAMPLES

SEE ALSO

650 man pages section 4: File Formats • Last Revised 7 Feb 1997

ssh_config – ssh configuration file

/etc/ssh/ssh_config

$HOME/.ssh/config

The first ssh_config path, above, provides the system-wide defaults for ssh(1). The
second version is user-specific defaults for ssh.

ssh obtains configuration data from the following sources (in this order): command
line options, user’s configuration file ($HOME/.ssh/config), and system-wide
configuration file (/etc/ssh/ssh_config). For each parameter, the first obtained
value will be used. The configuration files contain sections bracketed by Host
specifications, and that section is applied only for hosts that match one of the patterns
given in the specification. The matched host name is the one given on the command
line.

Since the first obtained value for each parameter is used, host-specific declarations
should be given near the beginning of the file, and general defaults at the end.

For each parameter, the first obtained value will be used. The configuration files
contain sections bracketed by "Host" specifications. A given section is applied only for
hosts that match one of the patterns given in the specification. The matched host name
is the one given on the command line.

Because the first obtained value for each parameter is used, more host-specific
declarations should be given near the beginning of the file and general defaults at the
end.

The configuration file has the following format and syntax:

� Empty lines and lines starting with # are comments.

� Non-commented lines are of the form:

keyword arguments

� Configuration options can be separated by whitespace or optional whitespace and
exactly one equal sign. The latter format allows you to avoid the need to quote
whitespace when specifying configuration options using the -o option to ssh,
scp, and sftp.

The possible keywords and their meanings are listed below. Note that keywords are
case-insensitive and arguments are case-sensitive.

Host
Restricts the following declarations (up to the next Host keyword) to be only for
those hosts that match one of the patterns given after the keyword. An asterisk (*)
and a question mark (?) can be used as wildcards in the patterns. A single asterisk
as a pattern can be used to provide global defaults for all hosts. The host is the host
name argument given on the command line (that is, the name is not converted to a
canonicalized host name before matching).

ssh_config(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 651

BatchMode
The argument must be yes or no. If set to yes, passphrase/password querying
will be disabled. This option is useful in scripts and other batch jobs where you
have no user to supply the password.

BindAddress
Specify the interface to transmit from on machines with multiple interfaces or
aliased addresses. Note that this option does not work if UsePrivilegedPort is
set to yes.

CheckHostIP
If this flag is set to yes, ssh will additionally check the host IP address in the
known_hosts file. This allows ssh to detect if a host key changed due to DNS
spoofing. If the option is set to no, the check will not be executed.

Cipher
Specifies the cipher to use for encrypting the session in protocol version 1;
blowfish and 3des are the only valid values.

Ciphers
Specifies the ciphers allowed for protocol version 2 in order of preference. Multiple
ciphers must be comma-separated. The default is:

aes128-ctr,aes128-cbc,arcfour,3des-cbc,blowfish-cbc

ClearAllForwardings
Specifies that all local, remote, and dynamic port forwardings specified in the
configuration files or on the command line be cleared. This option is primarily
useful when used from the ssh command line to clear port forwardings set in
configuration files and is automatically set by scp(1) and sftp(1). The argument
must be yes or no. The default is no.

Compression
Specifies whether to use compression. The argument must be yes or no. Defaults to
no.

CompressionLevel
Specifies the compression level to use if compression is enabled. The argument
must be an integer from 1 (fast) to 9 (slow, best). The default level is 6, which is
good for most applications. kNote that this option applies to protocol version 1
only.

ConnectionAttempts
Specifies the number of tries (one per second) to make before falling back to rsh or
exiting. The argument must be an integer. This can be useful in scripts if the
connection sometimes fails. The default is 1.

DynamicForward
Specifies that a TCP/IP port on the local machine be forwarded over the secure
channel. The application protocol is then used to determine where to connect to
from the remote machine. The argument must be a port number. Currently the
SOCKS4 protocol is supported, and ssh will act as a SOCKS4 server. Multiple
forwardings can be specified and additional forwardings can be specified on the
command line. Only the superuser can forward privileged ports.

ssh_config(4)

652 man pages section 4: File Formats • Last Revised 31 Jul 2004

EscapeChar
Sets the escape character. The default is tilde (~). The escape character can also be
set on the command line. The argument should be a single character, ^, followed by
a letter, or none to disable the escape character entirely (making the connection
transparent for binary data).

FallBackToRsh
Specifies that if connecting with ssh fails due to a connection refused error (there is
no sshd(8) listening on the remote host), rsh(1) should automatically be used
instead (after a suitable warning about the session being unencrypted). The
argument must be yes or no.

ForwardAgent
Specifies whether the connection to the authentication agent (if any) will be
forwarded to the remote machine. The argument must be yes or no. The default is
no.

Agent forwarding should be enabled with caution. Users with the ability to bypass
file permissions on the remote host (for the agent’s Unix-domain socket) can access
the local agent through the forwarded connection. An attacker cannot obtain key
material from the agent, however he can perform operations on the keys that
enable him to authenticate using the identities loaded into the agent.

ForwardX11
Specifies whether X11 connections will be automatically redirected over the secure
channel and DISPLAY set. The argument must be yes or no. The default is no.

X11 forwarding should be enabled with caution. Users with the ability to bypass
file permissions on the remote host (for the user’s X authorization database) can
access the local X11 display through the forwarded connection. An attacker might
then be able to perform activities such as keystroke monitoring.

GatewayPorts
Specifies whether remote hosts are allowed to connect to local forwarded ports. By
default, ssh binds local port forwardings to the loopback address. This prevents
other remote hosts from connecting to forwarded ports. GatewayPorts can be
used to specify that ssh should bind local port forwardings to the wildcard
address, thus allowing remote hosts to connect to forwarded ports. The argument
must be yes or no. The default is no.

GlobalKnownHostsFile
Specifies a file to use instead of /etc/ssh/ssh_known_hosts.

GSSAPIAuthentication
Enables/disables GSS-API user authentication. The default is yes.

GSSAPIKeyExchange
Enables/disables GSS-API-authenticated key exchanges. The default is yes.

This option is intended primarily to allow users to disable the use of GSS-API key
exchange for SSHv2 when it would otherwise be selected and then fail (due to
server misconfiguration, for example). SSHv2 key exchange failure always results
in disconnection.

ssh_config(4)

File Formats 653

This option also enables the use of the GSS-API to authenticate the user to the
server after the key exchange. Note that GSS-API key exchange can succeed but the
subsequent authentication using the GSS-API fail if the server does not authorize
the user’s GSS principal name to the target user account.

GSSAPIDelegateCredentials
Enables/disables GSS-API credential forwarding. The default is no.

GSSAPIStoreDelegatedCredentials
Controls whether sshd(1M) stores any GSS-API credentials delegated by clients.

HostbasedAuthentication
Specifies whether to try rhosts-based authentication with public key
authentication. The argument must be yes or no. The default is no. This option
applies to protocol version 2 only and is similar to RhostsRSAAuthentication.

HostKeyAlgorithms
Specifies the protocol version 2 host key algorithms that the client wants to use in
order of preference. The default for this option is: ssh-rsa,ssh-dss.

HostKeyAlias
Specifies an alias that should be used instead of the real host name when looking
up or saving the host key in the host key database files. This option is useful for
tunneling ssh connections or for multiple servers running on a single host.

HostName
Specifies the real host name to log into. This can be used to specify nicknames or
abbreviations for hosts. Default is the name given on the command line. Numeric
IP addresses are also permitted (both on the command line and in HostName
specifications).

IdentityFile
Specifies a file from which the user’s RSA or DSA authentication identity is read.
The default is $HOME/.ssh/identity for protocol version 1 and
$HOME/.ssh/id_rsa and $HOME/.ssh/id_dsa for protocol version 2.
Additionally, any identities represented by the authentication agent will be used for
authentication. The file name can use the tilde syntax to refer to a user’s home
directory. It is possible to have multiple identity files specified in configuration files;
all these identities will be tried in sequence.

KeepAlive
Specifies whether the system should send TCP keepalive messages to the other
side. If they are sent, death of the connection or crash of one of the machines will be
properly noticed. However, this means that connections die if the route is down
temporarily, which can be a source of annoyance.

The default is yes (to send keepalives), which means the client notices if the
network goes down or the remote host dies. This is important in scripts, and many
users want it too. To disable keepalives, the value should be set to no in both the
server and the client configuration files.

ssh_config(4)

654 man pages section 4: File Formats • Last Revised 31 Jul 2004

LocalForward
Specifies that a TCP/IP port on the local machine be forwarded over the secure
channel to a given host:port from the remote machine. The first argument must be a
port number, and the second must be host:port. IPv6 addresses can be specified with
an alternative syntax: host/port. Multiple forwardings can be specified and
additional forwardings can be given on the command line. Only the superuser can
forward privileged ports.

LogLevel
Gives the verbosity level that is used when logging messages from ssh. The
possible values are: FATAL, ERROR, INFO, VERBOSE, DEBUG, DEBUG1, DEBUG2, and
DEBUG3. The default is INFO. DEBUG and DEBUG1 are equivalent. DEBUG2 and
DEBUG3 each specify higher levels of verbose output.

MACs
Specifies the MAC (message authentication code) algorithms in order of preference.
The MAC algorithm is used in protocol version 2 for data integrity protection.
Multiple algorithms must be comma-separated. The default is
hmac-md5,hmac-sha1,hmac-sha1-96,hmac-md5-96.

NoHostAuthenticationForLocalhost
This option can be used if the home directory is shared across machines. In this case
localhost will refer to a different machine on each of the machines and the user
will get many warnings about changed host keys. However, this option disables
host authentication for localhost. The argument to this keyword must be yes or
no. The default is to check the host key for localhost.

NumberOfPasswordPrompts
Specifies the number of password prompts before giving up. The argument to this
keyword must be an integer. The default is 3.

PasswordAuthentication
Specifies whether to use password authentication. The argument to this keyword
must be yes or no. Note that this option applies to both protocol versions 1 and 2.
The default is yes.

Port
Specifies the port number to connect on the remote host. The default is 22.

Protocol
Specifies the protocol versions ssh should support in order of preference. The
possible values are 1 and 2. Multiple versions must be comma-separated. The
default is 1,2. This means that ssh tries version 1 and falls back to version 2 if
version 1 is not available.

PreferredAuthentications
Specifies the order in which the client should try protocol 2 authentication methods.
This allows a client to prefer one method (for example, keyboard-interactive)
over another method (for example, password). The default for this option is:
hostbased,publickey,keyboard-interactive,password.

ssh_config(4)

File Formats 655

ProxyCommand
Specifies the command to use to connect to the server. The command string extends
to the end of the line, and is executed with /bin/sh. In the command string, %h is
substituted by the host name to connect and %p by the port. The string can be any
valid command, and should read from its standard input and write to its standard
output. It should eventually connect an sshd(1M) server running on some
machine, or execute sshd -i somewhere. Host key management will be done
using the HostName of the host being connected (defaulting to the name typed by
the user). Note that CheckHostIP is not available for connects with a proxy
command.

PubkeyAuthentication
Specifies whether to try public key authentication. The argument to this keyword
must be yes or no. The default is yes. This option applies to protocol version 2
only.

RemoteForward
Specifies that a TCP/IP port on the remote machine be forwarded over the secure
channel to a given host:port from the local machine. The first argument must be a
port number, and the second must be host:port. IPv6 addresses can be specified
with an alternative syntax: host/port. You can specify multiple forwardings and
give additional forwardings on the command line. Only the superuser can forward
privileged ports.

RhostsAuthentication
Specifies whether to try rhosts-based authentication. Note that this declaration
affects only the client side and has no effect whatsoever on security. Disabling
rhosts authentication can reduce authentication time on slow connections when
rhosts authentication is not used. Most servers do not permit
RhostsAuthentication because it is not secure (see
RhostsRSAAuthentication). The argument to this keyword must be yes or no.
This option applies only to the protocol version 1 and requires that ssh be setuid
root and that UsePrivilegedPort be set to yes.

RhostsRSAAuthentication
Specifies whether to try rhosts-based authentication with RSA host
authentication. This is the primary authentication method for most sites. The
argument must be yes or no. This option applies only to the protocol version 1 and
requires that ssh be setuid root and that UsePrivilegedPort be set to yes.

StrictHostKeyChecking
If this flag is set to yes, ssh will never automatically add host keys to the
$HOME/.ssh/known_hosts file, and will refuse to connect hosts whose host key
has changed. This provides maximum protection against trojan horse attacks.
However, it can be a source of inconvenience if you do not have good
/etc/ssh/ssh_known_hosts files installed and frequently connect new hosts.
This option forces the user to manually add any new hosts. Normally this option is
disabled, and new hosts will automatically be added to the known host files. The
host keys of known hosts will be verified automatically in either case. The
argument must be yes or no or ask. The default is ask.

ssh_config(4)

656 man pages section 4: File Formats • Last Revised 31 Jul 2004

UsePrivilegedPort
Specifies whether to use a privileged port for outgoing connections. The argument
must be yes or no. The default is yes. Note that setting this option to no turns off
RhostsAuthentication and RhostsRSAAuthentication. If set to yes ssh
must be setuid root. Defaults to no.

User
Specifies the user to log in as. This can be useful if you have different user names on
different machines. This saves you the trouble of having to remember to enter the
user name on the command line.

UserKnownHostsFile
Specifies a file to use instead of $HOME/.ssh/known_hosts.

UseRsh
Specifies that rlogin or rsh should be used for this host. It is possible that the
host does not support the ssh protocol. This causes ssh to immediately execute
rsh(1). All other options (except HostName) are ignored if this has been specified.
The argument must be yes or no.

XAuthLocation
Specifies the location of the xauth(1) program. The default is
/usr/openwin/bin/xauth.

ssh(1), ssh-http–proxy-connect(1), ssh-socks5–proxy-connect(1),
sshd(1M), sshd_config(4), SEAM(5)

ssh_config(4)

SEE ALSO

File Formats 657

sshd_config – sshd configuration file

/etc/ssh/sshd_config

The sshd(1M) daemon reads configuration data from /etc/ssh/sshd_config (or
the file specified with sshd -f on the command line). The file contains keyword-value
pairs, one per line. A line starting with a hash mark (#) and empty lines are
interpreted as comments.

The sshd_config file supports the keywords listed below. Unless otherwise noted,
keywords and their arguments are case-insensitive.

AllowGroups
This keyword can be followed by a number of group names, separated by spaces. If
specified, login is allowed only for users whose primary group matches one of the
patterns. Asterisk (*) and question mark (?) can be used as wildcards in the
patterns. Only group names are valid; a numerical group ID is not recognized. By
default, login is allowed regardless of the primary group.

AllowTcpForwarding
Specifies whether TCP forwarding is permitted. The default is yes. Note that
disabling TCP forwarding does not improve security unless users are also denied
shell access, as they can always install their own forwarders.

AllowUsers
This keyword can be followed by a number of user names, separated by spaces. If
specified, login is allowed only for user names that match one of the patterns.
Asterisk (*) and question mark (?) can be used as wildcards in the patterns. Only
user names are valid; a numerical user ID is not recognized. By default login is
allowed regardless of the user name.

If a specified pattern takes the form user@host then user and host are checked
separately, restricting logins to particular users from particular hosts.

AuthorizedKeysFile
Specifies the file that contains the public keys that can be used for user
authentication. AuthorizedKeysFile can contain tokens of the form %T, which
are substituted during connection set-up. The following tokens are defined: %% is
replaced by a literal %, %h is replaced by the home directory of the user being
authenticated and %u is replaced by the username of that user. After expansion,
AuthorizedKeysFile is taken to be an absolute path or one relative to the user’s
home directory. The default is .ssh/authorized_keys.

Banner
In some jurisdictions, sending a warning message before authentication can be
relevant for getting legal protection. The contents of the specified file are sent to the
remote user before authentication is allowed. This option is only available for
protocol version 2. By default, no banner is displayed.

Ciphers
Specifies the ciphers allowed for protocol version 2. Multiple ciphers must be
comma-separated. The default is
aes128-ctr,aes128-cbc,arcfour,3des-cbc,blowfish-cbc.

sshd_config(4)

NAME

SYNOPSIS

DESCRIPTION

658 man pages section 4: File Formats • Last Revised 11 Aug 2004

ClientAliveInterval
Sets a timeout interval in seconds after which, if no data has been received from the
client, sshd sends a message through the encrypted channel to request a response
from the client. The default is 0, indicating that these messages will not be sent to
the client. This option applies only to protocol version 2.

ClientAliveCountMax
Sets the number of client alive messages (see ClientAliveInterval, above) that
can be sent without sshd receiving any messages back from the client. If this
threshold is reached while client alive messages are being sent, sshd will
disconnect the client, terminating the session. It is important to note that the use of
client alive messages is very different from KeepAlive (see below). The client alive
messages are sent through the encrypted channel and therefore will not be
spoofable. The TCP keepalive option enabled by KeepAlive is spoofable. The
client alive mechanism is valuable when a client or server depend on knowing
when a connection has become inactive.

The default value is 3. If ClientAliveInterval (above) is set to 15, and
ClientAliveCountMax is left at the default, unresponsive ssh clients will be
disconnected after approximately 45 seconds.

Compression
Controls whether the server allows the client to negotiate the use of compression.
The default is yes.

DenyGroups
Can be followed by a number of group names, separated by spaces. Users whose
primary group matches one of the patterns are not allowed to log in. Asterisk (*)
and question mark (?) can be used as wildcards in the patterns. Only group names
are valid; a numerical group ID is not recognized. By default, login is allowed
regardless of the primary group.

DenyUsers
Can be followed by a number of user names, separated by spaces. Login is
disallowed for user names that match one of the patterns. Asterisk (*) and question
mark (?) can be used as wildcards in the patterns. Only user names are valid; a
numerical user ID is not recognized. By default, login is allowed regardless of the
user name.

If a specified pattern takes the form user@host then user and host are checked
separately, disallowing logins to particular users from particular hosts.

GatewayPorts
Specifies whether remote hosts are allowed to connect to ports forwarded for the
client. By default, sshd binds remote port forwardings to the loopback address.
This prevents other remote hosts from connecting to forwarded ports.
GatewayPorts can be used to specify that sshd should bind remote port
forwardings to the wildcard address, thus allowing remote hosts to connect to
forwarded ports. The argument must be yes or no. The default is no.

GSSAPIAuthentication
Enables/disables GSS-API user authentication. The default is yes.

sshd_config(4)

File Formats 659

Currently sshd authorizes client user principals to user accounts as follows: if the
principal name matches the requested user account, then the principal is
authorized. Otherwise, GSS-API authentication fails.

GSSAPIKeyExchange
Enables/disables GSS-API-authenticated key exchanges. The default is yes.

This option also enables the use of the GSS-API to authenticate the user to server
after the key exchange. Note that GSS-API key exchange can succeed but the
subsequent authentication using the GSS-API fail if the server does not authorize
the user’s GSS principal name to the target user account.

Currently sshd authorizes client user principals to user accounts as follows: if the
principal name matches the requested user account, then the principal is
authorized. Otherwise, GSS-API authentication fails.

GSSAPIStoreDelegatedCredentials
Enables/disables the use of delegated GSS-API credentials on the server-side. The
default is yes.

Specifically, this option, when enabled, causes the server to store delegated
GSS-API credentials in the user’s default GSS-API credential store (which for the
Kerberos V mechanism means /tmp/krb5cc_<uid>).

Note – sshd does not take any steps to explicitly destroy stored delegated GSS-API
credentials upon logout. It is the responsibility of PAM modules to destroy
credentials associated with a session.

HostbasedAuthentication
Specifies whether to try rhosts-based authentication with public key
authentication. The argument must be yes or no. The default is no. This option
applies to protocol version 2 only and is similar to RhostsRSAAuthentication.
See sshd(1M) for guidelines on setting up host-based authentication.

HostbasedUsesNameFromPacketOnly
Controls which hostname is searched for in the files ~/.shosts,
/etc/shosts.equiv, and /etc/hosts.equiv. If this parameter is set to yes,
the server uses the name the client claimed for itself and signed with that host’s
key. If set to no, the default, the server uses the name to which the client’s IP
address resolves.

Setting this parameter to no disables host-based authentication when using NAT or
when the client gets to the server indirectly through a port-forwarding firewall.

HostKey
Specifies the file containing the private host key used by SSH. The default is
/etc/ssh/ssh_host_key for protocol version 1, and
/etc/ssh/ssh_host_rsa_key and /etc/ssh/ssh_host_dsa_key for
protocol version 2. Note that sshd will refuse to use a file if it is
group/world-accessible. It is possible to have multiple host key files. rsa1 keys are
used for version 1 and dsa or rsa are used for version 2 of the SSH protocol.

sshd_config(4)

660 man pages section 4: File Formats • Last Revised 11 Aug 2004

IgnoreRhosts
Specifies that .rhosts and .shosts files will not be used in authentication.
/etc/hosts.equiv and /etc/shosts.equiv are still used. The default is yes.
This parameter applies to both protocol versions 1 and 2.

IgnoreUserKnownHosts
Specifies whether sshd should ignore the user’s $HOME/.ssh/known_hosts
during RhostsRSAAuthentication. The default is no. This parameter applies to
both protocol versions 1 and 2.

KbdInteractiveAuthentication
Specifies whether authentication by means of the "keyboard-interactive"
authentication method (and PAM) is allowed. Defaults to yes. (Deprecated: this
parameter can only be set to yes.)

KeepAlive
Specifies whether the system should send keepalive messages to the other side. If
they are sent, death of the connection or crash of one of the machines will be
properly noticed. However, this means that connections will die if the route is
down temporarily, which can be an annoyance. On the other hand, if keepalives are
not sent, sessions can hang indefinitely on the server, leaving “ghost” users and
consuming server resources.

The default is yes (to send keepalives), and the server will notice if the network
goes down or the client host reboots. This avoids infinitely hanging sessions.

To disable keepalives, the value should be set to no in both the server and the client
configuration files.

KeyRegenerationInterval
In protocol version 1, the ephemeral server key is automatically regenerated after
this many seconds (if it has been used). The purpose of regeneration is to prevent
decrypting captured sessions by later breaking into the machine and stealing the
keys. The key is never stored anywhere. If the value is 0, the key is never
regenerated. The default is 3600 (seconds).

ListenAddress
Specifies what local address sshd should listen on. The following forms can be
used:

ListenAddress host|IPv4_addr|IPv6_addr
ListenAddress host|IPv4_addr:port
ListenAddress [host|IPv6_addr]:port

If port is not specified, sshd will listen on the address and all prior Port options
specified. The default is to listen on all local addresses. Multiple ListenAddress
options are permitted. Additionally, any Port options must precede this option for
non-port qualified addresses.

The default is to listen on all local addresses. Multiple options of this type are
permitted. Additionally, the Ports options must precede this option.

sshd_config(4)

File Formats 661

LoginGraceTime
The server disconnects after this time (in seconds) if the user has not successfully
logged in. If the value is 0, there is no time limit. The default is 120 (seconds).

LogLevel
Gives the verbosity level that is used when logging messages from sshd. The
possible values are: QUIET, FATAL, ERROR, INFO, VERBOSE, DEBUG, DEBUG1,
DEBUG2, and DEBUG3. The default is INFO. DEBUG2 and DEBUG3 each specify
higher levels of debugging output. Logging with level DEBUG violates the privacy
of users and is not recommended.

LookupClientHostnames
Specifies whether or not to lookup the names of client’s addresses. Defaults to yes.

MACs
Specifies the available MAC (message authentication code) algorithms. The MAC
algorithm is used in protocol version 2 for data integrity protection. Multiple
algorithms must be comma-separated. The default is
hmac-md5,hmac-sha1,hmac-sha1-96,hmac-md5-96.

MaxStartups
Specifies the maximum number of concurrent unauthenticated connections to the
sshd daemon. Additional connections will be dropped until authentication
succeeds or the LoginGraceTime expires for a connection. The default is 10.

Alternatively, random early drop can be enabled by specifying the three
colon-separated values start:rate:full (for example, 10:30:60). Referring to this
example, sshd will refuse connection attempts with a probability of rate/100 (30%
in our example) if there are currently 10 (from the start field) unauthenticated
connections. The probabillity increases linearly and all connection attempts are
refused if the number of unauthenticated connections reaches full (60 in our
example).

PasswordAuthentication
Specifies whether password authentication is allowed. The default is yes. Note that
this option applies to both protocol versions 1 and 2.

PamSvcForNone
Name of PAM service to use during none user authentication. Defaults to sshd.

PamSvcForPassword
Name of PAM service to use during password user authentication. Defaults to
sshd.

PamSvcForKbdInt
Name of PAM service to use during "keyboard-interactive" user authentication.
Defaults to sshd.

PamSvcForOther
Name of PAM service to use during any user authentication type other than "none,"
"password," and "keyboard-interactive." Defaults to sshd.

sshd_config(4)

662 man pages section 4: File Formats • Last Revised 11 Aug 2004

PermitEmptyPasswords
When password authentication is allowed, it specifies whether the server allows
login to accounts with empty password strings. In /etc/default/login, if
PASSREQ is not set, or PASSREQ=YES, then the default is no; if PASSREQ=NO, then
the default is yes.

PermitRootLogin
Specifies whether the root can log in using ssh(1). The argument must be yes,
without-password, forced-commands-only, or no. The default is yes.
without-password means that root cannot be authenticated using the
"password" or "keyboard-interactive" methods (see description of
KbdInteractiveAuthentication above). forced-commands-only means
that authentication is allowed only for "publickey" (for SSHv2, or "RSA", for SSHv1)
and only if the matching authorized_keys entry for root has a
"command=<cmd>" option.

The without-password and forced-commands-only settings are useful for,
for example, performing remote administration and backups using trusted public
keys for authentication of the remote client, without allowing access to the root
account using passwords.

PermitUserEnvironment
Specifies whether ~/.ssh/environment and environment= options in
~/.ssh/authorized_keys are processed by sshd. The default is no. Enabling
environment processing can enable users to bypass access restrictions in some
configurations using mechanisms such as LD_PRELOAD.

PidFile
Allows you to specify an alternative to /var/run/sshd.pid, the default file for
storing the PID of the sshd listening for connections. See sshd(1M).

Port
Specifies the port number that sshd listens on. The default is 22. Multiple options
of this type are permitted. See also ListenAddress.

PrintLastLog
Specifies whether sshd should display the date and time when the user last logged
in. The default is yes.

PrintMotd
Specifies whether sshd should display the contents of /etc/motd when a user
logs in interactively. (On some systems it is also displayed by the shell or a shell
startup file, such as /etc/profile.) The default is yes.

Protocol
Specifies the protocol versions sshd should support. The possible values are 1 and
2. Multiple versions must be comma-separated. The default is 1.

PubkeyAuthentication
Specifies whether public key authentication is allowed. The default is yes. Note
that this option applies to protocol version 2 only.

sshd_config(4)

File Formats 663

RhostsAuthentication
Specifies whether authentication using rhosts or /etc/hosts.equiv files is
sufficient. Normally, this method should not be permitted because it is insecure.
RhostsRSAAuthentication should be used instead, because it performs
RSA-based host authentication in addition to normal rhosts or
/etc/hosts.equiv authentication. The default is no. Note that this parameter
applies only to protocol version 1.

RhostsRSAAuthentication
Specifies whether rhosts or /etc/hosts.equiv authentication together with
successful RSA host authentication is allowed. The default is no. Note that this
parameter applies only to protocol version 1.

RSAAuthentication
Specifies whether pure RSA authentication is allowed. The default is yes. Note that
this option applies to protocol version 1 only.

ServerKeyBits
Defines the number of bits in the the ephemeral protocol version 1 server key. The
minimum value is 512, and the default is 768.

StrictModes
Specifies whether sshd should check file modes and ownership of the user’s files
and home directory before accepting login. This is normally desirable because
novices sometimes accidentally leave their directory or files world-writable. The
default is yes.

Subsystem
Configures an external subsystem (for example, a file transfer daemon). Arguments
should be a subsystem name and a command to execute upon subsystem request.
The command sftp-server(1M) implements the sftp file transfer subsystem. By
default, no subsystems are defined. Note that this option applies to protocol version
2 only.

SyslogFacility
Gives the facility code that is used when logging messages from sshd. The possible
values are: DAEMON, USER, AUTH, LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4,
LOCAL5, LOCAL6, and LOCAL7. The default is AUTH.

VerifyReverseMapping
Specifies whether sshd should try to verify the remote host name and check that
the resolved host name for the remote IP address maps back to the very same IP
address. (A yes setting means “verify”.) Setting this parameter to no can be useful
where DNS servers might be down and thus cause sshd to spend much time trying
to resolve the client’s IP address to a name. This feature is useful for Internet-facing
servers. The default is no.

X11DisplayOffset
Specifies the first display number available for sshd’s X11 forwarding. This
prevents sshd from interfering with real X11 servers. The default is 10.

sshd_config(4)

664 man pages section 4: File Formats • Last Revised 11 Aug 2004

X11Forwarding
Specifies whether X11 forwarding is permitted. The default is yes. Note that
disabling X11 forwarding does not improve security in any way, as users can
always install their own forwarders.

When X11 forwarding is enabled, there can be additional exposure to the server and
to client displays if the sshd proxy display is configured to listen on the wildcard
address (see X11UseLocalhost below). However, this is not the default.
Additionally, the authentication spoofing and authentication data verification and
substitution occur on the client side. The security risk of using X11 forwarding is
that the client’s X11 display server can be exposed to attack when the ssh client
requests forwarding (see the warnings for ForwardX11 in ssh_config(4)). A
system administrator who wants to protect clients that expose themselves to attack
by unwittingly requesting X11 forwarding, should specify a ‘‘no’’ setting.

Note that disabling X11 forwarding does not prevent users from forwarding X11
traffic, as users can always install their own forwarders.

X11UseLocalhost
Specifies whether sshd should bind the X11 forwarding server to the loopback
address or to the wildcard address. By default, sshd binds the forwarding server to
the loopback address and sets the hostname part of the DISPLAY environment
variable to ‘‘localhost’’. This prevents remote hosts from connecting to the proxy
display. However, some older X11 clients might not function with this
configuration. X11UseLocalhost can be set to no to specify that the forwarding
server should be bound to the wildcard address. The argument must be yes or no.
The default is yes.

XAuthLocation
Specifies the location of the xauth(1) program. The default is
/usr/X/bin/xauth.

sshd command-line arguments and configuration file options that specify time can be
expressed using a sequence of the form: time[qualifier,] where time is a positive integer
value and qualifier is one of the following:

<none>
seconds

s | S
seconds

m | M
minutes

h | H
hours

d | D
days

w |
weeks

sshd_config(4)

Time Formats

File Formats 665

Each element of the sequence is added together to calculate the total time value. For
example:

600
600 seconds (10 minutes)

10m
10 minutes

1h30m
1 hour, 30 minutes (90 minutes)

/etc/ssh/sshd_config
Contains configuration data for sshd. This file should be writable by root only, but
it is recommended (though not necessary) that it be world-readable.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsshu

Interface Stability Evolving

login(1), sshd(1M), ssh_config(4), SEAM(5), attributes(5)

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen.
Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt, and Dug
Song removed many bugs, re-added recent features, and created OpenSSH. Markus
Friedl contributed the support for SSH protocol versions 1.5 and 2.0. Niels Provos and
Markus Friedl contributed support for privilege separation.

sshd_config(4)

FILES

ATTRIBUTES

SEE ALSO

AUTHORS

666 man pages section 4: File Formats • Last Revised 11 Aug 2004

sulog – su command log file

/var/adm/sulog

The sulog file is a record of all attempts by users on the system to execute the su(1M)
command. Each time su(1M) is executed, an entry is added to the sulog file.

Each entry in the sulog file is a single line of the form:

SU date time
result port user-newuser

where

date The month and date su(1M) was executed. date is displayed in
the form mm/dd where mm is the month number and dd is the
day number in the month.

time The time su(1M) was executed. time is displayed in the form
HH/MM where HH is the hour number (24 hour system) and MM
is the minute number.

result The result of the su(1M) command. A ‘ + ’ sign is displayed in this
field if the su attempt was successful; otherwise a ‘ - ’ sign is
displayed.

port The name of the terminal device from which su(1M) was executed.

user The user id of the user executing the su(1M) command.

newuser The user id being switched to with su(1M).

EXAMPLE 1 A sample sulog file.

Here is a sample sulog file:

SU 02/25 09:29 + console root-sys
SU 02/25 09:32 + pts/3 user1-root
SU 03/02 08:03 + pts/5 user1-root
SU 03/03 08:19 + pts/5 user1-root
SU 03/09 14:24 - pts/5 guest3-root
SU 03/09 14:24 - pts/5 guest3-root
SU 03/14 08:31 + pts/4 user1-root

/var/adm/sulog su log file

/etc/default/su contains the default location of sulog

su(1M)

sulog(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

File Formats 667

synclist – list of files to be synchronized when changing from one boot environment to
another

/etc/lu/synclist

The synclist file lists files that will be synchronized when you switch from one boot
environment (BE) to another. The file is part of the Live Upgrade feature of the Solaris
Operating Environment. See live_upgrade(5) for an overview of the Live Upgrade
software.

The synclist file consists of a list of entries, with two fields per entry. The first field
is a pathname, the second a keyword. The keyword can be one of OVERWRITE,
APPEND, or PREPEND. The meanings of these keywords is described below. synclist
accepts comments; a comment is indicated by a hash mark (#) in the first character
position on a line.

The way in which a file is updated is indicated by the keyword in the second field of
its synclist entry. All of these operations occur upon the first boot of a newly
activated BE. The keywords have the following semantics:

OVERWRITE
Overwrite the contents of a file with the contents of the file of the same name on the
previously booted BE. Both directories and files can be specified for overwriting. If
you specify a directory, every file in and beneath the listed directory is subject to
being overwritten. (Whether an individual file or directory is overwritten depends
on the outcome of the comparison of file versions, described below.) Following an
overwrite operation, a file on a new BE has the same date of creation, mode, and
ownership as the file of the same name on the previously booted BE.

APPEND
Append the contents of a file on the previously booted BE to the contents of the file
of the same name on the new BE. Use of APPEND allows for the possibility of
duplicate entries in a file. You cannot use APPEND with directories. Following an
append operation, a file on a new BE will have a different modified date and time
from the same file on the previously booted BE. The mode and ownership will be
the same between the two files.

PREPEND
Prepend the contents of a file on the previously booted BE to the contents of the file
of the same name on the new BE. Use of PREPEND allows for the possibility of
duplicate entries in a file. You cannot use PREPEND with directories. Following a
prepend operation, a file on a new BE will have a different modified date and time
from the same file on the previously booted BE. The mode and ownership will be
the same between the two files.

The second (keyword) field in a synclist entry can be empty, in which case the
OVERWRITE action is assumed.

synclist(4)

NAME

SYNOPSIS

DESCRIPTION

668 man pages section 4: File Formats • Last Revised 6 Aug 2003

In deciding when to update a file on a newly activated BE, Live Upgrade uses an
algorithm illustrated in the table below. In the table, “old” refers to a BE relinquishing
activated status; “new” refers to a newly activated BE. The “resulting state” occurs
when the new BE is first booted.

State of File

on Old BE

State of File

on New BE

Resulting State

on New BE

Unchanged Unchanged Not updated

Updated Unchanged Updated

Unchanged Updated Not updated

Updated Updated Conflict Indicated

When a file is updated on both an old and new BE, as shown in the last row of the
table above, Live Upgrade reports the conflict and allows you to resolve it.

Modify the contents of synclist with caution. Adding certain files to synclist
might render a BE unbootable. Also, be careful in using the file-inclusion and
–exclusion options in lucreate(1M) in conjunction with changes you might make in
synclist. Again, you could render a system unbootable or end up with different
results from what you expected.

Switching BEs among different Solaris Operating Environment marketing releases (for
example, from a Solaris 9 BE to a Solaris 2.6 BE) requires care. This is especially true if
you make any modifications to synclist. For example, consider that the last-active
BE contains Solaris 9 and you want to activate a BE that contains Solaris 2.6. In
synclist in the Solaris 9 BE, you have added files that are present in Solaris 9 that
are not present in Solaris 2.6 or that are no longer compatible with Solaris 2.6. If you
forced synchronization with the luactivate(1M) -s option, the BE containing
Solaris 2.6 might be synchronized with files that might not work under Solaris 2.6.

EXAMPLE 1 Updating the passwd File

Consider the following scenario:

1. You create a BE, named first.

2. You create a new BE, named second, using first as the source.

3. You add a new user to first, thereby making an addition to the passwd file in
first.

4. Using luactivate(1M), you activate second. At this point, Live Upgrade
recognizes that the passwd file has been updated in first and not in second.

5. When you boot second for the first time, Live Upgrade, directed by the keyword
OVERWRITE in synclist, copies passwd from first to second, overwriting the
contents in the latter BE.

synclist(4)

EXAMPLES

File Formats 669

EXAMPLE 1 Updating the passwd File (Continued)

The result described above obtains with any of the files associated with the
OVERWRITE keyword in synclist. If the reverse had occurred—you edited passwd
on second and left passwd in first untouched—Live Upgrade would not have
modified passwd in second when that BE was first booted.

EXAMPLE 2 Updating the /var/log/syslog File

Consider the following scenario:

1. You create a BE, named first.

2. You create a new BE, named second, using first as the source.

3. Logging occurs, adding to the contents of /var/log/syslog in first.

4. Using luactivate(1M), you activate second. At this point, Live Upgrade
recognizes that /var/log/syslog has been updated in first and not in
second.

5. When you boot second for the first time, Live Upgrade, directed by the keyword
APPEND in synclist, appends the contents of /var/log/syslog in first to
the same file in second.

The result described above obtains with any of the files associated with the APPEND
keyword in synclist. If the reverse had occurred—you changed
/var/log/syslog on second and left /var/log/syslog in first
untouched—Live Upgrade would not have modified /var/log/syslog in second
when that BE was first booted.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWluu

Interface Stability Evolving

luactivate(1M), lucreate(1M), lumake(1M), attributes(5), live_upgrade(5)

synclist(4)

ATTRIBUTES

SEE ALSO

670 man pages section 4: File Formats • Last Revised 6 Aug 2003

sysbus, isa – device tree properties for ISA bus device drivers

Solaris for x86 supports the ISA bus as the system bus. Drivers for devices on this buse
use the device tree built by the booting system to retrieve the necessary system
resources used by the driver. These resources include device I/O port addresses, any
interrupt capabilities that the device can have, any DMA channels it can require, and
any memory-mapped addresses it can occupy.

Configuration files for ISA device drivers are only necessary to describe properties
used by a particular driver that are not part of the standard properties found in the
device tree. See driver.conf(4) for further details of configuration file syntax.

The ISA nexus drivers all belong to class sysbus. All bus drivers of class sysbus
recognize the following properties:

interrupts An arbitrary-length array where each element of the array
represents a hardware interrupt (IRQ) that is used by the device. In
general, this array only has one entry unless a particular device
uses more than one IRQ.

Solaris defaults all ISA interrupts to IPL 5. This interrupt priority
can be overridden by placing an interrupt-priorities
property in a .conf file for the driver. Each entry in the array of
integers for the interrupt-priorities property is matched
one-to-one with the elements in the interrupts property to
specify the IPL value that is used by the system for this interrupt
in this driver. This is the priority that this device’s interrupt
handler receives relative to the interrupt handlers of other drivers.
The priority is an integer from 1 to 16. Generally, disks are
assigned a priority of 5, while mice and printers are lower, and
serial communication devices are higher, typically 7. 10 is
reserved by the system and must not be used. Priorities 11 and
greater are high level priorities and are generally not
recommended (see ddi_intr_hilevel(9F)).

The driver can refer to the elements of this array by index using
ddi_add_intr(9F). The index into the array is passed as the
inumber argument of ddi_add_intr().

Only devices that generate interrupts have an interrupts
property.

reg An arbitrary-length array where each element of the array consists
of a 3-tuple of integers. Each array element describes a contiguous
memory address range associated with the device on the bus.

The first integer of the tuple specifies the memory type, 0 specifies
a memory range and 1 specifies an I/O range. The second integer
specifies the base address of the memory range. The third integer
of each 3-tuple specifies the size, in bytes, of the mappable region.

sysbus(4)

NAME

DESCRIPTION

File Formats 671

The driver can refer to the elements of this array by index, and
construct kernel mappings to these addresses using
ddi_map_regs(9F). The index into the array is passed as the
rnumber argument of ddi_map_regs().

All sysbus devices have reg properties. The first tuple of this
property is used to construct the address part of the device name
under /devices. In the case of Plug and Play ISA devices, the
first tuple is a special tuple that does not denote a memory range,
but is used by the system only to create the address part of the
device name. This special tuple can be recognized by determining
if the top bit of the first integer is set to a one.

The order of the tuples in the reg property is determined by the
boot system probe code and depends on the characteristics of each
particular device. However, the reg property maintains the same
order of entries from system boot to system boot. The
recommended way to determine the reg property for a particular
device is to use the prtconf(1M) command after installing the
particular device. The output of the prtconf command can be
examined to determine the reg property for any installed device.

You can use the ddi_get* and ddi_put* family of functions to
access register space from a high-level interrupt context.

dma-channels A list of integers that specifies the DMA channels used by this
device. Only devices that use DMA channels have a
dma-channels property.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Architecture x86

prtconf(1M), driver.conf(4), scsi(4), attributes(5), ddi_add_intr(9F),
ddi_intr_hilevel(9F), ddi_map_regs(9F), ddi_prop_op(9F)

Writing Device Drivers

sysbus(4)

ATTRIBUTES

SEE ALSO

672 man pages section 4: File Formats • Last Revised 18 Nov 2004

sysidcfg – system identification configuration file

When a diskless client boots for the first time or a system installs over the network, the
booting software tries to obtain configuration information about the system, such as
the system’s root password or name service, from, first, a sysidcfg file and then the
name service databases. If the booting software cannot find the information, it
prompts the user for it. Like the name service databases, the sysidcfg file can be
used to avoid the user prompts and provide a totally hands-off booting process.

The sysidcfg file preconfigures information through a set of keywords. You can
specify one or more of the keywords to preconfigure as much information as you
want. Each set of systems (one or more) that has unique configuration information
must have its own sysidcfg file. For example, you can use the same sysidcfg file
to preconfigure the time zone for multiple systems if you want all the systems to have
the same time zone configured. However, if you want to preconfigure a different root
password for each of those systems, then each system would need its own sysidcfg
file.

The sysidcfg file can reside on a shared NFS network directory or the root directory
on a UFS or PCFS diskette in the system’s diskette drive. If you put the sysidcfg file
on a shared NFS network directory, you have to use the -p option of the
add_install_client(1M) command (see install_scripts(1M)) to specify
where the system being installed can find the sysidcfg file. If you put the sysidcfg
file on a diskette, you need to make sure the diskette is in the system’s diskette drive
when the system boots (on x86 systems, the sysidcfg file should reside on the
Solaris Device Configuration Assistant diskette).

Only one sysidcfg file can reside in a directory or diskette. If you are creating more
than one sysidcfg file, they must reside in different directories or diskettes.

The following rules apply to the keywords in a sysidcfg file:

� Keywords can be in any order
� Keywords are not case-sensitive
� Keyword values can be optionally enclosed in single (’) or double (") quotes
� Only the first instance of a keyword is valid; if you specify the same keyword more

than once, the first keyword specified will be used. The network_interface keyword
is exempt from this rule.

The following keywords apply to both SPARC and x86 platforms.

Name Service, Domain Name, Name Server

Naming-related keywords are as follows:

name_service=NIS,NIS+,LDAP,DNS,NONE

For the NIS and NIS+ keywords, the options are:

domain_name=domain_name
name_server=hostname(ip_address)

sysidcfg(4)

NAME

DESCRIPTION

Where To Put the
sysidcfg File

Keyword Syntax
Rules

Keywords – All
Platforms

File Formats 673

The following is an example NIS entry:

name_service=NIS

{domain_name=west.arp.com name_server=timber(172.16.2.1)}

For NIS+, the example is identical to the one above, except for the replacement of the
keyword NIS by NIS+.

For DNS, the syntax is:

domain_name=domain_name; name_server=ip_address, ... ;

search=domain_name, ...

You can have a maximum of three IP addresses and six domain names. The total
length of a search entry cannot exceed 250 characters. The following is an example
DNS entry:

name_service=DNS
{domain_name=west.arp.com
name_server=10.0.1.10,10.0.1.20

search=arp.com,east.arp.com}

For LDAP, the syntax is:

domain_name=domain_name;
profile=profile_name;
profile_server=ip_address;
proxy_dn="proxy_bind_dn";

proxy_password=password

The proxy_dn and proxy_password keywords are optional. If proxy_dn is used,
the value must be enclosed in double quotes.

The following is an example LDAP entry:

name_service=LDAP
{domain_name=west.arp.com
profile=default
profile_server=172.16.2.1
proxy_dn="cn=proxyagent,ou=profile,dc=west,dc=arp,dc=com"

proxy_password=password}

Choose only one value for name_service. Include either, both, or neither of the
domain_name and name_server keywords, as needed. If no keywords are used,
omit the curly braces.

Network Interface, Hostname, IP address, Netmask, DHCP, Default Route

Network-related keywords are as follows:

network_interface=NONE, PRIMARY, value

where value is a name of a network interface, for example, eri0 or hme0.

For the NONE keyword, the options are:

hostname=hostname

sysidcfg(4)

674 man pages section 4: File Formats • Last Revised 12 Nov 2003

For example,

network_interface=NONE {hostname=feron}

For the PRIMARY and value keywords, the options are:

primary (used only with multiple network_inteface lines)
dhcp
hostname=hostname
ip_address=ip_address
netmask=netmask
protocol_ipv6=yes | no

default_router=ip_address (IPv4 address only)

If you are using the dhcp option, the only other option you can specify is
protocol_ipv6. For example:

network=PRIMARY {dhcp protocol_ipv6=yes}

If you are not using DHCP, you may specify any combination of the other keywords as
needed. If you do not use any of the keywords, omit the curly braces.

network_interface=eri0 {hostname=feron
ip_address=172.16.2.7
netmask=255.255.255.0
protocol_ipv6=no

default_route=172.16.2.1}

Multiple Network Interfaces

If you have multiple network interfaces on your system, you may configure them all
in the sysidcfg file by defining multiple network_interface keywords. If you
specify multiple network_interface keywords, you cannot use NONE or PRIMARY
for values. You must specify interface names for all of the values. To specify the
primary interface, use the primary option value.

For example,

network_interface=eri0 {primary
hostname=feron
ip_address=172.16.2.7
netmask=255.255.255.0
protocol_ipv6=no
default_route=172.16.2.1}

network_interface=eri1 {hostname=feron-b
ip_address=172.16.3.8
netmask=255.255.255.0
protocol_ipv6=no

default_route=172.16.3.1}

Root Password

The root password keyword is root_password. Possible values are encrypted from
/etc/shadow. Syntax is:

root_password=encrypted_password

sysidcfg(4)

File Formats 675

Security Policy

The security—related keyword is security_policy. It has the following syntax:

security_policy=kerberos, NONE

The kerberos keyword has the following options:

{default_realm=FQDN admin_server=FQDN kdc=FQDN1, FQDN2, FQDN3}

where FQDN is a fully qualified domain name. An example of the security_policy
keyword is as follows:

security_policy=kerberos {default_realm=Yoursite.COM
admin_server=krbadmin.Yoursite.COM

kdc=kdc1.Yoursite.COM, kdc2.Yoursite.COM}

You can list a maximum of three key distribution centers (KDCs) for a
security_policy keyword. At least one is required.

Language in Which to Display the Install Program

The system-location keyword is system_locale. It has the following syntax:

system_locale=locale

where locale is /usr/lib/locale.

Terminal Type

The terminal keyword is terminal. It has the following syntax:

terminal=terminal_type

where terminal_type is a value from /usr/share/lib/terminfo/*.

Timezone Information

The timezone keyword is timezone. It has the following syntax:

timezone=timezone

where timezone is a value from /usr/share/lib/zoneinfo/*or, where timezone is
an offset-from-GMT style quoted timezone. Refer to environ(5) for information on
quoted timezones. An example of a quoted timezone is: timezone="<GMT+8>+8".

Date and Time

The time server keyword is timeserver. It has the following syntax:

timeserver=localhost
timeserver=hostname
timeserver=ip_address

If you specify localhost as the time server, the system’s time is assumed to be
correct. If you specify the hostname or ip_address, if you are not running a name
service, of a system, that system’s time is used to set the time.

sysidcfg(4)

676 man pages section 4: File Formats • Last Revised 12 Nov 2003

The following keywords apply only to x86 platforms. For all these keywords, use
kdmconfig -d to create or append to the sysidcfg file. See kdmconfig(1M).

Monitor type
The monitor—related keyword is monitor. The syntax is:

monitor=monitor_type

Keyboard language, keyboard layout
The keyboard—language keyword is keyboard. The syntax is:

keyboard=keyboard_language {layout=value}

Graphics card, color depth, display resolution, screen size
The display-related keywords are display, size, depth, and resolution. The
syntax is:

display=graphics_card {size=screen_size
depth=color_depth resolution=screen_resolution}

Pointing device, number of buttons, IRQ level
The mouse-related keywords are pointer, nbuttons, and irq.

pointer=pointing_device {nbuttons=number_buttons
irq=value}

EXAMPLE 1 Sample sysidcfg files

The following example is a sysidcfg file for a group of SPARC systems to install
over the network. The host names, IP addresses, and netmask of these systems have
been preconfigured by editing the name service. Because all the system configuration
information has been preconfigured, an automated installation can be created by using
a custom JumpStart profile.

system_locale=en_US
timezone=US/Central
timeserver=localhost
terminal=sun-cmd
name_service=NIS {domain_name=marquee.central.example.com

name_server=connor(172.16.112.3)}
root_password=m4QPOWNY
system_locale=C
security_policy=kerberos

{default_realm=Yoursite.COM
admin_server=krbadmin.Yoursite.COM

kdc=kdc1.Yoursite.COM, kdc2.Yoursite.COM}

The following example is a sysidcfg file created for a group of x86 systems to install
over the network that all have the same keyboard, graphics cards, and pointing
devices. The device information (keyboard, display, and pointer) was captured from
running kdmconfig -d. See kdmconfig(1M). In this example, users would see only
the prompt to select a language, system_locale, for displaying the rest of the Solaris
installation program.

keyboard=ATKBD {layout=US-English}
display=ati {size=15-inch}
pointer=MS-S

sysidcfg(4)

x86 Platform
Keywords

EXAMPLES

File Formats 677

EXAMPLE 1 Sample sysidcfg files (Continued)

timezone=US/Central
timeserver=connor
terminal=AT386
name_service=NIS {domain_name=marquee.central.example.com

name_server=connor(172.16.112.3)}
root_password=URFUni9

security_policy=none

install_scripts(1M), kdmconfig(1M), sysidtool(1M), environ(5)

Solaris 10 Installation Guide: Basic Installations

sysidcfg(4)

SEE ALSO

678 man pages section 4: File Formats • Last Revised 12 Nov 2003

syslog.conf – configuration file for syslogd system log daemon

/etc/syslog.conf

The file /etc/syslog.conf contains information used by the system log daemon,
syslogd(1M), to forward a system message to appropriate log files and/or users.
syslogd preprocesses this file through m4(1) to obtain the correct information for
certain log files, defining LOGHOST if the address of "loghost" is the same as one of the
addresses of the host that is running syslogd.

A configuration entry is composed of two TAB-separated fields:

selector action

The selector field contains a semicolon-separated list of priority specifications of the
form:

facility.level [; facility.level]where facility is a system facility, or comma-separated list of
facilities, and level is an indication of the severity of the condition being logged.
Recognized values for facility include:

user Messages generated by user processes. This is the default priority
for messages from programs or facilities not listed in this file.

kern Messages generated by the kernel.

mail The mail system.

daemon System daemons, such as in.ftpd(1M)

auth The authorization system: login(1), su(1M), getty(1M), among
others.

lpr The line printer spooling system: lpr(1B), lpc(1B), among others.

news Designated for the USENET network news system.

uucp Designated for the UUCP system; it does not currently use the
syslog mechanism.

cron Designated for cron/at messages generated by systems that do
logging through syslog. The current version of the Solaris
Operating Environment does not use this facility for logging.

audit Designated for audit messages generated by systems that audit by
means of syslog.

local0-7 Designated for local use.

mark For timestamp messages produced internally by syslogd.

* An asterisk indicates all facilities except for the mark facility.

Recognized values for level are (in descending order of severity):

syslog.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 679

emerg For panic conditions that would normally be broadcast to all users.

alert For conditions that should be corrected immediately, such as a
corrupted system database.

crit For warnings about critical conditions, such as hard device errors.

err For other errors.

warning For warning messages.

notice For conditions that are not error conditions, but may require
special handling. A configuration entry with a level value of
notice must appear on a separate line.

info Informational messages.

debug For messages that are normally used only when debugging a
program.

none Do not send messages from the indicated facility to the selected
file. For example, a selector of

*.debug;mail.none

sends all messages except mail messages to the selected file.

For a given facility and level, syslogd matches all messages for that level and all
higher levels. For example, an entry that specifies a level of crit also logs messages at
the alert and emerg levels.

The action field indicates where to forward the message. Values for this field can have
one of four forms:

� A filename, beginning with a leading slash, which indicates that messages specified
by the selector are to be written to the specified file. The file is opened in append
mode if it exists. If the file does not exist, logging silently fails for this action.

� The name of a remote host, prefixed with an @, as with: @server, which indicates
that messages specified by the selector are to be forwarded to the syslogd on the
named host. The hostname "loghost" is treated, in the default syslog.conf, as the
hostname given to the machine that logs syslogd messages. Every machine is
"loghost" by default, per the hosts database. It is also possible to specify one
machine on a network to be "loghost" by, literally, naming the machine "loghost". If
the local machine is designated to be "loghost", then syslogd messages are
written to the appropriate files. Otherwise, they are sent to the machine "loghost"
on the network.

� A comma-separated list of usernames, which indicates that messages specified by
the selector are to be written to the named users if they are logged in.

� An asterisk, which indicates that messages specified by the selector are to be written
to all logged-in users.

syslog.conf(4)

680 man pages section 4: File Formats • Last Revised 28 Jul 2004

Blank lines are ignored. Lines for which the first nonwhite character is a ’#’ are treated
as comments.

EXAMPLE 1 A Sample Configuration File

With the following configuration file:

*.notice /var/log/notice

mail.info /var/log/notice

*.crit /var/log/critical

kern,mark.debug /dev/console

kern.err @server

*.emerg *

*.alert root,operator

*.alert;auth.warning /var/log/auth

syslogd(1M) logs all mail system messages except debug messages and all notice
(or higher) messages into a file named /var/log/notice. It logs all critical messages
into /var/log/critical, and all kernel messages and 20-minute marks onto the
system console.

Kernel messages of err (error) severity or higher are forwarded to the machine
named server. Emergency messages are forwarded to all users. The users root and
operator are informed of any alert messages. All messages from the authorization
system of warning level or higher are logged in the file /var/log/auth.

/var/log/notice log of all mail system messages (except debug
messages) and all messages of notice level or higher

/var/log/critical log of all critical messages

/var/log/auth log of all messages from the authorization system of
warning level or higher

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Stable

at(1), crontab(1), logger(1), login(1), lp(1), lpc(1B), lpr(1B), m4(1), cron(1M),
getty(1M), in.ftpd(1M), su(1M), syslogd(1M), syslog(3C), hosts(4),
attributes(5)

syslog.conf(4)

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

File Formats 681

system – system configuration information file

The system file is used for customizing the operation of the operating system kernel.
The recommended procedure is to preserve the original system file before modifying
it.

The system file contains commands which are read by the kernel during initialization
and used to customize the operation of your system. These commands are useful for
modifying the system’s treatment of its loadable kernel modules.

The syntax of the system file consists of a list of keyword/value pairs which are
recognized by the system as valid commands. Comment lines must begin with an
asterisk (*) or a hash mark (#) and end with a newline character. All commands are
case-insensitive except where noted.

Commands that modify the system’s operation with respect to loadable kernel
modules require you to specify the module type by listing the module’s namespace.
The following namespaces are currently supported on all platforms:

drv
Modules in this namespace are device drivers.

exec
Modules in this namespace are execution format modules. The following exec
modules are currently provided:

Only on SPARC system:

aoutexec

Only on x86 system:

coffexec

On SPARC and IA systems:

elfexec
intpexec

javaexec

fs
These modules are filesystems.

sched
These modules implement a process scheduling algorithm.

strmod
These modules are STREAMS modules.

sys
These modules implement loadable system-call modules.

misc
These modules do not fit into any of the above categories, so are considered
"miscellaneous" modules.

system(4)

NAME

DESCRIPTION

682 man pages section 4: File Formats • Last Revised 3 Nov 2004

SPARC only:

dacf
These modules provide rules and actions for device auto-configuration.

tod
These modules provide support for the time of day hardware.

cpu
These modules provide CPU-specific kernel routines.

A description of each of the supported commands follows:

exclude: <namespace>/<modulename>
Do not allow the listed loadable kernel module to be loaded. exclude commands
are cumulative; the list of modules to exclude is created by combining every
exclude entry in the system file.

include: <namespace>/<modulename>
Include the listed loadable kernel module. This is the system’s default, so using
include does not modify the system’s operation. include commands are
cumulative.

forceload: <namespace>/<modulename>
Force this kernel module to be loaded during kernel initialization. The default
action is to automatically load the kernel module when its services are first
accessed. forceload commands are cumulative.

rootdev: <device name>
Set the root device to the listed value instead of using the default root device as
supplied by the boot program.

rootfs: <root filesystem type>
Set the root filesystem type to the listed value.

moddir: <first module path>[[{:, }<second ...>]...]
Set the search path for loadable kernel modules. This command operates very much
like the PATH shell variable. Multiple directories to search can be listed together,
delimited either by blank spaces or colons.

set [<module>:]<symbol> {=, |, &} [~][-]<value>
Set an integer or character pointer in the kernel or in the selected kernel module to
a new value. This command is used to change kernel and module parameters and
thus modify the operation of your system. Assignment operations are not
cumulative, whereas bitwise AND and OR operations are cumulative.

Operations that are supported for modifying integer variables are: simple
assignment, inclusive bitwise OR, bitwise AND, one’s complement, and negation.
Variables in a specific loadable module can be targeted for modification by
specifying the variable name prefixed with the kernel module name and a colon (:)
separator. Values can be specified as hexadecimal (0x10), Octal (046), or Decimal (5).

system(4)

File Formats 683

The only operation supported for modifying character pointers is simple
assignment. Static string data such as character arrays cannot be modified using the
set command. Use care and ensure that the variable you are modifying is in fact a
character pointer. The set command is very powerful, and will likely cause
problems if used carelessly. The following escape sequences are supported within
the quoted string:

\n (newline)
\t (tab)

\b (backspace)

EXAMPLE 1 A sample system file.

The following is a sample system file.

* Force the ELF exec kernel module to be loaded during kernel
* initialization. Execution type modules are in the exec namespace.
forceload: exec/elfexec
* Change the root device to /sbus@1,f8000000/esp@0,800000/sd@3,0:a.
* You can derive root device names from /devices.
* Root device names must be the fully expanded Open Boot Prom
* device name. This command is platform and configuration specific.
* This example uses the first partition (a) of the SCSI disk at
* SCSI target 3 on the esp host adapter in slot 0 (on board)
* of the SBus of the machine.
* Adapter unit-address 3,0 at sbus unit-address 0,800000.
rootdev: /sbus@1,f8000000/esp@0,800000/sd@3,0:a
* Set the filesystem type of the root to ufs. Note that
* the equal sign can be used instead of the colon.
rootfs:ufs
* Set the search path for kernel modules to look first in
* /usr/phil/mod_test for modules, then in /kernel/modules (the
* default) if not found. Useful for testing new modules.
* Note that you can delimit your module pathnames using
* colons instead of spaces: moddir:/newmodules:/kernel/modules
moddir:/usr/phil/mod_test /kernel/modules.
* Set the configuration option {_POSIX_CHOWN_RESTRICTED} :
* This configuration option is enabled by default.
set rstchown = 1
* Disable the configuration option {_POSIX_CHOWN_RESTRICTED} :
set rstchown = 0
* Turn on debugging messages in the modules mydriver. This is useful
* during driver development.
set mydriver:debug = 1
* Bitwise AND the kernel variable "moddebug" with the
* one’s complement of the hex value 0x880, and set
* "moddebug" to this new value.
set moddebug & ~0x880
* Demonstrate the cumulative effect of the SET
* bitwise AND/OR operations by further modifying "moddebug"
* by ORing it with 0x40.

set moddebug | 0x40

boot(1M), init(1M), kernel(1M)

system(4)

EXAMPLES

SEE ALSO

684 man pages section 4: File Formats • Last Revised 3 Nov 2004

Use care when modifying the system file; it modifies the operation of the kernel. If
you preserved the original system file, you can boot using boot -a, which will ask
you to specify the path to the saved file. This should allow the system to boot
correctly. If you cannot locate a system file that will work, you may specify
/dev/null. This acts as an empty system file, and the system will attempt to boot
using its default settings.

The /etc/system file is read only once, at boot time.

system(4)

WARNINGS

NOTES

File Formats 685

telnetrc – file for telnet default options

The .telnetrc file contains commands that are executed when a connection is
established on a per-host basis. Each line in the file contains a host name, one or more
spaces or tabs, and a telnet(1) command. The host name, DEFAULT, matches all
hosts. Lines beginning with the pound sign (#) are interpreted as comments and
therefore ignored. telnet(1) commands are case-insensitive to the contents of the
.telnetrc file.

The .telnetrc file is retrieved from each user’s HOME directory.

EXAMPLE 1 A sample file.

In the following example, a .telnetrc file executes the telnet(1) command,
toggle:

weirdhost toggle crmod
Always export $PRINTER
DEFAULT environ export PRINTER

The lines in this file indicate that the toggle argument crmod, whose default value is
"off" (or FALSE), should be enabled when connecting to the system weirdhost. In
addition, the value of the environment variable PRINTER should be exported to all
systems. In this case, the DEFAULT keyword is used in place of the host name.

$HOME/.telnetrc

telnet(1), in.telnetd(1M), environ(5)

telnetrc(4)

NAME

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

686 man pages section 4: File Formats • Last Revised 9 Jan 1998

term – format of compiled term file

/usr/share/lib/terminfo/?/*

The term file is compiled from terminfo(4) source files using tic(1M). Compiled
files are organized in a directory hierarchy under the first letter of each terminal name.
For example, the vt100 file would have the pathname
/usr/lib/terminfo/v/vt100. The default directory is
/usr/share/lib/terminfo. Synonyms for the same terminal are implemented by
multiple links to the same compiled file.

The format has been chosen so that it is the same on all hardware. An 8-bit byte is
assumed, but no assumptions about byte ordering or sign extension are made. Thus,
these binary terminfo files can be transported to other hardware with 8-bit bytes.

Short integers are stored in two 8-bit bytes. The first byte contains the least significant
8 bits of the value, and the second byte contains the most significant 8 bits. (Thus, the
value represented is 256*second+first.) The value −1 is represented by 0377,0377, and
the value −2 is represented by 0376,0377; other negative values are illegal. The −1
generally means that a capability is missing from this terminal. The −2 means that the
capability has been cancelled in the terminfo source and also is to be considered
missing.

The compiled file is created from the source file descriptions of the terminals (see the
-I option of infocmp) by using the terminfo compiler, tic, and read by the routine
setupterm (see curses(3CURSES)). The file is divided into six parts in the following
order: the header, terminal names, boolean flags, numbers, strings, and string table.

The header section begins the file six short integers in the format described below.
These integers are:

1. the magic number (octal 0432);
2. the size, in bytes, of the names section;
3. the number of bytes in the boolean section
4. the number of short integers in the numbers section;
5. the number of offsets (short integers) in the strings section;
6. the size, in bytes, of the string table.

The terminal name section comes next. It contains the first line of the terminfo
description, listing the various names for the terminal, separated by the bar (|)
character (see term(5)). The section is terminated with an ASCII NUL character.

The terminal name section is followed by the Boolean section, number section, string
section, and string table.

The boolean flags section consists of one byte for each flag. This byte is either 0 or 1 as
the flag is present or absent. The value of 2 means that the flag has been cancelled. The
capabilities are in the same order as the file <term.h>.

term(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 687

Between the boolean flags section and the number section, a null byte is inserted, if
necessary, to ensure that the number section begins on an even byte offset. All short
integers are aligned on a short word boundary.

The numbers section is similar to the boolean flags section. Each capability takes up
two bytes, and is stored as a short integer. If the value represented is −1 or −2, the
capability is taken to be missing.

The strings section is also similar. Each capability is stored as a short integer, in the
format above. A value of −1 or −2 means the capability is missing. Otherwise, the
value is taken as an offset from the beginning of the string table. Special characters in
^X or \c notation are stored in their interpreted form, not the printing representation.
Padding information ($<nn>) and parameter information (%x) are stored intact in
uninterpreted form.

The final section is the string table. It contains all the values of string capabilities
referenced in the string section. Each string is null terminated.

Note that it is possible for setupterm to expect a different set of capabilities than are
actually present in the file. Either the database may have been updated since
setupterm has been recompiled (resulting in extra unrecognized entries in the file) or
the program may have been recompiled more recently than the database was updated
(resulting in missing entries). The routine setupterm must be prepared for both
possibilities—this is why the numbers and sizes are included. Also, new capabilities
must always be added at the end of the lists of boolean, number, and string
capabilities.

As an example, here is terminal information on the AT&T Model 37 KSR terminal as
output by the infocmp -I tty37 command:

37|tty37|AT&T model 37 teletype,
hc, os, xon,
bel=^G, cr=\r, cub1=\b, cud1=\n, cuu1=\E7, hd=\E9,
hu=\E8, ind=\n,

The following is an octal dump of the corresponding term file, produced by the od
-c /usr/share/lib/terminfo/t/tty37 command:

0000000 032 001 \0 032 \0 013 \0 021 001 3 \0 3 7 | t
0000020 t y 3 7 | A T & T m o d e l
0000040 3 7 t e l e t y p e \0 \0 \0 \0 \0
0000060 \0 \0 \0 001 \0 \0 \0 \0 \0 \0 \0 001 \0 \0 \0 \0
0000100 001 \0 \0 \0 \0 \0 377 377 377 377 377 377 377 377 377 377
0000120 377 377 377 377 377 377 377 377 377 377 377 377 377 377 & \0
0000140 \0 377 377 377 377 377 377 377 377 377 377 377 377 377 377
0000160 377 377 " \0 377 377 377 377 (\0 377 377 377 377 377 377
0000200 377 377 0 \0 377 377 377 377 377 377 377 377 - \0 377 377
0000220 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

*
0000520 377 377 377 377 377 377 377 377 377 377 377 377 377 377 $ \0
0000540 377 377 377 377 377 377 377 377 377 377 377 377 377 377 * \0
0000560 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377

term(4)

688 man pages section 4: File Formats • Last Revised 3 Jul 1996

*
0001160 377 377 377 377 377 377 377 377 377 377 377 377 377 377 3 7
0001200 | t t y 3 7 | A T & T m o d e
0001220 l 3 7 t e l e t y p e \0 \r \0
0001240 \n \0 \n \0 007 \0 \b \0 033 8 \0 033 9 \0 033 7
0001260 \0 \0
0001261

Some limitations: total compiled entries cannot exceed 4096 bytes; all entries in the
name field cannot exceed 128 bytes.

/usr/share/lib/terminfo/?/* compiled terminal description database

/usr/include/term.h terminfo header

/usr/xpg4/include/term.h X/Open Curses terminfo header

infocmp(1M), curses(3CURSES), curses(3XCURSES), terminfo(4), term(5)

term(4)

FILES

SEE ALSO

File Formats 689

terminfo – terminal and printer capability database

/usr/share/lib/terminfo/?/*

The terminfo database describes the capabilities of devices such as terminals and
printers. Devices are described in terminfo source files by specifying a set of
capabilities, by quantifying certain aspects of the device, and by specifying character
sequences that affect particular results. This database is often used by screen oriented
applications such as vi and curses-based programs, as well as by some system
commands such as ls and more. This usage allows them to work with a variety of
devices without changes to the programs.

terminfo descriptions are located in the directory pointed to by the environment
variable TERMINFO or in /usr/share/lib/terminfo. terminfo descriptions are
generated by tic(1M).

terminfo source files consist of one or more device descriptions. Each description
consists of a header (beginning in column 1) and one or more lines that list the
features for that particular device. Every line in a terminfo source file must end in a
comma (,). Every line in a terminfo source file except the header must be indented
with one or more white spaces (either spaces or tabs).

Entries in terminfo source files consist of a number of comma-separated fields.
White space after each comma is ignored. Embedded commas must be escaped by
using a backslash. Each device entry has the following format:

alias1 | alias2 | . . . | aliasn | fullname,
capability1, capability2,
.
.
.

capabilityn,

The first line, commonly referred to as the header line, must begin in column one and
must contain at least two aliases separated by vertical bars. The last field in the header
line must be the long name of the device and it may contain any string. Alias names
must be unique in the terminfo database and they must conform to system file
naming conventions. See tic(1M). They cannot, for example, contain white space or
slashes.

Every device must be assigned a name, such as “vt100”. Device names (except the
long name) should be chosen using the following conventions. The name should not
contain hyphens because hyphens are reserved for use when adding suffixes that
indicate special modes.

terminfo(4)

NAME

SYNOPSIS

DESCRIPTION

690 man pages section 4: File Formats • Last Revised 9 Jul 1996

These special modes may be modes that the hardware can be in, or user preferences.
To assign a special mode to a particular device, append a suffix consisting of a hyphen
and an indicator of the mode to the device name. For example, the -w suffix means
“wide mode”. When specified, it allows for a width of 132 columns instead of the
standard 80 columns. Therefore, if you want to use a “vt100” device set to wide mode,
name the device “vt100-w”. Use the following suffixes where possible.

Suffix Meaning Example

-w Wide mode (more than 80 columns) 5410-w

-am With auto. margins (usually default) vt100-am

-nam Without automatic margins vt100-nam

-n Number of lines on the screen 2300-40

-na No arrow keys (leave them in local) c100-na

-np Number of pages of memory c100-4p

-rv Reverse video 4415-rv

The terminfo reference manual page is organized in two sections:

� PART 1: DEVICE CAPABILITIES
� PART 2: PRINTER CAPABILITIES

Capabilities in terminfo are of three types: Boolean capabilities (which show that a
device has or does not have a particular feature), numeric capabilities (which quantify
particular features of a device), and string capabilities (which provide sequences that
can be used to perform particular operations on devices).

In the following table, a Variable is the name by which a C programmer accesses a
capability (at the terminfo level). A Capname is the short name for a capability
specified in the terminfo source file. It is used by a person updating the source file
and by the tput command. A Termcap Code is a two-letter sequence that
corresponds to the termcap capability name. (Note that termcap is no longer
supported.)

Capability names have no real length limit, but an informal limit of five characters has
been adopted to keep them short. Whenever possible, capability names are chosen to
be the same as or similar to those specified by the ANSI X3.64-1979 standard.
Semantics are also intended to match those of the ANSI standard.

All string capabilities listed below may have padding specified, with the exception of
those used for input. Input capabilities, listed under the Strings section in the
following tables, have names beginning with key_. The #i symbol in the description
field of the following tables refers to the ith parameter.

Booleans

terminfo(4)

PART 1: DEVICE
CAPABILITIES

File Formats 691

__
Cap- Termcap

Variable name Code Description
__

auto_left_margin bw bw cub1 wraps from column 0 to
last column

auto_right_margin am am Terminal has automatic margins
back_color_erase bce be Screen erased with background

color
can_change ccc cc Terminal can re-define existing

color
ceol_standout_glitch xhp xs Standout not erased by

overwriting (hp)
col_addr_glitch xhpa YA Only positive motion

for hpa/mhpa caps
cpi_changes_res cpix YF Changing character pitch

changes resolution
cr_cancels_micro_mode crxm YB Using cr turns off micro mode
dest_tabs_magic_smso xt xt Destructive tabs, magic

smso char (t1061)
eat_newline_glitch xenl xn Newline ignored after

80 columns (Concept)
erase_overstrike eo eo Can erase overstrikes with a

blank
generic_type gn gn Generic line type

(for example, dialup, switch)
hard_copy hc hc Hardcopy terminal
hard_cursor chts HC Cursor is hard to see
has_meta_key km km Has a meta key (shift,

sets parity bit)
has_print_wheel daisy YC Printer needs operator

to change character set
has_status_line hs hs Has extra "status line"
hue_lightness_saturation hls hl Terminal uses only HLS

color notation (Tektronix)
insert_null_glitch in in Insert mode distinguishes nulls
lpi_changes_res lpix YG Changing line pitch

changes resolution
memory_above da da Display may be retained

above the screen
memory_below db db Display may be retained

below the screen
move_insert_mode mir mi Safe to move while in insert

mode
move_standout_mode msgr ms Safe to move in standout modes
needs_xon_xoff nxon nx Padding won’t work,

xon/xoff required
no_esc_ctlc xsb xb Beehive (f1=escape, f2=ctrl C)
no_pad_char npc NP Pad character doesn’t exist
non_dest_scroll_region ndscr ND Scrolling region

is nondestructive
non_rev_rmcup nrrmc NR smcup does not reverse rmcup
over_strike os os Terminal overstrikes

on hard-copy terminal
prtr_silent mc5i 5i Printer won’t echo on screen
row_addr_glitch xvpa YD Only positive motion

for vpa/mvpa caps

terminfo(4)

692 man pages section 4: File Formats • Last Revised 9 Jul 1996

semi_auto_right_margin sam YE Printing in last column causes
cr

status_line_esc_ok eslok es Escape can be used on
the status line

tilde_glitch hz hz Hazeltine; can’t print tilde (~)
transparent_underline ul ul Underline character overstrikes
xon_xoff xon xo Terminal uses xon/xoff

handshaking

Numbers

__
Cap- Termcap

Variable name Code Description
__

bit_image_entwining bitwin Yo Number of passes for each
bit-map row

bit_image_type bitype Yp Type of bit image device
buffer_capacity bufsz Ya Number of bytes buffered

before printing
buttons btns BT Number of buttons on the mouse
columns cols co Number of columns in a line
dot_horz_spacing spinh Yc Spacing of dots horizontally

in dots per inch
dot_vert_spacing spinv Yb Spacing of pins vertically

in pins per inch
init_tabs it it Tabs initially every # spaces
label_height lh lh Number of rows in each label
label_width lw lw Number of columns in each label
lines lines li Number of lines on a screen or

a page
lines_of_memory lm lm Lines of memory if > lines;

0 means varies
max_attributes ma ma Maximum combined video attributes

terminal can display
magic_cookie_glitch xmc sg Number of blank characters

left by smso or rmso
max_colors colors Co Maximum number of colors

on the screen
max_micro_address maddr Yd Maximum value in

micro_..._address
max_micro_jump mjump Ye Maximum value in parm_..._micro
max_pairs pairs pa Maximum number of

color-pairs on the screen
maximum_windows Wnum MW Maximum number of definable windows
micro_char_size mcs Yf Character step size when

in micro mode
micro_line_size mls Yg Line step size when in micro mode
no_color_video ncv NC Video attributes that

can’t be used with colors
num_labels nlab Nl Number of labels on screen
number_of_pins npins Yh Number of pins in print-head
output_res_char orc Yi Horizontal resolution in

units per character
output_res_line orl Yj Vertical resolution in units per

line
output_res_horz_inch orhi Yk Horizontal resolution in

terminfo(4)

File Formats 693

units per inch
output_res_vert_inch orvi Yl Vertical resolution in

units per inch
padding_baud_rate pb pb Lowest baud rate
print_rate cps Ym Print rate in characters per second

where padding needed
virtual_terminal vt vt Virtual terminal number (system)
wide_char_size widcs Yn Character step size when

in double wide mode

width_status_line wsl ws Number of columns in status line

Strings

__
Cap- Termcap

Variable name Code Description
__

acs_chars acsc ac Graphic charset pairs aAbBcC
alt_scancode_esc scesa S8 Alternate escape for

scancode emulation
(default is for vt100)

back_tab cbt bt Back tab
bell bel bl Audible signal (bell)
bit_image_carriage_return bicr Yv Move to beginning of

same row (use tparm)
bit_image_newline binel Zz Move to next row of

the bit image (use tparm)
bit_image_repeat birep Zy Repeat bit-image cell

#1 #2 times (use tparm)
carriage_return cr cr Carriage return
change_char_pitch cpi ZA Change number of

characters per inch
change_line_pitch lpi ZB Change number of lines per inch
change_res_horz chr ZC Change horizontal resolution
change_res_vert cvr ZD Change vertical resolution
change_scroll_region csr cs Change to lines #1

through #2 (vt100)
char_padding rmp rP Like ip but when in replace

mode
char_set_names csnm Zy List of character set names
clear_all_tabs tbc ct Clear all tab stops
clear_margins mgc MC Clear all margins

(top, bottom, and sides)
clear_screen clear cl Clear screen and home cursor
clr_bol el1 cb Clear to beginning of

line, inclusive
clr_eol el ce Clear to end of line
clr_eos ed cd Clear to end of display
code_set_init csin ci Init sequence

for multiple codesets
color_names colornm Yw Give name for color #1
column_address hpa ch Horizontal position
command_character cmdch CC Terminal settable cmd

character in prototype
create_window cwin CW Define win #1 to go

from #2,#3to #4,#5
cursor_address cup cm Move to row #1 col #2

terminfo(4)

694 man pages section 4: File Formats • Last Revised 9 Jul 1996

cursor_down cud1 do Down one line
cursor_home home ho Home cursor (if no cup)
cursor_invisible civis vi Make cursor invisible
cursor_left cub1 le Move left one space.
cursor_mem_address mrcup CM Memory relative cursor

addressing
cursor_normal cnorm ve Make cursor appear

normal (undo vs/vi)
cursor_right cuf1 nd Non-destructive space

(cursor or carriage right)
cursor_to_ll ll ll Last line, first

column (if no cup)
cursor_up cuu1 up Upline (cursor up)
cursor_visible cvvis vs Make cursor very visible
define_bit_image_region defbi Yx Define rectangular bit-

image region (use tparm)
define_char defc ZE Define a character in

a character set
delete_character dch1 dc Delete character
delete_line dl1 dl Delete line
device_type devt dv Indicate language/

codeset support
dial_phone dial DI Dial phone number #1
dis_status_line dsl ds Disable status line
display_clock dclk DK Display time-of-day clock
display_pc_char dispc S1 Display PC character
down_half_line hd hd Half-line down (forward

1/2 linefeed)
ena_acs enacs eA Enable alternate character set
end_bit_image_region endbi Yy End a bit-image region

(use tparm)
enter_alt_charset_mode smacs as Start alternate character set
enter_am_mode smam SA Turn on automatic margins
enter_blink_mode blink mb Turn on blinking
enter_bold_mode bold md Turn on bold (extra

bright) mode
enter_ca_mode smcup ti String to begin programs

that use cup
enter_delete_mode smdc dm Delete mode (enter)
enter_dim_mode dim mh Turn on half-bright mode
enter_doublewide_mode swidm ZF Enable double wide printing
enter_draft_quality sdrfq ZG Set draft quality print mode
enter_insert_mode smir im Insert mode (enter)
enter_italics_mode sitm ZH Enable italics
enter_leftward_mode slm ZI Enable leftward carriage

motion
enter_micro_mode smicm ZJ Enable micro motion

capabilities
enter_near_letter_quality snlq ZK Set near-letter quality print
enter_normal_quality snrmq ZL Set normal quality
enter_pc_charset_mode smpch S2 Enter PC character display mode
enter_protected_mode prot mp Turn on protected mode
enter_reverse_mode rev mr Turn on reverse video mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_scancode_mode smsc S4 Enter PC scancode mode
enter_secure_mode invis mk Turn on blank mode

(characters invisible)
enter_shadow_mode sshm ZM Enable shadow printing

terminfo(4)

File Formats 695

enter_standout_mode smso so Begin standout mode
enter_subscript_mode ssubm ZN Enable subscript printing
enter_superscript_mode ssupm ZO Enable superscript printing
enter_underline_mode smul us Start underscore mode
enter_upward_mode sum ZP Enable upward carriage motion

mode
enter_xon_mode smxon SX Turn on xon/xoff handshaking
erase_chars ech ec Erase #1 characters
exit_alt_charset_mode rmacs ae End alternate character set
exit_am_mode rmam RA Turn off automatic margins
exit_attribute_mode sgr0 me Turn off all attributes
exit_ca_mode rmcup te String to end programs

that use cup
exit_delete_mode rmdc ed End delete mode
exit_doublewide_mode rwidm ZQ Disable double wide printing
exit_insert_mode rmir ei End insert mode
exit_italics_mode ritm ZR Disable italics
exit_leftward_mode rlm ZS Enable rightward (normal)

carriage motion
exit_micro_mode rmicm ZT Disable micro motion

capabilities
exit_pc_charset_mode rmpch S3 Disable PC character

display mode
exit_scancode_mode rmsc S5 Disable PC scancode mode
exit_shadow_mode rshm ZU Disable shadow printing
exit_standout_mode rmso se End standout mode
exit_subscript_mode rsubm ZV Disable subscript printing
exit_superscript_mode rsupm ZW Disable superscript printing
exit_underline_mode rmul ue End underscore mode
exit_upward_mode rum ZX Enable downward (normal)

carriage motion
exit_xon_mode rmxon RX Turn off xon/xoff handshaking
fixed_pause pause PA Pause for 2-3 seconds
flash_hook hook fh Flash the switch hook
flash_screen flash vb Visible bell (may

not move cursor)
form_feed ff ff Hardcopy terminal page eject
from_status_line fsl fs Return from status line
get_mouse getm Gm Curses should get button events
goto_window wingo WG Go to window #1
hangup hup HU Hang-up phone
init_1string is1 i1 Terminal or printer

initialization string
init_2string is2 is Terminal or printer

initialization string
init_3string is3 i3 Terminal or printer

initialization string
init_file if if Name of initialization file
init_prog iprog iP Path name of program

for initialization
initialize_color initc Ic Initialize the

definition of color
initialize_pair initp Ip Initialize color-pair
insert_character ich1 ic Insert character
insert_line il1 al Add new blank line
insert_padding ip ip Insert pad after

character inserted

key_Strings

terminfo(4)

696 man pages section 4: File Formats • Last Revised 9 Jul 1996

The ‘‘key_’’ strings are sent by specific keys. The ‘‘key_’’ descriptions include the
macro, defined in <curses.h>, for the code returned by the curses routine getch
when the key is pressed (see curs_getch(3CURSES)).

__
Cap- Termcap

Variable name Code Description
__

key_a1 ka1 K1 KEY_A1, upper left of keypad
key_a3 ka3 K3 KEY_A3, upper right of keypad
key_b2 kb2 K2 KEY_B2, center of keypad
key_backspace kbs kb KEY_BACKSPACE, sent by

backspace key
key_beg kbeg @1 KEY_BEG, sent by beg(inning) key
key_btab kcbt kB KEY_BTAB, sent by back-tab key
key_c1 kc1 K4 KEY_C1, lower left of keypad
key_c3 kc3 K5 KEY_C3, lower right of keypad
key_cancel kcan @2 KEY_CANCEL, sent by cancel key
key_catab ktbc ka KEY_CATAB, sent by

clear-all-tabs key
key_clear kclr kC KEY_CLEAR, sent by

clear-screen or erase key
key_close kclo @3 KEY_CLOSE, sent by close key
key_command kcmd @4 KEY_COMMAND, sent by

cmd (command) key
key_copy kcpy @5 KEY_COPY, sent by copy key
key_create kcrt @6 KEY_CREATE, sent by create key
key_ctab kctab kt KEY_CTAB, sent by clear-tab key
key_dc kdch1 kD KEY_DC, sent by delete-character

key
key_dl kdl1 kL KEY_DL, sent by delete-line key
key_down kcud1 kd KEY_DOWN, sent by terminal

down-arrow key
key_eic krmir kM KEY_EIC, sent by rmir or smir in

insert mode
key_end kend @7 KEY_END, sent by end key
key_enter kent @8 KEY_ENTER, sent by enter/send

key
key_eol kel kE KEY_EOL, sent by

clear-to-end-of-line key
key_eos ked kS KEY_EOS, sent by

clear-to-end-of-screen key
key_exit kext @9 KEY_EXIT, sent by exit key
key_f0 kf0 k0 KEY_F(0), sent by function key f0
key_f1 kf1 k1 KEY_F(1), sent by function key f1
key_f2 kf2 k2 KEY_F(2), sent by function key f2
key_f3 kf3 k3 KEY_F(3), sent by function key f3
key_fB kf4 k4 KEY_F(4), sent by function key fB
key_f5 kf5 k5 KEY_F(5), sent by function key f5
key_f6 kf6 k6 KEY_F(6), sent by function key f6
key_f7 kf7 k7 KEY_F(7), sent by function key f7
key_f8 kf8 k8 KEY_F(8), sent by function key f8
key_f9 kf9 k9 KEY_F(9), sent by function key f9

key_f10 kf10 k; KEY_F(10), sent by function key
f10

key_f11 kf11 F1 KEY_F(11), sent by function key

terminfo(4)

File Formats 697

f11
key_f12 kf12 F2 KEY_F(12), sent by function key

f12
key_f13 kf13 F3 KEY_F(13), sent by function key

f13
key_f14 kf14 F4 KEY_F(14), sent by function key

f14
key_f15 kf15 F5 KEY_F(15), sent by function key

f15
key_f16 kf16 F6 KEY_F(16), sent by function key

f16
key_f17 kf17 F7 KEY_F(17), sent by function key

f17
key_f18 kf18 F8 KEY_F(18), sent by function key

f18
key_f19 kf19 F9 KEY_F(19), sent by function key

f19
key_f20 kf20 FA KEY_F(20), sent by function key

f20
key_f21 kf21 FB KEY_F(21), sent by function key

f21
key_f22 kf22 FC KEY_F(22), sent by function key

f22
key_f23 kf23 FD KEY_F(23), sent by function key

f23
key_f24 kf24 FE KEY_F(24), sent by function key

f24
key_f25 kf25 FF KEY_F(25), sent by function key

f25
key_f26 kf26 FG KEY_F(26), sent by function key

f26
key_f27 kf27 FH KEY_F(27), sent by function key

f27
key_f28 kf28 FI KEY_F(28), sent by function key

f28
key_f29 kf29 FJ KEY_F(29), sent by function key

f29
key_f30 kf30 FK KEY_F(30), sent by function key

f30
key_f31 kf31 FL KEY_F(31), sent by function key

f31
key_f32 kf32 FM KEY_F(32), sent by function key

f32
key_f33 kf33 FN KEY_F(13), sent by function key

f13
key_f34 kf34 FO KEY_F(34), sent by function key

f34
key_f35 kf35 FP KEY_F(35), sent by function key

f35
key_f36 kf36 FQ KEY_F(36), sent by function key

f36
key_f37 kf37 FR KEY_F(37), sent by function key

f37
key_f38 kf38 FS KEY_F(38), sent by function key

f38
key_f39 kf39 FT KEY_F(39), sent by function key

f39
key_fB0 kf40 FU KEY_F(40), sent by function key

terminfo(4)

698 man pages section 4: File Formats • Last Revised 9 Jul 1996

fB0
key_fB1 kf41 FV KEY_F(41), sent by function key

fB1
key_fB2 kf42 FW KEY_F(42), sent by function key

fB2
key_fB3 kf43 FX KEY_F(43), sent by function key

fB3
key_fB4 kf44 FY KEY_F(44), sent by function key

fB4
key_fB5 kf45 FZ KEY_F(45), sent by function key

fB5
key_fB6 kf46 Fa KEY_F(46), sent by function key

fB6
key_fB7 kf47 Fb KEY_F(47), sent by function key

fB7
key_fB8 kf48 Fc KEY_F(48), sent by function key

fB8
key_fB9 kf49 Fd KEY_F(49), sent by function key

fB9
key_f50 kf50 Fe KEY_F(50), sent by function key

f50
key_f51 kf51 Ff KEY_F(51), sent by function key

f51
key_f52 kf52 Fg KEY_F(52), sent by function key

f52
key_f53 kf53 Fh KEY_F(53), sent by function key

f53
key_f54 kf54 Fi KEY_F(54), sent by function key

f54
key_f55 kf55 Fj KEY_F(55), sent by function key

f55
key_f56 kf56 Fk KEY_F(56), sent by function key

f56
key_f57 kf57 Fl KEY_F(57), sent by function key

f57
key_f58 kf58 Fm KEY_F(58), sent by function key

f58
key_f59 kf59 Fn KEY_F(59), sent by function key

f59
key_f60 kf60 Fo KEY_F(60), sent by function key

f60
key_f61 kf61 Fp KEY_F(61), sent by function key

f61
key_f62 kf62 Fq KEY_F(62), sent by function key

f62
key_f63 kf63 Fr KEY_F(63), sent by function key

f63
key_find kfnd @0 KEY_FIND, sent by find key
key_help khlp %1 KEY_HELP, sent by help key
key_home khome kh KEY_HOME, sent by home key
key_ic kich1 kI KEY_IC, sent by ins-char/enter

ins-mode key
key_il kil1 kA KEY_IL, sent by insert-line key
key_left kcub1 kl KEY_LEFT, sent by

terminal left-arrow key
key_ll kll kH KEY_LL, sent by home-down key
key_mark kmrk %2 KEY_MARK, sent by
key_message kmsg %3 KEY_MESSAGE, sent by message key

terminfo(4)

File Formats 699

key_mouse kmous Km 0631, Mouse event has occured
key_move kmov %4 KEY_MOVE, sent by move key
key_next knxt %5 KEY_NEXT, sent by next-object

key
key_npage knp kN KEY_NPAGE, sent by next-page

key
key_open kopn %6 KEY_OPEN, sent by open key
key_options kopt %7 KEY_OPTIONS, sent by options

key
key_ppage kpp kP KEY_PPAGE, sent by

previous-page key
key_previous kprv %8 KEY_PREVIOUS, sent by

previous-object key
key_print kprt %9 KEY_PRINT, sent by

print or copy key
key_redo krdo %0 KEY_REDO, sent by redo key
key_reference kref &1 KEY_REFERENCE, sent by

reference key
key_refresh krfr &2 KEY_REFRESH, sent by

refresh key
key_replace krpl &3 KEY_REPLACE, sent by

replace key
key_restart krst &4 KEY_RESTART, sent by

restart key
key_resume kres &5 KEY_RESUME, sent by resume key
key_right kcuf1 kr KEY_RIGHT, sent by terminal

right-arrow key
key_save ksav &6 KEY_SAVE, sent by save key
key_sbeg kBEG &9 KEY_SBEG, sent by

shifted beginning key
key_scancel kCAN &0 KEY_SCANCEL, sent by

shifted cancel key
key_scommand kCMD *1 KEY_SCOMMAND, sent by

shifted command key
key_scopy kCPY *2 KEY_SCOPY, sent by

shifted copy key
key_screate kCRT *3 KEY_SCREATE, sent by

shifted create key
key_sdc kDC *4 KEY_SDC, sent by

shifted delete-char key
key_sdl kDL *5 KEY_SDL, sent by

shifted delete-line key
key_select kslt *6 KEY_SELECT, sent by

select key
key_send kEND *7 KEY_SEND, sent by

shifted end key
key_seol kEOL *8 KEY_SEOL, sent by

shifted clear-line key
key_sexit kEXT *9 KEY_SEXIT, sent by

shifted exit key
key_sf kind kF KEY_SF, sent by

scroll-forward/down key
key_sfind kFND *0 KEY_SFIND, sent by

shifted find key
key_shelp kHLP #1 KEY_SHELP, sent by

shifted help key
key_shome kHOM #2 KEY_SHOME, sent by

shifted home key

terminfo(4)

700 man pages section 4: File Formats • Last Revised 9 Jul 1996

key_sic kIC #3 KEY_SIC, sent by
shifted input key

key_sleft kLFT #4 KEY_SLEFT, sent by
shifted left-arrow key

key_smessage kMSG %a KEY_SMESSAGE, sent by
shifted message key

key_smove kMOV %b KEY_SMOVE, sent by
shifted move key

key_snext kNXT %c KEY_SNEXT, sent by
shifted next key

key_soptions kOPT %d KEY_SOPTIONS, sent by
shifted options key

key_sprevious kPRV %e KEY_SPREVIOUS, sent by
shifted prev key

key_sprint kPRT %f KEY_SPRINT, sent by
shifted print key

key_sr kri kR KEY_SR, sent by
scroll-backward/up key

key_sredo kRDO %g KEY_SREDO, sent by
shifted redo key

key_sreplace kRPL %h KEY_SREPLACE, sent by
shifted replace key

key_sright kRIT %i KEY_SRIGHT, sent by shifted
right-arrow key

key_srsume kRES %j KEY_SRSUME, sent by
shifted resume key

key_ssave kSAV !1 KEY_SSAVE, sent by
shifted save key

key_ssuspend kSPD !2 KEY_SSUSPEND, sent by
shifted suspend key

key_stab khts kT KEY_STAB, sent by
set-tab key

key_sundo kUND !3 KEY_SUNDO, sent by
shifted undo key

key_suspend kspd &7 KEY_SUSPEND, sent by
suspend key

key_undo kund &8 KEY_UNDO, sent by undo key
key_up kcuu1 ku KEY_UP, sent by

terminal up-arrow key
keypad_local rmkx ke Out of

‘‘keypad-transmit’’ mode
keypad_xmit smkx ks Put terminal in

‘‘keypad-transmit’’ mode
lab_f0 lf0 l0 Labels on function key

f0 if not f0
lab_f1 lf1 l1 Labels on function key

f1 if not f1
lab_f2 lf2 l2 Labels on function key

f2 if not f2
lab_f3 lf3 l3 Labels on function key

f3 if not f3
lab_fB lfB l4 Labels on function key

fB if not fB
lab_f5 lf5 l5 Labels on function key

f5 if not f5
lab_f6 lf6 l6 Labels on function key

f6 if not f6
lab_f7 lf7 l7 Labels on function key

terminfo(4)

File Formats 701

f7 if not f7
lab_f8 lf8 l8 Labels on function key

f8 if not f8
lab_f9 lf9 l9 Labels on function key

f9 if not f9
lab_f10 lf10 la Labels on function key

f10 if not f10
label_format fln Lf Label format
label_off rmln LF Turn off soft labels
label_on smln LO Turn on soft labels
meta_off rmm mo Turn off "meta mode"
meta_on smm mm Turn on "meta mode" (8th bit)
micro_column_address mhpa ZY Like column_address

for micro adjustment
micro_down mcud1 ZZ Like cursor_down

for micro adjustment
micro_left mcub1 Za Like cursor_left

for micro adjustment
micro_right mcuf1 Zb Like cursor_right

for micro adjustment
micro_row_address mvpa Zc Like row_address

for micro adjustment
micro_up mcuu1 Zd Like cursor_up

for micro adjustment
mouse_info minfo Mi Mouse status information
newline nel nw Newline (behaves like

cr followed by lf)
order_of_pins porder Ze Matches software bits

to print-head pins
orig_colors oc oc Set all color(-pair)s

to the original ones
orig_pair op op Set default color-pair

to the original one
pad_char pad pc Pad character (rather than null)
parm_dch dch DC Delete #1 chars
parm_delete_line dl DL Delete #1 lines
parm_down_cursor cud DO Move down #1 lines
parm_down_micro mcud Zf Like parm_down_cursor

for micro adjust
parm_ich ich IC Insert #1 blank chars
parm_index indn SF Scroll forward #1 lines
parm_insert_line il AL Add #1 new blank lines
parm_left_cursor cub LE Move cursor left #1 spaces
parm_left_micro mcub Zg Like parm_left_cursor

for micro adjust
parm_right_cursor cuf RI Move right #1 spaces
parm_right_micro mcuf Zh Like parm_right_cursor

for micro adjust
parm_rindex rin SR Scroll backward #1 lines
parm_up_cursor cuu UP Move cursor up #1 lines
parm_up_micro mcuu Zi Like parm_up_cursor

for micro adjust
pc_term_options pctrm S6 PC terminal options
pkey_key pfkey pk Prog funct key #1 to

type string #2
pkey_local pfloc pl Prog funct key #1 to

execute string #2
pkey_plab pfxl xl Prog key #1 to xmit

terminfo(4)

702 man pages section 4: File Formats • Last Revised 9 Jul 1996

string #2 and show string #3
pkey_xmit pfx px Prog funct key #1 to

xmit string #2
plab_norm pln pn Prog label #1 to show

string #2
print_screen mc0 ps Print contents of the screen
prtr_non mc5p pO Turn on the printer for #1 bytes
prtr_off mc4 pf Turn off the printer
prtr_on mc5 po Turn on the printer
pulse pulse PU Select pulse dialing
quick_dial qdial QD Dial phone number #1, without

progress detection
remove_clock rmclk RC Remove time-of-day clock
repeat_char rep rp Repeat char #1 #2 times
req_for_input rfi RF Send next input char (for ptys)
req_mouse_pos reqmp RQ Request mouse position report
reset_1string rs1 r1 Reset terminal completely to

sane modes
reset_2string rs2 r2 Reset terminal completely to

sane modes
reset_3string rs3 r3 Reset terminal completely to

sane modes
reset_file rf rf Name of file containing

reset string
restore_cursor rc rc Restore cursor to

position of last sc
row_address vpa cv Vertical position absolute
save_cursor sc sc Save cursor position
scancode_escape scesc S7 Escape for scancode emulation
scroll_forward ind sf Scroll text up
scroll_reverse ri sr Scroll text down
select_char_set scs Zj Select character set
set0_des_seq s0ds s0 Shift into codeset 0

(EUC set 0, ASCII)
set1_des_seq s1ds s1 Shift into codeset 1
set2_des_seq s2ds s2 Shift into codeset 2
set3_des_seq s3ds s3 Shift into codeset 3

attributes #1-#6
set_a_background setab AB Set background color

using ANSI escape
set_a_foreground setaf AF Set foreground color

using ANSI escape
set_attributes sgr sa Define the video

attributes #1-#9
set_background setb Sb Set current background color
set_bottom_margin smgb Zk Set bottom margin at

current line
set_bottom_margin_parm smgbp Zl Set bottom margin at

line #1 or #2
lines from bottom

set_clock sclk SC Set time-of-day clock
set_color_band setcolor YzChange to ribbon color #1
set_color_pair scp sp Set current color-pair
set_foreground setf Sf Set current foreground color1
set_left_margin smgl ML Set left margin at current line
set_left_margin_parm smglp Zm Set left (right) margin

at column #1 (#2)
set_lr_margin smglr ML Sets both left and right margins

terminfo(4)

File Formats 703

set_page_length slines YZ Set page length to #1 lines
(use tparm) of an inch

set_right_margin smgr MR Set right margin at
current column

set_right_margin_parm smgrp Zn Set right margin at column #1
set_tab hts st Set a tab in all rows,

current column
set_tb_margin smgtb MT Sets both top and bottom margins
set_top_margin smgt Zo Set top margin at current line
set_top_margin_parm smgtp Zp Set top (bottom) margin

at line #1 (#2)
set_window wind wi Current window is lines

#1-#2 cols #3-#4
start_bit_image sbim Zq Start printing bit image graphics
start_char_set_def scsd Zr Start definition of a character

set
stop_bit_image rbim Zs End printing bit image graphics
stop_char_set_def rcsd Zt End definition of a character set
subscript_characters subcs Zu List of ‘‘subscript-able’’

characters
superscript_characters supcs Zv List of ‘‘superscript-able’’

characters
tab ht ta Tab to next 8-space hardware tab

stop
these_cause_cr docr Zw Printing any of these

chars causes cr
to_status_line tsl ts Go to status line, col #1
tone tone TO Select touch tone dialing
user0 u0 u0 User string 0
user1 u1 u1 User string 1
user2 u2 u2 User string 2
user3 u3 u3 User string 3
user4 u4 u4 User string 4
user5 u5 u5 User string 5
user6 u6 u6 User string 6
user7 u7 u7 User string 7
user8 u8 u8 User string 8
user9 u9 u9 User string 9
underline_char uc uc Underscore one char

and move past it
up_half_line hu hu Half-line up (reverse

1/2 linefeed)
wait_tone wait WA Wait for dial tone
xoff_character xoffc XF X-off character
xon_character xonc XN X-on character
zero_motion zerom Zx No motion for the

subsequent character

The following entry, which describes the AT&T 610 terminal, is among the more
complex entries in the terminfo file as of this writing.

610|610bct|ATT610|att610|AT&T610;80column;98key keyboard
am, eslok, hs, mir, msgr, xenl, xon,
cols#80, it#8, lh#2, lines#24, lw#8, nlab#8, wsl#80,
acsc=‘‘aaffggjjkkllmmnnooppqqrrssttuuvvwwxxyyzz{{||}}~~,
bel=^G, blink=\E[5m, bold=\E[1m, cbt=\E[Z,
civis=\E[?25l, clear=\E[H\E[J, cnorm=\E[?25h\E[?12l,
cr=\r, csr=\E[%i%p1%d;%p2%dr, cub=\E[%p1%dD, cub1=\b,

terminfo(4)

Sample Entry

704 man pages section 4: File Formats • Last Revised 9 Jul 1996

cud=\E[%p1%dB, cud1=\E[B, cuf=\E[%p1%dC, cuf1=\E[C,
cup=\E[%i%p1%d;%p2%dH, cuu=\E[%p1%dA, cuu1=\E[A,
cvvis=\E[?12;25h, dch=\E[%p1%dP, dch1=\E[P, dim=\E[2m,
dl=\E[%p1%dM, dl1=\E[M, ed=\E[J, el=\E[K, el1=\E[1K,
flash=\E[?5h$<200>\E[?5l, fsl=\E8, home=\E[H, ht=\t,
ich=\E[%p1%d@, il=\E[%p1%dL, il1=\E[L, ind=\ED, .ind=\ED$<9>,
invis=\E[8m,
is1=\E[8;0 | \E[?3;4;5;13;15l\E[13;20l\E[?7h\E[12h\E(B\E)0,
is2=\E[0m^O, is3=\E(B\E)0, kLFT=\E[\s@, kRIT=\E[\sA,
kbs=^H, kcbt=\E[Z, kclr=\E[2J, kcub1=\E[D, kcud1=\E[B,
kcuf1=\E[C, kcuu1=\E[A, kf1=\EOc, kf10=\ENp,
kf11=\ENq, kf12=\ENr, kf13=\ENs, kf14=\ENt, kf2=\EOd,
kf3=\EOe, kf4=\EOf, kf5=\EOg, kf6=\EOh, kf7=\EOi,
kf8=\EOj, kf9=\ENo, khome=\E[H, kind=\E[S, kri=\E[T,
ll=\E[24H, mc4=\E[?4i, mc5=\E[?5i, nel=\EE,
pfxl=\E[%p1%d;%p2%l%02dq%?%p1%{9}%<%t\s\s\sF%p1%1d\s\s\s\s\s

\s\s\s\s\s\s%;%p2%s,
pln=\E[%p1%d;0;0;0q%p2%:-16.16s, rc=\E8, rev=\E[7m,
ri=\EM, rmacs=^O, rmir=\E[4l, rmln=\E[2p, rmso=\E[m,
rmul=\E[m, rs2=\Ec\E[?3l, sc=\E7,
sgr=\E[0%?%p6%t;1%;%?%p5%t;2%;%?%p2%t;4%;%?%p4%t;5%;

%?%p3%p1% | %t;7%;%?%p7%t;8%;m%?%p9%t^N%e^O%;,
sgr0=\E[m^O, smacs=^N, smir=\E[4h, smln=\E[p,
smso=\E[7m, smul=\E[4m, tsl=\E7\E[25;%i%p1%dx,

The sample entry shows the formats for the three types of terminfo capabilities
listed: Boolean, numeric, and string. All capabilities specified in the terminfo source
file must be followed by commas, including the last capability in the source file. In
terminfo source files, capabilities are referenced by their capability names (as shown
in the previous tables).

Boolean capabilities are specified simply by their comma separated cap names.

Numeric capabilities are followed by the character ‘#’ and then a positive integer
value. Thus, in the sample, cols (which shows the number of columns available on a
device) is assigned the value 80 for the AT&T 610. (Values for numeric capabilities
may be specified in decimal, octal, or hexadecimal, using normal C programming
language conventions.)

Finally, string-valued capabilities such as el (clear to end of line sequence) are listed
by a two- to five-character capname, an ‘=’, and a string ended by the next occurrence
of a comma. A delay in milliseconds may appear anywhere in such a capability,
preceded by $ and enclosed in angle brackets, as in el=\EK$<3>. Padding characters
are supplied by tput. The delay can be any of the following: a number, a number
followed by an asterisk, such as 5*, a number followed by a slash, such as 5/, or a
number followed by both, such as 5*/. A ‘*’ shows that the padding required is
proportional to the number of lines affected by the operation, and the amount given is
the per-affected-unit padding required. (In the case of insert characters, the factor is
still the number of lines affected. This is always 1 unless the device has in and the
software uses it.) When a ‘*’ is specified, it is sometimes useful to give a delay of the
form 3.5 to specify a delay per unit to tenths of milliseconds. (Only one decimal place
is allowed.)

terminfo(4)

Types of
Capabilities in the

Sample Entry

File Formats 705

A ‘/’ indicates that the padding is mandatory. If a device has xon defined, the
padding information is advisory and will only be used for cost estimates or when the
device is in raw mode. Mandatory padding will be transmitted regardless of the
setting of xon. If padding (whether advisory or mandatory) is specified for bel or
flash, however, it will always be used, regardless of whether xon is specified.

terminfo offers notation for encoding special characters. Both \E and \e map to an
ESCAPE character, ^x maps to a control x for any appropriate x, and the sequences
\n, \l, \r, \t, \b, \f, and \s give a newline, linefeed, return, tab, backspace,
formfeed, and space, respectively. Other escapes include: \^ for caret (^); \\ for
backslash (\); \, for comma (,); \: for colon (:); and \0 for null. (\0 will actually
produce \200, which does not terminate a string but behaves as a null character on
most devices, providing CS7 is specified. (See stty(1)). Finally, characters may be
given as three octal digits after a backslash (for example, \123).

Sometimes individual capabilities must be commented out. To do this, put a period
before the capability name. For example, see the second ind in the example above.
Note that capabilities are defined in a left-to-right order and, therefore, a prior
definition will override a later definition.

The most effective way to prepare a device description is by imitating the description
of a similar device in terminfo and building up a description gradually, using partial
descriptions with vi to check that they are correct. Be aware that a very unusual
device may expose deficiencies in the ability of the terminfo file to describe it or the
inability of vi to work with that device. To test a new device description, set the
environment variable TERMINFO to the pathname of a directory containing the
compiled description you are working on and programs will look there rather than in
/usr/share/lib/terminfo. To get the padding for insert-line correct (if the device
manufacturer did not document it) a severe test is to comment out xon, edit a large
file at 9600 baud with vi, delete 16 or so lines from the middle of the screen, and then
press the u key several times quickly. If the display is corrupted, more padding is
usually needed. A similar test can be used for insert-character.

The number of columns on each line for the device is given by the cols numeric
capability. If the device has a screen, then the number of lines on the screen is given by
the lines capability. If the device wraps around to the beginning of the next line
when it reaches the right margin, then it should have the am capability. If the terminal
can clear its screen, leaving the cursor in the home position, then this is given by the
clear string capability. If the terminal overstrikes (rather than clearing a position
when a character is struck over) then it should have the os capability. If the device is a
printing terminal, with no soft copy unit, specify both hc and os. If there is a way to
move the cursor to the left edge of the current row, specify this as cr. (Normally this
will be carriage return, control M.) If there is a way to produce an audible signal (such
as a bell or a beep), specify it as bel. If, like most devices, the device uses the xon-xoff
flow-control protocol, specify xon.

terminfo(4)

Preparing
Descriptions

Section 1-1: Basic
Capabilities

706 man pages section 4: File Formats • Last Revised 9 Jul 1996

If there is a way to move the cursor one position to the left (such as backspace), that
capability should be given as cub1. Similarly, sequences to move to the right, up, and
down should be given as cuf1, cuu1, and cud1, respectively. These local cursor
motions must not alter the text they pass over; for example, you would not normally
use ‘‘cuf1=\s’’ because the space would erase the character moved over.

A very important point here is that the local cursor motions encoded in terminfo are
undefined at the left and top edges of a screen terminal. Programs should never
attempt to backspace around the left edge, unless bw is specified, and should never
attempt to go up locally off the top. To scroll text up, a program goes to the bottom left
corner of the screen and sends the ind (index) string.

To scroll text down, a program goes to the top left corner of the screen and sends the
ri (reverse index) string. The strings ind and ri are undefined when not on their
respective corners of the screen.

Parameterized versions of the scrolling sequences are indn and rin. These versions
have the same semantics as ind and ri, except that they take one parameter and
scroll the number of lines specified by that parameter. They are also undefined except
at the appropriate edge of the screen.

The am capability tells whether the cursor sticks at the right edge of the screen when
text is output, but this does not necessarily apply to a cuf1 from the last column.
Backward motion from the left edge of the screen is possible only when bw is
specified. In this case, cub1 will move to the right edge of the previous row. If bw is
not given, the effect is undefined. This is useful for drawing a box around the edge of
the screen, for example. If the device has switch selectable automatic margins, am
should be specified in the terminfo source file. In this case, initialization strings
should turn on this option, if possible. If the device has a command that moves to the
first column of the next line, that command can be given as nel (newline). It does not
matter if the command clears the remainder of the current line, so if the device has no
cr and lf it may still be possible to craft a working nel out of one or both of them.

These capabilities suffice to describe hardcopy and screen terminals. Thus the AT&T
5320 hardcopy terminal is described as follows:

5320|att5320|AT&T 5320 hardcopy terminal,
am, hc, os,
cols#132,
bel=^G, cr=\r, cub1=\b, cnd1=\n,
dch1=\E[P, dl1=\E[M,
ind=\n,

while the Lear Siegler ADM−3 is described as

adm3 | lsi adm3,
am, bel=^G, clear=^Z, cols#80, cr=^M, cub1=^H,
cud1=^J, ind=^J, lines#24,

Cursor addressing and other strings requiring parameters are described by a
parameterized string capability, with printf-like escapes (%x) in it. For example, to
address the cursor, the cup capability is given, using two parameters: the row and

terminfo(4)

Section 1-2:
Parameterized

Strings

File Formats 707

column to address to. (Rows and columns are numbered from zero and refer to the
physical screen visible to the user, not to any unseen memory.) If the terminal has
memory relative cursor addressing, that can be indicated by mrcup.

The parameter mechanism uses a stack and special % codes to manipulate the stack in
the manner of Reverse Polish Notation (postfix). Typically a sequence will push one of
the parameters onto the stack and then print it in some format. Often more complex
operations are necessary. Operations are in postfix form with the operands in the usual
order. That is, to subtract 5 from the first parameter, one would use %p1%{5}%−.

The % encodings have the following meanings:

%% outputs ‘%’

%[[:]flags][width[.precision]][doxXs] as in printf, flags are [−+#] and
space

%c print pop gives %c

%p[1-9] push ith parm

%P[a-z] set dynamic variable [a-z] to pop

%g[a-z] get dynamic variable [a-z] and
push it

%P[A-Z] set static variable [a-z] to pop

%g[A-Z] get static variable [a-z] and push it

%’c’ push char constant c

%{nn} push decimal constant nn

%l push strlen(pop)

%+ %− %* %/ %m arithmetic (%m is mod): push(pop
integer2 op pop integer1)

%& %| %^ bit operations: push(pop integer2
op pop integer1)

%= %> %< logical operations: push(pop
integer2 op pop integer1)

%A %O logical operations: and, or

%! %~ unary operations: push(op pop)

%i (for ANSI terminals) add 1 to first
parm, if one parm present, or first
two parms, if more than one parm
present

terminfo(4)

708 man pages section 4: File Formats • Last Revised 9 Jul 1996

%? expr %t thenpart %e elsepart %; if-then-else, %e elsepart is optional;
else-if’s are possible ala Algol 68:
%? c1 %t b1 %e c2 %t b2 %e c3 %t b3

%e c4 %t b4 %e b5%; ci are
conditions, bi are bodies.

If the ‘‘−’’ flag is used with ‘‘%[doxXs]’’, then a colon (:) must be placed between the
‘‘%’’ and the ‘‘−’’ to differentiate the flag from the binary ‘‘%−’’ operator, for example
‘‘%:−16.16s’’.

Consider the Hewlett-Packard 2645, which, to get to row 3 and column 12, needs to be
sent \E&a12c03Y padded for 6 milliseconds. Note that the order of the rows and
columns is inverted here, and that the row and column are zero-padded as two digits.
Thus its cup capability is: cup=\E&a%p2%2.2dc%p1%2.2dY$<6>

The Micro-Term ACT-IV needs the current row and column sent preceded by a ^T,
with the row and column simply encoded in binary, ‘‘cup=^T%p1%c%p2%c’’. Devices
that use ‘‘%c’’ need to be able to backspace the cursor (cub1), and to move the cursor
up one line on the screen (cuu1). This is necessary because it is not always safe to
transmit \n, ^D, and \r, as the system may change or discard them. (The library
routines dealing with terminfo set tty modes so that tabs are never expanded, so \t
is safe to send. This turns out to be essential for the Ann Arbor 4080.)

A final example is the LSI ADM-3a, which uses row and column offset by a blank
character, thus ‘‘cup=\E=%p1%’\s’%+%c%p2%’\s’%+%c’’. After sending ‘‘\E=’’, this
pushes the first parameter, pushes the ASCII value for a space (32), adds them
(pushing the sum on the stack in place of the two previous values), and outputs that
value as a character. Then the same is done for the second parameter. More complex
arithmetic is possible using the stack.

If the terminal has a fast way to home the cursor (to very upper left corner of screen)
then this can be given as home; similarly a fast way of getting to the lower left-hand
corner can be given as ll; this may involve going up with cuu1 from the home
position, but a program should never do this itself (unless ll does) because it can
make no assumption about the effect of moving up from the home position. Note that
the home position is the same as addressing to (0,0): to the top left corner of the screen,
not of memory. (Thus, the \EH sequence on Hewlett-Packard terminals cannot be used
for home without losing some of the other features on the terminal.)

If the device has row or column absolute-cursor addressing, these can be given as
single parameter capabilities hpa (horizontal position absolute) and vpa (vertical
position absolute). Sometimes these are shorter than the more general two-parameter
sequence (as with the Hewlett-Packard 2645) and can be used in preference to cup. If
there are parameterized local motions (for example, move n spaces to the right) these
can be given as cud, cub, cuf, and cuu with a single parameter indicating how many
spaces to move. These are primarily useful if the device does not have cup, such as the
Tektronix 4025.

terminfo(4)

Section 1-3: Cursor
Motions

File Formats 709

If the device needs to be in a special mode when running a program that uses these
capabilities, the codes to enter and exit this mode can be given as smcup and rmcup.
This arises, for example, from terminals, such as the Concept, with more than one
page of memory. If the device has only memory relative cursor addressing and not
screen relative cursor addressing, a one screen-sized window must be fixed into the
device for cursor addressing to work properly. This is also used for the Tektronix 4025,
where smcup sets the command character to be the one used by terminfo. If the
smcup sequence will not restore the screen after an rmcup sequence is output (to the
state prior to outputting rmcup), specify nrrmc.

If the terminal can clear from the current position to the end of the line, leaving the
cursor where it is, this should be given as el. If the terminal can clear from the
beginning of the line to the current position inclusive, leaving the cursor where it is,
this should be given as el1. If the terminal can clear from the current position to the
end of the display, then this should be given as ed. ed is only defined from the first
column of a line. (Thus, it can be simulated by a request to delete a large number of
lines, if a true ed is not available.)

If the terminal can open a new blank line before the line where the cursor is, this
should be given as il1; this is done only from the first position of a line. The cursor
must then appear on the newly blank line. If the terminal can delete the line which the
cursor is on, then this should be given as dl1; this is done only from the first position
on the line to be deleted. Versions of il1 and dl1 which take a single parameter and
insert or delete that many lines can be given as il and dl.

If the terminal has a settable destructive scrolling region (like the VT100) the
command to set this can be described with the csr capability, which takes two
parameters: the top and bottom lines of the scrolling region. The cursor position is,
alas, undefined after using this command. It is possible to get the effect of insert or
delete line using this command — the sc and rc (save and restore cursor) commands
are also useful. Inserting lines at the top or bottom of the screen can also be done using
ri or ind on many terminals without a true insert/delete line, and is often faster even
on terminals with those features.

To determine whether a terminal has destructive scrolling regions or non-destructive
scrolling regions, create a scrolling region in the middle of the screen, place data on the
bottom line of the scrolling region, move the cursor to the top line of the scrolling
region, and do a reverse index (ri) followed by a delete line (dl1) or index (ind). If
the data that was originally on the bottom line of the scrolling region was restored into
the scrolling region by the dl1 or ind, then the terminal has non-destructive scrolling
regions. Otherwise, it has destructive scrolling regions. Do not specify csr if the
terminal has non-destructive scrolling regions, unless ind, ri, indn, rin, dl, and
dl1 all simulate destructive scrolling.

If the terminal has the ability to define a window as part of memory, which all
commands affect, it should be given as the parameterized string wind. The four
parameters are the starting and ending lines in memory and the starting and ending
columns in memory, in that order.

terminfo(4)

Section 1-4: Area
Clears

Section 1-5:
Insert/Delete Line

710 man pages section 4: File Formats • Last Revised 9 Jul 1996

If the terminal can retain display memory above, then the da capability should be
given; if display memory can be retained below, then db should be given. These
indicate that deleting a line or scrolling a full screen may bring non-blank lines up
from below or that scrolling back with ri may bring down non-blank lines.

There are two basic kinds of intelligent terminals with respect to insert/delete
character operations which can be described using terminfo. The most common
insert/delete character operations affect only the characters on the current line and
shift characters off the end of the line rigidly. Other terminals, such as the Concept 100
and the Perkin Elmer Owl, make a distinction between typed and untyped blanks on
the screen, shifting upon an insert or delete only to an untyped blank on the screen
which is either eliminated, or expanded to two untyped blanks. You can determine the
kind of terminal you have by clearing the screen and then typing text separated by
cursor motions. Type ‘‘abc def’’ using local cursor motions (not spaces) between the
abc and the def. Then position the cursor before the abc and put the terminal in
insert mode. If typing characters causes the rest of the line to shift rigidly and
characters to fall off the end, then your terminal does not distinguish between blanks
and untyped positions. If the abc shifts over to the def which then move together
around the end of the current line and onto the next as you insert, you have the
second type of terminal, and should give the capability in, which stands for ‘‘insert
null.’’ While these are two logically separate attributes (one line versus multiline insert
mode, and special treatment of untyped spaces) we have seen no terminals whose
insert mode cannot be described with the single attribute.

terminfo can describe both terminals that have an insert mode and terminals which
send a simple sequence to open a blank position on the current line. Give as smir the
sequence to get into insert mode. Give as rmir the sequence to leave insert mode.
Now give as ich1 any sequence needed to be sent just before sending the character to
be inserted. Most terminals with a true insert mode will not give ich1; terminals that
send a sequence to open a screen position should give it here. (If your terminal has
both, insert mode is usually preferable to ich1. Do not give both unless the terminal
actually requires both to be used in combination.) If post-insert padding is needed,
give this as a number of milliseconds padding in ip (a string option). Any other
sequence which may need to be sent after an insert of a single character may also be
given in ip. If your terminal needs both to be placed into an ‘insert mode’ and a
special code to precede each inserted character, then both smir/rmir and ich1 can be
given, and both will be used. The ich capability, with one parameter, n, will insert n
blanks.

If padding is necessary between characters typed while not in insert mode, give this as
a number of milliseconds padding in rmp.

It is occasionally necessary to move around while in insert mode to delete characters
on the same line (for example, if there is a tab after the insertion position). If your
terminal allows motion while in insert mode you can give the capability mir to speed
up inserting in this case. Omitting mir will affect only speed. Some terminals (notably
Datamedia’s) must not have mir because of the way their insert mode works.

terminfo(4)

Section 1-6:
Insert/Delete

Character

File Formats 711

Finally, you can specify dch1 to delete a single character, dch with one parameter, n,
to delete n characters, and delete mode by giving smdc and rmdc to enter and exit
delete mode (any mode the terminal needs to be placed in for dch1 to work).

A command to erase n characters (equivalent to outputting n blanks without moving
the cursor) can be given as ech with one parameter.

Your device may have one or more kinds of display attributes that allow you to
highlight selected characters when they appear on the screen. The following display
modes (shown with the names by which they are set) may be available: a blinking
screen (blink), bold or extra-bright characters (bold), dim or half-bright characters
(dim), blanking or invisible text (invis), protected text (prot), a reverse-video screen
(rev), and an alternate character set (smacs to enter this mode and rmacs to exit it).
(If a command is necessary before you can enter alternate character set mode, give the
sequence in enacs or “enable alternate-character-set” mode.) Turning on any of these
modes singly may or may not turn off other modes.

sgr0 should be used to turn off all video enhancement capabilities. It should always
be specified because it represents the only way to turn off some capabilities, such as
dim or blink.

You should choose one display method as standout mode and use it to highlight error
messages and other kinds of text to which you want to draw attention. Choose a form
of display that provides strong contrast but that is easy on the eyes. (We recommend
reverse-video plus half-bright or reverse-video alone.) The sequences to enter and exit
standout mode are given as smso and rmso, respectively. If the code to change into or
out of standout mode leaves one or even two blank spaces on the screen, as the TVI
912 and Teleray 1061 do, then xmc should be given to tell how many spaces are left.

Sequences to begin underlining and end underlining can be specified as smul and
rmul , respectively. If the device has a sequence to underline the current character
and to move the cursor one space to the right (such as the Micro-Term MIME), this
sequence can be specified as uc.

Terminals with the ‘‘magic cookie’’ glitch (xmc) deposit special ‘‘cookies’’ when they
receive mode-setting sequences, which affect the display algorithm rather than having
extra bits for each character. Some terminals, such as the Hewlett-Packard 2621,
automatically leave standout mode when they move to a new line or the cursor is
addressed. Programs using standout mode should exit standout mode before moving
the cursor or sending a newline, unless the msgr capability, asserting that it is safe to
move in standout mode, is present.

If the terminal has a way of flashing the screen to indicate an error quietly (a bell
replacement), then this can be given as flash; it must not move the cursor. A good
flash can be done by changing the screen into reverse video, pad for 200 ms, then
return the screen to normal video.

terminfo(4)

Section 1-7:
Highlighting,

Underlining, and
Visible Bells

712 man pages section 4: File Formats • Last Revised 9 Jul 1996

If the cursor needs to be made more visible than normal when it is not on the bottom
line (to make, for example, a non-blinking underline into an easier to find block or
blinking underline) give this sequence as cvvis. The boolean chts should also be
given. If there is a way to make the cursor completely invisible, give that as civis.
The capability cnorm should be given which undoes the effects of either of these
modes.

If your terminal generates underlined characters by using the underline character
(with no special sequences needed) even though it does not otherwise overstrike
characters, then you should specify the capability ul. For devices on which a character
overstriking another leaves both characters on the screen, specify the capability os. If
overstrikes are erasable with a blank, then this should be indicated by specifying eo.

If there is a sequence to set arbitrary combinations of modes, this should be given as
sgr (set attributes), taking nine parameters. Each parameter is either 0 or non-zero, as
the corresponding attribute is on or off. The nine parameters are, in order: standout,
underline, reverse, blink, dim, bold, blank, protect, alternate character set. Not all
modes need to be supported by sgr; only those for which corresponding separate
attribute commands exist should be supported. For example, let’s assume that the
terminal in question needs the following escape sequences to turn on various modes.

tparm

parameter attribute escape sequence

none \E[0m

p1 standout \E[0;4;7m

p2 underline \E[0;3m

p3 reverse \E[0;4m

p4 blink \E[0;5m

p5 dim \E[0;7m

p6 bold \E[0;3;4m

p7 invis \E[0;8m

p8 protect not available

p9 altcharset ^O (off) ^N (on)

Note that each escape sequence requires a 0 to turn off other modes before turning on
its own mode. Also note that, as suggested above, standout is set up to be the
combination of reverse and dim. Also, because this terminal has no bold mode, bold is
set up as the combination of reverse and underline. In addition, to allow combinations,

terminfo(4)

File Formats 713

such as underline+blink, the sequence to use would be \E[0;3;5m. The terminal
doesn’t have protect mode, either, but that cannot be simulated in any way, so p8 is
ignored. The altcharset mode is different in that it is either ^O or ^N, depending on
whether it is off or on. If all modes were to be turned on, the sequence would be
\E[0;3;4;5;7;8m^N.

Now look at when different sequences are output. For example, ;3 is output when
either p2 or p6 is true, that is, if either underline or bold modes are turned on. Writing
out the above sequences, along with their dependencies, gives the following:

sequence when to output terminfo translation

\E[0 always \E[0

;3 if p2 or p6 %?%p2%p6%|%t;3%;

;4 if p1 or p3 or p6 %?%p1%p3%|%p6%|%t;4%;

;5 if p4 %?%p4%t;5%;

;7 if p1 or p5 %?%p1%p5%|%t;7%;

;8 if p7 %?%p7%t;8%;

m always m

^N or ^O if p9 ^N, else ^O %?%p9%t^N%e^O%;

Putting this all together into the sgr sequence gives:

sgr=\E[0%?%p2%p6%|%t;3%;%?%p1%p3%|%p6% |%t;4%;%?%p5%t;5%;%?
%p1%p5% |%t;7%;%?%p7%t;8%;m%?%p9%t^N%e^O%;,

Remember that sgr and sgr0 must always be specified.

If the device has a keypad that transmits sequences when the keys are pressed, this
information can also be specified. Note that it is not possible to handle devices where
the keypad only works in local (this applies, for example, to the unshifted
Hewlett-Packard 2621 keys). If the keypad can be set to transmit or not transmit,
specify these sequences as smkx and rmkx. Otherwise the keypad is assumed to
always transmit.

The sequences sent by the left arrow, right arrow, up arrow, down arrow, and home
keys can be given as kcub1, kcuf1, kcuu1, kcud1,and khome, respectively. If
there are function keys such as f0, f1, ..., f63, the sequences they send can be specified
as kf0, kf1, ..., kf63. If the first 11 keys have labels other than the default f0
through f10, the labels can be given as lf0, lf1, ..., lf10. The codes
transmitted by certain other special keys can be given: kll (home down), kbs
(backspace), ktbc (clear all tabs), kctab (clear the tab stop in this column), kclr
(clear screen or erase key), kdch1 (delete character), kdl1 (delete line), krmir (exit
insert mode), kel (clear to end of line), ked (clear to end of screen), kich1 (insert

terminfo(4)

Section 1-8:
Keypad

714 man pages section 4: File Formats • Last Revised 9 Jul 1996

character or enter insert mode), kil1 (insert line), knp (next page), kpp (previous
page), kind (scroll forward/down), kri (scroll backward/up), khts (set a tab stop in
this column). In addition, if the keypad has a 3 by 3 array of keys including the four
arrow keys, the other five keys can be given as ka1, ka3, kb2, kc1, and kc3. These
keys are useful when the effects of a 3 by 3 directional pad are needed. Further keys
are defined above in the capabilities list.

Strings to program function keys can be specified as pfkey, pfloc, and pfx. A string
to program screen labels should be specified as pln. Each of these strings takes two
parameters: a function key identifier and a string to program it with. pfkey causes
pressing the given key to be the same as the user typing the given string; pfloc
causes the string to be executed by the terminal in local mode; and pfx causes the
string to be transmitted to the computer. The capabilities nlab, lw and lh define the
number of programmable screen labels and their width and height. If there are
commands to turn the labels on and off, give them in smln and rmln. smln is
normally output after one or more pln sequences to make sure that the change
becomes visible.

If the device has hardware tabs, the command to advance to the next tab stop can be
given as ht (usually control I). A ‘‘backtab’’ command that moves leftward to the next
tab stop can be given as cbt. By convention, if tty modes show that tabs are being
expanded by the computer rather than being sent to the device, programs should not
use ht or cbt (even if they are present) because the user may not have the tab stops
properly set. If the device has hardware tabs that are initially set every n spaces when
the device is powered up, the numeric parameter it is given, showing the number of
spaces the tabs are set to. This is normally used by tput init (see tput(1)) to
determine whether to set the mode for hardware tab expansion and whether to set the
tab stops. If the device has tab stops that can be saved in nonvolatile memory, the
terminfo description can assume that they are properly set. If there are commands to
set and clear tab stops, they can be given as tbc (clear all tab stops) and hts (set a tab
stop in the current column of every row).

Other capabilities include: is1, is2, and is3, initialization strings for the device;
iprog, the path name of a program to be run to initialize the device; and if, the name
of a file containing long initialization strings. These strings are expected to set the
device into modes consistent with the rest of the terminfo description. They must be
sent to the device each time the user logs in and be output in the following order: run
the program iprog; output is1; output is2; set the margins using mgc, smgl and
smgr; set the tabs using tbc and hts; print the file if; and finally output is3. This is
usually done using the init option of tput.

Most initialization is done with is2. Special device modes can be set up without
duplicating strings by putting the common sequences in is2 and special cases in is1
and is3. Sequences that do a reset from a totally unknown state can be given as rs1,
rs2, rf, and rs3, analogous to is1, is2, is3, and if. (The method using files, if
and rf, is used for a few terminals, from /usr/share/lib/tabset/*; however, the
recommended method is to use the initialization and reset strings.) These strings are
output by tput reset, which is used when the terminal gets into a wedged state.
Commands are normally placed in rs1, rs2, rs3, and rf only if they produce

terminfo(4)

Section 1-9: Tabs
and Initialization

File Formats 715

annoying effects on the screen and are not necessary when logging in. For example,
the command to set a terminal into 80-column mode would normally be part of is2,
but on some terminals it causes an annoying glitch on the screen and is not normally
needed because the terminal is usually already in 80-column mode.

If a more complex sequence is needed to set the tabs than can be described by using
tbc and hts, the sequence can be placed in is2 or if.

Any margin can be cleared with mgc. (For instructions on how to specify commands
to set and clear margins, see “Margins” below under “PRINTER CAPABILITIES”.)

Certain capabilities control padding in the tty driver. These are primarily needed by
hard-copy terminals, and are used by tput init to set tty modes appropriately.
Delays embedded in the capabilities cr, ind, cub1, ff, and tab can be used to set the
appropriate delay bits to be set in the tty driver. If pb (padding baud rate) is given,
these values can be ignored at baud rates below the value of pb.

If the terminal has an extra ‘‘status line’’ that is not normally used by software, this
fact can be indicated. If the status line is viewed as an extra line below the bottom line,
into which one can cursor address normally (such as the Heathkit h19’s 25th line, or
the 24th line of a VT100 which is set to a 23-line scrolling region), the capability hs
should be given. Special strings that go to a given column of the status line and return
from the status line can be given as tsl and fsl. (fsl must leave the cursor position
in the same place it was before tsl. If necessary, the sc and rc strings can be
included in tsl and fsl to get this effect.) The capability tsl takes one parameter,
which is the column number of the status line the cursor is to be moved to.

If escape sequences and other special commands, such as tab, work while in the status
line, the flag eslok can be given. A string which turns off the status line (or otherwise
erases its contents) should be given as dsl. If the terminal has commands to save and
restore the position of the cursor, give them as sc and rc. The status line is normally
assumed to be the same width as the rest of the screen, for example, cols. If the status
line is a different width (possibly because the terminal does not allow an entire line to
be loaded) the width, in columns, can be indicated with the numeric parameter wsl.

If the device has a line drawing alternate character set, the mapping of glyph to
character would be given in acsc. The definition of this string is based on the
alternate character set used in the DEC VT100 terminal, extended slightly with some
characters from the AT&T 4410v1 terminal.

Glyph Name vt100+ Character

arrow pointing right +

arrow pointing left ,

arrow pointing down .

solid square block 0

terminfo(4)

Section 1-10:
Delays

Section 1-11: Status
Lines

Section 1-12: Line
Graphics

716 man pages section 4: File Formats • Last Revised 9 Jul 1996

Glyph Name vt100+ Character

lantern symbol I

arrow pointing up −

diamond ‘

checker board (stipple) a

degree symbol f

plus/minus g

board of squares h

lower right corner j

upper right corner k

upper left corner l

lower left corner m

plus n

scan line 1 o

horizontal line q

scan line 9 s

left tee t

right tee u

bottom tee v

top tee w

vertical line x

bullet ~

The best way to describe a new device’s line graphics set is to add a third column to
the above table with the characters for the new device that produce the appropriate
glyph when the device is in the alternate character set mode. For example,

Glyph Name vt100+ Char New tty Char

upper left corner l R

lower left corner m F

upper right corner k T

terminfo(4)

File Formats 717

Glyph Name vt100+ Char New tty Char

lower right corner j G

horizontal line q ,

vertical line x .

Now write down the characters left to right, as in ‘‘acsc=lRmFkTjGq\,x.’’.

In addition, terminfo allows you to define multiple character sets. See Section 2-5 for
details.

Let us define two methods of color manipulation: the Tektronix method and the HP
method. The Tektronix method uses a set of N predefined colors (usually 8) from
which a user can select “current” foreground and background colors. Thus a terminal
can support up to N colors mixed into N*N color-pairs to be displayed on the screen
at the same time. When using an HP method the user cannot define the foreground
independently of the background, or vice-versa. Instead, the user must define an
entire color-pair at once. Up to M color-pairs, made from 2*M different colors, can be
defined this way. Most existing color terminals belong to one of these two classes of
terminals.

The numeric variables colors and pairs define the number of colors and color-pairs
that can be displayed on the screen at the same time. If a terminal can change the
definition of a color (for example, the Tektronix 4100 and 4200 series terminals), this
should be specified with ccc (can change color). To change the definition of a color
(Tektronix 4200 method), use initc (initialize color). It requires four arguments: color
number (ranging from 0 to colors−1) and three RGB (red, green, and blue) values or
three HLS colors (Hue, Lightness, Saturation). Ranges of RGB and HLS values are
terminal dependent.

Tektronix 4100 series terminals only use HLS color notation. For such terminals (or
dual-mode terminals to be operated in HLS mode) one must define a boolean variable
hls; that would instruct the curses init_color routine to convert its RGB
arguments to HLS before sending them to the terminal. The last three arguments to
the initc string would then be HLS values.

If a terminal can change the definitions of colors, but uses a color notation different
from RGB and HLS, a mapping to either RGB or HLS must be developed.

To set current foreground or background to a given color, use setaf (set ANSI
foreground) and setab (set ANSI background). They require one parameter: the
number of the color. To initialize a color-pair (HP method), use initp (initialize pair).
It requires seven parameters: the number of a color-pair (range=0 to pairs−1), and six
RGB values: three for the foreground followed by three for the background. (Each of
these groups of three should be in the order RGB.) When initc or initp are used,
RGB or HLS arguments should be in the order “red, green, blue” or “hue, lightness,
saturation”), respectively. To make a color-pair current, use scp (set color-pair). It
takes one parameter, the number of a color-pair.

terminfo(4)

Section 1-13: Color
Manipulation

718 man pages section 4: File Formats • Last Revised 9 Jul 1996

Some terminals (for example, most color terminal emulators for PCs) erase areas of the
screen with current background color. In such cases, bce (background color erase)
should be defined. The variable op (original pair) contains a sequence for setting the
foreground and the background colors to what they were at the terminal start-up time.
Similarly, oc (original colors) contains a control sequence for setting all colors (for the
Tektronix method) or color-pairs (for the HP method) to the values they had at the
terminal start-up time.

Some color terminals substitute color for video attributes. Such video attributes should
not be combined with colors. Information about these video attributes should be
packed into the ncv (no color video) variable. There is a one-to-one correspondence
between the nine least significant bits of that variable and the video attributes. The
following table depicts this correspondence.

Attribute Bit Position Decimal Value

A_STANDOUT 0 1

A_UNDERLINE 1 2

A_REVERSE 2 4

A_BLINK 3 8

A_DIM 4 16

A_BOLD 5 32

A_INVIS 6 64

A_PROTECT 7 128

A_ALTCHARSET 8 256

When a particular video attribute should not be used with colors, the corresponding
ncv bit should be set to 1; otherwise it should be set to zero. To determine the
information to pack into the ncv variable, you must add together the decimal values
corresponding to those attributes that cannot coexist with colors. For example, if the
terminal uses colors to simulate reverse video (bit number 2 and decimal value 4) and
bold (bit number 5 and decimal value 32), the resulting value for ncv will be 36 (4 +
32).

If the terminal requires other than a null (zero) character as a pad, then this can be
given as pad. Only the first character of the pad string is used. If the terminal does not
have a pad character, specify npc.

If the terminal can move up or down half a line, this can be indicated with hu
(half-line up) and hd (half-line down). This is primarily useful for superscripts and
subscripts on hardcopy terminals. If a hardcopy terminal can eject to the next page
(form feed), give this as ff (usually control L).

terminfo(4)

Section 1-14:
Miscellaneous

File Formats 719

If there is a command to repeat a given character a given number of times (to save
time transmitting a large number of identical characters) this can be indicated with the
parameterized string rep. The first parameter is the character to be repeated and the
second is the number of times to repeat it. Thus, tparm(repeat_char, ’x’, 10)
is the same as xxxxxxxxxx.

If the terminal has a settable command character, such as the Tektronix 4025, this can
be indicated with cmdch. A prototype command character is chosen which is used in
all capabilities. This character is given in the cmdch capability to identify it. The
following convention is supported on some systems: If the environment variable CC
exists, all occurrences of the prototype character are replaced with the character in CC.

Terminal descriptions that do not represent a specific kind of known terminal, such as
switch, dialup, patch, and network, should include the gn (generic) capability so that
programs can complain that they do not know how to talk to the terminal. (This
capability does not apply to virtual terminal descriptions for which the escape
sequences are known.) If the terminal is one of those supported by the system virtual
terminal protocol, the terminal number can be given as vt. A line-turn-around
sequence to be transmitted before doing reads should be specified in rfi.

If the device uses xon/xoff handshaking for flow control, give xon. Padding
information should still be included so that routines can make better decisions about
costs, but actual pad characters will not be transmitted. Sequences to turn on and off
xon/xoff handshaking may be given in smxon and rmxon. If the characters used for
handshaking are not ^S and ^Q, they may be specified with xonc and xoffc.

If the terminal has a ‘‘meta key’’ which acts as a shift key, setting the 8th bit of any
character transmitted, this fact can be indicated with km. Otherwise, software will
assume that the 8th bit is parity and it will usually be cleared. If strings exist to turn
this ‘‘meta mode’’ on and off, they can be given as smm and rmm.

If the terminal has more lines of memory than will fit on the screen at once, the
number of lines of memory can be indicated with lm. A value of lm#0 indicates that
the number of lines is not fixed, but that there is still more memory than fits on the
screen.

Media copy strings which control an auxiliary printer connected to the terminal can be
given as mc0: print the contents of the screen, mc4: turn off the printer, and mc5: turn
on the printer. When the printer is on, all text sent to the terminal will be sent to the
printer. A variation, mc5p, takes one parameter, and leaves the printer on for as many
characters as the value of the parameter, then turns the printer off. The parameter
should not exceed 255. If the text is not displayed on the terminal screen when the
printer is on, specify mc5i (silent printer). All text, including mc4, is transparently
passed to the printer while an mc5p is in effect.

terminfo(4)

720 man pages section 4: File Formats • Last Revised 9 Jul 1996

The working model used by terminfo fits most terminals reasonably well. However,
some terminals do not completely match that model, requiring special support by
terminfo. These are not meant to be construed as deficiencies in the terminals; they
are just differences between the working model and the actual hardware. They may be
unusual devices or, for some reason, do not have all the features of the terminfo
model implemented.

Terminals that cannot display tilde (~) characters, such as certain Hazeltine terminals,
should indicate hz.

Terminals that ignore a linefeed immediately after an am wrap, such as the Concept
100, should indicate xenl. Those terminals whose cursor remains on the right-most
column until another character has been received, rather than wrapping immediately
upon receiving the right-most character, such as the VT100, should also indicate xenl.

If el is required to get rid of standout (instead of writing normal text on top of it), xhp
should be given.

Those Teleray terminals whose tabs turn all characters moved over to blanks, should
indicate xt (destructive tabs). This capability is also taken to mean that it is not
possible to position the cursor on top of a ‘‘magic cookie.’’ Therefore, to erase standout
mode, it is necessary, instead, to use delete and insert line.

Those Beehive Superbee terminals which do not transmit the escape or control−C
characters, should specify xsb, indicating that the f1 key is to be used for escape and
the f2 key for control C.

If there are two very similar terminals, one can be defined as being just like the other
with certain exceptions. The string capability use can be given with the name of the
similar terminal. The capabilities given before use override those in the terminal type
invoked by use. A capability can be canceled by placing xx@ to the left of the
capability definition, where xx is the capability. For example, the entry

att4424-2|Teletype4424 in display function group ii,
rev@, sgr@, smul@, use=att4424,

defines an AT&T4424 terminal that does not have the rev, sgr, and smul capabilities,
and hence cannot do highlighting. This is useful for different modes for a terminal, or
for different user preferences. More than one use capability may be given.

The terminfo database allows you to define capabilities of printers as well as
terminals. To find out what capabilities are available for printers as well as for
terminals, see the two lists under “DEVICE CAPABILITIES” that list capabilities by
variable and by capability name.

Because parameterized string capabilities work only with integer values, we
recommend that terminfo designers create strings that expect numeric values that
have been rounded. Application designers should note this and should always round
values to the nearest integer before using them with a parameterized string capability.

terminfo(4)

Section 1-15:
Special Cases

Section 1-16:
Similar Terminals

PART 2: PRINTER
CAPABILITIES

Section 2-1:
Rounding Values

File Formats 721

A printer’s resolution is defined to be the smallest spacing of characters it can achieve.
In general printers have independent resolution horizontally and vertically. Thus the
vertical resolution of a printer can be determined by measuring the smallest
achievable distance between consecutive printing baselines, while the horizontal
resolution can be determined by measuring the smallest achievable distance between
the left-most edges of consecutive printed, identical, characters.

All printers are assumed to be capable of printing with a uniform horizontal and
vertical resolution. The view of printing that terminfo currently presents is one of
printing inside a uniform matrix: All characters are printed at fixed positions relative
to each ‘‘cell’’ in the matrix; furthermore, each cell has the same size given by the
smallest horizontal and vertical step sizes dictated by the resolution. (The cell size can
be changed as will be seen later.)

Many printers are capable of ‘‘proportional printing,’’ where the horizontal spacing
depends on the size of the character last printed. terminfo does not make use of this
capability, although it does provide enough capability definitions to allow an
application to simulate proportional printing.

A printer must not only be able to print characters as close together as the horizontal
and vertical resolutions suggest, but also of ‘‘moving’’ to a position an integral
multiple of the smallest distance away from a previous position. Thus printed
characters can be spaced apart a distance that is an integral multiple of the smallest
distance, up to the length or width of a single page.

Some printers can have different resolutions depending on different ‘‘modes.’’ In
‘‘normal mode,’’ the existing terminfo capabilities are assumed to work on columns
and lines, just like a video terminal. Thus the old lines capability would give the
length of a page in lines, and the cols capability would give the width of a page in
columns. In ‘‘micro mode,’’ many terminfo capabilities work on increments of lines
and columns. With some printers the micro mode may be concomitant with normal
mode, so that all the capabilities work at the same time.

The printing resolution of a printer is given in several ways. Each specifies the
resolution as the number of smallest steps per distance:

Specification of Printer Resolution
Characteristic Number of Smallest Steps

orhi Steps per inch horizontally
orvi Steps per inch vertically
orc Steps per column
orl Steps per line

When printing in normal mode, each character printed causes movement to the next
column, except in special cases described later; the distance moved is the same as the
per-column resolution. Some printers cause an automatic movement to the next line
when a character is printed in the rightmost position; the distance moved vertically is
the same as the per-line resolution. When printing in micro mode, these distances can
be different, and may be zero for some printers.

terminfo(4)

Section 2-2: Printer
Resolution

Section 2-3:
Specifying Printer

Resolution

722 man pages section 4: File Formats • Last Revised 9 Jul 1996

Specification of Printer Resolution
Automatic Motion after Printing

Normal Mode:

orc Steps moved horizontally
orl Steps moved vertically

Micro Mode:

mcs Steps moved horizontally
mls Steps moved vertically

Some printers are capable of printing wide characters. The distance moved when a
wide character is printed in normal mode may be different from when a regular width
character is printed. The distance moved when a wide character is printed in micro
mode may also be different from when a regular character is printed in micro mode,
but the differences are assumed to be related: If the distance moved for a regular
character is the same whether in normal mode or micro mode (mcs=orc), then the
distance moved for a wide character is also the same whether in normal mode or
micro mode. This doesn’t mean the normal character distance is necessarily the same
as the wide character distance, just that the distances don’t change with a change in
normal to micro mode. However, if the distance moved for a regular character is
different in micro mode from the distance moved in normal mode (mcs<orc), the
micro mode distance is assumed to be the same for a wide character printed in micro
mode, as the table below shows.

Specification of Printer Resolution
Automatic Motion after Printing Wide Character

Normal Mode or Micro Mode (mcs = orc):
sp
widcs Steps moved horizontally

Micro Mode (mcs < orc):

mcs Steps moved horizontally

There may be control sequences to change the number of columns per inch (the
character pitch) and to change the number of lines per inch (the line pitch). If these are
used, the resolution of the printer changes, but the type of change depends on the
printer:

Specification of Printer Resolution
Changing the Character/Line Pitches

cpi Change character pitch
cpix If set, cpi changes orhi, otherwise changes
orc

terminfo(4)

File Formats 723

lpi Change line pitch
lpix If set, lpi changes orvi, otherwise changes
orl
chr Change steps per column
cvr Change steps per line

The cpi and lpi string capabilities are each used with a single argument, the pitch in
columns (or characters) and lines per inch, respectively. The chr and cvr string
capabilities are each used with a single argument, the number of steps per column and
line, respectively.

Using any of the control sequences in these strings will imply a change in some of the
values of orc, orhi, orl, and orvi. Also, the distance moved when a wide character
is printed, widcs, changes in relation to orc. The distance moved when a character is
printed in micro mode, mcs, changes similarly, with one exception: if the distance is 0
or 1, then no change is assumed (see items marked with * in the following table).

Programs that use cpi, lpi, chr, or cvr should recalculate the printer resolution
(and should recalculate other values— see “Effect of Changing Printing Resolution”
under “Dot-Mapped Graphics”).

Specification of Printer Resolution
Effects of Changing the Character/Line Pitches

Before After

Using cpi with cpix clear:
$bold orhi ’$ orhi
$bold orc ’$ $bold orc = bold orhi over V sub italic cpi$

Using cpi with cpix set:
$bold orhi ’$ $bold orhi = bold orc cdot V sub italic cpi$
$bold orc ’$ $bold orc$

Using lpi with lpix clear:
$bold orvi ’$ $bold orvi$
$bold orl ’$ $bold orl = bold orvi over V sub italic lpi$

Using lpi with lpix set:
$bold orvi ’$ $bold orvi = bold orl cdot V sub italic lpi$
$bold orl ’$ $bold orl$

Using chr:
$bold orhi ’$ $bold orhi$
$bold orc ’$ $V sub italic chr$

Using cvr:
$bold orvi ’$ $bold orvi$
$bold orl ’$ $V sub italic cvr$

terminfo(4)

724 man pages section 4: File Formats • Last Revised 9 Jul 1996

Using cpi or chr:
$bold widcs ’$ $bold widcs = bold {widcs ’} bold orc over { bold {orc ’} }$
$bold mcs ’$ $bold mcs = bold {mcs ’} bold orc over { bold {orc ’} }$

$V sub italic cpi$, $V sub italic lpi$, $V sub italic chr$, and $V sub italic cvr$ are the
arguments used with cpi, lpi, chr, and cvr, respectively. The prime marks (’)
indicate the old values.

In the following descriptions, ‘‘movement’’ refers to the motion of the ‘‘current
position.’’ With video terminals this would be the cursor; with some printers this is the
carriage position. Other printers have different equivalents. In general, the current
position is where a character would be displayed if printed.

terminfo has string capabilities for control sequences that cause movement a
number of full columns or lines. It also has equivalent string capabilities for control
sequences that cause movement a number of smallest steps.

String Capabilities for Motion

mcub1 Move 1 step left
mcuf1 Move 1 step right
mcuu1 Move 1 step up
mcud1 Move 1 step down
mcub Move N steps left
mcuf Move N steps right
mcuu Move N steps up
mcud Move N steps down
mhpa Move N steps from the left
mvpa Move N steps from the top

The latter six strings are each used with a single argument, N.

Sometimes the motion is limited to less than the width or length of a page. Also, some
printers don’t accept absolute motion to the left of the current position. terminfo has
capabilities for specifying these limits.

Limits to Motion

mjump Limit on use of mcub1, mcuf1, mcuu1, mcud1
maddr Limit on use of mhpa, mvpa
xhpa If set, hpa and mhpa can’t move left
xvpa If set, vpa and mvpa can’t move up

If a printer needs to be in a ‘‘micro mode’’ for the motion capabilities described above
to work, there are string capabilities defined to contain the control sequence to enter
and exit this mode. A boolean is available for those printers where using a carriage
return causes an automatic return to normal mode.

terminfo(4)

Section 2-4:
Capabilities that

Cause Movement

File Formats 725

Entering/Exiting Micro Mode

smicm Enter micro mode
rmicm Exit micro mode
crxm Using cr exits micro mode

The movement made when a character is printed in the rightmost position varies
among printers. Some make no movement, some move to the beginning of the next
line, others move to the beginning of the same line. terminfo has boolean
capabilities for describing all three cases.

What Happens After Character
Printed in Rightmost Position

sam Automatic move to beginning of same line

Some printers can be put in a mode where the normal direction of motion is reversed.
This mode can be especially useful when there are no capabilities for leftward or
upward motion, because those capabilities can be built from the motion reversal
capability and the rightward or downward motion capabilities. It is best to leave it up
to an application to build the leftward or upward capabilities, though, and not enter
them in the terminfo database. This allows several reverse motions to be strung
together without intervening wasted steps that leave and reenter reverse mode.

Entering/Exiting Reverse Modes

slm Reverse sense of horizontal motions
rlm Restore sense of horizontal motions
sum Reverse sense of vertical motions
rum Restore sense of vertical motions

While sense of horizontal motions reversed:
mcub1 Move 1 step right
mcuf1 Move 1 step left
mcub Move N steps right
mcuf Move N steps left
cub1 Move 1 column right
cuf1 Move 1 column left
cub Move N columns right
cuf Move N columns left

While sense of vertical motions reversed:
mcuu1 Move 1 step down
mcud1 Move 1 step up
mcuu Move N steps down
mcud Move N steps up
cuu1 Move 1 line down
cud1 Move 1 line up
cuu Move N lines down
cud Move N lines up

terminfo(4)

726 man pages section 4: File Formats • Last Revised 9 Jul 1996

The reverse motion modes should not affect the mvpa and mhpa absolute motion
capabilities. The reverse vertical motion mode should, however, also reverse the action
of the line ‘‘wrapping’’ that occurs when a character is printed in the right-most
position. Thus printers that have the standard terminfo capability am defined should
experience motion to the beginning of the previous line when a character is printed in
the right-most position under reverse vertical motion mode.

The action when any other motion capabilities are used in reverse motion modes is not
defined; thus, programs must exit reverse motion modes before using other motion
capabilities.

Two miscellaneous capabilities complete the list of new motion capabilities. One of
these is needed for printers that move the current position to the beginning of a line
when certain control characters, such as ‘‘line-feed’’ or ‘‘form-feed,’’ are used. The
other is used for the capability of suspending the motion that normally occurs after
printing a character.

Miscellaneous Motion Strings

docr List of control characters causing cr
zerom Prevent auto motion after printing next single character

terminfo provides two strings for setting margins on terminals: one for the left and
one for the right margin. Printers, however, have two additional margins, for the top
and bottom margins of each page. Furthermore, some printers require not using
motion strings to move the current position to a margin and then fixing the margin
there, but require the specification of where a margin should be regardless of the
current position. Therefore terminfo offers six additional strings for defining
margins with printers.

Setting Margins

smgl Set left margin at current column
smgr Set right margin at current column
smgb Set bottom margin at current line
smgt Set top margin at current line
smgbp Set bottom margin at line N
smglp Set left margin at column N
smgrp Set right margin at column N
smgtp Set top margin at line N

The last four strings are used with one or more arguments that give the position of the
margin or margins to set. If both of smglp and smgrp are set, each is used with a
single argument, N, that gives the column number of the left and right margin,
respectively. If both of smgtp and smgbp are set, each is used to set the top and
bottom margin, respectively: smgtp is used with a single argument, N, the line
number of the top margin; however, smgbp is used with two arguments, N and M,
that give the line number of the bottom margin, the first counting from the top of the
page and the second counting from the bottom. This accommodates the two styles of

terminfo(4)

Margins

File Formats 727

specifying the bottom margin in different manufacturers’ printers. When coding a
terminfo entry for a printer that has a settable bottom margin, only the first or
second parameter should be used, depending on the printer. When writing an
application that uses smgbp to set the bottom margin, both arguments must be given.

If only one of smglp and smgrp is set, then it is used with two arguments, the column
number of the left and right margins, in that order. Likewise, if only one of smgtp and
smgbp is set, then it is used with two arguments that give the top and bottom
margins, in that order, counting from the top of the page. Thus when coding a
terminfo entry for a printer that requires setting both left and right or top and
bottom margins simultaneously, only one of smglp and smgrp or smgtp and smgbp
should be defined; the other should be left blank. When writing an application that
uses these string capabilities, the pairs should be first checked to see if each in the pair
is set or only one is set, and should then be used accordingly.

In counting lines or columns, line zero is the top line and column zero is the left-most
column. A zero value for the second argument with smgbp means the bottom line of
the page.

All margins can be cleared with mgc.

Five new sets of strings describe the capabilities printers have of enhancing printed
text.

Enhanced Printing

sshm Enter shadow-printing mode
rshm Exit shadow-printing mode
sitm Enter italicizing mode
ritm Exit italicizing mode
swidm Enter wide character mode
rwidm Exit wide character mode
ssupm Enter superscript mode
rsupm Exit superscript mode
supcs List of characters available as superscripts
ssubm Enter subscript mode
rsubm Exit subscript mode
subcs List of characters available as subscripts

If a printer requires the sshm control sequence before every character to be
shadow-printed, the rshm string is left blank. Thus programs that find a control
sequence in sshm but none in rshm should use the sshm control sequence before
every character to be shadow-printed; otherwise, the sshm control sequence should be
used once before the set of characters to be shadow-printed, followed by rshm. The
same is also true of each of the sitm/ritm, swidm/rwidm, ssupm/rsupm, and
ssubm/ rsubm pairs.

Note that terminfo also has a capability for printing emboldened text (bold). While
shadow printing and emboldened printing are similar in that they ‘‘darken’’ the text,
many printers produce these two types of print in slightly different ways. Generally,

terminfo(4)

Shadows, Italics,
Wide Characters

728 man pages section 4: File Formats • Last Revised 9 Jul 1996

emboldened printing is done by overstriking the same character one or more times.
Shadow printing likewise usually involves overstriking, but with a slight movement
up and/or to the side so that the character is ‘‘fatter.’’

It is assumed that enhanced printing modes are independent modes, so that it would
be possible, for instance, to shadow print italicized subscripts.

As mentioned earlier, the amount of motion automatically made after printing a wide
character should be given in widcs.

If only a subset of the printable ASCII characters can be printed as superscripts or
subscripts, they should be listed in supcs or subcs strings, respectively. If the ssupm
or ssubm strings contain control sequences, but the corresponding supcs or subcs
strings are empty, it is assumed that all printable ASCII characters are available as
superscripts or subscripts.

Automatic motion made after printing a superscript or subscript is assumed to be the
same as for regular characters. Thus, for example, printing any of the following three
examples will result in equivalent motion:

Bi Bi Bi

Note that the existing msgr boolean capability describes whether motion control
sequences can be used while in ‘‘standout mode.’’ This capability is extended to cover
the enhanced printing modes added here. msgr should be set for those printers that
accept any motion control sequences without affecting shadow, italicized, widened,
superscript, or subscript printing. Conversely, if msgr is not set, a program should end
these modes before attempting any motion.

In addition to allowing you to define line graphics (described in Section 1-12),
terminfo lets you define alternate character sets. The following capabilities cover
printers and terminals with multiple selectable or definable character sets.

Alternate Character Sets

scs Select character set N
scsd Start definition of character set N, M characters
defc Define character A, B dots wide, descender D
rcsd End definition of character set N
csnm List of character set names
daisy Printer has manually changed print-wheels

The scs, rcsd, and csnm strings are used with a single argument, N, a number from
0 to 63 that identifies the character set. The scsd string is also used with the argument
N and another, M, that gives the number of characters in the set. The defc string is
used with three arguments: A gives the ASCII code representation for the character, B
gives the width of the character in dots, and D is zero or one depending on whether
the character is a ‘‘descender’’ or not. The defc string is also followed by a string of
‘‘image-data’’ bytes that describe how the character looks (see below).

terminfo(4)

Section 2-5:
Alternate

Character Sets

File Formats 729

Character set 0 is the default character set present after the printer has been initialized.
Not every printer has 64 character sets, of course; using scs with an argument that
doesn’t select an available character set should cause a null result from tparm.

If a character set has to be defined before it can be used, the scsd control sequence is
to be used before defining the character set, and the rcsd is to be used after. They
should also cause a null result from tparm when used with an argument N that
doesn’t apply. If a character set still has to be selected after being defined, the scs
control sequence should follow the rcsd control sequence. By examining the results of
using each of the scs, scsd, and rcsd strings with a character set number in a call to
tparm, a program can determine which of the three are needed.

Between use of the scsd and rcsd strings, the defc string should be used to define
each character. To print any character on printers covered by terminfo, the ASCII
code is sent to the printer. This is true for characters in an alternate set as well as
‘‘normal’’ characters. Thus the definition of a character includes the ASCII code that
represents it. In addition, the width of the character in dots is given, along with an
indication of whether the character should descend below the print line (such as the
lower case letter ‘‘g’’ in most character sets). The width of the character in dots also
indicates the number of image-data bytes that will follow the defc string. These
image-data bytes indicate where in a dot-matrix pattern ink should be applied to
‘‘draw’’ the character; the number of these bytes and their form are defined below
under ‘‘Dot-Mapped Graphics.’’

It’s easiest for the creator of terminfo entries to refer to each character set by
number; however, these numbers will be meaningless to the application developer.
The csnm string alleviates this problem by providing names for each number.

When used with a character set number in a call to tparm, the csnm string will
produce the equivalent name. These names should be used as a reference only. No
naming convention is implied, although anyone who creates a terminfo entry for a
printer should use names consistent with the names found in user documents for the
printer. Application developers should allow a user to specify a character set by
number (leaving it up to the user to examine the csnm string to determine the correct
number), or by name, where the application examines the csnm string to determine
the corresponding character set number.

These capabilities are likely to be used only with dot-matrix printers. If they are not
available, the strings should not be defined. For printers that have manually changed
print-wheels or font cartridges, the boolean daisy is set.

Dot-matrix printers typically have the capability of reproducing ‘‘raster-graphics’’
images. Three new numeric capabilities and three new string capabilities can help a
program draw raster-graphics images independent of the type of dot-matrix printer or
the number of pins or dots the printer can handle at one time.

Dot-Matrix Graphics

npins Number of pins, N, in print-head

terminfo(4)

Section 2-6:
Dot-Matrix

Graphics

730 man pages section 4: File Formats • Last Revised 9 Jul 1996

spinv Spacing of pins vertically in pins per inch
spinh Spacing of dots horizontally in dots per inch
porder Matches software bits to print-head pins
sbim Start printing bit image graphics, B bits wide
rbim End printing bit image graphics

The sbim sring is used with a single argument, B, the width of the image in dots.

The model of dot-matrix or raster-graphics that terminfo presents is similar to the
technique used for most dot-matrix printers: each pass of the printer’s print-head is
assumed to produce a dot-matrix that is N dots high and B dots wide. This is typically
a wide, squat, rectangle of dots. The height of this rectangle in dots will vary from one
printer to the next; this is given in the npins numeric capability. The size of the
rectangle in fractions of an inch will also vary; it can be deduced from the spinv and
spinh numeric capabilities. With these three values an application can divide a
complete raster-graphics image into several horizontal strips, perhaps interpolating to
account for different dot spacing vertically and horizontally.

The sbim and rbim strings are used to start and end a dot-matrix image, respectively.
The sbim string is used with a single argument that gives the width of the dot-matrix
in dots. A sequence of ‘‘image-data bytes’’ are sent to the printer after the sbim string
and before the rbim string. The number of bytes is a integral multiple of the width of
the dot-matrix; the multiple and the form of each byte is determined by the porder
string as described below.

The porder string is a comma separated list of pin numbers optionally followed by
an numerical offset. The offset, if given, is separated from the list with a semicolon.
The position of each pin number in the list corresponds to a bit in an 8-bit data byte.
The pins are numbered consecutively from 1 to npins, with 1 being the top pin. Note
that the term ‘‘pin’’ is used loosely here; ‘‘ink-jet’’ dot-matrix printers don’t have pins,
but can be considered to have an equivalent method of applying a single dot of ink to
paper. The bit positions in porder are in groups of 8, with the first position in each
group the most significant bit and the last position the least significant bit. An
application produces 8-bit bytes in the order of the groups in porder.

An application computes the ‘‘image-data bytes’’ from the internal image, mapping
vertical dot positions in each print-head pass into 8-bit bytes, using a 1 bit where ink
should be applied and 0 where no ink should be applied. This can be reversed (0 bit
for ink, 1 bit for no ink) by giving a negative pin number. If a position is skipped in
porder, a 0 bit is used. If a position has a lower case ‘x’ instead of a pin number, a 1
bit is used in the skipped position. For consistency, a lower case ‘o’ can be used to
represent a 0 filled, skipped bit. There must be a multiple of 8 bit positions used or
skipped in porder; if not, 0 bits are used to fill the last byte in the least significant
bits. The offset, if given, is added to each data byte; the offset can be negative.

Some examples may help clarify the use of the porder string. The AT&T 470, AT&T
475 and C.Itoh 8510 printers provide eight pins for graphics. The pins are identified
top to bottom by the 8 bits in a byte, from least significant to most. The porder strings
for these printers would be 8,7,6,5,4,3,2,1. The AT&T 478 and AT&T 479

terminfo(4)

File Formats 731

printers also provide eight pins for graphics. However, the pins are identified in the
reverse order. The porder strings for these printers would be 1,2,3,4,5,6,7,8.
The AT&T 5310, AT&T 5320, DEC LA100, and DEC LN03 printers provide six pins for
graphics. The pins are identified top to bottom by the decimal values 1, 2, 4, 8, 16 and
32. These correspond to the low six bits in an 8-bit byte, although the decimal values
are further offset by the value 63. The porder string for these printers would be
,,6,5,4,3,2,1;63, or alternately o,o,6,5,4,3,2,1;63.

If the control sequences to change the character pitch or the line pitch are used, the pin
or dot spacing may change:

Dot-Matrix Graphics
Changing the Character/Line Pitches

cpi Change character pitch
cpix If set, cpi changes spinh
lpi Change line pitch
lpix If set, lpi changes spinv

Programs that use cpi or lpi should recalculate the dot spacing:

Dot-Matrix Graphics
Effects of Changing the Character/Line Pitches

Before After

Using cpi with cpix clear:
$bold spinh ’$ $bold spinh$

Using cpi with cpix set:
$bold spinh ’$ $bold spinh = bold spinh ’ cdot bold orhi over

{ bold {orhi ’} }$

Using lpi with lpix clear:
$bold spinv ’$ $bold spinv$

Using lpi with lpix set:
$bold spinv ’$ $bold spinv = bold {spinv ’} cdot bold orhi over

{ bold {orhi ’}}$

Using chr:
$bold spinh ’$ $bold spinh$

Using cvr:
$bold spinv ’$ $bold spinv$

terminfo(4)

Section 2-7: Effect
of Changing

Printing
Resolution

732 man pages section 4: File Formats • Last Revised 9 Jul 1996

orhi’ and orhi are the values of the horizontal resolution in steps per inch, before
using cpi and after using cpi, respectively. Likewise, orvi’ and orvi are the values
of the vertical resolution in steps per inch, before using lpi and after using lpi,
respectively. Thus, the changes in the dots per inch for dot-matrix graphics follow the
changes in steps per inch for printer resolution.

Many dot-matrix printers can alter the dot spacing of printed text to produce near
‘‘letter quality’’ printing or ‘‘draft quality’’ printing. Usually it is important to be able
to choose one or the other because the rate of printing generally falls off as the quality
improves. There are three new strings used to describe these capabilities.

Print Quality

snlq Set near-letter quality print
snrmq Set normal quality print
sdrfq Set draft quality print

The capabilities are listed in decreasing levels of quality. If a printer doesn’t have all
three levels, one or two of the strings should be left blank as appropriate.

Because there is no standard protocol that can be used to keep a program
synchronized with a printer, and because modern printers can buffer data before
printing it, a program generally cannot determine at any time what has been printed.
Two new numeric capabilities can help a program estimate what has been printed.

Print Rate/Buffer Size

cps Nominal print rate in characters per second
bufsz Buffer capacity in characters

cps is the nominal or average rate at which the printer prints characters; if this value
is not given, the rate should be estimated at one-tenth the prevailing baud rate. bufsz
is the maximum number of subsequent characters buffered before the guaranteed
printing of an earlier character, assuming proper flow control has been used. If this
value is not given it is assumed that the printer does not buffer characters, but prints
them as they are received.

As an example, if a printer has a 1000-character buffer, then sending the letter ‘‘a’’
followed by 1000 additional characters is guaranteed to cause the letter ‘‘a’’ to print. If
the same printer prints at the rate of 100 characters per second, then it should take 10
seconds to print all the characters in the buffer, less if the buffer is not full. By keeping
track of the characters sent to a printer, and knowing the print rate and buffer size, a
program can synchronize itself with the printer.

Note that most printer manufacturers advertise the maximum print rate, not the
nominal print rate. A good way to get a value to put in for cps is to generate a few
pages of text, count the number of printable characters, and then see how long it takes
to print the text.

terminfo(4)

Section 2-8: Print
Quality

Section 2-9:
Printing Rate and

Buffer Size

File Formats 733

Applications that use these values should recognize the variability in the print rate.
Straight text, in short lines, with no embedded control sequences will probably print at
close to the advertised print rate and probably faster than the rate in cps. Graphics
data with a lot of control sequences, or very long lines of text, will print at well below
the advertised rate and below the rate in cps. If the application is using cps to decide
how long it should take a printer to print a block of text, the application should pad
the estimate. If the application is using cps to decide how much text has already been
printed, it should shrink the estimate. The application will thus err in favor of the user,
who wants, above all, to see all the output in its correct place.

/usr/share/lib/terminfo/?/* compiled terminal description database

/usr/share/lib/.COREterm/?/* subset of compiled terminal description
database

/usr/share/lib/tabset/* tab settings for some terminals, in a format
appropriate to be output to the terminal
(escape sequences that set margins and
tabs)

ls(1), pg(1), stty(1), tput(1), tty(1), vi(1), infocmp(1M), tic(1M), printf(3C),
curses(3CURSES), curses(3XCURSES)

The most effective way to prepare a terminal description is by imitating the
description of a similar terminal in terminfo and to build up a description gradually,
using partial descriptions with a screen oriented editor, such as vi, to check that they
are correct. To easily test a new terminal description the environment variable
TERMINFO can be set to the pathname of a directory containing the compiled
description, and programs will look there rather than in
/usr/share/lib/terminfo.

terminfo(4)

FILES

SEE ALSO

NOTES

734 man pages section 4: File Formats • Last Revised 9 Jul 1996

TIMEZONE – set default system time zone and locale

/etc/TIMEZONE

/etc/default/init

This file sets the time zone environment variable TZ, and the locale-related
environment variables LANG, LC_COLLATE, LC_CTYPE, LC_MESSAGES,
LC_MONETARY, LC_NUMERIC, and LC_TIME.

/etc/TIMEZONE is a symbolic link to /etc/default/init.

The number of environment variables that can be set from /etc/default/init is
limited to 20.

The format of the file is:

VAR=value

where VAR is a timezone environment variable and value is the value assigned to the
variable. value can be enclosed in double quotes (”) or single quotes (’). The double or
single quotes cannot be part of the value.

init(1M), rtc(1M), ctime(3C), environ(5)

When changing the TZ setting on x86 systems, you must make a corresponding
change to the /etc/rtc_config file to account for the new timezone setting. This
can be accomplished by executing the following commands, followed by a reboot, to
make the changes take effect:

rtc -z zone-name
rtc -c

where zone-name is the same name as the TZ variable setting.

See rtc(1M) for information on the rtc command.

TIMEZONE(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

File Formats 735

timezone – default timezone data base

/etc/timezone

The timezone file contains information regarding the default timezone for each host in
a domain. Alternatively, a single default line for the entire domain may be specified.
Each entry has the format:

Timezone-name official-host-or-domain-name

Items are separated by any number of blanks and/or TAB characters. A ‘#’ indicates
the beginning of a comment; characters up to the end of the line are not interpreted by
routines which search the file. The timezone is a pathname relative to the directory
/usr/share/lib/zoneinfo.

This file is not actually referenced by any system software; it is merely used as a
source file to construct the NIS timezone.byname map. This map is read by
sysidtool(1M) to initialize the timezone of the client system at installation time. For
more information, see the Solaris 10 Installation Guide: Basic Installations.

The timezone file does not set the timezone environment variable TZ. See
TIMEZONE(4) for information to set the TZ environment variable.

EXAMPLE 1 Typical timezone line

Here is a typical line from the /etc/timezone file:

US/Eastern East.Sun.COM #Sun East Coast

/etc/timezone

sysidtool(1M), TIMEZONE(4)

Solaris 10 Installation Guide: Basic Installations

timezone(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

736 man pages section 4: File Formats • Last Revised 18 Feb 2003

tnf_kernel_probes – TNF kernel probes

The set of probes (trace instrumentation points) available in the standard kernel. The
probes log trace data to a kernel trace buffer in Trace Normal Form (TNF). Kernel
probes are controlled by prex(1). A snapshot of the kernel trace buffer can be made
using tnfxtract(1) and examined using tnfdump(1).

Each probe has a name and is associated with a set of symbolic keys, or categories. These
are used to select and control probes from prex(1). A probe that is enabled for tracing
generates a TNF record, called an event record. An event record contains two common
members and may contain other probe-specific data members.

tnf_probe_event tag
tnf_time_delta time_delta

tag Encodes TNF references to two other records:

tag Describes the layout of the event record.

schedule Identifies the writing thread and also contains
a 64-bit base time in nanoseconds.

time_delta A 32-bit time offset from the base time; the sum of the two times is
the actual time of the event.

thread_create

tnf_kthread_id tid
tnf_pid pid
tnf_symbol start_pc

Thread creation event.

tid The thread identifier for the new thread.

pid The process identifier for the new thread.

start_pc The kernel address of its start routine.

thread_state

tnf_kthread_id tid
tnf_microstate state

Thread microstate transition events.

tid Optional; if it is absent, the event is for the writing thread,
otherwise the event is for the specified thread.

state Indicates the thread state:

� Running in user mode.
� Running in system mode.
� Asleep waiting for a user-mode lock.

tnf_kernel_probes(4)

NAME

DESCRIPTION

Common Members

Threads

File Formats 737

� Asleep on a kernel object.
� Runnable (waiting for a cpu).
� Stopped.

The values of this member are defined in <sys/msacct.h>. Note
that to reduce trace output, transitions between the system and user
microstates that are induced by system calls are not traced. This
information is implicit in the system call entry and exit events.

thread_exit

Thread termination event for writing thread. This probe has no data members other
than the common members.

thread_queue

tnf_kthread_id tid
tnf_cpuid cpuid
tnf_long priority
tnf_ulong queue_length

Thread scheduling events. These are triggered when a runnable thread is placed on a
dispatch queue.

cpuid Specifies the cpu to which the queue is attached.

priority The (global) dispatch priority of the thread.

queue_length The current length of the cpu’s dispatch queue.

thread_block

tnf_opaque reason
tnf_symbols stack

Thread blockage event. This probe captures a partial stack backtrace when the current
thread blocks.

reason The address of the object on which the thread is blocking.

symbols References a TNF array of kernel addresses representing the PCs
on the stack at the time the thread blocks.

syscall_start

tnf_sysnum sysnum

System call entry event.

sysnum The system call number. The writing thread implicitly enters the
system microstate with this event.

tnf_kernel_probes(4)

Scheduling

Blocking

System Calls

738 man pages section 4: File Formats • Last Revised 8 Nov1999

syscall_end

tnf_long rval1
tnf_long rval2
tnf_long errno

System call exit event.

rval1 and rval2 The two return values of the system call

errno The error return.

The writing thread implicitly enters the user microstate with this event.

address_fault

tnf_opaque address
tnf_fault_type fault_type
tnf_seg_access access

Address-space fault event.

address Gives the faulting virtual address.

fault_type Gives the fault type: invalid page, protection fault, software
requested locking or unlocking.

access Gives the desired access protection: read, write, execute or create.
The values for these two members are defined in
<vm/seg_enum.h>.

major_fault

tnf_opaque vnode
tnf_offset offset

Major page fault event. The faulting page is mapped to the file given by the vnode
member, at the given offset into the file. (The faulting virtual address is in the most
recent address_fault event for the writing thread.)

anon_private

tnf_opaque address

Copy-on-write page fault event.

address The virtual address at which the new page is mapped.

anon_zero

tnf_opaque address

Zero-fill page fault event.

tnf_kernel_probes(4)

Page Faults

File Formats 739

address The virtual address at which the new page is mapped.

page_unmap

tnf_opaque vnode
tnf_offset offset

Page unmapping event. This probe marks the unmapping of a file system page from
the system.

vnode and offset Identifies the file and offset of the page being
unmapped.

pagein

tnf_opaque vnode
tnf_offset offset
tnf_size size

Pagein start event. This event signals the initiation of pagein I/O.

vnodeandoffset Identifyies the file and offset to be paged in.

size Specifies the number of bytes to be paged in.

pageout

tnf_opaque vnode
tnf_ulong pages_pageout
tnf_ulong pages_freed
tnf_ulong pages_reclaimed

Pageout completion event. This event signals the completion of pageout I/O.

vnode Identifies the file of the pageout request.

pages_pageout The number of pages written out.

pages_freed The number of pages freed after being written out.

pages_reclaimed The number of pages reclaimed after being written out.

pageout_scan_start

tnf_ulong pages_free
tnf_ulong pages_needed

Page daemon scan start event. This event signals the beginning of one iteration of the
page daemon.

pages_free The number of free pages in the system.

tnf_kernel_probes(4)

Pageins and
Pageouts

Page Daemon
(Page Stealer)

740 man pages section 4: File Formats • Last Revised 8 Nov1999

pages_needed The number of pages desired free.

pageout_scan_end

tnf_ulong pages_free
tnf_ulong pages_scanned

Page daemon scan end event. This event signals the end of one iteration of the page
daemon.

pages_free The number of free pages in the system.

pages_scanned The number of pages examined by the page daemon. (Potentially
more pages will be freed when any queued pageout requests
complete.)

swapout_process

tnf_pid pid
tnf_ulong page_count

Address space swapout event. This event marks the swapping out of a process
address space.

pid Identifies the process.

page_count Reports the number of pages either freed or queued for pageout.

swapout_lwp

tnf_pid pid
tnf_lwpid lwpid
tnf_kthread_id tid
tnf_ulong page_count

Light-weight process swapout event. This event marks the swapping out of an LWP
and its stack.

pid The LWP’s process identifier

lwpid The LWP identifier

tid member The LWP’s kernel thread identifier.

page_count The number of pages swapped out.

swapin_lwp

tnf_pid pid
tnf_lwpid lwpid
tnf_kthread_id tid
tnf_ulong page_count

Light-weight process swapin event. This event marks the swapping in of an LWP and
its stack.

tnf_kernel_probes(4)

Swapper

File Formats 741

pid The LWP’s process identifier.

lwpid The LWP identifier.

tid The LWP’s kernel thread identifier.

page_count The number of pages swapped in.

strategy

tnf_device device
tnf_diskaddr block
tnf_size size
tnf_opaque buf
tnf_bioflags flags

Block I/O strategy event. This event marks a call to the strategy(9E) function of a
block device driver.

device Contains the major and minor numbers of the device.

block The logical block number to be accessed on the device.

size The size of the I/O request.

buf The kernel address of the buf(9S) structure associated with the
transfer.

flags The buf(9S) flags associated with the transfer.

biodone

tnf_device device
tnf_diskaddr block
tnf_opaque buf

Buffered I/O completion event. This event marks calls to the biodone(9F) function.

device Contains the major and minor numbers of the device.

block The logical block number accessed on the device.

buf The kernel address of the buf(9S) structure associated with the
transfer.

physio_start

tnf_device device
tnf_offset offset
tnf_size size
tnf_bioflags rw

Raw I/O start event. This event marks entry into the physio(9F) fufnction which
performs unbuffered I/O.

tnf_kernel_probes(4)

Local I/O

742 man pages section 4: File Formats • Last Revised 8 Nov1999

device Contains the major and minor numbers of the device of the
transfer.

offset The logical offset on the device for the transfer.

size The number of bytes to be transferred.

rw The direction of the transfer: read or write (see buf(9S)).

physio_end

tnf_device device

Raw I/O end event. This event marks exit from the physio(9F) fufnction.

device The major and minor numbers of the device of the transfer.

Use the prex utility to control kernel probes. The standard prex commands to list
and manipulate probes are available to you, along with commands to set up and
manage kernel tracing.

Kernel probes write trace records into a kernel trace buffer. You must copy the buffer
into a TNF file for post-processing; use the tnfxtract utility for this.

You use the tnfdump utility to examine a kernel trace file. This is exactly the same as
examining a user-level trace file.

The steps you typically follow to take a kernel trace are:

1. Become superuser (su).
2. Allocate a kernel trace buffer of the desired size (prex).
3. Select the probes you want to trace and enable (prex).
4. Turn kernel tracing on (prex).
5. Run your application.
6. Turn kernel tracing off (prex).
7. Extract the kernel trace buffer (tnfxtract).
8. Disable all probes (prex).
9. Deallocate the kernel trace buffer (prex).
10. Examine the trace file (tnfdump).

A convenient way to follow these steps is to use two shell windows; run an interactive
prex session in one, and run your application and tnfxtract in the other.

prex(1), tnfdump(1), tnfxtract(1), libtnfctl(3TNF), TNF_PROBE(3TNF),
tracing(3TNF), strategy(9E), biodone(9F), physio(9F), buf(9S)

tnf_kernel_probes(4)

USAGE

SEE ALSO

File Formats 743

ts_dptbl – time-sharing dispatcher parameter table

The process scheduler (or dispatcher) is the portion of the kernel that controls
allocation of the CPU to processes. The scheduler supports the notion of scheduling
classes where each class defines a scheduling policy, used to schedule processes within
that class. Associated with each scheduling class is a set of priority queues on which
ready to run processes are linked. These priority queues are mapped by the system
configuration into a set of global scheduling priorities which are available to processes
within the class. (The dispatcher always selects for execution the process with the
highest global scheduling priority in the system.) The priority queues associated with
a given class are viewed by that class as a contiguous set of priority levels numbered
from 0 (lowest priority) to n (highest priority—a configuration-dependent value). The
set of global scheduling priorities that the queues for a given class are mapped into
might not start at zero and might not be contiguous (depending on the configuration).

Processes in the time-sharing class which are running in user mode (or in kernel mode
before going to sleep) are scheduled according to the parameters in a time-sharing
dispatcher parameter table (ts_dptbl). Processes in the inter-active scheduling class
are also scheduled according to the parameters in the time-sharing dispatcher
parameter table. (Time-sharing processes and inter-active processes running in kernel
mode after sleeping are run within a special range of priorities reserved for such
processes and are not affected by the parameters in the ts_dptbl until they return to
user mode.) The ts_dptbl consists of an array (config_ts_dptbl[]) of parameter
structures (struct tsdpent_t), one for each of the n priority levels used by
time-sharing processes and inter-active processes in user mode. The structures are
accessed via a pointer, (ts_dptbl), to the array. The properties of a given priority
level i are specified by the ith parameter structure in this array (ts_dptbl[i]).

A parameter structure consists of the following members. These are also described in
the /usr/include/sys/ts.h header.

ts_globpri The global scheduling priority associated with this
priority level. The mapping between time-sharing
priority levels and global scheduling priorities is
determined at boot time by the system configuration.
ts_globpri is the only member of the ts_dptbl
which cannot be changed with dispadmin(1M).

ts_quantum The length of the time quantum allocated to processes
at this level in ticks (hz).

In the high resolution clock mode (hires_tick set to
1), the value of hz is set to 1000. Increase quantums to
maintain the same absolute time quantums.

ts_tqexp Priority level of the new queue on which to place a
process running at the current level if it exceeds its
time quantum. Normally this field links to a lower
priority time-sharing level that has a larger quantum.

ts_dptbl(4)

NAME

DESCRIPTION

744 man pages section 4: File Formats • Last Revised 15 Oct 2002

ts_slpret Priority level of the new queue on which to place a
process, that was previously in user mode at this level,
when it returns to user mode after sleeping. Normally
this field links to a higher priority level that has a
smaller quantum.

ts_maxwait A per process counter, ts_dispwait is initialized to
zero each time a time-sharing or inter-active process is
placed back on the dispatcher queue after its time
quantum has expired or when it is awakened
(ts_dispwait is not reset to zero when a process is
preempted by a higher priority process). This counter is
incremented once per second for each process on a
dispatcher or sleep queue. If a process’ ts_dispwait
value exceeds the ts_maxwait value for its level, the
process’ priority is changed to that indicated by
ts_lwait. The purpose of this field is to prevent
starvation.

ts_lwait Move a process to this new priority level if
ts_dispwait is greater than ts_maxwait.

An administrator can affect the behavior of the time-sharing portion of the scheduler
by reconfiguring the ts_dptbl. Since processes in the time-sharing and inter-active
scheduling classes share the same dispatch parameter table (ts_dptbl), changes to
this table will affect both scheduling classes. There are two methods available for
doing this: reconfigure with a loadable module at boot-time or by using
dispadmin(1M) at run-time.

The ts_dptbl can be reconfigured with a loadable module which contains a new
time sharing dispatch table. The module containing the dispatch table is separate from
the TS loadable module which contains the rest of the time-sharing and inter-active
software. This is the only method that can be used to change the number of
time-sharing priority levels or the set of global scheduling priorities used by the
time-sharing and inter-active classes. The relevant procedure and source code is
described in the REPLACING THE TS_DPTBL LOADABLE MODULE section.

With the exception of ts_globpri all of the members of the ts_dptbl can be
examined and modified on a running system using the dispadmin(1M) command.
Invoking dispadmin for the time-sharing or inter-active class allows the
administrator to retrieve the current ts_dptbl configuration from the kernel’s in-core
table, or overwrite the in-core table with values from a configuration file. The
configuration file used for input to dispadmin must conform to the specific format
described below.

Blank lines are ignored and any part of a line to the right of a # symbol is treated as a
comment. The first non-blank, non-comment line must indicate the resolution to be
used for interpreting the ts_quantum time quantum values. The resolution is
specified as

ts_dptbl(4)

ts_dptbl Loadable
Module

dispadmin
Configuration File

File Formats 745

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the resolution
used is the reciprocal of res in seconds (for example, RES=1000 specifies millisecond
resolution). Although very fine (nanosecond) resolution may be specified, the time
quantum lengths are rounded up to the next integral multiple of the system clock’s
resolution.

The remaining lines in the file are used to specify the parameter values for each of the
time-sharing priority levels. The first line specifies the parameters for time-sharing
level 0, the second line specifies the parameters for time-sharing level 1, etc. There
must be exactly one line for each configured time-sharing priority level.

EXAMPLE 1 A Sample From a Configuration File

The following excerpt from a dispadmin configuration file illustrates the format.
Note that for each line specifying a set of parameters there is a comment indicating the
corresponding priority level. These level numbers indicate priority within the
time-sharing and interactive classes, and the mapping between these time-sharing
priorities and the corresponding global scheduling priorities is determined by the
configuration specified in the ts master file. The level numbers are strictly for the
convenience of the administrator reading the file and, as with any comment, they are
ignored by dispadmin. dispadmin assumes that the lines in the file are ordered by
consecutive, increasing priority level (from 0 to the maximum configured time-sharing
priority). The level numbers in the comments should normally agree with this
ordering; if for some reason they don’t, however, dispadmin is unaffected.

Time-Sharing Dispatcher Configuration File RES=1000

ts_quantum ts_tqexp ts_slpret ts_maxwait ts_lwait PRIORITY
LEVEL
500 0 10 5 10 # 0
500 0 11 5 11 # 1
500 1 12 5 12 # 2
500 1 13 5 13 # 3
500 2 14 5 14 # 4
500 2 15 5 15 # 5
450 3 16 5 16 # 6
450 3 17 5 17 # 7
.
.
.
50 48 59 5 59 # 58

50 49 59 5 59 # 59

ts_dptbl(4)

EXAMPLES

746 man pages section 4: File Formats • Last Revised 15 Oct 2002

EXAMPLE 2 Replacing The ts_dptbl Loadable Module

In order to change the size of the time sharing dispatch table, the loadable module
which contains the dispatch table information will have to be built. It is recommended
that you save the existing module before using the following procedure.

1. Place the dispatch table code shown below in a file called ts_dptbl.c An
example of this file follows.

2. Compile the code using the given compilation and link lines supplied.

cc -c -0 -D_KERNEL
ts_dptbl.c

ld -r -o TS_DPTBL ts_dptbl.o

3. Copy the current dispatch table in /kernel/sched to TS_DPTBL.bak.

4. Replace the current TS_DPTBL in /kernel/sched.

5. You will have to make changes in the /etc/system file to reflect the changes to
the sizes of the tables. See system(4). The two variables affected are ts_maxupri
and ts_maxkmdpri. The syntax for setting these is as follows:

set TS:ts_maxupri=(value for max time-sharing user priority)

set TS:ts_maxkmdpri=(number of kernel mode priorities - 1)

6. Reboot the system to use the new dispatch table.

Great care should be used in replacing the dispatch table using this method. If you do
not get it right, panics may result, thus making the system unusable.

The following is an example of a ts_dptbl.c file used for building the new
ts_dptbl.

/* BEGIN ts_dptbl.c */
#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/ts.h>
#include <sys/rtpriocntl.h>
/*
* This is the loadable module wrapper.
*/
#include <sys/modctl.h>
extern struct mod_ops mod_miscops;
/*
* Module linkage information for the kernel.
*/
static struct modlmisc modlmisc = {

&mod_miscops, "Time sharing dispatch table"
};
static struct modlinkage modlinkage = {

MODREV_1, &modlmisc, 0
};
_init()
{

return (mod_install(&modlinkage));

ts_dptbl(4)

File Formats 747

EXAMPLE 2 Replacing The ts_dptbl Loadable Module (Continued)

}
_info(modinfop)

struct modinfo *modinfop;
{

return (mod_info(&modlinkage, modinfop));
}
/*
* array of global priorities used by ts procs sleeping or
* running in kernel mode after sleep. Must have at least
* 40 values.
*/
pri_t config_ts_kmdpris[] = {

60,61,62,63,64,65,66,67,68,69,
70,71,72,73,74,75,76,77,78,79,
80,81,82,83,84,85,86,87,88,89,
90,91,92,93,94,95,96,97,98,99,

};
tsdpent_t config_ts_dptbl[] = {

/* glbpri qntm tqexp slprt mxwt lwt */

0, 100, 0, 10, 5, 10,
1, 100, 0, 11, 5, 11,
2, 100, 1, 12, 5, 12,
3, 100, 1, 13, 5, 13,
4, 100, 2, 14, 5, 14
5, 100, 2, 15, 5, 15,
6, 100, 3, 16, 5, 16,
7, 100, 3, 17, 5, 17,
8, 100, 4, 18, 5, 18,
9, 100, 4, 19, 5, 19,
10, 80, 5, 20, 5, 20,
11, 80, 5, 21, 5, 21,
12, 80, 6, 22, 5, 22,
13, 80, 6, 23, 5, 23,
14, 80, 7, 24, 5, 24,
15, 80, 7, 25, 5, 25,
16, 80, 8, 26, 5, 26,
17, 80, 8, 27, 5, 27,
18, 80, 9, 28, 5, 28,
19, 80, 9, 29, 5, 29,
20, 60, 10, 30, 5, 30,
21, 60, 11, 31, 5, 31,
22, 60, 12, 32, 5, 33,
24, 60, 14, 34, 5, 34,
25, 60, 15, 35, 5, 35,
26, 60, 16, 36, 5, 36,
27, 60, 17, 37, 5, 37,
28, 60, 18, 38, 5, 38,
29, 60, 19, 39, 5, 39,
30, 40, 20, 40, 5, 40,
31, 40, 21, 41, 5, 41,
32, 40, 22, 42, 5, 42,
33, 40, 23, 43, 5, 43,

ts_dptbl(4)

748 man pages section 4: File Formats • Last Revised 15 Oct 2002

EXAMPLE 2 Replacing The ts_dptbl Loadable Module (Continued)

34, 40, 24, 44, 5, 44,
35, 40, 25, 45, 5, 45,
36, 40, 26, 46, 5, 46,
37, 40, 27, 47, 5, 47,
38, 40, 28, 48, 5, 48,
39, 40, 29, 49, 5, 49,
40, 20, 30, 50, 5, 50,
41, 20, 31, 50, 5, 50,
42, 20, 32, 51, 5, 51,
43, 20, 33, 51, 5, 51,
44, 20, 34, 52, 5, 52,
45, 20, 35, 52, 5, 52,
46, 20, 36, 53, 5, 53,
47, 20 37, 53, 5, 53,
48, 20, 38, 54, 5, 54,
49, 20, 39, 54, 5, 54,
50, 10, 40, 55, 5, 55,
51, 10, 41, 55, 5, 55,
52, 10, 42, 56, 5, 56,
53, 10, 43, 56, 5, 56,
54, 10, 44, 57, 5, 57,
55, 10, 45, 57, 5, 57,
56, 10, 46, 58, 5, 58,
57, 10, 47, 58, 5, 58,
58, 10, 48, 59, 5, 59,
59, 10, 49, 59, 5, 59,

};

short config_ts_maxumdpri = sizeof (config_ts_dptbl)/16 - 1;
/*
* Return the address of config_ts_dptbl
*/
tsdpent_t *
ts_getdptbl()
{

return (config_ts_dptbl);
}

/*
* Return the address of config_ts_kmdpris
*/
int *
ts_getkmdpris()
{

return (config_ts_kmdpris);
}

/*
* Return the address of ts_maxumdpri
*/
short
ts_getmaxumdpri()
{

ts_dptbl(4)

File Formats 749

EXAMPLE 2 Replacing The ts_dptbl Loadable Module (Continued)

return (config_ts_maxumdpri);
}

/* END ts_dptbl.c */

priocntl(1), dispadmin(1M), priocntl(2), system(4)

System Administration Guide: Basic Administration

Programming Interfaces Guide

dispadmin does some limited sanity checking on the values supplied in the
configuration file. The sanity checking is intended to ensure that the new ts_dptbl
values do not cause the system to panic. The sanity checking does not attempt to
analyze the effect that the new values will have on the performance of the system.
Unusual ts_dptbl configurations may have a dramatic negative impact on the
performance of the system.

No sanity checking is done on the ts_dptbl values specified in the TS_DPTBL
loadable module. Specifying an inconsistent or nonsensical ts_dptbl configuration
through the TS_DPTBL loadable module could cause serious performance problems
and/or cause the system to panic.

ts_dptbl(4)

SEE ALSO

NOTES

750 man pages section 4: File Formats • Last Revised 15 Oct 2002

ttydefs – file contains terminal line settings information for ttymon

/etc/ttydefs is an administrative file that contains records divided into fields by
colons (":"). This information used by ttymon to set up the speed and terminal
settings for a TTY port.

The ttydefs file contains the following fields:

ttylabel The string ttymon tries to match against the TTY port’s ttylabel
field in the port monitor administrative file. It often describes the
speed at which the terminal is supposed to run, for example,
1200.

initial-flags Contains the initial termio(7I) settings to which the terminal is to
be set. For example, the system administrator will be able to
specify what the default erase and kill characters will be.
initial-flags must be specified in the syntax recognized by the stty
command.

final-flags final-flags must be specified in the same format as initial-flags.
ttymon sets these final settings after a connection request has been
made and immediately prior to invoking a port’s service.

autobaud If the autobaud field contains the character ’A,’ autobaud will be
enabled. Otherwise, autobaud will be disabled. ttymon
determines what line speed to set the TTY port to by analyzing the
carriage returns entered. If autobaud has been disabled, the hunt
sequence is used for baud rate determination.

nextlabel If the user indicates that the current terminal setting is not
appropriate by sending a BREAK, ttymon searchs for a ttydefs
entry whose ttylabel field matches the nextlabel field. If a match is
found, ttymon uses that field as its ttylabel field. A series of speeds
is often linked together in this way into a closed set called a hunt
sequence. For example, 4800 may be linked to 1200, which in
turn is linked to 2400, which is finally linked to 4800.

sttydefs(1M), ttymon(1M), termio(7I)

System Administration Guide: Basic Administration

ttydefs(4)

NAME

DESCRIPTION

SEE ALSO

File Formats 751

ttysrch – directory search list for ttyname

ttysrch is an optional file that is used by the ttyname library routine. This file
contains the names of directories in /dev that contain terminal and terminal-related
device files. The purpose of this file is to improve the performance of ttyname by
indicating which subdirectories in /dev contain terminal-related device files and
should be searched first. These subdirectory names must appear on separate lines and
must begin with /dev. Those path names that do not begin with /dev will be ignored
and a warning will be sent to the console. Blank lines (lines containing only white
space) and lines beginning with the comment character "#" will be ignored. For each
file listed (except for the special entry /dev), ttyname will recursively search through
subdirectories looking for a match. If /dev appears in the ttysrch file, the /dev
directory itself will be searched but there will not be a recursive search through its
subdirectories.

When ttyname searches through the device files, it tries to find a file whose
major/minor device number, file system identifier, and inode number match that of
the file descriptor it was given as an argument. If a match is not found, it will settle for
a match of just major/minor device and file system identifier, if one can be found.
However, if the file descriptor is associated with a cloned device, this algorithm does
not work efficiently because the inode number of the device file associated with a
clonable device will never match the inode number of the file descriptor that was
returned by the open of that clonable device. To help with these situations, entries can
be put into the /etc/ttysrch file to improve performance when cloned devices are
used as terminals on a system (for example, for remote login). However, this is only
useful if the minor devices related to a cloned device are put into a subdirectory. (It is
important to note that device files need not exist for cloned devices and if that is the
case, ttyname will eventually fail.) An optional second field is used in the
/etc/ttysrch file to indicate the matching criteria. This field is separated by white
space (any combination of blanks or tabs). The letter M means major/minor device
number, F means file system identifier, and I means inode number. If this field is not
specified for an entry, the default is MFI which means try to match on all three. For
cloned devices the field should be MF, which indicates that it is not necessary to match
on the inode number.

Without the /etc/ttysrch file, ttyname will search the /dev directory by first
looking in the directories /dev/term, /dev/pts, and /dev/xt. If a system has
terminal devices installed in directories other than these, it may help performance if
the ttysrch file is created and contains that list of directories.

EXAMPLE 1 A sample display of /etc/ttysrch command.

A sample /etc/ttysrch file follows:

/dev/term MFI
/dev/pts MFI
/dev/xt MFI
/dev/slan MF

ttysrch(4)

NAME

DESCRIPTION

EXAMPLES

752 man pages section 4: File Formats • Last Revised 23 Feb 1994

EXAMPLE 1 A sample display of /etc/ttysrch command. (Continued)

This file tells ttyname that it should first search through those directories listed and
that when searching through the /dev/slan directory, if a file is encountered whose
major/minor devices and file system identifier match that of the file descriptor
argument to ttyname, this device name should be considered a match.

/etc/ttysrch

ttyname(3C)

ttysrch(4)

FILES

SEE ALSO

File Formats 753

ufsdump, dumpdates – incremental dump format

#include <sys/types.h>

#include <sys/inode.h>

#include <protocols/dumprestore.h>

/etc/dumpdates

Tapes used by ufsdump(1M) and ufsrestore(1M) contain:

� a header record
� two groups of bit map records
� a group of records describing directories
� a group of records describing files

The format of the header record and the format of the first record of each description
in the <protocols/dumprestore.h> include file are:

#define TP_BSIZE_MAX 65536
#define TP_BSIZE_MIN 1024
#define ESIZE_SHIFT_MAX 6

#ifdef SUPPORTS_MTB_TAPE_FORMAT
#define TP_BUFSIZE TP_BSIZE_MAX
#else
#define TP_BSIZE 1024
#define TP_BUFSIZE TP_BSIZE
#endif /* SUPPORTS_MTB_TAPE_FORMAT */

#define NTREC 10
#define HIGHDENSITYTREC 32
#define CARTRIDGETREC 63
#define TP_NINDIR (TP_BSIZE_MIN/2)
#define TP_NINOS (TP_NINDIR / sizeof (long))
#define LBLSIZE 16
#define NAMELEN 64

#define OFS_MAGIC (int)60011
#define NFS_MAGIC (int)60012
#define MTB_MAGIC (int)60013

#define CHECKSUM (int)84446

union u_data {
char s_addrs[TP_NINDIR];
int32_t s_inos[TP_NINOS];

};

union u_shadow {
struct s_nonsh {

int32_t c_level;
char c_filesys[NAMELEN];
char c_dev[NAMELEN];
char c_host[NAMELEN];

} c_nonsh;
char c_shadow[1];

ufsdump(4)

NAME

SYNOPSIS

DESCRIPTION

754 man pages section 4: File Formats • Last Revised 9 Apr 2003

};

union u_spcl {
char dummy[TP_BUFSIZE];
struct s_spcl {

int32_t c_type;
time32_t c_date;
time32_t c_ddate;
int32_t c_volume;
daddr32_t c_tapea;
ino32_t c_inumber;
int32_t c_magic;
int32_t c_checksum;
struct dinode c_dinode;
int32_t c_count;
union u_data c_data;
char c_label[LBLSIZE];
union u_shadow c_shadow;
int32_t c_flags;
int32_t c_firstrec;

#ifdef SUPPORTS_MTB_TAPE_FORMAT
int32_t c_tpbsize;
int32_t c_spare[31];

#else
int32_t c_spare[32];

#endif /* SUPPORTS_MTB_TAPE_FORMAT */
} s_spcl;

} u_spcl;

int32_t c_type;
time32_t c_date;
time32_t c_ddate;
int32_t c_volume;
daddr32_t c_tapea;
ino32_t c_inumber;
int32_t c_magic;
int32_t c_checksum;
struct dinode c_dinode;
int32_t c_count;
union u_data c_data;
char c_label[LBLSIZE];
union u_shadow c_shadow;
int32_t c_flags;
int32_t c_firstrec;
#ifdef SUPPORTS_MTB_TAPE_FORMAT
int32_t c_tpbsize;
int32_t c_spare[31];
#else
int32_t c_spare[32];
#endif /*

SUPPORTS_MTB_TAPE_FORMAT */

} s_spcl;
} u_spcl;
#define spcl u_spcl.s_spcl
#define c_addr c_data.s_addrs
#define c_inos c_data.s_inos

ufsdump(4)

File Formats 755

#define c_level c_shadow.c_nonsh.c_level
#define c_filesys c_shadow.c_nonsh.c_filesys
#define c_dev c_shadow.c_nonsh.c_dev

#define c_host c_shadow.c_nonsh.c_host

#define TS_TAPE 1
#define TS_INODE 2
#define TS_ADDR 4
#define TS_BITS 3
#define TS_CLRI 6
#define TS_END 5
#define TS_EOM 7

#define DR_NEWHEADER 1
#define DR_INODEINFO 2
#define DR_REDUMP 4
#define DR_TRUEINC 8

#define DR_HASMETA 16

This header describes three formats for the ufsdump/ufsrestore interface:

� An old format, non-MTB, that supports dump sizes of less than 2 terabytes. This
format is represented by NFS_MAGIC.

� A new format, MTB, that supports dump sizes of greater than 2 terabytes using a
variable block size and 2 new constants: TP_BSIZE_MIN and TP_BSIZE_MAX.
This format is represented by MTB_MAGIC.

� A much older format that might be found on existing backup tapes. The
ufsrestore command can restore tapes of this format, but no longer generates
tapes of this format. Backups in this format have the OFS_MAGIC magic number in
their tape headers.

The constants are described as follows:

TP_BSIZE Size of file blocks on the dump tapes for the old format.
Note that TP_BSIZE must be a multiple of DEV_BSIZE
This is applicable for dumps of type NFS_MAGIC or
OFS_MAGIC, but is not applicable for dumps of type
MTB_MAGIC.

TP_BSIZE_MIN Minimum size of file blocks on the dump tapes for the
new MTB format (MTB_MAGIC) only.

TP_BSIZE_MAX Maximum size of file blocks on the dump tapes for the
new MTB format (MTB_MAGIC) only.

NTREC Number of TP_BSIZE blocks that are written in each
tape record.

HIGHDENSITYNTREC Number of TP_BSIZE blocks that are written in each
tape record on 6250 BPI or higher density tapes.

CARTRIDGETREC Number of TP_BSIZE blocks that are written in each
tape record on cartridge tapes.

ufsdump(4)

756 man pages section 4: File Formats • Last Revised 9 Apr 2003

TP_NINDIR Number of indirect pointers in a TS_INODE or
TS_ADDR record. It must be a power of 2.

TP_NINOS The maximum number of volumes on a tape.

LBLSIZE The maximum size of a volume label.

NAMELEN The maximum size of a host’s name.

OFS_MAGIC Magic number that is used for the very old format.

NFS_MAGIC Magic number that is used for the non-MTB format.

MTB_MAGIC Magic number that is used for the MTB format.

CHECKSUM Header records checksum to this value.

The TS_ entries are used in the c_type field to indicate what sort of header this is.
The types and their meanings are as follows:

TS_TAPE Tape volume label.

TS_INODE A file or directory follows. The c_dinode field is a copy of the
disk inode and contains bits telling what sort of file this is.

TS_ADDR A subrecord of a file description. See s_addrs below.

TS_BITS A bit map follows. This bit map has a one bit for each inode that
was dumped.

TS_CLRI A bit map follows. This bit map contains a zero bit for all inodes
that were empty on the file system when dumped.

TS_END End of tape record.

TS_EOM diskette EOMindicates that the restore is compatible with old
dump

The flags are described as follows:

DR_NEWHEADER New format tape header.

DR_INFODEINFO Header contains starting inode info.

DR_REDUMP Dump contains recopies of active files.

DR_TRUEINC Dump is a "true incremental".

DR_HASMETA The metadata in this header.

DUMPOUTFMT Name, incon, and ctime (date) for printf.

DUMPINFMT Inverse for scanf.

The fields of the header structure are as follows:

ufsdump(4)

File Formats 757

s_addrs An array of bytes describing the blocks of the dumped file. A byte
is zero if the block associated with that byte was not present on the
file system; otherwise, the byte is non-zero. If the block was not
present on the file lsystem, no block was dumped; the block will
be stored as a hole in the file. If there is not sufficient space in this
record to describe all the blocks in a file, TS_ADDR records will be
scattered through the file, each one picking up where the last left
off

s_inos The starting inodes on tape.

c_type The type of the record.

c_date The date of the previous dump.

c_ddate The date of this dump.

c_volume The current volume number of the dump.

c_tapea The logical block of this record.

c_inumber The number of the inode being dumped if this is of type
TS_INODE.

c_magic This contains the value MAGIC above, truncated as needed.

c_checksum This contains whatever value is needed to make the record sum to
CHECKSUM.

c_dinode This is a copy of the inode as it appears on the file system.

c_count The count of bytes in s_addrs.

u_data c_data The union of either u_data c_data The union of either s_addrs
or s_inos.

c_label Label for this dump.

c_level Level of this dump.

c_filesys Name of dumped file system.

c_dev Name of dumped service.

c_host Name of dumped host.

c_flags Additional information.

c_firstrec First record on volume.

c_spare Reserved for future uses.

c_tpbsize Tape block size for MTB format only.

Each volume except the last ends with a tapemark (read as an end of file). The last
volume ends with a TS_END record and then the tapemark.

ufsdump(4)

758 man pages section 4: File Formats • Last Revised 9 Apr 2003

The dump history is kept in the file /etc/dumpdates. It is an ASCII file with three
fields separated by white space:

� The name of the device on which the dumped file system resides.
� The level number of the dump tape; see ufsdump(1M).
� The date of the incremental dump in the format generated by ctime(3C).

DUMPOUTFMT is the format to use when using printf(3C) to write an entry to
/etc/dumpdates; DUMPINFMT is the format to use when using scanf(3C) to read an
entry from /etc/dumpdates.

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Stability Level Unstable

ufsdump(1M), ufsrestore(1M), ctime(3C), printf(3C), scanf(3C),
types.h(3HEAD), attributes(5),

ufsdump(4)

ATTRIBUTES

SEE ALSO

File Formats 759

updaters – configuration file for NIS updating

/var/yp/updaters

The file /var/yp/updaters is a makefile (see make(1S)) which is used for updating
the Network Information Service (NIS) databases. Databases can only be updated in a
secure network, that is, one that has a publickey(4) database. Each entry in the file is
a make target for a particular NIS database. For example, if there is an NIS database
named passwd.byname that can be updated, there should be a make target named
passwd.byname in the updaters file with the command to update the file.

The information necessary to make the update is passed to the update command
through standard input. The information passed is described below (all items are
followed by a NEWLINE except for 4 and 6):

1. Network name of client wishing to make the update (a string).

2. Kind of update (an integer).

3. Number of bytes in key (an integer).

4. Actual bytes of key.

5. Number of bytes in data (an integer).

6. Actual bytes of data.

After receiving this information through standard input, the command to update the
particular database determines whether the user is allowed to make the change. If not,
it exits with the status YPERR_ACCESS. If the user is allowed to make the change, the
command makes the change and exits with a status of zero. If there are any errors that
may prevent the updaters from making the change, it should exit with the status
that matches a valid NIS error code described in <rpcsvc/ypclnt.h>.

/var/yp/updaters The makefile used for updating the NIS databases.

make(1S), rpc.ypupdated(1M), publickey(4)

The Network Information Service (NIS) was formerly known as Sun Yellow Pages
(YP). The functionality of the two remains the same; only the name has changed. The
name Yellow Pages is a registered trademark in the United Kingdom of British
Telecommunications plc, and may not be used without permission.

updaters(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

NOTES

760 man pages section 4: File Formats • Last Revised 24 Oct 1996

user_attr – extended user attributes database

/etc/user_attr

/etc/user_attr is a local source of extended attributes associated with users and
roles. user_attr can be used with other user attribute sources, including the LDAP
people container, the user_attr NIS map, and the user_attr NIS+ table. Programs
use the getuserattr(3SECDB) routines to gain access to this information.

The search order for multiple user_attr sources is specified in the
/etc/nsswitch.conf file, as described in the nsswitch.conf(4) man page. The
search order follows that for passwd(4).

Each entry in the user_attr databases consists of a single line with five fields
separated by colons (:). Line continuations using the backslash (\) character are
permitted. Each entry has the form:

user:qualifier:res1:res2:attr

user
The name of the user as specified in the passwd(4) database.

qualifier
Reserved for future use.

res1
Reserved for future use.

res2
Reserved for future use.

attr
An optional list of semicolon-separated (;) key-value pairs that describe the
security attributes to apply to the object upon execution. Zero or more keys may be
specified. The following keys are currently interpreted by the system:

auths
Specifies a comma-separated list of authorization names chosen from those
names defined in the auth_attr(4) database. Authorization names may be
specified using the asterisk (*) character as a wildcard. For example,
solaris.printer.* means all of Sun’s printer authorizations.

profiles
Contains an ordered, comma-separated list of profile names chosen from
prof_attr(4). Profiles are enforced by the profile shells, pfcsh, pfksh, and
pfsh. See pfsh(1). A default profile is assigned in
/etc/security/policy.conf (see policy.conf(4)). If no profiles are
assigned, the profile shells do not allow the user to execute any commands.

roles
Can be assigned a comma-separated list of role names from the set of user
accounts in this database whose type field indicates the account is a role. If the
roles key value is not specified, the user is not permitted to assume any role.

user_attr(4)

NAME

SYNOPSIS

DESCRIPTION

File Formats 761

type
Can be assigned one of these strings: normal, indicating that this account is for
a normal user, one who logs in; or role, indicating that this account is for a role.
Roles can only be assumed by a normal user after the user has logged in.

project
Can be assigned a name of one project from the project(4) database to be used
as a default project to place the user in at login time. For more information, see
getdefaultproj(3PROJECT).

defaultpriv
The default set of privileges assigned to a user’s inheritable set upon login.

limitpriv
The maximum set of privileges a user or any process started by the user,
whether through su(1M) or any other means, can obtain. The system
administrator must take extreme care when removing privileges from the limit
set. Removing any basic privilege has the ability of crippling all applications;
removing any other privilege can cause many or all applications requiring
privileges to malfunction.

See privileges(5) for a description of privileges. The command ppriv -l (see
ppriv(1)) produces a list of all supported privileges. Note that you specify
privileges as they are displayed by ppriv. In privileges(5), privileges are
listed in the form PRIV_<privilege_name>. For example, the privilege
file_chown, as you would specify it in user_attr, is listed in
privileges(5) as PRIV_FILE_CHOWN.

lock_after_retries
Specifies whether an account is locked after the count of failed logins for a user
equals or exceeds the allowed number of retries as defined by RETRIES in
/etc/default/login. Possible values are yes or no. The default is no.
Account locking is applicable only to local accounts.

Except for the type key, the key=value fields in /etc/user_attr can be added using
roleadd(1M) and useradd(1M). You can use rolemod(1M) and usermod(1M) to
modify key=value fields in /etc/user_attr. Modification of the type key is
restricted as described in rolemod and usermod.

EXAMPLE 1 Assigning a Profile to Root

The following example entry assigns to root the All profile, which allows root to use
all commands in the system, and also assigns two authorizations:

root::::auths=solaris.*,solaris.grant;profiles=All;type=normal

The solaris.* wildcard authorization shown above gives root all the solaris
authorizations; and the solaris.grant authorization gives root the right to grant to
others any solaris authorizations that root has. The combination of authorizations
enables root to grant to others all the solaris authorizations. See auth_attr(4) for
more about authorizations.

user_attr(4)

EXAMPLES

762 man pages section 4: File Formats • Last Revised 16 Mar 2004

/etc/nsswitch.conf
See nsswitch.conf(4).

/etc/user_attr
Described here.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

auths(1), pfcsh(1), pfksh(1), pfsh(1), ppriv(1), profiles(1), roles(1),
roleadd(1M), rolemod(1M), useradd(1M), usermod(1M),
getdefaultproj(3PROJECT), getuserattr(3SECDB), auth_attr(4),
exec_attr(4), nsswitch.conf(4), passwd(4), policy.conf(4), prof_attr(4),
project(4), attributes(5), privileges(5)

When deciding which authorization source to use, if you are not using LDAP, keep in
mind that NIS+ provides stronger authentication than NIS.

The root user is usually defined in local databases for a number of reasons, including
the fact that root needs to be able to log in and do system maintenance in single-user
mode, before the network name service databases are available. For this reason, an
entry should exist for root in the local user_attr file, and the precedence shown in
the example nsswitch.conf(4) file entry under EXAMPLES is highly recommended.

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

In the attr field, escape the following symbols with a backslash (\) if you use them in
any value: colon (:), semicolon (;), carriage return (\n), equals (=), or backslash (\).

user_attr(4)

FILES

ATTRIBUTES

SEE ALSO

NOTES

File Formats 763

utmp, wtmp – utmp and wtmp database entry formats

#include <utmp.h>
/var/adm/utmp

/var/adm/wtmp

The utmp and wtmp database files are obsolete and are no longer present on the
system. They have been superseded by the extended database contained in the utmpx
and wtmpx database files. See utmpx(4).

It is possible for /var/adm/utmp to reappear on the system. This would most likely
occur if a third party application that still uses utmp recreates the file if it finds it
missing. This file should not be allowed to remain on the system. The user should
investigate to determine which application is recreating this file.

utmpx(4)

utmp(4)

NAME

SYNOPSIS

DESCRIPTION

SEE ALSO

764 man pages section 4: File Formats • Last Revised 22 Feb 1999

utmpx, wtmpx – utmpx and wtmpx database entry formats

#include <utmpx.h>
/var/adm/utmpx

/var/adm/wtmpx

The utmpx and wtmpx files are extended database files that have superseded the
obsolete utmp and wtmp database files.

The utmpx database contains user access and accounting information for commands
such as who(1), write(1), and login(1). The wtmpx database contains the history of
user access and accounting information for the utmpx database.

Applications should not access these databases directly, but should use the functions
described on the getutxent(3C) manual page to interact with the utmpx and wtmpx
databases to ensure that they are maintained consistently.

/var/adm/utmpx user access and adminstration information

/var/adm/wtmpx history of user access and adminstrative information

getutxent(3C), wait(3C)wait.h(3HEAD)

utmpx(4)

NAME

SYNOPSIS

DESCRIPTION

USAGE

FILES

SEE ALSO

File Formats 765

vfstab – table of file system defaults

The file /etc/vfstab describes defaults for each file system. The information is
stored in a table with the following column headings:

device device mount FS fsck mount mount
to mount to fsck point type pass at boot options

The fields in the table are space-separated and show the resource name (device to
mount), the raw device to fsck (device to fsck), the default mount directory (mount
point), the name of the file system type (FS type), the number used by fsck to decide
whether to check the file system automatically (fsck pass), whether the file system
should be mounted automatically by mountall (mount at boot), and the file system
mount options (mount options). (See respective mount file system man page below in
SEE ALSO for mount options.) A ’-’ is used to indicate no entry in a field. This may be
used when a field does not apply to the resource being mounted.

The getvfsent(3C) family of routines is used to read and write to /etc/vfstab.

/etc/vfstab can be used to specify swap areas. An entry so specified, (which can be
a file or a device), will automatically be added as a swap area by the /sbin/swapadd
script when the system boots. To specify a swap area, the device-to-mount field contains
the name of the swap file or device, the FS-type is "swap", mount-at-boot is "no" and all
other fields have no entry.

The following are vfstab entries for various file system types supported in the
Solaris operating environment.

EXAMPLE 1 NFS and UFS Mounts

The following entry invokes NFS to automatically mount the directory /usr/local
of the server example1 on the client’s /usr/local directory with read-only
permission:

example1:/usr/local - /usr/local nfs - yes ro

The following example assumes a small departmental mail setup, in which clients
mount /var/mail from a server mailsvr. The following entry would be listed in
each client’s vfstab:

mailsvr:/var/mail - /var/mail nfs - yes intr,bg

The following is an example for a UFS file system in which logging is enabled:

/dev/dsk/c2t10d0s0 /dev/rdsk/c2t10d0s0 /export/local ufs 3 yes logging

See mount_nfs(1M) for a description of NFS mount options and mount_ufs(1M) for
a description of UFS options.

vfstab(4)

NAME

DESCRIPTION

EXAMPLES

766 man pages section 4: File Formats • Last Revised 21 Jun 2001

EXAMPLE 2 pcfs Mounts

The following example mounts a pcfs file system on a fixed hard disk on an x86
machine:

/dev/dsk/c1t2d0p0:c - /win98 pcfs - yes -

The example below mounts a Jaz drive on a SPARC machine. Normally, the volume
management daemon (see vold(1M)) handles mounting of removable media,
obviating a vfstab entry. If you choose to specify a device that supports removable
media in vfstab, be sure to set the mount-at-boot field to no, as below. Such an entry
presumes you are not running vold.

/dev/dsk/c1t2d0s2:c - /jaz pcfs - no -

For removable media on a SPARC machine, the convention for the slice portion of the
disk identifier is to specify s2, which stands for the entire medium.

For pcfs file systems on x86 machines, note that the disk identifier uses a p (p0) and a
logical drive (c, in the /win98 example above) for a pcfs logical drive. See
mount_pcfs(1M) for syntax for pcfs logical drives and for pcfs-specific mount
options.

EXAMPLE 3 CacheFS Mount

Below is an example for a CacheFS file system. Because of the length of this entry and
the fact that vfstab entries cannot be continued to a second line, the vfstab fields
are presented here in a vertical format. In re-creating such an entry in your own
vfstab, you would enter values as you would for any vfstab entry, on a single line.

device to mount: svr1:/export/abc
device to fsck: /usr/abc
mount point: /opt/cache
FS type: cachefs
fsck pass: 7
mount at boot: yes
mount options:
local-access,bg,nosuid,demandconst,backfstype=nfs,cachedir=/opt/cache

See mount_cachefs(1M) for CacheFS-specific mount options.

EXAMPLE 4 Loopback File System Mount

The following is an example of mounting a loopback (lofs) file system:

/export/test - /opt/test lofs - yes -

See lofs(7FS) for an overview of the loopback file system.

fsck(1M), mount(1M), mount_cachefs(1M), mount_hsfs(1M), mount_nfs(1M),
mount_tmpfs(1M), mount_ufs(1M), swap(1M), getvfsent(3C)

vfstab(4)

SEE ALSO

File Formats 767

System Administration Guide: Basic Administration

vfstab(4)

768 man pages section 4: File Formats • Last Revised 21 Jun 2001

vold.conf – volume management configuration file

/etc/vold.conf

The vold.conf file contains the removable media configuration information used by
vold(1M). This information includes the database to use, labels that are supported,
devices to use, actions to take when certain media events occur, and the list of file
systems that are unsafe to eject without unmounting.

Modify vold.conf to specify which program should be called when media events
(actions) occur or when you need to add another device to your system. See
EXAMPLES for more information on adding devices.

If you modify vold.conf, you must tell vold to reread vold.conf by sending a
HUP signal. Use the following command:

kill -HUP ‘pgrep vold‘

The syntax for the vold.conf file is shown here.

Database to use
db database

Labels supported
label label_type shared_object device

Devices to use
use device type special shared_object symname [options]

Actions
insert regex [options] program program args
eject regex [options] program program args
notify regex [options] program program args

List of file system types unsafe to eject

unsafe fs_type fs_type

Of these syntax fields, you can safely modify Devices to use and Actions. Do not
modify the db line.

All use device statements must be grouped together by device type. (For example, all
use cdrom statements must be grouped together and all use floppy statements
must be grouped together.) The explanations of the syntax for the Devices to use
field are as follows:

device The type of removable media device to be used. Legal
values are cdrom, floppy, pcmem and rmdisk.

type The specific capabilities of the device. Legal value is
drive.

special This sh(1) expression specifies the device or devices to
be used. Path usually begins with /dev.

vold.conf(4)

NAME

SYNOPSIS

DESCRIPTION

File Format

Devices to Use
Field

File Formats 769

shared_object The name of the program that manages this device.
vold(1M) expects to find this program in
/usr/lib/vold.

symname The symbolic name that refers to this device. The
symname is placed in the device directory.

options The user, group, and mode permissions for the media
inserted (optional).

The special and symname parameters are related. If special contains any shell wildcard
characters (that is, has one or more asterisks or question marks in it), then the syname
must end with"%d". In this case, the devices that are found to match the regular
expression are sorted, then numbered. The first device will have a zero filled in for the
"%d", the second device found will have a one, and so on.

If the special specification does not have any shell wildcard characters then the
symname parameter must explicitly specify a number at its end (see EXAMPLES below).

Here are the explanations of the syntax for the Actions field.

insert|eject|notify The media event prompting the event.

regex This sh(1) regular expression is matched against each
entry in the /vol file system that is being affected by
this event.

options You can specify what user or group name that this
event is to run as (optional).

program The full path name of an executable program to be run
when regex is matched.

program args Arguments to the program.

The default vold.conf file is shown here.

Volume Daemon Configuration file
#

Database to use (must be first)
db db_mem.so

Labels supported
label cdrom label_cdrom.so cdrom
label dos label_dos.so floppy rmdisk pcmem
label sun label_sun.so floppy rmdisk pcmem

Devices to use
use cdrom drive /dev/rdsk/c*s2 dev_cdrom.so cdrom%d
use floppy drive /dev/rdiskette[0-9] dev_floppy.so floppy%d
use pcmem drive /dev/rdsk/c*s2 dev_pcmem.so pcmem%d forceload=true
use rmdisk drive /dev/rdsk/c*s2 dev_rmdisk.so rmdisk%d

Actions

vold.conf(4)

Actions Field

Default Values

770 man pages section 4: File Formats • Last Revised 21 Jun 2002

eject dev/diskette[0-9]/* user=root /usr/sbin/rmmount
eject dev/dsk/* user=root /usr/sbin/rmmount
insert dev/diskette[0-9]/* user=root /usr/sbin/rmmount
insert dev/dsk/* user=root /usr/sbin/rmmount
notify rdsk/* group=tty user=root /usr/lib/vold/volmissing -p
remount dev/diskette[0-9]/* user=root /usr/sbin/rmmount
remount dev/dsk/* user=root /usr/sbin/rmmount

List of file system types unsafe to eject
unsafe ufs hsfs pcfs udfs

EXAMPLE 1 A sample vold.conf file.

To add a CD-ROM drive to the vold.conf file that does not match the default
regular expression (/dev/rdsk/c*s2), you must explicitly list its device path and
what symbolic name (with %d) you want the device path to have. For example, to add
a CD-ROM drive that has the path /dev/rdsk/my/cdroms? (where s? are the
different slices), add the following line to vold.conf (all on one line):

use cdrom drive /dev/rdsk/my/cdroms2 dev_cdrom.so cdrom%d

Then, when media is inserted in this CD-ROM drive, vold assigns it the next
symbolic name. For example, if two CD-ROMs match the default regular expression,
they would be named cdrom0 and cdrom1. And, any that match the added regular
expression would be named starting with cdrom2.

For a diskette that does not match the vold.conf default regular expression
(vol/dev/aliases/floppy[0-9]), a similar line would have to be added. For
example, to add a diskette whose path was /dev/my/fd0, you would add the
following to vold.conf:

use floppy drive /dev/my/fd0 dev_floppy.so floppy%d

sh(1), volcancel(1), volcheck(1), volmissing(1), rmmount(1M),
rpc.smserverd(1M), vold(1M), rmmount.conf(4), volfs(7FS)

vold manages both the block and character device for removable media. However, to
make the configuration file easier to set up and scan, only one of these devices needs
to be specified. If you follow the conventions specified below, vold figures out both
device names if only one of them is specified. For example, if you specify the block
device, it figures out the pathname to the character device; if you specify the
pathname to the character device, it figures out the block device.

The CD-ROM pathname must have a directory component of rdsk (for the character
device) and dsk for the block device. For example, if you specify the character device
using the line:

use cdrom drive /dev/rdsk/my/cdroms2 dev_cdrom.so cdrom%d

then it is assumed that the block device is at

vold.conf(4)

EXAMPLES

SEE ALSO

NOTES

CD-ROM Naming
Conventions

File Formats 771

/dev/dsk/my/cdroms2

For diskettes, vold requires that the device pathnames end in either rfd[0-9] or
rdiskette[0-9] for the character device, and fd[0-9] or diskette[0-9] for the
block device. As with the CD-ROM, it generates either the block name given the
character name, or the character name given the block name.

vold.conf(4)

Diskette Naming
Conventions

772 man pages section 4: File Formats • Last Revised 21 Jun 2002

volume-config – Solaris Volume Manager volume configuration information for top
down volume creation with metassist

/usr/share/lib/xml/dtd/volume-config.dtd

A volume configuration file, XML-based and compliant with the
volume-config.dtd Document Type Definition, describes the detailed
configuration of the volume or volumes to be created, including the names, sizes and
configurations of all the components used in the volume or volumes. This
configuration file can be automatically generated by running metassist with the -d
option, or can be manually created.

The volume configuration file can then be used to either generate a command file or to
directly create volumes by running metassist and specifying the volume
configuration file as input to the command.

As a system administrator, you would want to change, manually create, or edit the
volume configuration file only if there are small details of the configuration that you
want to change. For example, you might want to change names for volumes or hot
spare pools, mirror read option, or stripe interlace values.

It would be possible to also select different devices or change slice sizes or make
similar changes, but that is generally not recommended. Substantial changes to the
volume-config file could result in a poor or non-functional configuration.

With a volume-config file, you can run metassist and provide the file as input to
the command to generate either a command file or to actually set up the configuration.

The top level element <volume-config> surrounds the volume configuration data.
This element has no attributes. A volume configuration requires exactly one
<diskset> element, which must be the first element of the volume configuration.
Additionally, the volume-config can have zero or more of the following elements:
<disk>, <slice>, <hsp>, <concat>, <stripe>, <mirror> as required to define
the configuration of the volume to be created.

Within the <volume-config> element, a <diskset> element must exist. The
<diskset> element, with the name attribute, specifies the name of the diskset in
which to create the volume or volumes. This element and attribute are required. If this
named disk set does not exist, it is created upon implementation of this volume
configuration.

The volume configuration format provides for a <slice> element that defines the name
of a slice to use as a component of a volume. The <slice> element requires a name
attribute which specifies a full ctd name. If the <slice> is newly created as part of
the volume configuration, the startsector and sizeinblocks attributes must be
specified. If the slice was previously existing, these attributes need not be specified.

volume-config(4)

NAME

SYNOPSIS

DESCRIPTION

Defining Volume
Configuration

Defining Disk Set

Defining Slice

File Formats 773

The volume configuration format provides for a <hsp> element that defines the name
of a hot spare pool to use as a component of a configuration. The <hsp> element
requires a name attribute which specifies a hot spare pool name.

Slices defined by <slice> elements contained in the <hsp> element are included in
the hot spare pool when metassist creates it."

The <stripe> element defines stripes (interlaced RAID 0 volumes) to be used in a
volume. The <stripe> element takes a required name attribute to specify a name
conforming to Solaris Volume Manager naming requirements. If the name specifies an
existing stripe, no <slice> elements are required. If the name specifies a new stripe,
the <slice> elements to construct the slice must be specified within the <stripe>
element. The <stripe> elements takes an optional interlace attribute as value and
units (for example, 16KB, 5BLOCKS, 20MB). If this value isn’t specified, the Solaris
Volume Manager default value is used.

The <concat> element defines concats (non-interlaced RAID 0 volumes) to be used in
a configuration. It is the same as a <stripe> element, except that the interlace
attribute is not valid.

The <mirror> element defines mirrors (RAID 1 volumes) to be used in a volume
configuration. It can contain combinations of <concat> and <stripe> elements (to
explicitly determine which volumes are used as submirrors).

The <mirror> element takes a required name attribute to specify a name conforming
to Solaris Volume Manager naming requirements.

The <mirror> element takes an optional read attribute to define the mirror read
options (ROUNDROBIN, GEOMETRIC, or FIRST) for the mirrors. If this attribute is not
specified, the Solaris Volume Manager default value is used.

The <mirror> element takes an optional write attribute to define the mirror write
options (PARALLEL, SERIAL, or FIRST) for the mirrors. If this attribute is not
specified, the Solaris Volume Manager default value is used. The <mirror> element
takes an optional passnum attribute (0-9) to define the mirror passnum that defines
the order in which mirrors are resynced at boot, if required. Smaller numbers are
resynced first. If this attribute is not specified, the Solaris Volume Manager default
value is used.

EXAMPLE 1 Specifying a Volume Configuration

The following is an example volume configuration:

<!-- Example configuration -->
<volume-config>

<!-- Specify the existing disk set to use -->
<diskset name="redundant"/>

<!-- Create slices -->
<slice name="/dev/dsk/c0t0d1s7" startsector="1444464" \

sizeinblocks="205632BLOCKS"/>

volume-config(4)

Defining Hot
Spare Pool

Defining Stripe

Defining Concat

Defining Mirror

EXAMPLES

774 man pages section 4: File Formats • Last Revised 8 Aug 2003

EXAMPLE 1 Specifying a Volume Configuration (Continued)

<slice name="/dev/dsk/c0t0d1s6" startsector="1239840" \
sizeinblocks="102816KB"/>

<!-- Create a concat -->
<concat name="d12">
<slice name="/dev/dsk/c0t0d0s7"/>
<slice name="/dev/dsk/c0t0d0s6"/>
<slice name="/dev/dsk/c0t0d1s7"/>
<slice name="/dev/dsk/c0t0d1s6"/>

<!-- Create (and use) a HSP -->
hsp name="hsp0">
<slice name="/dev/dsk/c0t0d4s0"/>
<slice name="/dev/dsk/c0t0d4s1"/>
<slice name="/dev/dsk/c0t0d4s3"/>
<slice name="/dev/dsk/c0t0d4s4"/>
</hsp>

</concat>

<!-- Create a stripe -->
<stripe name="d15" interlace="32KB">
<slice name="/dev/dsk/c0t0d0s7"/>
<slice name="/dev/dsk/c0t0d1s7"/>

<!-- Use a previously-defined HSP -->
<hsp name="hsp0"/>
</stripe>

<!-- Create a mirror -->
<mirror name="d10">

<!-- Submirror 1: An existing stripe -->
<stripe name="d11"/>

<!-- Submirror 2: The concat defined above -->
<concat name="d12"/>

<!-- Submirror 3: A stripe defined here -->
<stripe name="d13">
<slice name="/dev/dsk/c0t0d2s6"/>
<slice name="/dev/dsk/c0t0d2s7"/>
<slice name="/dev/dsk/c0t0d3s6"/>
slice name="/dev/dsk/c0t0d3s7"/>
</stripe>

</mirror>

</volume-config>

volume-config(4)

File Formats 775

/usr/share/lib/xml/dtd/volume-config.dtd

metassist(1M), metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M),
metarecover(1M), metareplace(1M), metaroot(1M), metaset(1M),
metasync(1M), metattach(1M), mount_ufs(1M), mddb.cf(4)

Solaris Volume Manager Administration Guide

volume-config(4)

FILES

SEE ALSO

776 man pages section 4: File Formats • Last Revised 8 Aug 2003

volume-request, volume-defaults – Solaris Volume Manager configuration information
for top down volume creation with metassist

/usr/share/lib/xml/dtd/volume-request.dtd

/usr/share/lib/xml/dtd/volume-defaults.dtd

A volume request file, XML-based and compliant with the volume-request.dtd
Document Type Definition, describes the characteristics of the volumes that
metassist should produce.

A system administrator would use the volume request file instead of providing
options at the command line to give more specific instructions about the
characteristics of the volumes to create. A volume request file can request more than
one volume, but all requested volumes must reside in the same disk set.

If you start metassist by providing a volume-request file as input, metassist can
implement the configuration specified in the file, can generate a command file that sets
up the configuraiton for you to inspect or edit, or can generate a volume configuration
file for you to inspect or edit.

As a system administrator, you would want to create a volume request file if you need
to reuse configurations (and do not want to reenter the same command arguments), or
if you prefer to use a configuration file to specify volume characteristics.

Volume request files must be valid XML that complies with the document type
definition in the volume-request.dtd file, located at
/usr/share/lib/xml/dtd/volume-request.dtd. You create a volume request
file, and provide it as input to metassist to create volumes from the top down.

The top level element <volume-request> surrounds the volume request data. This
element has no attributes. A volume request requires at least one <diskset> element,
which must be the first element after <volume-request>.

Optionally, the <volume-request> element can include one or more <available>
and <unavailable> elements to specify which controllers or disks associated with a
specific controller can or cannot be used to create the volume.

Optionally, the <volume-request> element can include a <hsp> element to specify
characteristics of a hot spare pool if fault recovery is used.

If not specified for a volume with fault-recovery, the first hot spare pool found in the
disk set is used. If no hot spare pool exists but one is required, a hot spare pool is
created.

Optionally, the volume-request can include one or more <concat>, <stripe>,
<mirror>, <volume> elements to specify volumes to create.

Within the <volume-request> element, a <diskset> element must exist. The
<diskset> element, with the name attribute, specifies the name of the disk set to be
used. If this disk set does not exist, it is created. This element and the name attribute
are required.

volume-request(4)

NAME

SYNOPSIS

DESCRIPTION

Defining Volume
Request

Defining Disk Set

File Formats 777

Within the <volume-request> element and within other elements, you can specify
available or unavailable components (disks, or disks on a specific controller path) for
use or exclusion from use in a volume or hot spare pool.

The <available> and <unavailable> elements require a name attribute which
specifies either a full ctd name, or a partial ctd name that is used with the implied
wildcard to complete the expression. For example, specifying c3t2d0 as available
would look like:

<available name="/dev/dsk/c3t2d0">

The <available> element also makes any unnamed components unavailable.
Specifying all controllers exept c1 unavailable would look like:

<available name="c1">

Specifying all disks on controller 2 as unavailable would look like:

<unavailable name="c2">

The <unavailable> element can also be used to further restrict the list of available
components. For example, specifying all controllers exept c1 unavailable, and making
all devices associated with c1t2 unavailable as well would look like this:

<available name="c1">
<unavailable name="c1t2">

Components specified as available must be either part of the named disk set used for
this volume creation, or must be unused and not in any disk set. If the components are
selected for use, but are not in the specified diskset, the metassist command
automatically adds them to the diskset.

It is unnecessary to specify components that are in other disk sets as unavailable.
metassist automatically excludes them from consideration. However, unused
components or components that are not obviously used (for example, an unmounted
slice that is reserved for different uses) must be explicitly specified as unavailable, or
the metassist command can include them in the configuration.

The next element within the <volume-request> element, after the <diskset> and,
optionally, <available> and <unavailable> elements, is the <hsp> element. Its
sole attribute specifies the name of the hot spare pool:

<hsp name="hsp001">

The hot spare pool names must start with hsp and conclude with a number, thus
following the existing Solaris Volume Manager hot spare pool naming requirements.

Within the <hsp> element, you can specify one or more <available> and
<unavailable> elements to specify which disks, or disks associated with a specific
controller can or cannot be used to create the hot spares within the pool.

Also within the <hsp> element, you can use the <slice> element to specify hot
spares to be included in the hot spare pool (see DEFINING SLICE). Depending on the
requirements placed on the hot spare pool by other parts of the volume request,
additional slices can be added to the hot spare pool.

volume-request(4)

Defining
Availability

Defining Hot
Spare Pool

778 man pages section 4: File Formats • Last Revised 15 Jan 2004

The <slice> element is used to define slices to include or exclude within other
elements. It requires only a name attribute to specify the ctd name of the slice, and the
context of the <slice> element determines the function of the element. Sample slice
elements might look like:

<slice name="c0t1d0s2" />
<slice name="c0t12938567201lkj29561sllkj381d0s2" />

The <stripe> element defines stripes (interlaced RAID 0 volumes) to be used in a
volume. It can contain either slice elements (to explicitly determine which slices are
used), or appropriate combinations of available and unavailable elements if the
specific determination of slices is to be left to the metassist command.

The <stripe> element takes an optional name attribute to specify a name. If the
name is not specified, an available name is automatically selected from available
Solaris Volume Manager names. If possible, names for related components are related.

The <stripe> element takes an optional size attribute that specifies the size as value
and units (for example, 10TB, 5GB). If slices for the <stripe> are explicitly specified,
the size attribute is ignored. The <available> and <unavailable> elements can be
used to constrain slices for use in a stripe.

The <stripe> elements takes optional mincomp and maxcomp attributes to specify
both the minimum and maximum number of components that can be included in it.
As with size, if slices for the <stripe> are explicitly specified, the mincomp and
maxcomp attributes are ignored.

The <stripe> elements takes an optional interlace attribute as value and units (for
example, 16KB, 5BLOCKS, 20KB). If this value is not specified, the Solaris Volume
Manager default value is used.

The <stripe> element takes an optional usehsp attribute to specify if a hot spare
pool should be associated with this component. This attribute is specified as a boolean
value, as usehsp="TRUE". If the component is not a submirror, this attribute is
ignored.

The <concat> element defines concats (non-interlaced RAID 0 volumes) to be used in
a configuration. It is specified in the same way as a <stripe> element, except that the
mincomp, maxcomp, and interlace attributes are not valid.

The <mirror> element defines mirrors (RAID 1 volumes) to be used in a volume
configuration. It can contain combinations of <concat> and <stripe> elements (to
explicitly determine which volumes are used as submirrors). Alternatively, it can have
a size attribute specified, along with the appropriate combinations of available and
unavailable elements to leave the specific determination of components to the
metassist command.

The <mirror> element takes an optional name attribute to specify a name. If the
name is not specified, an available name is automatically selected.

volume-request(4)

Defining Slice

Defining Stripe

Defining Concat

Defining Mirror

File Formats 779

The <mirror> element takes an optional size attribute that specifies the size as value
and units (for example, 10TB, 5GB). If <stripe> and <concat> elements for the
mirror are not specified, this attribute is required. Otherwise, it is ignored.

The <mirror> element takes an optional nsubmirrors attribute to define the number
of submirrors (1-4) to include. Like the size attribute, this attribute is ignored if the
underlying <concat> and <stripe> submirrors are explicitly specified. The
<mirror> element takes an optional read attribute to define the mirror read options
(ROUNDROBIN, GEOMETRIC, or FIRST) for the mirror. If this attribute is not specified,
the Solaris Volume Manager default value is used.

The <mirror> element takes an optional write attribute to define the mirror write
options (PARALLEL, SERIAL, or FIRST) for the mirror. If this attribute is not specified,
the Solaris Volume Manager default value is used.

The <mirror> element takes an optional usehsp attribute to specify if a hot spare
pool should be associated with each submirror. This attribute is specified as a boolean
value, as usehsp="TRUE". If the usehsp attribute is specified in the configuration of
the <stripe> or <concat> element used as a submirror, it overrides the value of
usehsp attributes for the mirror as a whole.

The <volume> element defines volumes (high-level) by the quality of service they
should provide. (The <volume> element offers the same functionality that options on
the metassist command line can provide.)

The <volume> element can contain combinations of <available> and
<unavailable> elements to determine which components can be included in the
configuration.

The <volume> element takes an optional name attribute to specify a name. If the
name is not specified, an available name is automatically selected.

The <volume> element takes a required size attribute that specifies the size as value
and units (for example, 10TB, 5GB).

The <volume> element takes an optional redundancy attribute to define the number
of additional copies of data (1-4) to include. In a worst-case scenario, a volume can
suffer failure of n-1 components without data loss, where redundancy=n. With fault
recovery options, the volume could withstand up to n+hsps-1 non-concurrent
failures without data loss. Specifying redundancy=0 results in a RAID 0 volume
being created (a stripe, specifically).

The <volume> element takes an optional faultrecovery attribute to determine if
additional components should be allocated to recover from component failures in the
volume. This is used to determine whether the volume is associated with a hot spare
pool. The faultrecovery attribute is a boolean attribute, with a default value of FALSE.

The <volume> element takes an optional datapaths attribute to determine if multiple
data paths should be required to access the volume. The datapaths attribute should be
set to a numeric value.

volume-request(4)

Defining Volume
by Quality of

Service

780 man pages section 4: File Formats • Last Revised 15 Jan 2004

Global defaults can be set in /etc/default/metassist.xml. This volume-defaults
file can contain most of the same elements as a volume-request file, but differs
structurally from a volume-request file:

� The container element must be <volume-defaults>, not <volume-request>.

� The <volume-defaults> element can contain <available>, <unavailable>,
<hsp>, <concat>, <stripe>, <mirror>, or <volume> elements.

Attributes specified by these elements define global default values, unless
overridden by the corresponding attributes and elements in a volume-request.
None of these elements is a container element.

� The <volume-defaults> element can contain one or more <diskset> elements
to provide disk set-specific defaults. The <diskset> element can contain
<available>, <unavailable>, <hsp>, <concat>, <stripe>, <mirror>, or
<volume> elements.

� Settings specified outside of a <diskset> element apply to all disk sets, but can
be overridden within each <diskset> element.

EXAMPLE 1 Creating a Redundant Volume

The following example shows a volume request file used to create a redundant and
fault tolerant volume of 1TB.

<volume-request>
<diskset name="sparestorage">
<volume size="1TB" redundancy="2" faultrecovery="TRUE">

<available name="c2" />
<available name="c3" />
<unavailable name="c2t2d0" />

</volume>

</volume-request>

EXAMPLE 2 Creating a Complex Configuration

The following example shows a sample volume-request file that specifis a disk set
name, and specifically itemizes characteristics of components to create.

<volume-request>

<!-- Specify the disk set to use -->
<diskset name="mailspool"/>

<!-- Generally available devices -->
<available name="c0"/>

<!-- Create a 3-way mirror with redundant datapaths and HSPs /
via QoS -->

<volume size="10GB" redundancy="3" datapaths="2" /
faultrecovery="TRUE"/>

<!-- Create a 1-way mirror with a HSP via QoS -->
<volume size="10GB" faultrecovery="TRUE"/>

volume-request(4)

Defining Default
Values Globally

EXAMPLES

File Formats 781

EXAMPLE 2 Creating a Complex Configuration (Continued)

<!-- Create a stripe via QoS -->

<volume size="100GB"/>

Attribute Minimum Maximum
mincomp 1 N/A
maxcomp N/A 32
nsubmirrors 1 4
passnum 0 9
datapaths 1 4

redundancy 0 4

/usr/share/lib/xml/dtd/volume-request.dtd

/usr/share/lib/xml/dtd/volume-defaults.dtd

/etc/lvm/volume-defaults.xml

metassist(1M), metaclear(1M), metadb(1M), metadetach(1M), metahs(1M),
metainit(1M), metaoffline(1M), metaonline(1M), metaparam(1M),
metarecover(1M), metareplace(1M), metaroot(1M), metaset(1M),
metasync(1M), metattach(1M), mount_ufs(1M), mddb.cf(4)

Solaris Volume Manager Administration Guide

volume-request(4)

BOUNDARY
VALUES

FILES

SEE ALSO

782 man pages section 4: File Formats • Last Revised 15 Jan 2004

wanboot.conf – repository for WANboot configuration data

/etc/netboot/wanboot.conf

The wanboot.conf file is set up by a system administrator for one or more WANboot
clients. The file contains information used to drive the WANboot process. The CGI
program that serves up the bootstrap (wanboot) and the boot and root filesystems use
information contained in the file to determine file paths, encryption and signing
policies, and other characteristics of the operating environment.

A copy of wanboot.conf is incorporated in the boot filesystem that is transmitted to
the client. This is used by the bootstrap (wanboot) to determine SSL authentication
policy, and other security conditions.

You should use the bootconfchk(1M) utility to check the format and content of a
wanboot.conf file prior to deployment.

Entries in wanboot.conf are written one per line; an entry cannot be continued onto
another line. Blank lines are ignored, as is anything following a hash mark character
(#), which allows you to insert comments.

Each non-blank, non-comment line must take the form:

parameter=value

where value is terminated by the end-of-line, a space, or the hash mark character. The
value can be quoted if it contains a space or a hash mark, using single or double
quotes.

The parameters currently supported and their meanings are as follows:

boot_file
Specifies the path of the bootstrap file relative to the directory from which the web
server serves files. This parameter must be given if the bootstrap file (wanboot) is to
be served via HTTP, and must be specified with a leading slash (/).

root_server
Specifies the location of the CGI program that will serve up the information about
the root filesystem that will be transmitted to the client. If present, the value must
be a URL in one of the following forms:

http://host:port/some_path/wanboot-cgi
https://host:port/some_path/wanboot-cgi

where http specifies insecure download of the root filesystem; https specifies
secure download of the root filesystem; host is the name of the system which will
serve the root filesystem; port is the port through which the web server will serve
the root filesystem image; some-path is the directory which contains the wanboot-cgi
CGI program which will serve information about the root filesystem. For example:

http://webserver:8080/cgi-bin/wanboot-cgi

wanboot.conf(4)

NAME

SYNOPSIS

DESCRIPTION

FILE FORMAT

File Formats 783

root_file
Specifies the path of the root filesystem image relative to the directory from which
the web server serves files. This parameter must be given if the root filesystem is to
be served by means of HTTP, and must be specified with a leading /.

signature_type
Specifies the signing algorithm to be used when signing the bootstrap (that is,
wanboot), the boot filesystem, and the root filesystem (assuming the last is not
being sent using secure HTTP), prior to transmission to the client. If absent, or the
value is empty, no signing will be performed. If present, its value must be: sha1.

If signature_type is set, the client system being booted must also be setup with a
client key for that algorithm.

encryption_type
Specifies the encryption algorithm to be used when encrypting the boot filesystem
prior to transmission to the client. If absent, or the value is empty, no encryption of
the boot filesystem will be performed. If present, its value must be one of: 3des or
aes.

If encryption_type is set to one of the above algorithms, then the client system being
booted must also be setup with a client key for that algorithm and a non-empty
encryption_type must also be specified.

server_authentication
Specifies whether server authentication should be requested during SSL connection
setup. If absent, or the value is empty, server authentication will not be requested. If
present, its value must be one of: yes or no.

client_authentication
Specifies whether client authentication should be requested during SSL coonection
setup. If absent, or the value is empty, client authentication will not be requested. If
present, its value must be one of: yes or no.

If client_authentication is yes, then encryption and signing algorithms must also be
specified, the URL scheme in root_server must be https, and server_authentication
must also be yes.

resolve_hosts
Used to specify any host names that might need to be resolved for the client
system. Host names appearing in URLs in wanboot.conf and any discovered in
certificates associated with the client will automatically be resolved and do not
need to be specified here. The value should be a comma-separated list of host
names.

A typical use of this parameter would be to name hosts used by the installer that
differ from any of those used by the bootstrap.

boot_logger
Specifies the URL of a system to which logging messages will be sent. If absent, or
the value is empty, then logging will be to the system console only. If present it
must specify a URL in one of the following forms:

wanboot.conf(4)

784 man pages section 4: File Formats • Last Revised 15 Nov 2003

http://host:port/some_path/bootlog-cgi
https://host:port/some_path/bootlog-cgi

where the constituent parts are as defined for root_server, above.

Logging can be insecure or secure.

system_conf
Specifies the name of a file in the /etc/netboot hierarchy that will be
incorporated in the boot filesystem named system.conf and which is intended
for use by the system startup scripts only.

EXAMPLE 1 Sample File

The following is a sample wanboot.conf file:

##
#
Copyright 2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.
#
#ident "@(#)wanboot.conf 1.12 03/01/30 SMI"
#
##
wanboot.conf(4): boot configuration file.
#
Please consult wanboot.conf(4) for further information. Note that
this interface is "Evolving" as defined by attributes(5).
#
Anything after a ’#’ is comment. Values may be quoted (e.g. "val").
#
<empty> means there is no value, i.e. null. The absence of any
parameter implies that it takes a default value (<empty> unless
otherwise specified).
#
<url> is of the form http://... or https://...
##

The path of the bootstrap file (within htdocs) which is served up
by wanboot-cgi(bootfile).
#
boot_file=/bootfiles/wanboot # <absolute pathname>

These are used by wanboot-cgi(bootfile|bootfs|rootfs) to determine
whether boot_file or the bootfs is to be sent encrypted/signed, or
root_file is to be sent signed; the client must be setup with the
corresponding encryption/signature key(s) (which cannot be auto-
matically verified).
#
If an encryption_type is specified then a signature_type must also
be specified.
#
encryption_type=3des # 3des | aes | <empty>
signature_type=sha1 # sha1 | <empty>

This is used by wanboot-cgi(bootfs) and WANboot to determine whether
server authentication should be requested during SSL connection

wanboot.conf(4)

EXAMPLES

File Formats 785

EXAMPLE 1 Sample File (Continued)

setup.
#
server_authentication=yes # yes | no

This is used by wanboot-cgi(bootfs) and wanboot to determine whether
client authentication should be requested during SSL connection
setup. If client_authentication is "yes", then server_authentication
must also be "yes".
#
client_authentication=yes # yes | no

wanboot-cgi(bootfs) will construct a hosts file which resolves any
hostnames specified in any of the URLs in the wanboot.conf file,
plus those found in certificates, etc. The following parameter
may be used to add additional mappings to the hosts file.
#
resolve_hosts= # <hostname>[,<hostname>*] | <empty>

This is used to specify the URL of wanboot-cgi on the server on which
the root_file exists, and used by wanboot to obtain the root server’s
URL; wanboot substitutes root_file for the pathname part of the URL.
If the schema is http://... then the root_file will be signed if there
is a non-empty signature_type. If server_authentication is "yes", the
schema must be https://...; otherwise it must be http://...
#
root_server=https://www.example.com:1234/cgi-bin/wanboot-cgi # <url> | <empty>

This is used by wanboot-cgi(rootfs) to locate the path of the
rootfs image (within htdocs) on the root_server.
#
root_file=/rootimages/miniroot # <absolute pathname> | <empty>

This is used by wanboot to determine the URL of the boot_logger
(and whether logging traffic should be sent using http or https),
or whether it should simply be sent to the console.
#
boot_logger=http://www.example.com:1234/cgi-bin/bootlog-cgi # <url> | <empty>

This is used by the system startup scripts.
#
system_conf=system.conf

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

bootconfchk(1M), attributes(5)

wanboot.conf(4)

ATTRIBUTES

SEE ALSO

786 man pages section 4: File Formats • Last Revised 15 Nov 2003

warn.conf – Kerberos warning configuration file

/etc/krb5/warn.conf

The warn.conf file contains configuration information specifying how users will be
warned by the ktkt_warnd daemon about ticket expiration on a Kerberos client.
Credential expiration warnings are sent, by means of syslog, to auth.notice. All
other warning messages are sent to daemon.notice.

Each Kerberos client host must have a warn.conf file in order for users on that host
to get Kerberos warnings from the client. Entries in the warn.conf file must have the
following format:

principal syslog | terminal | mail time [email_address]

principal Specifies the principal name to be warned. The asterisk (*)
wildcard can be used to specify groups of principals.

syslog Sends the warnings to the system’s syslog. Depending on the
/etc/syslog.conf file, syslog entries are written to the
/var/adm/messages file and/or displayed on the terminal.

terminal Sends the warnings to display on the terminal.

mail Sends the warnings as email to the address specified by
email_address.

time Specifies how much time before the TGT expires when a warning
should be sent. The default time value is seconds, but you can
specify h (hours) and m (minutes) after the number to specify other
time values.

email_address Specifies the email address at which to send the warnings. This
field must be specified only with the mail field.

EXAMPLE 1 Specifying warnings

The following warn.conf entry

* syslog 5m

specifies that warnings will be sent to the syslog five minutes before the expiration of
the TGT for all principals. The form of the message is:

jdb@ACME.COM: your kerberos credentials expire in 5 minutes

/usr/lib/krb5/ktkt_warnd Kerberos warning daemon

ktkt_warnd(1M), syslog.conf(4), SEAM(5)

warn.conf(4)

NAME

SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

File Formats 787

xferlog – FTP Server transfer log file

/var/log/xferlog

The xferlog file contains transfer logging information from the FTP Server,
in.ftpd(1M). You can use the logfile capability to change the location of the log file.
See ftpaccess(4).

By default, each server entry is composed of a single line of the following form. All
fields are separated by spaces.

current-time transfer-time remote-host bytes-transferred filename
transfer-type special-action-flag direction access-mode username
service-name authentication-method authenticated-user-id completion-status

The xferlog format capability can be used to customize the transfer log file format
used. In addition to those in the default format, it also supports chroot-filename,
file-size, and restart-offset fields. See ftpaccess(4).

The fields are defined as follows:

current-time The current local time in the form DDD MMM dd
hh:mm:ss YYYY, where:

DDD Is the day of the week

MMM Is the month

dd Is the day of the month

hh Is the hour

mm Is the minutes

ss Is the seconds

YYYY Is the year

transfer-time The total time in seconds for the transfer

remote-host The remote host name

bytes-transferred The number of bytes transferred

filename The absolute pathname of the transferred file

transfer-type A single character indicating the type of transfer:

a Indicates an ascii transfer

b Indicates a binary transfer

special-action-flag One or more single character flags that indicate any
special action taken. The special-action-flag can have one
of more of the following values:

C File was compressed

xferlog(4)

NAME

SYNOPSIS

DESCRIPTION

788 man pages section 4: File Formats • Last Revised 25 Apr 2003

U File was uncompressed

T File was archived, for example, by using
tar(1)

_
(underbar)

No action was taken.

direction The direction of the transfer. direction can have one of
the following values:

o Outgoing

i Incoming

access-mode The method by which the user is logged in. access-mode
can have one of the following values:

a For an anonymous user.

g For a passworded guest user. See the
description of the guestgroup capability
in ftpaccess(4).

r For a real, locally authenticated user

username The local username, or if anonymous, the ID string
given

service-name The name of the service invoked, usually ftp

authentication-method The method of authentication used.
authentication-method can have one of the following
values:

0 None

1 RFC 931 authentication

authenticated-user-id The user ID returned by the authentication method. A
* is used if an authenticated user ID is not available.

completion-status A single character indicating the status of the transfer.
completion-status can have one of the following values:

c Indicates complete transfer

i Indicates incomplete transfer

chroot-filename The pathname of the transferred file relative to the
chroot point. This will differ from the filename field for
anonymous and guest users.

file-size The size, in bytes, of the file on the server.

restart-offset The offset, in bytes, at which the file transfer was
restarted (0 when no restart offset was specified).

xferlog(4)

File Formats 789

/var/log/xferlog

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

Interface Stability External

tar(1), in.ftpd(1M), ftpaccess(4), ftpconversions(4), attributes(5)

StJohns, Mike. RFC 931, Authentication Server. Network Working Group. January 1985.

xferlog(4)

FILES

ATTRIBUTES

SEE ALSO

790 man pages section 4: File Formats • Last Revised 25 Apr 2003

ypfiles – Network Information Service Version 2, formerly knows as YP

The NIS network information service uses a distributed, replicated database of dbm
files , in ASCII form, that are contained in the /var/yp directory hierarchy on each
NIS server.

A dbm database served by the NIS server is called a NIS map. A NIS domain is a
subdirectory of /var/yp that contains a set of NIS maps on each NIS server.

Standard nicknames are defined in the file /var/yp/nicknames. These names can be
used in place of the full map name in the ypmatch and ypcat commands. Use the
command ypwhich -x to display the current set of nicknames. Use the command
ypwhich -m to display all the available maps. Each line of the nickname file contains
two fields separated by white space. The first field is the nickname, and the second
field is the name of the map that it expands to. The nickname cannot contain a ".".

If the /var/yp/NISLDAPmapping configuration file is present, the NIS server
operates in NIS to LDAP (N2L) mode. In this mode, NIS maps are stored in a new set
of DBM files, prepended by the LDAP_ prefix, at /var/yp/domainename. These files
are used as a cache backed by information from an LDAP server. Additional DBM files
are created in the same directory to hold the cache’s TTL values.

N2L mode enables NIS clients to be supported in an LDAP environment.

In N2L mode, the old style DBM files, NIS source files, and the ypmake(1M) utility
have to role. They are retained to enable easy conversion back to the traditional mode,
if required.

When NIS is operating in N2L mode, it uses a new set of NIS maps with an LDAP_
prefix, based on the contents of the LDAP DIT. The NIS source files are unused and
become out of date. If you wish to convert back to the traditional NIS mode, the N2L
configuration file should be deleted. The system will then return to using the standard
map files. Optionally, the N2L mode map files, /var/yp/*/LDAP_* can also be
deleted.

If you want to run the system in traditional mode with information based on the DIT,
then the NIS source files must be regenerated based on the N2L maps. To regenerate
the NIS source files based on the N2L maps, run ypmap2src(1M).

NIS+ also provides a NIS service when it runs in YP-compatibility mode. See nis+(1)
and rpc.nisd(1M). NIS+, in any mode, cannot be run on the same system as
ypserv, whether ypserv is in traditional or N2L mode.

/var/yp
Directory containing NIS configuration files.

/var/yp/binding
Stores the information required to bind the NIS client to the NIS server.

/var/yp/binding/ypdomain/ypservers
Contains the servers to which the NIS client is allowed to bind.

ypfiles(4)

NAME

DESCRIPTION

NIS to LDAP
(N2L)

Converting from
N2L to Traditional

NIS

NIS+

FILES

File Formats 791

/var/yp/Makefile
Builds the NIS ndbm databases.

/var/yp/nicknames
Nicknames file.

/var/yp/securenets
Defines the hosts and networks that are granted access to information in the served
domain. This file is read at startup time by ypserv and ypxfrd.

/var/yp/ypdomain
Directory containing ndbm databases.

/var/yp/NISLDAPmapping
NIS to LDAP configuration file

/var/yp/*/LDAP_*
NIS to LDAP mode map files

ldap(1), nis+(1), makedbm(1M), nisaddent(1M), nissetup(1M), rpc.nisd(1M),
ypbind(1M), ypinit(1M), ypmake(1M), ypmap2src(1M), ypserv(1M),
ypxfrd(1M), ndbm(3C), ypclnt(3NSL)

The NIS+ server, rpc.nisd, when run in "YP-compatibility mode", can support NIS
clients only for the standard NIS maps listed below, provided that it has been set up to
serve the corresponding NIS+ tables using nissetup(1M) and nisaddent(1M). The
NIS+ server should serve the directory with the same name (case sensitive) as the
domainname of the NIS client. NIS+ servers use secure RPC to verify client credentials
but the NIS clients do not authenticate their requests using secure RPC. Therefore, NIS
clients can look up the information stored by the NIS+ server only if the information
has "read" access for an unauthenticated client, that is, one with nobody NIS+
credentials.

NIS maps NIS+ tables

passwd.byname passwd.org_dir

passwd.byuid passwd.org_dir

group.byname group.org_dir

group.bygid group.org_dir

publickey.byname cred.org_dir

hosts.byaddr hosts.org_dir

hosts.byname hosts.org_dir

mail.byaddr mail_aliases.org_dir

mail.aliases mail_aliases.org_dir

services.byname services.org_dir

services.byservicename services.org_dir

ypfiles(4)

SEE ALSO

NOTES

792 man pages section 4: File Formats • Last Revised 24 Nov 2003

rpc.bynumber rpc.org_dir

rpc.byname rpc.org_dir

protocols.bynumber protocols.org_dir

protocols.byname protocols.org_dir

networks.byaddr networks.org_dir

networks.byname networks.org_dir

netmasks.byaddr netmasks.org_dir

ethers.byname ethers.org_dir

ethers.byaddr ethers.byname

bootparams bootparams

auto.master auto_master.org_dir

auto.home auto_home.org_dir

auto.direct auto_direct.org_dir

auto.src auto_src.org_dir

ypfiles(4)

File Formats 793

yppasswdd – configuration file for rpc.yppasswdd (NIS password daemon)

/etc/default/yppasswdd

The yppasswdd file contains a parameter that modifies the behavior of the
rpc.yppasswdd(1M) daemon.

The yppasswdd file contains a single parameter:

#check_restricted_shell_name=1

By default in the current release, this line in yppasswdd is commented out. If you
uncomment the line, when a user attempts to change his default shell using ‘passwd
-r nis -e‘ (see passwd(1)), the rpc.yppasswdd daemon checks whether the name
of the user’s current shell begins with an ’r’. rpc.yppasswdd considers any shell
whose name begins with an ’r’ (for example, rcsh) to be a restricted shell. If a user’s
shell does begin with ’r’, his attempt to change from the default shell will fail.

If the line in the yppasswdd file is commented out (the default), the rpc.yppasswdd
daemon does not perform the restricted shell check.

The yppasswdd file is editable only by root or a member of the sys group.

/etc/default/yppasswdd configuration file for rpc.yppasswdd
daemon

rpc.yppasswdd(1M)

yppasswdd(4)

NAME

SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

794 man pages section 4: File Formats • Last Revised 8 Nov 2001

ypserv – configuration file for NIS to LDAP transition daemons

/etc/default/ypserv

The ypserv file specifies configuration information for the ypserv(1M) daemon.
Configuration information can come from LDAP or be specified in the ypserv file.

You can create a simple ypserv file by running inityp2l(1M). The ypserv file can
then be customized as required.

A related NISLDAPmapping file contains mapping information that converts NIS
entries into LDAP entries. See the NISLDAPmapping(4) man page for an overview of
the setup that is needed to map NIS data to or from LDAP.

The ypserv(1M) server recognizes the attributes that follow. Values specified for these
attributes in the ypserv file, including any empty values, override values that are
obtained from LDAP. However, the nisLDAPconfig* values are read from the
ypserv file only

The following are attributes that are used for initial configuration.

nisLDAPconfigDN
The DN for configuration information. If nisLDAPconfigDN is empty, all other
nisLDAPConfig* values are ignored.

nisLDAPconfigPreferredServerList
The list of servers to use for the configuration phase. There is no default value. The
following is an example of a value for nisLDAPconfigPreferredServerList:

nisLDAPconfigPreferredServerList=127.0.0.1:389

nisLDAPconfigAuthenticationMethod
The authentication method used to obtain the configuration information. The
recognized values for nisLDAPconfigAuthenticationMethod are:

none No authentication attempted

simple Password of proxy user sent in the clear to the
LDAP server

sasl/cram-md5 Use SASL/CRAM-MD5 authentication. This
authentication method may not be supported by all
LDAP servers. A password must be supplied.

sasl/digest-md5 Use SASL/DIGEST-MD5 authentication. The
SASL/CRAM-MD5authentication method may not be
supported by all LDAP servers. A password must be
supplied.

nisLDAPconfigAuthenticationMethod has no default value. The following is
an example of a value for nisLDAPconfigAuthenticationMethod:

nisLDAPconfigAuthenticationMethod=simple

ypserv(4)

NAME

SYNOPSIS

DESCRIPTION

EXTENDED
DESCRIPTION

Attributes

File Formats 795

nisLDAPconfigTLS
The transport layer security used for the connection to the server. The recognized
values are:

none No encryption of transport layer data. The default value is
none.

ssl SSL encryption of transport layer data. A certificate is required.

Export and import control restrictions might limit the availability of transport layer
security.

nisLDAPconfigTLSCertificateDBPath
The name of the directory that contains the certificate database. The default path is
/var/yp.

nisLDAPconfigProxyUser
The proxy user used to obtain configuration information.
nisLDAPconfigProxyUser has no default value. If the value ends with a comma,
the value of the nisLDAPconfigDN attribute is appended. For example:

nisLDAPconfigProxyUser=cn=nisAdmin,ou=People,

nisLDAPconfigProxyPassword
The password that should be supplied to LDAP for the proxy user when the
authentication method requires one. To avoid exposing this password publicly on
the machine, the password should only appear in the configuration file, and the file
should have an appropriate owner, group, and file mode.
nisLDAPconfigProxyPassword has no default value.

The following are attributes used for data retrieval. The object class name used for
these attributes is nisLDAPconfig.

preferredServerList
The list of servers to use to read or to write mapped NIS data from or to LDAP.
preferredServerList has no default value. For example:

preferredServerList=127.0.0.1:389

authenticationMethod
The authentication method to use to read or to write mapped NIS data from or to
LDAP. For recognized values, see the LDAPconfigAuthenticationMethod
attribute. authenticationMethod has no default value. For example:

authenticationMethod=simple

nisLDAPTLS
The transport layer security to use to read or to write NIS data from or to LDAP.
For recognized values, see the nisLDAPconfigTLS attribute. The default value is
none. Export and import control restrictions might limit the availability of transport
layer security.

ypserv(4)

796 man pages section 4: File Formats • Last Revised 9 Aug 2004

nisLDAPTLSCertificateDBPath
The name of the directory that contains the certificate DB. For recognized and
default values for nisLDAPTLSCertificateDBPath, see the
nisLDAPconfigTLSCertificateDBPath attribute.

nisLDAPproxyUser
Proxy user used by ypserv(1M), ypxfrd(1M) and yppasswdd(1M) to read or to
write from or to LDAP. Assumed to have the appropriate permission to read and
modify LDAP data. There is no default value. If the value ends in a comma, the
value of the context for the current domain, as defined by a
nisLDAPdomainContext attribute, is appended. See NISLDAPmapping(4). For
example:

nisLDAPproxyUser=cn=nisAdmin,ou=People,

nisLDAPproxyPassword
The password that should be supplied to LDAP for the proxy user when the
authentication method so requires. To avoid exposing this password publicly on the
machine, the password should only appear in the configuration file, and the file
must have an appropriate owner, group, and file mode. nisLDAPproxyPassword
has no default value.

nisLDAPsearchTimeout
Establishes the timeout for the LDAP search operation. The default value for
nisLDAPsearchTimeout is 180 seconds.

nisLDAPbindTimeout
nisLDAPmodifyTimeout
nisLDAPaddTimeout
nisLDAPdeleteTimeout

Establish timeouts for LDAP bind, modify, add, and delete operations, respectively.
The default value is 15 seconds for each attribute. Decimal values are allowed.

nisLDAPsearchTimeLimit
Establish a value for the LDAP_OPT_TIMELIMIT option, which suggests a time
limit for the search operation on the LDAP server. The server may impose its own
constraints on possible values. See your LDAP server documentation. The default is
the nisLDAPsearchTimeout value. Only integer values are allowed.

Since the nisLDAPsearchTimeout limits the amount of time the client ypserv
will wait for completion of a search operation, do not set the value of
nisLDAPsearchTimeLimit larger than the value of nisLDAPsearchTimeout.

nisLDAPsearchSizeLimit
Establish a value for the LDAP_OPT_SIZELIMIT option, which suggests a size
limit, in bytes, for the search results on the LDAP server. The server may impose its
own constraints on possible values. See your LDAP server documentation. The
default value for nisLDAPsearchSizeLimit is zero, which means the size limit
is unlimited. Only integer values are allowed.

nisLDAPfollowReferral
Determines if the ypserv should follow referrals or not. Recognized values for
nisLDAPfollowReferral are yes and no. The default value for

ypserv(4)

File Formats 797

nisLDAPfollowReferral is no.

The following attributes specify the action to be taken when some event occurs. The
values are all of the form event=action. The default action is the first one listed for
each event.

nisLDAPretrieveErrorAction
If an error occurs while trying to retrieve an entry from LDAP, one of the following
actions can be selected:

use_cached Retry the retrieval the number of time specified by
nisLDAPretrieveErrorAttempts, with the
nisLDAPretrieveErrorTimeout value controlling the wait
between each attempt.

If all attempts fail, then a warning is logged and the value
currently in the cache is returned to the client.

fail Proceed as for use_cached, but if all attempts fail, a
YPERR_YPERR error is returned to the client.

nisLDAPretrieveErrorAttempts
The number of times a failed retrieval should be retried. The default value for
nisLDAPretrieveErrorAttempts is unlimited. While retries are made the
ypserv daemon will be prevented from servicing further requests
.nisLDAPretrieveErrorAttempts values other than 1 should be used with
caution.

nisLDAPretrieveErrorTimeout
The timeout in seconds between each new attempt to retrieve LDAP data. The
default value for nisLDAPretrieveErrorTimeout is 15 seconds.

nisLDAPstoreErrorAction
An error occurred while trying to store data to the LDAP repository.

retry Retry operation nisLDAPstoreErrorAttempts times with
nisLDAPstoreErrorTimeout seconds between each attempt.
While retries are made, the NIS daemon will be prevented from
servicing further requests. Use with caution.

fail Return YPERR_YPERR error to the client.

nisLDAPstoreErrorAttempts
The number of times a failed attempt to store should be retried. The default value
for nisLDAPstoreErrorAttempts is unlimited. The value for
nisLDAPstoreErrorAttempts is ignored unless
nisLDAPstoreErrorAction=retry.

nisLDAPstoreErrortimeout
The timeout, in seconds, between each new attempt to store LDAP data. The
default value for nisLDAPstoreErrortimeout is 15 seconds. The
nisLDAPstoreErrortimeout value is ignored unless
nisLDAPstoreErrorAction=retry.

ypserv(4)

798 man pages section 4: File Formats • Last Revised 9 Aug 2004

Most attributes described on this man page, as well as those described on
NISLDAPmapping(4), can be stored in LDAP. In order to do so, you will need to add
the following definitions to your LDAP server, which are described here in LDIF
format suitable for use by ldapadd(1). The attribute and objectclass OIDs are
examples only.

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.3.6.1.4.1.11.1.3.1.1.2 NAME ’preferredServerList’ \

DESC ’Preferred LDAP server host addresses used by DUA’ \
EQUALITY caseIgnoreMatch \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.11.1.3.1.1.6 NAME ’authenticationMethod’ \
DESC ’Authentication method used to contact the DSA’ \
EQUALITY caseIgnoreMatch \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE)

dn: cn=schema
changetype: modify
add: attributetypes
attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.0 \

NAME ’nisLDAPTLS’ \
DESC ’Transport Layer Security’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.1 \
NAME ’nisLDAPTLSCertificateDBPath’ \
DESC ’Certificate file’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.2 \
NAME ’nisLDAPproxyUser’ \
DESC ’Proxy user for data store/retrieval’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.3 \
NAME ’nisLDAPproxyPassword’ \
DESC ’Password/key/shared secret for proxy user’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.6 \
NAME ’nisLDAPretrieveErrorAction’ \
DESC ’Action following an LDAP search error’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.7 \
NAME ’nisLDAPretrieveErrorAttempts’ \
DESC ’Number of times to retry an LDAP search’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.8 \
NAME ’nisLDAPretrieveErrorTimeout’ \
DESC ’Timeout between each search attempt’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.9 \
NAME ’nisLDAPstoreErrorAction’ \
DESC ’Action following an LDAP store error’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.10 \
NAME ’nisLDAPstoreErrorAttempts’ \
DESC ’Number of times to retry an LDAP store’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

ypserv(4)

Storing
Configuration

Attributes in
LDAP

File Formats 799

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.11 \
NAME ’nisLDAPstoreErrorTimeout’ \
DESC ’Timeout between each store attempt’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.12 \
NAME ’nisLDAPdomainContext’ \
DESC ’Context for a single domain’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.13 \
NAME ’nisLDAPyppasswddDomains’ \
DESC ’List of domains for which password changes are made’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26 SINGLE-VALUE)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.14 \
NAME ’nisLDAPdatabaseIdMapping’ \
DESC ’Defines a database id for a NIS object’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.15 \
NAME ’nisLDAPentryTtl’ \
DESC ’TTL for cached objects derived from LDAP’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.16 \
NAME ’nisLDAPobjectDN’ \
DESC ’Location in LDAP tree where NIS data is stored’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.17) \
NAME ’nisLDAPnameFields’ \
DESC ’Rules for breaking NIS entries into fields’ \\
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.18) \
NAME ’nisLDAPsplitFields’ \
DESC ’Rules for breaking fields into sub fields’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.19 \
NAME ’nisLDAPattributeFromField’ \
DESC ’Rules for mapping fields to LDAP attributes’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.20 \
NAME ’nisLDAPfieldFromAttribute’ \
DESC ’Rules for mapping fields to LDAP attributes’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.21 \
NAME ’nisLDAPrepeatedFieldSeparators’ \
DESC ’Rules for mapping fields to LDAP attributes’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.22 \
NAME ’nisLDAPcommentChar’ \
DESC ’Rules for mapping fields to LDAP attributes’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

attributetypes: (1.3.6.1.4.1.42.2.27.5.42.43.1.23 \
NAME ’nisLDAPmapFlags’ \
DESC ’Rules for mapping fields to LDAP attributes’ \
SYNTAX 1.3.6.1.4.1.1466.115.121.1.26)

ypserv(4)

800 man pages section 4: File Formats • Last Revised 9 Aug 2004

dn: cn=schema
changetype: modify
add: objectclasses
objectclasses: (1.3.6.1.4.1.42.2.27.5.42.43.1.0 NAME ’nisLDAPconfig’ \

DESC ’NIS/LDAP mapping configuration’ \
SUP top STRUCTURAL \
MAY (cn $ preferredServerList $

authenticationMethod $ nisLDAPTLS $
nisLDAPTLSCertificateDBPath $
nisLDAPproxyUser $ nisLDAPproxyPassword $
nisLDAPretrieveErrorAction $
nisLDAPretrieveErrorAttempts $
nisLDAPretrieveErrorTimeout $
nisLDAPstoreErrorAction $
nisLDAPstoreErrorAttempts $
nisLDAPstoreErrorTimeout $
nisLDAPdomainContext $
nisLDAPyppasswddDomains $
nisLDAPdatabaseIdMapping $
nisLDAPentryTtl $
nisLDAPobjectDN $
nisLDAPnameFields $
nisLDAPsplitFields $
nisLDAPattributeFromField $
nisLDAPfieldFromAttribute $
nisLDAPrepeatedFieldSeparators $
nisLDAPcommentChar $

nisLDAPmapFlags))

Create a file containing the following LDIF data. Substitute your actual
nisLDAPconfigDN for configDN:

dn: configDN
objectClass: top

objectClass: nisLDAPconfig

Use this file as input to the ldapadd(1) command in order to create the NIS to LDAP
configuration entry. Initially, the entry is empty. You can use the ldapmodify(1)
command to add configuration attributes.

EXAMPLE 1 Creating a NIS to LDAP Configuration Entry

To set the server list to port 389 on 127.0.0.1, create the following file and use it as
input to ldapmodify(1):

dn: configDN

preferredServerList: 127.0.0.1:389

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWypu

ypserv(4)

EXAMPLES

ATTRIBUTES

File Formats 801

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

ldapadd(1), ldapmodify(1), inityp2l(1M), yppasswdd(1M), ypserv(1M),
ypxfrd(1M), NIS+LDAPmapping(4), attributes(5)

System Administration Guide: Naming and Directory Services (DNS, NIS, and LDAP)

ypserv(4)

SEE ALSO

802 man pages section 4: File Formats • Last Revised 9 Aug 2004

zoneinfo – timezone information

For notes regarding the zoneinfo timezones, see
/usr/share/lib/zoneinfo/src/README.

zoneinfo(4)

NAME

DESCRIPTION

File Formats 803

zoneinfo(4)

804 man pages section 4: File Formats • Last Revised 21 Jun 1999

Index

A
a.out — Executable and Linking (ELF) files, 30
accounting system, prime/nonprime hours —

holidays, 224
addresses — addresses for sendmail, 26
admin — installation defaults file, 20
alias — alias table file of encoding names, 25
alias table file of encoding names — alias, 25
aliases — sendmail aliases file, 26
archives — device header, 32
ASET environment file — asetenv, 35
ASET master files

— asetmasters, 37
— cklist.high, 37
— cklist.low, 37
— cklist.med, 37
— tune.high, 37
— tune.low, 37
— tune.med, 37
— uid_aliases, 37

asetenv — ASET environment file, 35
au — AU audio file format, 40
AU audio file format — au, 40
audit_class password file, 43
audit_event password file, 50
audit — audit control file, 45
audit — audit data file, 49
audit.log — audit trail file, 52
audit trail file, — audit.log, 52
audit_user — per-user auditing data file, 59
autofs — automount daemon parameters, 65
parameters for automount daemon —

autofs, 65

B
bart_manifest — system audit manifest file, 67
bart_rules — bart rules file, 70
bart rules file — bart_rules, 70
boot parameter database — bootparams, 74
BOOTP, network database —

dhcp_network, 123
bootparams — boot parameter database, 74

C
CD-ROM table of contents file — cdtoc, 77
cdtoc — CD-ROM table of contents file, 77
cluster table of contents description file —

clustertoc, 80
clustertoc — cluster table of contents

description file, 80
compatible versions file — compver, 84
compver — compatible versions file, 84
configuration file, system log daemon —

syslogd, 679
configuration file for /usr/sbin/in.routed IPv4

network routing daemon — gateways, 198
configuration file for default router(s) —

defaultrouter, 107
configuration file for IKE policy —

ike.config, 232
configuration file for initgroups — nss, 423
configuration file for IPv6 router

autoconfiguration — ndpd.conf, 356
configuration file for LDAP display template

routines, — ldaptemplates.conf, 306

805

configuration file for LDAP filtering routines, —
ldapfilter.conf, 300

configuration file for LDAP search preference
routines, — ldapsearchprefs.conf, 302

configuration file for logadm command —
logadm.conf, 316

configuration file for mapping between NIS+
and LDAP — NIS+LDAPmapping, 385

configuration file for Mobile IP mobility agent
— mipagent.conf, 333

Solaris Network Cache and Accelerator (NCA)
socket utility library — ncad_addr, 348

configuration file for NIS+ service daemon —
rpc.nisd, 574

configuration file for NIS security —
securenets, 606

configuration file for pluggable authentication
modules — pam.conf, 441

configuration file for pluggable crypt modules
— crypt.conf, 99

configuration file for rpc.yppasswdd (NIS
password daemon) — yppasswdd, 794

configuration file for security policy —
policy.conf, 478

configuration file for Service Location Protocol
agents — slp.conf, 617

configuration file for the name service switch —
nsswitch.conf, 424

configuration file for the Net-SNMP agent —
/snmp/snmpd.conf, 632

configuration file for the Net-SNMP trap
daemon — snmptrapd.conf, 646

contract — the contract file system, 87
copyright — copyright information file, 93
core — core image of a terminated process

file, 94
crypt.conf — configuration file for pluggable

crypt modules, 99
crypto_certs — directory for certificate files for

Solaris Cryptographic Framework, 101

D
d_passwd — dial-up password file, 136

Generating An Encrypted Password, 136
dacf.conf — device auto-configuration

configuration file, 102

default_fs — specify the default file system type
for local or remote file systems, 106

default Internet protocol type — inet_type, 246
defaultdomain — specify host’s domain

name, 105
defaultrouter — configuration file for default

router(s), 107
depend — software dependencies file, 108
device tree properties for ISA bus device drivers

— isa, 671
device tree properties for ISA bus device drivers

— sysbus, 671
device_allocate, device access control file, 110
device auto-configuration configuration file —

dacf.conf, 102
device instance number file —

path_to_inst, 451
device_maps, device access control file, 112
devices

access control file — device_allocate, 110
access control file — device_maps, 112

dfs utilities packages, list — fstypes, 163
dfstab — file containing commands for sharing

resources, 115
DHCP

client identifier to IP address mappings —
dhcp_network, 123

configuration parameter table—
dhcptab, 129

dhcp_network — DHCP network database, 123
dhcp_network

See also pntadm
dhcpsvc.conf — file containing service

configuration parameters for the DHCP
service, 126

dhcptab — DHCP configuration parameter
table, 129

dial-up password file — d_passwd, 136
dialups — list of terminal devices requiring a

dial-up password, 134
dir — format of ufs directories, 135
dir_ufs — format of ufs directories, 135
directory for certificate files for Solaris

Cryptographic Framework —
crypto_certs, 101

directory of files specifying supported platforms
— platform, 472

806 man pages section 4: File Formats • January 2005

disk drive configuration for the format
command — format.dat, 157

disk space requirement file — space, 650
dispatcher, real-time process, parameters —

rt_dptbl, 589
dispatcher, time-sharing process, parameters —

ts_dptbl, 744
driver.conf — driver configuration file, 138
drivers

driver for PCI devices — pci, 453
driver for pseudo devices — pseudo, 545
driver for SBus devices — vme, 596
driver for SCSI devices — scsi, 602

E
ELF files — a.out, 30
Embedded Internet Print Protocol (IPP) listener

for the Apache HTTP server —
mod_ipp, 344

.environ — user-preference variables files for
AT&T FACE, 141

environ — user-preference variables files for
AT&T FACE, 141

environment, setting up an environment for
user at login time — profile, 535

/etc/sma/snmp/snmpd.conf — configuration
file for the Net-SNMP agent, 632

ethers — Ethernet addresses of hosts on
Internet, 143

exec_attr — execution profiles database, 144
Executable and Linking Format (ELF) files —

a.out, 30
execution profiles database — exec_attr, 144

F
FACE

alias file — pathalias, 450
object architecture information — ott, 433

FACE object architecture information, —
ott, 433

fd — file descriptor files, 147
file containing service configuration parameters

for the DHCP service — dhcpsvc.conf, 126
file descriptor files — fd, 147

file formats, — intro, 18
file listing users to be disallowed ftp login

privileges — ftpusers, 190
file lists NFS security modes — nfssec.conf, 381
file system

defaults — vfstab, 766
mounted — mnttab, 341
stripe — stripe, 324
unstripe — stripe, 324

file that maps sockets to transport providers —
sock2path, 649

files used by programs
/etc/md.conf — table of file systems to be

striped, 328
/etc/security/device_allocate —

device_allocate file, 111
/etc/security/device_maps — device_maps

file, 112
fixed priority dispatcher parameter table —

fx_dptbl, 192
flash_archive — format of flash archive, 148
format of ufs directories — dir, 135
format of ufs directories — dir_ufs, 135
format.dat — disk drive configuration for the

format command, 157
Keywords, 157
Syntax, 157

format of flash archive — flash_archive, 148
forward — mail forwarding file, 26
fspec — format specification in text files, 161
fstypes — file that lists utilities packages for

distributed file system, 163
FTP Server configuration file — ftpaccess, 165
FTP Server conversions database —

ftpconversions, 184
FTP Server enhanced group access file —

ftpgroups, 186
FTP Server individual user host access file —

ftphosts, 187
FTP Server transfer log file — xferlog, 788
FTP Server virtual hosting configuration file —

ftpservers, 188
ftpaccess — FTP Server configuration file, 165
ftpconversions — FTP Server conversions

database, 184
ftpgroups — FTP Server enhanced group access

file, 186

807

ftphosts — FTP Server individual user host
access file, 187

ftpservers — FTP Server virtual hosting
configuration file, 188

ftpusers — file listing users to be disallowed ftp
login privileges, 190

fx_dptbl — fixed priority dispatcher parameter
table, 192

G
gateways — configuration file for

/usr/sbin/in.routed IPv4 network routing
daemon, 198

Generic Security Services credential
configuration file — gsscred.conf, 222

geniconvtbl — geniconvtbl input file
format, 202

geniconvtbl input file format —
geniconvtbl, 202

graphics interface files — plot, 476
group — local source of group information, 220
gsscred.conf — Generic Security Services

credential configuration file, 222

H
hba.conf — library of Common Fibre Channel

HBA information functions, 223
holidays — prime/nonprime hours for

accounting system, 224
host name database — hosts, 225
hosts.equiv — trusted hosts list, 227
hosts — host name data base, 225

I
ib — Infiniband configuration files, 230
idnkit.pc — meta information data file for

libidnkit, 231
ike.config — configuration file for IKE

policy, 232
ike.preshared — pre-shared keys file for

IKE, 241
inet_type — default Internet protocol type, 246

inetd.conf — Internet server database, 243
Infiniband configuration files — ib, 230
init.d — initialization and termination scripts

for changing init states, 247
initialization and termination scripts for

changing init states — init.d, 247
inittab — script for init, 249
installation, defaults file — admin, 20
Internet

DHCP database — dhcp_network, 123
Ethernet addresses of hosts — ethers, 143
network name database — networks, 375
protocol name database — protocols, 539
services and aliases — services, 612

Internet servers database — servers, 243
IP NAT file format — ipnat.conf, 262
IP NAT file format — ipnat, 262
IP packet filter rule syntax — ipf.conf, 253
IP packet filter rule syntax — ipf, 253
IP pool file format — ippool.conf, 269
IP pool file format — ippool, 269
ipaddrsel.conf — IPv6 default address selection

policy, 252
ipf — IP packet filter rule syntax, 253
ipf.conf — IP packet filter rule syntax, 253
ipnat — IP NAT file format, 262
ipnat.conf — IP NAT file format, 262
ipnodes — local database associating names of

nodes with IP addresses, 267
ippool — IP pool file format, 269
ippool.conf — IP pool file format, 269
IPv6 default address selection policy —

ipaddrsel.conf, 252
isa — device tree properties for ISA bus device

drivers, 671
issue — issue identification file, 272

K
kdc.conf — Key Distribution Center (KDC)

configuration file, 276
Kerberos configuration file — krb5.conf, 289
Kerberos warning configuration file —

warn.conf, 787
Key Distribution Center (KDC) configuration

file — kdc.conf, 276

808 man pages section 4: File Formats • January 2005

keyboard table descriptions for loadkeys and
dumpkeys — keytables, 282

keytables — keyboard table descriptions for
loadkeys and dumpkeys, 282

krb5.conf — Kerberos configuration file, 289

L
ldapfilter.conf — configuration file for LDAP

filtering routines, 300
ldapsearchprefs.conf — configuration file for

LDAP search preference routines, 302
ldaptemplates.conf — configuration file for

LDAP display template routines, 306
legal annotations, specify — note, 419
library of Common Fibre Channel HBA

information functions — hba.conf, 223
link editor output — a.out, 30
list of files to be synchronized when changing

from one boot environment to another —
synclist, 668

list of network groups — netgroup, 366
list of terminal devices requiring a dial-up

password — dialups, 134
llc2 — LLC2 Configuration file, 310
LLC2 Configuration file — llc2, 310
local database associating names of nodes with

IP addresses — ipnodes, 267
logadm.conf — configuration file for logadm

command, 316
login-based device permissions —

logindevperm, 317
logindevperm — login-based device

permissions, 317
loginlog — log of failed login attempts, 318
lutab, 319

M
magic — file command’s magic numbers

table, 320
mapping file used by the NIS server

components — NISLDAPmapping, 403
mddb.cf — file, 323

message displayed to users attempting to log on
in the process of a system shutdown —
nologin, 418

meta information data file for libidnkit —
idnkit.pc, 231

mipagent.conf — configuration file for Mobile
IP mobility agent, 333

ncad_addr —Solaris Network Cache and
Accelerator (NCA) socket utility library, 348

mnttab — mounted file system table, 341
mod_ipp — Embedded Internet Print Protocol

(IPP) listener for the Apache HTTP
server, 344

mounted file system table — mnttab, 341

N
name service cache daemon configuration —

nscd.conf, nscd.conf, 421
name service switch, configuration file —

nsswitch.conf, 424
nca.if — the NCA configuration file that

specifies physical interfaces, 349
ncakmod.conf — the ncakmod configuration

file, 351
ncalogd.conf — the ncalogd configuration

file, 353
ncaport.conf — ncaport configuration file, 355
ncaport configuration file — ncaport.conf, 355
ndpd.conf — configuration file for IPv6 router

autoconfiguration, 356
netconfig — network configuration

database, 361
netgroup — list of network groups, 366
netid — netname database, 369
netmasks — network masks for subnetting, 371
netname database — netid, 369
.netrc — ftp remote login data file, 373
Network Information Service Version 2,

formerly knows as YP — ypfiles, 791
networks connected to the system —

netconfig, 361
networks — network name database, 375
nfs — NFS daemons parameters, 376
parameters for NFS daemons — nfs, 376
NFS, remote monted file systems — rmtab, 570
nfssec.conf — file lists NFS security modes, 381

809

NIS databases, updating — updaters, 760
NIS+LDAPmapping — configuration file for

mapping between NIS+ and LDAP, 385
nisfiles — NIS+ database files and directory

structure, 382
NISLDAPmapping — mapping file used by the

NIS server components, 403
nologin — message displayed to users

attempting to log on in the process of a
system shutdown, 418

nonprime hours, accounting system —
holidays, 224

note — specify legal annotations, 419
nscd.conf — name service cache daemon

configuration, 421
nss — configuration file for initgroups, 423
nsswitch.conf — configuration file for the name

service switch, 424

O
.order — installation order of software packages

on product distribution media, 432
overview of Net-SNMP configuration files —

snmp_config, 630

P
package characteristics file, — pkginfo, 459
package contents description file, —

pkgmap, 468
package information file — prototype, 540
package installation order file, — order, 432
package table of contents description file, —

packagetoc, 434
.packagetoc — listing of software packages on

product distribution media, 434
packing rules file for cachefs and filesync —

packingrules, 438
packingrules — packing rules file for cachefs

and filesync, 438
pam.conf — configuration file for pluggable

authentication modules, 441
passwd — password file, 446
passwords, access-restricted shadow system file

— shadow, 613

path_to_inst — device instance number
file, 451

pathalias — alias file for FACE, 450
PCI devices, driver class — pci, 453
pci — drivers for PCI devices, 453
pcmcia — PCMCIA nexus driver, 457
PCMCIA nexus driver — pcmcia, 457
per-user auditing data file — audit_user, 59
phones — remote host phone numbers, 458
pkginfo — software package characteristics

file, 459
pkgmap — listing of software package

contents, 468
platform — directory of files specifying

supported platforms, 472
plot — graphics interface files, 476
policy.conf — configuration file for security

policy, 478
pre-shared keys file for IKE —

ike.preshared, 241
.pref — user-preference variables files for AT&T

FACE, 141
prime hours, accounting system —

holidays, 224
printers.conf — printing configuration

database, 491
printers — printer alias database, 488
priv_names — privilege definition file, 497
privilege definition file — priv_names, 497
proc — /proc, the process file system, 498
proc — process file system, 498
proc — /proc, the process file system

PCAGENT, 521
PCCFAULT, 517
PCCSIG, 516
PCKILL, 516
PCNICE, 522
PCREAD PCWRITE, 522
PCRUN, 515
PCSASRS, 521
PCSCRED, 523
PCSENTRY PCSEXIT, 517
PCSET PCUNSET, 519
PCSFAULT, 517
PCSFPREG, 521
PCSHOLD, 516
PCSREG, 521
PCSSIG, 516

810 man pages section 4: File Formats • January 2005

proc — /proc, the process file system
(Continued)

PCSTOP PCDSTOP PCWSTOP
PCTWSTOP, 514
PCSTRACE, 516
PCSVADDR, 521
PCSXREG, 521
PCUNKILL, 516
PCWATCH, 518

/proc, the process file system — proc, 498
process file system — proc, 498
process scheduler (or dispatcher), real-time,

parameters — rt_dptbl, 589
process scheduler (or dispatcher), time-sharing,

parameters — ts_dptbl, 744
processes, core image of a terminated process

file — core, 94
profile — setting up an environment for user at

login time, 535
project — project file, 536
project file — project, 536
project identification file — issue, 272
protocols — names of known protocols in

Internet, 539
prototype — package information file, 540
pseudo devices, 545
pseudo — drivers for pseudo devices, 545
publickey — publickey database for secure

RPC, 546

Q
queuedefs — queue description file for at,

batch, and cron spooled by at or batch or
atrm, 547

R
real-time process dispatcher, parameters —

rt_dptbl, 589
real-time process scheduler, parameters —

rt_dptbl, 589
remote authentication for hosts and users —

hosts.equiv, .rhosts, 227
remote — remote host descriptions, 559
remote host, phone numbers — phones, 458

remote login data for ftp — netrc, 373
remote mounted file systems, — rmtab, 570
Remote Program Load (RPL) server

configuration file — rpld.conf, 587
repository for WANboot configuration data —

wanboot.conf, 783
resolv.conf — resolver configuration file, 563
resolver configuration file — resolv.conf, 563
rmmount.conf — removable media mounter

configuration file
Default Values, 566
Examples, 566

rndc.conf — rndc configuration file, 571
rndc configuration file — rndc.conf, 571
rpc — rpc program number database, 573
rpc.nisd — configuration file for NIS+ service

daemon, 574
RPC program names, for program numbers —

rpc, 573
RPC security, public key database —

publickey, 546
RPCSEC_GSS mechanism file, — mech, 330
RPCSEC_GSS QOP file, —, 330
rpld.conf — Remote Program Load (RPL) server

configuration file, 587

S
sasl_appname.conf — SASL options and

configuration file, 594
SASL options and configuration file —

sasl_appname.conf, 594
SBus devices, driver class — sbus, 596
sbus — drivers for SBus devices, 596
sccsfile — format of SCCS history file, 599
scheduler, real-time process, parameters —

rt_dptbl, 589
scheduler, time-sharing process, parameters —

ts_dptbl, 744
SCSI devices, driver class — scsi, 602
scsi — drivers for SCSI devices, 602
securenets — configuration file for NIS

security, 606
sendmail addresses file — addresses, 26
sendmail aliases file — aliases, 26
sendmail aliases file — forward, 26

811

serialized registration file for the service
location protocol daemon (slpd) —
slpd.reg, 625

services — Internet services and aliases, 612
shadow password file, 613
share resources across network, commands —

dfstab, 115
shared resources, local, — sharetab, 615
sharetab — shared file system table, 615
shell database — shells, 616
shells — shell database, 616
slp.conf — configuration file for Service

Location Protocol agents, 617
slpd.reg — serialized registration file for the

service location protocol daemon (slpd), 625
snmp_config — overview of Net-SNMP

configuration files, 630
snmptrapd.conf — configuration file for the

Net-SNMP trap daemon, 646
sock2path — file that maps sockets to transport

providers, 649
software dependencies — depend, 108
Solaris Volume Manager configuration

information for top down volume creation
with metassist — volume-defaults, 777

Solaris Volume Manager configuration
information for top down volume creation
with metassist — volume-request, 777

Solaris Volume Manager volume configuration
information for top down volume creation
with metassist — volume-config, 773

space — disk space requirement file, 650
specify the default file system type for local or

remote file systems — default_fs, 106
specify host’s domain name —

defaultdomain, 105
ssh_config — ssh configuration file, 651
ssh configuration file — ssh_config, 651
sshd_config — sshd configuration file, 658
sshd configuration file — sshd_config, 658
stripe — stripe file system, 324
stripe file system — stripe, 324
su command log file — sulog, 667
sulog — su command log file, 667
synclist — list of files to be synchronized when

changing from one boot environment to
another, 668

sysbus — device tree properties for ISA bus
device drivers, 671

sysidcfg — system identification configuration
file, 673
Keyword Syntax Rules, 673
Where To Put the sysidcfg File, 673

syslogd.conf — system log daemon
configuration file, 679

system audit manifest file — bart_manifest, 67
system — system configuration

information, 682
system identification configuration file —

sysidcfg, 673
system log configuration file —

syslogd.conf, 679

T
telnet default options file — telnetrc, 686
telnetrc — file for telnet default options, 686
term — format of compiled term file, 687
terminal and printer capability database —

terminfo, 690
terminals, line setting information —

ttydefs, 751
termination and initialization scripts for

changing init states — init.d, 247
terminfo — terminal and printer capability

database, 690
test files, format specification — fspec, 161
the contract file system — contract, 87
the NCA configuration file that specifies

physical interfaces — nca.if, 349
the ncakmod configuration file —

ncakmod.conf, 351
the ncalogd configuration file —

ncalogd.conf, 353
time-sharing process dispatcher, parameters —

ts_dptbl, 744
time-sharing process scheduler, parameters —

ts_dptbl, 744
timezone — set default time zone, 735
timed event services, queue description file for

at, batch and cron — queuedefs, 547
timezone — default timezone data base, 736
timezone information — zoneinfo, 803
TNF kernel probes — tnf_kernel_probes, 737

812 man pages section 4: File Formats • January 2005

tnf_kernel_probes — TNF kernel probes, 737
ttydefs — terminal line settings

information, 751
ttyname, list of directories with terminal-related

device files — ttysrch, 752

U
ufsdump — incremental dump format, 754
updaters — configuration file for NIS

updating, 760
user-preference variables files for AT&T FACE

— environ, 141
daemon parameters for automount —

autofs, 65
daemon parameters for NFS — nfs, 376
utmp — utmp and wtmp database entry

formats, 764
utmp and wtmp database entry formats —

utmp, 764
utmp and wtmp database entry formats —

wtmp, 764
utmpx — utmpx and wtmpx database entry

formats, 765
utmpx and wtmpx database entry formats —

utmpx, 765
utmpx and wtmpx database entry formats —

wtmpx, 765

V
.variables — user-preference variables files for

AT&T FACE, 141
vfstab — defaults for each file system, 766
vold.conf — volume management configuration

file, 769
Actions Field, 770
CD-ROM Naming Conventions, 771
Default Values, 770
Devices to Use Field, 769
Diskette Naming Conventions, 772
File Format, 769

volume-config — Solaris Volume Manager
volume configuration information for top
down volume creation with metassist, 773

volume-defaults — Solaris Volume Manager
configuration information for top down
volume creation with metassist, 777

volume management, configuration file —
vold.conf, 769

volume-request — Solaris Volume Manager
configuration information for top down
volume creation with metassist, 777

W
wanboot.conf — repository for WANboot

configuration data, 783
warn.conf — Kerberos warning configuration

file, 787
wtmp — utmp and wtmp database entry

formats, 764
wtmpx — utmpx and wtmpx database entry

formats, 765

X
xferlog — FTP Server transfer log file, 788

Y
ypfiles — Network Information Service Version

2, formerly knows as YP, 791
yppasswdd — configuration file for

rpc.yppasswdd (NIS password
daemon), 794

Z
zoneinfo — timezone information, 803

813

814 man pages section 4: File Formats • January 2005

	man pages section 4: File Formats
	Preface
	Overview

	Index

