Sun Microsystems, Inc.

4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 816-5174-10
January 2005

»
2 Sun

microsystems

man pages section 4: File Formats

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights — Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent 1'utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront étre dérivées du systeme Berkeley BSD licenciés par 1'Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnait
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l'industrie
de I'informatique. Sun détient une licence non exclusive de Xerox sur l'interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l'interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

a &

Adobe PostScript

©

050105@ 10536

Contents

Preface 11

Introduction 17
Intro(4) 18

File Formats 19
admin(4) 20
alias(4) 25
aliases(4) 26
a.out(4) 30
archives(4) 32
asetenv(4) 35
asetmasters(4) 37
au(4) 40
audit_class(4) 43
audit_control(4) 45
audit_data(4) 49
audit_event(4) 50
audit.log(4) 52
audit_user(4) 59
auth_attr(4) 61
autofs(4) 65
bart_manifest(4) 67
bart_rules(4) 70
bootparams(4) 74
cdtoc(d) 77

clustertoc(4) 80
compver(4) 84
contents(4) 85
contract(4) 87
copyright(4) 93
core(4) 94
crypt.conf(4) 99
crypto_certs(4) 101
dacf.conf(4) 102
dat.conf(4) 103
defaultdomain(4) 105
default_fs(4) 106
defaultrouter(4) 107
depend(4) 108
device_allocate(4) 110
device_maps(4) 112
devices(4) 114
dfstab(4) 115
dhcp_inittab(4) 116
dhcp_network(4) 123
dhcpsve.conf(4) 126
dhcptab(4) 129
dialups(4) 134
dir_ufs(4) 135
d_passwd(4) 136
driver.conf(4) 138
environ(4) 141
ethers(4) 143
exec_attr(4) 144
fd@) 147
flash_archive(4) 148
format.dat(4) 157
fspec(4) 161
fstypes(4) 163
ftp(4) 164
ftpaccess(4) 165
ftpconversions(4) 184
ftpgroups(4) 186

4 man pages section 4: File Formats ¢ January 2005

ftphosts(4) 187
ftpservers(4) 188
ftpusers(4) 190
fx_dptbl(4) 192
gateways(4) 198
geniconvtbl(4) 202
group(4) 220
gsscred.conf(4) 222
hba.conf(4) 223
holidays(4) 224
hosts(4) 225
hosts.equiv(4) 227
ib(4) 230
idnkit.pc(4) 231
ike.config(4) 232
ike.preshared(4) 241
inetd.conf(4) 243
inet_type(4) 246
init.d(4) 247
inittab(4) 249
ipaddrsel.conf(4) 252
ipf(4) 253

ipnat(4) 262
ipnodes(4) 267
ippool(4) 269
issue(4) 272
kadmb.acl(4) 273
kdc.conf(4) 276
keytables(4) 282
krb5.conf(4) 289
Idapfilter.conf(4) 300
Idapsearchprefs.conf(4) 302
ldaptemplates.conf(4) 306
llc2(4) 310
logadm.conf(4) 316
logindevperm(4) 317
loginlog(4) 318
lutab(4) 319

magic(4) 320
mddb.cf(4) 323
md.tab(4) 324
mech(4) 330
meddb(4) 332
mipagent.conf(4) 333
mnttab(4) 341
mod_ipp(4) 344
ncad_addr(4) 348
nca.if(4) 349
ncakmod.conf(4) 351
ncalogd.conf(4) 353
ncaport.conf(4) 355
ndpd.conf(4) 356
netconfig(4) 361
netgroup(4) 366
netid(4) 369
netmasks(4) 371
netrc(4) 373
networks(4) 375
nfs(4) 376
nfslog.conf(4) 379
nfssec.conf(4) 381
nisfiles(4) 382
NIS+LDAPmapping(4) 385
NISLDAPmapping(4) 403
nodename(4) 417
nologin(4) 418
note(4) 419
notrouter(4) 420
nscd.conf(4) 421
nss(4) 423
nsswitch.conf(4) 424
order(4) 432
ott(4) 433
packagetoc(4) 434
packingrules(4) 438
pam.conf(4) 441

6 man pages section 4: File Formats ¢ January 2005

passwd(4) 446
pathalias(4) 450
path_to_inst(4) 451
pci(4) 453
pcmcia(4) 457
phones(4) 458
pkginfo(4) 459
pkgmap(4) 468
platform(4) 472
plot(4B) 476
policy.conf(4) 478
power.conf(4) 481
printers(4) 488
printers.conf(4) 491
priv_names(4) 497
proc(4) 498
process(4) 528
prof_attr(4) 533
profile(4) 535
project(4) 536
protocols(4) 539
prototype(4) 540
pseudo(4) 545
publickey(4) 546
queuedefs(4) 547
rcmscript(4) 549
remote(4) 559
resolv.conf(4) 563
rmmount.conf(4) 566
rmtab(4) 570
rndc.conf(4) 571
rpc(4) 573
rpcnisd(4) 574
rpld.conf(4) 587
rt_dptbl(4) 589
sasl_appname.conf(4) 594
sbus(4) 596
sccsfile(4) 599

scsi(4) 602
securenets(4) 606
service_bundle(4) 608
service_provider.conf(4) 610
services(4) 612
shadow(4) 613
sharetab(4) 615
shells(4) 616
slp.conf(4) 617
slpd.reg(4) 625
snmp.conf(4) 627
snmp_config(4) 630
snmpd.conf(4) 632
snmptrapd.conf(4) 646
snmp_variables(4) 648
sock2path(4) 649
space(4) 650
ssh_config(4) 651
sshd_config(4) 658
sulog(4) 667
synclist(4) 668
sysbus(4) 671
sysidcfg(4) 673
syslog.conf(4) 679
system(4) 682
telnetrc(4) 686
term(4) 687
terminfo(4) 690
TIMEZONE@4) 735
timezone(4) 736
tnf_kernel_probes(4) 737
ts_dptbl(4) 744
ttydefs(4) 751
ttysrch(4) 752
ufsdump(4) 754
updaters(4) 760
user_attr(4) 761
utmp(4) 764

8 man pages section 4: File Formats ¢ January 2005

utmpx(4) 765
vistab(4) 766
vold.conf(4) 769
volume-config(4) 773
volume-request(4) 777
wanboot.conf(4) 783
warn.conf(4) 787
xferlog(4) 788
ypfiles(4) 791
yppasswdd(4) 794
ypserv(4) 795
zoneinfo(4) 803

Index 805

10 man pages section 4: File Formats ¢ January 2005

Preface

Both novice users and those familar with the SunOS operating system can use online
man pages to obtain information about the system and its features. A man page is
intended to answer concisely the question “What does it do?” The man pages in
general comprise a reference manual. They are not intended to be a tutorial.

Overview

The following contains a brief description of each man page section and the
information it references:

Section 1 describes, in alphabetical order, commands available with the operating
system.

Section 1M describes, in alphabetical order, commands that are used chiefly for
system maintenance and administration purposes.

Section 2 describes all of the system calls. Most of these calls have one or more
error returns. An error condition is indicated by an otherwise impossible returned
value.

Section 3 describes functions found in various libraries, other than those functions
that directly invoke UNIX system primitives, which are described in Section 2.

Section 4 outlines the formats of various files. The C structure declarations for the
file formats are given where applicable.

Section 5 contains miscellaneous documentation such as character-set tables.
Section 6 contains available games and demos.

Section 7 describes various special files that refer to specific hardware peripherals
and device drivers. STREAMS software drivers, modules and the
STREAMS-generic set of system calls are also described.

1

m Section 9 provides reference information needed to write device drivers in the
kernel environment. It describes two device driver interface specifications: the
Device Driver Interface (DDI) and the Driver/Kernel Interface (DKI).

m Section 9E describes the DDI/DKI, DDI-only, and DKI-only entry-point routines a
developer can include in a device driver.

® Section 9F describes the kernel functions available for use by device drivers.

m Section 9S describes the data structures used by drivers to share information
between the driver and the kernel.

Below is a generic format for man pages. The man pages of each manual section
generally follow this order, but include only needed headings. For example, if there
are no bugs to report, there is no BUGS section. See the intro pages for more
information and detail about each section, and man(1) for more information about man
pages in general.

NAME This section gives the names of the commands or
functions documented, followed by a brief
description of what they do.

SYNOPSIS This section shows the syntax of commands or
functions. When a command or file does not exist
in the standard path, its full path name is shown.
Options and arguments are alphabetized, with
single letter arguments first, and options with
arguments next, unless a different argument order
is required.

The following special characters are used in this
section:

[] Brackets. The option or argument
enclosed in these brackets is optional. If
the brackets are omitted, the argument
must be specified.

Ellipses. Several values can be provided
for the previous argument, or the
previous argument can be specified
multiple times, for example, "filename

Separator. Only one of the arguments
separated by this character can be
specified at a time.

{} Braces. The options and/or arguments
enclosed within braces are
interdependent, such that everything
enclosed must be treated as a unit.

12 man pages section 4: File Formats ¢ January 2005

PROTOCOL

DESCRIPTION

IOCTL

OPTIONS

OPERANDS

OUTPUT

RETURN VALUES

ERRORS

This section occurs only in subsection 3R to
indicate the protocol description file.

This section defines the functionality and behavior
of the service. Thus it describes concisely what the
command does. It does not discuss OPTIONS or
cite EXAMPLES. Interactive commands,
subcommands, requests, macros, and functions are
described under USAGE.

This section appears on pages in Section 7 only.
Only the device class that supplies appropriate
parameters to the ioct1(2) system call is called
ioctl and generates its own heading. ioct1 calls
for a specific device are listed alphabetically (on the
man page for that specific device). ioct1 calls are
used for a particular class of devices all of which
have an io ending, such as mtio(7I).

This secton lists the command options with a
concise summary of what each option does. The
options are listed literally and in the order they
appear in the SYNOPSIS section. Possible
arguments to options are discussed under the
option, and where appropriate, default values are
supplied.

This section lists the command operands and
describes how they affect the actions of the
command.

This section describes the output — standard output,
standard error, or output files — generated by the
command.

If the man page documents functions that return
values, this section lists these values and describes
the conditions under which they are returned. If a
function can return only constant values, such as 0
or -1, these values are listed in tagged paragraphs.
Otherwise, a single paragraph describes the return
values of each function. Functions declared void do
not return values, so they are not discussed in
RETURN VALUES.

On failure, most functions place an error code in
the global variable errno indicating why they
failed. This section lists alphabetically all error
codes a function can generate and describes the

13

USAGE

EXAMPLES

ENVIRONMENT VARIABLES

EXIT STATUS

FILES

ATTRIBUTES

SEE ALSO

14 man pages section 4: File Formats ¢ January 2005

conditions that cause each error. When more than
one condition can cause the same error, each
condition is described in a separate paragraph
under the error code.

This section lists special rules, features, and
commands that require in-depth explanations. The
subsections listed here are used to explain built-in
functionality:

Commands
Modifiers
Variables
Expressions
Input Grammar

This section provides examples of usage or of how
to use a command or function. Wherever possible a
complete example including command-line entry
and machine response is shown. Whenever an
example is given, the prompt is shown as
example$%, or if the user must be superuser,
example#. Examples are followed by explanations,
variable substitution rules, or returned values. Most
examples illustrate concepts from the SYNOPSIS,
DESCRIPTION, OPTIONS, and USAGE sections.

This section lists any environment variables that
the command or function affects, followed by a
brief description of the effect.

This section lists the values the command returns to
the calling program or shell and the conditions that
cause these values to be returned. Usually, zero is
returned for successful completion, and values
other than zero for various error conditions.

This section lists all file names referred to by the
man page, files of interest, and files created or
required by commands. Each is followed by a
descriptive summary or explanation.

This section lists characteristics of commands,
utilities, and device drivers by defining the
attribute type and its corresponding value. See
attributes(b) for more information.

This section lists references to other man pages,
in-house documentation, and outside publications.

DIAGNOSTICS

WARNINGS

NOTES

BUGS

This section lists diagnostic messages with a brief
explanation of the condition causing the error.

This section lists warnings about special conditions
which could seriously affect your working
conditions. This is not a list of diagnostics.

This section lists additional information that does
not belong anywhere else on the page. It takes the
form of an aside to the user, covering points of
special interest. Critical information is never
covered here.

This section describes known bugs and, wherever
possible, suggests workarounds.

15

16 man pages section 4: File Formats ¢ January 2005

Introduction

17

Intro(4)

NAME | Intro - introduction to file formats

DESCRIPTION | This section outlines the formats of various files. The C structure declarations for the
file formats are given where applicable. Usually, the headers containing these structure
declarations can be found in the directories /usr/include or /usr/include/sys.
For inclusion in C language programs, however, the syntax #include <filename.h> or
#include <sys/filename.h> should be used.

18 man pages section 4: File Formats ¢ Last Revised 16 Apr 2003

File Formats

19

admin(4)

20

NAME

DESCRIPTION

admin — installation defaults file

admin is a generic name for an ASCII file that defines default installation actions by
assigning values to installation parameters. For example, it allows administrators to
define how to proceed when the package being installed already exists on the system.

/var/sadm/install/admin/default is the default admin file delivered with this
release. The default file is not writable, so to assign values different from this file,
create a new admin file. There are no naming restrictions for admin files. Name the
file when installing a package with the -a option of pkgadd(1M). If the -a option is
not used, the default admin file is used.

Each entry in the admin file is a line that establishes the value of a parameter in the
following form:

param=value

All of the parameters listed below can be defined in an admin file, but it is not
required to assign values to all of these. If a value is not assigned, pkgadd(1M) asks
the installer how to proceed.

The valid parameters and their possible values are shown below except as noted. They
can be specified in any order. Any of these parameters (except the mail and proxy
parameters) can be assigned the value ask, which means that, when the parameter is
reached during the installation sequence, the installer is notified and asked to supply
instructions (see NOTES).

basedir
Indicates the base directory where relocatable packages are to be installed. If there
is no basedir entry in the file, the installer will be prompted for a path name, as if
the file contained the entry basedir=ask. This parameter can also be set to
default (entry is basedir=default). In this instance, the package is installed
into the base directory specified by the BASEDIR parameter in the pkginfo(4) file.

mail
Defines a list of users to whom mail should be sent following installation of a
package. If the list is empty, no mail is sent. If the parameter is not present in the
admin file, the default value of root is used. The ask value cannot be used with
this parameter.

runlevel
Indicates resolution if the run level is not correct for the installation or removal of a
package. Options are:

nocheck Do not check for run level.
quit Abort installation if run level is not met.
conflict

Specifies what to do if an installation expects to overwrite a previously installed
file, thus creating a conflict between packages. Options are:

man pages section 4: File Formats ¢ Last Revised 20 Dec 2004

admin(4)

nocheck Do not check for conflict; files in conflict will be overwritten.
quit Abort installation if conflict is detected.
nochange Override installation of conflicting files; they will not be
installed.
setuid

Checks for executables which will have setuid or setgid bits enabled after
installation. Options are:

nocheck Do not check for setuid executables.
quit Abort installation if setuid processes are detected.
nochange Override installation of setuid processes; processes will be

installed without setuid bits enabled.

action
Determines if action scripts provided by package developers contain possible
security impact. Options are:

nocheck Ignore security impact of action scripts.
quit Abort installation if action scripts may have a negative security
impact.
partial

Checks to see if a version of the package is already partially installed on the system.
Options are:

nocheck Do not check for a partially installed package.
quit Abort installation if a partially installed package exists.
instance

Determines how to handle installation if a previous version of the package
(including a partially installed instance) already exists. Options are:

quit Exit without installing if an instance of the package already
exists (does not overwrite existing packages).

overwrite Overwrite an existing package if only one instance exists. If
there is more than one instance, but only one has the same
architecture, it overwrites that instance. Otherwise, the installer
is prompted with existing instances and asked which to
overwrite.

unique Do not overwrite an existing instance of a package. Instead, a
new instance of the package is created. The new instance will be
assigned the next available instance identifier.

idepend
Controls resolution if the package to be installed depends on other packages and if
other packages depend on the one to be installed. Options are:

File Formats 21

admin(4)

nocheck Do not check package dependencies.
quit Abort installation if package dependencies are not met.
rdepend

Controls resolution if other packages depend on the package to be removed. Also
determines behavior if registered products components to be removed. See
libwsreg(3LIB) and prodreg(1M) for a definition of product components.
Options are:

nocheck Do not check package or product dependencies.
quit Abort removal if package or product dependencies are not met.
space

Controls resolution if disk space requirements for package are not met. Options are:

nocheck Do not check space requirements (installation fails if it runs out
of space).
quit Abort installation if space requirements are not met.
authentication

Controls resolution when a datastream package with signature is to be installed.
Options are:

nocheck Do not verify package signature. This also disables the use of
the Online Certificate Status Protocol (OCSP) to validate the
package’s signing certificate.

quit Abort installation if package signature cannot be verified.

networktimeout
Number of seconds to wait before giving up a network connection when
downloading a package. This entry must be a positive integer. If not present, the
default value of 60 is used.

networkretries
Number of times to retry a failed network connection when downloading a
package. This entry must be a positive integer. If not present, the default value of 5
is used.

keystore
Location of trusted certificates used when downloading packages over SSL and
when verifying signatures on packages. This is the base directory of the certificate
location for trusted certificates used when validating digital signatures on
packages. For example, if this setting is /var/sadm/security, then pkgadd will
use /var/sadm/security/pkgadd/truststore, then
/var/sadm/security/truststore when searching for trusted certificates. See
KEYSTORE LOCATIONS and KEYSTORE AND CERTIFICATE FORMATS in
pkgadd(1M) for details on certificate store format and usage.

22 man pages section 4: File Formats * Last Revised 20 Dec 2004

EXAMPLES

admin(4)

proxy

The default proxy to use when installing packages from the network. Currently,
only HTTP or HTTPS proxies are supported. If this field is blank or nonexistent,
then no proxy will be used.

rscriptalt=root | noaccess

Determines the user that will run request scripts. This parameter can have either of
the values described below. See pkgadd(1M) for details on the conditions under
which this parameter is useful.

root
Run request script as user install, if such a user exists, with the privileges of
that user. Otherwise, run script as user root, with UID equal to 0 and with
all/zone privileges. (See zones(5).)

noaccess
Run request script as user install, if such a user exists, with the privileges of
that user. Otherwise, run script as user noaccess, with the basic privileges of
the unprivileged user noaccess.

If this parameter is not present or has a null value, the user noaccess is assumed.
Likewise, if this parameter is set to anything other than the values described here, a
warning is issued, and noaccess is assumed. rscriptalt is not present in the
default admin file, /var/sadm/install/admin/default. In this case, request
scripts are run as the user noaccess.

EXAMPLE 1 Default admin File

The default admin file, named default, is shipped with user-, group-, and

world-read privileges (444). Its contents are as follows:

mail=
instance=unique
partial=ask
runlevel=ask
idepend=ask
rdepend=ask
space=ask
setuid=ask
conflict=ask
action=ask
basedir=default
authentication=quit
networktimeout=10
networkretries=3
keystore=/var/sadm/security
proxy=

EXAMPLE 2 Sample admin file.

Below is a sample admin file.

basedir=default
runlevel=quit
conflict=quit

File Formats

23

admin(4)

FILES

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 2 Sample admin file. (Continued)

setuid=quit
action=quit
partial=quit
instance=unique
idepend=quit
rdepend=quit
space=quit
authentication=quit
networktimeout=10
networkretries=5
keystore=/opt/certs
proxy=syrinx.eng.example.com: 8080

The default admin file is consulted during package installation when no other admin
file is specified.

/var/sadm/install/admin/default
default admin file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWpkgcemdsr

Interface Stability Evolving

pkgadd(1M), prodreg(1M), libwsreg(3LIB), pkginfo(4), attributes(b),
zones(5)

The value ask should not be defined in an admin file that will be used for
non-interactive installation (because, by definition, there is no installer interaction).
Doing so causes installation to fail at the point when input is needed.

24 man pages section 4: File Formats * Last Revised 20 Dec 2004

NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

alias(4)
alias — alias table file of encoding names
/usr/lib/iconv/alias
This file contains the alias table of encoding names for iconv_open(3C).
The format of the alias table is as follows:

"$s %s\n", <variant encoding name>, <canonical encoding name>

The string specified for the variant encoding name is case-insensitive. A line beginning
with "#’ is treated as a comment.

See attributes (5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

iconv(3C), iconv_close(3C), iconv_open(3C), attributes (5)

File Formats 25

aliases(4)

26

NAME | aliases, addresses, forward — addresses and aliases for sendmail

SYNOPSIS | /etc/mail/aliases
/etc/mail/aliases.db
/etc/mail/aliases.dir
/etc/mail/aliases.pag

~/ .forward

DESCRIPTION | These files contain mail addresses or aliases, recognized by sendmail(1M) for the

local host:
/etc/passwd

/etc/mail/aliases

/etc/mail/aliases.{dir, pag)

/etc/mail/aliases.db

~/ forward

Mail addresses (usernames) of local users.

Aliases for the local host, in ASCII format.
Root can edit this file to add, update, or
delete local mail aliases.

The aliasing information from
/etc/mail/aliases, in binary ndbm(3C)
format for use by sendmail(1M). The
program newaliases(1M) maintains these
files.

The aliasing information from
/etc/mail/aliases, in binary, Berkeley
DataBase format for use by sendmail(1M).
The program maintains these files.

Depending on the configuration of the
AliasFile option in
/etc/mail/sendmail.cf, either the
single file aliases.db or the pair of files
aliases.{dir, pag} is generated by
newaliases(IM). As shipped with Solaris,
sendmail(1M) supports both formats. If
neither is specified, the Berkeley DataBase
format which generates the single . db file
is used.

Addresses to which a user’s mail is
forwarded (see Automatic Forwarding).

In addition, the NIS name services aliases map mail.aliases, and the NIS+ mail_aliases
table, both contain addresses and aliases available for use across the network.

Addresses | As distributed, sendmail(1M) supports the following types of addresses:

Local Usernames | username

man pages section 4: File Formats ¢ Last Revised 13 Feb 2003

Each local username is listed in the local host’s /etc/passwd file.

Local Filenames

Commands

Internet-standard
Addresses

uucp Addresses

Aliases

aliases(4)

pathname

Messages addressed to the absolute pathname of a file are appended to that file.

| command

If the first character of the address is a vertical bar (|), sendmail(1M) pipes the
message to the standard input of the command the bar precedes.

username@domain

If domain does not contain any “.” (dots), then it is interpreted as the name of a host in
the current domain. Otherwise, the message is passed to a mailhost that determines
how to get to the specified domain. Domains are divided into subdomains separated
by dots, with the top-level domain on the right.

For example, the full address of John Smith could be:

js@jsmachine.Podunk-U.EDU

if he uses the machine named jsmachine at Podunk University.

[host '] host | username

These are sometimes mistakenly referred to as “Usenet”” addresses. uucp(1C) provides
links to numerous sites throughout the world for the remote copying of files.

Other site-specific forms of addressing can be added by customizing the
sendmail.cf configuration file. See sendmail(1M) for details. Standard addresses
are recommended.

Local Aliases
/etc/mail/aliases is formatted as a series of lines of the form

aliasname : address [, address]

aliasname is the name of the alias or alias group, and address is the address of a
recipient in the group. Aliases can be nested. That is, an address can be the name of
another alias group. Because of the way sendmail(1M) performs mapping from
upper-case to lower-case, an address that is the name of another alias group must not
contain any upper-case letters.

Lines beginning with white space are treated as continuation lines for the preceding
alias. Lines beginning with # are comments.

Special Aliases
An alias of the form:

owner-aliasname : address

File Formats 27

aliases(4)

28

Automatic
Forwarding

sendmail directs error-messages resulting from mail to aliasname to address, instead of
back to the person who sent the message. sendmail rewrites the SMTP envelope
sender to match this, so owner-aliasname should always point to alias-request,
and alias-request should point to the owner’s actual address:

owner-aliasname: aliasname-request
aliasname-request address

An alias of the form:

aliasname: : include : pathname

with colons as shown, adds the recipients listed in the file pathname to the aliasname
alias. This allows a private list to be maintained separately from the aliases file.

NIS and NIS+ Domain Aliases

The aliases file on the master NIS server is used for the mail.aliases NIS map, which can
be made available to every NIS client. The mail_aliases table serves the same purpose
on a NIS+ server. Thus, the /etc/mail/aliases* files on the various hosts in a
network will one day be obsolete. Domain-wide aliases should ultimately be resolved
into usernames on specific hosts. For example, if the following were in the
domain-wide alias file:

jsmith:js@jsmachine

then any NIS or NIS+ client could just mail to jsmith and not have to remember the
machine and username for John Smith.

If a NIS or NIS+ alias does not resolve to an address with a specific host, then the
name of the NIS or NIS+ domain is used. There should be an alias of the domain name
for a host in this case.

For example, the alias:

jsmith:root

sends mail on a NIS or NIS+ client to root@podunk -u if the name of the NIS or NIS+
domain is podunk-u.

When an alias (or address) is resolved to the name of a user on the local host,
sendmail(1M) checks for a ~/.forward file, owned by the intended recipient, in that
user’s home directory, and with universal read access. This file can contain one or
more addresses or aliases as described above, each of which is sent a copy of the user’s
mail.

Care must be taken to avoid creating addressing loops in the ~/ . forward file. When
forwarding mail between machines, be sure that the destination machine does not
return the mail to the sender through the operation of any NIS aliases. Otherwise,
copies of the message may "bounce." Usually, the solution is to change the NIS alias to
direct mail to the proper destination.

man pages section 4: File Formats ¢ Last Revised 13 Feb 2003

FILES

ATTRIBUTES

SEE ALSO

NOTES

aliases(4)

A backslash before a username inhibits further aliasing. For instance, to invoke the
vacation program, user js creates a ~/ . forward file that contains the line:

\js, "|/usr/ucb/vacation js"

so that one copy of the message is sent to the user, and another is piped into the
vacation program.

/etc/passwd Password file

/etc/nsswitch.conf Name service switch configuration file
/etc/mail/aliases Mail aliases file (ascii)
/etc/mail/aliases.db Database of mail aliases (binary)
/etc/mail/aliases.dir Database of mail aliases (binary)
/etc/mail/aliases.pag Database of mail aliases (binary)
/etc/mail/sendmail.cft sendmail configuration file
~/.forward Forwarding information file

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWsndmr

passwd(l), uucp(1C), vacation(l), newaliases(1M), sendmail(1M), ndbm(3C),
getusershell(3C), passwd(4), shells(4), attributes(b)

Because of restrictions in ndbm(3C), a single alias cannot contain more than about
1000 characters (if this format is used). The Berkeley DataBase format does not have
any such restriction. Nested aliases can be used to circumvent this limit.

For aliases which result in piping to a program or concatenating a file, the shell of the
controlling user must be allowed. Which shells are and are not allowed are
determined by getusershell(3C).

File Formats 29

a.out(4)

30

NAME
SYNOPSIS

DESCRIPTION

a.out — Executable and Linking Format (ELF) files

#include <elf.h>

The file name a . out is the default output file name from the link editor, 1d(1). The
link editor will make an a . out executable if there were no errors in linking. The
output file of the assembler, as(1), also follows the format of the a . out file although
its default file name is different.

Programs that manipulate ELF files may use the library that e1£(3ELF) describes. An
overview of the file format follows. For more complete information, see the references
given below.

Linking View Execution View
ELF header ELF header
Program header table Program header table
optional
Section 1 Segment 1
Section n Segment 2
Section header table Section header table
optional

An ELF header resides at the beginning and holds a “road map”” describing the file’s
organization. Sections hold the bulk of object file information for the linking view:
instructions, data, symbol table, relocation information, and so on. Segments hold the
object file information for the program execution view. As shown, a segment may
contain one or more sections.

A program header table, if present, tells the system how to create a process image.
Files used to build a process image (execute a program) must have a program header
table; relocatable files do not need one. A section header table contains information
describing the file’s sections. Every section has an entry in the table; each entry gives
information such as the section name, the section size, etc. Files used during linking
must have a section header table; other object files may or may not have one.

Although the figure shows the program header table immediately after the ELF
header, and the section header table following the sections, actual files may differ.
Moreover, sections and segments have no specified order. Only the ELF header has a
fixed position in the file.

man pages section 4: File Formats ¢ Last Revised 3 Jul 1990

SEE ALSO

a.out(4)

When an a. out file is loaded into memory for execution, three logical segments are
set up: the text segment, the data segment (initialized data followed by uninitialized,
the latter actually being initialized to all 0’s), and a stack. The text segment is not
writable by the program; if other processes are executing the same a . out file, the
processes will share a single text segment.

The data segment starts at the next maximal page boundary past the last text address.
If the system supports more than one page size, the “maximal page”’ is the largest
supported size. When the process image is created, the part of the file holding the end
of text and the beginning of data may appear twice. The duplicated chunk of text that
appears at the beginning of data is never executed; it is duplicated so that the
operating system may bring in pieces of the file in multiples of the actual page size
without having to realign the beginning of the data section to a page boundary.
Therefore, the first data address is the sum of the next maximal page boundary past
the end of text plus the remainder of the last text address divided by the maximal
page size. If the last text address is a multiple of the maximal page size, no duplication
is necessary. The stack is automatically extended as required. The data segment is
extended as requested by the brk(2) system call.

as(1), cc(1B), 1d4(1), brk(2), e1£(3ELF)

ANSI C Programmer’s Guide

File Formats 31

archives(4)
NAME | archives — device header
DESCRIPTION /* Magic numbers */

#define CMN_ASC 0x070701 /* Cpio Magic Number for —c header */
#define CMN_BIN 070707 /* Cpio Magic Number for Binary header */
#define CMN_BBS 0143561 /* Cpio Magic Number for Byte-Swap header */
#define CMN_CRC 0x070702 /* Cpio Magic Number for CRC header */
#define CMS_ASC "070701" /* Cpio Magic String for —c header */
#define CMS_CHR "070707" /* Cpio Magic String for odc header */
#define CMS_CRC "070702" /* Cpio Magic String for CRC header */
#define CMS_LEN 6 /* Cpio Magic String length */
/* Various header and field lengths */
#define CHRSZ 76 /* —H odc size minus filename field */
#define ASCSZ 110 /* —c and CRC hdr size minus filename field */
#define TARSZ 512 /* TAR hdr size */
#define HNAMLEN 256 /* maximum filename length for binary and

odc headers */
#define EXPNLEN 1024 /* maximum filename length for —c and

CRC headers */
#define HTIMLEN 2 /* length of modification time field */
#define HSIZLEN 2 /* length of file size field */

/* cpio binary header definition */
struct hdr cpio {

short h _magic, /* magic number field */
h_dev; /* file system of file */
ushort_t h _ino, /* inode of file */
h mode, /* modes of file */
h uid, /* uid of file */
h gid; /* gid of file */
short h nlink, /* number of links to file */
h rdev, /* maj/min numbers for special files */
h mtime [HTIMLEN] , /* modification time of file */
h namesize, /* length of filename */
h filesize [HSIZLEN] ; /* size of file */
char h_name [HNAMLEN] ; /* filename */

}oi
/* cpio —-H odc header format */
struct c_hdr {
char c¢_magic[CMS_LEN],
c_devl[e],
c_inol[6],
c_mode [6],
c uidl[e],
c_gidlel,
c_nlink[6],
c_rdev(é6],
c mtime[11],
c_namesz[6],
c filesz[11],
c_name [HNAMLEN] ;
}oi
/* —c and CRC header format */
struct Exp_cpio_hdr {
char E _magic[CMS_LEN],
E _ino[8],
E_mode [8],
E uid[8],
E gid[8],

32 man pages section 4: File Formats ¢ Last Revised 3 Jul 1990

E nlink([8],

E mtime([8],

E filesize[8],

E maj([8],

E min([8],

E rmaj[8],

E rmin([8],

E namesize[8],

E_chksum[8],

E_name [EXPNLEN] ;
}oi

/* Tar header structure and format */

#define TBLOCK 512 /* length of tar header and data blocks */
#define TNAMLEN 100 /* maximum length for tar file names */
#define TMODLEN 8 /* length of mode field */

#define TUIDLEN 8 /* length of uid field */

#define TGIDLEN 8 /* length of gid field */

#define TSIZLEN 12 /* length of size field */

#define TTIMLEN 12 /* length of modification time field */
#define TCRCLEN 8 /* length of header checksum field */

/* tar header definition */
union tblock ({
char dummy [TBLOCK] ;
struct header {

archives(4)

char t_name [TNAMLEN] ; /* name of file */

char t_mode [TMODLEN] ; /* mode of file */

char t uid [TUIDLEN] ; /* uid of file */

char t gid [TGIDLEN] ; /* gid of file */

char t size[TSIZLEN]; /* size of file in bytes */

char t_mtime [TTIMLEN] ; /* modification time of file */

char t chksum [TCRCLEN] ; /* checksum of header */

char t_typeflag; /* flag to indicate type of file */
char t_linkname [TNAMLEN] ; /* file this file is linked with */
char t_magic[6]; /* magic string always "ustar" */
char t_version[2]; /* version strings always "00" */
char t_uname [32] ; /* owner of file in ASCII */

char t_gname [32]; /* group of file in ASCII */

char t_devmajor[8]; /* major number for special files */
char t_devminor[8]; /* minor number for special files */
char t_prefix[155]; /* pathname prefix */

} tbuf;
}
/* volcopy tape label format and structure */
#define VMAGLEN 8
#define VVOLLEN 6
#define VFILLEN 464
struct volcopy label {
v_magic [VMAGLEN] ,
v_volume [VVOLLEN] ,
v_reels,

char

v_reel;
long v_time,
v_length,
v_dens,
v_reelblks, /* u370 added field */
v_blksize, /* u370 added field */
v_nblocks; /* u370 added field */

char v_fill [VFILLEN] ;

File Formats 33

archives(4)

long v_offset; /* used with -e and -reel options */
int v_type; /* does tape have nblocks field? */

b

34 man pages section 4: File Formats * Last Revised 3 Jul 1990

NAME
SYNOPSIS

DESCRIPTION

asetenv(4)
asetenv — ASET environment file

/usr/aset/asetenv

The asetenv file is located in /usr/aset, the default operating directory of the
Automated Security Enhancement Tool (ASET). An alternative working directory can
be specified by the administrators through the aset -d command or the ASETDIR
environment variable. See aset(1M). asetenv contains definitions of environment
variables for ASET.

There are 2 sections in this file. The first section is labeled User Configurable Parameters.
It contains, as the label indicates, environment variables that the administrators can
modify to customize ASET behavior to suit their specific needs. The second section is
labeled ASET Internal Environment Variables and should not be changed. The
configurable parameters are explained as follows:

TASK This variable defines the list of tasks that aset will
execute the next time it runs. The available tasks are:
tune Tighten system files.
usrgrp Check user/group.
sysconf Check system configuration file.
env Check environment.
cklist Compare system files checklist.
eeprom Check eeprom(1M) parameters.
firewall Disable forwarding of IP packets.

CKLISTPATH LOW

CKLISTPATH MED

CKLISTPATH HIGH These variables define the list of directories to be used
by aset to create a checklist file at the low, medium, and
high security levels, respectively. Attributes of all the
files in the directories defined by these variables will be
checked periodically and any changes will be reported
by aset. Checks performed on these directories are not
recursive. aset only checks directories explicitly listed
in these variables and does not check subdirectories of
them.

YPCHECK This variable is a boolean parameter. It specifies
whether aset should extend checking (when
applicable) on system tables to their NIS equivalents or
not. The value true enables it while the value false
disables it.

UID ALIASES This variable specifies an alias file for user ID sharing.
Normally, aset warns about multiple user accounts
sharing the same user ID because it is not advisable for

File Formats 35

asetenv(4)

36

EXAMPLES

SEE ALSO

accountability reason. Exceptions can be created using
an alias file. User ID sharing allowed by the alias file
will not be reported by aset. See asetmasters(4) for
the format of the alias file.

PERIODIC_SCHEDULE This variable specifies the schedule for periodic
execution of ASET. It uses the format of crontab(1)
entries. Briefly speaking, the variable is assigned a
string of the following format:

minutes hours day-of-month month day-of-week

Setting this variable does not activate the periodic
schedule of ASET. To execute ASET periodically,
aset(1M) must be run with the -p option. See
aset(1M). For example, if PERIODIC_SCHEDULE is set
to the following, and aset(1M) was started with the
-p option, aset will run at 12:00 midnight every day:

00 * * *

EXAMPLE 1 Sample asetenv file showing the settings of the ASET configurable parameters

The following is a sample asetenv file, showing the settings of the ASET
configurable parameters:

CKLISTPATH_LOW:/etC:/
CKLISTPATH_MED:$CHECKLISTPATH_LOW:/usr/bin:/usr/ucb
CKLISTPATH_HIGH:$CHECKLISTPATH_MED:/usr/lib:/usr/sbin
YPCHECK=false

UID ALIASES=/usr/aset/masters/uid_aliases

PERIODIC_ SCHEDULE="0 0 * * *"

TASKS="env sysconf usrgrp"

When aset -p is run with this file, aset is executed at midnight of every day. The /
and /etc directories are checked at the low security level; the /, /etc, /usr/bin,
and /usr/ucb directories are checked at the medium security level; and the /, /etc,
/usr/bin, /usr/lib, and /usr/sbin directories are checked at the high security
level. Checking of NIS system files is disabled. The
/usr/aset/masters/uid_aliases file specifies the used IDs available for sharing.
The env, sysconf, and usrgrp tasks will be performed, checking the environment
variables, various system tables, and the local passwd and group files.

crontab(l), aset(1M), asetmasters(4)

ASET Administrator Manual

man pages section 4: File Formats * Last Revised 13 Sep 1991

NAME

SYNOPSIS

DESCRIPTION

asetmasters(4)

asetmasters, tune.low, tune.med, tune.high, uid_aliases, cklist.low, cklist.med,
cklist.high — ASET master files

/usr/aset/masters/tune.low
/usr/aset/masters/tune.med
/usr/aset/masters/tune.high
/usr/aset/masters/uid_aliases
/usr/aset/masters/cklist.low
/usr/aset/masters/cklist.med

/usr/aset/masters/cklist.high

The /usr/aset/masters directory contains several files used by the Automated
Security Enhancement Tool (ASET). /usr/aset is the default operating directory for
ASET. An alternative working directory can be specified by the administrators through
the aset -d command or the ASETDIR environment variable. See aset(1M).

These files are provided by default to meet the need of most environments. The
administrators, however, can edit these files to meet their specific needs. The format
and usage of these files are described below.

All the master files allow comments and blank lines to improve readability. Comment
lines must start with a leading "#" character.

tune.low

tune.med

tune.high These files are used by the tune task (see aset(1M)) to restrict the
permission settings for system objects. Each file is used by ASET at
the security level indicated by the suffix. Each entry in the files is
of the form:

pathname mode owner group type

where

pathname is the full pathname

mode is the permission setting

owner is the owner of the object

group is the group of the object

type is the type of the object It can be symlink for a

symbolic link, directory for a directory, or
file for everything else.

File Formats 37

asetmasters(4)

38

EXAMPLES

uid_alias

cklist.low
cklist.med
cklist.high

Regular shell wildcard ("*", "?", ...) characters can be used in the
pathname for multiple references. See sh(1). The mode is a five-digit
number that represents the permission setting. Note that this
setting represents a least restrictive value. If the current setting is
already more restrictive than the specified value, ASET does not
loosen the permission settings.

For example, if mode is 00777, the permission will not be changed,
since it is always less restrictive than the current setting.

Names must be used for owner and group instead of numeric ID’s.
? can be used as a “don’t care” character in place of owner, group,
and type to prevent ASET from changing the existing values of
these parameters.

This file allows user ID’s to be shared by multiple user accounts.
Normally, ASET discourages such sharing for accountability
reason and reports user ID’s that are shared. The administrators
can, however, define permissible sharing by adding entries to the
file. Each entry is of the form:

uid=alias1=alias2=alias3= ...

where
uid is the shared user id
alias? is the user accounts sharing the user ID

For example, if sync and daemon share the user ID 1, the
corresponding entry is:

l=sync=daemon

These files are used by the cklist task (see aset(1M)), and are
created the first time the task is run at the low, medium, and high
levels. When the cklist task is run, it compares the specified
directory’s contents with the appropriate cklist .level file and
reports any discrepancies.

EXAMPLE 1 Examples of Valid Entries for the tune. low, tune.med, and tune.high Files

The following is an example of valid entries for the tune. low, tune .med, and

tune.high files:

/bin 00777 root staffsymlink
/etc 02755 root staffdirectory

/dev/sd* 00640

rootoperatorfile

man pages section 4: File Formats * Last Revised 13 Sep 1991

asetmasters(4)

EXAMPLE 1 Examples of Valid Entries for the tune. low, tune.med, and tune.high
Files (Continued)

SEE ALSO | aset(1M), asetenv(4)
ASET Administrator Manual

File Formats 39

au(4)
NAME | au - AU audio file format
SYNOPSIS | #include <audio/au.h>

DESCRIPTION | An AU audio file is composed of three parts: a header, an optional description field,
and a contiguous segment of audio data. The header is 24 bytes, and the description
field is at least 4 bytes. Therefore, the offset for most AU files is 28 bytes. However,
some people store additional data in the AU header.

The AU audio structure members and audio data are stored big endian. That is, it
starts with the most significant byte, regardless of the native byte order of the machine
architecture on which an application may be running. Therefore, multi-byte audio data
may require byte reversal for proper playback on different processor architectures. See
the macro section for properly reading and writing the AU audio structure members.

The AU header is defined by the following structure:

struct au_filehdr {

uint32_t au_magic; /* magic number (.snd) */

uint32_t au offset; /* byte offset to start of audio data */
uint32_t au_data_size; /* data length in bytes */

uint32_t au_encoding; /* data encoding */

uint32_t au_sample rate; /* samples per second */

uint32_t au_channels; /* number of interleaved channels */

}i

typedef struct au filehdr au filehdr t;

The au_magic field always contains the following constant for an AU audio file:

AUDIO_AU FILE MAGIC (0x2e736e64) /* ".snd" */

The au_offset field contains the length of the audio file header plus the variable
length info field. Consequently, it can be interpreted as the offset from the start of the
file to the start of the audio data.

The au_data_size field contains the length, in bytes, of the audio data segment. If
this length is not known when the header is written, it should be set to
AUDIO AU UNKNOWN_SIZE, defined as follows:

AUDIO AU UNKNOWN SIZE (~0) /* (unsigned) -1 */

When the au_data_size field contains AUDIO_AU_UNKNOWN_SIZE, the length of
the audio data can be determined by subtracting au_offset from the total length of
the file.

The encoding field contains one of the following enumerated keys:

AUDIO_AU_ENCODING_ULAW /* 8-bit u-law */

AUDIO_AU_ENCODING_LINEAR 8 /* 8-bit linear PCM */
AUDIO_AU_ENCODING_LINEAR 16 /* 16-bit linear PCM */
AUDIO AU_ENCODING LINEAR 24 /* 24-bit linear PCM */

40 man pages section 4: File Formats * Last Revised 15 Jan 2001

au(4)

AUDIO_AU_ENCODING_LINEAR 32 /* 32-bit linear PCM */
AUDIO_AU_ENCODING_ FLOAT /* Floating point */
AUDIO_AU_ENCODING_DOUBLE /* Double precision float */
AUDIO_ AU _ENCODING FRAGMENTED /* Fragmented sample data */
AUDIO_AU_ENCODING_DSP /* DSP program */
AUDIO_AU_ENCODING_FIXED 8 /* 8-bit fixed point */
AUDIO_AU_ENCODING_FIXED 16 /* 16-bit fixed point */
AUDIO_AU_ENCODING_ FIXED 24 /* 24-bit fixed point */
AUDIO_AU_ENCODING_FIXED 32 /* 32-bit fixed point */
AUDIO_AU_ENCODING EMPHASIS /* 16-bit linear with emphasis */
AUDIO_AU_ENCODING_COMPRESSED /* 16-bit linear compressed */
AUDIO_AU_ENCODING_EMP_COMP /* 16-bit linear with emphasis
and compression */
AUDIO_AU_ENCODING MUSIC_KIT /* Music kit DSP commands */

AUDIO_AU_ENCODING_ADPCM G721 /* CCITT G.721 ADPCM */
AUDIO_AU ENCODING ADPCM_G722 /* CCITT G.722 ADPCM */
AUDIO_AU_ENCODING ADPCM G723 3 /* CCITT G.723.3 ADPCM */
AUDIO_AU ENCODING ADPCM G723_5 /* CCITT G.723.5 ADPCM */
AUDIO AU _ENCODING_ ALAW /* 8-bit A-law G.711 */

All of the linear encoding formats are signed integers centered at zero.

The au_sample_rate field contains the audio file’s sampling rate in samples per
second. Some common sample rates include 8000, 11025, 22050, 44100, and 48000
samples per second.

The au_channels field contains the number of interleaved data channels. For
monaural data, this value is set to one. For stereo data, this value is set to two. More
than two data channels can be interleaved, but such formats are currently
unsupported by the Solaris audio driver architecture. For a stereo sound file, the first
sample is the left track and the second sample is the right track.

The optional info field is a variable length annotation field that can be either text or
data. If it is a text description of the sound, then it should be NULL terminated.
However, some older files might not be terminated properly. The size of the info field
is set when the structure is created and cannot be enlarged later.

Macros | Accessing all of the AU audio structure members should be done through the supplied
AUDIO AU FILE2HOST and AUDIO AU HOST2FILE macros. By always using these
macros, code will be byte-order independent. See the example below.

EXAMPLES | exampPLE 1 Displaying Header Information for a Sound File

The following program reads and displays the header information for an AU sound
file. The AUDIO_AU_FILE2HOST macro ensures that this information will always be in
the proper byte order.

void main(void)

{
au_filehdr t hdr;
au_filehdr_t local;
int fda;

File Formats 41

au(4)

EXAMPLE 1 Displaying Header Information for a Sound File (Continued)

char *name = "bark.au";

if ((fd = open(name, O RDONLY)) < 0)
printf ("can’t open file %s\n", name) ;
exit (1) ;

}
(void) read(fd, &hdr, sizeof (hdr));

AUDIO AU FILE2HOST (&hdr.au magic, &local.au magic) ;
AUDIO_AU_FILE2HOST (&hdr.au_offset, &local.au_offset);

AUDIO AU FILE2HOST (&hdr.au data size, &local.au data size);
AUDIO AU FILE2HOST (&hdr.au_encoding, &local.au_encoding) ;
AUDIO AU FILE2HOST (&hdr.au sample rate, &local.au sample rate);
AUDIO AU FILE2HOST (&hdr.au channels, &local.au_ channels) ;

printf
printf ("Offset = %d\n", local.au offset);
printf ("Number of data bytes = %d\n", local.au data size);

("Magic = %x\n", local.au_magic);
(
(
printf ("Sound format = %d\n", local.au encoding) ;
(
(

printf ("Sample rate = %$d\n", local.au_sample_ rate);
printf ("Number of channels = %d\n", local.au channels) ;

(void) close(£fd);

}

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWaudh

Stability Level Evolving

SEE ALSO | attributes(5)

NOTES | Some older AU audio files are incorrectly coded with info strings that are not properly
NULL-terminated. Thus, applications should always use the au_offset value to
find the end of the info data and the beginning of the audio data.

42 man pages section 4: File Formats * Last Revised 15 Jan 2001

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

audit_class(4)
audit_class — audit class definitions

/etc/security/audit_class

/etc/security/audit_class is a user-configurable ASCII system file that stores
class definitions used in the audit system. Audit events in audit_event(4) are
mapped to one or more of the defined audit classes. audit event can be updated in
conjunction with changes to audit_class. See audit_control(4) and
audit_user(4) for information about changing the preselection of audit classes in the
audit system. Programs can use the getauclassent(3BSM) routines to access audit
class information.

The fields for each class entry are separated by colons. Each class entry is a bitmap and
is separated from each other by a newline.

Each entry in the audit_class file has the form:

mask : name : description

The fields are defined as follows:

mask class mask
name class name
description class description

Each class is represented as a bit in the class mask which is an unsigned integer. Thus,
there are 32 different classes available. Meta-classes can also be defined. These are
supersets composed of multiple base classes, and thus will have more than 1 bit in its
mask. See EXAMPLES. Two special meta-classes are also pre-defined: all, and no.

all Represents a conjunction of all allowed classes, and is provided as a
shorthand method of specifying all classes.

no Is the invalid class, and any event mapped solely to this class will not be
audited. Turning auditing on to the all meta class will not cause events
mapped solely to the no class to be written to the audit trail. This class is
also used to map obsolete events which are no longer generated. Obsolete
events are retained to process old audit trails files.

EXAMPLE 1 Using an audit_class File

The following is an example of an audit_class file:

0x00000000:no:invalid class
0x00000001:fr:file read
0x00000002:fw:file write
0x00000004:fa:file attribute access
0x00000008:fm:file attribute modify
0x00000010:fc:file create
0x00000020:fd:file delete
0x00000040:cl:file close
0x00000100:nt :network

File Formats 43

audit_class(4)

44

EXAMPLE 1 Using an audit_class File (Continued)

0x00000200:ip:ipc
0x00000400:na:non-attribute
0x00001000:10:1ogin or logout
0x00004000:ap:application
0x000£0000:ad:0ld administrative (meta-class)
0x00070000:am:administrative (meta-class)
0x00010000:ss:change system state
0x00020000:as:system-wide administration
0x00040000:ua:user administration
0x00080000:aa:audit utilization
0x00300000:pc:process (meta-class)
0x00100000:ps:process start/stop
0x00200000:pm:process modify
0x20000000:i0:ioctl

0x40000000:ex:exec

0x80000000:0t:other

oxffffffff:all:all classes (meta-class)

FILES | /etc/security/audit_class
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Interface Stability See below
The file format stability is evolving. The file content is unstable.
SEE ALSO | bsmconv(1M), au_preselect(3BSM), getauclassent(3BSM),
audit control(4), audit event(4), audit user(4), attributes(b)
NOTES | Itis possible to deliberately turn on the no class in the kernel, in which case the audit

enabled. See bsmconv(1M) for more information.

man pages section 4: File Formats ¢ Last Revised 6 Jan 2003

trail will be flooded with records for the audit event AUE_NULL.

This functionality is available only if the Basic Security Module (BSM) has been

NAME
SYNOPSIS

DESCRIPTION

audit_control(4)
audit_control — control information for system audit daemon

/etc/security/audit_control

The audit_control file contains audit control information used by auditd(1M).
Each line consists of a title and a string, separated by a colon. There are no restrictions
on the order of lines in the file, although some lines must appear only once. A line
beginning with “#” is a comment. A line can be continued with the use of the backslash
(\) convention. (See EXAMPLES.)

Directory definition lines list the directories to be used when creating audit files, in the
order in which they are to be used. The format of a directory line is:

dir :directory-name

directory-name is where the audit files will be created. Any valid writable directory can
be specified.

The following configuration is recommended:
/etc/security/audit/server/files

where server is the name of a central machine, since audit files belonging to different
servers are usually stored in separate subdirectories of a single audit directory. The
naming convention normally has server be a directory on a server machine, and all
clients mount /etc/security/audit/server at the same location in their local file

systems. If the same server exports several different file systems for auditing, their
server names will, of course, be different.

There are several other ways for audit data to be arranged: some sites may have needs
more in line with storing each host’s audit data in separate subdirectories. The audit
structure used will depend on each individual site.

The audit threshold line specifies the percentage of free space that must be present in
the file system containing the current audit file. The format of the threshold line is:

minfree:percentage
where percentage is indicates the amount of free space required. If free space falls

below this threshold, the audit daemon auditd(1M) invokes the shell script
audit_warn(1M). If no threshold is specified, the default is 0%.

The plugin definition line selects a plugin to be loaded by the audit daemon for
processing audit records.

The format of a plugin line is:

plugin: keywordl=valuel ; keyword2=value2 ;

The following keywords are defined:

File Formats 45

audit_control(4)

name
The value is the pathname of the plugin. This specification is required.

gsize
The value is the maximum number of records to queue for audit data sent to the
plugin. If omitted, the current hiwater mark (see the -getgctrl of
auditconfig(lM)) is used. When this maximum is reached, auditd will either
block or discard data, depending on the audit policy cnt. See auditconfig(1M).

*

A keyword with the prefix p_ is passed to the plugin defined by the value
associated with the name attribute. These attributes are defined for each plugin. By
convention, if the value associated with a plugin attribute is a list, the list items
are separated with commas.

If pathname is a relative path (it does not start with /) the library path will be taken as
relative to /usr/lib/security/$ISA. The $ISA token is replaced by an
implementation-defined directory name that defines the path relative to the
auditd(1M) instruction set architecture.

See audit_syslog(5) for the attributes expected for plugin:
name=audit syslog.so.

No plugin specifier is required for generation of a binary audit log. However, to set a
queue size of other than the default, a plugin line with name=audit_binfile.so
can be used as described in audit _binfile(5).

You must specify one or more plugins. (In the case of audit_binfile. so, use of
dir: orplugin: suffices.)

The audit flags line specifies the default system audit value. This value is combined
with the user audit value read from audit_user(4) to form a user’s process
preselection mask.

The algorithm for obtaining the process preselection mask is as follows: the audit flags
from the flags: line in the audit_control file are added to the flags from the
always-audit field in the user’s entry in the audit user file. The flags from the
never-audit field from the user’s entry in the audit user file are then subtracted
from the total:

user’s process preselection mask =
(flags: line + always audit flags) - never audit flags

The format of a flags line is:

flags :audit-flags

where audit-flags specifies which event classes are to be audited. The character string
representation of audit-flags contains a series of flag names, each one identifying a
single audit class, separated by commas. A name preceded by ‘" means that the class
should be audited for failure only; successful attempts are not audited. A name

46 man pages section 4: File Formats * Last Revised 20 Mar 2003

EXAMPLES

audit_control(4)

preceded by ‘+" means that the class should be audited for success only; failing
attempts are not audited. Without a prefix, the name indicates that the class is to be
audited for both successes and failures. The special string all indicates that all events
should be audited; —all indicates that all failed attempts are to be audited, and +all
all successful attempts. The prefixes *, “—, and “+ turn off flags specified earlier in the
string (*—and "+ for failing and successful attempts, * for both). They are typically
used to reset flags.

The non-attributable flags line is similar to the flags line, but this one contain the audit
flags that define what classes of events are audited when an action cannot be
attributed to a specific user. The format of a naflags line is:

naflags :audit-flags

The flags are separated by commas, with no spaces. See audit class(4) for a list of
the predefined audit classes. Note that the classes are configurable as also described in
audit class(4).

A line can be continued by appending a backslash (\).
EXAMPLE 1 Sample audit_control File for Specific Host

The following is a sample /etc/security/audit_control file for the machine
eggplant.

The file’s contents identify server jedgar with two file systems normally used for
audit data, another server, global, used only when jedgar fills up or breaks, and
specifies that the warning script is run when the file systems are 80% filled. It also
specifies that all logins, administrative operations are to be audited, whether or not
they succeed. All failures except failures to access object attributes are to be audited.

dir: /etc/security/jedgar/eggplant

dir: /etc/security/jedgar.aux/eggplant

#

Last-ditch audit file system when jedgar fills up.
#

dir: /etc/security/global/eggplant

minfree: 20

flags: lo,ad,-all,”-fm

naflags: lo,ad

EXAMPLE 2 Sample audit_control File for syslog and Local Storage

Shown below is a sample /etc/security/audit_control file for syslog and local
storage. For the binary log, the output is all 1o and ad records, all failures of class fm
and any classes specified by means of audit_user(4). For syslog output, all 1o
records are output, only failure ad records are output, and no f£m records are output.
The specification for the plugin is given in two lines.

dir: /etc/security/jedgar/eggplant
dir: /etc/security/jedgar.aux/eggplant
#

File Formats 47

audit_control(4)

FILES

ATTRIBUTES

SEE ALSO

NOTES

EXAMPLE 2 Sample audit_control File for syslog and Local Storage (Continued)

Last-ditch audit file system when jedgar fills up.
#

dir: /etc/security/global/eggplant

minfree: 20

flags: lo,ad,-fm

naflags: lo,ad

plugin: name=audit_syslog.so;p_flags=1lo,+ad;\
gsize=512

EXAMPLE 3 Overriding the Default Queue Size

Shown below is a sample /etc/security/audit control file that overrides the
default queue size for binary audit log file generation.

dir: /etc/security/jedgar/eggplant

dir: /etc/security/jedgar.aux/eggplant

#

Last-ditch audit file system when jedgar fills up.
#

dir: /etc/security/global/eggplant

minfree: 20

flags: lo,ad,-fm

naflags: lo,ad

plugin: name=audit_binfile.so; gsize=256

/etc/security/audit_control
/etc/security/audit_warn
/etc/security/audit/*/*/*

/etc/security/audit_user

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

audit(1M), audit_ warn(1M), auditd(1M), bsmconv(1M), audit(2),
getfauditflags(3BSM), audit.log(4), audit class(4), audit user(4),
attributes(b), audit binfile(5), audit syslog(5)

Use of the plugin configuration line to include audit_syslog. so requires that
/etc/syslog.conf be configured for audit data. See audit_syslog(5) for more
details.

48 man pages section 4: File Formats * Last Revised 20 Mar 2003

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

NOTES

audit_data(4)
audit_data — current information on audit daemon

/etc/security/audit_data

The audit data file contains information about the audit daemon. The file contains
the process ID of the audit daemon, and the pathname of the current audit log file. The
format of the file is:

pid> : <pathname>

Where pid is the process ID for the audit daemon, and pathname is the full pathname
for the current audit log file.

EXAMPLE 1 A sample audit_data file.

64:/etc/security/audit/serverl/19930506081249.19930506230945.bongos

/etc/security/audit_data

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Obsolete

audit(1M), auditd(1M), bsmconv(1M), audit(2), audit control(4),
audit.log(4)

The functionality described on this manual page is internal to audit(1M) and might
not be supported in a future release.

The auditd utility is the only supported mechanism to communicate with
auditd(1M). The current audit log can be determined by examining the configured
audit directories. See audit control(4).

The functionality described on this manual page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

File Formats 49

audit_event(4)

50

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

audit_event — audit event definition and class mapping

/etc/security/audit_event

/etc/security/audit_event is a user-configurable ASCII system file that stores
event definitions used in the audit system. As part of this definition, each event is
mapped to one or more of the audit classes defined in audit_class(4). See

audit control(4)and audit user(4) for information about changing the
preselection of audit classes in the audit system. Programs can use the
getauevent(3BSM) routines to access audit event information.

The fields for each event entry are separated by colons. Each event is separated from
the next by a NEWLINE.Each entry in the audit_event file has the form:

number : name : description : flags

The fields are defined as follows:

number Event number.

Event number ranges are assigned as follows:

0 Reserved as an invalid event number.
1-2047 Reserved for the Solaris Kernel events.
2048-32767 Reserved for the Solaris TCB programs.

32768-65535 Available for third party TCB applications.

System administrators must not add, delete, or
modify (except to change the class mapping),
events with an event number less than 32768.
These events are reserved by the system.

name Event name.
description Event description.
flags Flags specifying classes to which the event is mapped. Classes are

comma separated, without spaces.

Obsolete events are commonly assigned to the special class no
(invalid) to indicate they are no longer generated. Obsolete events
are retained to process old audit trail files. Other events which are
not obsolete may also be assigned to the no class.

EXAMPLE 1 Using the audit_event File

The following is an example of some audit_event file entries:

7:AUE_EXEC:exec (2) :ps, ex

79:AUE_OPEN WTC:open(2) - write,creat,trunc:fc,fd, fw
6152:AUE_login:login - local:lo

6153 :AUE_logout:logout:lo

man pages section 4: File Formats ¢ Last Revised 6 Jan 2003

audit_event(4)

EXAMPLE 1 Using the audit_event File (Continued)

6154 :AUE_telnet:login - telnet:lo
6155:AUE_rlogin:login - rlogin:lo

ATTRIBUTES | See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below

The file format stability is evolving. The file content is unstable.

FILES | /etc/security/audit_event

SEE ALSO | bsmconv(1M), getauevent(3BSM), audit class(4), audit control(4),
audit_user(4)

NOTES | This functionality is available only if the Basic Security Module (BSM) has been
enabled. See bsmconv(1M) for more information.

File Formats 51

audit.log(4)

52

NAME
SYNOPSIS

DESCRIPTION

audit.log — audit trail file
#include <bsm/audit.h>

#include <bsm/audit_ record.hx>

audit. log files are the depository for audit records stored locally or on an on an
NFS-mounted audit server. These files are kept in directories named in the file
audit_control(4) using the dir option. They are named to reflect the time they are
created and are, when possible, renamed to reflect the time they are closed as well.
The name takes the form

yyyymmddhhmmss .not_terminated. hostname

when open or if the auditd(1M) terminated ungracefully, and the form

yyyymmddhhmmss . yyyymmddhhmmss . hostname

when properly closed. yyyy is the year, mm the month, dd day in the month, hh hour
in the day, mm minute in the hour, and ss second in the minute. All fields are of fixed
width.

Audit data is generated in the binary format described below; the default for Solaris
audit is binary format. See audit_syslog(5) for an alternate data format.

The audit.log file begins with a standalone file token and typically ends with
one also. The beginning file token records the pathname of the previous audit file,
while the ending file token records the pathname of the next audit file. If the file
name is NULL the appropriate path was unavailable.

The audit . log files contains audit records. Each audit record is made up of audit
tokens. Each record contains a header token followed by various data tokens.
Depending on the audit policy in place by auditon(2), optional other tokens such as
trailers or sequences may be included.

The tokens are defined as follows:

The £ile token consists of:

token ID 1 byte
seconds of time 4 bytes
microseconds of time 4 bytes
file name length 2 bytes
file pathname N bytes + 1 terminating NULL byte

The header token consists of:

token ID 1 byte
record byte count 4 bytes
version # 1 byte [2]
event type 2 bytes

man pages section 4: File Formats ¢ Last Revised 6 Jan 2004

event modifier
seconds of time
nanoseconds of time

2 bytes
4 bytes/8 bytes
4 bytes/8 bytes

The expanded header token consists of:

token ID 1 byte

record byte count 4 bytes

version # 1 byte [2]
event type 2 bytes

event modifier 2 bytes

address type/length 1 byte

machine address 4 bytes/16 bytes
seconds of time 4 bytes/8 bytes
nanoseconds of time 4 bytes/8 bytes

The trailer token consists of:

token ID 1 byte
trailer magic number 2 bytes
record byte count 4 bytes

The arbitrary data token is defined:

token ID 1 byte
how to print 1 byte
basic unit 1 byte
unit count 1 byte

data items

The in_addr token consists of:

token ID
IP address type/length
IP address

1 byte
1 byte
4 bytes/16 bytes

The expanded in addr token consists of:

token ID 1 byte
IP address type/length 4 bytes/16 bytes
IP address 16 bytes
The ip token consists of:

token ID 1 byte
version and ihl 1 byte
type of service 1 byte
length 2 bytes
id 2 bytes
offset 2 bytes
ttl 1 byte
protocol 1 byte
checksum 2 bytes
source address 4 bytes
destination address 4 bytes

The expanded ip token consists of:

audit.log(4)

(32-bit/64-bit value)
(32-bit/64-bit value)

(IPv4/IPv6 address)
(32/64-bits)
(32/64-bits)

(depends on basic unit)

(IPv4/IPv6 address)

(IPv4/IPv6 address)

File Formats 53

audit.log(4)

token ID

version and ihl
type of service
length

id

offset

ttl

protocol

checksum

address type/type
source address
address type/length
destination address

AR AR NMNRRNMNONR R R

byte
byte
byte
bytes
bytes
bytes
byte
byte
bytes
byte
bytes/16 bytes (IPv4/IPv6 address)
byte
bytes/16 bytes (IPv4/IPv6 address)

The iport token consists of:

token ID
port IP address

The path token consists of:

token ID
path length
path

1
2

1
2

byte
bytes

byte
bytes

N bytes + 1 terminating NULL byte

The path_attr token consists of:

token ID
count
path

1
4

byte
bytes

count null-terminated string(s)

The process token consists of:

token ID
audit ID
effective user ID
effective group ID
real user ID
real group ID
process ID
session ID
terminal ID

port ID

machine address

L S S e

»

byte

bytes
bytes
bytes
bytes
bytes
bytes
bytes

bytes/8 bytes (32-bit/64-bit value)
bytes

The expanded process token consists of:

token ID
audit ID
effective user ID
effective group ID
real user ID
real group ID
process ID
session ID
terminal ID

port ID

L S S S S N

byte

bytes
bytes
bytes
bytes
bytes
bytes
bytes

bytes/8 bytes (32-bit/64-bit value)

54 man pages section 4: File Formats * Last Revised 6 Jan 2004

audit.log(4)

address type/length 1 byte
machine address 4 bytes/16 bytes (IPv4/IPvé address)

The return token consists of:

token ID 1 byte
error number 1 byte
return value 4 bytes/8 bytes (32-bit/64-bit value)

The subject token consists of:

token ID 1 byte
audit ID 4 bytes
effective user ID 4 bytes
effective group ID 4 bytes
real user ID 4 bytes
real group ID 4 bytes
process ID 4 bytes
session ID 4 bytes
terminal ID

port ID 4 bytes/8 bytes (32-bit/64-bit value)

machine address 4 bytes

The expanded subject token consists of:

token ID 1 byte

audit ID 4 bytes

effective user ID 4 bytes

effective group ID 4 bytes

real user ID 4 bytes

real group ID 4 bytes

process ID 4 bytes

session ID 4 bytes

terminal ID
port ID 4 bytes/8 bytes (32-bit/64-bit value)
address type/length 1 byte
machine address 4 bytes/16 bytes (IPv4/IPvé address)

The System V IPC token consists of:

token ID 1 byte
object ID type 1 byte
object ID 4 bytes

The text token consists of:

token ID 1 byte
text length 2 bytes
text N bytes + 1 terminating NULL byte

The attribute token consists of:

token ID 1 byte
file access mode 4 bytes
owner user ID 4 bytes
owner group ID 4 bytes
file system ID 4 bytes

File Formats

55

audit.log(4)

node ID 8 bytes
device 4 bytes/8 bytes (32-bit/64-bit)

The groups token consists of:

token ID 1 byte
number groups 2 bytes
group list N * 4 bytes

The System V IPC permission token consists of:

token ID 1 byte

owner user ID 4 bytes

owner group ID 4 bytes

creator user ID 4 bytes

creator group ID 4 bytes

access mode 4 bytes

slot sequence # 4 bytes

key 4 bytes

The arg token consists of:

token ID 1 byte

argument # 1 byte

argument value 4 bytes/8 bytes (32-bit/64-bit value)
text length 2 bytes

text N bytes + 1 terminating NULL byte

The exec_args token consists of:

token ID 1 byte
count 4 bytes
text count null-terminated string(s)

The exec_env token consists of:

token ID 1 byte
count 4 bytes
text count null-terminated string(s)

The exit token consists of:

token ID 1 byte
status 4 bytes
return value 4 bytes

The socket token consists of:

token ID 1 byte
socket type 2 bytes
remote port 2 bytes

remote Internet address 4 bytes

The expanded socket token consists of:

token ID 1 byte
socket domain 2 bytes
socket type 2 bytes
local port 2 bytes

56 man pages section 4: File Formats * Last Revised 6 Jan 2004

ATTRIBUTES

audit.log(4)

address type/length 2 bytes
local port 2 bytes
local Internet address 4 bytes/16 bytes (IPv4/IPv6 address)
remote port 2 bytes
remote Internet address 4 bytes/16 bytes (IPv4/IPv6 address)

The seq token consists of:

token ID 1 byte
sequence number 4 bytes

The privilege token consists of:

token ID 1 byte
text length 2 bytes
privilege set name N bytes + 1 terminating NULL byte
text length 2 bytes
list of privileges N bytes + 1 terminating NULL byte

The use-of -auth token consists of:

token ID 1 byte
text length 2 bytes
authorization(s) N bytes + 1 terminating NULL byte

The command token consists of:

token ID 1 byte

count of args 2 bytes

argument list (count times)

text length 2 bytes

argument text N bytes + 1 terminating NULL byte
count of env strings 2 bytes

environment list (count times)

text length 2 bytes

env. text N bytes + 1 terminating NULL byte

The ACL token consists of:

token ID 1 byte
type 4 bytes
value 4 bytes
file mode 4 bytes

The zonename token consists of:

token ID 1 byte
name length 2 bytes
name <name length> including terminating NULL byte

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability

File Formats

57

audit.log(4)

ATTRIBUTE TYPE ATTRIBUTE VALUE
binary file format Evolving
binary file contents Unstable

SEE ALSO | audit(1M), auditd(1M), bsmconv(1M), audit(2), auditon(2), au_to(3BSM),
audit control(4), audit_syslog(b)

NOTES | Each token is generally written using the au_to(3BSM) family of function calls.

58 man pages section 4: File Formats * Last Revised 6 Jan 2004

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

audit_user(4)
audit_user — per-user auditing data file

/etc/security/audit_user

audit_user is an access-restricted database that stores per-user auditing preselection
data. You can use the audit_user file with other authorization sources, including the
NIS map audit user.byname and the NIS+ table audit user. Programs use the
getauusernam(3BSM) routines to access this information.

The search order for multiple user audit information sources is specified in the
/etc/nsswitch. conf file. See nsswitch. conf(4). The lookup follows the search
order for passwd(4).

The fields for each user entry are separated by colons (:). Each user is separated from
the next by a newline. audit_user does not have general read permission. Each
entry in the audit_user file has the form:

username : always-audit-flags : never-audit-flags

The fields are defined as follows:

username User’s login name.
always-audit-flags Flags specifying event classes to always audit.
never-audit-flags Flags specifying event classes to never audit.

For a complete description of the audit flags and how to combine them, see
audit_ control(4).

EXAMPLE 1 Using the audit user File

other:lo,am:io,cl
fred:lo,ex,+fc,-fr,-fa:io,cl
ethyl:lo,ex,nt:io,cl

/etc/nsswitch.conf
/etc/passwd

/etc/security/audit_user

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability See below

The file format stability is evolving. The file content is unstable.

bsmconv(lM), getauusernam(3BSM), audit control(4), nsswitch.conf(4),
passwd(4)

File Formats 59

audit_user(4)

NOTES | This functionality is available only if the Basic Security Module (BSM) has been
enabled. See bsmconv(1M) for more information.

60 man pages section 4: File Formats ¢ Last Revised 2 Jan 2003

NAME
SYNOPSIS

DESCRIPTION

auth_attr(4)
auth_attr — authorization description database

/etc/security/auth_attr

/etc/security/auth_attr is a local source for authorization names and
descriptions. The auth_attr file can be used with other authorization sources,
including the auth_attr NIS map and NIS+ table. Programs use the
getauthattr(3SECDB) routines to access this information.

The search order for multiple authorization sources is specified in the
/etc/nsswitch. conf file, as described in the nsswitch. conf(4) man page.

An authorization is a right assigned to users that is checked by certain privileged
programs to determine whether users can execute restricted functionality. Each entry
in the auth_attr database consists of one line of text containing six fields separated
by colons (:). Line continuations using the backslash (\) character are permitted. The
format of each entry is:

name :res1 : res2 : short_desc : long_desc : attr

name The name of the authorization. Authorization names are unique
strings. Construct authorization names using the following
convention:

prefix. or prefix.suffix

prefix Everything in the name field up to the final dot (.).
Authorizations from Sun Microsystems, Inc. use
solaris as a prefix. To avoid name conflicts, all other
authorizations should use a prefix that begins with the
reverse—order Internet domain name of the
organization that creates the authorization (for
example, com.xyzcompany). Prefixes can have
additional arbitrary components chosen by the
authorization’s developer, with components separated
by dots.

suffix The final component in the name field. Specifies what is
being authorized.

When there is no suffix, the name is defined as a
heading. Headings are not assigned to users but are
constructed for use by applications in their GUISs.

When a name ends with the word grant, the entry defines a grant
authorization. Grant authorizations are used to support
fine-grained delegation. Users with appropriate grant
authorizations can delegate some of their authorizations to others.
To assign an authorization, the user needs to have both the
authorization itself and the appropriate grant authorization.

res] Reserved for future use.

File Formats 61

auth_attr(4)

res2 Reserved for future use.

short_desc A short description or terse name for the authorization. This name
should be suitable for displaying in user interfaces, such as in a
scrolling list in a GUL

long_desc A long description. This field can explain the precise purpose of

the authorization, the applications in which it is used, and the type
of user that would be interested in using it. The long description
can be displayed in the help text of an application.

attr An optional list of semicolon-separated (;) key-value pairs that
describe the attributes of an authorization. Zero or more keys may
be specified. The keyword help identifies a help file in HTML.

EXAMPLES | EXAMPLE 1 Constructing a Name

In the following example, the name has a prefix (solaris.admin.usermgr)
followed by a suffix (read):

solaris.admin.usermgr.read

EXAMPLE 2 Defining a Heading
Because the name field ends with a dot, the following entry defines a heading;:

solaris.admin.usermgr. :: :User Accounts::help=AuthUsermgrHeader.html

EXAMPLE 3 Assigning Separate Authorizations to Set User Attributes

In this example, a heading entry is followed by other associated authorization entries.
The entries below the heading provide separate authorizations for setting user
attributes. The attr field for each entry, including the heading entry, assigns a help file.
The application that uses the help key requires the value to equal the name of a file
ending in .htmor .html:

solaris.admin.usermgr. :::User Accounts::help=AuthUsermgrHeader.html
solaris.admin.usermgr.pswd: : : Change Password::help=AuthUserMgrPswd.html
solaris.admin.usermgr.write:::Manage Users::help=AuthUsermgrWrite.html

EXAMPLE 4 Assigning a Grant Authorization

This example assigns to an administrator the following authorizations:

solaris.admin.printer.grant
solaris.admin.printer.delete
solaris.admin.printer.modify
solaris.admin.printer.read

solaris.login.enable

62 man pages section 4: File Formats * Last Revised 9 Jan 2002

FILES

SEE ALSO

NOTES

auth_attr(4)

EXAMPLE 4 Assigning a Grant Authorization (Continued)

With the above authorizations, the administrator can assign to others the
solaris.admin.printer.delete, solaris.admin.printer.modify, and
solaris.admin.printer.read authorizations, but not the
solaris.login.enable authorization. If the administrator has both the grant
authorization, solaris.admin.printmgr.grant, and the wildcard authorization,
solaris.admin.printmgr. *, the administrator can grant to others any of the
printer authorizations. See user attr(4) for more information about how wildcards
can be used to assign multiple authorizations whose names begin with the same
components.

EXAMPLE 5 Authorizing the Ability to Assign Other Authorizations

The following entry defines an authorization that grants the ability to assign any
authorization created with a solaris prefix, when the administrator also has either
the specific authorization being granted or a matching wildcard entry:

solaris.grant:::Grant All Solaris Authorizations::help=PriAdmin.html

EXAMPLE 6 Consulting the Local Authorization File Ahead of the NIS Table

With the following entry from /etc/nsswitch.conf, the local auth attr file is
consulted before the NIS table:

auth_attr:files nisplus
/etc/nsswitch.conft
/etc/user_attr
/etc/security/auth attr

getauthattr(3SECDB), getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB), exec_attr(4), nsswitch.conf(4), user attr(4)

When deciding which authorization source to use, keep in mind that NIS+ provides
stronger authentication than NIS.

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

Each application has its own requirements for whether the help value must be a
relative pathname ending with a filename or the name of a file. The only known
requirement is for the name of a file.

File Formats 63

auth_attr(4)

The following characters are used in describing the database format and must be
escaped with a backslash if used as data: colon (:), semicolon (;), equals (=), and
backslash (\).

64 man pages section 4: File Formats ¢ Last Revised 9 Jan 2002

NAME

SYNOPSIS

DESCRIPTION

autofs(4)

autofs — file containing parameter values for automountd daemon and automount
command

/etc/default/autofs

The autofs file resides in directory /etc/default and supplies default parameters
for the automountd(1M) daemon and the automount(1M) command.

The autofs file format is ASCII; comment lines begin with the crosshatch (#)
character. Parameters consist of a keyword followed by an equal sign followed by the
parameter value, of the form:

keyword=value

As shipped, the parameters in the autofs file are commented out. As root, you must
uncomment a keyword-value line to make the value for that parameter take effect.

Administrators can make changes to the startup parameters for automountd by
logging in as root and editing the autofs file. Changes made to autofs values on an
automount or automountd command line override values in
/etc/default/autofs.

Unlike /etc/init.d/autofs, the /etc/default/autofs file is preserved across
operating system upgrades.

The following parameters are currently supported in the autofs file:

AUTOMOUNT TIMEOUT=<num>
Specifies a duration, in seconds, that a file system is to remain mounted when not
in use. The default value is 600 (10 minutes). Equivalent to the -t option in
automount.

AUTOMOUNT VERBOSE=TRUE | FALSE
Verbose mode. Causes you to be notified of non-critical events, suchs as autofs
mounts and unmounts. The default value is FALSE. Equivalent to the -v option in
automount.

AUTOMOUNTD VERBOSE=TRUE | FALSE
Verbose mode. Causes status messages to be logged to the console. The default
value is FALSE. Equivalent to the -v option in automountd.

AUTOMOUNTD NOBROWSE=<num>
Turn on or off browsing for all autofs mount points. The default value is FALSE.
Equivalent to the -n option in automountd.

AUTOMOUNTD TRACE=<num>
Expands each RPC call and displays it on standard output. The default value, 0,
turns off such tracing. Starting with 1, with each higher value, the verbosity of trace
output increases.

AUTOMOUNTD ENV=<name>=<value>
Environment variables. Each environment variable-value pairing must be on its
own line. You can specify multiple such pairings. There are no environment

File Formats 65

autofs(4)

variable settings supplied. For example: AUTOMOUNTD_ENV=DAY=TUES

SEE ALSO | automount(1M), automountd(1M)

66 man pages section 4: File Formats * Last Revised 12 Nov 2004

NAME
DESCRIPTION

Manifest File
Entries

bart_manifest(4)

bart_manifest — system audit manifest file

The bart(1M) command generates a manifest that describes the contents of a
managed host. A manifest consists of a header and entries. Each entry represents a
single file. Entries are sorted in ascending order by file name. Any nonstandard file
names, such as those that contain embedded newline or tab characters, have the
special characters quoted prior to being sorted. See Quot ing Syntax.

Lines that begin with ! supply metadata about the manifest. The manifest version line
indicates the manifest specification version. The date line shows the date on which the
manifest was created, in date(1) form.

Some lines are ignored by the manifest comparison tool. Ignored lines include blank
lines, lines that consist only of white space, and comments that begin with #.

In addition to metadata lines, the header contains the format comment block. This
comment block lists the attributes reported for each file type.

To see the format of a manifest file, see EXAMPLES.

Each manifest file entry is a single line of one of the following forms, depending on
the file type:

fname D size mode acl dirmtime uid gid

fname P size mode acl mtime uid gid

fname S size mode acl mtime uid gid

fname F size mode acl mtime uid gid contents

fname L size mode acl Inmtime uid gid dest

fname B size mode acl mtime uid gid devnode
C

fname C size mode acl mtime uid gid devnode

The fields of the manifest file entries are described as follows:

fname Name of the file. To prevent parsing
problems that are caused by special
characters embedded in file names, file
names are encoded as described in Quoting
Syntax.

type Type of file.

Possible values for type are as follows:
Block device node
Character device node
Directory

File

Symbolic link

Pipe

O T I T B o W

Socket

File Formats 67

bart_manifest(4)

68

size

mode

acl

uid

gid

dirmtime

Inmtime

mtime

contents

dest

devnode

File size in bytes.

Octal number that represents the
permissions of the file.

ACL attributes for the file. For a file with
ACL attributes, this field contains the
output from acltotext ().

Numerical user ID of the owner of this
entry.

Numerical group ID of the owner of this
entry.

Modification time in seconds since 00:00:00
UTC, January 1, 1970 for directories.

Creation time for links.

Modification time in seconds since 00:00:00
UTC, January 1, 1970 for files.

Checksum value of the file. This attribute is
only specified for regular files. If you turn
off context checking or if checksums cannot
be computed, the value of this field is -.

Destination of a symbolic link.

Value of the device node. This attribute is
for character device files and block device
files only.

Quoting Syntax | The rules file supports a quoting syntax for representing nonstandard file names.

When generating a manifest for file names that embeded TAB, SPACE, or NEWLINE
characters, the special characters are encoded in their octal forms.

Input Character Quoted Character
SPACE \SPACE

TAB \TAB
NEWLINE \NEWLINE

? \?

[A

* *

man pages section 4: File Formats * Last Revised 9 Sep 2003

EXAMPLES

SEE ALSO

EXAMPLE 1 Sample Manifest File

The following is a sample system manifest file. The file entries are sorted by the
encoded versions of the file names to correctly handle special characters.

1

!
#
#
#
#
#
#
#

#

/etc D 3584 40755 user::

Version
Mon Feb
Format:

fname
fname
fname
fname
fname
fname
fname

D
P
S
F
L
B

C

1.0

11 10:55:30 2002

size
size
size
size
size
size
size

mode
mode
mode
mode
mode
mode
mode

acl
acl
acl
acl
acl
acl
acl

dirmtime uid gid
mtime uid gid

mtime uid gid

mtime uid gid contents
Inmtime uid gid dest
mtime uid gid devnode
mtime uid gid devnode

rYwx,group: :r-x,mask::r-x,other: :r-x,
/etc/.login F 524 100644 user::rw-,group::r--,mask::r--,other::r--,
3c165878 0 3 27b53d5c3e844af3306£1£12b330b318

3c6803d7 0 3

/etc/.pwd.lock F 0 100600 user::rw-,group::---,mask::---,other::---,

3cl66121 0 0 d41d8cd98f00b204e9800998ecf8427e

/etc/.syslog door L 20 120777 user::rw-,group::r--,mask::rwx,other::r--,
3¢6803d5 0 0 /var/run/syslog_door
/etc/autopush L 16 120777 user::r-x,group::r-x,mask::r-x,other::r-x,

date(l), bart(IM), bart rules(4), attributes(d)

3cl65863 0 0

3c6803d5 0 0

../sbin/autopush
/etc/cron.d/FIFO P 0 10600 user::

rw-,group::---,mask::---,other::---,

File Formats

bart_manifest(4)

69

bart_rules(4)
NAME

DESCRIPTION

Syntax

Rule Blocks

bart_rules — bart rules file

The bart_rules file is a text file that is used by the bart(1M) command. The rules
file determines which files to validate and which file attributes of those files to ignore.

Some lines are ignored by the manifest comparison tool. Ignored lines include blank
lines, lines that consist only of white space, and comments that begin with #.

The rules file supports three directives: CHECK, IGNORE, and a subtree directive, which
is an absolute path name and optional pattern matching modifiers. Each CHECK,
IGNORE, and subtree directive must be on a separate line. Bart supports continuation of

long lines using a backslash (\). The rules file uses the directives to create logical
blocks.

The syntax for the rules file is as follows:

[IGNORE attribute. ..]*
[CHECK] [attribute...]*

subtreel [pattern...]*
[IGNORE attribute. . .]*
[CHECK] [attribute...]*

subtree2 [pattern...]*
subtree3 [pattern...]*
subtree4 [pattern...]*
[IGNORE attribute. . .]*
[CHECK] [attribute. . .]*

Rule blocks are composed of statements that are created by using directives and
arguments.

There are three types of blocks:

Global Block The first block in the file. The block is considered
“global” if it specifies CHECK and IGNORE statements,
but no previous subtree statement. A global block
pertains to all subsequent blocks.

Local block A block that specifies CHECK and IGNORE statements as
well as a subtree directive. The rules in this block
pertain to files and directories found in the specified
subtree.

Heir block A block that contains a null CHECK statement, no
arguments. This block inherits the global CHECK
statements and IGNORE statements.

The order in which CHECK and IGNORE statements appear in blocks is important. The
bart command processes CHECK and IGNORE statements in the order in which they
are read, with later statements overriding earlier statements.

70 man pages section 4: File Formats * Last Revised 9 Sep 2003

Pattern Matching
Statements

bart_rules(4)

Subtree specifications must appear one per line. Each specification must begin with an
absolute path name. Optionally, each specification can be followed by
pattern-matching arguments.

When a file system being tracked belongs to more than one subtree directive, bart
performs the following resolution steps:

® Applies the CHECK and IGNORE statements set in the global block. Note that all
CHECK and IGNORE statements are processed in order.

m Finds the last subtree directive that matches the file.

® Processes the CHECK and IGNORE statements that belong to the last matching
subtree directive. These statements are processed in the order in which they are
read, overriding global settings.

There are two types of pattern matching statements

AND

OR

For a given subtree directive, all pattern matching statements are logically
ANDed with the subtree. Patterns have the following syntax:

m Wildcards are permitted for both the subtree and pattern matching
statements.

® The exclamation point (!) character represents logical NOT.

® A pattern that terminates with a slash is a subtree. The absence of a
slash indicates that the pattern is not a directory. The subtree itself does
not require an end slash.

For example, the following subtree example includes the contents of
/home/nickiso/src except for object files, core files, and all of the SCCS
subtrees. Note that directory names that terminate with .o and directories
named core are not excluded because the patterns specified do not
terminate with /.

/home/nickiso/src !*.o !core !SCCS/
CHECK all

Group multiple subtree directives together. Such subtree directives are
logically ORed together.

/home/nickiso/src !*.o !core
/home/nickiso/Mail
/home/nickiso/docs *.sdw
CHECK all

IGNORE mtime lnmtime dirmtime

The files included in the previous example are as follows:

m Everything under /home/nickiso/src except for * .o and core files
m Everything under /home/nickiso/Mail
m All files under /home/nickiso/docs thatend in * . sdw

For these files, all attributes are checked except for modification times.

File Formats 71

bart_rules(4)
File Attributes

EXAMPLES

The bart command uses CHECK and IGNORE statements to define which attributes to

track or ignore. Each attribute has an associated keyword.

The attribute keywords are as follows:

acl ACL attributes for the file. For a file with ACL
attributes, this field contains the output from
acltotext ().

all All attributes.

contents Checksum value of the file. This attribute is only
specified for regular files. If you turn off context
checking or if checksums cannot be computed, the
value of this field is -.

dest Destination of a symbolic link.

devnode Value of the device node. This attribute is for character

device files and block device files only.

dirmtime Modification time in seconds since 00:00:00 UTC,
January 1, 1970 for directories.

gid Numerical group ID of the owner of this entry.

Inmtime Creation time for links.

mode Octal number that represents the permissions of the
file.

mtime Modification time in seconds since 00:00:00 UTC,

January 1, 1970 for files.

size File size in bytes.
type Type of file.
uid Numerical user ID of the owner of this entry.

EXAMPLE 1 Sample Rules File

The following is a sample rules file:

Global rules, track everything except dirmtime.
CHECK all
IGNORE dirmtime

The files in /data* are expected to change, so don’t bother
tracking the attributes expected to change.

Furthermore, by specifying ‘'‘IGNORE contents,’’ you save
time and resources.
/data*

IGNORE contents mtime size

/home/nickiso f* bar/

72 man pages section 4: File Formats * Last Revised 9 Sep 2003

SEE ALSO

EXAMPLE 1 Sample Rules File (Continued)

IGNORE acl

For /usr, apply the global rules.
/usr
CHECK

Note: Since /usr/tmp follows the /usr block,
subtree is subjected to the ‘‘'IGNORE all.’’
/usr/tmp

/home/nickiso *.o

/home/nickiso core

/home/nickiso/proto

IGNORE all

The following files are cataloged based on the sample rules file:

the /usr/tmp

bart_rules(4)

m All attributes, except for dirmtime, mtime, size, and contents, are tracked for

files under the /data* subtrees.

m Files under the /usr subtree, except for /usr/tmp, are cataloged by using the

global rules.

m If the /home/nickiso/foo.c file exists, its attributes, except for acl and

dirmtime, are cataloged.

m All .o and core files under /home/nickiso, as well as the
/home/nickiso/proto and /usr/tmp subtrees, are ignored.

m If the /home/nickiso/bar/foo.o file exists, it is ignored because it is subject to

the last block.

bart(1M), bart manifest(4), attributes(b)

File Formats

73

bootparams(4)

74

NAME
SYNOPSIS

DESCRIPTION

bootparams — boot parameter data base

/etc/bootparams

The bootparams file contains a list of client entries that diskless clients use for
booting. Diskless booting clients retrieve this information by issuing requests to a
server running the rpc .bootparamd(1M) program. The bootparams file may be
used in conjunction with or in place of other sources for the bootparams information.
See nsswitch.conf(4).

For each client the file contains an entry with the client’s name and a list of boot
parameter values for that client. Each entry has the form:

clientname keyword=value. . .

The first item of each entry is the host name of the diskless client. You can use the
asterisk ("*’) character as a "wildcard" in place of the client name in a single entry. A
wildcard entry applies to all clients for which there is not an entry that specifically
names them.

In a given entry, the host name or asterisk is followed by one or more whitespace
characters and a series of keyword—value pairs separated by whitespace characters.
There must not be any whitespace within a keyword—value pair.

Each keyword—value pair has the syntax:
keyword=value

The preceding form breaks out further as:

keyword=server : value
Where server can be null and value can be a pathname.

An example that includes a server is:

clientl root=serverl:/export/clientl/root

An example where server is null is:

clientl rootopts=:vers2

A minor variation of the keyword=value syntax is used for the domain keyword. Unlike
the forms shown above, this syntax does not use a colon. For example:

clientl domain=bldgl.workco.com

Entries can span multiple lines. Use the backslash ("\") character as the last character
of a line to continue the entry to the following line. For multiple-line entries, you can
split a line only in places where whitespace is allowed. For example, you can use a
backslash to split the following entry between the end of the path (root) and the
keyword domain:

man pages section 4: File Formats ¢ Last Revised 22 Jul 2004

EXAMPLES

bootparams(4)

clientl root=serverl:/export/clientl/root domain=bldgl.workco.com

In entries that specify a server, server is the name of the server that will provide the file
or filesystem to the diskless client and value is the pathname of the exported file or
filesystem on that server.

In entries that use the domain keyword, the domain name specified must be the
client’s domain name. The algorithm for determining a client’s domain name is to first
check for a domain keyword in the client-specific entry and then in "wildcard" entry.
If none is found, the server’s domain name is used.

For the JumpStart installation of machines that do not have video displays, use the
term keyword to identify the terminal type of the boot server. Terminal types are
listed in /usr/share/lib/terminfo (see terminfo(4)).

An entry with the ns keyword associates a server (a name server) with, instead of a
pathname, a specific name service (NIS+, NIS, LDAP, or none) and, if that server is
not on a local subnet, the netmask needed to reach it. For example:

ns=hoot :nisplus (255.255.255.0)

An ns entry forces sysidtool(1M) to use the specified name service. By default,
sysidtool uses NIS+ in preference to NIS or LDAP if it can find an NIS+ server for
the system’s domain on the subnet. An ns entry might be necessary if you are trying
to set up a hands-off installation, or if the name server is on a different subnet, which
is common with NIS+.

If an ns keyword is not used, sysidtool uses broadcast to attempt to bind to either a
NIS+, NIS, or LDAP server. If a name server is not on the local subnet, which is
possible for NIS+ or LDAP, the bind will fail, automatic configuration of the name
service will fail, and an interactive screen is displayed, prompting the user to specify
the name service.

The ns keyword can be set in add_install_client or by Host Manager.

EXAMPLE 1 Sample bootparams Entry

Here is an example of an entry in the bootparams file:

clientl root=serverl:/export/clientl/root rootopts=:vers=2 \
domain=bldgl.workco.com

client2 root=server2:/export/client2/root ns=:nis

client3 root=server2:/export/client3/root ns=watson:

client4 root=server2:/export/client4/root \
ns=mach:nisplus (255.255.255.0)

EXAMPLE 2 Sample Entry for JumpStart

The following is an example of an entry that might be used for the JumpStart
installation of diskless clients that do not have displays.

File Formats 75

bootparams(4)

EXAMPLE 2 Sample Entry for JumpStart (Continued)

mozart root=haydn:/export/install/sparc/os/latest/Solaris_9/boot \
install=haydn:/export/install/sparc/os/8.1/latest boottype=:in \
install_ config=haydn:/usr/local/share/lib/jump-net \
ns=otis:nisplus(255.255.255.0) term=:xterms domain=eu.cte.work.com

FILES | /etc/bootparams
SEE ALSO | rpc.bootparamd(1M), sysidtool(1M), nsswitch.conf(4)

NOTES | Solaris diskless clients use the keywords root and rootopts to look up the
pathname for the root filesystem and the mount options for the root filesystem,
respectively. These are the only keywords meaningful for diskless booting clients. See
mount_ufs(1M).

76 man pages section 4: File Formats * Last Revised 22 Jul 2004

NAME

DESCRIPTION

cdtoc(4)
cdtoc — CD-ROM table of contents file

The table of contents file, . cdtoc, is an ASCII file that describes the contents of a
CD-ROM or other software distribution media. It resides in the top-level directory of
the file system on a slice of a CD-ROM. It is independent of file system format, that is,
the file system on the slice can be either UFS or HSFS.

Each entry in the . cdtoc file is a line that establishes the value of a parameter in the
following form:

PARAM=value

Blank lines and comments (lines preceded by a pound-sign, “#”) are also allowed in
the file. Parameters are grouped by product, with the beginning of a product defined
by a line of the form:

PRODNAME=value

Each product is expected to consist of one or more software packages that are stored
together in a subdirectory on the distribution media. There can be any number of
products described within the file. There is no required order in which the parameters
must be specified, except that the parameters must be grouped by product and the
PRODNAME parameter must appear first in the list of parameters for each product
specified. Each parameter is described below. All of the parameters are required for
each product.

PRODNAME The full name of the product. This must be unique
within the . cdtoc file and is preferably unique across
all possible products. This value may contain white
space. The length of this value is limited to 256 ASCII
characters; other restrictions may apply (see below).

PRODVERS The version of the product. The value can contain any
combination of letters, numbers, or other characters.
This value may contain white space. The length of this
value is limited to 256 ASCII characters; other
restrictions may apply (see below).

PRODDIR The name of the top-level directory containing the
product. This name should be relative to the top-level
directory of the distribution media, for example,
Solaris_2.6/Product. The number of path
components in the name is limited only by the system’s
maximum path name length, which is 1024 ASCII
characters. Any single component is limited to 256
ASCII characters. This value cannot contain white
space.

File Formats 77

cdtoc(4)

78

EXAMPLES

The lengths of the values of PRODNAME and PRODVERS are further constrained by
the fact that the initial install programs concatenate these values to produce the full
product name. For unbundled products the combined length of the values of
PRODNAME and PRODVERS must not exceed 256 ASCII characters.

When you install OS services with Solstice Host Manager, directories for diskless
clients are created by constructing names derived from a concatenation of the values
of PRODNAME, PRODVERS, and client architecture, for example,
/export/exec/Solaris_2.x_sparc.all/usr/platform The length of the
component containing the product name and version must not exceed 256 ASCII
characters. Thus, for products corresponding to bundled OS releases (for example,
Solaris 2.4), the values of PRODNAME and PRODVERS are effectively restricted to
lengths much less than 256.

The initial install programs use the value of the PRODDIR macro in the . cdtoc file to
indicate where packages can be found.

EXAMPLE 1 Sample of . cdtoc file.

Here is a sample . cdtoc file:

#

.cdtoc file -- Online product family CD
#

PRODNAME=Online DiskSuite

PRODVERS=2.0

PRODDIR=Online_ DiskSuite_ 2.0

#

PRODNAME=Online Backup

PRODVERS=2.0

PRODDIR=Online_Backup 2.0

This example corresponds to the following directory layout on a CD-ROM partition:

/ .cdtoc
/Online DiskSuite_2.0
. /SUNWmddr.c
. /SUNWmddr .m
. /SUNWmddu
/Online Backup_ 2.0
. /SUNWhsm

The bundled release of Solaris 2.6 includes the following . cdtoc file:

PRODNAME=Solaris
PRODVERS=2.6
PRODDIR=Solaris_2.6/Product

This file corresponds to the following directory layout on slice 0 of the Solaris 2.6
product CD:

man pages section 4: File Formats ¢ Last Revised 14 Sept 2004

cdtoc(4)

EXAMPLE 1 Sample of . cdtoc file. (Continued)

/ .cdtoc
/Solaris_2.6/Product
. /SUNWaccr
. /SUNWaccu

. /SUNWadmap

. /SUNWutool

SEE ALSO | clustertoc(4), packagetoc(4), pkginfo(4)

File Formats 79

clustertoc(4)

80

NAME

DESCRIPTION

clustertoc — cluster table of contents description file

The cluster table of contents file, . clustertoc, is an ASCII file that describes a
hierarchical view of a software product. A . clustertoc file is required for the base
OS product. The file resides in the top-level directory containing the product.

The hierarchy described by . clustertoc can be of arbitrary depth, although the
initial system installation programs assume that it has three levels. The hierarchy is
described bottom-up, with the packages described in . packagetoc at the lowest
layer. The next layer is the cluster layer which collects packages into functional units.
The highest layer is the meta-cluster layer which collects packages and clusters together
into typical configurations.

The hierarchy exists to facilitate the selection or deselection of software for installation
at varying levels of granularity. Interacting at the package level gives the finest level of
control over what software is to be installed.

Each entry in the . clustertoc file is a line that establishes the value of a parameter
in the following form:

PARAM=value

A line starting with a pound-sign, “#”, is considered a comment and is ignored.
Parameters are grouped by cluster or meta-cluster. The start of a cluster description is
defined by a line of the form:

CLUSTER=value

The start of a meta-cluster description is defined by a line of the form:

METACLUSTER=value

There is no order implied or assumed for specifying the parameters for a
(meta-)cluster with the exception of the CLUSTER or METACLUSTER parameter, which
must appear first and the END parameter which must appear last.

The following parameters are mandatory:

CLUSTER
The cluster identifier (for example, SUNWCacc). The identifier specified must be
unique within the package and cluster identifier namespace defined by a product’s
.packagetoc and . clustertoc files. The identifiers used are subject to the same
constraints as those for package identifiers. These constraints are (from
pkginfo(4)):

All characters in the abbreviation must be alphanumeric and the first may not be
numeric. The abbreviation is limited to a maximum length of nine characters.
install, new, and all are reserved abbreviations.

A cluster must be described before another cluster or meta-cluster may refer to it.

man pages section 4: File Formats * Last Revised 18 Feb 2003

clustertoc(4)

DESC
An informative textual description of the (meta-)cluster’s contents. The length of
the description supplied may not exceed 256 characters. The text should contain no
newlines.

METACLUSTER
The metacluster identifier (for example, SUNWCprog). The identifier specified must
be unique within the package and cluster identifier namespace defined by a
product’s . packagetoc and . clustertoc files. The identifiers used are subject
to the same constraints as those for package identifiers. These constraints are (from
pkginfo(4)):

All characters in the abbreviation must be alphanumeric and the first may not be
numeric. The abbreviation is limited to a maximum length of nine characters.
install, new, and all are reserved abbreviations.

Meta-clusters can not contain references to other meta-clusters.

NAME
The full name of the (meta-)cluster. The length of the name string supplied may not
exceed 256 characters.

SUNW_CSRMEMBER
Indicates that the package or cluster is a part of the (meta-) cluster currently being
described. The value specified is the identifier of the package or cluster. There may
be an arbitrary number of SUNW_CSRMEMBER parameters per (meta-)cluster.

VENDOR
The name of the (meta-)cluster’s vendor. The length of the vendor string supplied
may not exceed 256 characters.

VERSION
The version of the (meta-)cluster. The length of the version string supplied may not
exceed 256 characters.

The following parameters are optional:

DEFAULT
Specifies which metacluster within a . clustertoc file should be selected or
installed by default. Only one metacluster can be the default.

HIDDEN
Specifies whether a metacluster should be hidden by applications. A hidden
metacluster cannot be DEFAULT.

REQUIRED
Specifies which metacluster is required. A required metacluster implies that all of
its cluster and package members are not de-selectable (must be installed).

SUNW_CSRMBRIFF
Indicates that the package is to be included dynamically in the (meta-)cluster
currently being described. The value of this parameter must follow the following
format:

File Formats 81

clustertoc(4)

SUNW_CSRMBRIFF=(test fest_arc)package

This line is converted into a SUNW_CSRMEMBER entry at media installation time if
the test provided matches the platform on which the media is being installed. There
may be zero or more SUNW_CSRMBRIFF parameters per (meta-)cluster.

SUNW_CSRMBRIFF=(test value)package
where the the test is either the builtin test of "platform" or a shell script which
returns shell true (0) or shell false (1) depending on the tests being performed in
the script. value is passed to the test as the first argument and can be used to create
a script that tests for multiple hardware objects. Finally package is the package that
is included in the final . clustertoc file as a SUNW_CSRMEMBER. See
parse_dynamic_clustertoc(1M) for more information about the scripts.

EXAMPLES | EXAMPLE 1 A Cluster Description

The following is an example of a cluster description ina .clustertoc file.

CLUSTER=SUNWCacc

NAME=System Accounting
DESC=System accounting utilities
VENDOR=Sun Microsystems, Inc.
VERSION=7.2
SUNW_CSRMEMBER=SUNWaccr
SUNW_CSRMEMBER=SUNWaccu

END

EXAMPLE 2 A Meta-cluster Description

The following is an example of a meta-cluster description in a . clustertoc file.

METACLUSTER=SUNWCreq

NAME=Core System Support

DESC=A pre-defined software configuration consisting of the minimum
required software for a standalone, non-networked workstation.
VENDOR=Sun Microsystems, Inc.

VERSION=2.x

SUNW_CSRMEMBER=SUNWadmr

SUNW_CSRMEMBER=SUNWcar

SUNW_CSRMEMBER=SUNWCcs

SUNW_CSRMEMBER=SUNWCcg6

SUNW_CSRMEMBER=SUNWCdfb

SUNW_CSRMEMBER=SUNWkvm

SUNW_CSRMEMBER=SUNWCnis

SUNW_CSRMEMBER=SUNWowdv

SUNW_CSRMEMBER=SUNWter

END

EXAMPLE 3 A Meta-cluster Description With a Dynamic Cluster Entry

The following is an example of a meta-cluster description with a dynamic cluster entry
as indicated by the use of the SUNW_CSRMBRIFF parameter entries.

METACLUSTER=SUNWCprog
NAME=Developer System Support
DESC=A pre-defined software configuration consisting of the

82 man pages section 4: File Formats * Last Revised 18 Feb 2003

clustertoc(4)

EXAMPLE 3 A Meta-cluster Description With a Dynamic Cluster Entry (Continued)

typical software used by software developers.
VENDOR=Sun Microsystems, Inc.

VERSION=2.5

SUNW_CSRMEMBER=SUNWCadm
SUNW_CSRMBRIFF=(smcc.dctoc tcx)SUNWCtcx
SUNW_CSRMBRIFF=(smcc.dctoc leo)SUNWCleo
SUNW_CSRMBRIFF=(smcc.dctoc sx)SUNWCsx

END
SEE ALSO | parse_dynamic clustertoc(1M), cdtoc(4), order(4), packagetoc(4),
pkginfo(4)

NOTES | The current implementation of the initial system installation programs depend on the
.clustertoc describing three required meta-clusters for the base OS product:

SUNWCall Contains all of the software packages in the OS distribution.

SUNWCuser Contains the typical software packages for an end-user of the OS
distribution.

SUNWCreq Contains the bare-minimum packages required to boot and

configure the OS to the point of running a multi-user shell.

File Formats 83

compver(4)
NAME

DESCRIPTION

EXAMPLES

SEE ALSO

NOTES

compver — compatible versions file

compver is an ASCII file used to specify previous versions of the associated package
which are upward compatible. It is created by a package developer.

Each line of the file specifies a previous version of the associated package with which
the current version is backward compatible.

Since some packages may require installation of a specific version of another software
package, compatibility information is extremely crucial. Consider, for example, a
package called "A" which requires version "1.0" of application "B" as a prerequisite for
installation. If the customer installing "A" has a newer version of "B" (version 1.3), the
compver file for "B" must indicate that "1.3" is compatible with version "1.0" in order
for the customer to install package "A".

EXAMPLE 1 Sample compver file.

A sample compver file is shown below:

Version 1.3
Version 1.0

pkginfo(4)
Application Packaging Developer’s Guide

The comparison of the version string disregards white space and tabs. It is performed
on a word-by-word basis. Thus, "Version 1.3" and "Version 1.3" would be considered
the same.

The entries in the compver file must match the values assigned to the VERSION
parameter in the pkginfo(4) files.

84 man pages section 4: File Formats * Last Revised 4 Oct 1996

NAME
SYNOPSIS

DESCRIPTION

contents(4)
contents — list of files and associated packages

/var/sadm/install/contents

The file /var/sadm/install/contents is a source of information about the
packages installed on the system. This file must never be edited directly. Always use
the package and patch commands (see SEE ALSO) to make changes to the contents
file.

Each entry in the contents file is a single line. Fields in each entry are separated by a
single space character.

Two major styles of entries exist, old style and new style. The following is the format
of an old-style entry:

ftype class path package(s)
The following is the general format of a new-style entry:
path [=rpath] ftype class [ftype-optional-fields] package(s)

New-style entries differ for each ftype. The ftype designates the entry type, as
specified in pkgmap(4). The format for new-style entries, for each £type, is as follows:

ftype s: path=rpath s class package

ftype 1: path 1 class package

ftype d: path d class mode owner group package(s)

ftype b: path b class major minor mode owner group package
ftype c: path c class major minor mode owner group package
ftype f£: path £ class mode owner group size cksum modtime package
ftype x: path x class mode owner group package

ftype v: path v class mode owner group size cksum modtime package
ftype e: path e class mode owner group size cksum modtime package

A significant distinction between old- and new-style entries is that the former do not
begin with a slash (/) character, while the latter (new-style) always do. For example,
the following are new-style entries:

d none /dev SUNWcsd
e passwd /etc/passwd SUNWcsr

The following are new-style entries:

/dev d none 0755 root sys SUNWcsr SUNWcsd
/etc/passwd e passwd 0644 root sys 580 48299 1077177419 SUNWcsr

The following are the descriptions of the fields in both old- and new-style entries.

path
The absolute path of the node being described. For ftype s (indicating a symbolic
link) this is the indirect pointer (link) name.

rpath
The relative path to the real file or linked-to directory name.

File Formats 85

contents(4)

86

ATTRIBUTES

SEE ALSO

NOTES

ftype
A one-character field that indicates the entry type (see pkgmap(4)).

class
The installation class to which the file belongs (see pkgmap(4)).

package
The package associated with this entry. For ftype d (directory) more than one
package can be present.

mode
The octal mode of the file (see pkgmap(4)).

owner
The owner of the file (see pkgmap(4)).

group
The group to which the file belongs (see pkgmap(4)).

major
The major device number (see pkgmap(4)).

minor
The minor device number (see pkgmap(4)).

size
The actual size of the file in bytes as reported by sum (see pkgmap(4)).

cksum
The checksum of the file contents (see pkgmap(4)).

modtime
The time of last modification (see pkgmap(4)).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWecsr

Interface Stability Unstable

patchadd(1M), pkgadd(1M), pkgadm(1M), pkgchk(1M), pkgmap(4),
attributes(b)

As shown above, the interface stability of /var/sadm/install/contents is
Unstable (see attributes(5)). It is common practice to use this file in a read-only
manner to determine which files belong to which packages installed on a system.
While this file has been present for many releases of the Solaris operating system, it
might not be present in future releases. The fully supported way to obtain information
from the installed package database is through pkgchk(1M). It is highly
recommended that you use pkgchk rather than relying on the contents file.

man pages section 4: File Formats ¢ Last Revised 29 Jun 2004

NAME
SYNOPSIS

DESCRIPTION

DIRECTORY
STRUCTURE

STRUCTURE OF
/system/contract

contract(4)

contract — the contract file system

/system/contract

The /system/contract file system acts as the primary interface to the contract
subsystem. There is a subdirectory of /system/contract for each available contract

type.

/system/contract can be mounted on any mount point, in addition to the the
standard /system/contract mount point, and can be mounted several places at
once. Such additional mounts are allowed in order to facilitate the confinement of
processes to subtrees of the file system using chroot(1M) and yet allow such
processes to continue to use contract commands and interfaces.

A combination of standard system calls (for example, open(2), close(2), and pol1(2))
and calls to 1ibcontract(3LIB) access /system/contract files.

Consumers of the contract file system must be large file aware. See largefile(5) and

lfcompileé&4(d).

At the top level, the /system/contract directory contains subdirectories named
with each available contract type, and one special directory, all. Each of these
directories is world-readable and world-searchable.

Each /system/contract/type directory contains a fixed number of files. It also
/éPtains a variable number of subdirectories corresponding to existing contracts of
type type and named with the decimal representation of the contracts” IDs.

The following files are in a /system/contract/type directory:

template

latest

bundle

Opening this file returns a file descriptor for a new type contract
template.

You can use the following 1ibcontract(3LIB) calls on a template
file descriptor:

ct_tmpl_activate(3contract)
ct_tmpl_clear(3contract)
ct_tmpl_create(3contract)

See TERMS for additional template functions.

Opening this file returns a file descriptor for the status file of the
last type contract written by the opening LWP. See STRUCTURE OF
/system/contract/type/id. If the opening LWP has not created
a type contract, opening latest fails with ESRCH.

Opening this file returns a file descriptor for an event endpoint
which receives events from all type contracts on the system. No
privileges are required to open a type bundle event endpoint.

File Formats 87

contract(4)

STRUCTURE OF
/system/contract/all

STRUCTURE OF
/system/contract/type

pbundle

Events sent by contracts owned and written by users other than
the reader’s effective user id are invisible, that is, they are silently
skipped, unless the reader has { PRIV_CONTRACT OBSERVER} in
its effective set. See EVENTS.

Opening this file returns a file descriptor for an event endpoint
which receives events from all type contracts held by the opening
process. See EVENTS.

The /system/contract/all directory contains a numerically named file for each
contract in the system. Each file is a symbolic link to the type-specific directory for that
contract, that is /system/contract/all/id points to /system/contract/type/id.

Each /system/contract/type/id directory contains the following files:

s

ctl

status

events

Opening this file returns a file descriptor for contract
id’s control file. The open fails if the opening process
does not hold contract id and the contract has not been
inherited by the process contract of which the opening
process is a member. See process(4).

The following 1ibcontract(3LIB) calls can be made
on a ct1 file descriptor if the contract is owned by the
caller:

ct_ctl_abandon(3contract)
ct_ctl_newct(3contract)
ct_ctl_ack(3contract)
ct_ctl_qack(3contract)

The following 1ibcontract(3LIB) call can be made
on a ct1 file descriptor if the contract doesn’t have an
owner:

ct_ctl_adopt(3contract)

Opening this file returns a file descriptor for contract
id’s status file. The following 1ibcontract(3LIB) calls
can be made on a status file descriptor:

ct_status_read(3contract)

See STATUS.

Opening this file returns a file descriptor for an event
endpoint which receives events from contract id. See
EVENTS.

88 man pages section 4: File Formats * Last Revised 8 Oct 2004

TERMS

STATUS

contract(4)

Only a process which has the same effective user ID as
the process owning the contract, the same effective user
ID as the contract’s author, or has

{PRIV_CONTRACT OBSERVER} in its effective set can
open the event endpoint for a contract.

The following terms are defined for all contracts:

cookie
Specifies a 64-bit quantity that the contract author can use to identify the contract.
Use ct_tmpl set cookie(3CONTRACT) to set this term.

informative event set
Selects which events are delivered as informative events. Use
ct_tmpl set informative(3CONTRACT) to set this term.

critical event set
Selects which events are delivered as critical events. Use
ct_tmpl set critical(3CONTRACT) to set this term.

A status object returned by ct_status_ read(3CONTRACT) contains the following
pieces of information:

contract ID
The numeric ID of the contract. Use ct_status_get id(3CONTRACT) to obtain
this information.

contract type
The type of the contract, specifed as a string. Obtained using
ct_status_get_type(3CONTRACT). The contract type is the same as its
subdirectory name under /system/contract.

creator’s zone ID
The zone ID of the process which created the contract. Obtained using
ct_status_get zoneid(3CONTRACT).

ownership state
The state of the contract, specified as CTS OWNED, CTS INHERITED, CTS ORPHAN,
or CTS_DEAD. Use ct_status_get state(3CONTRACT) to obtain this
information.

contract holder
If the contract’s state is CTS_OWNED, the ID of the process which owns the contract.
If the contract’s state is CTS_INHERITED, the ID of the contract which is acting as
regent. If the contract’s state is CTS_ORPHAN or CTS_DEAD, this is undefined. Use
ct_status_get holder(3CONTRACT) to obtain this information.

number of critical events
The number of unacknowledged critical events pending on the contract’s event
queue. Use ct_status_get nevents(3CONTRACT) to obtain this information.

negotiation time
The time remaining before the current synchronous negotiation times out. Use
ct_status_get ntime(3CONTRACT) to obtain this information.

File Formats 89

contract(4)

90

EVENTS

negotiation quantum time
The time remaining before the current negotiation quantum runs out. Use
ct_status_get gtime(3CONTRACT) to obtain this information.

netgotiation event ID
The ID of the event which initiated the negotiation timeout. Use
ct_status get nevid(3CONTRACT) to obtain this information.

cookie (term)
The contract’s cookie term. Use ct_status_get cookie(3CONTRACT) to obtain
this information.

Informative event set (term)
The contract’s informative event set. Use
ct_status get informative(3CONTRACT) to obtain this information.

Critical event set (term)
The contract’s critical event set. Use ct_status_get critical(3CONTRACT)
to obtain this information.

All three event endpoints, /system/contract /type/bundle,
/system/contract/type/pbundle, and /system/contract/type/id/events,
are accessed in the same manner.

The following 1ibcontract(3LIB) interfaces are used with an event endpoint file
descriptor:

ct_event_read(3contract)
ct_event_read_critical(3contract)
ct_event_reset(3contract)
ct_event_next(3contract)

To facilitate processes watching multiple event endpoints, it is possible to poll(2) on
event endpoints. When it is possible to receive on an endpoint file descriptor, POLLIN
is set for that descriptor.

An event object returned by ct_event read(3CONTRACT) contains the following
information:

contract ID The ID of the contract that generated the event. Use
ct_event get ctid(B3CONTRACT) to obtain this
information.

event ID The ID of the contract event.Use

ct_event get evid(3CONTRACT).

flags A bit vector possibly including CT_ACK and
CTE_INFO. Use
ct_event get flags(B3CONTRACT) to obtain this
information.

event type The type of event, equal to one of the constants
specified in the contract type’s manual page or

man pages section 4: File Formats * Last Revised 8 Oct 2004

EVENT TYPES

FILES

contract(4)

CT EV_NEGEND. Use
ct_event get type(83CONTRACT) to obtain this
information.

The following event types are defined:

CT_EV_NEGEND
Some time after an exit negotiation is initiated, the CT EV NEGEND event is sent.

This indicates that the negotiation ended. This might be because the operation was

cancelled, or because the operation was successful. If successful, and the owner
requested that a new contract be written, this contains the ID of that contract.

CT EV_NEGEND cannot be included in a contract’s informative or critical event set.

It is always delivered and always critical. If CT_EV_NEGEND indicates that the
operation was successful, no further events are sent. The contract’s owner should
use ct_ctl abandon(3CONTRACT) to abandon the contract.

A CT_EV_NEGEND event contains:

negotiation ID
The ID of the negotiation which ended. Use
ct_event get nevid(3CONTRACT) to obain this information.

new contract ID
The ID of the newly created contract. This value is 0 if no contract was created,
or the ID of the existing contract if the operation was not completed. Use
ct_event get newct(3CONTRACT) to obtain this information.

/system/contract
List of all contract types

/system/contract/all
Directory of all contract IDs

/system/contract/all/id
Symbolic link to the type-specific directory of contract id

/system/contract/type
Specific type directory

/system/contract/type/templete
Template for the contract type

/system/contract/type/bundle
Listening point for all contracts of that type

/system/contract/type/pbundle
Listening point for all contracts of that type for the opening process

/system/contract/type /latest
Status of most recent type contract created by the opening LWP

/system/contract/type/ID
Directory for contract id

File Formats

91

contract(4)

92

SEE ALSO

/system/contract/type/ID/events
Listening point for contract id’s events

/system/contract/type/ID/ctl
Control file for contract ID

/system/contract/type/ID/status
Status info for contract ID

ctrun(l), ctstat(l), ctwatch(l), chroot(IM), close(2), ioctl1(2), open(2),
poll(2), ct_ctl abandon(3CONTRACT), ct_event get ctid(3CONTRACT),
ct_event get evid(B3CONTRACT), ct_event get flags(3CONTRACT),
ct_event get nevid(3CONTRACT), ct_event get newct(3CONTRACT),
ct_event get type(3CONTRACT),
ct_status_read(3CONTRACT)ct_status_get cookie(3CONTRACT),
ct_status get critical(3CONTRACT),

ct_status_get holder(3CONTRACT), ct_status get id(3CONTRACT),
ct_status _get informative(3CONTRACT),

ct_status_get nevid(3CONTRACT), ct_status_get nevents(3CONTRACT),
ct_status_get ntime(3CONTRACT), ct_status_get gtime(3CONTRACT),
ct_status get state(3CONTRACT), ct_status_get type(3CONTRACT),
ct_tmpl set cookie(3CONTRACT), ct tmpl set critical(3CONTRACT),
ct_tmpl set informative(3CONTRACT), libcontract(3LIB), process(4),
largefile(b), 1fcompile(5), privileges(5)

man pages section 4: File Formats * Last Revised 8 Oct 2004

copyright(4)
NAME | copyright — copyright information file

DESCRIPTION | copyright is an ASCII file used to provide a copyright notice for a package. The text
may be in any format. The full file contents (including comment lines) are displayed
on the terminal at the time of package installation.

SEE ALSO | Application Packaging Developer’s Guide

File Formats 93

core(4)

94

NAME

DESCRIPTION

core — process core file

The operating system writes out a core file for a process when the process is
terminated due to receiving certain signals. A core file is a disk copy of the contents of
the process address space at the time the process received the signal, along with
additional information about the state of the process. This information can be
consumed by a debugger. Core files can also be generated by applying the gcore(1)
utility to a running process.

Typically, core files are produced following abnormal termination of a process
resulting from a bug in the corresponding application. Whatever the cause, the core
file itself provides invaluable information to the programmer or support engineer to
aid in diagnosing the problem. The core file can be inspected using a debugger such as
dbx(1) or mdb(1) or by applying one of the proc(1) tools.

The operating system attempts to create up to two core files for each abnormally
terminating process, using a global core file name pattern and a per-process core file
name pattern. These patterns are expanded to determine the pathname of the resulting
core files, and can be configured by coreadm(1M). By default, the global core file
pattern is disabled and not used, and the per-process core file pattern is set to core.
Therefore, by default, the operating system attempts to create a core file named core
in the process’s current working directory.

A process terminates and produces a core file whenever it receives one of the signals
whose default disposition is to cause a core dump. The list of signals that result in
generating a core file is shown in signal . h(3HEAD). Therefore, a process might not
produce a core file if it has blocked or modified the behavior of the corresponding
signal. Additionally, no core dump can be created under the following conditions:

m If normal file and directory access permissions prevent the creation or modification
of the per-process core file pathname by the current process user and group ID.
This test does not apply to the global core file pathname because the global core file
is always written as the superuser.

m If the core file pattern expands to a pathname that contains intermediate directory
components that do not exist. For example, if the global pattern is set to
/var/core/%n/core.%p, and no directory /var/core/‘uname -n' has been
created, no global core files are produced.

m If the destination directory is part of a filesystem that is mounted read-only.

m If the resource limit RLIMIT CORE has been set to 0 for the process, no per-process
core file is produced. Refer to setrlimit(2) and ulimit(1l) for more information
on resource limits.

m If the core file name already exists in the destination directory and is not a regular
file (that is, is a symlink, block or character special-file, and so forth).

m If the kernel cannot open the destination file O EXCL, which can occur if same file
is being created by another process simultaneously.

m If the process’s effective user ID is different from its real user ID or if its effective
group ID is different from its real group ID. Similarly, set-user-ID and set-group-ID
programs do not produce core files as this could potentially compromise system

man pages section 4: File Formats ¢ Last Revised 18 Feb 2004

core(4)

security. These processes can be explicitly granted permission to produce core files
using coreadm(1M), at the risk of exposing secure information.

The core file contains all the process information pertinent to debugging: contents of
hardware registers, process status, and process data. The format of a core file is object
file specific.

For ELF executable programs (see a . out(4)), the core file generated is also an ELF file,
containing ELF program and file headers. The e_type field in the file header has type
ET CORE. The program header contains an entry for every segment that was part of
the process address space, including shared library segments. The contents of the
mappings specified by coreadm(1M) are also part of the core image. Each program
header has its p_memsz field set to the size of the mapping. The program headers that
represent mappings whose data is included in the core file have theirp filesz field
set the same as p_memsz, otherwise p_filesz is zero.

A mapping’s data may be excluded due to the core file content settings (see
coreadm(1M)), or due to some failure. If the data is excluded because of a failure, the
program header entry will have the PF_ SUNW_FAILURE flag set inits p_flags field.

The program headers of an ELF core file also contain entries for two NOTE segments,
each containing several note entries as described below. The note entry header and
core file note type (n_type) definitions are contained in <sys/elf.h>. The first
NOTE segment exists for binary compatibility with old programs that deal with core
files. It contains structures defined in <sys/old_procfs.h>. New programs should
recognize and skip this NOTE segment, advancing instead to the new NOTE segment.
The old NOTE segment is deleted from core files in a future release.

The old NOTE segment contains the following entries. Each has entry name "CORE"
and presents the contents of a system structure:

prpsinfo t n_type: NT PRPSINFO. This entry contains
information of interest to the ps(1) command, such as
process status, CPU usage, "nice" value, controlling
terminal, user-ID, process-ID, the name of the
executable, and so forth. The prpsinfo_t structure is
defined in <sys/old procfs.hs>.

char array n_type: NT_PLATFORM. This entry contains a string
describing the specific model of the hardware platform
on which this core file was created. This information is
the same as provided by sysinfo(2) when invoked
with the command SI_PLATFORM.

auxv_t array n_type: NT_AUXV. This entry contains the array of
auxv_t structures that was passed by the operating
system as startup information to the dynamic linker.
Auxiliary vector information is defined in
<sys/auxv.h>.

File Formats 95

core(4)

Following these entries, for each active (non-zombie) light-weight process (LWP) in
the process, the old NOTE segment contains an entry with a prstatus_t structure,
plus other optionally-present entries describing the LWP, as follows:

prstatus_t

prfpregset t

gwindows t

prxregset t

n_type: NT PRSTATUS. This structure contains things
of interest to a debugger from the operating system,
such as the general registers, signal dispositions, state,
reason for stopping, process-ID, and so forth. The
prstatus_t structure is defined in
<sys/old_procfs.h>.

n_type: NT_PRFPREG. This entry is present only if the
LWP used the floating-point hardware. It contains the
floating-point registers. The prfpregset_t structure
is defined in <sys/procfs isa.hs.

n_type: NT_GWINDOWS. This entry is present only on a
SPARC machine and only if the system was unable to
flush all of the register windows to the stack. It
contains all of the unspilled register windows. The
gwindows_t structure is defined in
<sys/regset.h>.

n_type: NT_PRXREG. This entry is present only if the
machine has extra register state associated with it. It
contains the extra register state. The prxregset_t
structure is defined in <sys/procfs_isa.h>.

The new NOTE segment contains the following entries. Each has entry name “CORE”
and presents the contents of a system structure:

psinfo t

pstatus_t

char array

n_type: NT PSINFO. This structure contains
information of interest to the ps(1) command, such as
process status, CPU usage, "nice" value, controlling
terminal, user-ID, process-ID, the name of the
executable, and so forth. The psinfo_t structure is
defined in <sys/procfs.h>.

n_type: NT_PSTATUS. This structure contains things
of interest to a debugger from the operating system,
such as pending signals, state, process-ID, and so forth.
The pstatus_t structure is defined in
<sys/procfs.h>.

n_type: NT_PLATFORM. This entry contains a string
describing the specific model of the hardware platform
on which this core file was created. This information is
the same as provided by sysinfo(2) when invoked
with the command SI PLATFORM.

96 man pages section 4: File Formats * Last Revised 18 Feb 2004

auxv_t array

struct utsname

prcred t

char array

struct ssd array

core_content t

core(4)

n_type: NT_AUXV. This entry contains the array of
auxv_t structures that was passed by the operating
system as startup information to the dynamic linker.
Auxiliary vector information is defined in
<sys/auxv.h>.

n_type: NT UTSNAME. This structure contains the
system information that would have been returned to
the process if it had performed a uname(2) system call
prior to dumping core. The ut sname structure is
defined in <sys/utsname.hs>.

n_type: NT PRCRED. This structure contains the
process credentials, including the real, saved, and
effective user and group IDs. The prcred_t structure
is defined in <aasys/procfs.hs>. Following the
structure is an optional array of supplementary group
IDs. The total number of supplementary group IDs is
given by the pr_ngroups member of the prcred_t
structure, and the structure includes space for one
supplementary group. If pr ngroups is greater than
1, there is pr ngroups - 1 gid_t items following
the structure; otherwise, there is no additional data.

n_type: NT_ZONENAME. This entry contains a string
which describes the name of the zone in which the
process was running. See zones(5). The information is
the same as provided by get zonenamebyid(3C) when
invoked with the numerical ID returned by
getzoneid(30).

n_type: NT_LDT. This entry is present only on an
32-bit x86 machine and only if the process has set up a
Local Descriptor Table (LDT). It contains an array of
structures of type struct ssd, each of which was
typically used to set up the $gs segment register to be
used to fetch the address of the current thread
information structure in a multithreaded process. The
ssd structure is defined in <sys/sysi86.h>.

n_type: NT_CONTENT. This optional entry indicates
which parts of the process image are specified to be
included in the core file. See coreadm(1M).

Following these entries, for each active and zombie LWP in the process, the new NOTE
segment contains an entry with an lwpsinfo_t structure plus, for a non-zombie
LWP, an entry with an 1lwpstatus_t structure, plus other optionally-present entries
describing the LWP, as follows. A zombie LWP is a non-detached LWP that has
terminated but has not yet been reaped by another LWP in the same process.

File Formats 97

core(4)

SEE ALSO

lwpsinfo t

lwpstatus_t

gwindows_t

prxregset t

asrset_t

n_type: NT LWPSINFO. This structure contains information of
interest to the ps(1) command, such as LWP status, CPU usage,
"nice" value, LWP-ID, and so forth. The lwpsinfo_t structure is
defined in <sys/procfs.h>. This is the only entry present for a
zombie LWP.

n_type: NT_LWPSTATUS. This structure contains things of interest
to a debugger from the operating system, such as the general
registers, the floating point registers, state, reason for stopping,
LWP-ID, and so forth. The 1wpstatus_t structure is defined in
<sys/procfs.h>>.

n_type: NT_GWINDOWS. This entry is present only on a SPARC
machine and only if the system was unable to flush all of the
register windows to the stack. It contains all of the unspilled
register windows. The gwindows_t structure is defined in
<sys/regset.h>.

n_type: NT_PRXREG. This entry is present only if the machine has
extra register state associated with it. It contains the extra register
state. The prxregset_t structure is defined in
<sys/procfs isa.h>.

n_type: NT_ASRS. This entry is present only on a SPARC V9
machine and only if the process is a 64-bit process. It contains the
ancillary state registers for the LWP. The asrset_t structure is
defined in <sys/regset.h>.

The size of the core file created by a process may be controlled by the user (see

getrlimit(2)).

gcore(l), mdb(1), proc(l), ps(l), coreadm(IM), getrlimit(2), setrlimit(2),
setuid(2), sysinfo(2), uname(2), get zonenamebyid(3C), getzoneid(3C),
elf(3ELF), signal.h(B3HEAD), a.out(4), proc(4), zones(5)

ANSI C Programmer’s Guide

98 man pages section 4: File Formats * Last Revised 18 Feb 2004

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

crypt.conf(4)
crypt.conf — configuration file for pluggable crypt modules

/etc/security/crypt.conf

crypt . conf is the configuration file for the pluggable crypt architecture. Each crypt
module must provide a function to generate a password hash,

crypt genhash impl(3C), and a function to generate the salt,

crypt_gensalt impl(3C).

There must be at least one entry in crypt . conf with the same name as is stored in
the crypt_algorithm magic symbol of the module. The documentation provided
with the module should list this name.

The module path field specifies the path name to a shared library object that
implements crypt_genhash impl (), crypt gensalt impl (), and
crypt_algorithm magic. If the path name is not absolute, it is assumed to be
relative to /usr/lib/security/$ISA. If the path name contains the $ISA token,
the token is replaced by an implementation-defined directory name that defines the
path relative to the calling program’s instruction set architecture.

The params field is used to pass module-specific options to the shared objects. See
crypt genhash impl(3C)and crypt gensalt impl(3C). It is the responsibility
of the module to parse and interpret the options. The params field can be used by the
modules to turn on debugging or to pass any module-specific parameters that control
the output of the hashing algorithm.

EXAMPLE 1 Provide compatibility for md5crypt-generated passwords.

The default configuration preserves previous Solaris behavior while adding
compatibility for md5crypt-generated passwords as provided on some BSD and Linux
systems.

#

crypt.conf

#

1 /usr/lib/security/$ISA/crypt bsdmd5.so

EXAMPLE 2 Use md5crypt to demonstrate compatibility with BSD- and Linux-based
systems.

The following example lists 4 algorithms and demonstrates how compatibility with
BSD- and Linux-based systems using md5crypt is made available, using the
algorithm names 1 and 2.

#

crypt.conf

#

md5 /usr/lib/security/$ISA/crypt md5.so
rotl3 /usr/lib/security/$ISA/crypt_rotl3.so

For *BSD/Linux compatibilty
1 is md5, 2 is Blowfish

File Formats 99

crypt.conf(4)

EXAMPLE 2 Use md5crypt to demonstrate compatibility with BSD- and Linux-based
systems. (Continued)

1 /usr/lib/security/$ISA/crypt bsdmd5.so
2 /usr/lib/security/$ISA/crypt bsdbf.so

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO | passwd(l), crypt(3C), crypt genhash impl(3C), crypt gensalt(3C),
crypt_gensalt impl(3C), getpassphrase(3C), passwd(4), attributes(b),
crypt_unix(b)

100 man pages section 4: File Formats * Last Revised 10 Jun 2002

NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

crypto_certs(4)
crypto_certs — directory for certificate files for Solaris Cryptographic Framework
/etc/crypto/certs/CA

/etc/crypto/certs/SUNWosnet

The /etc/crypto/certs directory contains ASN.1 BER or PEM encoded certificate
files for use by the Solaris Cryptographic Framework.

A default installation contains only two certificates. The CA certificate is the trust
anchor for all other certificates. The SUNWosnet certificate contains the certificate use
to sign the Solaris user and kernel cryptographic plug-ins.

Additional certificates my be installed by third-party cryptographic providers. They
should either be copied to /etc/crypto/certs or included in the package that
delivers the provider.

Only certificates that are issued by the CA certificate are accepted by the Solaris
Cryptographic Framework. This restriction is in place due to US Export Law on the
export of open cryptographic interfaces at the time of shipping this revision of the
product.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWcsr

Interface Stability Evolving

elfsign(l), 1ibpkes11(3LIB), attributes(5)

File Formats 101

dacf.conf(4)
NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

NOTES

dacf.conf — device auto-configuration configuration file

/etc/dacf.conf

The kernel uses the dacf . conf file to automatically configure hot plugged devices.
Because the dacf . conf file contains important kernel state information, it should not
be modified.

The format of the /etc/dacf . conf file is not public and might change in versions of
the Solaris operating environment that are not compatible with Solaris 8.

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWecsr

attributes(b)

This document does not constitute an API. The /etc/dact . conf file might not exist
or might contain different contents or interpretations in versions of the Solaris
operating environment that are not compatible with Solaris 8. The existence of this
notice does not imply that any other documentation lacking this notice constitutes an
APL

102 man pages section 4: File Formats ¢ Last Revised 15 May 2001

NAME
SYNOPSIS

DESCRIPTION

dat.conf(4)
dat.conf — DAT static registry

/etc/dat/dat.conf

The DAT static registry, /etc/dat/dat . conf is a system-wide data resource
maintained by the system administrative command datadm(1M).

/etc/dat/dat . conf contains a list of interface adapters supported by uDAPL
service providers. An interface adapter on Infiniband (IB) corresponds to an IPoIB
device instance, for example, 1bd0. An IPoIB device name represents an IP interface
plumbed by ifconfig(1IM) on an IB partition/Host Channel Adapter port
combination.

Each entry in the DAT static registry is a single line that contains eight fields. Fields
are separated by a SPACE. Lines that begin with a pound sign (#) are considered
comments. All characters that follow the # are ignored. Enclose Solaris specific strings
(Solaris_specific_string) and service provider’s instance data (service
_provider_instance_data) in quotes.

The following shows the order of the fields in a dat . conf entry:

"interface_adapter_name" " API_version" "threadsafe | nonthreadsafe \
"default | nondefault" "service_provider_library_pathname" \
"service_provider_version" “service _provider_instance_data" \

" Solaris_specific_string"

The fields are defined as follows:

interface_adapter_name
Specifies the Interface Adapter (IA) name. In IB, this is the IPoIB device instance
name, for example, 1bd0. This represents an IP interface plumbed on an IB
partition/port combination of the HCA.

API _version
Specifies the API version of the service provide library: For example,
"u"major.minorisul.?2.

threadsafe | nonthreadsafe
Specifies a threadsafe or non-threadsafe library.

default | nondefault
Specifies a default or non-default version of library. A service provider can offer
several versions of the library. If so, one version is designated as default with the
rest as nondefault.

service_provider_library_pathname
Specifies the pathname of the library image.

service_provider_version
Specifies the version of the service provider. By convention, specify the company
stock symbol as the service provider, followed by major and minor version
numbers, for example, SUNW1. 0.

service _provider_instance_data
Specifies the service provider instance data.

File Formats 103

dat.conf(4)

Solaris_specific_string
Specifies a platform specific string, for example, the device name in the
service provider.conf file.

EXAMPLES | EXAMPLE 1 Sample dat . conf File

The following dat . conf file shows a uDAPL 1. 2 service provider for tavor,
udapl_tavor.so.1 supporting two interfaces, ibd0 and ibd1l:

#

dat.conf for uDAPL 1.2

#

ibd0 ul.2 nonthreadsafe default udapl tavor.so.l SUNW.1.0 ""
"driver name=tavor"

ibdl ul.2 nonthreadsafe default udapl tavor.so.l SUNW.1.0 ""

"driver_name=tavor"

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWudaplr

Interface Stability Standard

SEE ALSO | datadm(1M), ifconfig(1M), 1ibdat(3LIB), service provider.conf(4),
attributes(b)

NOTES | An empty dat . conf is created during the package SUNWudaplr installation if no file
is present beforehand. Entries in the file are added or removed by running
datadm(1M).

The content of the platform specific string does not constitute an API. It is generated
by datadm(1M) and might have a different content or interpretation in a future
release.

104 man pages section 4: File Formats ¢ Last Revised 18 Jun 2004

NAME
SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

defaultdomain(4)
defaultdomain — specify host’s domain name

/etc/defaultdomain

The file /etc/defaultdomain determines a host’s domain name for direct use by
the NIS and NIS+ name services. The defaultdomain file is read at boot time and its
contents used by the domainname(1M) command. Because of its use by domainname,
defaultdomain is also used by the LDAP service (see 1dap(1)). Under certain,
narrow circumstances (see resolv.conf(4)), because domainname uses
defaultdomain, a DNS client can use the contents of defaultdomain.

The contents of defaultdomain consists of a single line containing a host’s domain
name.

nis+(1), uname(l), ldapclient(IM), nisclient(1M), ypbind(1M), ypinit(1M),
resolv.conf(4)

The defaultdomain file is created and modified by Solaris installation and
configuration scripts. Only users knowledgeable of name service configuration should
edit the file.

File Formats 105

default_fs(4)

106

NAME

DESCRIPTION

FILES

SEE ALSO

default_fs, fs — specify the default file system type for local or remote file systems

When file system administration commands have both specific and generic
components (for example, £sck(1M)), the file system type must be specified. If it is
not explicitly specified using the -F FSType command line option, the generic
command looks in /etc/vEstab in order to determine the file system type, using the
supplied raw or block device or mount point. If the file system type can not be
determined by searching /etc/vEstab, the command will use the default file system
type specified in either /etc/default/fs or /etc/dfs/dfstypes, depending on
whether the file system is local or remote.

The default local file system type is specified in /etc/default/£fs by a line of the
form LOCAL=fstype (for example, LOCAL=ufs). The default remote file system type is
determined by the first entry in the /etc/dfs/fstypes file.

File system administration commands will determine whether the file system is local
or remote by examining the specified device name. If the device name starts with /"
(slash), it is considered to be local; otherwise it is remote.

The default file system types can be changed by editing the default files with a text
editor.

/etc/vEstab list of default parameters for each file system
/etc/default/fs the default local file system type
/etc/dfs/fstypes the default remote file system type

fsck(IM), £stypes(4), vistab(4)

man pages section 4: File Formats * Last Revised 20 Mar 1992

NAME
SYNOPSIS

DESCRIPTION

FILES

SEE ALSO

defaultrouter(4)
defaultrouter — configuration file for default router(s)

/etc/defaultrouter
The /etc/defaultrouter file specifies a IPv4 host’s default router(s).

The format of the file is as follows:

IP_address

The /etc/defaultrouter file can contain the IP addresses or hostnames of one or
more default routers, with each entry on its own line. If you use hostnames, each
hostname must also be listed in the local /etc/hosts file, because no name services
are running at the time that defaultrouter is read.

Lines beginning with the “#” character are treated as comments.

The default routes listed in this file replace those added by the kernel during diskless
booting. An empty /etc/defaultrouter file will cause the default route added by
the kernel to be deleted.

Use of a default route, whether received from a DHCP server or from
/etc/defaultrouter, prevents a machine from acting as an IPv4 router. You can
use routeadm(1M) to override this behavior.

/etc/defaultrouter Configuration file containing the hostnames
or IP addresses of one or more default
routers.

in.rdisc(1M), in.routed(1IM), routeadm(1M), hosts(4)

File Formats 107

depend(4)

108

NAME

DESCRIPTION

EXAMPLES

depend — software dependencies file

depend is an ASCII file used to specify information concerning software dependencies
for a particular package. The file is created by a software developer.

Each entry in the depend file describes a single software package. The instance of the
package is described after the entry line by giving the package architecture and/or
version. The format of each entry and subsequent instance definition is:
type pkg name

(arch)version

(arch)version

The fields are:
type Defines the dependency type. Must be one of the following
characters:

P Indicates a prerequisite for installation; for example, the
referenced package or versions must be installed.

I Implies that the existence of the indicated package or
version is incompatible.

R Indicates a reverse dependency. Instead of defining the
package’s own dependencies, this designates that
another package depends on this one. This type should
be used only when an old package does not have a
depend file, but relies on the newer package
nonetheless. Therefore, the present package should not
be removed if the designated old package is still on the
system since, if it is removed, the old package will no
longer work.

pkg Indicates the package abbreviation.
name Specifies the full package name.
(arch)version Specifies a particular instance of the software. A version name

cannot begin with a left parenthesis. The instance specifications,
both (arch) and version, are completely optional, but each
(arch)version pair must begin on a new line that begins with white
space. A null version set equates to any version of the indicated
package.

EXAMPLE 1 Sample of depend file

Here are the contents of a sample depend file, for the SUNWEtpr (FTP Server)
package, stored in /var/sadm/pkg/SUNWftpr/install:

man pages section 4: File Formats ¢ Last Revised 4 Oct 1996

SEE ALSO

EXAMPLE 1 Sample of depend file (Continued)

SUNWcar
SUNWkvm
SUNWcsr
SUNWcsu
SUNWcsd
SUNWcs1l
SUNWEtpu

2oL o B VIR v B o B L v

pkginfo(4)

Core
Core
Core
Core
Core
Core

Architecture, (Root)
Architecture, (Kvm)
Solaris, (Root)
Solaris, (Usr)
Solaris Devices
Solaris Libraries

FTP Server, (Usr)

Application Packaging Developer’s Guide

depend(4)

File Formats

109

device_allocate(4)

110

NAME
SYNOPSIS

DESCRIPTION

device_allocate — device_allocate file

/etc/security/device_allocate

The device_allocate file contains mandatory access control information about
each physical device. Each device is represented by a one line entry of the form:

device-name;device-type;reserved;reserved;auths;device-exec

where

device-name

device-type

reserved
reserved

auths

device-exec

This is an arbitrary ASCII string naming the physical
device. This field contains no embedded white space or
non-printable characters.

This is an arbitrary ASCII string naming the generic
device type. This field identifies and groups together
devices of like type. This field contains no embedded
white space or non-printable characters.

This field is reserved for future use.
This field is reserved for future use.

This field contains a comma-separated list of
authorizations required to allocate the device, or
asterisk (*) to indicate that the device is not allocatable,
or an ‘@’ symbol to indicate that no explicit
authorization is needed to allocate the device.

The default authorization is
solaris.device.allocate. See auths(1)

This is the physical device’s data purge program to be
run any time the device is acted on by allocate(1).
This is to ensure that all usable data is purged from the
physical device before it is reused. This field contains
the filename of a program in /etc/security/lib or
the full pathname of a cleanup script provided by the
system administrator.

The device allocate file is an ASCII file that resides in the /etc/security

directory.

Lines in device allocate can end with a “\” to continue an entry on the next line.

Comments may also be included. A “#” makes a comment of all further text until the
next NEWLINE not immediately preceded by a “\".

White space is allowed in any field.

man pages section 4: File Formats ¢ Last Revised 17 Mar 2003

EXAMPLES

FILES

SEE ALSO

NOTES

device_allocate(4)

The device_allocate file must be created by the system administrator before
device allocation is enabled.

The device_allocate file is owned by root, with a group of sys, and a mode of
0644.

EXAMPLE 1 Declaring an allocatable device

Declare that physical device st0 is a type st. st is allocatable, and the script used to
clean the device after running deallocate(l) is named
/etc/security/lib/st_clean.

scsi tape

st0;\
sti\
reserved;\
reserved; \
solaris.device.allocate;\
/etc/security/lib/st_clean

EXAMPLE 2 Declaring an allocatable device with authorizations

Declare that physical device £d0 is of type £d. £d is allocatable by users with the
solaris.device.allocate authorization, and the script used to clean the device
after running deallocate(l) is named /etc/security/lib/fd clean.

floppy drive

£40;\
£d;\
reserved;\
reserved; \
solaris.device.allocate;\
/etc/security/lib/fd clean

Notice that making a device allocatable means that you need to allocate and deallocate
it to use it (with allocate(1) and deallocate(l)). If a device is not allocatable, there
will be an asterisk (*) in the auths field, and no one can use the device.

/etc/security/device allocate Contains list of allocatable devices

auths(1), allocate(l), bsmconv(lM), deallocate(l), 1ist devices(l),
auth_attr(4)

The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

File Formats 111

device_maps(4)

112

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

SEE ALSO

device_maps — device_maps file

/etc/security/device _maps

The device_maps file contains access control information about each physical device.
Each device is represented by a one line entry of the form:

device-name : device-type : device-list :

where

device-name This is an arbitrary ASCII string naming the physical
device. This field contains no embedded white space or
non-printable characters.

device-type This is an arbitrary ASCII string naming the generic
device type. This field identifies and groups together
devices of like type. This field contains no embedded
white space or non-printable characters.

device-list This is a list of the device special files associated with

the physical device. This field contains valid device
special file path names separated by white space.

The device maps file is an ASCII file that resides in the /etc/security directory.
Lines in device_maps can end with a “\” to continue an entry on the next line.

Comments may also be included. A “#” makes a comment of all further text until the
next NEWLINE not immediately preceded by a “\".

Leading and trailing blanks are allowed in any of the fields.

The device_maps file must be created by the system administrator bef\ore device
allocation is enabled.

This file is owned by root, with a group of sys, and a mode of 0644.

EXAMPLE 1 A sample device_maps file

scsi tape

stl:\

rmt:\

/dev/rst2l /dev/nrst2l /dev/rst5 /dev/nrst5 /dev/rstl3 \
/dev/nrstl3 /dev/rst29 /dev/nrst29 /dev/rmt/11 /dev/rmt/1lm \
/dev/rmt/1 /dev/rmt/1h /dev/rmt/lu /dev/rmt/1lln /dev/rmt/lmn \
/dev/rmt/1ln /dev/rmt/lhn /dev/rmt/lun /dev/rmt/lb /dev/rmt/lbn:\

/etc/security/device maps

allocate(l), bsmconv(lM), deallocate(l), dminfo(1M), list devices(l)

man pages section 4: File Formats ¢ Last Revised 16 Jan 2001

device_maps(4)

NOTES | The functionality described in this man page is available only if the Basic Security
Module (BSM) has been enabled. See bsmconv(1M) for more information.

File Formats 113

devices(4)
NAME
SYNOPSIS

DESCRIPTION

SEE ALSO

NOTES

devices, devid_cache, snapshot_cache, vhci_cache — device configuration information
/etc/devices

/etc/devices/devid_cache

The directory /etc/devices is a repository of device-related data. Files in this
directory are used to preserve this information across reboots and are created and
updated as necessary by the system.

There are no administrative actions necessary with respect to files in /etc/devices.
Should the contents of a file become corrupted or an update fail, the file can simply be
removed. The system re-creates the file as necessary.

devisadm(lM), ddi_devid register(9F), ddi_devid register(9F)

Files in this directory do not constitute an API. Files might not exist or might have a
different content or interpretation in a future release. The existence of this notice does
not imply that any other documentation that lacks this notice constitutes an API.

114 man pages section 4: File Formats ¢ Last Revised 15 Mar 2004

dfstab(4)

NAME | dfstab — file containing commands for sharing resources across a network

DESCRIPTION | dfstab resides in directory /etc/dfs and contains commands for sharing resources
across a network. df stab gives a system administrator a uniform method of
controlling the automatic sharing of local resources.

Each line of the df stab file consists of a share(1M) command. The df stab file can
be read by the shell to share all resources. System administrators can also prepare their
own shell scripts to execute particular lines from dfstab.

The contents of df stab are executed automatically when the system enters run-level
3.

SEE ALSO | share(1M), shareall(1M)

File Formats 115

dhcp_inittab(4)

116

NAME

DESCRIPTION

dhcp_inittab — information repository for DHCP options

The /etc/dhep/inittab file contains information about the Dynamic Host
Configuration Protocol (DHCP) options, which are network configuration parameters
passed from DHCP servers to DHCP clients when a client machine uses DHCP. Since
many DHCP-related commands must parse and understand these DHCP options, this
file serves as a central location where information about these options may be
obtained.

The DHCP inittab file provides three general pieces of information:

® A mnemonic alias, or symbol name, for each option number. For instance, option
12 is aliased to the name Hostname. This is useful for DHCP-related programs that
require human interaction, such as dhcpinfo(l).

® Information about the syntax for each option. This includes information such as the
type of the value, for example, whether it is a 16-bit integer or an IP address.

® The policy for what options are visible to which DHCP-related programs.

The dhcp_inittab file can only be changed upon system upgrade. Only additions of
SITE options (or changes to same) will be preserved during upgrade.

The VENDOR options defined here are intended for use by the Solaris DHCP client and
DHCP management tools. The SUNW vendor space is owned by Sun, and changes are
likely during upgrade. If you need to configure the Solaris DHCP server to support
the vendor options of a different client, see dhcptab(4) for details.

Each DHCP option belongs to a certain category, which roughly defines the scope of
the option; for instance, an option may only be understood by certain hosts within a
given site, or it may be globally understood by all DHCP clients and servers. The
following categories are defined; the category names are not case-sensitive:

STANDARD All client and server DHCP implementations agree on the
semantics. These are administered by the Internet Assigned
Numbers Authority (IANA). These options are numbered from 1
to127.

SITE Within a specific site, all client and server implementations agree
on the semantics. However, at another site the type and meaning
of the option may be quite different. These options are numbered
from 128 to 254.

VENDOR Each vendor may define 254 options unique to that vendor. The
vendor is identified within a DHCP packet by the "Vendor Class"
option, number 60. An option with a specific numeric identifier
belonging to one vendor will, in general, have a type and
semantics different from that of a different vendor. Vendor options

man pages section 4: File Formats ¢ Last Revised 7 Jun 2001

DHCP inittab
Format

dhcp_inittab(4)

are "super-encapsulated” into the vendor field number 43, as
defined in RFC 2132. The dhcp_inittab file only contains Sun
vendor options. Define non-Sun vendor options in the dhcptab
file.

FIELD This category allows the fixed fields within a DHCP packet to be
aliased to a mnemonic name for use with dhcpinfo(1).

INTERNAL This category is internal to the Solaris DHCP implementation and
will not be further defined.

Data entries are written one per line and have seven fields; each entry provides
information for one option. Each field is separated by a comma, except for the first and
second, which are separated by whitespace (as defined in isspace(3C)). An entry
cannot be continued onto another line. Blank lines and those whose first
non-whitespace character is '# are ignored.

The fields, in order, are:

® Mnemonic Identifier

The Mnemonic Identifier is a user-friendly alias for the option number; it is not
case sensitive. This field must be per-category unique and should be unique across
all categories. The option names in the STANDARD, SITE, and VENDOR spaces
should not overlap, or the behavior will be undefined. See Mnemonic
Identifiers for Options section of this man page for descriptions of the
option names.

m Category (scope)
The Category field is one of STANDARD, SITE, VENDOR, FIELD, or INTERNAL and
identifies the scope in which the option falls.

®m Option Number

The Option Number is the number of this option when it is in a DHCP packet. This
field should be per-category unique and the STANDARD and SITE fields should not
have overlapping code fields or the behavior is undefined.

®m Data Type
Data Type is one of the following values, which are not case sensitive:
Ascii A printable character string
Bool Has no value. Scope limited to category limited to INTERNAL.

Presence of an option of this type within a Solaris configuration
file represents TRUE, absence represents FALSE.

Octet An array of bytes
Unumber8 An 8-bit unsigned integer
Snumbers An 8-bit signed integer
Unumberl6 A 16-bit unsigned integer

File Formats 117

dhcp_inittab(4)

Snumberlé A 16-bit signed integer
Unumber32 A 32-bit unsigned integer
Snumber32 A 32-bit signed integer
Unumber64 A 64-bit unsigned integer
Snumberé64 A 64-bit signed integer
Ip An IP address

The data type field describes an indivisible unit of the option payload, using one of
the values listed above.

® Granularity

The Granularity field describes how many "indivisible units" in the option payload
make up a whole value or item for this option. The value must be greater than zero
(0) for any data type other than Bool, in which case it must be zero (0).

® Maximum Number Of Items

This value specifies the maximum items of Granularity which are permissible in a
definition using this symbol. For example, there can only be one IP address
specified for a subnet mask, so the Maximum number of items in this case is one
(1). A Maximum value of zero (0) means that a variable number of items is
permitted.

® Visibility
The Visibility field specifies which DHCP-related programs make use of this
information, and should always be defined as "sdmi" for newly added options.

Mnemonic | The following table maps the mnemonic identifiers used in Solaris DHCP to RFC 2132
Identifiers for options:

Options
Symbol Code Description
Subnet 1 Subnet Mask, dotted Internet address (IP).
UTCoffst 2 Coordinated Universal time offset (seconds).
Router 3 List of Routers, IP.
Timeserv 4 List of RFC-868 servers, IP.
IENllé6ns 5 List of IEN 116 name servers, IP.
DNSserv 6 List of DNS name servers, IP.
Logserv 7 List of MIT-LCS UDP log servers, IP.
Cookie 8 List of RFC-865 cookie servers, IP.
Lprserv 9 List of RFC-1179 line printer servers, IP.

118 man pages section 4: File Formats ¢ Last Revised 7 Jun 2001

dhcp_inittab(4)

Symbol Code Description

Impress 10 List of Imagen Impress servers, IP.

Resource 11 List of RFC-887 resource location servers, IP.

Hostname 12 Client’s hostname, value from hosts database.

Bootsize 13 Number of 512 octet blocks in boot image,
NUMBER.

Dumpfile 14 Path where core image should be dumped, ASCII.

DNSdmain 15 DNS domain name, ASCII.

Swapserv 16 Client’s swap server, IP.

Rootpath 17 Client’s Root path, ASCII.

ExtendP 18 Extensions path, ASCIIL.

IpFwdF 19 IP Forwarding Enable/Disable, NUMBER.

NLrouteF 20 Non-local Source Routing, NUMBER.

PFilter 21 Policy Filter, IP.

MaxIpSiz 22 Maximum datagram Reassembly Size, NUMBER.

IpTTL 23 Default IP Time to Live, (1=<x<=255), NUMBER.

PathTO 24 RFC-1191 Path MTU Aging Timeout, NUMBER.

PathTbl 25 RFC-1191 Path MTU Plateau Table, NUMBER.

MTU 26 Interface MTU, x>=68, NUMBER.

SameMtuF 27 All Subnets are Local, NUMBER.

Broadcst 28 Broadcast Address, IP.

MaskDscF 29 Perform Mask Discovery, NUMBER.

MaskSupF 30 Mask Supplier, NUMBER.

RDiscvyF 31 Perform Router Discovery, NUMBER.

RSolicts 32 Router Solicitation Address, IP.

StaticRt 33 Static Route, Double IP (network router).

TrailerF 34 Trailer Encapsulation, NUMBER.

ArpTimeO 35 ARP Cache Time out, NUMBER.

EthEncap 36 Ethernet Encapsulation, NUMBER.

TcpTTL 37 TCP Default Time to Live, NUMBER.

TcpKalnt 38 TCP Keepalive Interval, NUMBER.

File Formats 119

dhcp_inittab(4)

Symbol Code Description

TcpKaGbF 39 TCP Keepalive Garbage, NUMBER.

NISdmain 40 NIS Domain name, ASCII.

NISservs 41 List of NIS servers, IP.

NTPservs 42 List of NTP servers, IP.

NetBNms 44 List of NetBIOS Name servers, IP.

NetBDsts 45 List of NetBIOS Distribution servers, IP.

NetBNdT 46 NetBIOS Node type (1=B-node, 2=P, 4=M, 8=H).

NetBScop 47 NetBIOS scope, ASCIL

XFontSrv 48 List of X Window Font servers, IP.

XDispMgr 49 List of X Window Display managers, IP.

LeaseTim 51 Lease Time Policy, (-1 = PERM), NUMBER.

Message 56 Message to be displayed on client, ASCIL.

T1Time 58 Renewal (T1) time, NUMBER.

T2Time 59 Rebinding (T2) time, NUMBER.

NW_dmain 62 NetWare/IP Domain Name, ASCII.

NWIPOpts 63 NetWare/IP Options, OCTET (unknown type).

NIS+dom 64 NIS+ Domain name, ASCII.

NIS+serv 65 NIS+ servers, IP.

TFTPsrvN 66 TFTP server hostname, ASCII.

OptBootF 67 Optional Bootfile path, ASCIL

MblIPAgt 68 Mobile IP Home Agent, IP.

SMTPserv 69 Simple Mail Transport Protocol Server, IP.

POP3serv 70 Post Office Protocol (POP3) Server, IP.

NNTPserv 71 Network News Transport Proto. (NNTP) Server,
1P.

WWWservs 72 Default WorldWideWeb Server, IP.

Fingersv 73 Default Finger Server, IP.

IRCservs 74 Internet Relay Chat Server, IP.

STservs 75 StreetTalk Server, IP.

STDAservs 76 StreetTalk Directory Assist. Server, IP.

120 man pages section 4: File Formats ¢ Last Revised 7 Jun 2001

EXAMPLES

FILES

ATTRIBUTES

dhcp_inittab(4)

Symbol Code Description

UserClas 77 User class information, ASCII.

SLP_DA 78 Directory agent, OCTET.

SLP_SS 79 Service scope, OCTET.

AgentOpt 82 Agent circuit ID, OCTET.

FQDN 89 Fully Qualified Domain Name, OCTET.

PXEarch 93 Client system architecture, NUMBER.

PXEnii 94 Client Network Device Interface, OCTET.

PXEcid 97 UUID/GUID-based client indentifier, OCTET.

BootFile N/A File to Boot, ASCII.

BootPath N/A Boot path prefix to apply to client’s requested boot
file, ASCII.

BootSrvA N/A Boot Server, IP.

BootSrvN N/A Boot Server Hostname, ASCII.

EchovC N/A Echo Vendor Class Identifier Flag, (Present=TRUE)

LeaseNeg N/A Lease is Negotiable Flag, (Present=TRUE)

Include N/A Include listed macro values in this macro.

EXAMPLE 1 Altering the DHCP inittab File

In general, the DHCP inittab file should only be altered to add SITE options. If
other options are added, they will not be automatically carried forward when the
system is upgraded. For instance:

ipPairs SITE, 132, IP, 2, 0, sdmi

describes an option named ipPairs, that is in the SITE category. That is, it is defined
by each individual site, and is option code 132, which is of type IP Address, consisting
of a potentially infinite number of pairs of IP addresses.

/etc/dhcp/inittab

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesr

Interface Stability Evolving

File Formats 121

dhcp_inittab(4)

SEE ALSO | dhcpinfo(l),dhcpagent(1M), isspace(3C), dhcptab(4), attributes(b), dhep(b),
dhcp modules(5)

System Administration Guide: IP Services

Alexander, S., and R. Droms. RFC 2132, DHCP Options and BOOTP Vendor Extensions.
Network Working Group. March 1997.

Droms, R. RFC 2131, Dynamic Host Configuration Protocol. Network Working Group.
March 1997.

122 man pages section 4: File Formats ¢ Last Revised 7 Jun 2001

NAME

DESCRIPTION

dhcp_network(4)
dhcp_network — DHCP network tables

The Dynamic Host Configuration Protocol (DHCP) network tables are used to map
the client identifiers of DHCP clients to IP addresses and the associated configuration
parameters of that address. One DHCP network table exists for each network served
by the DHCP server, and each table is named using the network’s IP address. There is
no table or file with the name dhcp network.

The DHCP network tables can exist as ASCII text files, binary text files, or NIS+ tables,
depending on the data store used. Since the format of the file could change, the
preferred method of managing the DHCP network tables is through the use of
dhcpmgr(1M) or the pntadm(1M) command.

The dhcp network file is used as a policy mechanism for whether in.dhcpd(1M)
leases addresses on a given network. If the DHCP server is not serving leases or
information to a network, there should be no dhcp network file for that network. To
set the DHCP server in informational mode, where it responds to INFORM messages but
does not lease addresses on that network, create an empty dhcp_network file for that
network. For normal operations, where the DHCP server both leases addresses and
responds to INFORM packets, create a dhcp_network file using dhcpmgr(1M) or
pntadm(1M) and populate it with leasable addresses.

The format of the records in a DHCP network table depends on the data store used to
maintain the table. However, an entry in a DHCP network table must contain the
following fields:

Client ID The client identifier field, Client ID, is an ASCII hexadecimal
representation of the unique octet string value of the DHCP Client
Identifier Option (code 61) which identifies a DHCP client. In the
absence of the DHCP Client Identifier Option, the DHCP client is
identified using the form given below for BOOTP clients. The
number of characters in this field must be an even number, with a
maximum length of 64 characters. Valid characters are 0 - 9 and
A-F. Entries with values of 00 are freely available for dynamic
allocation to requesting clients. BOOTP clients are identified by the
concatenation of the network’s hardware type (as defined by RFC
1340, titled "Assigned Numbers") and the client’s hardware
address. For example, the following BOOTP client has a hardware
type of 01" (10mb ethernet) and a hardware address of
8:0:20:11:12:b7, so its client identifier would be:
010800201112B7

Flags The Flags field is a decimal value, the bit fields of which can have
a combination of the following values:

1 (PERMANENT)
Evaluation of the Lease field is turned off (lease is permanent).
If this bit is not set, Evaluation of the Lease field is enabled
and the Lease is DYNAMIC.

File Formats 123

dhcp_network(4)

2 (MANUAL)
This entry has a manual client ID binding (cannot be reclaimed
by DHCP server). Client will not be allocated another address.

4 (UNUSABLE)
When set, this value means that either through ICMP echo or
client DECLINE, this address has been found to be unusable.
Can also be used by the network administrator to prevent a
certain client from booting, if used in conjunction with the
MANUAL flag.

8 (BOOTP)
This entry is reserved for allocation to BOOTP clients only.

Client IP The client_IP field holds the IP address for this entry. This
value must be unique in the database.

Server IP This field holds the IP address of the DHCP server which owns this
client IP address, and thus is responsible for initial allocation to a
requesting client. On a multi-homed DHCP server, this IP address
must be the first address returned by gethostbyname(3NSL).

Lease This numeric field holds the entry’s absolute lease expiration time,
and is in seconds since January 1, 1970. It can be decimal, or
hexadecimal (if 0x prefixes number). The special value -1 is used
to denote a permanent lease.

Macro This ASCII text field contains the dhcptab macro name used to
look up this entry’s configuration parameters in the dhcptab(4)
database.

Comment This ASCII text field contains an optional comment.

TREATISE ON | This section describes how the DHCP/BOOTP server calculates a client’s

LEASES | configuration lease using information contained in the dhcptab(4) and DHCP
network tables. The server consults the LeaseTim and LeaseNeg symbols in the
dhcptab, and the Flags and Lease fields of the chosen IP address record in the
DHCP network table.

The server first examines the Flags field for the identified DHCP network table
record. If the PERMANENT flag is on, then the client’s lease is considered permanent.

If the PERMANENT flag is not on, the server checks if the client’s lease as represented by
the Lease field in the network table record has expired. If the lease is not expired, the
server checks if the client has requested a new lease. If the LeaseNeg symbol has not
been included in the client’s dhcptab parameters, then the client’s requested lease
extension is ignored, and the lease is set to be the time remaining as shown by the
Lease field. If the LeaseNeg symbol has been included, then the server will extend
the client’s lease to the value it requested if this requested lease is less than or equal to
the current time plus the value of the client’s LeaseTim dhcptab parameter.

124 man pages section 4: File Formats ¢ Last Revised 5 Mar 2004

ATTRIBUTES

SEE ALSO

dhcp_network(4)

If the client’s requested lease is greater than policy allows (value of LeaseTim), then

the client is given a lease equal to the current time plus the value of LeaseTim. If

LeaseTimis not set, then the default LeaseTim value is one hour.

For more information about the dhcptab symbols, see dhcptab(4).

See attributes(5) for a description of the following attribute:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWdhcsu

Interface Stability

Evolving

dhcpconfig(1M), dhepmgr(1M), dhtadm(1M), in.dhcpd(1M), pntadm(1M),
dhcptab(4), dhep(5), dhep _modules(5), attributes(5)

Solaris DHCP Service Developer’s Guide

System Administration Guide: IP Services

Reynolds, J. and J. Postel, Assigned Numbers, STD 2, RFC 1340, USC/Information

Sciences Institute, July 1992.

File Formats

125

dhcpsve.conf(4)

126

NAME

DESCRIPTION

dhcpsvc.conf - file containing service configuration parameters for the DHCP service

The dhcpsve. conf file resides in directory /etc/inet and contains parameters for
specifying Dynamic Host Configuration Protocol (DHCP) service configuration
settings, including the type and location of DHCP data store used.

The description of the dhcpsve. conf file in this man page is informational only. The
preferred method of setting or modifying values within the dhcpsve. conf file is by
using dhcpconfig(1M) or the dhcpmgr(1M) utility. Do not edit the dhcpsve . conf
file.

The dhcpsve. conf file format is ASCIL; comment lines begin with the crosshatch (#)
character. Parameters consist of a keyword followed by an equals (=) sign followed by
the parameter value, of the form:

Keyword=Value

The following Keyword and Value parameters are supported:

BOOTP_COMPAT
String. automatic or manual. Enables support of BOOTP clients. Default is no
BOOTP. Value selects BOOTP address allocation method. automatic to support all
BOOTP clients, manual to support only registered BOOTP clients. server mode
only parameter.

CACHE_TIMEOUT
Integer. Number of seconds the server caches data from data store. Used to improve
performance. Default is 10 seconds. server mode only parameter.

CONVER
Integer. Container version. Used by DHCP administrative tools to identify which
version of the public module is being used to administer the data store. CONVER
should not be changed manually.

DAEMON_ENABLED
TRUE/FALSE. If TRUE, the DHCP daemon can be run. If FALSE, DHCP daemon
process exits immediately if the daemon is started. Default is TRUE. Generic
parameter.

HOSTS_DOMAIN
String. Defines name service domain that DHCP administration tools use when
managing the hosts table. Valid only when HOSTS_RESOURCE is set to nisplus or
dns.

HOSTS_RESOURCE
String. Defines what name service resource should be used by the DHCP
administration tools when managing the hosts table. Current valid values are
files, nisplus, and dns.

ICMP_VERIFY
TRUE/FALSE. Toggles ICMP echo verification of IP addresses. Default is TRUE.
server mode only parameter.

man pages section 4: File Formats ¢ Last Revised 26 Jun 2003

dhcpsve.conf(4)

INTERFACES
String. Comma-separated list of interface names to listen to. Generic parameter.

LOGGING_FACILITY
Integer. Local facility number (0-7 inclusive) to log DHCP events to. Default is not
to log transactions. Generic parameter.

OFFER_CACHE_TIMEOUT
Integer. Number of seconds before OFFER cache timeouts occur. Default is 10
seconds. server mode only parameter.

PATH
Path to DHCP data tables within the data store specified by the RESOURCE
parameter. The value of the PATH keyword is specific to the RESOURCE.

RELAY_DESTINATIONS
String. Comma-separated list of host names and/or IP addresses of relay
destinations. relay mode only parameter.

RELAY_HOPS
Integer. Max number of BOOTP relay hops before packet is dropped. Default is 4.
Generic parameter.

RESCAN_INTERVAL
Integer. Number of minutes between automatic dhcptab rescans. Default is not to

do rescans. server mode only parameter.

RESOURCE
Data store resource used. Use this parameter to name the public module. See the

PATH keyword in dhep _modules(5).

RESOURCE_CONFIG
String. The private layer provides for module-specific configuration information
through the use of the RESOURCE_CONFIG keyword. See dhcp_modules(5).

Providers can access RESOURCE_CONFIG using the configure function by
specifying an optional service provider layer API function:

int configure (const char *configp) ;

If this function is defined by the public module provider, it is called during module
load time by the private layer, with the contents of the RESOURCE CONFIG string
acquired by the administrative interface (in the case of the dhcpmgr, through the
use of a public module-specific java bean extending the dhcpmgr to provide a
configuration dialog for this information.

RUN_MODE
server or relay. Selects daemon run mode. Default is server.

SECONDARY_SERVER_TIMEOUT
Integer. The number of seconds a secondary server waits for a primary server to
respond before responding itself. Default is 20 seconds. This is a server mode only
parameter.

File Formats 127

dhcpsve.conf(4)

UPDATE_TIMEOUT
Integer. Number of seconds to wait for a response from the DNS server before
timing out. If this parameter is present, the DHCP daemon updates DNS on behalf
of DHCP clients, and waits the number of seconds specified for a response before
timing out. You can use UPDATE_TIMEOUT without specifying a number to enable
DNS updates with the default timeout of 15 seconds. If this parameter is not
present, the DHCP daemon does not update DNS for DHCP clients.

VERBOSE
TRUE/FALSE. Toggles verbose mode, determining amount of status and error
messages reported by the daemon. Default is FALSE. Set to TRUE only for
debugging. Generic parameter.

SEE ALSO | dhcpmgr(1M), in.dhepd(1M), dhep(5), dhep_modules(5)

System Administration Guide: IP Services

128 man pages section 4: File Formats ¢ Last Revised 26 Jun 2003

NAME
DESCRIPTION

Syntax of dhcptab
Entries

Symbol
Characteristics

dhcptab(4)
dhcptab — DHCP configuration parameter table

The dhcptab configuration table allows network administrators to organize groups of
configuration parameters as macro definitions, which can then be referenced in the
definition of other useful macros. These macros are then used by the DHCP server to
return their values to DHCP and BOOTP clients.

The preferred method of managing the dhcptab is through the use of the
dhepmgr(1M) or dhtadm(1M) utility. The description of dhcptab entries included in
this manual page is intended for informational purposes only, and should not be used
to manually edit entries.

You can view the contents of the dhcptab using the DHCP manager’s tabs for Macros
and Options, or using the dhtadm -P command.

The format of a dhcptab table depends on the data store used to maintain it.
However, any dhcptab must contain the following fields in each record:

Name This field identifies the macro or symbol record and is used as a
search key into the dhcptab table. The name of a macro or symbol
must consist of ASCII characters, with the length limited to 128
characters. Names can include spaces, except at the end of the
name. The name is not case-sensitive.

Type This field specifies the type of record and is used as a search key
into the dhcptab. Currently, there are only two legal values for

Type:
m This record is a DHCP macro definition.

s This record is a DHCP symbol definition. It is
used to define vendor and site-specific options.

Value This field contains the value for the specified type of record. For
the m type, the value will consist of a series of symbol=value pairs,
separated by the colon (:) character. For the s type, the value will
consist of a series of fields, separated by a comma (,), which
define a symbol’s characteristics. Once defined, a symbol can be
used in macro definitions.

The Value field of a symbols definition contain the following fields describing the
characteristics of a symbol:

Context This field defines the context in which the symbol definition is to
be used. It can have one of the following values:

Site

This symbol defines a site-specific option, codes 128-254.
Vendor=Client Class ...

This symbol defines a vendor-specific option, codes 1-254. The

Vendor context takes ASCII string arguments which identify the
client class that this vendor option is associated with. Multiple

File Formats 129

dhcptab(4)

130

ASCII

BOOLEAN

IP

NUMBER

OCTET

man pages section 4: File Formats * Last Revised 15 Mar 2002

client class names can be specified, separated by white space.
Only those clients whose client class matches one of these
values will see this option. For Sun machines, the Vendor client
class matches the value returned by the command uname -1
on the client, with periods replacing commas.

Code This field specifies the option code number associated with this
symbol. Valid values are 128-254 for site-specific options, and 1-254
for vendor-specific options.

Type This field defines the type of data expected as a value for this
symbol, and is not case-sensitive. Legal values are:

NVT ASCII text. Value is enclosed in
double-quotes ("). Granularity setting has no
effect on symbols of this type, since ASCII
strings have a natural granularity of one (1).

No value is associated with this data type.
Presence of symbols of this type denote
boolean TRUE, whereas absence denotes
FALSE. Granularity and Miximum values
have no meaning for symbols of this type.

Dotted decimal form of an Internet address.
Multi-IP address granularity is supported.

An unsigned number with a supported
granularity of 1, 2, 4, and 8 octets.

Valid NUMBER types are: UNUMBERS,
SNUMBERS, UNUMBER16, SNUMBER16,
UNUMBER32, SNUMBER3 2, UNUMBER64, and
SNUMBERG64. See dhcp inittab(4) for details.

Uninterpreted ASCII representation of binary
data. The client identifier is one example of an
OCTET string. Valid characters are 0-9, a-f,
A-F. One ASCII character represents one nibble
(4 bits), thus two ASCII characters are needed
to represent an 8 bit quantity. The granularity
setting has no effect on symbols of this type,
since OCTET strings have a natural granularity
of one (1).

For example, to encode a sequence of bytes
with decimal values 77, 82, 5, 240, 14, the
option value would be encoded as
4d5205£00e. A macro which supplies a value

Macro Definitions

dhcptab(4)

for option code 78, SLP_DA, with a 0
Mandatory byte and Directory Agents at
192.168.1.5and 192.168.0.133 would
appear in the dhcptab as:

slpparams
Macro

:SLP_DA=00c0a80105c0a80085:

Granularity This value specifies how many objects of Type define a single
instance of the symbol value. For example, the static route
option is defined to be a variable list of routes. Each route consists
of two IP addresses, so the Type is defined to be IP, and the data’s
granularity is defined to be 2 IP addresses. The granularity field
affects the IP and NUMBER data types.

Maximum This value specifies the maximum items of Granularity which
are permissible in a definition using this symbol. For example,
there can only be one IP address specified for a subnet mask, so
the Maximum number of items in this case is one (1). A Maximum
value of zero (0) means that a variable number of items is
permitted.

The following example defines a site-specific option (symbol) called MystatRt, of
code 130, type IP, and granularity 2, and a Maximum of 0. This definition
corresponds to the internal definition of the static route option (StaticRt).

MystatRt s Site,130,IP,2,0

The following example demonstrates how a SLP Service Scope symbol (SLP_SS) with
a scope value of happy and mandatory byte set to 0 is encoded. The first octet of the
option is the Mandatory octet, which is set either to 0 or 1. In this example, it is set to
0 (00). The balance of the value is the hexidecimal ASCII code numbers representing
the name happy, that is, 6861707079.

SLP_SS=006861707079

The following example illustrates a macro defined using the MystatRt site option
symbol just defined:

l0netnis m :MystatRt=3.0.0.0 10.0.0.30:Macros can be specified in the Macro field in
DHCP network tables (see dhcp network(4)), which will bind particular macro
definitions to specific IP addresses.

Up to four macro definitions are consulted by the DHCP server to determine the
options that are returned to the requesting client.

These macros are processed in the following order:

File Formats 131

dhcptab(4)

132

Client Class

Network

IP Address

Client Identifier

processing.

Solaris DHCP.

A macro named using the ASCII representation of the
client class (e.g. SUNW.Ultra-30) is searched for in
the dheptab. If found, its symbol/value pairs will be
selected for delivery to the client. This mechanism
permits the network administrator to select
configuration parameters to be returned to all clients of
the same class.

A macro named by the dotted Internet form of the
network address of the client’s network (for example,
10.0.0.0) is searched for in the dhcptab. If found,
its symbol/value pairs will be combined with those of
the Client Class macro. If a symbol exists in both
macros, then the Network macro value overrides the
value defined in the Client Class macro. This
mechanism permits the network administrator to select
configuration parameters to be returned to all clients
on the same network.

This macro may be named anything, but must be
specified in the DHCP network table for the IP address
record assigned to the requesting client. If this macro is
found in the dhcptab, then its symbol/value pairs will
be combined with those of the Client Class macro
and the Network macro. This mechanism permits the
network administrator to select configuration
parameters to be returned to clients using a particular
IP address. It can also be used to deliver a macro
defined to include "server-specific" information by
including this macro definition in all DHCP network
table entries owned by a specific server.

A macro named by the ASCII representation of the
client’s unique identifier as shown in the DHCP
network table (see dhcp _network(4)). If found, its
symbol/value pairs are combined to the sum of the
Client Class, Network, and IP Address macros.
Any symbol collisions are replaced with those specified
in the client identifier macro. The client mechanism
permits the network administrator to select
configuration parameters to be returned to a particular
client, regardless of what network that client is
connected to.

Refer to System Administration Guide: IP Services for more information about macro

Refer to the dhcp inittab(4) man page for more information about symbols used in

man pages section 4: File Formats * Last Revised 15 Mar 2002

dhcptab(4)

SEE ALSO | dhcpmgr(1M), dhtadm(1M), in.dhcpd(1M), dhep inittab(4), dhcp network(4),
dhcp(5)

System Administration Guide: IP Services

Alexander, S., and R. Droms, DHCP Options and BOOTP Vendor Extensions, REC 2132,
Silicon Graphics, Inc., Bucknell University, March 1997.

Droms, R., Interoperation Between DHCP and BOOTP, REC 1534, Bucknell University,
October 1993.

Droms, R., Dynamic Host Configuration Protocol, RFC 2131, Bucknell University, March
1997.

Wimer, W., Clarifications and Extensions for the Bootstrap Protocol, RFC 1542, Carnegie
Mellon University, October 1993.

File Formats 133

dialups(4)
NAME | dialups - list of terminal devices requiring a dial-up password

SYNOPSIS | /etc/dialups

DESCRIPTION | dialups is an ASCII file which contains a list of terminal devices that require a
dial-up password. A dial-up password is an additional password required of users
who access the computer through a modem or dial-up port. The correct password
must be entered before the user is granted access to the computer. The set of ports that
require a dial-up password are listed in the dialups file.

Each entry in the dialups file is a single line of the form:

terminal-device

where

terminal-device The full path name of the terminal device that will
require a dial-up password for users accessing the
computer through a modem or dial-up port.

The dialups file should be owned by the root user and the root group. The file
should have read and write permissions for the owner (root) only.

EXAMPLES | EXAMPLE 1 A sample dialups file.

Here is a sample dialups file:

/dev/term/a
/dev/term/b
/dev/term/c
FILES | /etc/d passwd dial-up password file
/etc/dialups list of dial-up ports requiring dial-up passwords

SEE ALSO | d_passwd(4)

134 man pages section 4: File Formats * Last Revised 4 May 1994

NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

dir_ufs(4)
dir_ufs, dir — format of ufs directories
#include <sys/param.h>
#include <sys/types.h>

#include <sys/fs/ufs_fsdir.h>

A directory consists of some number of blocks of DIRBLKSIZ bytes, where
DIRBLKSIZ is chosen such that it can be transferred to disk in a single atomic
operation, for example, 512 bytes on most machines.

Each DIRBLKSIZ-byte block contains some number of directory entry structures,
which are of variable length. Each directory entry has a struct direct at the front
of it, containing its inode number, the length of the entry, and the length of the name
contained in the entry. These entries are followed by the name padded to a 4 byte
boundary with null bytes. All names are guaranteed null-terminated. The maximum
length of a name in a directory is MAXNAMLEN.

#define DIRBLKSIZ DEV_BSIZE

#define MAXNAMLEN 256

struct direct
ulong t d_ino; /* inode number of entry */
ushort t d_reclen; /* length of this record */
ushort_t d_namlen; /* length of string in d_name */
char d_name [MAXNAMLEN + 1]; /* maximum name length */

}i

See attributes(d) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Unstable

attributes(b), ufs(7FS)

File Formats 135

d_passwd(4)

136

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

Generating An
Encrypted
Password

d_passwd — dial-up password file

/etc/d_passwd

A dial-up password is an additional password required of users who access the
computer through a modem or dial-up port. The correct password must be entered
before the user is granted access to the computer.

d_passwd is an ASCII file which contains a list of executable programs (typically
shells) that require a dial-up password and the associated encrypted passwords. When
a user attempts to log in on any of the ports listed in the dialups file (see
dialups(4)), the login program looks at the user’s login entry stored in the passwd
file (see passwd(4)), and compares the login shell field to the entries in d_passwd.
These entries determine whether the user will be required to supply a dial-up
password.

Each entry in d_passwd is a single line of the form:

login-shell : password :

where

login-shell The name of the login program that will require an additional
dial-up password.

password An encrypted password. Users accessing the computer through a

dial-up port or modem using login-shell will be required to enter
this password before gaining access to the computer.

d_passwd should be owned by the root user and the root group. The file should
have read and write permissions for the owner (root) only.

If the user’s login program in the passwd file is not found in d_passwd or if the login
shell field in passwd is empty, the user must supply the default password. The default
password is the entry for /usr/bin/sh. If & passwd has no entry for
/usr/bin/sh, then those users whose login shell field in passwd is empty or does
not match any entry in d_passwd will not be prompted for a dial-up password.

Dial-up logins are disabled if d_passwd has only the following entry:

/usr/bin/sh:*:

EXAMPLE 1 Sample d_passwd file.

Here is a sample d_passwd file:

/usr/lib/uucp/uucico:q.mJzTnu8icFO0:
/usr/bin/csh:6k/7KCFRPNVXg:
/usr/bin/ksh:9df/FDf.4jkRt:
/usr/bin/sh:41FuGVzGcDJlw:

The passwd (see passwd(l)) utility can be used to generate the encrypted password
for each login program. passwd generates encrypted passwords for users and places
the password in the shadow (see shadow(4)) file. Passwords for the d_passwd file

man pages section 4: File Formats « Last Revised 2 Sep 2004

d_passwd(4)

will need to be generated by first adding a temporary user id using useradd (see
useradd(1M)), and then using passwd(1) to generate the desired password in the
shadow file. Once the encrypted version of the password has been created, it can be
copied to the d_passwd file.

For example:

1. Type useradd tempuser and press Return. This creates a user named tempuser.

2. Type passwd tempuser and press Return. This creates an encrypted password for
tempuser and places it in the shadow file.

3. Find the entry for tempuser in the shadow file and copy the encrypted password
to the desired entry in the d_passwd file.

4. Type userdel tempuser and press Return to delete tempuser.

These steps must be executed as the root user.

FILES | /etc/d passwd dial-up password file
/etc/dialups list of dial-up ports requiring dial-up passwords
/etc/passwd password file
/etc/shadow shadow password file

SEE ALSO | passwd(l), useradd(1M), dialups(4), passwd(4), shadow(4)

WARNINGS | When creating a new dial-up password, be sure to remain logged in on at least one
terminal while testing the new password. This ensures that there is an available
terminal from which you can correct any mistakes that were made when the new
password was added.

File Formats 137

driver.conf(4)

138

NAME
SYNOPSIS

DESCRIPTION

driver.conf — driver configuration files

driver.conf

Driver configuration files pass information about device drivers and their
configuration to the system. Most device drivers do not have to have configuration
files. Drivers for devices that are self-identifying, such as the SBus devices on many
systems, can usually obtain all the information they need from the FCode PROM on
the SBus card using the DDI property interfaces. See ddi_prop_get_int(9F) and
ddi prop_lookup(9F) for details.

The system associates a driver with its configuration file by name. For example, a
driver in /usr/kernel/drv called wombat has the driver configuration file
wombat . conf, also stored in /usr/kernel/drv, associated with it. On systems
capable of support 64-bit drivers, the driver configuration file should be placed in the
directory in which the 32-bit driver is (or would be) located, even if only a 64-bit
version is provided. For example, a 64-bit driver stored in
/usr/kernel/drv/sparcv9 stores its driver configuration file in
/usr/kernel/drv.

The value of the name property (see the name field, below) needs to match the binding
name of the device. The binding name is the name chosen by the system to bind a
driver to a device and is either an alias associated with the driver or the hardware
node name of the device.

The syntax of a single entry in a driver configuration file takes one of three forms:

name="node name" parents="parent name" [property-name=value ...1;

In this form, the parent name can be either a simple nexus driver name to match all
instances of that parent/node, or the parent name can be a specific full pathname,
beginning with a slash (/) character, identifying a specific instance of a parent bus.

Alternatively, the parent can be specified by the type of interface it presents to its
children.

name="node name" class="class name" [property-name=value ...];

For example, the driver for the SCSI host adapter may have different names on
different platforms, but the target drivers can use class scsi to insulate themselves
from these differences.

Entries of either form above correspond to a device information (devinfo) node in
the kernel device tree. Each node has a name which is usually the name of the driver,
and a parent name which is the name of the parent devinfo node it will be connected
to. Any number of name-value pairs may be specified to create properties on the
prototype devinfo node. These properties can be retrieved using the DDI property
interfaces (for example, ddi_prop get int(9F)and ddi prop lookup(9F)). The
prototype devinfo node specification must be terminated with a semicolon (;).

The third form of an entry is simply a list of properties.

man pages section 4: File Formats ¢ Last Revised 29 Apr 2003

EXAMPLES

driver.conf(4)

[property-name=value . ..];

A property created in this way is treated as global to the driver. It can be overridden
by a property with the same name on a particular devinfo node, either by creating
one explicitly on the prototype node in the driver.conf file or by the driver.

Items are separated by any number of newlines, SPACE or TAB characters.

The configuration file may contain several entries to specify different device
configurations and parent nodes. The system may call the driver for each possible
prototype devinfo node, and it is generally the responsibility of the drivers
probe(9E) routine to determine if the hardware described by the prototype devinfo
node is really present.

Property names must not violate the naming conventions for Open Boot PROM
properties or for IEEE 1275 names. In particular, property names should contain only
printable characters, and should not contain at-sign (@), slash (/), backslash (\), colon
(:), or square brackets ([]). Property values can be decimal integers or strings
delimited by double quotes ("). Hexadecimal integers can be constructed by prefixing
the digits with 0x.

A comma separated list of integers can be used to construct properties whose value is
an integer array. The value of such properties can be retrieved inside the driver using
ddi prop_ lookup int_ array(9F).

Comments are specified by placing a # character at the beginning of the comment
string, the comment string extends for the rest of the line.

EXAMPLE 1 Configuration File for a PCI Bus Frame Buffer

The following is an example of a configuration file called ACME, simple.conf for a
PCI bus frame buffer called ACME, simple.

#

Copyright (c) 1993, by ACME Fictitious Devices, Inc.
#

#ident "@(#)ACME, simple.conf 1.3 1999/09/09"

name="ACME, simple" class="pci" unit-address="3,1"
debug-mode=12;

This example creates a prototype devinfo node called ACME, simple under all
parent nodes of class pci. The node has device and function numbers of 3 and 1,
respectively; the property debug-mode is provided for all instances of the driver.

EXAMPLE 2 Configuration File for a Pseudo Device Driver

The following is an example of a configuration file called ACME, example. conf for a
pseudo device driver called ACME, example.

File Formats 139

driver.conf(4)

140

SEE ALSO

WARNINGS

NOTES

EXAMPLE 2 Configuration File for a Pseudo Device Driver (Continued)

#

Copyright (c) 1993, ACME Fictitious Devices, Inc.
#

#ident "@ (#) ACME, example.conf 1.2 93/09/09"

name="ACME, example" parent="pseudo" instance=0
debug-level=1;

name="ACME, example" parent="pseudo" instance=1;

whizzy-mode="on";
debug-level=3;

This creates two devinfo nodes called ACME, example which will attach below the
pseudo node in the kernel device tree. The instance property is only interpreted by
the pseudo node, see pseudo(4) for further details. A property called debug-1level
will be created on the first devinfo node which will have the value 1. The example
driver will be able to fetch the value of this property using ddi_prop_get_int(9F).

Two global driver properties are created, whizzy-mode (which will have the string
value "on") and debug-1level (which will have the value 3). If the driver looks up the
property whizzy-mode on either node, it will retrieve the value of the global
whizzy-mode property ("on"). If the driver looks up the debug-level property on
the first node, it will retrieve the value of the debug-1level property on that node (1).
Looking up the same property on the second node will retrieve the value of the global
debug-1level property (3).

pci(4), pseudo(4), sbus(4), scsi(4), probe(9E), ddi_getlongprop(9F),
ddi_getprop(9F), ddi_getproplen(9F), ddi prop op(9F)

Writing Device Drivers

To avoid namespace collisions between multiple driver vendors, it is strongly
recommended that the name property of the driver should begin with a vendor-unique
string. A reasonably compact and unique choice is the vendor over-the-counter stock
symbol.

The update_drv(1M) command should be used to prompt the kernel to reread
driver. conf files. Using modunload(1M) to update driver. conf continues to
work in release 9 of the Solaris operating environment, but the behavior will change in
a future release.

man pages section 4: File Formats ¢ Last Revised 29 Apr 2003

NAME
SYNOPSIS

DESCRIPTION

.environ Variables

environ(4)
environ, pref, variables — user-preference variables files for AT&T FACE
$HOME /pref/.environ
$SHOME /pref/.variables
$HOME/FILECABINET/ .pref

$HOME/WASTEBASKET/ .pref

The .environ, .pref, and .variables files contain variables that indicate user
preferences for a variety of operations. The .environ and .variables files are
located under the user’s SHOME /pref directory. The .pref files are found under
$HOME/FILECABINET, $SHOME/WASTEBASKET, and any directory where preferences
were set via the organize command. Names and descriptions for each variable are
presented below. Variables are listed one per line and are of the form variable=value.

Variables found in . environ include:
LOGINWIN[1-4] Windows that are opened when FACE is initialized.

SORTMODE Sort mode for file folder listings. Values include the following
hexadecimal digits:

1 Sorted alphabetically by name.
2 Files most recently modified first.

800 Sorted alphabetically by object type.

The values above may be listed in reverse order by ORing the
following value:

1000 List objects in reverse order. For example, a value of
1002 will produce a folder listing with files LEAST
recently modified displayed first. A value of 1001
would produce a "reverse" alphabetical by name listing
of the folder.

DISPLAYMODE Display mode for file folders. Values include the following
hexadecimal digits:

0 File names only.
4 File names and brief description.
8 File names, description, plus additional information.

WASTEPROMPT Prompt before emptying wastebasket (yes/no?).
WASTEDAYS Number of days before emptying wastebasket.

PRINCMD[1-3] Print command defined to print files.

File Formats 141

environ(4)

UMASK Holds default permissions with which files will be created.

.pref Variables | Variables found in .pref are the following:

SORTMODE Contains the same values as the SORTMODE variable described in
.environ above.

DISPMODE Contains the same values as the DISPLAYMODE variable described
in .environ above.

.variable Variables | Variables found in .variables include:
EDITOR Default editor.

PS1 Shell prompt.

142 man pages section 4: File Formats ¢ Last Revised 3 Jul 1990

NAME

DESCRIPTION

FILES

SEE ALSO

ethers(4)

ethers — Ethernet address to hostname database or domain

The ethers file is a local source of information about the (48-bit) Ethernet addresses
of hosts on the Internet. The ethers file can be used in conjunction with or instead of
other ethers sources, including the NIS maps ethers.byname and
ethers.byaddr, the NIS+ table ethers, or Ethernet address data stored on an
LDAP server. Programs use the ethers(3SOCKET) routines to access this
information.

The ethers file has one line for each host on an Ethernet. The line has the following
format:

Ethernet-address official-host-name
Items are separated by any number of SPACE and/or TAB characters. A ‘#” indicates
the beginning of a comment extending to the end of line.

The standard form for Ethernet addresses is “x:x:x:x:x:x” where x is a hexadecimal
number between 0 and ff, representing one byte. The address bytes are always in
network order. Host names may contain any printable character other than SPACE,
TAB, NEWLINE, or comment character.

/etc/ethers

ethers(3SOCKET), hosts(4), nsswitch.conf(4)

File Formats 143

exec_attr(4)

144

NAME
SYNOPSIS

DESCRIPTION

exec_attr — execution profiles database

/etc/security/exec_attr

/etc/security/exec_attr is alocal database that specifies the execution
attributes associated with profiles. The exec_attr file can be used with other sources
for execution profiles, including the exec_attr NIS map and NIS+ table. Programs
use the getexecattr(3SECDB) routines to access this information.

The search order for multiple execution profile sources is specified in the
/etc/nsswitch. conf file, as described in the nsswitch. conf(4) man page. The
search order follows the entry for prof attr(4).

A profile is a logical grouping of authorizations and commands that is interpreted by a
profile shell to form a secure execution environment. The shells that interpret profiles
are pfcsh, pfksh, and pfsh. See the pfsh(1l) man page. Each user’s account is
assigned zero or more profiles in the user_attr(4) database file.

Each entry in the exec_attr database consists of one line of text containing seven
fields separated by colons (:). Line continuations using the backslash (\) character are
permitted. The basic format of each entry is:

name:policy:type:res1:res2:id:attr

name
The name of the profile. Profile names are case-sensitive.

policy
The security policy that is associated with the profile entry. The valid policies are
suser (standard Solaris superuser) and solaris. The solaris policy recognizes
privileges (see privileges(b)); the suser policy does not.

The solaris and suser policies can coexist in the same exec_attr database, so
that Solaris releases prior to the current release can use the suser policy and the
current Solaris release can use a solaris policy. solaris is a superset of suser;
it allows you to specify privileges in addition to UIDs. Policies that are specific to
the current release of Solaris or that contain privileges should use solaris.
Policies that use UIDs only or that are not specific to the current Solaris release
should use suser.

type
The type of object defined in the profile. The only valid type is cmd.

res]
Reserved for future use.

res2
Reserved for future use.

man pages section 4: File Formats ¢ Last Revised 22 Nov 2004

EXAMPLES

FILES

exec_attr(4)
id
A string that uniquely identifies the object described by the profile. For a profile of
type cmd, the id is either the full path to the command or the asterisk (*) symbol,
which is used to allow all commands. An asterisk that replaces the filename
component in a pathname indicates all files in a particular directory.

To specify arguments, the pathname should point to a shell script that is written to
execute the command with the desired argument. In a Bourne shell, the effective
UID is reset to the real UID of the process when the effective UID is less than 100
and not equal to the real UID. Depending on the euid and egid values, Bourne
shell limitations might make other shells preferable. To prevent the effective UIDs
from being reset to real UIDs, you can start the script with the -p option.

#!/bin/sh -p

attr
An optional list of semicolon-separated (;) key-value pairs that describe the
security attributes to apply to the object upon execution. Zero or more keys may be
specified. The list of valid key words depends on the policy enforced. The following
key words are valid: euid, uid, egid, and gid.

euid and uid contain a single user name or a numeric user ID. Commands
designated with euid run with the effective UID indicated, which is similar to
setting the setuid bit on an executable file. Commands designated with uid run
with both the real and effective UIDs. Setting uid may be more appropriate than
setting the euid on privileged shell scripts.

egid and gid contain a single group name or a numeric group ID. Commands
designated with egid run with the effective GID indicated, which is similar to
setting the setgid bit on a file. Commands designated with gid run with both the
real and effective GIDs. Setting gid may be more appropriate than setting guid on
privileged shell scripts.

privs contains a privilege set which will be added to the inheritable set prior to
running the command.

limitprivs contains a privilege set which will be assigned to the limit set prior to
running the command.

privs and limitprivs are only valid for the solaris policy.

EXAMPLE 1 Using effective user and group IDs

The following example shows the audit command specified in the Audit Control
profile to execute with an effective user ID of root (0) and effective group ID of bin (3):

Audit Control:suser:cmd:::/etc/init.d/audit:euid=0;egid=3
/etc/nsswitch.conf

/etc/user attr

File Formats 145

exec_attr(4)

146

CAVEATS

SEE ALSO

/etc/security/exec _attr

When deciding which authorization source to use (see DESCRIPTION), keep in mind
that NIS+ provides stronger authentication than NIS.

Because the list of legal keys is likely to expand, any code that parses this database
must be written to ignore unknown key-value pairs without error. When any new
keywords are created, the names should be prefixed with a unique string, such as the
company’s stock symbol, to avoid potential naming conflicts.

The following characters are used in describing the database format and must be
escaped with a backslash if used as data: colon (:), semicolon (;), equals (=), and
backslash (\).

auths(l), profiles(l), roles(1), sh(l), makedbm(1M), getauthat tr(3SECDB),
getauusernam(3BSM), getexecattr(3SECDB), getprofattr(3SECDB),
getuserattr(3SECDB), kva_match(3SECDB), auth_attr(4), prof attr(4),
user attr(4), privileges(5)

man pages section 4: File Formats ¢ Last Revised 22 Nov 2004

NAME

DESCRIPTION

SEE ALSO

DIAGNOSTICS

fd(4)
fd — file descriptor files
These files, conventionally called /dev/£d/0, /dev/£d/1, /dev/£d/2, and so on,

refer to files accessible through file descriptors. If file descriptor n is open, these two
system calls have the same effect:

fd
fd

open ("/dev/fd/n",mode) ;
dup (1) ;

On these files creat(2) is equivalent to open, and mode is ignored. As with dup,
subsequent reads or writes on f£d fail unless the original file descriptor allows the
operations.

For convenience in referring to standard input, standard output, and standard error,
an additional set of names is provided: /dev/stdin is a synonym for /dev/£d/0,
/dev/stdout for /dev/£d/1, and /dev/stderr for /dev/£d/2.

creat(2), dup(2), open(2)

open(2) returns —1 and EBADF if the associated file descriptor is not open.

File Formats 147

flash_archive(4)

148

NAME
SYNOPSIS

DESCRIPTION

Archive Cookie

flash_archive — format of flash archive

flash archive

A flash archive is an easily transportable version of a reference configuration of the
Solaris operating environment, plus optional other software. Such an archive is used
for the rapid installation of Solaris on large numbers of machines. The machine that
contains a flash archive is referred to as a master system. A machine that receives a
copy of a flash archive is called a clone system.

There are two types of flash archives: full and differential. A full archive is used for
initial installation or whenever a complete, fresh installation is called for. A differential
archive is used to update an installation. A full archive contains all of the files from a
master and overwrites the installed software on a clone completely. A differential
archive contains only the differences between the software on a master and on a clone.
These differences include new files, changed files, and deleted files. (These will be
deleted on clones, as well). Installation of a differential archive is faster and consumes
fewer resources than installation of a full archive.

You create a flash archive, full or differential, with the £1ar(1M) or £larcreate(1M)
command. You view information about a given flash archive with flar. flar also
enables you to split or combine the sections of a flash archive.

Flash archives are monolithic files containing both archive identification information
and the actual files that have been copied from a master system and that will be
extracted onto a clone system. The standard extension for a flash archive is . £1lar.

The flash archive is laid out in the following sections:

archive cookie

archive identification

manifest (for differential archives only)
predeployment

postdeployment

reboot

summary

user-defined (optional)

archive files

The only assumptions regarding section number and placement that an application
processing the archive can make is that there is an identification section located
immediately after the archive cookie and that the last section in the archive is an
archive files section.

These sections are described in the following subsections.

The very beginning of the archive contains a cookie, which serves to identify the file as
a flash archive. It is also used by the deployment code for identification and validation
purposes.

The case-sensitive, newline-terminated cookie that identifies version 1.n flash archives,
is F1AsH-aRcHiVe-1.n, where 7 is an integer in the range 0 through 9.

man pages section 4: File Formats ¢ Last Revised 29 Apr 2003

Archive
Identification
Section

flash_archive(4)

The archive version is designed to allow for the future evolution of the flash archive
specification while allowing applications that process flash archives to determine
whether specific archives are of a format that can be handled correctly. The archive
version is a number of the form x.y, where x is the major version number, and y is the
minor version number.

When an application encounters a flash archive with an unknown major version
number, it should issue an error message and exit.

The archive identification section is plain text, delimited with newline characters. It is
composed of a series of keyword/value pairs, with one pair allowed per line.
Keywords and values are separated by a single equal sign. There are no limits to the
length of individual lines. Binary data to be included as the value to a keyword is
base64 encoded. The keywords themselves are case-insensitive. The case-sensitivity of
the values is determined by the definition of the keyword, though most are
case-insensitive.

The global order of the keywords within the identification section is undefined, save
for the section boundary keywords. The identification section must begin with
section begin=ident and must end with section_end=ident.

In addition to the keywords defined for the flash archive and enumerated below, users
can define their own. These user-defined keywords are ignored by the flash
mechanisms, but can be used by user-provided scripts or programs that process the
identification section. User-defined keywords must begin with X, and contain
characters other than linefeeds, equal signs, and null characters. For example,
X-department is a valid user-defined keyword. department, which lacks the X-
prefix, is not. Suggested naming conventions for user-defined keyword include the
underscore-delimited descriptive method used for the pre-defined keywords, or a
federated convention similar to that used to name Java packages.

Applications that process the identification section will process unrecognized
non-user-defined keywords differently, depending on whether the archive version is
known. If the application recognizes the archive specification version, it will reject any
unrecognized non-user-defined keyword. If the application does not recognize the
specification version, that is, if the minor version number is higher than the highest
minor version it knows how to process, unrecognized non-user-defined keywords will
be ignored. These ignored keyword are reported to the user by means of a non-fatal
warning message.

The keywords defined for this version of the Flash archive specification are listed
below.

Keyword Value Required
section_begin text yes
section_end text yes

File Formats 149

flash_archive(4)

Keyword Value Required
archive_id text no
files_archived_method text no
files_compressed_method text no
files_archived_size numeric no
files_unarchived_size numeric no
creation_date text no
creation_master text no
content_name text yes
content_type text no
content_description text no
content_author text no
content_architectures text list no
creation_node text no
creation_hardware_class text no
creation_platform text no
creation_processor text no
creation_release text no
creation_os_name text no
creation_os_version text no
Future versions of the identification section might define additional keywords. The
only guarantee regarding the new keywords is that they will not intrude upon the
user-defined keyword namespace as given above.
The following is an example identification section:
section_begin=identification
files_archived method=cpio
files_compressed method=compress
files_archived size=259323342
files_unarchived size=591238111
creation_date=20000131221409
creation_master=pumbaa
content_name=Finance Print Server
content_type=server
content_description=Solaris 8 Print Server
content_author=Mighty Matt
content_architectures=sun4u

150 man pages section 4: File Formats ¢ Last Revised 29 Apr 2003

flash_archive(4)

creation node=pumbaa
creation_hardware_class=sun4u
creation platform=SUNW, Sun-Fire
creation_processor=sparc
creation_release=5.9
creation os name=SunOS
creation os version=s81 49
x-department=Internal Finance
section_end=identification

The following are descriptions of the identification section keywords:

section begin
section_end

These keywords are used to delimit sections in the archive and are not limited
exclusively to the identification section. For example, the archive files section includes
a section begin keyword, though with a different value. User-defined archive
sections will be delimited by section_begin and section_end keywords, with
values appropriate to each section. The currently defined section names are given in
the table below. User-defined names should follow the same convention as
user-defined identification sections, with the additional restriction that they not
contain forward slashes (/).

Section Boundary
identification identification
archive files archive

archive cookie cookie

Note that while the archive cookie does not use section boundaries, and thus has no
need for a section name within the archive itself, the £1ar(1M) command uses section
names when splitting the archive, and thus requires a section name for the archive
cookie. The name cookie is reserved for that purpose.

The following keywords, used in the archive identification section, describe the
contents of the archive files section.

archive id
This optional keyword uniquely describes the contents of the archive. It is computed
as a unique hash value of the bytes representing the archive. Currently this value is
represented as an ASCII hexadecimal 128-bit MD5 hash of the archive contents.
This value is used by the installation software only to validate the contents of the
archive during archive installation.

If the keyword is present, the hash value is recomputed during extraction based on
the contents of the archive being extracted. If the recomputed value does not match
the stored value in the identification section, the archive is deemed corrupt, and
appropriate actions can be taken by the application.

File Formats 151

flash_archive(4)

If the keyword is not present, no integrity check is performed.

files_archived method

This keyword describes the archive method used in the files section. If this keyword
is not present, the files section is assumed to be in CPIO format with ASCII headers
(the -c option to cpio). If the keyword is present, it can have the following value:

cpio The archive format in the files section is CPIO with
ASCII headers.

The compression method indicated by the files_compressed_method keyword
(if present) is applied to the archive file created by the archive method.

The introduction of additional archive methods will require a change in the major
archive specification version number, as applications aware only of cpio will be
unable to extract archives that use other archive methods.

files compressed method

This keyword describes the compression algorithm (if any) used on the files section.
If this keyword is not present, the files section is assumed to be uncompressed. If
the keyword is present, it can have one of the following values:

none The files section is not compressed.

compress The files section is compressed using compress(1).

The compression method indicated by this keyword is applied to the archive file
created by the archive method indicated by the value of the
files_archived_method keyword (if any). gzip compression of the flash
archive is not currently supported, as the gzip decompression program is not
included in the standard miniroot.

Introduction of an additional compression algorithm would require a change in the
major archive specification version number, as applications aware only of the above
methods will be unable to extract archives that use other compression algorithms.

files archived size

The value associated with this keyword is the size of the archived files section, in
bytes. This value is used by the deployment software only to give extraction
progress information to the user. While the deployment software can easily
determine the size of the archived files section prior to extraction, it cannot do so in
the case of archive retrieval via a stream. To determine the compressed size when
extracting from a stream, the extraction software would have to read the stream
twice. This double read would result in an unacceptable performance penalty
compared to the value of the information gathered.

If the keyword is present, the value is used only for the provision of status
information. Because this keyword is only advisory, deployment software must be
able to handle extraction of archives for which the actual file section size does not
match the size givenin files archive size.

152 man pages section 4: File Formats * Last Revised 29 Apr 2003

flash_archive(4)

If files_archive_size is not present and the archive is being read from a
stream device that does not allow the prior determination of size information, such
as a tape drive, completion status information will not be generated. If the keyword
is not present and the archive is being read from a random-access device such as a
mounted file system, or from a stream that provides size information, the
compressed size will be generated dynamically and used for the provision of status
information.

files_unarchived size
This keyword defines the cumulative size in bytes of the extracted archive. The
value is used for file system size verification. The following verification methods
are possible using this approach:

No checking If the files_unarchived_size keyword is
absent, no space checking will be performed.

Aggregate checking If the files_unarchived_size keyword is
present and the associated value is an integer, the
integer will be compared against the aggregate free
space created by the requested file system
configuration.

The following keywords provide descriptive information about the archive as a whole.
They are generally used to assist the user in archive selection and to aid in archive
management. These keywords are all optional and are used by the deployment
programs only to assist the user in distinguishing between individual archives.

creation date
The value of the creation_date keyword is a textual timestamp representing the
time of creation for the archive. The value of this keyword can be overridden at
archive creation time through the flarcreate(1M). The timestamp must be in
ISO-8601 complete basic calendar format without the time designator (ISO-8601,
§5.4.1(a)) as follows:

CCYYMMDDhhmms s

For example:

20000131221409
(January 31st, 2000 10:14:09pm)

The date and time included in the value should be in GMT.

creation master
The value of the creation master keyword is the name of the master machine
used to create the archive. The value can be overridden at archive creation time.

content name
The value of the content name keyword should describe the archive’s function
and purpose. It is similar to the NAME parameter found in Solaris packages.

File Formats 153

flash_archive(4)

The value of the content_name keyword is used by the deployment utilities to
identify the archive and can be presented to the user during the archive selection
process and/or the extraction process. The value must be no longer than 256
characters.

content_type

The value of this keyword specifies a category for the archive. This category is
defined by the user and is used by deployment software for display purposes. This
keyword is the flash analog of the Solaris packaging CATEGORY keyword.

content description

The value of this keyword is used to provide the user with a description of what
the archive contains and should build on the description provided in
content_name. In this respect, content_description is analogous to the DESC
keyword used in Solaris packages.

There is no length limit to the value of content_description. To facilitate
display, the value can contain escaped newline characters. As in C, the escaped
newline takes the form of \n. Due to the escaped newline, backlashes must be
included as \\. The description is displayed in a non-proportional font, with at
least 40 characters available per line. Lines too long for display are wrapped.

content author

The value of this keyword is a user-defined string identifying the creator of the
archive. Suggested values include the full name of the creator, the creator’s email
address, or both.

content architectures

The value of this keyword is a comma-delimited list of the kernel architectures
supported by the given archive. The value of this keyword is generated at archive
creation time, and can be overridden by the user at that time. If this keyword is
present in the archive, the extraction mechanism validates the kernel architecture of
the clone system with the list of architectures supported by the archive. The
extraction fails if the kernel architecture of the clone is not supported by the
archive. If the keyword is not present, no architecture validation is performed.

The keywords listed belowhave values filled in by uname(2) at the time the flash
archive is created. If you create a flash archive in which the root directory is not /, the
flash archive software inserts the string UNKNOWN for all of the creation_* keywords
except creation node, creation release, and creation os name. For
creation node, the flash software uses the contents of the nodename(4) file. For
creation release and creation_os_name, the flash software attempts to use the
contents of <root_directory>/var/sadm/system/admin/INST RELEASE. Ifitis
unsuccessful in reading this file, it assigns the value UNKNOWN.

Regardless of their sources, you cannot override the values of the creation_*
keywords.

creation node

The return from uname -n.

154 man pages section 4: File Formats * Last Revised 29 Apr 2003

Manifest Section

Predeployment,
Postdeployment,
and Reboot
Sections

Summary Section

User-Defined
Sections

Archive Files
Section

flash_archive(4)

creation hardware class
The return from uname -m.

creation_platform
The return from uname -1i.

creation processor
The return from uname -p.

creation release
The return from uname -r.

creation_os_name
The return from uname -s.

creation_os_version
The return from uname -v.

The manifest section is used only for differential flash archives. It contains a filter that
specifies selection of an operating environment image and a list of the files to be
retained in, added to, and deleted from a clone system. The list contains permissions,
modification times, and other information on each file. The flash software uses this
section to perform a consistency check prior to deployment of an archive on a clone. If
the user who created the differential archive used the -M option to £1lar(1M) or
flarcreate(1M), this section will not be present.

The manifest section is for the exclusive use of the flash software. The format of this
section is internal to Sun and is subject to change.

Contain internal information that the flash software uses before and after deploying an
operating environment image. These sections are for the exclusive use of the flash
software.

Contains a summary of archive creation. This section records the activities of
predeployment and postdeployment scripts.

Following the identification section can be zero or more user-defined sections. These
sections are not processed by the archive extraction code and can be used for any
purpose.

User-defined sections must be line-oriented, terminated with newline (ASCII 0x0a)
characters. There is no limit on the length of individual lines. If binary data is to be
included in a user-defined section, it should be encoded using base64 or a similar
algorithm.

The archive files section contains the files gathered from the master system. While the
length of this section should be the same as the value of the files_archived_size
keyword in the identification section, you should not assume that these two values are
equal. This section begins with section_begin=archive, but it does not have an
ending section boundary.

File Formats 155

flash_archive(4)
ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWinst

SEE ALSO | compress(1), cpio(1), £lar(1M), flarcreate(1M), md5(3EXT), attributes(5)

156 man pages section 4: File Formats ¢ Last Revised 29 Apr 2003

NAME

DESCRIPTION

Syntax

Keywords

format.dat(4)

format.dat — disk drive configuration for the format command

format .dat enables you to use your specific disk drives with format(1M). On
Solaris 2.3 and compatible systems, format will automatically configure and label
SCSI drives, so that they need not be defined in format . dat. Three things can be
defined in the data file:

m search paths
m disk types
® partition tables.

The following syntax rules apply to the data file:

® The pound # sign is the comment character. Any text on a line after a pound sign is
not interpreted by format.

® FEach definition in the format . dat file appears on a single logical line. If the
definition is more than one line long, all but the last line of the definition must end
with a backslash (\).

m A definition consists of a series of assignments that have an identifier on the left
side and one or more values on the right side. The assignment operator is the equal
sign (=). Assignments within a definition must be separated by a colon (:).

m White space is ignored by format(1M). If you want an assigned value to contain
white space, enclose the entire value in double quotes ("). This will cause the white
space within quotes to be preserved as part of the assignment value.

® Some assignments can have multiple values on the right hand side. Separate values
by a comma (,).

The data file contains disk definitions that are read in by format(1M) when it starts
up. Each definition starts with one of the following keywords: search_path,
disk type, and partition.

search path 4.x: Tells format which disks it should search for when it starts
up. The list in the default data file contains all the disks in the
GENERIC configuration file. If your system has disks that are not
in the GENERIC configuration file, add them to the search_path
definition in your data file. The data file can contain only one
search_path definition. However, this single definition lets you
specify all the disks you have in your system.

5.x: By default, format(1M) understands all the logical devices
that are of the form /dev/rdsk/cntndnsn; hence search_path
is not normally defined on a 5.x system.

disk_ type Defines the controller and disk model. Each disk_type definition
contains information concerning the physical geometry of the disk.
The default data file contains definitions for the controllers and

File Formats 157

format.dat(4)

disks that the Solaris operating environment supports. You need to
add a new disk_type only if you have an unsupported disk. You
can add as many disk_type definitions to the data file as you
want.

The following controller types are supported by format(1M):

XY450 Xylogics 450 controller (SMD)
XD7053 Xylogics 7053 controller (SMD)
SCSI True SCSI (CCS or SCSI-2)
ISP-80 IPI panther controller

The keyword itself is assigned the name of the disk type. This
name appears in the disk’s label and is used to identify the disk
type whenever format(1M) is run. Enclose the name in double
quotes to preserve any white space in the name.

Below are lists of identifiers for supported controllers. Note that an
asterisk ("*’) indicates the identifier is mandatory for that controller
-- it is not part of the keyword name.

The following identifiers are assigned values in all disk_type
definitions:

acyl* alternate cylinders

asect alternate sectors per track

atrks alternate tracks

fmt_time formatting time per cylinder

ncyl* number of logical cylinders

nhead* number of logical heads

nsect* number of logical sectors per track

pcyl* number of physical cylinders

phead number of physical heads

psect number of physical sectors per
track

rpm* drive RPM

These identifiers are for SCSI and MD-21 Controllers
read_retries page 1byte 3 (read retries)
write retries page 1 byte 8 (write retries)

cyl_skew page 3 bytes 18-19 (cylinder skew)

158 man pages section 4: File Formats * Last Revised 19 Apr 2001

partition

format.dat(4)

trk_skew page 3 bytes 16-17 (track skew)
trks zone page 3 bytes 2-3 (tracks per zone)
cache page 38 byte 2 (cache parameter)
prefetch page 38 byte 3 (prefetch parameter)

max_prefetch page 38 byte 4 (minimum prefetch)

min_prefetch page 38 byte 6 (maximum prefetch)

Note: The Page 38 values are device-specific. Refer the user to the
particular disk’s manual for these values.

For SCSI disks, the following geometry specifiers may cause a
mode select on the byte(s) indicated:

asect page 3 bytes 4-5 (alternate sectors per zone)
atrks page 3 bytes 8-9 (alt. tracks per logical unit)
phead page 4 byte 5 (number of heads)

psect page 3 bytes 10-11 (sectors per track)

And these identifiers are for SMD Controllers Only

bps* bytes per sector (SMD)

bpt* bytes per track (SMD)

Note: under SunOS 5.x, bpt is only required for SMD disks. Under

SunOS 4.x, bpt was required for all disk types, even though it was
only used for SMD disks.

And this identifier is for XY450 SMD Controllers Only

drive type* drive type (SMD) (just call this "xy450 drive
type")
Defines a partition table for a specific disk type. The partition table
contains the partitioning information, plus a name that lets you
refer to it in format(1M). The default data file contains default
partition definitions for several kinds of disk drives. Add a
partition definition if you repartitioned any of the disks on your
system. Add as many partition definitions to the data file as you
need.

Partition naming conventions differ in SunOS 4.x and in SunOS
5.x.

4.x: the partitions are named as a, b, ¢, d, e, £, g, h.

5.x: the partitions are referred to by numbers 0, 1, 2, 3, 4, 5, 6, 7.

File Formats 159

format.dat(4)

160

EXAMPLES

FILES

SEE ALSO

EXAMPLE 1 A sample disk type and partition.

Following is a sample disk_type and partition definition in format .dat file for
SUNO0535 disk device.

disk_type = "SUNO0535" \
: ctlr = SCSI : fmt_time = 4 \
: ncyl = 1866 : acyl = 2 : pcyl = 2500 : nhead = 7 : nsect = 80 \

: rpm = 5400
partition = "SUNO535" \
: disk = "SUNO0535" : ctlr = SCSI \

: 0 =0, 64400 : 1 = 115, 103600 : 2 = 0, 1044960 : 6 = 300, 876960

/etc/format.dat default data file if format -x is not
specified, nor is there a format . dat file in
the current directory.

format(1M)

System Administration Guide: Basic Administration

man pages section 4: File Formats * Last Revised 19 Apr 2001

NAME

DESCRIPTION

fspec(4)
fspec — format specification in text files

It is sometimes convenient to maintain text files on the system with non-standard tabs,
(tabs that are not set at every eighth column). Such files must generally be converted
to a standard format, frequently by replacing all tabs with the appropriate number of
spaces, before they can be processed by system commands. A format specification
occurring in the first line of a text file specifies how tabs are to be expanded in the
remainder of the file.

A format specification consists of a sequence of parameters separated by blanks and
surrounded by the brackets <: and : >. Each parameter consists of a keyletter, possibly
followed immediately by a value. The following parameters are recognized:

ttabs The t parameter specifies the tab settings for the file. The value of
tabs must be one of the following:

® Alist of column numbers separated by commas, indicating tabs
set at the specified columns.

m A’ followed immediately by an integer #, indicating tabs at
intervals of n columns.

m A’ followed by the name of a “canned” tab specification.

Standard tabs are specified by t—8, or equivalently, t1,9,17, 25,
etc. The canned tabs that are recognized are defined by the
tabs(1) command.

ssize The s parameter specifies a maximum line size. The value of size
must be an integer. Size checking is performed after tabs have been
expanded, but before the margin is prepended.

mwnargin The m parameter specifies a number of spaces to be prepended to
each line. The value of margin must be an integer.

d The d parameter takes no value. Its presence indicates that the line
containing the format specification is to be deleted from the
converted file.

e The e parameter takes no value. Its presence indicates that the
current format is to prevail only until another format specification
is encountered in the file.

Default values, which are assumed for parameters not supplied, are t—8 and m0. If the
s parameter is not specified, no size checking is performed. If the first line of a file
does not contain a format specification, the above defaults are assumed for the entire
file. The following is an example of a line containing a format specification:

* <:t5,10,15 s72:> *

If a format specification can be disguised as a comment, it is not necessary to code the
d parameter.

File Formats 161

fspec(4)
SEE ALSO | ed(1), newform(1l), tabs(1)

162 man pages section 4: File Formats ¢ Last Revised 3 Jul 1990

NAME

DESCRIPTION

SEE ALSO

fstypes(4)

fstypes — file that registers distributed file system packages

fstypes resides in directory /etc/dfs and lists distributed file system utilities

packages installed on the system. For each installed distributed file system type, there
is a line that begins with the file system type name (for example, “nfs”), followed by

white space and descriptive text.

The file system indicated in the first line of the file is the default file system; when
Distributed File System (DFS) Administration commands are entered without the
option —F fstypes, the system takes the file system type from the first line of the
fstypes file.

The default file system can be changed by editing the £stypes file with any
supported text editor.

dfmounts(1M), dfshares(1M), share(1M), shareall(1M), unshare(1M)

File Formats

163

ftp(4)
NAME
SYNOPSIS

DESCRIPTION

Behavior
Directives

ATTRIBUTES

SEE ALSO

ftp — FIP client configuration file

/etc/default/ftp

Use the ftp file to configure the behavior of the FIP client. Lines that begin with a
hash symbol (“# “) are treated as comment lines and are ignored.

The ftp file supports the following behavior directives:

FTP LS SENDS NLST=yes | no
The 1s command of the ftp client sends an NLST to the FTP Server by default.
Several non-Solaris clients send LIST instead. In order to make the Solaris ftp
client send LIST when the 1s command is issued, set FTP_LS_SENDS_NLST to no.
The value of FTP_LS_SENDS_NLST is yes by default.

If the user sets a value for FTP_LS_ SENDS_NLST in the user’s environment, this value
will override any FTP_LS_SENDS_NLST directive that is specified in
/etc/default/ftp.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWDipr

ftp(1), attributes(5)

164 man pages section 4: File Formats ¢ Last Revised 22 Oct 2002

NAME
SYNOPSIS

DESCRIPTION

Access
Capabilities

ftpaccess(4)
ftpaccess — FTP Server configuration file

/etc/ftpd/ftpaccess
The ftpaccess file is used to configure the operation of the FTP Server.

The following access capabilities are supported:

autogroup groupname class [class...]
If an anonymous user is a member of any of class, the FTP Server will perform a
setegid(2) to groupname. This allows access to group and owner read-only files
and directories to a particular class of anonymous users. groupname is a valid group
returned by getgrnam(3C).

class class typelist addrglob [addrglob...]
Define class of users, with source addresses of the form addrglob. Multiple members
of class may be defined. There may be multiple class commands listing additional
members of the class. If multiple class commands can apply to the current
session, the first one listed in the access file is used. If a valid class for a host is not
defined, access will be denied. typelist is a comma-separated list of any of the
keywords anonymous, guest, and real. If the real keyword is included, the
class can match users using FIP to access real accounts. If the anonymous keyword
is included the class can match users using anonymous FTP. The guest keyword
matches guest access accounts.

addrglob may be a globbed domain name or a globbed numeric IPv4 address. It may
also be the name of a file, starting with a slash ("/”), which contains additional
address globs. IPv4 numeric addresses may also be specified in the form
address:netmask or address/CIDR. IPv6 numeric addresses can only be
specified with an optional CIDR, not using globs or netmasks.

Placing an exclamation (!) before an addrglob negates the test. For example,

class rmtuser real !*.example.com

will classify real users from outside the example . com domain as the class
rmtuser. Use care with this option. Remember, the result of each test is OR’ed with
other tests on the line.

deny addrglob [message_file]
Deny access to host(s) that match addrglob and display message_file. If the value of
addrglob is | nameserved access to sites without a working nameservers is denied.
message_file may contain magic cookies. See message for more details.

guestgroup groupname [groupname...]

guestuser username [username...]

realgroup groupname [groupname...]

realuser username [username...]
For guestgroup, if a real user is a member of any groupname, the session is set up
like anonymous FIP. groupname is a valid group returned by getgrnam(3C). The
user’s home directory must be set up exactly as anonymous FTP would be. The
home directory field of the passwd entry is divided into two directories. The first

File Formats 165

ftpaccess(4)

field is the root directory that will be the argument to the chroot(2) call. The
second field is the user’s home directory, relative to the root directory. Usea “/. /"
to separate the two fields. For example, the following is the real entry in
/etc/passwd:

guestl:x:100:92:Guest FTP:/export/home/guests/./guestl:/bin/true

When guest1 successfully logs in, the FTP Server will chroot () to

/export /home/guests and then chdir(2) to /guestl. The guest user will only
be able to access the directory structure under /export /home/guests, which will
look and act as / to guest 1, just as an anonymous FIP user would. The -d option
to ftpconfig(1M) is useful when creating guest FTP user accounts. The group
name may be specified by either name or numeric ID. To use a numeric group ID,
place a percent sign (%) before the number. You can give ranges. Use an asterisk to
indicate all groups. guestuser works like guestgroup, except that it uses the
user name or numeric ID. realuser and realgroup have the same syntax, but
they reverse the effect of guestuser and guestgroup. They allow real user access
when the remote user would otherwise be determined a guest.

guestuser *
realgroup admin

causes all non-anonymous users to be treated as guest, with the sole exception of
users in the admin group, who are granted real user access.

nice nice-delta [class]
Adjust the process nice value of the FTP server process by the indicated nice-delta
value if the remote user is a member of the named class. If class is not specified, then
use nice-delta as the default adjustment to the FTP server process nice value. This
default nice value adjustment is used to adjust the nice value of the server
process only for those users who do not belong to any class for which a
class-specific nice directive exists in the ftpaccess file.

defumask umask [class]
Set the umask applied to files created by the FTP server if the remote user is a
member of the named class. If class is not specified, then use the umask as the
default for classes that do not have one specified.. The mode of files created may be
specified by using the upload directive.

tcpwindow size [class]
Set the TCP window size (socket buffer size) for the data connection. Use this to
control network traffic. For instance, slow PPP dialin links may need smaller TCP
windows to speed up throughput. If you do not know what this does, do not set it.

ipcos control | data value [typelist]
Set the IP Class of Service for either the control or data connection.

For connections using AF INET type sockets, this sets the Type of Service field in
the IP header to the value specified.

For connections using AF _INET6 type sockets, this sets the Traffic Class field in the
IP header to the value specified.

166 man pages section 4: File Formats * Last Revised 10 Sep 2003

ftpaccess(4)

When configured through inetd.conf(4), the socket type is controlled by the
protocol field of the ftp service. When running in standalone mode the default
socket type is AF_INET6. The in. ftpd(1M) -4 option selects AF_INET.

typelist is a comma-separated list of any of the keywords anonymous, guest,
real, and class=. When class= appears, it must be followed by a class name.

keepalive yesIno
Set the TCP SO_KEEPALIVE option for control and data sockets. This can be used
to control network disconnect. If yes, then set it. If no, then use the system default
(usually off). You probably want to set this.

timeout accept seconds
timeout connect seconds
timeout data seconds
timeout idle seconds
timeout maxidle seconds
timeout RFC931 seconds

Set various timeout conditions.

accept How long the FTP Server will wait for an incoming
(PASV) data connection. The default is 120 seconds.

connect How long the FIP Server will wait attempting to
establish an outgoing (PORT) data connection. This
effects the actual connection attempt. The daemon
makes several attempts, sleeping between each
attempt, before giving up. The default is 120
seconds.

data How long the FTP Server will wait for some activity
on the data connection. You should keep this long
because the remote client may have a slow link, and
there can be quite a bit of data queued for the client.
The default is 1200 seconds.

idle How long the FTP Server will wait for the next
command. The default is 900 seconds. The default
can also be overridden by using the -t option at the
command-line. This access clause overrides both.

maxidle The SITE IDLE command allows the remote client
to establish a higher value for the idle timeout. The
maxidle clause sets the upper limit that the client
may request. The default can also be overridden by
using the -T option at the command-line. This
access clause overrides both. The default is 7200
seconds.

RFC931 The maximum time the FTP server allows for the
entire RFC931 (AUTH/ident) conversation. Setting
this to zero (0) disables the server’s use of this

File Formats 167

ftpaccess(4)

protocol. The information obtained by means of
RFC931 is recorded in the system logs and is not
actually used in any authentication. The default is 10
seconds.

file-1limit [raw] in|out | total count [class]
Limit the number of data files a user in the given class may transfer. The limit may
be placed on files in, out, or total. If no class is specified, the limit is the default for
classes which do not have a limit specified. The optional parameter raw applies the
limit to the total traffic rather than just data files.

data-1limit [raw] in|out | total count [class]
Limit the number of data bytes a user in the given class may transfer. The limit may
be placed on bytes in, out, or total. If no class is specified, the limit is the default for
classes which do not have a limit specified. Note that once it has been exceeded,
this limit will prevent transfers, but it will not terminate a transfer in progress. The
optional parameter raw applies the limit to total traffic rather than just data files.

limit-time *lanonymous|guest minutes
Limit the total time a session can take. By default, there is no limit. Real users are
never limited.

guestserver [hostname...]
Control which hosts may be used for anonymous access. If used without hostname,
all anonymous access is denied to this site. More than one hostname may be
specified. Anonymous access will only be allowed on the named machines. If access
is denied, the user will be asked to use the first hostname listed.

limit class n times [message_file]
Limit class to n users at times times, displaying message_file if the user is denied
access. A 1imit check is performed at login time only. If multiple 1imit
commands can apply to the current session, the first applicable one is used. Failing
to define a valid limit, or a limit of -1, is equivalent to no limits. The format of times
is,:

5

day [day . . .1 [time-range] [|day [day . . .] [time-rangel] . ..

The value of day can be Su, Mo, Tu, We, Th, Fr, Sa, Wk (for any weekday Monday
through Friday), or Any. time-range is in 24-hour clock notation. If a time range is
not specified, any time of the day is matched. Multiple day and time-range may be
specified by the “|” symbol. For example, Wk1730-0900 | Sa | Su specifies 5:30
p-m. to 9:00 a.m., Monday through Friday, and anytime on weekends. message_file
may contain magic cookies. See message for more details.

noretrieve [absolutelrelative]

[class=classname...][-] filename [filename...]
Always deny retrievability of these files. If filename specifies a pathname that begins
with ”/” character, then only those files are marked no retrieve. Otherwise all files
that match the filename are refused transfer. For example, noretrieve
/etc/passwd core specifies no one will be able to retrieve the /etc/passwd
file. You will be allowed to transfer any file named passwd that is not in /etc.

168 man pages section 4: File Formats « Last Revised 10 Sep 2003

Informational
Capabilities

ftpaccess(4)

On the other hand, no one will be able to get files named core, wherever they are.
Directory specifications mark all files and subdirectories in the named directory
unretrievable. The filename may be specified as a file glob. For example,

noretrieve /etc /home/*/.htaccess

specifies that no files in /etc or any of its subdirectories may be retrieved. Also, no
files named .htaccess anywhere under the /home directory may be retrieved.
The optional first parameter selects whether names are interpreted as absolute or
relative to the current chroot’d environment. The default is to interpret names
beginning with a slash as absolute. The noretrieve restrictions may be placed
upon members of particular classes. If any class= is specified, the named files
cannot be retrieved only if the current user is a member of one of the given classes.

allow-retrieve [absolutelrelative]
[class=classname...][-] filename [filename...]
Allows retrieval of files which would otherwise be denied by noretrieve.

loginfails number
After number login failures, log a "repeated login failures” message and terminate
the FTP connection. The default value for number is 5.

private yes | no
Allow or deny use of the SITE GROUP and SITE GPASS commands after the user
logs in. The SITE GROUP and SITE GPASS commands specify an enhanced access
group and associated password. If the group name and password are valid, the
user becomes a member of the group specified in the group access file
/etc/ftpd/ftpgroups by means of setegid(2). See ftpgroups(4) for the
format of the file. For this option to work for anonymous FIP users, the FTP Server
must keep /etc/group permanently open and load the group access file into
memory. This means that the FTP Server now has an additional file descriptor
open, and the necessary passwords and access privileges granted to users by means
of SITE GROUP will be static for the duration of an FTP session. If you have an
urgent need to change the access groups or passwords now, you have to kill all of
the running FTP Servers.

The following informational capabilities are supported:

greeting full |brieflterse

greeting text message
The greeting command allows you to control how much information is given out
before the remote user logs in. greeting full, which is the default greeting,
shows the hostname and daemon version. greeting brief shows the hostname.
greeting terse simply says "FIP Server ready." Although full is the default,
brief is suggested.

The text form allows you to specify any greeting message. message can be any
string. Whitespace (spaces and tabs) is converted to a single space.

File Formats 169

ftpaccess(4)

banner path
The banner command operates similarly to the message command, except that
the banner is displayed before the user enters the username. The path is relative to
the real system root, not to the base of the anonymous FTP directory.

Use of the banner command can completely prevent non-compliant FTP clients
from making use of the FIP Server. Not all clients can handle multi-line responses,
which is how the banner is displayed.

email name
Use this command to define the email address for the FTP Server administrator.
This string will be printed every time the $E magic cookie is used in message files.

hostname some.host.name
Defines the default host name of the FTP Server. This string will be printed on the
greeting message and every time the $L magic cookie is used. The host name for
virtual servers overrides this value. If no host name is specified, the default host
name for the local machine is used.

message path [when [class...]]
Define a file with path such that the FTP Server will display the contents of the file
to the user at login time or upon using the change working directory command.
The when parameter may be LOGIN or CWD=dirglob. If whenis CWD=dirglob, dirglob
specifies the new default directory that will trigger the notification. A dirglob of “*”
matches all directories.

The optional class specification allows the message to be displayed only to members
of a particular class. More than one class may be specified.

"Magic cookies" can be present in path that cause the FIP Server to replace the
cookie with a specified text string:

0P
=

Local time. For example, Thu Nov 15 17:12:42 1990.

oe
e

Free space in partition of CWD, in Kbytes.

o
(@}

Current working directory.

The email address for the FTP Server administrator.

o\°
=

Remote host name.

o©
el

Local host name.

oe
[

oe
(@

Username given at login time.

o©
c

Username as defined by means of RFC 931 authentication.

o©
=

Maximum allowed number of users in this class.

Current number of users in this class.

o
2

The following quota magic cookies are also supported but not always set (see the
quota-info capability):

$B absolute limit on disk blocks allocated

170 man pages section 4: File Formats ¢ Last Revised 10 Sep 2003

Logging
Capabilities

ftpaccess(4)

o\°
o

preferred limit on disk blocks

%Q current block count

$I maximum number of allocated inodes (+1)
$i preferred inode limit

$q current number of allocated inodes

$H time limit for excessive disk use

$h time limit for excessive files

The message is displayed only once to avoid annoying the user. Remember that
when messages are triggered by an anonymous or guest FTP user, they must be
relative to the base of the anonymous or guest FTP directory tree.

quota-info uid-range [uid-range...]
Enable retrieval of quota information for users matching uid-range. This sets the
quota magic cookies. Retrieving quota information might cause a significant delay
when logging into the server.

uid-range can be a username, single UID, or a UID range. Place a percent sign(%)
before a number. An asterisk means “all users.”

readme pathglob [when [class...]]
Define a file with pathglob such that the FTP Server will notify the user at login time
or upon using the change working directory command that the file exists and the
date that it was modified. The when parameter may be LOGIN or CWD=dirglob. If
when is CWD=dirglob, dirglob specifies the new default directory that will trigger the
notification. A dirglob of “*” matches all directories. The message will only be
displayed once, to avoid bothering users. Remember that when README messages
are triggered by an anonymous or guest FTP user, the pathglob must be relative to
the base of the anonymous or guest FTP directory tree.

The optional class specification allows the message to be displayed only to members
of a particular class. You can specify more than one class.

The following logging capabilities are supported:

log commands typelist
Enables logging of the individual FTP commands sent by users. fypelist is a
comma-separated list of any of the keywords anonymous, guest, and real.
Command logging information is written to the system log.

log transfers typelist directions
Log file transfers made by FTP users to the xferlog(4) file. Logging of incoming
transfers to the server can be enabled separately from outbound transfers from the
server. directions is a comma-separated list of any of the two keywords inbound
and outbound, and will respectively cause transfers to be logged for files sent to
and from the server.

File Formats 171

ftpaccess(4)

172

Miscellaneous
Capabilities

log security typelist
Enables logging of violations of security rules to the system log, including for
example, noretrieve and .notar.

log syslog

log syslog+xferlog
Redirect the logging messages for incoming and outgoing transfers to syslog.
Without this option the messages are written to xferlog. When you specify
syslog+xferlog, the transfer log messages are sent to both the system log file
and the xferlog file.

xferlog format formatstring
Customize the format of the transfer log entry written. formatstring can be any
string, which might include magic cookies. Strings of whitespace characters are
converted into a single space.

The following transfer-specific magic cookies are recognized only immediately after
a transfer has been completed:

$Xt transfer-time

$Xn bytes-transferred
$XP filename

$Xp chroot-filename
%Xy transfer-type

$Xf special-action-flag
$xXd direction

$Xm access-mode

$Xa authentication-method
$Xc completion-status
$Xs file-size

$Xr restart-offset

xferlog(4) includes a description of these fields. If no xferlog format entry is
present, the default is:

xferlog format %T %Xt %R %Xn %XP %Xy %Xf %Xd %Xm %U ftp %$Xa %u %$Xc

The following miscellaneous capabilities are supported:

alias string dir
Define an alias, string, for a directory. Use this command to add the concept of
logical directories. For example: alias rfc: /pub/doc/rfc would allow the
user to access /pub/doc/rfc from any directory by the command "ed rfc:".
Aliases only apply to the cd command.

man pages section 4: File Formats ¢ Last Revised 10 Sep 2003

ftpaccess(4)

cdpath dir
Define an entry in the cdpath. This command defines a search path that is used

when changing directories. For example:

cdpath /pub/packages
cdpath /.aliases

would allow the user to move into any directory directly under either the

/pub/packages or the /.aliases directories. The search path is defined by the
order in which the lines appear in the ftpaccess file. If the user were to give the
command ftp> cd foo the directory will be searched for in the following order:

./foo

an alias called foo
/pub/packages/foo
/.aliases/foo

The cdpath is only available with the cd command. If you have a large number of
aliases, you might want to set up an aliases directory with links to all of the areas
you wish to make available to users.

compress yes | no classglob [classglob...]

tar yes | no classglob [classglob...]
Enable the use of conversions marked with the 0 COMPRESS, O UNCOMPRESS, and
O TAR options in /etc/ftpd/ftpconversions. See ftpconversions(4).

shutdown path
If the file pointed to by path exists, the server will check the file regularly to see if
the server is going to be shut down. If a shutdown is planned, the user is notified.
New connections are denied after a specified time before shutdown. Current
connections are dropped at a specified time before shutdown.

The format of the file specified by path is:

year month day hour minute deny_offset disc_offset text

year A value of 1970 or greater.

month A value of 0 to 11.

day A value of 1 to 31.

hour A value of 0 to 23.

minute A value of 0 to 59.

deny_offset

disc_offset The offsets in HHMM format that new connections

will be denied and existing connections will be
disconnected before the shutdown time.

text Follows the normal rules for any message. The
following additional magic cookies are available:

File Formats 173

ftpaccess(4)

o\°
0]

The time at which the system is going to
shut down.

The time at which new connections will
be denied.

o\
=

o
(o}

The time at which current connections
will be dropped.

All times are in the form: ddd MMM DD hh:mm:ss YYYY. Only one shutdown
command can be present in the configuration file. You can use the external program
ftpshut(1M) to automate generation of this file.

daemonaddress address
Listen only on the IP address specified. If the value is not set, then the FTP Server
will listen for connections on every IP address. This applies only when the FTP
Server is run in standalone mode.

virtual address root | banner | logfile path
Enable the FTP Server limited virtual hosting capabilities. The address is the IP
address of the virtual server. The second argument specifies that the path is either
the path to the root of the filesystem for this virtual server, the banner presented
to the user when connecting to this virtual server, or the 1ogfile where transfers
are recorded for this virtual server. If the 1ogfile is not specified the default log
file will be used. All other message files and permissions as well as any other
settings in this file apply to all virtual servers. The address may also be specified as a
hostname rather than as an IP number. This is strongly discouraged since, if DNS is
not available at the time the FTP session begins, the hostname will not be matched.

root | logfile path
In contrast to limited virtual hosting, complete virtual hosting allows separate
configuration files to be virtual host specific. See ftpservers(4). The only
additions that are necessary in a virtual host’s ftpaccess file is the root directive
that ensures the correct root directory is used for the virtual host. This only works
with complete virtual hosting, which in contrast to limited virtual hosting, allows
separate configuration files to be specified for each virtual host.

path is either the root of the filesystem for this virtual server or the logfile where
transfers for this virtual server are recorded. root and logfile may only be specified
when not preceded by virtual address in a virtual hosts’s ftpaccess file.

virtual address hostname | email string
Set the hostname shown in the greeting message and status command, or the email
address used in message files and on the HELP command, to the given string.

virtual address allow username [username...]
virtual address deny username [username...]

174 man pages section 4: File Formats ¢ Last Revised 10 Sep 2003

ftpaccess(4)

By default, real and guest users are not allowed to log in on the virtual server,
unless they are guests that are chroot’d to the virtual root. The users listed on the
virtual allow line(s) are granted access. You can grant access to all users by
giving "* as the username. The virtual deny clauses are processed after the
virtual allow clauses. Thus specific users can be denied access although all
users were allowed in an earlier clause.

virtual address private
Deny log in access to anonymous users on the virtual server. Anonymous users are
generally allowed to log in on the virtual server if this option is not specified.

virtual address passwd file
Use a different passwd file for the virtual host.

virtual address shadow file
Use a different shadow file for the virtual host.

defaultserver deny username [username...]

defaultserver allow username [username...]
By default, all users are allowed access to the non-virtual FTP Server. Use
defaultserver deny to revoke access for specific real and guest users. Specify "*
to deny access to all users, except anonymous users. Specific real and guest users
can then be allowed access by using defaultserver allow.

defaultserver private
By default, all users are allowed access to the non-virtual FTP Server. Use
defaultserver private to revoke access for anonymous users.

The virtual and defaultserver allow, deny and private clauses provide a
means to control which users are allowed access to which FTP Servers.

passive address externalip cidr
Allow control of the address reported in response to a passive command. When
any control connection matching cidr requests a passive data connection (PASV),
the externalip address is reported. This does not change the address that the daemon
actually listens on, only the address reported to the client. This feature allows the
daemon to operate correctly behind IP renumbering firewalls. For example:

passive address 10.0.1.15 10.0.0.0/8
passive address 192.168.1.5 0.0.0.0/0

Clients connecting from the class-A network 10 will be told the passive connection
is listening on IP address 10.0.1.15 while all others will be told the connection is
listening on 192.168.1.5. Multiple passive addresses may be specified to handle
complex, or multi-gatewayed, networks.

passive ports cidr min max
Allows control of the TCP port numbers which may be used for a passive data
connection. If the control connection matches the cidr, a port in the range min to max
will be randomly selected for the daemon to listen on. This feature allows firewalls
to limit the ports that remote clients may use to connect into the protected network.

File Formats 175

ftpaccess(4)

cidr is shorthand for an IP address followed by a slash and the number of left-most
bits that represent the network address, as opposed to the machine address. For
example, if you are using the reserved class-A network 10, instead of a netmask of
255.0.0.0, use a CIDR of /8, as in 10.0.0.0/8, to represent your network.

When min and max are both 0, the kernel rather than the FTP server selects the TCP
port to listen on. Kernel port selection is usually not desirable if the kernel allocates
TCP ports sequentially. If in doubt, let the FTP server do the port selection.

pasv-allow class [addrglob...]

port-allow class [addrglob...]
Normally, the FTP Server does not allow a PORT command to specify an address
different than that of the control connection. Nor does it allow a PASV connection
from another address.

The port-allow clause provides a list of addresses that the specified class of user
may give on a PORT command. These addresses will be allowed even if they do not
match the IP address of the client-side of the control connection.

The pasv-allow clause provides a list of addresses that the specified class of user
may make data connections from. These addresses will be allowed even if they do
not match the IP address of the client-side of the control connection.

1slong command [options...]

lsshort command [options...]

lsplain command [options...]
Use the 1slong, 1sshort, and 1splain clauses to specify the commands and
options to use to generate directory listings. The options cannot contain spaces, and
the default values for these clauses are generally correct. Use 1slong, 1sshort, or
lsplain only if absolutely necessary.

mailserver hostname
Specify the name of a mail server that will accept upload notifications for the FTP
Server. Multiple mail servers may be listed. The FTP Server will attempt to deliver
the upload notification to each, in order, until one accepts the message. If no mail
servers are specified, localhost is used. This option is only meaningful if anyone
is to be notified of anonymous uploads. See incmail.

incmail emailaddress

virtual address incmail emailaddress

defaultserver incmail emailaddress
Specify email addresses to be notified of anonymous uploads. Multiple addresses
can be specified. Each will receive a notification. If no addresses are specified, no
notifications are sent.

If addresses are specified for a virtual host, only those addresses will be sent
notification of anonymous uploads on that host. Otherwise, notifications will be
sent to the global addresses.

176 man pages section 4: File Formats * Last Revised 10 Sep 2003

Permission
Capabilities

ftpaccess(4)

defaultserver addresses only apply when the FTP session is not using one of
the virtual hosts. In this way, you can receive notifications for your default
anonymous area, but not see notifications to virtual hosts that do not have their
own notifications.

mailfrom emailaddress

virtual address mailfrom emailaddress

defaultserver mailfrom emailaddress
Specify the sender’s email address for anonymous upload notifications. Only one
address may be specified. If no mailfrom applies, email is sent from the default
mailbox name wu- £tpd. To avoid problems if the recipient attempts to reply to a
notification, or if downstream mail problems generate bounces, you should ensure
the mailfrom address is deliverable.

sendbuf size [typelist]

recvbuf size [typelist]
Set the send or receive buffer sizes used for binary transfers. They have no effect on
ASCII transfers.

rhostlookup yes|no [addrglob ...]
Allows or disallows the lookup of the remote host’s name. Name lookups can be
slow, but skipping them means that places where an addrglob is matched (for
example, in the class capability) will match only an IP address, not a name. Also
deny !nameserved and dns refuse no reverse or refuse mismatch will
deny access when a name lookup is not done. The default is to lookup the remote
host’s name.

Only IP addresses, not names, are matched in addrglob.

flush-wait yes|no [typelist]
Controls the behavior at the end of a download or directory listing. If yes,
shutdown the data connection for sending and wait for the client to close its end
before sending a transfer complete reply on the control connection. This is the
default behavior. If no, close the data connection and send the transfer complete
reply without waiting for the client. With this behavior, data loss can go undetected.

If a client hangs at the end of a directory listing, or the system has many sockets in
the FIN WAIT 2 state, try setting to no as a workaround for broken client
behavior.

The following permission capabilities are supported:

chmod yes | no typelist

delete yes Ino typelist

overwrite yes|no typelist

rename yes | no typelist

umask yes | no typelist
Allows or disallows the ability to perform the specified function. By default, all real
and guest users are allowed. Anonymous users are only allowed overwrite and
umask.

File Formats 177

ftpaccess(4)

typelist is a comma-separated list of any of the keywords anonymous, guest, real
and class=. When class= appears, it must be followed by a classname. If any
class= appears, the fypelist restriction applies only to users in that class.

passwd-check noneltrivial lrfc822 [enforce|lwarn]

Define the level and enforcement of password checking done by the FTP Server for
anonymous FTP.

none No password checking is performed.
trivial The password must contain an ‘@’
rfc822 The password must be RFC 822 compliant.
warn Warn, but permit the login.

enforce Notify and deny the login.

deny-email case-insensitive-emailaddress

Consider the email address given as an argument as invalid. If passwd-check is
set to enforce, anonymous users giving this address as a password cannot log in.
That way, you can stop users from having stupid WWW browsers use fake
addresses like IE?0User@ or mozilla@. (by using this, you are not shutting out users
using a WWW browser for ftp - you just make them configure their browser
correctly.) Only one address is allowed per line, but you can have as many
deny-email addresses as you like.

path-filter typelist message allowed_regexp
[disallowed_regexp...]

For users in typelist, path-filter defines regular expressions that control what
characters can be used in the filename of an uploaded file or created directory.
There may be multiple disallowed regular expressions. If a filename is invalid due
to failure to match the regular expression criteria, message will be displayed to the
user. For example:

path-filter anonymous /etc/pathmsg *[-A-Za-z0-9.]1*$ *\. *-

specifies that all upload filenames for anonymous users must be made of only the
characters A-Z, a-z, 0-9, and "._-" and may not begin with a "." or a "-". If the
filename is invalid, /etc/pathmsg will be displayed to the user.

upload [absolute |l relative] [class=classname]... [-]
root-dir dirglob yes | no owner group mode
[dirs|nodirs] [d_mode]

Define a directory with dirglob that permits or denies uploads. If it does permit
uploads, all newly created files will be owned by owner and group and will have
their permissions set according to mode. Existing files that are overwritten will
retain their original ownership and permissions. Directories are matched on a
best-match basis. For example:

upload /var/ftp * no
upload /var/ftp /incoming yes ftp daemon 0666
upload /var/ftp /incoming/gifs yes jlc guest 0600 nodirs

178 man pages section 4: File Formats « Last Revised 10 Sep 2003

ftpaccess(4)

would only allow uploads into /incoming and /incoming/gifs. Files that were
uploaded to /incoming are owned by ftp/daemon and have permissions of 0666.
Files uploaded to /incoming/gifs are owned by j1lc/guest and have
permissions of 0600. The optional "dirs" and "nodirs” keywords can be specified
to allow or disallow the creation of new subdirectories using the mkdir command.
If the upload command is used, directory creation is allowed by default. To turn it
off by default, you must specify a user, group and mode followed by the "nodirs"
keyword as the first line where the upload command is used in this file. If
directories are permitted, the optional d_mode determines the permissions for a
newly created directory. If d_mode is omitted, the permissions are inferred from
mode. The permissions are 0777 if mode is also omitted. The upload keyword only
applies to users who have a home directory of root-dir. root-dir may be specified as
"*" to match any home directory. The owner or group may each be specified as "*", in
which case any uploaded files or directories will be created with the ownership of
the directory in which they are created. The optional first parameter selects whether
root-dir names are interpreted as absolute or relative to the current chroot’d
environment. The default is to interpret <root -dir> names as absolute. You can
specify any number of class=classname restrictions. If any are specified, this
upload clause only takes effect if the current user is a member of one of the classes.

In the absence of any matching upload clause, real and guest users can upload files
and make directories, but anonymous users cannot. The mode of uploaded files is
0666. For created directories, the mode is 0777. Both modes are modified by the
current umask setting.

throughput root-dir subdir-glob file-glob-list

bytes-per-second bytes-per-second-multiply remote-glob-list
Define files by means of a comma-separated file-glob-list in subdir matched by
subdir-glob under root-dir that have restricted transfer throughput of bytes-per-second
on download when the remote hostname or remote IP address matches the
comma-separated remote-glob-list. Entries are matched on a best-match basis. For
example:

throughput /e/ftp * * ete} - *
throughput /e/ftp /sw* * 1024 0.5 *
throughput /e/ftp /sw* README oo - *
throughput /e/ftp /sw* * oo - * . foo.com

would set maximum throughput per default, but restrict download to 1024 bytes
per second for any files under /e/ftp/sw/ that are not named README. The only
exceptions are remote hosts from within the domain foo. com which always get
maximum throughput. Every time a remote client has retrieved a file under
/e/ftp/sw/ the bytes per seconds of the matched entry line are internally
multiplied by a factor, here 0.5. When the remote client retrieves its second file, it is
served with 512 bytes per second, the third time with only 256 bytes per second, the
fourth time with only 128 bytes per second, and so on. The string "00" for the bytes
per second field means no throughput restriction. A multiply factor of 1.0 or "-"
means no change of the throughput after every successful transfer. The root-dir here
must match the home directory specified in the password database . The
throughput keyword only applies to users who have a home directory of root-dir.

File Formats 179

ftpaccess(4)

anonymous -root root-dir [class...]

root-dir specifies the chroot () path for anonymous users. If no anonymous-root is
matched, the old method of parsing the home directory for the FTP user is used. If
no class is specified, this is the root directory for anonymous users who do not
match any other anonymous-root specification. Multiple classes may be specified
on this line. If an anonymous-root is chosen for the user, the FTP user’s home
directory in the root-dir /et c/passwd file is used to determine the initial directory
and the FTP user’s home directory in the system-wide /etc/passwd is not used.
For example:

anonymous-root /home/ftp
anonymous-root /home/localftp localnet

causes all anonymous users to be chroot ’ d to the directory /home/£ftp. If the
FTP user exists in /home/ftp/etc/passwd, their initial CWD is that home
directory. Anonymous users in the class localnet, however, are chroot’ d to the
directory /home/localftp and their initial CWD is taken from the FTP user’s home
directory in /home/localftp/etc/passwd.

guest -root root-dir [uid-range...]

root-dir specifies the chroot () path for guest users. If no guest-root is matched, the
old method of parsing the user’s home directory is used. If no uid-range is specified,
this is the root directory for guestusers who do not match any other guest-root
specification. Multiple UID ranges may be given on this line. If a guest-root is
chosen for the user, the user’s home directory in the root-dir /et c/passwd file is
used to determine the initial directory and the home directory in the system-wide
/etc/passwd is not used. uid-range specifies names or numeric UID values. To use
numbers, put a percent sign (%) symbol before it or before the range. Ranges are
specified by giving the lower and upper bounds (inclusive), separated by a dash. If
the lower bound is omitted, it means all up to. If the upper bound is omitted, it
means all starting from. For example:

guest-root /home/users
guest-root /home/staff %100-999 sally

guest-root /home/users/owner/ftp frank

causes all guest users to chroot () to /home/users then starts each user in the
user’s home directory, as specifiedin /home /users/etc/passwd. Users in the
range 100 through 999, inclusive, and user sally, will be chroot’d to
/home/staff and the CWD will be taken from their entries in
/home/staff/etc/passwd. The single user frank will be chroot’d to

/home /users/owner/ftp and the CWD will be from his entry in
/home/users/owner/ftp/etc/passwd.

The order is important for both anonymous-root and guest-root. If a user would
match multiple clauses, only the first applies; with the exception of the clause which
has no class or uid-range, which applies only if no other clause matches.

deny-uid uid-range [uid-range...]
deny-gid gid-range [gid-range...]
allow-uid uid-range [uid-range...]

180 man pages section 4: File Formats ¢ Last Revised 10 Sep 2003

ftpaccess(4)

allow-gid gid-range [gid-range...]
Use these clauses to specify UID and GID values that will be denied access to the
FTP Server. The allow-uid and allow-gid clauses may be used to allow access
for UID and GID values which would otherwise be denied. These checks occur
before all others. deny is checked before allow. The default is to allow access.
These clauses do not apply to anonymous users. Use defaultserver private to
deny access to anonymous users. In most cases, these clauses obviate the need for
an ftpusers(4) file. For example, the following clauses deny FTP Server access to
all privileged or special users and groups, except the guestl user or group.

deny-gid %-99 nobody noaccess nogroup
deny-uid %-99 nobody noaccess nobody4
allow-gid guestl

allow-uid guestl

Support for the £tpusers file still exists, so it may be used when changing the
ftpaccess file is not desired. In any place a single UID or GID is allowed
throughout the ftpaccess file, either names or numbers also may be used. To use
a number, put a percent sign (%) symbol before it. In places where a range is
allowed, put the percent sign before the range. A “*” matches all UIDs or GIDs.

restricted-uid uid-range [uid-range...]

restricted-gid gid-range [gid-range...]

unrestricted-uid uid-range [uid-range...]

unrestricted-gid gid-range [gid-range...]
These clauses control whether or not real or guest users will be allowed access to
areas on the FIP site outside their home directories. These clauses are not meant to
replace the use of guestgroup and guestuser. Instead, use these clauses to
supplement the operation of guests. The unrestricted-uid and
unrestricted-gid clauses may be used to allow users outside their home
directories who would otherwise be restricted.

The following example shows the intended use for these clauses. Assume user
dick has a home directory /home/dick and jane has a home directory
/home/jane:

guest-root /home dick jane
restricted-uid dick jane

While both dick and jane are chroot’d to /home, they cannot access each
other’s files because they are restricted to their home directories. However, you
should not rely solely upon the FTP restrictions to control access. As with all other
FTP access rules, you should also use directory and file permissions to support the
operation of the ftpaccess configuration.

site-exec-max-1ines number [class...]
The SITE EXEC feature traditionally limits the number of lines of output that may
be sent to the remote client. Use this clause to set this limit. If this clause is omitted,
the limit is 20 lines. A limit of 0 (zero) implies no limit. Be very careful if you choose
to remove the limit. If a clause is found matching the remote user’s class, that limit
is used. Otherwise, the clause with class "*’, or no class given, is used. For example:

File Formats 181

ftpaccess(4)

182

FILES

ATTRIBUTES

SEE ALSO

site-exec-max-lines 200 remote
site-exec-max-lines 0 local
site-exec-max-lines 25

limits output from SITE EXEC (and therefore SITE INDEX) to 200 lines for remote
users, specifies there is no limit at all for local users, and sets a limit of 25 lines for
all other users.

dns refuse mismatch filename [override]

Refuse FTP sessions when the forward and reverse lookups for the remote site do
not match. Lookups are done using the system’s name service as configured in

nsswitch.conf(4). Display the named file, like a message file, admonishing the
user. If the optional override is specified, allow the connection after complaining.

dns refuse no_reverse filename [override]

Refuse FTP sessions when the remote host’s IP address has no associated name.
Lookups are done using the system’s name service as configured in
nsswitch.conf(4). Display the named file, such as a message file, admonishing
the user. If the optional override is specified, allow the connection after
complaining.

dns resolveroptions [options]

Modify certain internal resolver variables. This only has an effect when DNS is used
as the system’s name service. The line takes a series of options which are used to set
the RES_OPTIONS environment variable, see resolv.conf(4) for details. For
example:

dns resolveroptions rotate attempts:1

turns on querying name servers round-robin and selects querying each name server
only once.

Lines that begin with a # sign are treated as comment lines and are ignored.

/etc/ftpd/ftpaccess

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

Interface Stability External

compress(l), 1s(1), tar(l), £tpaddhost(1M), ftpconfig(1M), ftpshut(1M),

in. ftpd(1IM), chroot(2), nice(2), umask(2), getgrnam(3C), resolver(3RESOLV),
ftpconversions(4), ftpgroups(4), ftpservers(4), ftpusers(4),
nsswitch.conf(4), resolv.conf(4), timezone(4), xferlog(4), attributes(5),
fnmatch(5)

Crocker, David H. RFC 822, Standard For The Format Of ARPA Internet Text Messages.
Network Information Center. August 1982.

man pages section 4: File Formats ¢ Last Revised 10 Sep 2003

ftpaccess(4)

St. Johns, Michael. RFC 931, Authentication Server. Network Working Group. January
1985.

File Formats 183

ftpconversions(4)

184

NAME
SYNOPSIS

DESCRIPTION

ftpconversions — FTP Server conversions database

/etc/ftpd/ftpconversions

When the FTP Server, in. ftpd(1M), receives the retrieve (RETR) command, if the
specified file does not exist, it looks for a conversion to change an existing file or
directory of the same base name into the format requested, subject to the
ftpaccess(4) compress and tar capabilities.

The conversions and their attributes known by in. £tpd(1M) are stored in an ASCII
file of the following format. Each line in the file provides a description for a single
conversion. The fields in this file are separated by colons (:).

o\
o
o°
o
o
o
o\
o

S:55:%55:%55:%5:%5:%5:%5
1 2 3 4 5 6 7 8

The fields are described as follows:
Strip prefix.
Strip postfix.
Addon prefix.
Addon postfix.
External command.
Types.

Options.

® N O U ks W -

Description.
The Strip prefix and Addon prefix fields are not currently supported.

The Strip postfix and addon postfix fields are extensions to be added to or
removed from the requested filename in attempting to produce the name of an
existing file or directory. When the attempt succeeds, the FTP Server runs the external
command associated with the conversion. The magic cookie %s in the argument is
passed to the command, replaced with the name of the existing file or directory.

External command is the absolute pathname of a command to run followed by the
appropriate options to carry out the conversion. The standard output of the command
is sent back in response to the RETR (retrieve) command. For anonymous and guest
users to be able to execute the command, it must be present in their chroot ' d
hierarchy along with any necessary dynamic libraries.

Types specifies the conversion type. The following values are recognized:

T_ASCII ASCII transfers are allowed of a file produced by the conversion.
T DIR Directories can be converted.
T REG Regular files can be converted.

man pages section 4: File Formats * Last Revised 1 May 2003

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

ftpconversions(4)

Options are checked against the ftpaccess(4) compress and tar capabilities and
are recorded in the special-action-flag field that is written to the FTP Server
logfile. See xferlog(4). The following options are supported:

O_COMPRESS conversion compresses
O_TAR conversion archives

O_UNCOMPRESS conversion uncompresses

You can specify more than one option by using " |" to separate options. For example,
O_TAR|O_COMPRESS specifies that the conversion archives and compresses.

Description is a one word description of the conversion that is used in error
messages returned to the FTP client.

Lines that begin with a # sign are treated as comment lines and are ignored.

EXAMPLE 1 Compressing a Regular File for Transfer

The following example specifies a conversion which generates £ilename. Z by
compressing an existing file £ilename. The conversion can only be applied to regular
files, not directories, and the absence of T ASCII prevents the resulting file from
being transferred in ASCII mode.

:.Z:/usr/bin/compress -c %s:T_REG:0 COMPRESS:COMPRESS

EXAMPLE 2 Uncompressing and Transferring in ASCII Mode

The following example specifies a conversion that takes £ilename.Z and
uncompresses it to produce filename, which then can be transferred in ASCII mode.

:.Z: : :/usr/bin/compress -cd %$s:T REG|T_ASCII:O_UNCOMPRESS:UNCOMPRESS

/etc/ftpd/ftpconversions

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

1d4d(1), in. ftpd(1M), ftpaccess(4), xferlog(4), attributes(5)

File Formats 185

ftpgroups(4)

186

NAME
SYNOPSIS

DESCRIPTION

FILES

ATTRIBUTES

SEE ALSO

ftpgroups — FTP Server enhanced group access file

/etc/ftpd/ftpgroups
The ftpgroups file contains the enhanced group access information.

After login, if the ftpaccess(4) file includes private yes, the user may use the SITE
GROUP and SITE GPASS commands to specify an enhanced access group and a
password for that group. If the access group name and password are valid, the the
FTP Server executes setegid(2) to make the user a member of the real group listed in
the ftpgroups file.

The format for the ftpgroups file is:

accessgroup:encrypted password:real_ group_ name

The fields are defined as follows:

accessgroup An arbitrary string of alphanumeric and punctuation
characters.

encrypted_password The group password encrypted exactly like in
/etc/shadow.

real_group_name The name of a valid group returned by getgrnam(3C).

The privatepw utility is an administrative tool to add, delete and list enhanced
access group information in the ftpgroups file. See privatepw(1M). Lines that
begin with a # sign are treated as comment lines and are ignored.

/etc/ftpd/ftpgroups
/etc/ftpd/ftpaccess

See attributes(b) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

Interface Stability External

in. ftpd(IM), privatepw(1M), setegid(2), getgrnam(3C), ftpaccess(4),
group(4), shadow(4), attributes(5)

man pages section 4: File Formats * Last Revised 1 May 2003

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

FILES

ATTRIBUTES

SEE ALSO

ftphosts(4)
ftphosts — FTP Server individual user host access file
/etc/ftpd/ftphosts
The ftphosts file is used to allow or deny access to accounts from specified hosts.
The following access capabilities are supported:

allow username addrglob [addrglob. . .]
Only allow users to login as username from host(s) that match addrglob.

deny username addrglob [addrglob. . .]
Do not allow users to login as username from host(s) that match addrglob.

A username of * matches all users. A username of anonymous or f£tp specifies the
anonymous user.

addrglob is a regular expression that is matched against hostnames or IP addresses.
addrglob may also be in the form address :netmask or address/CIDR, or be the
name of a file that starts with a slash ("/’) and contains additional address globs. An
exclamation mark (“!’) placed before the addrglob negates the test.

The first allow or deny entry in the ftphosts file that matches a username and host
is used. If no entry exists for a username, then access is allowed. Otherwise, a matching
allow entry is required to permit access.

You can use the following ftphosts file to allow anonymous access from any host
except those on the class A network 10, with the exception of 10.0.0. * IP addresses,
which are allowed access:

allow ftp 10.0.0.*
deny ftp 10.% . % *
allow ftp *

10.0.0.* can be written as 10.0.0.0:255.255.255.00r 10.0.0.0/24.

/etc/ftpd/ftphosts

See attributes(d) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

Interface Stability External

in.ftpd(1M), ftpaccess(4), attributes(b)

File Formats 187

ftpservers(4)

188

NAME
SYNOPSIS

DESCRIPTION

File Format

ftpservers — FTP Server virtual hosting configuration file

/etc/ftpd/ftpservers

The ftpservers file is used to configure complete virtual hosting. In contrast to
limited virtual hosting, complete virtual hosting allows separate configuration files to
be specified for each virtual host.

The set of configuration files for each virtual host are placed in their own directory.
The ftpservers file associates the address of each virtual host with the directory its
configuration files are stored in. The virtual host configuration files must be named:

ftpaccess Virtual host’s access file

ftpusers Restricts the accounts that can use the virtual host
ftpgroups Virtual hosts enhanced group access file

ftphosts Allow or deny usernames access to the virtual host
ftpconversions Customize conversions available from the virtual host

You do not need to put every file in each virtual host directory. If you want a virtual
host to use the master copy of a file, then do not include it in the virtual host directory.
If the file is not included, the master copy from the /etc/ftpd directory will be used.

The file names must match exactly. If you misspell any of them or name them
differently, the server will not find them, and the server will use the master copy
instead.

The ftpaddhost utility is an administrative tool to configure virtual hosts. See
ftpaddhost(1M).

There are two fields to each entry in the ftpservers file:

address directory-containing-configuration-files

For example:

10.196.145.10 /etc/ftpd/virtual-ftpd/10.196.145.10
10.196.145.200 /etc/ftpd//virtual-£ftpd/10.196.145.200
some .domain INTERNAL

When an FTP client connects to the FTP Server, in. £tpd(1M) tries to match the IP
address to which the FTP client connected with one found in the ftpservers file.

The address can be an IPv4 or IPv6 address, or a hostname.

If a match is found, The FTP server uses any configuration files found in the associated
directory.

If a match is not found, or an invalid directory path is encountered, the default paths
to the configuration files are used. The use of INTERNAL in the example above fails the
check for a specific directory, and the master configuration files will be used.

man pages section 4: File Formats * Last Revised 1 May 2003

FILES

ATTRIBUTES

SEE ALSO

ftpservers(4)

Either the actual IP address or a specific hostname can be used to specify the virtual
host. It is better to specify the actual IP of the virtual host, as it reduces the need for a
domain lookup and eliminates DNS security related naming issues, for example:

10.196.145.20 /etc/ftpd/config/fags.org/
ftp.some.domain /etc/ftpd/config/fags.org/

Lines that begin with a # sign are treated as comment lines and are ignored.

/etc/ftpd/ftpservers

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWftpr

Interface Stability External

ftpaddhost(1IM), in. ftpd(1M), ftpaccess(4), ftpconversions(4),
ftpgroups(4), ftphosts(4), ftpusers(4), attributes(5)

File Formats 189

ftpusers(4)

190

NAME
SYNOPSIS

DESCRIPTION

FILES

ftpusers — file listing users to be disallowed ftp login privileges

/etc/ftpd/ftpusers

The ftpusers file lists users for whom ftp login privileges are disallowed. Each
ftpuser entry is a single line of the form:

name
where name is the user’s login name.

The FTP Server, in. ftpd(1M), reads the ftpusers file. If the login name of the user
matches one of the entries listed, it rejects the login attempt.

The ftpusers file has the following default configuration entries:

root
daemon
bin
sys
adm

1p
uccp
nuucp
smmsp
listen
nobody
noaccess

nobody4

These entries match the default instantiated entries from passwd(4). The list of default
entries typically contains the superuser root and other administrative and system
application identities.

The root entry is included in the ftpusers file as a security measure since the default
policy is to disallow remote logins for this identity. This policy is also set in the the
default value of the CONSOLE entry in the /etc/default/login file. See login(1).
If you allow root login privileges by deleting the root entry in ftpusers, you should
also modify the security policy in /etc/default/login to reflect the site security
policy for remote login access by root.

Other default entries are administrative identities that are typically assumed by
system applications but never used for local or remote login, for example sys and
nobody. Since these entries do not have a valid password field instantiated in
shadow(4), no login can be performed.

If a site adds similar administrative or system application identities in passwd(4) and
shadow(4), for example, majordomo, the site should consider including them in the
ftpusers file for a consistent security policy.

Lines that begin with # are treated as comment lines and are ignored.

/etc/ftpd/ftpusers A file that lists users for whom £ftp login privileges are
disallowed.

man pages section 4: File Formats * Last Revised 1 May 2003

ATTRIBUTES

SEE ALSO

ftpusers(4)

/etc/ftpusers See /etc/ftpd/ftpusers. This file is deprecated,
although: its use is still supported.

/etc/default/login

/etc/passwd password file

/etc/shadow shadow password file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWftpr
Interface Stability External
/etc/ftpd/ftpusers
Interface Stability Obsolete
/etc/ftpusers

login(l), in. ftpd(1M), ftpaccess(4), ftphosts(4), passwd(4), shadow(4),
attributes(b), environ(b)

File Formats 191

fx_dptbl(4)

192

NAME
SYNOPSIS

DESCRIPTION

fx_dptbl - fixed priority dispatcher parameter table

fx_dptbl

The process scheduler or dispatcher is the portion of the kernel that controls allocation
of the CPU to processes. The scheduler supports the notion of scheduling classes,
where each class defines a scheduling policy used to schedule processes within that
class. Associated with each scheduling class is a set of priority queues on which
ready-to-run processes are linked. These priority queues are mapped by the system
configuration into a set of global scheduling priorities, which are available to
processes within the class. The dispatcher always selects for execution the process
with the highest global scheduling priority in the system. The priority queues
associated with a given class are viewed by that class as a contiguous set of priority
levels numbered from 0 (lowest priority) to n (highest priority—a
configuration-dependent value). The set of global scheduling priorities that the queues
for a given class are mapped into might not start at zero and might not be contiguous,
depending on the configuration.

Processes in the fixed priority class are scheduled according to the parameters in a
fixed—priority dispatcher parameter table (£x_dptbl). The £x_dptbl table consists
of an array (config fx dptbl []) of parameter structures (struct fxdpent t),
one for each of the n priority levels used by fixed priority processes in user mode. The
structures are accessed by way of a pointer, (f£x_dptbl), to the array. The properties
of a given priority level i are specified by the ith parameter structure in this array
(fx_dptbl [i]).

A parameter structure consists of the following members. These are also described in
the /usr/include/sys/fx.h header.

fx globpri The global scheduling priority associated with this priority level.
The mapping between fixed—priority priority levels and global
scheduling priorities is determined at boot time by the system
configuration. f£x_globpri can not be changed with
dispadmin(1M).

fx_quantum The length of the time quantum allocated to processes at this level
in ticks (hz). The time quantum value is only a default or starting
value for processes at a particular level, as the time quantum of a
fixed priority process can be changed by the user with the
prioccntl(l) command or the priocnt1(2) system call.

In the high resolution clock mode (hires_tick set to 1), the
value of hz is set to 1000. Increase quantums to maintain the same
absolute time quantums.

An administrator can affect the behavior of the fixed priority
portion of the scheduler by reconfiguring the £x dptbl. There are
two methods available for doing this: reconfigure with a loadable
module at boot-time or by using dispadmin(1M) at run-time.

man pages section 4: File Formats ¢ Last Revised 15 Oct 2002

fx_dptbl Loadable
Module

dispadmin
Configuration File

Replacing the
fx_dptbl Loadable
Module

fx_dptbl(4)

The £x_dptbl can be reconfigured with a loadable module that contains a new fixed
priority dispatch table. The module containing the dispatch table is separate from the
FX loadable module, which contains the rest of the fixed priority software. This is the
only method that can be used to change the number of fixed priority priority levels or
the set of global scheduling priorities used by the fixed priority class. The relevant
procedure and source code is described in Replacing the fx_dptbl Loadable Module
below.

The £x_quantum values in the £x_dptbl can be examined and modified on a
running system using the dispadmin(1M) command. Invoking dispadmin for the
fixed-priority class allows the administrator to retrieve the current £x_dptbl
configuration from the kernel’s in-core table or overwrite the in-core table with values
from a configuration file. The configuration file used for input to dispadmin must
conform to the specific format described as follows:

® Blank lines are ignored and any part of a line to the right of a # symbol is treated as
a comment.

m The first non-blank, non-comment line must indicate the resolution to be used for
interpreting the time quantum values. The resolution is specified as:

RES=res

where res is a positive integer between 1 and 1,000,000,000 inclusive and the
resolution used is the reciprocal of res in seconds (for example, RES=1000 specifies
millisecond resolution). Although you can specify very fine (nanosecond)
resolution, the time quantum lengths are rounded up to the next integral multiple
of the system clock’s resolution.

® The remaining lines in the file are used to specify the £x quantum values for each
of the fixed-priority priority levels. The first line specifies the quantum for
fixed-priority level 0, the second line specifies the quantum for fixed-priority level
1, and so forth. There must be exactly one line for each configured fixed priority
priority level. Each fx_quantum entry must be a positive integer specifying the
desired time quantum in the resolution given by res.

See EXAMPLES for an example of an excerpt of a dispadmin configuration file.

To change the size of the fixed priority dispatch table, you must build the loadable
module that contains the dispatch table information. Save the existing module before
using the following procedure.

1. Place the dispatch table code shown below in a file called £x_dptbl.c. See
EXAMPLES, below, for an example of this file.

2. Compile the code using the given compilation and link lines supplied:

cc -c -0 -D_KERNEL fx dptbl.c
1ld -r -o FX DPTBL fx dptbl.o

3. Copy the current dispatch table in /usr/kernel/sched to FX DPTBL.bak.
4. Replace the current FX_DPTBL in /usr/kernel/sched.

File Formats 193

fx_dptbl(4)

5. Make changes in the /etc/systenm file to reflect the changes to the sizes of the
tables. See system(4). The variables affected is £x_maxupri. The syntax for
setting this is as follows:

set FX:fx maxupri= (value for max fixed-priority user priority)

6. Reboot the system to use the new dispatch table.

Exercise great care in using the preceding method to replace the dispatch table. A
mistake can result in panics, thus making the system unusable.

EXAMPLES | ExAMPLE 1 Configuration File Excerpt

The following excerpt from a dispadmin configuration file illustrates the correct
format. Note that, for each line specifying a set of parameters, there is a comment
indicating the corresponding priority level. These level numbers indicate priority
within the fixed priority class; the mapping between these fixed-priority priorities and
the corresponding global scheduling priorities is determined by the configuration
specified in the FX DPTBL loadable module. The level numbers are strictly for the
convenience of the administrator reading the file and, as with any comment, they are
ignored by dispadmin. The dispadmin command assumes that the lines in the file
are ordered by consecutive, increasing priority level (from 0 to the maximum
configured fixed—priority priority). For the sake of someone reading the file, the level
numbers in the comments should agree with this ordering. If for some reason they do
not, dispadmin is unaffected.

Fixed Priority Dispatcher Configuration File RES=1000

RES=1000

TIME QUANTUM PRIORITY
(fx_quantum) LEVEL
200 #

200 # 1
200 # 2
200 # 3
200 # 4
200 # 5
200 # 6
200 # 7
20 # 58
20 # 59
20 # 60

EXAMPLE 2 fx_dptbl. c File Used for Building the New fx_dptbl

The following is an example of a £x_dptbl . c file used for building the new
fx_dptbl.

194 man pages section 4: File Formats * Last Revised 15 Oct 2002

EXAMPLE 2 £x_dptbl. c File Used for Building the New fx_dptbl

/* BEGIN fx dptbl.c */

#include <sys/proc.h>
#include <sys/priocntl.h>
#include <sys/class.h>
#include <sys/disp.h>
#include <sys/fx.h>
#include <sys/fxpriocntl.h>

/*
* This is the loadable module wrapper.

*/
#include <sys/modctl.h>
extern struct mod ops mod miscops;

/*
* Module linkage information for the kernel.

*/

static struct modlmisc modlmisc = {
&mod miscops, "Fixed priority dispatch table"

}i

static struct modlinkage modlinkage = {
MODREV_1, &modlmisc, 0

}i

_init ()

{
}

return (mod_install (&modlinkage)) ;

_info (modinfop)
struct modinfo *modinfop;

return (mod_info (&modlinkage, modinfop)) ;

fx_dptbl(4)

(Continued)

#define FXGPUPO 0 /* Global priority for FX user priority 0 */

fxdpent t config fx dptbl[] = {
/* glbpri gntm */

FXGPUPO0+0, 20,

FXGPUPO+1, 20,

FXGPUPO+2, 20,

FXGPUPO0+3, 20,

FXGPUPO+4, 20,

FXGPUPO+5, 20,

FXGPUPO+6, 20,

FXGPUPO+7, 20,

File Formats

195

fx_dptbl(4)

EXAMPLE 2 £x_dptbl. c File Used for Building the New £x_dptbl (Continued)
FXGPUPO+8, 20,
FXGPUP0+9, 20,
FXGPUP0+10, 16,
FXGPUPO+11, 16,
FXGPUPO+12, 16,
FXGPUP0+13, 16,
FXGPUPO+14, 16,
FXGPUP0+15, 16,
FXGPUPO+16, 16,
FXGPUP0+17, 16,
FXGPUP0+18, 16,
FXGPUP0+19, 16,
FXGPUP0+20, 12,
FXGPUP0+21, 12,
FXGPUP0+22, 12,
FXGPUP0+23, 12,
FXGPUP0+24, 12,
FXGPUP0+25, 12,
FXGPUP0+26, 12,
FXGPUP0+27, 12,
FXGPUP0+28, 12,
FXGPUP0+29, 12,
FXGPUP0+30, 8,
FXGPUP0+31, 8,
FXGPUP0+32, 8,
FXGPUP0+33, 8,
FXGPUP0+34, 8,
FXGPUP0+35, 8,
FXGPUP0+36, 8,
FXGPUP0+37, 8,
FXGPUP0+38, 8,
FXGPUP0+39, 8,
FXGPUP0+40, 4,
FXGPUPO+41, 4,
FXGPUP0+42, 4,
FXGPUP0+43, 4,
FXGPUPO+44, 4,
FXGPUP0+45, 4,
FXGPUP0+46, 4,
FXGPUP0+47, 4,
FXGPUP0+48, 4,
FXGPUP0+49, 4,
FXGPUP0+50, 4,
FXGPUPO+51, 4,
FXGPUP0+52, 4,
FXGPUP0+53, 4,
FXGPUPO+54, 4,
FXGPUP0+55, 4,
FXGPUP0+56, 4,
FXGPUP0+57, 4,
FXGPUP0+58, 4,
FXGPUP0+59, 2,
FXGPUP0+60 2,

}i

196 man pages section 4: File Formats ¢ Last Revised 15 Oct 2002

SEE ALSO

NOTES

fx_dptbl(4)

EXAMPLE 2 £x_dptbl. c File Used for Building the New £x dptbl (Continued)

pri t config fx maxumdpri =

sizeof (config fx dptbl) / sizeof (fxdpent t) - 1;
/*
* Return the address of config fx dptbl
*/

fxdpent t *
fx_getdptbl ()

{
}
/*

* Return the address of fx maxumdpri
*/
pri_t
fx getmaxumdpri ()
{
/*
* the config fx dptbl table.
*/

return (config fx maxumdpri) ;

return (config fx dptbl);

}
priocntl(1l), dispadmin(IM), priocntl(2), system(4)
System Administration Guide, Volume 1, System Interface Guide

In order to improve performance under heavy system load, both the nfsd daemon
and the 1ockd daemon utilize the maximum priority in the FX class. Unusual

fx_ dptbl configurations may have significant negative impact on the performance of
the nfsd and lockd daemons.

File Formats 197

gateways(4)

198

NAME
SYNOPSIS

DESCRIPTION

gateways — configuration file for /usr/sbin/in.routed IPv4 network routing daemon

/etc/gateways

The /etc/gateways file is used by the routing daemon, in.routed(1M). When the
daemon starts, it reads /etc/gateways to find such distant gateways that cannot be
located using only information from a routing socket, to discover if some of the local
gateways are passive, and to obtain other parameters.

The /etc/gateways file consists of a series of lines, each in one of the two formats
shown below or consisting of parameters described later. Blank lines and lines starting
with “#” are treated as comments.

One format specifies networks:

net Nname [/mask] gateway Gname metric value <passive active extern>

The other format specifies hosts:

host Hname gateway Gname metric value <passive active extern>
Host hname is equivalent to net nname/32.

The parameters in the lines shown above are described as follows:

Nname or Hname
Name of the destination network or host. It can be a symbolic network name or an
Internet address specified in "dot" notation (see inet(3SOCKET)). If it is a name,
then it must either be defined in /etc/networks or /etc/hosts, or a naming
service must have been started before in.routed(1M).

Mask
An optional number between 1 and 32 indicating the netmask associated with
Nname.

Gname
Name or address of the gateway to which RIP responses should be forwarded.

Value
The hop count to the destination host or network.

passive | active | extern
One of these keywords must be present to indicate whether the gateway should be
treated as passive or active, or whether the gateway is external to the scope of the
RIP protocol. A passive gateway is not expected to exchange routing information,
while gateways marked active should be willing to exchange RIP packets. See
in.routed(1M) for further details.

After turning on debugging in in.routed with the -t option, you can see that lines
that follow the format described above create pseudo-interfaces. To set parameters for
remote or external interfaces, use a line starting with if=alias (Hname),
if=remote (Hname), and so forth.

man pages section 4: File Formats * Last Revised 19 Aug 2004

gateways(4)

For backward compatibility with the previous Solaris in. routed implementation,
three special keyword formats are accepted. If present, these forms must each be on a
separate line, and must not be combined on the same line with any of the keywords
listed elsewhere in this document. These three forms are:

norip ifname Disable all RIP processing on the specified interface.

noripin ifname Disable the processing of received RIP responses on the
specified interface.

noripout ifname Disable RIP output on the specified interface.

Note that, in each of the preceding three keywords, the ifname argument is optional. If
it is not present, the keyword applies to all interfaces.

Lines that start with neither "net" nor "host" must consist of one or more of the
following parameter settings, separated by commas or blanks:

if=ifname
Indicates that the other parameters on the line apply only to the interface name
ifname. If this parameter is not specified, then other parameters on the line apply to
all interfaces.

subnet=nname [/mask] [, metric]
Adpvertises a route to network nname with mask mask and the supplied metric
(default 1). This is useful for filling "holes" in CIDR allocations. This parameter
must appear by itself on a line. The network number must specify a full, 32-bit
value, asin 192.0.2.0 instead of 192.0. 2.

ripvl mask=nname/maskl , mask2
Specifies that the netmask of the network of which nname/mask1 is a subnet should
be mask2. For example, ripvl mask=192.0.2.16/28,27 marks
192.0.2.16/28 asasubnetof 192.0.2.0/27 instead of 192.0.2.0/24. Itis
better to turn on RIPv2 instead of using this facility. See the description of
ripv2 out, below.

passwd=XXX [| KeyID [start | stop]]

Specifies a RIPv2 cleartext password that will be included on all RIPv2 responses

sent, and checked on all RIPv2 responses received. Any blanks, tab characters,

commas, or “#”,“|”, or NULL characters in the password must be escaped with a
backslash (\). The common escape sequences \n, \r, \t, \b, and \xxx have their
usual meanings. The KeyID must be unique but is ignored for cleartext passwords.
If present, start and stop are timestamps in the form year/month/day@hour:minute.
They specify when the password is valid. The valid password with the longest
future is used on output packets, unless all passwords have expired, in which case
the password that expired most recently is used. If no passwords are valid yet, no
password is output. Incoming packets can carry any password that is valid, will be
valid within 24 hours, or that was valid within 24 hours. To protect password
secrecy, the passwd settings are valid only in the /etc/gateways file and only
when that file is readable only by UID 0.

File Formats 199

gateways(4)

md5_ passwd=XXX | KeyID[start | stop]
Specifies a RIPv2 MD5 password. Except that a KeyID is required, this keyword is
similar to passwd (described above).

no_ag
Turns off aggregation of subnets in RIPv1 and RIPv2 responses.

no_host
Turns off acceptance of host routes.

no_super_ag
Turns off aggregation of networks into supernets in RIPv2 responses.

passive
Marks the interface not to be advertised in updates sent over other interfaces, and
turns off all RIP and router discovery through the interface.

no_rip
Disables all RIP processing on the specified interface. If no interfaces are allowed to
process RIP packets, in.routed acts purely as a router discovery daemon.

Note that turning off RIP without explicitly turning on router discovery
advertisements with rdisc_adv or -s causes in.routed to act as a client router
discovery daemon, which does not advertise.

no_rip mcast
Causes RIPv2 packets to be broadcast instead of multicast.

no_ripvl in
Causes RIPv1 received responses to be ignored.

no_ripv2 in
Causes RIPv2 received responses to be ignored.

ripv2_ out
Turns on RIPv2 output and causes RIPv2 advertisements to be multicast when
possible.

ripv2
Equivalent to no_ripvl inand ripv2 out. This enables RIPv2 and disables
RIPv1.

no_rdisc
Disables the Internet Router Discovery Protocol.

no_solicit
Disables the transmission of Router Discovery Solicitations.
send_solicit

Specifies that Router Discovery solicitations should be sent, even on point-to-point
links, which, by default, only listen to Router Discovery messages.

no_rdisc_adv
Disables the transmission of Router Discovery Advertisements.

200 man pages section 4: File Formats * Last Revised 19 Aug 2004

SEE ALSO

gateways(4)

rdisc_adv
Specifies that Router Discovery Advertisements should be sent, even on
point-to-point links, which by default only listen to Router Discovery messages.

bcast_rdisc
Specifies that Router Discovery packets should be broadcast instead of multicast.

rdisc pref=N
Sets the preference in Router Discovery Advertisements to the optionally signed
integer N. The default preference is 0. Default routes with higher or less negative
preferences are preferred by clients.

rdisc_interval=N
Sets the nominal interval with which Router Discovery Advertisements are
transmitted to N seconds and their lifetime to 3*N.

fake default=metric
Has an identical effect to -F net[/mask][=metric] with the network number and
netmask coming from the specified interface.

pm_rdisc
Similar to fake default. To prevent RIPv1 listeners from receiving RIPv2 routes
when those routes are multicast, this feature causes a RIPv1 default route to be
broadcast to RIPv1 listeners. Unless modified with fake default, the default
route is broadcast with a metric of 14. That serves as a "poor man’s router
discovery" protocol.

trust gateway=rtr_name [| netl/maskl | net2 /mask2| . . .1
Causes RIP packets from that router and other routers named in other
trust_gateway keywords to be accepted, and packets from other routers to be
ignored. If networks are specified, then routes to other networks will be ignored
from that router.

redirect_ok
Causes RIP to allow ICMP Redirect messages when the system is acting as a router
and forwarding packets. Otherwise, ICMP Redirect messages are overridden.

rip neighbor=x.x.x.x
By default, RIPv1 advertisements over point-to-point links are sent to the peer’s
address (255.255.255.255, if none is available), and RIPv2 advertisements are sent to
either the RIP multicast address or the peer’s address if no_rip mcast is set. This
option overrides those defaults and configures a specific address to use on the
indicated interface. This can be used to set a "broadcast” type advertisement on a
point-to-point link.

in.routed(1M), route(1M), rtquery(1M), inet(3SOCKET),

Internet Transport Protocols, XSIS 028112, Xerox System Integration Standard

File Formats 201

geniconvtbl(4)
NAME

DESCRIPTION

The Lexical
Conventions

geniconvtbl — geniconvtbl input file format

An input file to geniconvtbl is an ASCII text file that contains an iconv code
conversion definition from one codeset to another codeset.

The geniconvtbl utility accepts the code conversion definition file(s) and writes
code conversion binary table file(s) that can be used in iconv(1l) and iconv(3C) to
support user-defined code conversions. See iconv(1l) and iconv(3C)for more detail
on the iconv code conversion and geniconvtbl(1l) for more detail on the utility.

The following lexical conventions are used in the iconv code conversion definition:

CONVERSION_NAME

NAME

HEXADECIMAL

DECIMAL

A string of characters representing the name of the
iconv code conversion. The iconv code conversion
name should start with one or more printable ASCII
characters followed by a percentage character '%’
followed by another one or more of printable ASCII
characters. Examples: IS08859-1%ASCII,
646%eucdP, CP_939%ASCII.

A string of characters starts with any one of the ASCII
alphabet characters or the underscore character, ”_’,
followed by one or more ASCII alphanumeric

characters and underscore character, ”_’. Examples:

_al,ABC codeset, K1.

A hexadecimal number. The hexadecimal
representation consists of an escape character, "0’
followed by the constant "x” or 'X” and one or more
hexadecimal digits. Examples: 0x0, 0x1, 0x1la, 0X1A,
0x1B3.

A decimal number, represented by one or more decimal
digits. Examples: 0, 123, 2165.

Each comment starts with '/ /” ends at the end of the line.

The following keywords are reserved:

automatic
break
dense
else

false

init

between binary
condition default
direction discard
error escapeseq
if index
input inputsize

202 man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

The precedence
and associativity

geniconvtbl(4)

map maptype no_change_copy
operation output output_byte_length
outputsize printchr printhd

printint reset return

true

Additionally, the following symbols are also reserved as tokens:

{y 1 cH i

The following table shows the precedence and associativity of the operators from
lower precedence at the top to higher precedence at the bottom of the table allowed in
the iconv code conversion definition:

Operator (Symbol) Associlativity
Assignment (=) Right
Logical oR () Left
Logical 280 (s&) Left
Bitwise OR () Left
Bxclusive oR () Left
Bitwise anp (&) Left
Bqual-to (= =), Left

Inequality (!=)

Less-than (<), Left
Less-than-or-equal-to (<=),
Greater-than (>),
Greater-than-or-equal-to (>=)

Left-shift (<<), Left
Right-shift (>>)

Addition (+), Left
Subtraction (-)

Multiplication (*), Left
Division (/),
Remainder (%)

File Formats 203

geniconvtbl(4)

204

The Syntax

Logical negation (!), Right
Bitwise complement (~),
Unary minus (-)

Each iconv code conversion definition starts with CONVERSION_NAME followed by
one or more semi-colon separated code conversion definition elements:

// a US-ASCII to IS08859-1 iconv code conversion example:
US-ASCII%IS08859-1 {

// one or more code conversion definition elements here.

}

Each code conversion definition element can be any one of the following elements:

direction
condition
operation
map

To have a meaningful code conversion, there should be at least one direction,
operation, or map element in the iconv code conversion definition.

The direction element contains one or more semi-colon separated condition-action
pairs that direct the code conversion:

direction For_ US-ASCII_2_IS08859-1 {

// one or more condition-action pairs here.

}

Each condition-action pair contains a conditional code conversion that consists of a
condition element and an action element.

condition action

If the pre-defined condition is met, the corresponding action is executed. If there is no
pre-defined condition met, iconv(3C) will return -1 with errno set to EILSEQ. The
condition can be a condition element, a name to a pre-defined condition element, or a
condition literal value, true. The "true’ condition literal value always yields success
and thus the corresponding action is always executed. The action also can be an action
element or a name to a pre-defined action element.

man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

geniconvtbl(4)

The condition element specifies one or more condition expression elements. Since each
condition element can have a name and also can exist stand-alone, a pre-defined
condition element can be referenced by the name at any action pairs later. To be used
in that way, the corresponding condition element should be defined beforehand:

condition For US-ASCII_2_IS08859-1 {

// one or more condition expression elements here.

}

The name of the condition element in the above example is

For US-ASCII 2 I1S08859-1.Each condition element can have one or more
condition expression elements. If there are more than one condition expression
elements, the condition expression elements are checked from top to bottom to see if
any one of the condition expression elements will yield a true. Any one of the
following can be a condition expression element:

between
escapeseq
expression

The between condition expression element defines one or more comma-separated
ranges:

between 0x0...0x1f, 0x7f...0x9f ;
between Oxalal...Oxfefe ;

In the first expression in the example above, the covered ranges are 0x0 to 0x1f and
0x7f to 0x9f inclusively. In the second expression, the covered range is the range
whose first byte is 0xal to 0xfe and whose second byte is between 0xal to 0xfe.
This means that the range is defined by each byte. In this case, the sequence 0xa280
does not meet the range.

The escapeseq condition expression element defines an equal-to condition for one or
more comma-separated escape sequence designators:

// ESC $) C sequence:
escapeseq 0x1b242943;

// ESC $) C sequence or ShiftOut (SO) control character code, 0x0Oe:
escapeseq 0x1b242943, 0x0e;

The expression can be any one of the following and can be surrounded by a pair of
parentheses, ‘(" and ’)":

// HEXADECIMAL:
Oxalal

// DECIMAL
12

File Formats 205

geniconvtbl(4)

// A boolean value, true:
true

// A boolean value, false:
false

// Addition expression:
1+ 2

// Subtraction expression:
10 - 3

// Multiplication expression:
0x20 * 10

// Division expression:
20 / 10

// Remainder expression:
17 % 3

// Left-shift expression:
1l << 4

// Right-shift expression:
Oxal >> 2

// Bitwise OR expression:
0x2121 | 0x8080

// Exclusive OR expression:
O0xalal * 0x8080

// Bitwise AND expression:
Oxal & 0x80

// Equal-to expression:
0x10 == 16

// Inequality expression:
0x10 != 10

// Less-than expression:
0x20 < 25

// Less-than-or-equal-to expression:
10 <= 0x10

// Bigger-than expression:
0x10 > 12

// Bigger-than-or-equal-to expression:
0x10 >= Oxa

// Logical OR expression:
0x10 || false

206 man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

geniconvtbl(4)

// Logical AND expression:
0x10 && false

// Logical negation expression:
! false

// Bitwise complement expression:
~0

// Unary minus expression:
-123

There is a single type available in this expression: integer. The boolean values are two
special cases of integer values. The "true’ boolean value’s integer value is 1 and the
"false” boolean value’s integer value is 0. Also, any integer value other than 0 is a true
boolean value. Consequently, the integer value 0 is the false boolean value. Any
boolean expression yields integer value 1 for true and integer value 0 for false as the
result.

Any literal value shown at the above expression examples as operands, that is,
DECIMAL, HEXADECIMAL, and boolean values, can be replaced with another
expression. There are a few other special operands that you can use as well in the
expressions: ‘input’, "inputsize’, ‘outputsize’, and variables. input is a
keyword pointing to the current input buffer. inputsize is a keyword pointing to the
current input buffer size in bytes. outputsize is a keyword pointing to the current
output buffer size in bytes. The NAME lexical convention is used to name a variable.
The initial value of a variable is 0. The following expressions are allowed with the
special operands:

// Pointer to the third byte value of the current input buffer:
input [2]

// Equal-to expression with the ’input’:
input == 0x8020

// Alternative way to write the above expression:
0x8020 == input

// The size of the current input buffer size:
inputsize

// The size of the current output buffer size:
outputsize

// A variable:
saved_second _byte

// Assignment expression with the variable:

saved second byte = input [1]

File Formats 207

geniconvtbl(4)

The input keyword without index value can be used only with the equal-to operator,
'==". When used in that way, the current input buffer is consecutively compared with
another operand byte by byte. An expression can be another operand. If the input
keyword is used with an index value #, it is a pointer to the (n+1)th byte from the
beginning of the current input buffer. An expression can be the index. Only a variable

can be placed on the left hand side of an assignment expression.

The action element specifies an action for a condition and can be any one of the
following elements:

direction

operation

map

The operation element specifies one or more operation expression elements:

operation For US-ASCII 2 IS08859-1 {

// one or more operation expression element definitions here.

}

If the name of the operation element, in the case of the above example, For_US
-ASCII 2 IS08859-1,iseither init or reset, it defines the initial operation and
the reset operation of the iconv code conversion:

// The initial operation element:
operation init {

// one or more operation expression element definitions here.

}

// The reset operation element:
operation reset

// one or more operation expression element definitions here.

}

The initial operation element defines the operations that need to be performed in the
beginning of the iconv code conversion. The reset operation element defines the
operations that need to be performed when a user of the iconv(3) function requests a
state reset of the iconv code conversion. For more detail on the state reset, refer to
iconv(3Q0).

The operation expression can be any one of the following three different expressions
and each operation expression should be separated by an ending semicolon:

208 man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

geniconvtbl(4)

if-else operation expression
output operation expression

control operation expression

The if-else operation expression makes a selection depend on the boolean expression

result. If the boolean expression result is true, the true task that follows the “if’ is

executed. If the boolean expression yields false and if a false task is supplied, the false

task that follows the ’else’ is executed. There are three different kinds of if-else
operation expressions:

// The if-else operation expression with only true task:
if (expression) {

// one or more operation expression element definitions here.

}

// The if-else operation expression with both true and false
// tasks:
if (expression) {

// one or more operation expression element definitions here.

} else {

// one or more operation expression element definitions here.

}

// The if-else operation expression with true task and
// another if-else operation expression as the false task:
if (expression) {

// one or more operation expression element definitions here.

} else if (expression) {

// one or more operation expression element definitions here.

} else {

// one or more operation expression element definitions here.

File Formats

209

geniconvtbl(4)

The last if-else operation expression can have another if-else operation expression as
the false task. The other if-else operation expression can be any one of above three
if-else operation expressions.

The output operation expression saves the right hand side expression result to the
output buffer:

// Save 0x8080 at the output buffer:
output = 0x8080;

If the size of the output buffer left is smaller than the necessary output buffer size
resulting from the right hand side expression, the iconv code conversion will stop with
E2BIGerrno and (size t) -1 return value to indicate that the code conversion needs
more output buffer to complete. Any expression can be used for the right hand side
expression. The output buffer pointer will automatically move forward appropriately
once the operation is executed.

The control operation expression can be any one of the following expressions:

// Return (size t)-1 as the return value with an EINVAL errno:
error;

// Return (size_t)-1 as the return value with an EBADF errno:
error 9;

// Discard input buffer byte operation. This discards a byte from
// the current input buffer and move the input buffer pointer to
// the 2'nd byte of the input buffer:

discard;

// Discard input buffer byte operation. This discards

// 10 bytes from the current input buffer and move the input
// buffer pointer to the 11’th byte of the input buffer:
discard 10;

// Return operation. This stops the execution of the current
// operation:
return;

// Operation execution operation. This executes the init
// operation defined and sets all variables to zero:
operation init;

// Operation execution operation. This executes the reset
// operation defined and sets all variables to zero:
operation reset;

// Operation execution operation. This executes an operation
// defined and named ’'IS08859 1 to IS08859 2':
operation IS08859 1 to_IS08859 2;

// Direction operation. This executes a direction defined and
// named ’'IS0O8859 1 to KOI8 R:
direction IS08859_1 to_KOI8_R;

// Map execution operation. This executes a mapping defined

210 man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

geniconvtbl(4)

// and named ’‘Map ISO8859 1 to US ASCII':
map Map IS0O8859 1 to US ASCII;

// Map execution operation. This executes a mapping defined
// and named ’‘Map ISO8859 1 to US ASCII' after discarding
// 10 input buffer bytes:

map Map IS08859 1 to US ASCII 10;

In case of init and reset operations, if there is no pre-defined init and/or reset
operations in the iconv code conversions, only system-defined internal init and reset
operations will be executed. The execution of the system-defined internal init and reset
operations will clear the system-maintained internal state.

There are three special operators that can be used in the operation:

printchr expression;
printhd expression;

printint expression;

The above three operators will print out the given expression as a character, a
hexadecimal number, and a decimal number, respectively, at the standard error
stream. These three operators are for debugging purposes only and should be
removed from the final version of the iconv code conversion definition file.

In addition to the above operations, any valid expression separated by a semi-colon
can be an operation, including an empty operation, denoted by a semi-colon alone as
an operation.

The map element specifies a direct code conversion mapping by using one or more
map pairs. When used, usually many map pairs are used to represent an iconv code
conversion definition:

map For US-ASCII 2 IS08859-1

// one or more map pairs here

}

Each map element also can have one or two comma-separated map attribute elements
like the following examples:

// Map with densely encoded mapping table map type:
map maptype = dense {

// one or more map pairs here

}

// Map with hash mapping table map type with hash factor 10.
// Only hash mapping table map type can have hash factor. If
// the hash factor is specified with other map types, it will be

File Formats 211

geniconvtbl(4)

// ignored.
map maptype = hash : 10 {

// one or more map pairs here.

}

// Map with binary search tree based mapping table map type:
map maptype = binary {

// one more more map pairs here.

}

// Map with index table based mapping table map type:
map maptype = index {

// one or more map pairs here.

}

// Map with automatic mapping table map type. If defined,
// system will assign the best possible map type.
map maptype = automatic {

// one or more map pairs here.

}

// Map with output byte length limit set to 2.
map output_byte length = 2 {

// one or more map pairs here.

}
// Map with densely encoded mapping table map type and
// output bute length limit set to 2:

map maptype = dense, output byte length = 2 ({

// one or more map pairs here.

212 man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

geniconvtbl(4)

If no maptype is defined, automatic is assumed. If no output_byte_length is defined,
the system figures out the maximum possible output byte length for the mapping by
scanning all the possible output values in the mappings. If the actual output byte
length scanned is bigger than the defined output_byte_length, the geniconvtbl
utility issues an error and stops generating the code conversion binary table(s).

The following are allowed map pairs:

// Single mapping. This maps an input character denoted by
// the code value 0x20 to an output character value 0x21:
0x20 0x21

// Multiple mapping. This maps 128 input characters to 128

// output characters. In this mapping, 0x0 maps to 0x10, 0x1l maps
// to 0x11l, 0x2 maps to 0x12, ..., and, O0x7f maps to 0x8f:
0x0...0x7f 0x10

// Default mapping. If specified, every undefined input character
// in this mapping will be converted to a specified character

// (in the following case, a character with code value of 0x3f):
default 0x3f;

// Default mapping. If specified, every undefined input character
// in this mapping will not be converted but directly copied to
// the output buffer:

default no_change_copy;

// Error mapping. If specified, during the code conversion,

// if input buffer contains the byte value, in this case, 0x80,
// the iconv(3) will stop and return (size t)-1 as the return
// value with EILSEQ set to the errno:

0x80 error;

If no default mapping is specified, every undefined input character in the mapping
will be treated as an error mapping. and thus the iconv(3C) will stop the code
conversion and return (size t) -1 as the return value with EILSEQ set to the errno.

The syntax of the iconv code conversion definition in extended BNF is illustrated
below:

iconv_conversion definition
CONVERSION NAME ’{’ definition element_ list '}’

definition element list
definition_element ’;’
| definition_element_list definition element ’;’

i

definition element
direction
condition
operation
| map

File Formats 213

geniconvtbl(4)

direction
"direction’ NAME ’{’ direction unit_ list '}’
| 'direction’ ’{’ direction unit list ’}’
direction_unit_list
direction unit
| direction unit list direction unit

i

direction_unit
condition action ;'
| condition NAME ;'
| NAME action ’;’
| NAME NAME ’ ;'
| "true’ action ’;’
| "true’ NAME ;'

7

action
direction
| map
| operation
i
condition

‘condition’ NAME ’{’ condition list '}’
| “condition’ ’{’ condition list ’}’

condition list
condition_expr ’;’
| condition list condition expr ;'

condition_expr
'between’ range_ list
| expr
| 'escapeseq’ escseq list ’;’

i

range_list
range pair
| range list ’,’ range pair

7

range_pair

HEXADECIMAL ’...’ HEXADECIMAL
escseqg_list
escseq
| escseqg list ’,’ escseqg
escseq : HEXADECIMAL
map : ‘map’ NAME ’{’ map_ list '}’

214 man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

| Imapl

geniconvtbl(4)

*{’ map_list '}’

| 'map’ NAME map_ attribute ’{’ map list '}’

| ‘map’ map_attribute

7

map_attribute

"{’ map_list '}’

: map_type ’,’ ‘output_byte length’ ’'=’ DECIMAL
| map_type

| ‘output byte length’ ‘=’ DECIMAL ’,’ map_type
| ’output_byte_ length’ ‘=’ DECIMAL

map_type: 'maptype’ '

"maptype’ ‘=’

map_type_name

' map_type name
map_type name

DECIMAL

"automatic’
| 7index’
| "hash’
| ‘binary’
| "dense’
map_list
map_pair
| map_list map pair
map_pair
: HEXADECIMAL HEXADECIMAL
I HEXADECIMAL ' ...’ HEXADECIMAL HEXADECIMAL
| "default’ HEXADECIMAL
| "default’ ’'no_change copy’
| HEXADECIMAL 'error’
operation
: ‘operation’ NAME ’{’ op list ’}’
| ’operation’ ’{’ op_list ’}’
| ‘operation’ ‘init’ ‘{’ op_list '}’
| ‘operation’ ‘reset’ ‘{’ op_ list '}’
op list op_unit
| op list op unit
op_unit : ;'
| expr ’;’
| "error’ ;'
| "error’ expr ';’
| "discard’ ;'
| "discard’ expr ’;’
| "output’ ’'=' expr ’;’
| "direction’ NAME ' ;'
| "operation’ NAME ' ;'
| ‘operation’ ‘init’ ’;’
| "operation’ ‘reset’ ’;’

File Formats 215

geniconvtbl(4)

216

| ‘map’ NAME ’;’

| 'map’ NAME expr
| op_if else

| "return’ ’;’

| ‘printchr’ expr
| 'printhd’ expr ’
| ‘printint’ expr

op_if_ else

*
expr '/' expr
expr %’ expr

expr ’'<<' expr
expr ’'>>' expr
expr ' |’ expr
expr '’ expr
expr ‘&’ expr
expr ’'==' expr
expr '!=' expr
expr ‘>’ expr
expr ’'>=' expr
expr ‘<’ expr
expr ’'<=' expr
NAME ’'=' expr
expr expr

/||:
expr '&&' expr

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| expr ’
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

’

’

"if’ ' (' expr ')’ '{’ op_list '}’
| 7if7 (" expr ')’ "{’ op_list '}’
| 7if7 (" expr ')’ '{’ op_ list '}’

expr : (" expr ')’

NAME

HEXADECIMAL

DECIMAL

‘input’ ‘[’ expr ']’

‘outputsize’

"inputsize’

"true’

'false’

‘input’ ‘==’ expr

expr ’'==' ‘input’

1" expr

''~! expr

'-' expr

expr '+’ expr

expr '-' expr

! expr

‘else’ op_if else

‘else’

EXAMPLES | EXAMPLE 1 Code conversion from ISO8859-1 to ISO646

I1508859-1%150646 {

default

}i

0x0...0x7f

0x3f
0x0

man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

"{’ op_list '}’

// Use dense-encoded internal data structure.
map maptype = dense {

geniconvtbl(4)

EXAMPLE 1 Code conversion from ISO8859-1 to ISO646 (Continued)

EXAMPLE 2 Code conversion from euc]P to ISO-2022-]JP

// Iconv code conversion from eucdP to ISO-2022-JP
#include <sys/errno.h>

eucJP%IS0-2022-JP {
operation init
codesetnum = 0;

}i

operation reset {
if (codesetnum != 0)
// Emit state reset sequence, ESC (J, for
// 1S0-2022-JP.
output = 0x1lb284a;
}
operation init;

}i

direction ({
condition { // JIS X 0201 Latin (ASCII)
between 0x00...0x7f;
} operation {
if (codesetnum != 0) {
// We will emit four bytes.
if (outputsize <= 3)
error E2BIG;
}
// Emit state reset sequence, ESC (J.
output = 0x1b284a;
codesetnum = 0;
} else {
if (outputsize <= 0)
error E2BIG;

}

output = input[0];

// Move input buffer pointer one byte.
discard;

}i

condition { // JIS X 0208
between 0Oxalal...Oxfefe;
} operation {
if (codesetnum != 1) {
if (outputsize <= 4)
error E2BIG;

}

// Emit JIS X 0208 sequence, ESC $ B.
output = 0x1b2442;
codesetnum = 1;

File Formats

217

geniconvtbl(4)
EXAMPLE 2 Code conversion from euc]P to ISO-2022-]JP (Continued)

} else {
if (outputsize <= 1) ({
error E2BIG;

}
}
output = (input[0] & 0x7f);
output = (input[1l] & 0x7f);

// Move input buffer pointer two bytes.
discard 2;

}i

condition { // JIS X 0201 Kana
between 0x8eal...0x8edf;
} operation {
if (codesetnum != 2) {
if (outputsize <= 3)
error E2BIG;
}
// Emit JIS X 0201 Kana sequence,
// ESC (I.
output = 0x1b2849;
codesetnum = 2;
} else {
if (outputsize <= 0)
error E2BIG;

}

output = (input[1l] & 127);

// Move input buffer pointer two bytes.
discard 2;

}i

condition { // JIS X 0212
between 0x8falal...0x8ffefe;
} operation {
if (codesetnum != 3) {
if (outputsize <= 5)
error E2BIG;
}
// Emit JIS X 0212 sequence, ESC $ (D.
output = 0x1b242844;
codesetnum = 3;
} else {
if (outputsize <= 1) {
error E2BIG;

}

output = (input[1l] & 127);
output = (input[2] & 127);
discard 3;

}i

true operation { // error

218 man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

geniconvtbl(4)

EXAMPLE 2 Code conversion from euc]P to ISO-2022-]JP (Continued)

error EILSEQ;

}

FILES | /usr/bin/geniconvtbl
the utility geniconvtbl

/usr/lib/iconv/geniconvtbl /binarytables/*.bt
conversion binary tables

/usr/lib/iconv/geniconvtbl/srcs/*
conversion source files for user reference

SEE ALSO | cpp(1), geniconvtbl(l), iconv(1l), iconv(3C), iconv_close(3C),
iconv_open(3C), attributes(5), environ(5)

International Language Environments Guide

NOTES | The maximum length of HEXADECIMAL and DECIMAL digit length is 128. The
maximum length of a variable is 255. The maximum nest level is 16.

File Formats 219

group(4)

220

NAME

DESCRIPTION

EXAMPLES

group — group file

The group file is a local source of group information. The group file can be used in
conjunction with other group sources, including the NIS maps group . byname and
group.bygid, the NIS+ table group, or group information stored on an LDAP
server. Programs use the getgrnam(3C) routines to access this information.

The group file contains a one-line entry for each group recognized by the system, of
the form:

groupname:password: gid:user-list

where

groupname The name of the group.

Qid The group’s unique numerical ID (GID) within the system.
user-list A comma-separated list of users allowed in the group.

The maximum value of the gid field is 2147483647. To maximize interoperability and
compatibility, administrators are recommended to assign groups using the range of
GIDs below 60000 where possible.

If the password field is empty, no password is demanded. During user identification
and authentication, the supplementary group access list is initialized sequentially from
information in this file. If a user is in more groups than the system is configured for,
{NGROUPS_MAX}, a warning will be given and subsequent group specifications will
be ignored.

Malformed entries cause routines that read this file to halt, in which case group
assignments specified further along are never made. To prevent this from happening,
use grpck(1B) to check the /etc/group database from time to time.

Previous releases used a group entry beginning with a “+” (plus sign) or ‘" (minus
sign) to selectively incorporate entries from a naming service source (for example, an
NIS map or data from an LDAP server) for group. If still required, this is supported by
specifying group : compat in nsswitch.conf(4). The compat source may not be
supported in future releases. Possible sources are files followed by 1dap or
nisplus. This has the effect of incorporating information from an LDAP server or the
entire contents of the NIS+ group table after the group file.

EXAMPLE 1 Sample of a group File.

Here is a sample group file:

root::0:root
stooges:qg.mJzTnu8icF. :10:larry, moe, curly

and the sample group entry from nsswitch. conf:

group: files ldap

man pages section 4: File Formats ¢ Last Revised 22 Jul 2004

SEE ALSO

group(4)
EXAMPLE 1 Sample of a group File. (Continued)
With these entries, the group stooges will have members larry, moe, and curly,

and all groups listed on the LDAP server are effectively incorporated after the entry
for stooges.

If the group file was:

root::0:root

stooges:q.mJzTnu8icF. :10:larry,moe, curly
+:

and the group entry from nsswitch.conf:

group: compat

all the groups listed in the NIS group . bygid and group . byname maps would be
effectively incorporated after the entry for stooges.

groups(1), grpck(1B), newgrp(l), getgrnam(3C), initgroups(3C),
nsswitch.conf(4), unistd.h(3HEAD)

System Administration Guide: Basic Administration

File Formats 221

gsscred.conf(4)
NAME | gsscred.conf — Generic Security Services credential configuration file

SYNOPSIS | /etc/gss/gsscred.conf

DESCRIPTION | The gsscred. conf file contains GSS credential information including options that
can be set by the system administrator.

The options that are in this file include:

SYSLOG_UID_MAPPING=yes

If this option is set to yes, GSS cred to Unix cred mapping results will be logged to
syslog(3C) at level auth.debug.

FILES | /etc/gss/gsscred.conf
Contains GSS credential information.

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

SEE ALSO | gsscred(1M), gssd(1M), syslog(3C), krb5.conf(4), SEAM(5), attributes(5)

222 man pages section 4: File Formats ¢ Last Revised 17 Mar 2004

NAME

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

BUGS

hba.conf(4)
hba.conf — configuration file for the HBAAPI library

The /etc/hba. conf file is used to specify the Vendor-Specific Libraries that are
installed on the system. This file is used by the Common Library to load the
individual VSLs when HBA_LoadLibrary(3HBAAPI) is called. If changes are made
to the file while the library is in use, the library should be freed and reloaded. A
version 1 VSL is compatible only with a version 1 Common Library. A version 2 VSL is
compatible with both a version 1 and a version 2 Common Library.

Each VSL entry is a single line of the form:

"name" "library path"
where:
name is the description of library. The library name should be prepended

with the domain of the manufacturer of the library.

library path is the absolute path to the shared object library file.

EXAMPLE 1 /etc/hba.conf

#

This file contains names and references to HBA libraries
#

Format:

#

<library name> <library pathname>

#

The library name should be prepended with the domain of
the manufacturer or driver author.

com.sun. fchba32 /usr/lib/libsun_fc.so.1

com.sun. fchbaé4 /usr/lib/sparcv9/libsun fc.so.1

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Standard: FC-MI 1.92 (API version 1)

Standard: FC-HBA Version 4 (API version 2)

HBA LoadLibrary(3HBAAPI), 1ibhbaapi(3LIB), attributes(5)

The HBAAPI is provided in both 32— and 64-bit versions, but only one configuration
file is specified. As a result, both 32— and 64-bit VSL libraries must be specified within
the same file. When using the 32-bit Common Library, the 64-bit VSLs will fail to
load. When using the 64-bit Common Library, the 32-bit VSLs will fail to load. These
failures are silently ignored by the Common Library during normal usage, but can
result in warning messages when running client applications in a debugger.

File Formats 223

holidays(4)

224

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

SEE ALSO

holidays — prime/nonprime table for the accounting system

/etc/acct/holidays

The /etc/acct /holidays file describes which hours are considered prime time and
which days are holidays. Holidays and weekends are considered non-prime time
hours. /etc/acct/holidays is used by the accounting system.

All lines beginning with an "*" are comments.

The /etc/acct/holidays file consists of two sections. The first non-comment line
defines the current year and the start time of prime and non-prime time hours, in the
form:

current_year prime_start non_prime_start

The remaining non-comment lines define the holidays in the form:

month/day company_holiday

Of these two fields, only the month/day is actually used by the accounting system
programs.

The /etc/acct/holidays file must be updated each year.

EXAMPLE 1 Example of the /etc/acct /holidays file.

The following is an example of the /etc/acct/holidays file:

* Prime/Nonprime Table for the accounting system
*
* Curr Prime Non-Prime
* Year Start Start
*
1991 0830 1800
*
* only the first column (month/day) is significant.
*
* month/day Company Holiday
*
1/1 New Years Day
5/30 Memorial Day
7/4 Indep. Day
9/5 Labor Day
11/24 Thanksgiving Day
11/25 day after Thanksgiving
12/25 Christmas
12/26 day after Christmas
acct(1M)

man pages section 4: File Formats ¢ Last Revised 28 Mar 1991

NAME
SYNOPSIS

DESCRIPTION

hosts(4)
hosts — host name database
/etc/inet/hosts

/etc/hosts

The hosts file is a local database that associates the names of hosts with their Internet
Protocol (IP) addresses. The hosts file can be used in conjunction with, or instead of,
other hosts databases, including the Domain Name System (DNS), the NIS hosts
map, the NIS+ hosts table, or information from an LDAP server. Programs use
library interfaces to access information in the hosts file.

The hosts file has one entry for each IP address of each host. If a host has more than
one IP address, it will have one entry for each, on consecutive lines. The format of
each line is:

IP-address official-host-name nicknames . . .

Items are separated by any number of SPACE and/or TAB characters. The first item
on a line is the host’s IP address. The second entry is the host’s official name.
Subsequent entries on the same line are alternative names for the same machine, or
“nicknames.” Nicknames are optional.

For a host with more than one IP address, consecutive entries for these addresses may
contain the same or differing nicknames. Different nicknames are useful for assigning
distinct names to different addresses.

A call to gethostbyname(3NSL) returns a hostent structure containing the union of
all addresses and nicknames from each line containing a matching official name or
nickname.

A’#” indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines that search the file.

Network addresses are written in the conventional “decimal dot” notation and
interpreted using the inet_addr routine from the Internet address manipulation
library, inet(3SOCKET).

This interface supports host names as defined in Internet RFC 952 which states:

A “name” (Net, Host, Gateway, or Domain name) is a text string up to 24 characters
drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and period (.). Note that
periods are only allowed when they serve to delimit components of “domain style
names”. (See RFC 921, “Domain Name System Implementation Schedule,” for
background). No blank or space characters are permitted as part of a name. No
distinction is made between uppercase and lowercase. The first character must be
an alpha character [or a digit. (RFC 1123 relaxed RFC 952’s limitation of the first
character to only alpha characters.)] The last character must not be a minus sign or
period.

File Formats 225

hosts(4)

226

EXAMPLES

SEE ALSO

NOTES

Although the interface accepts host names longer than 24 characters for the host
portion (exclusive of the domain component), choosing names for hosts that adhere to
the 24 character restriction will insure maximum interoperability on the Internet.

A host which serves as a GATEWAY should have “-GATEWAY” or “~GW” as part of
its name. Hosts which do not serve as Internet gateways should not use
“—~GATEWAY” and “~GW” as part of their names. A host which is a TAC should have
“—TAC” as the last part of its host name, if it is a DoD host. Single character names or
nicknames are not allowed.

EXAMPLE 1 Example of a typical line from the hosts file.

Here is a typical line from the hosts file:

192.9.1.20 gaia # John Smith
gethostbyname(3NSL), inet(3SOCKET), nsswitch.conf(4), resolv.conf(4)

/etc/inet/hosts is the official SVR4 name of the hosts file. The symbolic link
/etc/hosts exists for BSD compatibility.

man pages section 4: File Formats ¢ Last Revised 15 Dec 2004

NAME

DESCRIPTION

Positive Entries

hosts.equiv(4)

hosts.equiv, rhosts — trusted remote hosts and users

The /etc/hosts.equivand . rhosts files provide the “remote authentication”
database for r1ogin(l), rsh(l), rep(l), and remd(3SOCKET). The files specify remote
hosts and users that are considered “trusted”. Trusted users are allowed to access the
local system without supplying a password. The library routine ruserok () (see
remd(3SOCKET)) performs the authentication procedure for programs by using the
/etc/hosts.equivand .rhosts files. The /etc/hosts . equiv file applies to the
entire system, while individual users can maintain their own . rhosts files in their
home directories.

These files bypass the standard password-based user authentication mechanism. To
maintain system security, care must be taken in creating and maintaining these files.

The remote authentication procedure determines whether a user from a remote host
should be allowed to access the local system with the identity of a local user. This
procedure first checks the /etc/hosts. equiv file and then checks the . rhosts file
in the home directory of the local user who is requesting access. Entries in these files
can be of two forms. Positive entries allow access, while negative entries deny access.
The authentication succeeds when a matching positive entry is found. The procedure
fails when the first matching negative entry is found, or if no matching entries are
found in either file. The order of entries is important. If the files contain both positive
and negative entries, the entry that appears first will prevail. The rsh(l) and rcp(1)
programs fail if the remote authentication procedure fails. The rlogin program falls
back to the standard password-based login procedure if the remote authentication
fails.

Both files are formatted as a list of one-line entries. Each entry has the form:
hostname [username]
Hostnames must be the official name of the host, not one of its nicknames.

Negative entries are differentiated from positive entries by a ‘~" character preceding
either the hostname or username field.

If the form:

hostname

is used, then users from the named host are trusted. That is, they may access the
system with the same user name as they have on the remote system. This form may be
used in both the /etc/hosts.equiv and .rhosts files.

If the line is in the form:

hostname username

then the named user from the named host can access the system. This form may be
used in individual . rhosts files to allow remote users to access the system as a
different local user. If this form is used in the /etc/hosts.equiv file, the named
remote user will be allowed to access the system as any local user.

File Formats 227

hosts.equiv(4)

Negative Entries

netgroup(4) can be used in either the hostname or username fields to match a number
of hosts or users in one entry. The form:

+@netgroup

allows access from all hosts in the named netgroup. When used in the username field,
netgroups allow a group of remote users to access the system as a particular local user.
The form:

hostname +@netgroup

allows all of the users in the named netgroup from the named host to access the
system as the local user. The form:

+@netgroupl +@netgroup?

allows the users in netgroup2 from the hosts in netgroupl to access the system as the
local user.

The special character ‘+” can be used in place of either hostname or username to match
any host or user. For example, the entry

+

will allow a user from any remote host to access the system with the same username.
The entry

+ username

will allow the named user from any remote host to access the system. The entry
hostname +

will allow any user from the named host to access the system as the local user.
Negative entries are preceded by a ‘-’ sign. The form:

—hostname

will disallow all access from the named host. The form:

—@netgroup

means that access is explicitly disallowed from all hosts in the named netgroup. The
form:

hostname —username

disallows access by the named user only from the named host, while the form:

+ —@netgroup

will disallow access by all of the users in the named netgroup from all hosts.

228 man pages section 4: File Formats ¢ Last Revised 23 Jun 1997

Search Sequence

FILES

SEE ALSO

WARNINGS

hosts.equiv(4)

To help maintain system security, the /etc/hosts.equiv file is not checked when
access is being attempted for super-user. If the user attempting access is not the
super-user, /etc/hosts.equiv is searched for lines of the form described above.
Checks are made for lines in this file in the following order:

¥
+@netgroup
—@netgroup
—hostname
hostname

AN

The user is granted access if a positive match occurrs. Negative entries apply only to
/etc/hosts.equiv and may be overridden by subsequent . rhosts entries.

If no positive match occurred, the . rhosts file is then searched if the user attempting
access maintains such a file. This file is searched whether or not the user attempting
access is the super-user. As a security feature, the . rhosts file must be owned by the
user who is attempting access. Checks are made for lines in . rhosts in the following
order:

1. +

2. +@netgroup

3. —@netgroup

4. —hostname

5. hostname

/etc/hosts.equiv system trusted hosts and users
~/.rhosts user’s trusted hosts and users

rcp(l), rlogin(1), rsh(l), remd(8SOCKET), hosts(4), netgroup(4), passwd(4)

Positive entries in /etc/hosts.equiv that include a username field (either an
individual named user, a netgroup, or “+” sign) should be used with extreme caution.
Because /etc/hosts.equiv applies system-wide, these entries allow one, or a
group of, remote users to access the system as any local user. This can be a security
hole. For example, because of the search sequence, an /etc/hosts.equiv file
consisting of the entries

+
—hostxxx

will not deny access to “hostxxx”.

File Formats 229

ib(4)

230

NAME

DESCRIPTION

EXAMPLES

SEE ALSO

ib — InfiniBand device driver configuration files

The InfiniBand (IB) bus is an I/O transport based on switched fabrics. IB devices are
managed by the ib(7D) nexus driver. There are three categories of InfiniBand devices:

=]B port/IB VPPA/IB HCA_SVC devices
m B IOC devices
m [B Psuedo devices

The IB port/IB VPPA /IB HCA_SVC devices are enumerated by way of the ib.conf
file. See ib(7D).

The IB IOC devices are enumerated using the InfiniBand Device management class.
See ibdm(7D).

For devices not in these two categories, most notably IB Psuedo devices, the driver
must provide configuration files to inform the system of the IB devices to be created.
Configuration parameters are represented in the form of name value pairs you can
retrieve using the DDI property interfaces. See ddi_prop_op(9F) for details.

Configuration files for IB device drivers must identify the parent driver explicitly as
"ib," and must create a string array property called "unit-address" which is unique to
this entry in the configuration file. Drivers name "ibport" and "ioc" are reserved by
ib(7D) and should not be used.

Each entry in the configuration file creates a prototype devinfo node. Each node is
assigned a unit address which is determined by the value of the "unit-address"
property. This property is only applicable to children of the IB parent and is required.
See driver.conf(4) for further details on configuration file syntax.

Example 1: Sample configuration file

Here is a configuration file called ibgen. conf for an IB device driver that
implements a generic IB driver. This file creates a node called "ibgen."

#

Copyright 2002-2003 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

#

#ident '@ (#)ibgen.conf 1.3 03/05/01 SMI"

name="ibgen" parent="ib" unit-address="0";

driver.conf(4), ib(7D), ibt1(7D), ddi_prop op(9F)

man pages section 4: File Formats ¢ Last Revised 19 Feb 2004

idnkit.pc(4)
NAME | idnkit.pc — meta information data file for libidnkit

SYNOPSIS | /usr/lib/pkgconfig/idnkit.pc

DESCRIPTION | idnkit.pc is the meta information data file for 1ibidnkit(3LIB). Use
pkg-config (1) to retrieve the defined values such as compile and link flags for the
library.

EXAMPLES | EXAMPLE 1 Using idnkit.pc through pkg-config
The following command yields compile and link flags, if any, for 1ibidnkit(3LIB):

example% pkg-config --cflags --1libs idnkit

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWidnd

Interface Stability External

SEE ALSO | idn_decodename(3EXT), idn_decodename2(3EXT), idn encodename(3EXT),
libidnkit(3LIB), attributes(b), environ(b), iconv(5)

File Formats 231

ike.config(4)
NAME
SYNOPSIS

DESCRIPTION

Lexical
Components

232

ike.config — configuration file for IKE policy

/etc/inet/ike/config

The /etc/inet/ike/config file contains rules for matching inbound IKE requests.
It also contains rules for preparing outbound IKE requests.

You can test the syntactic correctness of an /etc/inet/ike/config file by using the
-c or -f options of in.iked(1M). You must use the -c option to test a config file.
You may need to use the -f option if it is not in /etc/inet/ike/config.

On any line, an unquoted # character introduces a comment. The remainder of that
line is ignored. Additionally, on any line, an unquoted // sequence introduces a
comment. The remainder of that line is ignored.

There are several types of lexical tokens in the ike.config file:

num
A decimal, hex, or octal number representation is as in 'C".

IPaddy [prefix / range
An IPv4 or IPv6 address with an optional /NNN suffix, (where NNN is a num) that
indicates an address (CIDR) prefix (for example, 10.1.2.0/24). An optional
/ADDR suffix (where ADDR is a second IP address) indicates an address/mask
pair (for example, 10.1.2.0/255.255.255.0). An optional -ADDR suffix (where
ADDR is a second IPv4 address) indicates an inclusive range of addresses (for
example, 10.1.2.0-10.1.2.255). The / or - can be surrounded by an arbitrary
amount of white space.

XXX | YYY | 222
Either the words XXX, YYY, or 222, for example, {yesno}.

pl-id-type
An IKE phase 1 identity type. IKE phase 1 identity types include:

dn, DN

dns, DNS
fgdn, FQODN
gn, GN

ip, IP

ipv4

ipv4 prefix
ipv4 range
ipvé
ipvée_prefix
ipv6_range
mbox, MBOX
user_fgdn

"string"
A quoted string.

man pages section 4: File Formats ¢ Last Revised 30 Oct 2003

File Body Entries

ike.config(4)
Examples include:"Label foo", or "C=US, OU=Sun Microsystems\\, Inc.,

N=olemcd@eng.example.com"

Abackslash (\) is an escape character. If the string needs an actual backslash, two
must be specified.

cert-sel

A certificate selector, a string which specifies the identities of zero or more
certificates. The specifiers can conform to X. 509 naming conventions.

A cert-sel can also use various shortcuts to match either subject alternative names,
the filename or slot of a certificate in /etc/inet/ike/publickeys, or even the
ISSUER. For example:

"SLOT=0"

"EMAIL=postmaster@domain.org"

"webmaster@domain.org" # Some just work w/o TYPE=
"IP=10.0.0.1"

"10.21.11.11" # Some just work w/o TYPE=
"DNS=www.domain.org"

"mailhost.domain.org" # Some just work w/o TYPE=
"ISSUER=C=US, O=Sun Microsystems\\, Inc., CN=Sun CA"

Any cert-sel preceded by the character ! indicates a negative match, that is, not
matching this specifier. These are the same kind of strings used in ikecert(1M).

Idap-list

A quoted, comma-separated list of LDAP servers and ports.

For example, "1dapl.example.com", "ldapl.example.com:389",
"ldapl.example.com:389, 1ldap2.example.com".

The default port for LDAP is 389.

parameter-list

Alist of parameters.

There are four main types of entries:

global parameters

IKE phase 1 transform defaults
IKE rule defaults

IKE rules

The global parameter entries are as follows:

cert_root cert-sel

The X.509 distinguished name of a certificate that is a trusted root CA certificate.It
must be encoded in a file in the /etc/inet /ike/publickeys directory. It must
have a CRLin /etc/inet/ike/crls. Multiple cert_root parameters aggregate.

File Formats 233

ike.config(4)

cert_trust cert-sel
Specifies an X.509 distinguished name of a certificate that is self-signed, or has
otherwise been verified as trustworthy for signing IKE exchanges. It must be
encoded in a file in /etc/inet/ike/publickeys. Multiple cert trust
parameters aggregate.

expire_timer integer
The number of seconds to let a not-yet-complete IKE Phase I (Main Mode)
negotiation linger before deleting it. Default value: 300 seconds.

ignore_crls
If this keyword is present in the file, in. iked(IM) ignores Certificate Revocation
Lists (CRLs) for root CAs (as given in cert_root)

ldap_server Idap-list
Alist of LDAP servers to query for certificates. The list can be additive.

pkes1l_path string
The string that follows is a pathname to a shared object (. so) that implements the
PKCS#11 standard. It is assumed the PKCS#11 library will provide faster public-key
operations than in. iked or other SunOS built-in functionality. For example, the
Sun Crypto Accelerator 1000 has such a library in
/opt/SUNWconn/lib/libpkcsll. so.

retry_limit integer
The number of retransmits before any IKE negotiation is aborted. Default value: 5
times.

retry_timer_init integer or float
The initial interval (in seconds) between retransmits. This interval is doubled until
the retry timer max value (see below) is reached. Default value: 0.5 seconds.

retry_timer_max integer or float
The maximum interval (in seconds) between retransmits. The doubling retransmit
interval will stop growing at this limit. Default value: 30 seconds.

Note — This value is never reached with the default configuration. The longest
interval will be 8 (0.5 * 2 ~ (5 - 1)) seconds.

proxy string
The string following this keyword must be a URL for an HTTP proxy, for example,
http://proxy:8080.

socks string
The string following this keyword must be a URL for a SOCKS proxy, for example,
socks://socks-proxy.

use_http
If this keyword is present in the file, in. iked(1M) uses HTTP to retrieve
Certificate Revocation Lists (CRLS).

The following IKE phase 1 transform parameters can be prefigured using file-level
defaults. Values specified within any given transform override these defaults.

234 man pages section 4: File Formats * Last Revised 30 Oct 2003

ike.config(4)
The IKE phase 1 transform defaults are as follows:

pl_lifetime_secs num
The proposed default lifetime, in seconds, of an IKE phase 1 security association
(SA).

pl_nonce_len num
The length in bytes of the phase 1 (quick mode) nonce data. This cannot be
specified on a per-rule basis.

The following IKE rule parameters can be prefigured using file-level defaults. Values
specified within any given rule override these defaults, unless a rule cannot.

p2_nonce_len num
The length in bytes of the phase 2 (quick mode) nonce data. This cannot be
specified on a per-rule basis.

local_id_type p1-id-type
The local identity for IKE requires a type. This identity type is reflected in the IKE
exchange. The type can be one of the following;:

an IP address (for example, 10.1.1.2)

DNS name (for example, test .domain. com)

MBOX RFC 822 name (for example, root@domain. com)

DNX.509 distinguished name (for example, C=US, O=Sun Microsystems),
Inc., CN=Sun Test cert)

pl_xform '{" parameter-list '}
A phase 1 transform specifies a method for protecting an IKE phase 1 exchange. An
initiator offers up lists of phase 1 transforms, and a receiver is expected to only
accept such an entry if it matches one in a phase 1 rule. There can be several of
these, and they are additive. There must be either at least one phase 1 transform in
a rule or a global default phase 1 transform list. In a configuration file without a
global default phase 1 transform list and a rule without a phase, transform list is an
invalid file. Unless specified as optional, elements in the parameter-list must occur
exactly once within a given transform’s parameter-list:

oakley_group number
The Oakley Diffie-Hellman group used for IKE SA key derivation. Acceptable
values are currently 1 (768-bit), 2 (1024-bit), or 5 (1536-bit).

encr_alg {3des, 3des-cbc, blowfish, des, des-cbc}
An encryption algorithm, as in ipsecconf(1M).

auth_alg {md5, sha, shal}
An authentication algorithm, as in ipsecconf(1M).

auth_method {preshared, rsa_sig, rsa_encrypt, dss_sig}
The authentication method used for IKE phase 1.

pl_lifetime_secs num
Optional. The lifetime for a phase 1 SA.

File Formats 235

ike.config(4)

p2_lifetime_secs num
If configuring the kernel defaults is not sufficient for different tasks, this parameter
can be used on a per-rule basis to set the IPsec SA lifetimes in seconds.

p2_pfs num
The Oakley Diffie-Hellman group used for IPsec SA key derivation. Acceptable
values are 0 (do not use Perfect Forward Secrecy for IPsec SAs), 1 (768-bit), 2
(1024-bit), and 5 (1536-bit).

An IKE rule starts with a right-curly-brace ({), ends with a left-curly-brace (}), and
has the following parameters in between:

label string
Required parameter. The administrative interface to in. iked looks up phase 1
policy rules with the label as the search string. The administrative interface also
converts the label into an index, suitable for an extended ACQUIRE message from
PF_KEY - effectively tying IPsec policy to IKE policy in the case of a node initiating
traffic. Only one label parameter is allowed per rule.

local_addr <IPaddr /prefix/range>
Required parameter. The local address, address prefix, or address range for this
phase 1 rule. Multiple local addr parameters accumulate within a given rule.

remote_addr <IPaddr/prefix/range>
Required parameter. The remote address, address prefix, or address range for this
phase 1 rule. Multiple remote_addr parameters accumulate within a given rule.

local_id_type p1-id-type
Which phase 1 identity type I uses. This is needed because a single certificate can
contain multiple values for use in IKE phase 1. Within a given rule, all phase 1
transforms must either use preshared or non-preshared authentication (they cannot
be mixed). For rules with preshared authentication, the local id_type
parameter is optional, and defaults to IP. For rules which use non-preshared
authentication, the 'local_id_type” parameter is required. Multiple "local_id_type’
parameters within a rule are not allowed.

local_id cert-sel
Disallowed for preshared authentication method; required parameter for
non-preshared authentication method. The local identity string or certificate
selector. Multiple 1ocal_id parameters accumulate within a given rule.

remote_id cert-sel
Disallowed for preshared authentication method; required parameter for
non-preshared authentication method. Selector for which remote phase 1 identities
are allowed by this rule. Multiple remote_id parameters accumulate within a
given rule. If a single empty string (" ") is given, then this accepts any remote ID for
phase 1. It is recommended that certificate trust chains or address enforcement be
configured strictly to prevent a breakdown in security if this value for remote_id
is used.

p2_lifetime_secs num
If configuring the kernel defaults is not sufficient for different tasks, this parameter
can be used on a per-rule basis to set the IPsec Sa lifetimes in seconds.

236 man pages section 4: File Formats » Last Revised 30 Oct 2003

EXAMPLES

ike.config(4)

p2_pfs num

Use perfect forward secrecy for phase 2 (quick mode). If selected, the oakley group
specified is used for phase 2 PFS. Acceptable values are 0 (do not use Perfect
Forward Secrecy for IPsec SAs), 1 (768-bit), 2 (1024-bit), and 5 (153 6-bit).

pl_xform { parameter-list }

A phase 1 transform specifies a method for protecting an IKE phase 1 exchange. An
initiator offers up lists of phase 1 transforms, and a receiver is expected to only
accept such an entry if it matches one in a phase 1 rule. There can be several of
these, and they are additive. There must be either at least one phase 1 transform in
a rule or a global default phase 1 transform list. A ike.config file without a
global default phase 1transform list and a rule without a phase 1 transform list is an
invalid file. Elements within the parameter-list; unless specified as optional, must
occur exactly once within a given transform’s parameter-list:

oakley_group number
The Oakley Diffie-Hellman group used for IKE SA key derivation. Acceptable
values are currently 1 (768-bit), 2 (1024-bit), or 5 (1536-bit).

encr_alg {3des, 3des-cbc, blowfish, des, des-cbc}
An encryption algorithm, as in ipsecconf(1M).

auth_alg {md5, sha, shal}
An authentication algorithm, as specified in ipseckey(1M).

auth_method {preshared, rsa_sig, rsa_encrypt, dss_sig}
The authentication method used for IKE phase 1.

pl_lifetime_secs num
Optional. The lifetime for a phase 1 SA.

EXAMPLE 1 A Sample ike.config File

The following is an example of an ike.config file:

BEGINNING OF FILE

First some global parameters...

certificate parameters...

Root certificates. I SHOULD use a full Distinguished Name.

I must have this certificate in my local filesystem, see ikecert(1lm).
cert_root "C=US, O=Sun Microsystems\\, Inc., CN=Sun CA"

Explicitly trusted certs that need no signatures, or perhaps self-signed
ones. Like root certificates, use full DNs for them for now.

cert_trust "EMAIL=root@domain.org"

Where do I send LDAP requests?
ldap_server "ldapl.domain.org, ldap2.domain.org:389"

phase 1 transform defaults...

File Formats 237

ike.config(4)

EXAMPLE 1 A Sample ike.config File (Continued)

pl_lifetime_secs 14400
pl_nonce_len 20

Parameters that may also show up in rules.

pl xform { auth method preshared oakley group 5 auth alg sha
encr_alg 3des }
p2_pfs 2

Use the Sun Crypto Accelerator 1000 to speed up public key operations.
pkcsll path "/opt/SUNWconn/lib/libpkcsll.so"

Now some rules...

label "simple inheritor"
local_id_type ip
local_addr 10.1.1.1
remote_addr 10.1.1.2

label "simple inheritor IPvée"
local id type ipveé

local_addr fe80::a00:20ff:fe7d:6
remote_addr fe80::a00:20ff:fefb:3780

an index-only rule. If I'm a receiver, and all I
have are index-only rules, what do I do about inbound IKE requests?
Answer: Take them all!

label "default rule"
Use whatever "host" (e.g. IP address) identity is appropriate
local_id type ipv4

local addr 0.0.0.0/0
remote_addr 0.0.0.0/0

p2_pfs 5

Now I'm going to have the pl xforms

pl_xform

{auth method preshared oakley group 5 auth alg md5 encr alg blowfish }
pl_xform

{auth method preshared oakley group 5 auth alg md5 encr alg 3des }

After said list, another keyword (or a ’}’) will stop xform parsing.

Let’s try something a little more conventional.

label "host to .80 subnet"

238 man pages section 4: File Formats » Last Revised 30 Oct 2003

ike.config(4)

EXAMPLE 1 A Sample ike.config File (Continued)
local_id type ip
local_id "10.1.86.51"
remote_id "" # Take any, use remote_addr for access control.

local addr 10.1.86.51
remote_addr 10.1.80.0/24

pl_xform

{ auth method rsa sig oakley group

pl_xform

{ auth_method rsa_sig oakley group

pl_xform

{ auth_method rsa_sig oakley group

pl_xform

{ auth _method rsa_sig oakley group

Let’s try something a

label "host to fe80::/1
local id type ip
local id "fe80::a00:20f

remote_id "" # Take

local_addr fe80::a00:20
remote_addr fe80::/10

pl_xform
{ auth_method rsa_sig
pl_xform
{ auth method rsa_sig
pl_xform
{ auth_method rsa_sig
pl_xform
{ auth method rsa_sig

little more

0 subnet"

f:fe7d:6"

5 auth alg md5 encr alg 3des }
5 auth alg md5 encr _alg blowfish }
5 auth alg shal encr alg 3des }

5 auth alg shal encr_alg blowfish }

conventional, but with ipvé.

any, use remote_addr for access control.

ff:fe7d:6

oakley group
oakley group
oakley group

oakley group

5 auth alg md5 encr alg 3des }
5 auth alg md5 encr alg blowfish }
5 auth _alg shal encr_alg 3des }

5 auth alg shal encr alg blowfish }

How ’'bout something with a different cert type and name?

label "punchin-point"
local id type mbox
local_id "ipsec-wizarde

remote_id "10.5.5.128"

local_addr 0.0.0.0/0
remote addr 10.5.5.128

pl_xform

domain.org"

{ auth_method rsa_sig oakley group 5 auth alg md5 encr alg blowfish }

File Formats 239

ike.config(4)

240

ATTRIBUTES

SEE ALSO

EXAMPLE 1 A Sample ike.config File (Continued)

label "receiver side"
remote_id "ipsec-wizard@domain.org"

local_id type ip
local id "10.5.5.128"

local addr 10.5.5.128
remote_addr 0.0.0.0/0

pl_xform

{ auth method rsa sig oakley group 5 auth alg md5 encr alg blowfish }
NOTE: Specifying preshared null-and-voids the remote id/local_id

fields.

pl_xform

{ auth method preshared oakley group 5 auth alg md5 encr_alg blowfish}

}

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesr

ikeadm(1M), in.iked(1M), ikecert(1IM), ipseckey(IM), ipsecconf(1M),
attributes(b), random(7D)

Harkins, Dan and Carrel, Dave. RFC 2409, Internet Key Exchange (IKE). Cisco Systems.,
November 1998.

Maughan, Douglas et. al. RFC 2408, Internet Security Association and Key Management
Protocol (ISAKMP). National Security Agency, Ft. Meade, MD. November 1998.

Piper, Derrell. REC 2407, The Internet IP Security Domain of Interpretation for ISAKMP.
Network Alchemy. Santa Cruz, California. November 1998.

man pages section 4: File Formats ¢ Last Revised 30 Oct 2003

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

ike.preshared(4)
ike.preshared — pre-shared keys file for IKE

/etc/inet/secret/ike.preshared

The /etc/inet/secret/ike.preshared file contains secret keying material that
two IKE instances can use to authenticate each other. Because of the sensitive nature of
this data, it is kept in the /etc/inet/secret directory, which is only accessible by
root.

Pre-shared keys are delimited by open-curly-brace ({) and close-curly-brace (})
characters. There are five name-value pairs required inside a pre-shared key:

Name Value Example
localidtype IP localidtype IP
remoteidtype IP remoteidtype IP
localid IP-address localid 10.1.1.2
remoteid IP-address remoteid 10.1.1.3
key hex-string 1234567890abcdef

Comment lines with # appearing in the first column are also legal.

Files in this format can also be used by the ikeadm(1M) command to load additional
pre-shared keys into a running an in. iked(1M) process.

EXAMPLE 1 A Sample ike.preshared File
The following is an example of an ike.preshared file:
#

Two pre-shared keys between myself, 10.1.1.2, and two remote
hosts. Note that names are not allowed for IP addresses.

#

A decent hex string can be obtained by performing:
od -x </dev/random | head

#

{
localidtype IP
localid 10.1.1.2
remoteidtype IP
remoteid 10.21.12.4
key 4b656265207761732068657265210c0a

localidtype IP
localid 10.1.1.2
remoteidtype IP

File Formats 241

ike.preshared(4)

242

remoteid 10.9.1.25

}

EXAMPLE 1 A Sample ike.preshared File

(Continued)

key 536£20776572652042696c6c2c2052656€65652c20616€642043687269732e0a

SECURITY | If this file is compromised, all IPsec security associations derived from secrets in this

0600. They should stay this way.

file will be compromised as well. The default permissions on ike .preshared are

ATTRIBUTES | See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

SUNWGcsr

SEE ALSO | od(1), ikeadm(1M), in.iked(1M), ipseckey(1M), attributes(5), random(7D)

man pages section 4: File Formats ¢ Last Revised 15 Oct 2001

NAME
SYNOPSIS

DESCRIPTION

inetd.conf(4)
inetd.conf — Internet servers database
/etc/inet/inetd.conf

/etc/inetd.conf

In the current release of the Solaris operating system, the inetd. conf file is no
longer directly used to configure inetd. The Solaris services which were formerly
configured using this file are now configured in the Service Management Facility (see
smf(5)) using inetadm(1M). Any records remaining in this file after installation or
upgrade, or later created by installing additional software, must be converted to
smf(5) services and imported into the SMF repository using inetconv(1M),
otherwise the service will not be available.

For Solaris operating system releases prior to the current release (such as Solaris 9), the
inetd. conf file contains the list of servers that inetd(1M) invokes when it receives
an Internet request over a socket. Each server entry is composed of a single line of the
form:

service-name endpoint-type protocol wait-status uid server-program \
server-arguments

Fields are separated by either SPACE or TAB characters. A “#” (number sign) indicates
the beginning of a comment; characters up to the end of the line are not interpreted by
routines that search this file.

service-name The name of a valid service listed in the services file.
For RPC services, the value of the service-name field
consists of the RPC service name or program number,
followed by a '/’ (slash) and either a version number or
a range of version numbers, for example, rstatd/2-4.

endpoint-type Can be one of:
stream for a stream socket
dgram for a datagram socket
raw for a raw socket
segpacket for a sequenced packet socket
tli for all TLI endpoints
protocol A recognized protocol listed in the file

/etc/inet/protocols. For servers capable of
supporting TCP and UDP over IPv6, the following
protocol types are also recognized:

tcpé6
udpé6

tcpé and udpé6 are not official protocols; accordingly,
they are not listed in the /etc/inet/protocols file.

File Formats 243

inetd.conf(4)

wait-status

uid

server-program

server—arguments

Here the inetd program uses an AF_INET6 type
socket endpoint. These servers can also handle
incoming IPv4 client requests in addition to IPv6 client
requests.

For RPC services, the field consists of the string rpc
followed by a '/’ (slash) and either a "*’ (asterisk), one
or more nettypes, one or more netids, or a combination
of nettypes and netids. Whatever the value, it is first
treated as a nettype. If it is not a valid nettype, then it is
treated as a netid. For example, rpc/* for an RPC
service using all the transports supported by the
system (the list can be found in the /etc/netconfig
file), equivalent to saying rpc/visible rpc/ticots
for an RPC service using the Connection-Oriented
Transport Service.

This field has values wait or nowait. This entry
specifies whether the server that is invoked by inetd
will take over the listening socket associated with the
service, and whether once launched, inetd will wait
for that server to exit, if ever, before it resumes listening
for new service requests. The wait-status for datagram
servers must be set to wait, as they are always
invoked with the orginal datagram socket that will
participate in delivering the service bound to the
specified service. They do not have separate "listening"
and "accepting" sockets. Accordingly, do not configure
UDP services as nowait. This causes a race condition by
which the inetd program selects on the socket and the
server program reads from the socket. Many server
programs will be forked, and performance will be
severely compromised. Connection-oriented services
such as TCP stream services can be designed to be
either wait or nowait status.

The user ID under which the server should run. This
allows servers to run with access privileges other than
those for root.

Either the pathname of a server program to be invoked
by inetd to perform the requested service, or the
value internal if inetd itself provides the service.

If a server must be invoked with command line
arguments, the entire command line (including
argument 0) must appear in this field (which consists of
all remaining words in the entry). If the server expects
inetd to pass it the address of its peer, for

244 man pages section 4: File Formats ¢ Last Revised 17 Dec 2004

inetd.conf(4)

compatibility with 4.2BSD executable daemons, then
the first argument to the command should be specified
as %A. No more than 20 arguments are allowed in this
field. The %A argument is implemented only for
services whose wait-status value is nowait.

FILES | /etc/netconfig network configuration file
/etc/inet/protocols Internet protocols
/etc/inet/services Internet network services

SEE ALSO | rlogin(1), rsh(l), in.tftpd(1M), inetadm(1M), inetconv(1M), inetd(1M),
services(4), smE(5)

NOTES | /etc/inet/inetd. conf is the official SVR4 name of the inetd. conf file. The
symbolic link /etc/inetd. conf exists for BSD compatibility.

This man page describes inetd. conf as it was supported in Solaris operating system
releases prior to the current release. The services that were configured by means of
inetd.conf are now configured in the Service Management Facility (see sm£(5))
using inetadm(1M).

File Formats 245

inet_type(4)
NAME | inet_type — default Internet protocol type
SYNOPSIS | /etc/default/inet type

DESCRIPTION | The inet_type file defines the default IP protocol to use. Currently this file is only
used by the ifconfig(1M) and netstat(1M) commands.

The inet_type file can contain a number of <variable>=<value> lines. Currently,
the only variable defined is DEFAULT _IP, which can be assigned a value of
IP_VERS TON4, IP_VERS IONG6, or BOTH.

The output displayed by the ifconfig and netstat commands can be controlled by
the value of DEFAULT IP setin inet_type file. By default, both commands display
the IPv4 and IPv6 information available on the system. The user can choose to
suppress display of IPv6 information by setting the value of DEFAULT _IP. The
following shows the possible values for DEFAULT_IP and the resulting ifconfig
and netstat output that will be displayed:

IP VERSION4 Displays only IPv4 related information. The output displayed is
backward compatible with older versions of the ifconfig(1M)
and netstat(1M) commands.

IP_VERSIONG6 Displays both IPv4 and IPv6 related information for ifconfig
and netstat.

BOTH Displays both IPv4 and IPv6 related information for ifconfig
and netstat.

The command-line options to the ifconfig and netstat commands override the
effect of DEFAULT IP as setin the inet type file. For example, even if the value of
DEFAULT IPis IP_VERSION4, the command

example% ifconfig -aéwill display all IPv6 interfaces.

EXAMPLES | EXAMPLE 1 Suppressing IPv6 Related Output

This is what the inet type file must contain if you want to suppress IPv6 related
output:

DEFAULT IP=IP_VERSION4

SEE ALSO | ifconfig(1IM), netstat(1M)

246 man pages section 4: File Formats * Last Revised 16 Jun 1999

NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

init.d(4)
init.d — initialization and termination scripts for changing init states

/etc/init.d

/etc/init.dis a directory containing initialization and termination scripts for
changing init states. These scripts are linked when appropriate to files in the rc?.d
directories, where “?’ is a single character corresponding to the init state. See
init(1M) for definitions of the states.

The service management facility (see sm£(5)) is the preferred mechanism for service
initiation and termination. The init.d and rc? .d directories are obsolete, and are
provided for compatibility purposes only. Applications launched from these
directories by svc.startd(1M) are incomplete services, and will not be restarted on
failure.

File names in rc? . d directories are of the form [SK]nn<init.d filename>, where S
means start this job, K means kill this job, and nn is the relative sequence number for
killing or starting the job.

When entering a state (init 5,0,2,3,etc.) the rc [S0-6] script executes those scripts in
/etc/rc[S0-6] .d that are prefixed with K followed by those scripts prefixed with S.
When executing each script in one of the /etc/rc[S0-6] directories, the
/sbin/rc[S0-6] script passes a single argument. It passes the argument "stop” for
scripts prefixed with K and the argument “start’ for scripts prefixed with S. There is no
harm in applying the same sequence number to multiple scripts. In this case the order
of execution is deterministic but unspecified.

Guidelines for selecting sequence numbers are provided in README files located in the
directory associated with that target state. For example, /etc/rc[S0-6] .d/README.
Absence of a README file indicates that there are currently no established guidelines.

Do not put /etc/init.d in your $PATH. Having this directory in your $PATH can
cause unexpected behavior. The programs in /etc/init.d are associated with init
state changes and, under normal circumstances, are not intended to be invoked from a
command line.

EXAMPLE 1 Example of /sbin/rc2.

When changing to init state 2 (multi-user mode, network resources not exported),
/sbin/rc2 is initiated by the svc. startd(1M) process. The following steps are
performed by /sbin/rc2.

1. In the directory /etc/rc2.d are files used to stop processes that should not be
running in state 2. The filenames are prefixed with K. Each K file in the directory is
executed (by /sbin/rc2) in alphanumeric order when the system enters init state
2. See example below.

2. Also in the rc2.d directory are files used to start processes that should be running
in state 2. As in Step 1, each s file is executed.

File Formats 247

init.d(4)

SEE ALSO

NOTES

EXAMPLE 1 Example of /sbin/rc2. (Continued)

Assume the file /etc/init.d/netdaemon is a script that will initiate networking
daemons when given the argument ’start’, and will terminate the daemons if given the
argument ‘stop’. It is linked to /etc/rc2.d/S68netdaemon, and to
/etc/rc0.d/Ké7netdaemon. The file is executed by /etc/rc2.d/S68netdaemon
start when init state 2 is entered and by /etc/rc0.d/Ké7netdaemon stop when
shutting the system down.

sves(l), init(1IM), sve. startd(1M), smE(5)

Solaris now provides an expanded mechanism, which includes automated restart, for
applications historically started via the init script mechanism. The Service
Management Facility (introduced in smf(5)) is the preferred delivery mechanism for
persistently running applications. Existing init . d scripts will, however, continue to
be executed according to the rules in this manual page. The details of execution in
relation to managed services are available in svc.startd(1M).

/sbin/rc2 has references to the obsolescent rc . d directory. These references are for
compatibility with old INSTALL scripts. New INSTALL scripts should use the init.d
directory for related executables. The same is true for the shutdown.d directory.

248 man pages section 4: File Formats * Last Revised 28 Jul 2004

NAME

DESCRIPTION

inittab(4)
inittab — script for init

The /etc/inittab file controls process dispatching by init. The processes most
typically dispatched by init are daemons.

It is no longer necessary to edit the /etc/inittab file directly. Administrators
should use the Solaris Service Management Facility (SMF) to define services instead.
Refer to smf(5) and the System Administration Guide: Basic Administration for more
information on SMF.

To modify parameters passed to t tymon(1M), use svccfg(1M) to modify the SMF
repository. See ttymon(1M) for details on the available SMF properties.

The inittab file is composed of entries that are position dependent and have the
following format:

id : rstate : action : process

Each entry is delimited by a newline; however, a backslash (\) preceding a newline
indicates a continuation of the entry. Up to 512 characters for each entry are permitted.
Comments may be inserted in the process field using the convention for comments
described in sh(1). There are no limits (other than maximum entry size) imposed on
the number of entries in the inittab file. The entry fields are:
id
One to four characters used to uniquely identify an entry. Do not use the characters
“r” or “t” as the first or only character in this field. These characters are reserved for
the use of rlogin(1l) and telnet(1).

rstate
Define the run level in which this entry is to be processed. Run-levels effectively
correspond to a configuration of processes in the system. That is, each process
spawned by init is assigned a run level(s) in which it is allowed to exist. The run
levels are represented by a number ranging from 0 through 6. For example, if the
system is in run level 1, only those entries having a 1 in the rstate field are
processed.

When init is requested to change run levels, all processes that do not have an
entry in the rstate field for the target run level are sent the warning signal SIGTERM
and allowed a 5-second grace period before being forcibly terminated by the kill
signal SIGKILL. The rstate field can define multiple run levels for a process by
selecting more than one run level in any combination from 0 through 6. If no run
level is specified, then the process is assumed to be valid at all run levels 0 through
6.

There are three other values, a, b and ¢, which can appear in the rstate field, even
though they are not true run levels. Entries which have these characters in the rstate
field are processed only when an init or telinit process requests them to be run
(regardless of the current run level of the system). See init(1M). These differ from
run levels in that init can never enter run level a, b or c. Also, a request for the

File Formats 249

inittab(4)

execution of any of these processes does not change the current run level.
Furthermore, a process started by an a, b or ¢ command is not killed when init
changes levels. They are killed only if their line in inittab is marked of f in the
action field, their line is deleted entirely from inittab, or init goes into
single-user state.

action

Key words in this field tell init how to treat the process specified in the process
field. The actions recognized by init are as follows:

respawn
If the process does not exist, then start the process; do not wait for its
termination (continue scanning the inittab file), and when the process dies,
restart the process. If the process currently exists, do nothing and continue
scanning the inittab file.

wait
When init enters the run level that matches the entry’s rstate, start the process
and wait for its termination. All subsequent reads of the inittab file while
init is in the same run level cause init to ignore this entry.

once
When init enters a run level that matches the entry’s rstate, start the process,
do not wait for its termination. When it dies, do not restart the process. If init
enters a new run level and the process is still running from a previous run level
change, the program is not restarted.

boot
The entry is to be processed only at init’s boot-time read of the inittab file.
init is to start the process and not wait for its termination; when it dies, it does
not restart the process. In order for this instruction to be meaningful, the rstate
should be the default or it must match init’s run level at boot time. This action
is useful for an initialization function following a hardware reboot of the system.

bootwait
The entry is to be processed the first time init goes from single-user to
multi-user state after the system is booted. init starts the process, waits for its
termination and, when it dies, does not restart the process.

powerfail
Execute the process associated with this entry only when init receives a power
fail signal, SIGPWR (see signal(3C)).

powerwait
Execute the process associated with this entry only when init receives a power
fail signal, SIGPWR, and wait until it terminates before continuing any
processing of inittab.

off
If the process associated with this entry is currently running, send the warning
signal SIGTERM and wait 5 seconds before forcibly terminating the process with
the kill signal SIGKILL. If the process is nonexistent, ignore the entry.

250 man pages section 4: File Formats ¢ Last Revised 9 Dec 2004

SEE ALSO

NOTES

inittab(4)

ondemand
This instruction is really a synonym for the respawn action. It is functionally
identical to respawn but is given a different keyword in order to divorce its
association with run levels. This instruction is used only with the a, b or ¢
values described in the rstate field.

sysinit
Entries of this type are executed before init tries to access the console (that is,
before the Console Login: prompt). It is expected that this entry will be used
only to initialize devices that init might try to ask the run level question. These
entries are executed and init waits for their completion before continuing.

process
Specify a command to be executed. The entire process field is prefixed with exec
and passed to a forked sh as sh —c ’ exec command’. For this reason, any legal sh
syntax can appear in the process field.

sh(1), who(1), init(1M), svcadm(1M), svc.startd(1M), ttymon(1M), exec(2),
open(2), signal(3C), smE(5)

System Administration Guide: Basic Administration

With the introduction of the service management facility, the system-provided
/etc/inittab file is greatly reduced from previous releases.

The initdefault entry is not recognized in Solaris 10. See sm£(5) for information on
SMF milestones, and svcadm(1M), which describes the “svcadm milestone -d”
command; this provides similar functionality to modifying the initdefault entry in
previous versions of the Solaris OS.

File Formats 251

ipaddrsel.conf(4)
NAME
SYNOPSIS

DESCRIPTION

EXAMPLES

ATTRIBUTES

SEE ALSO

ipaddrsel.conf — IPv6 default address selection policy

/etc/inet/ipaddrsel.conf

The ipaddrsel. conf file contains the IPv6 default address selection policy table
used for IPv6 source address selection and the sorting of AF_INET6 addresses
returned from name to address resolution. The mechanism for loading the file, the file
format, and the meaning of the contents are described in ipaddrsel(1M).

EXAMPLE 1 Default /etc/inet/ipaddrsel.conf File

The following is the default /etc/inet/ipaddrsel. conf file:

#

#ident "@ (#) ipv6das.conf 1.1 02/07/28 SMI"

#

Copyright 2002 Sun Microsystems, Inc. All rights reserved.
Use is subject to license terms.

#

Prefix Precedence Label
::1/128 50 0
::/0 40 1
2002::/16 30 2
::/96 20 3
::fff£:0.0.0.0/96 10 4

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWesr

Interface Stability Evolving

ipaddrsel(1M), attributes(5)

252 man pages section 4: File Formats Last Revised 6 Mar 2003

NAME

DESCRIPTION

Grammar

ipf, ipf.conf — IP packet filter rule syntax

ipf(4)

A rule file for ip£(1M) can have any name or can be stdin. You can use ipfstat(1M)

output as input to ip£(1M). ipfstat outputs parseable rules, suitable for input to

ipf, when displaying the internal kernel filter lists. Thus, for example, to remove all

filters on input packets, you can enter:

ipfstat -i | ipf -rf -

The IP filter feature uses the grammar shown below to construct filtering rules. The

syntax is simplified for readability. Note that some combinations that match this
grammar are disallowed by the software because they do not make sense (for
example, tcp flags for non-TCP packets).

filter-rule = [insert] action in-out [options] [tos] [ttl]
[proto] ip [group].

insert = "@" decnumber
action = block | "pass" | log | "count" | skip | auth | call
in-out = "in" | "out"
options = [log] [tag] ["quick"] ["on" interface-name
[dup] [froute] [replyto]
tos = "tos" decnumber | "tos" hexnumber
ttl = "ttl" decnumber
proto = "proto" protocol
ip = srcdst [flags] [with withopt] [icmp] [keep]
group = ["head" decnumber] ["group" decnumber]
block = "block" [return-icmp[return-code] | "return-rst"
auth = "auth" | "preauth"
log = "log" ["body"] ["first"] ["or-block"] ["level" loglevel]
tag = "tag" tagid
call = "call" ["now"] function-name
skip = "skip" decnumber
dup = "dup-to" interface-name[":"ipaddr]
froute = "fastroute" | "to" interface-name [":" ipaddr].
replyto = "reply-to" interface-name [":" ipaddr].
protocol = "tcp/udp" | "udp" | "tcp" | "icmp" | decnumber
srcdst = "all" | fromto
fromto = "from" ["!"] object "to" ["!"] object
return-icmp = "return-icmp" | "return-icmp-as-dest"
object = addr [port-comp | port-range]
addr = "any" | nummask | host-name ["mask" ipaddr | "mask" hexnumber]
addr = "any" | "<thishost>" | nummask |
host-name ["mask" ipaddr | "mask" hexnumber]
port-comp = "port" compare port-num
port-range = "port" port-num range port-num
flags = "flags" flag { flag } ["/" flag { flag }]
with = "with" | "and"
icmp = "icmp-type" icmp-type ["code" decnumber
return-code = " ("icmp-code")"
keep = "keep" "state" | "keep" "frags"
loglevel = facility"."priority | priority
nummask = host-name ["/" decnumber
host-name = ipaddr | hostname | "any"
ipaddr = host-num "." host-num "." host-num "." host-num

File Formats

253

ipf(4)

host-num = digit [digit [digit] 1
port-num = service-name | decnumber

withopt = ["not" | "no"] opttype [withopt]

opttype = "ipopts" | "short" | "frag" | "opt" optname

optname = ipopts ["," optname]

ipopts = optlist | "sec-class" [secname]

secname = seclvl ["," secname]

seclvl = "unclass" | "confid" | "reserv-1" | "reserv-2" | "reserv-3" |
"reserv-4" | "secret" | "topsecret"

icmp-type = "unreach" | "echo" | "echorep" | "squench" | "redir" |
"timex" | "paramprob" | "timest" | "timestrep" | "inforeg" |
"inforep" | "maskreq" | "maskrep" | decnumber

icmp-code = decumber | "net-unr" | "host-unr" | "proto-unr" | "port-unr"
"needfrag" | "srcfail" | "net-unk" | "host-unk" | "isolate" |
"net-prohib" | "host-prohib" | "net-tos" | "host-tos" |
"filter-prohib" | "host-preced" | "cutoff-preced"

optlist = "nop" | "rr" | "zsu" | "mtup" | "mtur" | "encode" | "ts" |
"tr" | "sec" | "lsrr" | "e-sec" | "cipso" | "satid" | "ssrr"
"addext" | "visa" | "imitd" | "eip" | "finn"

facility = "kern" | "user" | "mail" | "daemon" | "auth" | "syslog" |
"lpr" | "news" | "uucp" | "cron" | "ftp" | "authpriv" |
"audit" | "logalert" | "localO" | "locall" | "local2" |
"local3" | "local4" | "local5" | "localé" | "local7"

priority = "emerg" | "alert" | "crit" | "err" | "warn" | "notice" |
"info" | "debug"

hexnumber = "0" "x" hexstring

hexstring = hexdigit [hexstring]
decnumber = digit [decnumber]

compare = "=" np=n nen | nen | Men | N | eq" | et | nlgn |
"gt" | "le" | "ge"

range = et | st

hexdigit = digit | "a" | "b" | "c" | "d" | "e" | "f"

digit = mow | wiw | waw | w3w | wgw | wgn | mgn | w7w | wgw | wgn

flag = "F" ‘ ngn | nRn | npn | nan ‘ nygn

Filter Rules | Filter rules are checked in order, with the last matching rule determining the treatment
of the packet. An exception to this is the quick option, which is discussed below.

By default, filters are installed at the end of the kernel’s filter lists. Prepending a rule
with @<num> causes it to be inserted as the <num>th entry in the current list. This is
especially useful when modifying and testing active filter rulesets. See ipf(1M) for
more information.

The simplest valid rules are:

block in all
pass in all
log out all
count in all

These rules do not have an effect on filtering, but are listed here to illustrate the
grammar.

Actions | Each rule must have an action. The action indicates what to do with the packet if it
matches the filter rule. The IP filter feature recognizes the following actions:

254 man pages section 4: File Formats ¢ Last Revised 23 Dec 2003

ipf(4)

block
Indicates that a packet should be flagged to be dropped. In response to blocking a
packet, the filter can be instructed to send a reply packet, either an ICMP packet
(return-icmp), an ICMP packet that fakes being from the original packet’s
destination (return-icmp-as-dest), or a TCP reset (return-rst). An ICMP
packet can be generated in response to any IP packet and its type can optionally be
specified, but a TCP reset can only be used with a rule that is being applied to TCP
packets. When using return-icmp or return-icmp-as-dest, it is possible to
specify the actual unreachable type. That is, whether it is a network unreachable,
port unreachable, or even administratively prohibited. You do this by enclosing the
ICMP code associated with the action in parentheses directly following
return-icmp or return-icmp-as-dest. For example:

block return-icmp(11l) ...

The preceding entry causes a return of a Type-Of-Service (TOS) ICMP unreachable
error.

pass
Flag the packet to be let through the filter without any action being taken.

log
Causes the packet to be logged (as described in the LOGGING section, below) and
has no effect on whether the packet will be allowed through the filter.

count
Causes the packet to be included in the accounting statistics kept by the filter and
has no effect on whether the packet will be allowed through the filter. These
statistics are viewable with ipfstat(1M).

call
This action is used to invoke the named function in the kernel, which must conform
to a specific calling interface. Customized actions and semantics can thus be
implemented to supplement those available. This feature is for use by
knowledgeable hackers and is not currently documented.

skip <num>
Causes the filter to skip over the next <num> filter rules. If a rule is inserted or
deleted inside the region being skipped over, then the value of <num> is adjusted
appropriately.

auth
Allows authentication to be performed by a user-space program running and
waiting for packet information to validate. The packet is held for a period of time in
an internal buffer while it waits for the program to return to the kernel the “real”
flags for whether it should be allowed through. Such a program might look at the
source address and request some sort of authentication from the user (such as a
password) before allowing the packet through or telling the kernel to drop it if the
packet is from an unrecognized source.

preauth
Tells the filter that, for packets of this class, it should look in the pre-authenticated
list for further clarification. If no further matching rule is found, the packet will be

File Formats 255

ipf(4)

256

OPTIONS

dropped (the FR_PREAUTH is not the same as FR_PASS). If a further matching rule
is found, the result from that rule is used in instead. This might be used in a
situation where a person logs in to the firewall and it sets up some temporary rules
defining the access for that person.

The word following the action keyword must be either in or out. Each packet
moving through the kernel is either inbound or outbound. “Inbound” means that a
packet has just been received on an interface and is moving towards the kernel’s
protocol processing. “Outbound” means that a packet has been transmitted or
forwarded by the stack and is on its way to an interface. There is a requirement that
each filter rule explicitly state on which side of the I/O it is to be used.

The currently supported options are listed below. Where you use options, you must
use them in the order shown here.

log
If this is the last matching rule, the packet header is written to the ipl log, as
described in the LOGGING section below.

quick
Allows "short-cut" rules to speed up the filter or override later rules. If a packet
matches a filter rule that is marked as quick, this rule will be the last rule checked,
allowing a "short-circuit” path to avoid processing later rules for this packet. The
current status of the packet (after any effects of the current rule) determine whether
it is passed or blocked.

If the quick option is missing, the rule is taken to be a "fall-through" rule, meaning
that the result of the match (block or pass) is saved and that processing will
continue to see if there are any more matches.

on
Allows an interface name to be incorporated into the matching procedure. Interface
names are as displayed by netstat 1. If this option is used, the rule matches only
if the packet is going through that interface in the specified direction (in or out). If
this option is absent, the rule is applied to a packet regardless of the interface it is
present on (that is, on all interfaces). Filter rulesets are common to all interfaces,
rather than having a filter list for each interface.

This option is especially useful for simple IP-spoofing protection: packets should be
allowed to pass inbound only on the interface from which the specified source
address would be expected. Others can be logged, or logged and dropped.

dup-to
Causes the packet to be copied, with the duplicate packet sent outbound on a
specified interface, optionally with the destination IP address changed to that
specified. This is useful for off-host logging, using a network sniffer.

to
Causes the packet to be moved to the outbound queue on the specified interface.
This can be used to circumvent kernel routing decisions, and, if applied to an
inbound rule, even to bypass the rest of the kernel processing of the packet. It is

man pages section 4: File Formats ¢ Last Revised 23 Dec 2003

Matching
Parameters

ipf(4)

thus possible to construct a firewall that behaves transparently, like a filtering hub
or switch, rather than a router. The fastroute keyword is a synonym for this
option.

The keywords described in this section are used to describe attributes of the packet to
be used when determining whether rules do or do not match. The following
general-purpose attributes are provided for matching and must be used in the order
shown below.

tos
Packets with different Type-Of-Service values can be filtered. Individual service
levels or combinations can be filtered upon. The value for the TOS mask can be
represented either as a hexadecimal or decimal integer.

ttl
Packets can also be selected by their Time-To-Live value. The value given in the
filter rule must exactly match that in the packet for a match to occur. This value can
be given only as a decimal integer.

proto
Allows a specific protocol to be matched against. All protocol names found in
/etc/protocols are recognized and can be used. However, the protocol can also
be given as a decimal number, allowing for rules to match your own protocols and
for new protocols.

The special protocol keyword tcp/udp can be used to match either a TCP or a
UDP packet and has been added as a convenience to save duplication of
otherwise-identical rules.

IP addresses can be specified in one of two ways: as a numerical address/mask, or as a
hostname mask/netmask. The hostname can be either of the dotted numeric form or a
valid hostname, from the hosts file or DNS (depending on your configuration and
library). There is no special designation for networks, but network names are
recognized. Note that having your filter rules depend on DNS results can introduce an
avenue of attack and is discouraged.

There is a special case for the hostname any, which is taken tobe 0.0.0.0/0 (mask
syntax is discussed below) and matches all IP addresses. Only the presence of any has
an implied mask. In all other situations, a hostname must be accompanied by a mask.
It is possible to give any a hostmask, but in the context of this language, it would
accomplish nothing.

The numerical format x/y indicates that a mask of y consecutive 1 bits set is generated,
starting with the MSB, so that a i value of 16 would result in 0xf£££0000. The
symbolic x mask y indicates that the mask y is in dotted IP notation or a hexadecimal
number of the form 0x12345678. Note that all the bits of the IP address indicated by
the bitmask must match the address on the packet exactly; there is currently not a way
to invert the sense of the match or to match ranges of IP addresses that do not express
themselves easily as bitmasks.

File Formats 257

ipf(4)

258

If a port match is included, for either or both of source and destination, then it is only
applied to TCP and UDP packets. If there is no proto match parameter, packets from
both protocols are compared. This is equivalent to proto tcp/udp. When composing
port comparisons, either the service name or an integer port number can be used. Port
comparisons can be done in a number of forms, with a number of comparison
operators, or you can specify port ranges. When the port appears as part of the from
object, it matches the source port number. When it appears as part of the to object, it
matches the destination port number. See EXAMPLES.

The all keyword is essentially a synonym for "from any to any" with no other match
parameters.

Following the source and destination matching parameters, you can use the following
additional parameters:

with
Used to match irregular attributes that some packets might have associated with
them. To match the presence of IP options in general, use with ipopts. To match
packets that are too short to contain a complete header, use with short. To match
fragmented packets, use with £rag. For more specific filtering on IP options, you
can list individual options.

Before any parameter used after the with keyword, you can insert the word not or
no to cause the filter rule to match only if the option(s) is not present.

Multiple consecutive with clauses are allowed. Alternatively, you can use the
keyword and in place of with. This alternative is provided to make the rules more
readable ("with ... and ..."). When multiple clauses are listed, all clauses must
match to cause a match of the rule.

flags
Effective only for TCP filtering. Each of the letters possible represents one of the
possible flags that can be set in the TCP header. The association is as follows:

F-FIN
S-SYN
R-RST
P - PUSH
A-ACK
U - URG

The various flag symbols can be used in combination, so that SA matches a
SYN-ACK combination in a packet. There is nothing preventing the specification of
combinations, such as SFR, that would not normally be generated by fully
conformant TCP implementations. However, to guard against unpredictable
behavior, it is necessary to state which flags you are filtering against. To allow this,
it is possible to set a mask indicating against which TCP flags you wish to compare
(that is, those you deem significant). This is done by appending /<flags> to the set
of TCP flags you wish to match against, for example:

man pages section 4: File Formats ¢ Last Revised 23 Dec 2003

Keep History

Groups

Logging

ipf(4)

. flags S
Becomes flags S/AUPRFS and matches packets with only the SYN flag set.

. flags SA
Becomes flags SA/AUPRFSC and matches any packet with only the SYN and
ACK flags set.

... flags s/sa
Matches any packet with just the SYN flag set out of the SYN-ACK pair, which is
the common establish keyword action. S/SA will not match a packet with
both SYN and ACK set, but will match SFP.

icmp-type
Effective only when used with proto icmp and must not be used in conjunction
with £lags. There are a number of types, which can be referred to by an
abbreviation recognized by this language or by the numbers with which they are
associated. The most important type from a security point of view is the ICMP
redirect.

The penultimate parameter that can be set for a filter rule is whether or not to record
historical information for a packet, and what sort to keep. The following information
can be kept:

state
Keeps information about the flow of a communication session. State can be kept for
TCP, UDP, and ICMP packets.

frags
Keeps information on fragmented packets, to be applied to later fragments.

Presence of these parameters allows matching packets to flow straight through, rather
than going through the access control list.

The last pair of parameters control filter rule "grouping”. By default, all filter rules are
placed in group 0 if no other group is specified. To add a rule to a non-default group,
the group must first be started by creating a group head. If a packet matches a rule
which is the head of a group, the filter processing then switches to the group, using
that rule as the default for the group. If quick is used with a head rule, rule
processing is not stopped until it has returned from processing the group.

A rule can be both the head for a new group and a member of a non-default group
(head and group can be used together in a rule).

head <n>
Indicates that a new group (number <#>) should be created.

group <n>
Indicates that the rule should be put in group (number <n>) rather than group 0.

When a packet is logged, by means of either the 1og action or 1og option, the headers
of the packet are written to the ipl packet logging psuedo-device. Immediately
following the 1og keyword, you can use the following qualifiers in the order listed
below:

File Formats 259

ipf(4)

260

EXAMPLES

body
Indicates that the first 128 bytes of the packet contents will be logged after the
headers.

first
If log is being used in conjunction with a keep option, it is recommended that you
also apply this option so that only the triggering packet is logged and not every
packet which thereafter matches state information.

or-block
Indicates that, if for some reason, the filter is unable to log the packet (such as the
log reader being too slow), then the rule should be interpreted as if the action was
block for this packet.

level loglevel
Indicates what logging facility and priority (or, if the default facility is used,
priority only) will be used to log information about this packet using ipmon’s -s
option.

You can use ipmon(1M) to read and format the log.

EXAMPLE 1 Using the quick Option

The quick option works well for rules such as:

block in quick from any to any with ipopts

This rule matches any packet with a non-standard header length (IP options present)

and aborts further processing of later rules, recording a match and also indicating that
the packet should be blocked.

EXAMPLE 2 Using the "Fall-through" Nature of Rule Parsing

The "fall-through" rule parsing allows for effects such as the following:

block in from any to any port < 6000
pass in from any to any port >= 6000
block in from any to any port > 6003

These rules set up the range 6000-6003 as being permitted and all others being denied.
Note that the effect of the first rule is overridden by subsequent rules. Another (easier)
way to do the same is:

block in from any to any port 6000 <> 6003
pass in from any to any port 5999 >< 6004

Note that both the "block" and "pass" are needed here to effect a result, because a failed
match on the "block" action does not imply a pass. It implies only that the rule has not
taken effect. To then allow ports lower than 1024, a rule such as:

pass in quick from any to any port < 1024

...would be needed before the first block. To create a new group for processing all
inbound packets on 1e0/1el/100, with the default being to block all inbound
packets, you would use a rule such as:

man pages section 4: File Formats ¢ Last Revised 23 Dec 2003

FILES

ATTRIBUTES

SEE ALSO

ipf(4)

EXAMPLE 2 Using the "Fall-through" Nature of Rule Parsing (Continued)

block in all
block in quick on le0 all head 100
block in quick on lel all head 200

block in quick on 1lo0 all head 300

and to then allow ICMP packets in on 1e0 only, you would use:

pass in proto icmp all group 100

Note that because only inbound packets on 1e0 are processed by group 100, there is
no need to respecify the interface name. Likewise, you could further breakup
processing of TCP as follows:

block in proto tcp all head 110 group 100

pass in from any to any port = 23 group 110

...and so on. The last line, if written without the groups, would be:

pass in on le0 proto tcp from any to any port = telnet

Note, that if you wanted to specify port = telnet, you would need to specify
proto tcp, because the parser interprets each rule on its own and qualifies all service
and port names with the protocol specified.

/dev/ipauth
/dev/ipl
/dev/ipstate
/etc/hosts
/etc/services

See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

ipf(1M), ipfstat(lM), ipmon(1M), attributes(b)

File Formats 261

ipnat(4)

262

NAME
SYNOPSIS

DESCRIPTION

ipnat, ipnat.conf — IP NAT file format

ipnat.conf

The format for files accepted by ipnat is described by the following grammar:

ipmap :: = mapblock | redir | map

map ::= mapit ifname ipmask "->" dstipmask [mapport | mapproxy] mapoptions.
map ::= mapit ifname fromto "->" dstipmask [mapport] mapoptions.
mapblock ::= "map-block" ifname ipmask "->" ipmask [ports] mapoptions.
redir ::= "rdr" ifname ipmask dport "->" ip ["," ip] rdrport rdroptions
dport ::= "port" portnum ["-" portnum]

ports ::= "ports" numports | "auto"

rdrport ::= "port" portnum

mapit ::= "map" | "bimap"

fromto ::= "from" object "to" object

ipmask ::= ip "/" bits | ip "/" mask | ip "netmask" mask

dstipmask ::= ipmask | "range" ip "-" ip

mapport ::= "portmap" tcpudp portspec

mapoptions ::= [tcpudp 1 ["frag"] [age] [clamp] [mapproxy]
rdroptions ::= rdrproto [rr] ["frag"] [age] [clamp] [rdrproxy]
object :: = addr [port-comp | port-range]

addr :: = "any" | nummask | host-name ["mask" ipaddr | "mask" hexnumber]
port-comp :: = "port" compare port-num

port-range :: = "port" port-num range port-num

rdrproto ::= tcpudp | protocol

rr ::= "round-robin"

age ::= "age" decnumber ["/" decnumber]

clamp ::= "mssclamp" decnumber

tepudp ::= "tcp/udp" | protocol

mapproxy ::= "proxy" "port" port proxy-name '/’ protocol

rdrproxy ::= "proxy" proxy-name

protocol ::= protocol-name | decnumber

nummask ::= host-name ["/" decnumber

portspec ::= "auto" | portnumber ":" portnumber

port ::= portnumber | port-name

portnumber ::= number { numbers }

ifname ::= ‘A’ - ‘2’ { ‘A’ - 'Z’ } numbers

numbers ::= '0/ | ‘1’ | r2¢ | 37 | rar | 50 | rer | 170 | r8r | r9r

For standard NAT functionality, a rule should start with map and then proceed to
specify the interface for which outgoing packets will have their source address
rewritten.

Packets that will be rewritten can only be selected by matching the original source
address. When specifying an address for matching, a netmask must be specified with
the IP address.

The address selected for replacing the original is chosen from an IP address/netmask
pair. A netmask of all 1’s, indicating a hostname, is valid. A netmask of thirty-one 1’s
(255.255.255.254) is considered invalid, because there is no space for allocating host IP
addresses after consideration for broadcast and network addresses.

man pages section 4: File Formats ¢ Last Revised 23 Dec 2003

Commands

Matching

Translation

ipnat(4)

When remapping TCP and UDP packets, it is also possible to change the source port
number. Either TCP or UDP or both can be selected by each rule, with a range of port
numbers to remap into given as port-number:port-number.

The following commands are recognized by IP Filter’s NAT code:

map
Used for mapping one address or network to another in an unregulated
round-robin fashion.

rdr
Used for redirecting packets to one IP address and port pair to another.

bimap
Used for setting up bidirectional NAT between an external IP address and an
internal IP address.

map-block
Sets up static IP-address-based translation, based on an algorithm to squeeze the
addresses to be translated into the destination range.

For basic NAT and redirection of packets, the address subject to change is used along
with its protocol to check if a packet should be altered. The packet matching part of the
rule is to the left of the symbol — in each rule.

The IPFilter software allows for complex matching of packets. In place of the address
which is to be translated, an IP address and port number comparison can be made
using the same expressions available with ipf. A simple NAT rule could be written
as:

map de0 10.1.0.0/16 -> 201.2.3.4/32

or as

map de0 from 10.1.0.0/16 to any -> 201.2.3.4/32

As is true of all NAT rules, you can compare against only IP address and port
numbers.

To the right of the — is the address and port specification that will be written into the
packet, provided it has already successfully matched the prior constraints. The case of
redirections (rdr) is the simplest: the new destination address is that specified in the
rule. For map rules, the destination address will be one for which the tuple combining
the new source and destination is known to be unique.

If the packet is either a TCP or UDP packet, the destination and source ports enter into
the comparison also. If the tuple already exists, the IP Filter software increments the
port number first, within the available range specified by portmap, and, if there is no
unique tuple, the source address is incremented within the specified netmask. If a
unique tuple cannot be determined, then the packet will not be translated.

File Formats 263

ipnat(4)

264

ICMPIDMAP
Feature

Kernel Proxies

Transparent
Proxies

Load Balancing

The map-block is more limited in how it searches for a new, free, and unique tuple, in
that it will use an algorithm to determine what the new source address should be,
staying within the range of available ports. The IP address is never changed, nor does
the port number ever exceed its allotted range.

ICMP messages can be divided into two groups, "errors" and "queries". ICMP errors
are generated as a response to another IP packet. IP Filter will take care that ICMP
errors that are the response of a NAT-ed IP packet are handled properly.

For four types of ICMP queries (echo request, timestamp request, information request
and address mask request), IP Filter supports an additional mapping called "ICMP id
mapping". These four types of ICMP queries use a unique identifier called the ICMP
id. This id is set by the process sending the ICMP query and is usually equal to the
process id. The receiver of the ICMP query will use the same id in its response, thus
enabling the sender to recognize that the incoming ICMP reply is intended for him
and is an answer to a query that he made. The "ICMP id mapping" feature modifies
these ICMP ids in a way identical to the modification performed by portmap for TCP
or UDP.

When using the ICMP id mapping feature, you do not need an IP address per host
behind the NAT box that wants to perform ICMP queries. The two numbers that
follow the icmpidmap keyword are the first and the last icmp id numbers that can
be used. There is one important caveat: if you map to an IP address that belongs to the
NAT box itself (notably if you have only a single public IP address), then you must
ensure that the NAT box does not use the icmpidmap range that you specified in the
map rule. Since the ICMP id is usually the process id, it is wise to restrict the largest
permittable process id (PID) on your operating system to a value such as 63999 and
use the range 64000:65535 for ICMP id mapping.

The IP Filter software comes with a few, simple, proxies built into the code that is
loaded into the kernel to allow secondary channels to be opened without forcing the
packets through a user program.

True transparent proxying should be performed using the redirect (rdr) rules
directing ports to localhost (127.0.0.1), with the proxy program doing a lookup
through /dev/ipnat to determine the real source and address of the connection.

Two options for use with rdr are available to support primitive, round-robin-based
load balancing. The first option allows for a rdr to specify a second destination, as
follows:

rdr le0 203.1.2.3/32 port 80 -> 203.1.2.3,203.1.2.4 port 80 tcp
The preceding would send alternate connections to either 203.1.2.3 or 203.1.2.4. In
scenarios where the load is being spread among a larger set of servers, you can use:

rdr le0 203.1.2.3/32 port 80 -> 203.1.2.3,203.1.2.4 port 80 tcp round-robin
rdr le0 203.1.2.3/32 port 80 -> 203.1.2.5 port 80 tcp round-robin

man pages section 4: File Formats ¢ Last Revised 23 Dec 2003

EXAMPLES

FILES

ipnat(4)

In this case, a connection will be redirected to 203.1.2.3, then 203.1.2.4, and then
203.1.2.5 before going back to 203.1.2.3. In accomplishing this, the rule is removed
from the top of the list and added to the end, automatically, as required. This will not
effect the display of rules using ipnat -1, only the internal application order.

EXAMPLE 1 Using the map Command

The following are variations of the map command.

To change IP addresses used internally from network 10 into an ISP-provided 8-bit
subnet at 209.1.2.0 through the ppp0 interface, use the following;:

map ppp0 10.0.0.0/8 -> 209.1.2.0/24

An obvious problem is that you are trying to squeeze over sixteen million IP addresses
into a 254-address space. To increase the scope, remapping for TCP and/or UDP, port
remapping can be used, as follows:

map ppp0 10.0.0.0/8 -> 209.1.2.0/24 portmap tcp/udp 1025:65000

The preceding falls only 527,566 "addresses" short of the space available in network 10.
If we combine these rules, they would need to be specified as follows:

map ppp0 10.0.0.0/8 -> 209.1.2.0/24 portmap tcp/udp 1025:65000
map ppp0 10.0.0.0/8 -> 209.1.2.0/24

...s0 that all TCP/UDP packets were port mapped and only other protocols, such as
ICMP, have their IP address changed. In some instaces, it is more appropriate to use
the keyword auto in place of an actual range of port numbers if you want to
guarantee simultaneous access to all within the given range. However, in the
preceding case, it would default to one port per IP address, because you need to
squeeze 24 bits of address space into eight bits. A good example of how auto is used
is:

map ppp0 172.192.0.0/16 -> 209.1.2.0/24 portmap tcp/udp auto

This would result in each IP address being given a small range of ports to use (252).
The problem here is that the map directive tells the NAT code to use the next
address/port pair available for an outgoing connection, resulting in no easily
discernible relation between external addresses/ports and internal ones. This is
overcome by using map-block as follows:

map-block ppp0 172.192.0.0/16 -> 209.1.2.0/24 ports auto

For example, this would result in 172.192.0.0/24 being mapped to 209.1.2.0/32 with
each address, from 172.192.0.0 to 172.192.0.255 having 252 ports of its own. As
distinguished from the preceding use of map, if, for some reason, the user of (say)
172.192.0.2 wanted 260 simultaneous connections going out, he would be limited to
252 with map-block but would just move on to the next IP address with the map
command.

m /dev/ipnat
m /etc/services

File Formats 265

ipnat(4)

266

m /etc/hosts

ATTRIBUTES | See attributes(5) for a description of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Interface Stability

Evolving

SEE ALSO | ipf(1M), ipnat(1M), ip£(4), hosts(4), attributes(5)

man pages section 4: File Formats ¢ Last Revised 23 Dec 2003

NAME
SYNOPSIS

DESCRIPTION

ipnodes(4)
ipnodes — local database associating names of nodes with IP addresses

/etc/inet/ipnodes

The ipnodes file is a local database that associates the names of nodes with their
Internet Protocol (IP) addresses. IP addresses can be either an IPv4 or an IPv6 address.
The ipnodes file can be used in conjunction with, or instead of, other ipnodes
databases, including the Domain Name System (DNS), the NIS ipnodes map, and the
NIS+ ipnodes table. Programs use library interfaces to access information in the
ipnodes file.

The ipnodes file has one entry for each IP address of each node. If a node has more
than one IP address, it will have one entry for each, on consecutive lines. The format
of each line is:

IP-address official-node-name nicknames...ltems are separated by any number of
SPACE and/or TAB characters. The first item on a line is the node’s IP address. The
second entry is the node’s official name. Subsequent entries on the same line are
alternative names for the same machine, or "nicknames." Nicknames are optional.

For a node with more than one IP address, consecutive entries for these addresses may
contain the same or differing nicknames. Different nicknames are useful for assigning
distinct names to different addresses.

A call to get ipnodebyname(3SOCKET) returns a hostent structure containing the
union of all addresses and nicknames from each line containing a matching official
name or nickname.

A “#’ indicates the beginning of a comment; characters up to the end of the line are not
interpreted by routines that search the file.

Network addresses are written in one of two ways:

® The conventional "decimal dot" notation and interpreted using the inet_addr
routine from the Internet address manipulation library, inet(3SOCKET).

m The IP Version 6 protocol [IPV6], defined in RFC 1884 and interpreted using the
inet pton() routine from the Internet address manipulation library. See
inet(3SOCKET).

These interfaces supports node names as defined in Internet REC 952 which states:

A "name" (Net, Host, Gateway, or Domain name) is a text string up to 24 characters
drawn from the alphabet (A-Z), digits (0-9), minus sign (-), and period (.). Note that
periods are only allowed when they serve to delimit components of "domain style
names". (See RFC 921, "Domain Name System Implementation Schedule,” for
background). No blank or space characters are permitted as part of a name. No
distinction is made between upper and lower case. The first character must be an
alpha character. The last character must not be a minus sign or period.

File Formats 267

ipnodes(4)

EXAMPLES

SEE ALSO

NOTES

Although the interface accepts node names longer than 24 characters for the node
portion (exclusive of the domain component), choosing names for nodes that adhere
to the 24 character restriction will insure maximum interoperability on the Internet.

A node which serves as a GATEWAY should have "-GATEWAY" or "-GW" as part of its
name. Nodes which do not serve as Internet gateways should not use "-GATEWAY"
and "-GW" as part of their names. A node that is a TAC should have "-TAC" as the last
part of its node name, if it is a DoD node. Single character names or nicknames are not
allowed.

RFC 952 has been modified by RFC 1123 to relax the restriction on the first character
being a digit.

EXAMPLE 1 A Typical Line from the ipnodes File

The following is a typical line from the ipnodes file:

2001:0db8:3c4d:55:a00:20ff:fe8e:f3ad myhost # John Smith

getipnodebyname(3SOCKET), inet(3SOCKET), nsswitch.conf(4),
resolv.conf(4), hosts(4)

Braden, B., editor, RFC 1123, Requirements for Internet Hosts — Application and Support,
Network Working Group, October, 1989.

Harrenstien, K., Stahl, M., and Feinler, E., RFC 952, DOD INTERNET HOST TABLE
SPECIFICATION, Network Working Group, October 1985.

Hinden, R., and Deering, S., editors, RFC 1884, IP Version 6 Addressing Architecture,
Network Working Group, December, 1995.

Postel, Jon, RFC 921, Domain Name System Implementation Schedule — Revised, Network
Working Group, October 1984.

IPv4 addresses can be defined in the ipnodes file or in the hosts file. See hosts(4).
The ipnodes file will be searched for IPv4 addresses when using the
getipnodebyname(3SOCKET) APL If no matching IPv4 addresses are found in the
ipnodes file, then the hosts file will be searched. To prevent delays in name
resolution and to keep /etc/inet/ipnodes and /etc/inet/hosts synchronized,
IPv4 addresses defined in the hosts file should be copied to the ipnodes file.

268 man pages section 4: File Formats ¢ Last Revised 15 Dec 2004

NAME
SYNOPSIS

DESCRIPTION

ippool(4)
ippool, ippool.conf — IP pool file format

ippool.conf

The format for files accepted by ippool(1M) is described by the following grammar:

line ::= table | groupmap

table ::= "table" role tabletype

groupmap ::= "group-map" inout role number ipfgroup

tabletype ::= ipftree | ipfhash

role ::= "role" "=" "ipf"

inout ::= "in" | "out"

ipftree ::= "type" "=" "tree" number "{" addrlist "}"

ipfhash ::= "type" "=" "hash" number hashopts "{" hashlist "}"

ipfgroup ::= setgroup hashopts "{" grouplist "}" |
hashopts "{" setgrouplist "}"

setgroup ::= "group" "=" groupname

hashopts ::= size [seed] | seed

size ::= "size" "=" number

seed = "seed" "=" number

addrlist ::= range ["," addrlist]

grouplist ::= groupentry [";" grouplist] | groupentry ";"

addrmask ";" | addrmask ";" [grouplist]

setgrouplist ::= groupentry ";" [setgrouplist]

groupentry ::= addrmask "," setgroup

range ::= addrmask | "!" addrmask

hashlist ::= hashentry ";" [hashlist]

hashentry ::= addrmask

addrmask ::= ipaddr | ipaddr "/" mask

mask ::= number | ipaddr

groupname ::= number | name

number ::= digit { digit }

ipaddr = host-num "." host-num "." host-num "." host-num

host-num = digit [digit [digit] 1]
dlglt co= nQn ‘ nyn | nomn | nyn | ngn ‘ ngn | ngn | nwgn | ngn ‘ ngn
name ::= letter { letter | digit } .

The IP pool configuration file is used for defining a single object that contains a
reference to multiple IP address/netmask pairs. A pool can consist of a mixture of
netmask sizes, from 0 to 32.

File Formats 269

ippool(4)

270

Pool Types

Pool Roles

EXAMPLES

In the current release, only IPv4 addressing is supported in IP pools.

The IP pool configuration file provides for defining two different mechanisms for
improving speed in matching IP addresses with rules. The first, table, defines a
lookup table to provide a single reference in a filter rule to multiple targets. The
second mechanism, group-map, provides a mechanism to target multiple groups
from a single filter line.

The group-map command can be used only with filter rules that use the call
command to invoke either fr srcgrpmap or fr_dstgrpmap, to use the source or
destination address, respectively, for determining which filter group to jump to next
for continuation of filter packet processing.

Two storage formats are provided: hash tables and tree structure. The hash table is
intended for use with objects that all contain the same netmask or a few, different
sized-netmasks of non-overlapping address space. The tree is designed for supporting
exceptions to a covering mask, in addition to normal searching as you would do with
a table. It is not possible to use the tree data storage type with group-map
configuration entries.

When a pool is defined in the configuration file, it must have an associated role. At
present the only supported role is ipf. Future development might see further
expansion of the use of roles by other sections of IPFilter code.

The following examples show how the pool configuration file is used with the ipf
configuration file to enhance the succinctness of the latter file’s entries.

EXAMPLE 1 Referencing Specific Pool

The following example shows how a filter rule makes reference to a specific pool for
matching of the source address.

pass in from pool/100 to any

The following pool configuration matches IP addresses 1.1.1.1 and any in 2.2.0.0/16,
except for those in 2.2.2.0/24.

table role = ipf type = tree number = 100
{1.1.1.1/32, 2.2.0.0/16, !2.2.2.0/24 };

EXAMPLE 2 ipf Configuration Entry

The following ipf . conf excerpt uses the fr srcgrpmap/fr dstgrpmap lookups
to use the group-map facility to look up the next group to use for filter processing,
providing the call filter rule is matched.

call now fr srcgrpmap/1010 in all
call now fr dstgrpmap/2010 out all
pass in all group 1020

block in all group 1030

pass out all group 2020

block out all group 2040

man pages section 4: File Formats ¢ Last Revised 30 Apr 2004

FILES

ATTRIBUTES

SEE ALSO

EXAMPLE 2 ipf Configuration Entry (Continued)

ippool(4)

An ippool configuration to work with the preceding ipf . conf segment might look

like the following:

group-map in role = ipf number = 1010

{1.1.1.1/32, group = 1020; 3.3.0.0/16, group = 1030; };
group-map out role = ipf number = 2010 group = 2020

{ 2.2.2.2/32; 4.4.0.0/16; 5.0.0.0/8, group = 2040; };

® /dev/ippool
m /etc/ipf/ippool.conf
m /etc/hosts

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWipfu

Interface Stability Evolving

ipf(1M), ipnat(1M), ippool(1M), ipf(4), attributes(5), hosts(4)

File Formats

271

issue(4)

NAME | issue — issue identification file

DESCRIPTION | The file /etc/issue contains the issue or project identification to be printed as a
login prompt. issue is an ASCII file that is read by program ttymon and then
written to any terminal spawned or respawned, prior to the normal prompt.

FILES | /etc/issue

SEE ALSO | login(1), ttymon(1M)

272 man pages section 4: File Formats » Last Revised 2 Jan 2002

NAME
SYNOPSIS

DESCRIPTION

kadmb5.acl(4)
kadmb.acl — Kerberos access control list (ACL) file

/etc/krb5/kadms5.acl

The ACL file is used by the kadmind(1M) command to determine which principals are
allowed to perform Kerberos administration actions. For operations that affect
principals, the ACL file also controls which principals can operate on which other
principals. The location of the ACL file is determined by the acl file configuration
variable in the kdc . conf(4) file. The default location is /etc/krb5/kadm5 . acl.

For incremental propagation, see kadmind(1M). The ACL file must contain the
kiprop service principal with propagation privileges in order for the slave KDC to
pull updates from the master’s principal database. Refer to the EXAMPLES section for
this case.

The ACL file can contain comment lines, null lines, or lines that contain ACL entries.
Comment lines start with the pound sign (#) and continue until the end of the line.

The order of entries is significant. The first matching entry specifies the principal on
which the control access applies, whether it is on just the principal or on the principal
when it operates on a target principal.

Lines containing ACL entries must have the following format:
principal operation-mask [operation-target]

principal
Specifies the principal on which the operation-mask applies. Can specify either a
partially or fully qualified Kerberos principal name. Each component of the name
can be substituted with a wildcard, using the asterisk (*) character.

operation-mask
Specifies what operations can or cannot be performed by a principal matching a
particular entry. Specify operation-mask as one or more privileges.

A privilege is a string of one or more of the following characters: a, A, ¢, C, 4,D, i, I,
1,L,m M, p, P, u, U, %, or *. Generally, if the character is lowercase, the privilege is
allowed and if the character is uppercase, the operation is disallowed. The x and *
characters are exceptions to the uppercase convention.

The following privileges are supported:

a Allows the addition of principals or policies in the database.
A Disallows the addition of principals or policies in the database.
c Allows the changing of passwords for principals in the database.

Disallows the changing of passwords for principals in the database.

Allows the deletion of principals or policies in the database.

o o 0

Disallows the deletion of principals or policies in the database.

File Formats 273

kadmb.acl(4)

274

EXAMPLES

i Allows inquiries to the database.

I Disallows inquiries to the database.

1 Allows the listing of principals or policies in the database.

L Disallows the listing of principals or policies in the database.

m Allows the modification of principals or policies in the database.

M Disallows the modification of principals or policies in the database.

p Allow the propagation of the principal database.

P Disallow the propagation of the principal database.

u Allows the creation of one-component user principals whose password
can be validated with PAM.

U Negates the u privilege.

X Short for specifying privileges a, d,m,c,1, and 1. The same as *.

* Short for specifying privileges a, d,m,c,i, and 1. The same as x.

operation-target
Optional. When specified, the privileges apply to the principal when it operates on
the operation-target. For the operation-target, you can specify a partially or fully
qualified Kerberos principal name. Each component of the name can be substituted
by a wildcard, using the asterisk (*) character.

EXAMPLE 1 Specifying a Standard, Fully Qualified Name
The following ACL entry specifies a standard, fully qualified name:

user/instance@realm adm

The operation-mask applies only to the user/instance@realm principal and specifies
that the principal can add, delete, or modify principals and policies, but it cannot
change passwords.

EXAMPLE 2 Specifying a Standard Fully Qualified Name and Target
The following ACL entry specifies a standard, fully qualified name:

user/instance@realm cim service/instance@realm

The operation-mask applies only to the user/instance@realm principal operating on
the service/instance@realm target, and specifies that the principal can change
the target’s password, request information about the target, and modify it.

EXAMPLE 3 Specifying a Name Using a Wildcard

The following ACL entry specifies a name using a wildcard:

user/*@realm ac

man pages section 4: File Formats ¢ Last Revised 26 Apr 2004

FILES

ATTRIBUTES

SEE ALSO

kadmb5.acl(4)
EXAMPLE 3 Specifying a Name Using a Wildcard (Continued)

The operation-mask applies to all principals in realm realm whose first component is
user and specifies that the principals can add principals and change passwords.

EXAMPLE 4 Specifying a Name Using a Wildcard and a Target
The following ACL entry specifies a name using a wildcard and a target:

user/*@realm i */instance@realm

The operation-mask applies to all principals in realm realm whose first component is
user and specifies that the principals can perform inquiries on principals whose
second component is instance and realm is realm.

EXAMPLE 5 Specifying Incremental Propagation Privileges

The following ACL entry specifies propagation privileges for the kiprop service
principal:

kiprop/slavehost@realm p

The operation-mask applies to the kiprop service principal for the specified slave
host slavehost in realm realm. This specifies that the associated kiprop service
principal can receive incremental principal updates.

/etc/krb5/kdc.conf
KDC configuration information.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWkdcu

Interface Stability Evolving

kpasswd(l), gkadmin(1M), kadmind(1M), kadmin. local(1M), kdb5 util(1M),
kdc.conf(4), attributes(b), pam_krb5 migrate(5), SEAM(5)

File Formats 275

kdc.conf(4)

NAME
SYNOPSIS

DESCRIPTION

The kdcdefaults

276

Section

kdc.conf — Key Distribution Center (KDC) configuration file

/etc/krb5/kdc.conf

The kdc . conf file contains KDC configuration information, including defaults used
when issuing Kerberos tickets. This file must reside on all KDC servers. After you
make any changes to the kdc . conf file, stop and restart the krb5kdc daemon on the
KDC for the changes to take effect.

The format of the kdc . conf consists of section headings in square brackets ([1). Each
section contains zero or more configuration variables (called relations), of the form of:

relation = relation-value

or

relation-subsection = {
relation = relation-value
relation = relation-value

}

The kdc . conf file contains one of more of the following three sections:

kdcdefaults
Contains default values for overall behavior of the KDC.

realms
Contains subsections for Kerberos realms, where relation-subsection is the name of a
realm. Each subsection contains relations that define KDC properties for that
particular realm, including where to find the Kerberos servers for that realm.

logging
Contains relations that determine how Kerberos programs perform logging.

The following relation can be defined in the [kdcdefaults] section:

kdc_ports
This relation lists the UDP ports on which the Kerberos server should listen by
default. This list is a comma-separated list of integers. Note that, if the assigned
value is 0, the Kerberos server will not listen on any UDP port. If this relation is not
specified, the Kerberos server listens on port 750 and port 88.

kdc_tcp ports
This relation lists the TCP ports on which the Kerberos server should listen by
default. This list is a comma-separated list of integers. Note that, if the assigned
value is 0, the Kerberos server will not listen on any TCP port. If this relation is not
specified, the Kerberos server will listen on the kdc TCP port specified in
/etc/services. If this port is not found in /etc/services the Kerberos server
will default to listen on TCP port 88.

kdc_max tcp_connections
This relation controls the maximum number of TCP connections the KDC will
allow. Note, the minimum value is 10. If this relation is not specified, the Kerberos
server will allow a maximum of 30 TCP connections.

man pages section 4: File Formats ¢ Last Revised 16 Jun 2004

The realms
Section

kdc.conf(4)

This section contains subsections for Kerberos realms, where relation-subsection is the
name of a realm. Each subsection contains relations that define KDC properties for
that particular realm.

The following relations can be specified in each subsection:

acl file
(string) Location of the Kerberos V5 access control list (ACL) file that kadmin uses
to determine the privileges allowed to each principal on the database. The default
location is /etc/krb5/kadm5 . acl.

admin_keytab
(string) Location of the keytab file that kadmin uses to authenticate to the
database. The default location is /etc/krb5/kadms5 . keytab.

database name
(string) Location of the Kerberos database for this realm. The default location is
/var/krb5/principal.

default principal expiration
(absolute time string) The default expiration date of principals created in this realm.
See the Time Format section in kinit(1) for the valid absolute time formats you
can use for default principal expiration.

default principal_ flags
(flag string) The default attributes of principals created in this realm. Some of these
flags are better to set on an individual principal basis through the use of the
attribute modifiers when using the kadmin command to create and modify
principals. However, some of these options can be applied to all principals in the
realm by adding them to the list of flags associated with this relation.

A "flag string" is a list of one or more of the flags listed below preceded by a minus
("-") or a plus ("+") character, indicating that the option that follows should be
enabled or disabled.

Flags below marked with an asterisk ("*") are flags that are best applied on an
individual principal basis through the kadmin or gkadmin interface rather than as
a blanket attribute to be applied to all principals.

postdateable Create postdatable tickets.

forwardable Create forwardable tickets.

tgt-based Allow TGT-based requests.

renewable Create Renewable tickets.

proxiable Create Proxiable tickets.

dup-skey Allow DUP_SKEY requests, this enables user-to-user
authentication.

preauth Require the use of pre-authentication data whenever

principals request TGTs.

File Formats 277

kdc.conf(4)

hwauth Require the use of hardware-based
pre-authentication data whenever principals request
TGTs.

* allow-tickets Allow tickets to be issued for all principals.

* pwdchange Require principal’s to change their password.

* service Enable or disable a service.

* pwservice Mark principals as password changing principals.

An example of default_principal_flags is shown in EXAMPLES, below.

dict_file
(string) Location of the dictionary file containing strings that are not allowed as
passwords. A principal with any password policy is not allowed to select a
password in the dictionary. The default location is /var/krb5/kadm5.dict.

kadmind_ port
(port number) The port that the kadmind daemon is to listen on for this realm. The
assigned port for kadmind is 749.

key stash file
(string) Location where the master key has been stored (by kdb5_util stash).
The default location is /var/krb5/ .k5 . realm, where realm is the Kerberos realm.

kdc_ports
(string) The list of UDP ports that the KDC listens on for this realm. By default, the
value of kdc_ports as specified in the [kdcdefaults] section is used.

kdc_tcp ports
(string) The list of TCP ports that the KDC listens on (in addition to the UDP ports
specified by kdc_ports) for this realm. By default, the value of kdc_tcp ports
as specified in the [kdcdefaults] section is used.

master key name
(string) The name of the master key.

master key type
(key type string) The master key’s key type. This is used to determine the type of
encryption that will encrypt the entries in the principal db. des-cbc-crc,
des3-cbc-shal, arcfour-hmac-md5, arcfour-hmac-md5-exp,
aesl28-cts-hmac-shal-96, and aes256-cts-hmac-shal-96 are supported
at this time (des-cbc-crc is the default). Note, if you set this to des3-cbc-shal
all systems that receive copies of the principal db, such as those running slave
KDC’s, must support des3-cbc-shal.

max_life
(delta time string) The maximum time period for which a ticket is valid in this
realm. See the Time Format section in kinit(1) for the valid time duration
formats you can use for max life.

278 man pages section 4: File Formats ¢ Last Revised 16 Jun 2004

The logging
Section

kdc.conf(4)

max_renewable life
(delta time string) The maximum time period during which a valid ticket can be
renewed in this realm. See the Time Format section in kinit(1) for the valid time
duration formats you can use for max_renewable_ life.

sunw_dbprop enable = [true | false]
Enable or disable incremental database propagation. Default is false.

sunw_dbprop master ulogsize = N
Specifies the maximum number of log entries available for incremental propagation
to the slave KDC servers. The maximum value that this can be is 2500 entries.
Default value is 1000 entries.

sunw_dbprop_ slave poll = N[s, m, h]
Specifies how often the slave KDC polls for new updates that the master might
have. Default is 2m (two minutes).

supported enctypes
List of key/salt strings. The default key/salt combinations of principals for
this realm. The key is separated from the salt by a colon (:) or period (.).
Multiple key/salt strings can be used by separating each string with a space. The
salt is additional information encoded within the key that tells what kind of key it
is. Only the normal salt is supported at this time, for example,
des-cbc-crc:normal. If you do not want to enable triple-DES support, you
should set this tag to des-cbc-md5 :normal des-cbc-crc:normal. Note that,
if this relation is not specified, the default setting is:
aes256-cts-hmac-shal-96:normal \ (see note below)
aesl28-cts-hmac-shal-96:normal \
des3-cbc-shal:normal \
arcfour-hmac-md5:normal \
des-cbc-md5:normal \
des-cbc-crc:normal

Note — The unbundled Strong Cryptographic packages must be installed for the
aes256-cts-hmac-shal-96:normal enctype to be available for Kerberos.

This section indicates how Kerberos programs perform logging. The same relation can
be repeated if you want to assign it multiple logging methods. The following relations
can be defined in the [logging] section:

kdc
Specifies how the KDC is to perform its logging. The default is
FILE:/var/krb5/kdc.log.

admin_server
Specifies how the administration server is to perform its logging. The default is
FILE:/var/krb5/kadmin.log.

default
Specifies how to perform logging in the absence of explicit specifications.

The [logging] relations can have the following values:

File Formats 279

kdc.conf(4)

280

FILE:filename

or

FILE=filename
This value causes the entity’s logging messages to go to the specified file. If the ‘=’
form is used, the file is overwritten. If the " form is used, the file is appended to.

STDERR
This value sends the entity’s logging messages to its standard error stream.

CONSOLE
This value sends the entity’s logging messages to the console, if the system
supports it.

DEVICE=devicename
This sends the entity’s logging messages to the specified device.

SYSLOG [: severity [: facility]]
This sends the entity’s logging messages to the system log.

The severity argument specifies the default severity of system log messages. This
default can be any of the following severities supported by the sysl1og(3C) call,
minus the LOG_ prefix: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR,
LOG_WARNING, LOG_NOTICE, LOG_INFO, and LOG_ DEBUG. For example, a value of
CRIT would specify LOG_CRIT severity.

The facility argument specifies the facility under which the messages are logged.
This can be any of the following facilities supported by the sys1og(3C) call minus
the LOG_ prefix: LOG_KERN, LOG_USER, LOG_MAIL, LOG_DAEMON, LOG_AUTH,
LOG_LPR, LOG_NEWS, LOG_UUCP, LOG_CRON, and LOG_LOCALO through
LOG_LOCAL7.

If no severity is specified, the default is ERR. If no facility is specified, the default is
AUTH.

In the following example, the logging messages from the KDC go to the console
and to the system log under the facility LOG DAEMON with default severity of
LOG_INFO; the logging messages from the administration server are appended to
the /var/krb5/kadmin.log file and sent to the /dev/tty04 device.

[logging]

kdc = CONSOLE

kdc = SYSLOG:INFO:DAEMON

admin_server = FILE:/export/logging/kadmin.log

admin_server = DEVICE=/dev/tty04

EXAMPLES | EXAMPLE 1 Sample kdc . conf File

The following is an example of a kdc . conf file:

[kdcdefaults]
kdc_ports = 88

man pages section 4: File Formats ¢ Last Revised 16 Jun 2004

FILES

ATTRIBUTES

SEE ALSO

kdc.conf(4)

EXAMPLE 1 Sample kdc . conf File (Continued)

[realms]
ATHENA.MIT.EDU = {

kadmind_port = 749
max_life = 10h Om Os
max_renewable_life = 7d Oh Om Os
default principal flags = +preauth, +forwardable, -postdateable
master_ key_ type = des-cbc-crc
supported _enctypes = des-cbc-crc:normal

}

[logging]
kdc = FILE:/export/logging/kdc.log
admin_server = FILE:/export/logging/kadmin.log

/etc/krb5/kadm5.acl
List of principals and their kadmin administrative privileges.

/etc/krb5/kadms . keytab
Keytab for kadmin/admin Principal.

/var/krb5/principal
Kerberos principal database.

/var/krb5/principal.ulog
The update log file for incremental propagation.

/var/krb5/kadm5.dict
Dictionary of strings explicitly disallowed as passwords.

/var/krb5/kdc.log
KDC logging file.

/var/krb5/kadmin.log
Kerberos administration server logging file.

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWkdcu

Interface Stability Evolving

kpasswd(l), gkadmin(1M), kadmind(1M), kadmin. local(1M), kdb5 util(1M),
kpropd(1M), syslog(3C), kadm5.acl(4), attributes(b), SEAM(5)

File Formats 281

keytables(4)

282

NAME
DESCRIPTION

keytables — keyboard table descriptions for loadkeys and dumpkeys

These files are used by loadkeys(1) to modify the translation tables used by the
keyboard streams module and generated from those translation tables. See
loadkeys(1).

Any line in the file beginning with # is a comment, and is ignored. # is treated
specially only at the beginning of a line.

Other lines specify the values to load into the tables for a particular keystation. The
format is either:

key number list_of_entries

or

swap numberl with number2
or

key numberl same as number2

or a blank line, which is ignored.

key number list_of_entries

sets the entries for keystation number from the list given. An entry in that list is of the
form

tablename code

where tablename is the name of a particular translation table, or all. The translation
tables are:

base entry when no shifts are active
shift entry when "Shift" key is down
caps entry when "Caps Lock" is in effect
ctrl entry when "Control" is down
altg entry when "Alt Graph" is down
numl entry when "Num Lock" is in effect
up entry when a key goes up

All tables other than up refer to the action generated when a key goes down. Entries in
the up table are used only for shift keys, since the shift in question goes away when
the key goes up, except for keys such as "Caps Lock" or "Num Lock"; the keyboard
streams module makes the key look as if it were a latching key.

A table name of all indicates that the entry for all tables should be set to the specified
value, with the following exception: for entries with a value other than hole, the entry
for the numl table should be set to nonl, and the entry for the up table should be set
to nop.

man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

keytables(4)

The code specifies the effect of the key in question when the specified shift key is
down. A code consists of either:

m A character, which indicates that the key should generate the given character. The

character can either be a single character, a single character preceded by * which
refers to a "control character" (for instance, “c is control-C), or a C-style character
constant enclosed in single quote characters (), which can be expressed with
C-style escape sequences such as \r for RETURN or \000 for the null character.
Note that the single character may be any character in an 8-bit character set, such

as ISO 8859/1.

A string, consisting of a list of characters enclosed in double quote characters (").
Note that the use of the double quote character means that a code of double quote
must be enclosed in single quotes.

One of the following expressions:

shiftkeys+leftshift the key is to be the left-hand "Shift" key

shiftkeys+rightshift the key is to be the right-hand "Shift" key

shiftkeys+leftctrl the key is to be the left-hand "Control" key

shiftkeys+rightctrl the key is to be the right-hand "Control" key

shiftkeys+alt the key is to be the "Alt" shift key

shiftkeys+altgraph the key is to be the "Alt Graph" shift key

shiftkeys+capslock the key is to be the "Caps Lock" key

shiftkeys+shiftlock the key is to be the "Shift Lock" key

shiftkeys+numlock the key is to be the "Num Lock" key

buckybits+systembit the key is to be the "Stop" key in SunView; this is
normally the L1 key, or the SETUP key on the
VT100 keyboard

buckybits+metabit the key is to be the "meta" key. That is, the "Left" or
"Right" key on a Sun-2 or Sun-3 keyboard or the
"diamond" key on a Sun-4 keyboard

compose the key is to be the "Compose" key

ctrlg on the "VT100" keyboard, the key is to transmit the
control-Q character (this would be the entry for the
"Q" key in the ctrl table)

ctrls on the "VT100" keyboard, the key is to transmit the
control-S character (this would be the entry for the
"S" key in the ctrl table)

noscroll on the "VT100" keyboard, the key is to be the "No

Scroll" key

File Formats 283

keytables(4)

string+uparrow
string+downarrow
string+leftarrow
string+rightarrow
string+homearrow

fa acute

fa_cedilla
fa cflex

fa grave

fa_tilde
fa umlaut

nonl

pado
padl
pad2
pad3
pad4
pad5
padé
pad?
pads
pad9
paddot

padenter

padplus
padminus
padstar

padslash

the key is to be the "up arrow" key
the key is to be the "down arrow" key
the key is to be the "left arrow" key
the key is to be the "right arrow" key
the key is to be the "home" key

the key is to be the acute accent "floating accent"
key

the key is to be the cedilla "floating accent” key
the key is to be the circumflex "floating accent" key

the key is to be the grave accent "floating accent”
key

the key is to be the tilde "floating accent" key
the key is to be the umlaut "floating accent” key

this is used only in the Num Lock table; the key is
not to be affected by the state of Num Lock

the key is to be the "0" key on the numeric keypad
the key is to be the "1" key on the numeric keypad
the key is to be the "2" key on the numeric keypad
the key is to be the "3" key on the numeric keypad
the key is to be the "4" key on the numeric keypad
the key is to be the "5" key on the numeric keypad
the key is to be the "6" key on the numeric keypad
the key is to be the "7" key on the numeric keypad
the key is to be the "8" key on the numeric keypad
the key is to be the "9" key on the numeric keypad
the key is to be the "." key on the numeric keypad

the key is to be the "Enter" key on the numeric
keypad

the key is to be the "+" key on the numeric keypad
the key is to be the "-" key on the numeric keypad
the key is to be the "™*" key on the numeric keypad
the key is to be the "/" key on the numeric keypad

284 man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

EXAMPLES

padequal
padsep

1f (n)
rf (n)
tf (n)
bf (n)
nop

error

idle

oops

reset

swap numberl with number2

key number] same as
number2

keytables(4)
the key is to be the "=" key on the numeric keypad

the key is to be the "," (separator) key on the
numeric keypad

the key is to be the left-hand function key n
the key is to be the right-hand function key n
the key is to be the top function key n

the key is to be the "bottom" function key n
the key is to do nothing

this code indicates an internal error; to be used only
for keystation 126, and must be used there

this code indicates that the keyboard is idle (that is,
has no keys down); to be used only for all entries
other than the numl and up table entries for
keystation 127, and must be used there

this key exists, but its action is not defined; it has
the same effect as nop

this code indicates that the keyboard has just been
reset; to be used only for the up table entry for
keystation 127, and must be used there.

exchanges the entries for keystations numberl and
number2.

sets the entries for keystation numberl to be the
same as those for keystation number2. If the file does
not specify entries for keystation number2, the
entries currently in the translation table are used; if
the file does specify entries for keystation number2,
those entries are used.

EXAMPLE 1 Example of setting multiple keystations.

The following entry sets keystation 15 to be a “hole” (that is, an entry indicating that
there is no keystation 15); sets keystation 30 to do nothing when Alt Graph is down,
generate "!" when Shift is down, and generate "1" under all other circumstances; and
sets keystation 76 to be the left-hand Control key.

key 15 all hole
key 30 base 1 shift ! caps 1 ctrl 1 altg nop
key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl

File Formats 285

keytables(4)

EXAMPLE 1 Example of setting multiple keystations. (Continued)

EXAMPLE 2 Exchange DELETE and BACKSPACE keys

The following entry exchanges the Delete and Back Space keys on the Type 4
keyboard:

swap 43 with 66

Keystation 43 is normally the Back Space key, and keystation 66 is normally the Delete
key.

EXAMPLE 3 Disable CAPS LOCK key

The following entry disables the Caps Lock key on the Type 3 and U.S. Type 4
keyboards:

key 119 all nop

EXAMPLE 4 Standard translation tables for the U.S. Type 4 keyboard

The following specifies the standard translation tables for the U.S. Type 4 keyboard:

key 0 all hole

key 1 all buckybits+systembit up buckybits+systembit
key 2 all hole

key 3 all 1f(2)

key 4 all hole

key 5 all tf (1)

key 6 all tf(2)

key 7 all tf(10)

key 8 all tf(3)

key 9 all tf(11)

key 10 all tf(4)

key 11 all tf(12)

key 12 all tf(5)

key 13 all shiftkeys+altgraph up shiftkeys+altgraph
key 14 all tf(6)

key 15 all hole

key 16 all tf(7)

key 17 all tf(8)

key 18 all tf(9)

key 19 all shiftkeys+alt up shiftkeys+alt
key 20 all hole

key 21 all rf(1)

key 22 all rf(2)

key 23 all rf(3)

key 24 all hole

key 25 all 1£(3)

key 26 all 1£f(4)

key 27 all hole

key 28 all hole

key 29 all “[

key 30 base 1 shift ! caps 1 ctrl 1 altg nop
key 31 base 2 shift @ caps 2 ctrl “@ altg nop

286 man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

keytables(4)

EXAMPLE 4 Standard translation tables for the U.S. Type 4 keyboard (Continued)

key 32 base 3 shift # caps 3 ctrl 3 altg nop
key 33 base 4 shift $ caps 4 ctrl 4 altg nop
key 34 base 5 shift % caps 5 ctrl 5 altg nop
key 35 Dbase 6 shift * caps 6 ctrl ** altg nop
key 36 base 7 shift & caps 7 ctrl 7 altg nop
key 37 base 8 shift * caps 8 ctrl 8 altg nop
key 38 base 9 shift (caps 9 ctrl 9 altg nop
key 39 base 0 shift) caps 0 ctrl 0 altg nop

key 40 base - shift caps - ctrl ©_ altg nop
key 41 base = shift + caps = ctrl = altg nop

key 42 base ' shift ~ caps ' ctrl ** altg nop
key 43 all ’'\b’

key 44 all hole

key 45 all rf(4) numl padequal

key 46 all rf(5) numl padslash

key 47 all rf(6) numl padstar

key 48 all bf (13)

key 49 all 1£(5)

key 50 all bf(10) numl padequal

key 51 all 1f(e6)

key 52 all hole

key 53 all ’\t’

key 54 base g shift Q caps Q ctrl *“Q altg nop
key 55 base w shift W caps W ctrl "W altg nop
key 56 base e shift E caps E ctrl “E altg nop
key 57 base r shift R caps R ctrl “R altg nop
key 58 base t shift T caps T ctrl *“T altg nop
key 59 base y shift Y caps Y ctrl “Y altg nop
key 60 base u shift U caps U ctrl “U altg nop
key 61 base i shift I caps I ctrl ’\t’ altg nop
key 62 base o shift O caps O ctrl *0O altg nop
key 63 base p shift P caps P ctrl “P altg nop
key 64 base [shift { caps [ctrl [altg nop
key 65 base] shift } caps] ctrl *] altg nop

key 66 all '\177'

key 67 all compose

key 68 all rf(7) numl pad7

key 69 all rf(8) numl pad8

key 70 all rf(9) numl pad9

key 71 all bf (15) numl padminus

key 72 all 1£(7)

key 73 all 1£(8)

key 74 all hole

key 75 all hole

key 76 all shiftkeys+leftctrl up shiftkeys+leftctrl
key 77 base a shift A caps A ctrl “A altg nop

key 78 base s shift S caps S ctrl *S altg nop

key 79 base d shift D caps D ctrl “D altg nop
key 80 base f shift F caps F ctrl *F altg nop
key 81 base g shift G caps G ctrl “G altg nop
key 82 base h shift H caps H ctrl ’'\b’ altg nop
key 83 base j shift J caps J ctrl ’‘\n’ altg nop
key 84 base k shift K caps K ctrl ’'\v’ altg nop
key 85 base 1 shift L caps L ctrl “L altg nop

File Formats 287

keytables(4)

key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

EXAMPLE 4 Standard translation tables for the U.S. Type 4 keyboard

base ; shift : caps ; ctrl ; altg nop

base ’\’’ shift '"’ caps '\’’ ctrl ’'\’'’ altg nop
base ’'\\’ shift | caps ‘\\’ ctrl *\ altg nop
all ’\r’

all bf(11) numl padenter

all rf(10) numl pad4

all rf(11) numl pad5s

all rf(12) numl padé

all bf(8) numl pado

all 1£(9)

all h le

all 1f(10)

all shiftkeys+numlock
all shiftkeys+leftshift up shlftkeys+leftsh1ft
base z shift Z caps Z ctrl “Z altg nop

base x shift X caps X ctrl “X altg nop
base ¢ shift C caps C ctrl “C altg nop
base v shift V caps V ctrl *“V altg nop
base b shift B caps B ctrl "B altg nop
base n shift N caps N ctrl “N altg nop
base m shift M caps M ctrl ’‘\r’ altg nop
base , shift < caps , ctrl , altg nop
base . shift > caps . ctrl . altg nop
base / shift ? caps / ctrl * altg nop

all shiftkeys+rightshift up shiftkeys+rightshift
all ’'\n’

all rf(13) numl padl

all rf(14) numl pad2

all rf(15) numl pad3

all hole

all hole

all hole

all 1f(1e)

all shiftkeys+capslock

all buckybits+metabit up buckybits+metabit
base ’ ' shift ' ’ caps ' ' ctrl *@ altg ' '
all buckybits+metabit up buckybits+metabit
all hole

all hole

all bf(14) numl padplus

all error numl error up hole

all idle numl idle up reset

SEE ALSO | loadkeys(1l)

288 man pages section 4: File Formats ¢ Last Revised 18 Feb 2003

(Continued)

NAME
SYNOPSIS

DESCRIPTION

krb5.conf(4)
krb5.conf — Kerberos configuration file
/etc/krb5/krb5. conf
The krb5 . conf file contains Kerberos configuration information, including the
locations of KDCs and administration daemons for the Kerberos realms of interest,

defaults for the current realm and for Kerberos applications, and mappings of host
names onto Kerberos realms. This file must reside on all Kerberos clients.

The format of the krb5 . conf consists of sections headings in square brackets. Each
section may contain zero or more configuration variables (called relations), of the form:

relation= relation-value

or

relation-subsection = {

relation= relation-value
relation= relation-value

}

The krb5 . conf file may contain any or all of the following seven sections:

libdefaults
Contains default values used by the Kerberos V5 library.

appdefaults
Contains subsections for Kerberos V5 applications, where relation-subsection is the
name of an application. Each subsection describes application-specific defaults.

realms
Contains subsections for Kerberos realms, where relation-subsection is the name of a
realm. Each subsection contains relations that define the properties for that
particular realm.

domain realm
Contains relations which map domain names and subdomains onto Kerberos realm
names. This is used by programs to determine what realm a host should be in,
given its fully qualified domain name.

logging
Contains relations which determine how Kerberos programs are to perform

logging.

File Formats 289

krb5.conf(4)

290

[libdefaults]

capaths
Contains the authentication paths used with direct (nonhierarchical) cross-realm
authentication. Entries in this section are used by the client to determine the
intermediate realms which may be used in cross-realm authentication. It is also
used by the end-service when checking the transited field for trusted intermediate
realms.

kdc
For a KDC, may contain the location of the kdc . conf file.

The [libdefaults] section may contain any of the following relations:

default_keytab name
Specifies the default keytab name to be used by application servers such as
telnetd and rlogind. The defaultis /etc/krb5/krb5.keytab.

default realm
Identifies the default Kerberos realm for the client. Set its value to your Kerberos
realm.

default tgs enctypes
Identifies the supported list of session key encryption types that should be returned
by the KDC. The list may be delimited with commas or whitespace. The supported
encryption types are des3-cbc-shal, des-cbc-crc, des-cbc-md5,
arcfour-hmac-md5, arcfour-hmac-md5-exp, aesl28-cts-hmac-shal-96,
and aes256-cts-hmac-shal-96.

default tkt enctypes
Identifies the supported list of session key encryption types that should be
requested by the client. The format is the same as for default_tkt_enctypes.
The supported encryption types are des3-cbc-shal, des-cbc-cre,
des-cbc-md5, arcfour-hmac-md5, arcfour-hmac-md5-exp,
aesl28-cts-hmac-shal-96, and aes256-cts-hmac-shal-96.

clockskew
Sets the maximum allowable amount of clock skew in seconds that the library will
tolerate before assuming that a Kerberos message is invalid. The default value is
300 seconds, or five minutes.

forwardable = [true | false]
Sets the “forwardable” flag in all tickets. This allows users to transfer their
credentials from one host to another without reauthenticating. This option may also
be set in the [appdefaults] or [realms] section (see below) to limit its use in
particular applications or just to a specific realm.

permitted_enctypes
This relation controls the encryption types for session keys permitted by server
applications that use Kerberos for authentication. In addition, it controls the
encryption types of keys added to a keytab by means of the kadmin(1M) ktadd
command. The default is: aes256-cts-hmac-shal-96,
aesl28-cts-hmac-shal-96, des3-hmac-shal, arcfour-hmac-mds,
des-cbc-md5, des-cbc-crc.

man pages section 4: File Formats ¢ Last Revised 25 May 2004

krb5.conf(4)

proxiable = [true | false]
Sets the "proxiable" flag in all tickets. This allows users to create a proxy ticket
that can be transferred to a kerberized service to allow that service to perform some
function on behalf of the original user. This option may also be set in the
[appdefaults] or [realms] section (see below) to limit its use in particular
applications or just to a specific realm.

renew lifetime =lifetime
Requests renewable tickets, with a total lifetime of lifetime. The value for lifetime
must be followed immediately by one of the following delimiters:

s seconds
minutes
hours
days

Example:

renew lifetime = 90m

Do not mix units. A value of “3h30m” will result in an error.

max lifetime =lifetime
Sets the requested maximum lifetime of the ticket. The values for [ifetime follow the
format described for the renew_1ifetime option, above.

dns_lookup kdc
Indicates whether DNS SRV records need to be used to locate the KDCs and the
other servers for a realm, if they have not already been listed in the [realms]
section. Enabling this option does make the machine vulnerable to a certain type of
DoS attack if somone spoofs the DNS records and does a redirect to another server.
This is, however, no worse than a DoS, since the bogus KDC will be unable to
decode anything sent (excepting the initial ticket request, which has no encrypted
data). Also, anything the fake KDC sends out will not be trusted without
verification (the local machine will be unaware of the secret key to be used). If
dns_lookup_kdc is not specified but dns_fallback is, then that value will be
used instead. In either case, values (if present) in the [realms] section override
DNS.

dns_lookup_realm
Indicates whether DNS TXT records need to be used to determine the Kerberos
realm information and/or the host/domain name-to-realm mapping of a host, if
this information is not already present in the krb5 . conf file. Enabling this option
might make the host vulnerable to a redirection attack, wherein spoofed DNS
replies persuade a client to authenticate to the wrong realm. In a realm with no
cross-realm trusts, this a DoS attack. If dns_lookup_realm is not specified but
dns_fallback is, then that value will be used instead. In either case, values (if
present) in the [1ibdefaults] and [domain_realm] sections override DNS.

File Formats 291

krb5.conf(4)

292

[appdefaults]

dns_ fallback
Generic flag controlling the use of DNS for retrieval of information about Kerberos
servers and host/domain name-to-realm mapping. If both dns lookup kdc and
dns_lookup_realm have been specified, this option has no effect.

verify ap req nofail [true | false]
If true, the local keytab file (/etc/krb5/krb5 . keytab) must contain an entry
for the local host principal, for example, host /foo.bar.com@FO0 . COM. This
entry is needed to verify that the TGT requested was issued by the same KDC that
issued the key for the host principal. If undefined, the behavior is as if this option
were set to true. Setting this value to false leaves the system vulnerable to DNS
spoofing attacks. This parameter may be in the [realms] section to set it on a
per-realm basis, or it may be in the [1ibdefaults] section to make it a
network-wide setting for all realms.

This section contains subsections for Kerberos V5 applications, where
relation-subsection is the name of an application. Each subsection contains relations that
define the default behaviors for that application.

The following relations may be found in the [appdefaults] section, though not all
relations are recognized by all kerberized applications. Some are specific to particular
applications.

autologin = [true | false]
Forces the application to attempt automatic login by presenting Kerberos
credentials. This is only valid for the telnet application.

encrypt = [true | false]
Forces applications to use encryption by default (after authentication) to protect the
privacy of the sessions. This is valid for the following applications: rlogin, rsh,
rcp, rdist, and telnet.

forward = [true | false]
Forces applications to forward the user’ss credentials (after authentication) to the
remote server. This is valid for the following applications: rlogin, rsh, rcp,
rdist, and telnet.

forwardable = [true | false]
See the description in the [1ibdefaults] section above. This is used by any
application that creates a ticket granting ticket and also by applications that can
forward tickets to a remote server.

proxiable = [true | false]
See the description in the [1ibdefaults] section above. This is used by any
application that creates a ticket granting ticket.

renewable = [true | false]
Creates a TGT that can be renewed (prior to the ticket expiration time). This is used
by any application that creates a ticket granting ticket.

man pages section 4: File Formats ¢ Last Revised 25 May 2004

krb5.conf(4)

no_addresses = [true | false]
Creates tickets with no address bindings. This is to allow tickets to be used across a
NAT boundary or when using multi-homed systems. This option is valid in the
kinit [appdefault] section only.

max life =lifetime
Sets the maximum lifetime of the ticket, with a total lifetime of [ifetime. The values
for lifetime follow the format described in the [1ibdefaults] section above. This
option is obsolete and will be removed in a future release of the Solaris operating
system.

max_renewable_life =lifetime
Requests renewable tickets, with a total lifetime of lifetime. The values for lifetime
follow the format described in the [1ibdefaults] section above. This option is
obsolete and will be removed in a future release of the Solaris operating system.

remd _protocol = [remdvl | remdv2 |
Specifies which Kerberized “rcmd” protocol to use when using the Kerberized
rlogin(l), rsh(l), rep(l), or rdist(l) programs. The default is to use "rcmdv2"
by default, as this is the more secure and more recent update of the protocol.
However, when talking to older MIT or SEAM-based “rcmd” servers, it may be
necessary to force the new clients to use the older "rcmdv1" protocol. This option is
valid only for the following applications: rlogin, rcp, rsh, and rdist.

gkadmin = {
help url = http://localhost:8888/ab2/coll.384.1/SEAM

}

The following application defaults can be set to true or false:

kinit
forwardable = true
proxiable = true
renewable = true
no_addresses = true
max life = delta_time
max_renewable life = delta_time

See kinit(1) for the valid time duration formats you can specify for delta_time.

In the following example, kinit will get forwardable tickets by default and telnet
has three default behaviors specified:
[appdefaults]
kinit = {
forwardable = true
}

telnet = {
forward = true
encrypt = true

autologin = true

}

The application defaults specified here are overridden by those specified in the
[realms] section.

File Formats 293

krb5.conf(4)

294

[realms]

This section contains subsections for Kerberos realms, where relation-subsection is the
name of a realm. Each subsection contains relations that define the properties for that
particular realm. The following relations may be specified in each [realms]
subsection:

kdc
The name of a host running a KDC for that realm. An optional port number
(separated from the hostname by a colon) may be included.

admin_server
Identifies the host where the Kerberos administration daemon (kadmind) is
running. Typically, this is the master KDC.

application defaults
Application defaults that are specific to a particular realm can be specified within a
[realms] subsection. Realm-specific application defaults override the global
defaults specified in the [appdefaults] section.

auth _to local realm
For use in the default realm, non-default realms can be equated with the default
realm for authenticated name-to-local name mapping.

kpasswd_server
Identifies the host where the Kerberos password-changing server is running.
Typically, this is the same as host indicated in the admin_server. If this parameter
is omitted, the host in admin_server is used. You can also specify a port number
if the server indicated by kpasswd_server runs on a port other than 464 (the
default). The format of this parameter is: hostname[:port].

kpasswd_protocol
Identifies the protocol to be used when communicating with the server indicated by
kpasswd_server. By default, this parameter is defined to be RPCSEC_GSS, which
is the protocol used by SEAM-based administration servers. To be able to change a
principal’s password stored on non-SEAM-based Kerberos server, such as Microsoft
Active Directory or MIT Kerberos, this value should be SET CHANGE. This
indicates that a non-RPC-based protocol will be used to communicate the
password change request to the server in the kpasswd_server entry.

verify ap req nofail [true | false]
If true, the local keytab file (/etc/krb5/krb5 . keytab) must contain an entry
for the local host principal, for example, host/foo.bar.com@FOO . COM. This
entry is needed to verify that the TGT requested was issued by the same KDC that
issued the key for the host principal. If undefined, the behavior is as if this option
were set to true. Setting this value to false leaves the system vulnerable to DNS
spoofing attacks. This parameter may be in the [realms] section to set it on a
per-realm basis, or it may be in the [1ibdefaults] section to make it a
network-wide setting for all realms.

v ou

The parameters “forwardable”, “proxiable”, and “renew lifetime” as
described in the [1ibdefaults] section (see above) are also valid in the [realms]
section.

man pages section 4: File Formats ¢ Last Revised 25 May 2004

[domain_realm]

[logging]

krb5.conf(4)

Notice that kpasswd_server and kpasswd_protocol are realm-specific
parameters. Most often, you need to specify them only when using a non-SEAM-based
Kerberos server. Otherwise, the change request is sent over RPCSEC_GSS to the SEAM
administration server.

This section provides a translation from a domain name or hostname to a Kerberos
realm name. The relation can be a host name, or a domain name, where domain names
are indicated by a period (.") prefix. relation-value is the Kerberos realm name for that
particular host or domain. Host names and domain names should be in lower case.

If no translation entry applies, the host’s realm is considered to be the hostname’s
domain portion converted to upper case. For example, the following

[domain_ realm] section maps crash.mit.edu into the TEST.ATHENA.MIT.EDU
realm:

[domain_ realm]
.mit.edu = ATHENA.MIT.EDU
mit.edu = ATHENA.MIT.EDU
crash.mit.edu = TEST.ATHENA.MIT.EDU
.fubar.org = FUBAR.ORG
fubar.org = FUBAR.ORG

All other hosts in the mit . edu domain will map by default to the ATHENA .MIT . EDU
realm, and all hosts in the fubar . org domain will map by default into the

FUBAR . ORG realm. Note the entries for the hosts mit .edu and fubar.org. Without
these entries, these hosts would be mapped into the Kerberos realms EDU and ORG,
respectively.

This section indicates how Kerberos programs are to perform logging. There are two
types of relations for this section: relations to specify how to log and a relation to
specify how to rotate kdc log files.

The following relations may be defined to specify how to log. The same relation can be
repeated if you want to assign it multiple logging methods.

admin_server
Specifies how to log the Kerberos administration daemon (kadmind). The default is
FILE:/var/krb5/kadmin.log.

default
Specifies how to perform logging in the absence of explicit specifications otherwise.

kdc
Specifies how the KDC is to perform its logging. The default is
FILE:/var/krb5/kdc.log.

The admin_server, default, and kdc relations may have the following values:

FILE:filename

FILE=filename
This value causes the entity’s logging messages to go to the specified file. If the ‘=’
form is used, the file is overwritten. If the " form is used, the file is appended to.

File Formats 295

krb5.conf(4)

STDERR
This value causes the entity’s logging messages to go to its standard error stream.

CONSOLE
This value causes the entity’s logging messages to go to the console, if the system
supports it.

DEVICE=devicename
This causes the entity’s logging messages to go to the specified device.

SYSLOG [: severity [: facility]]
This causes the entity’s logging messages to go to the system log.

The severity argument specifies the default severity of system log messages. This may
be any of the following severities supported by the syslog(3C) call, minus the LOG
preﬁx: LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR, LOG_WARNING, LOG NOTICE,
LOG_INFO, and LOG_DEBUG. For example, a value of CRIT would specify LOG_CRIT
severity.

The facility argument specifies the facility under which the messages are logged. This
may be any of the following facilities supported by the sys1og(3C) call minus the
LOG_ prefix: LOG_KERN, LOG_USER, LOG_MAIL, LOG DAEMON, LOG AUTH, LOG_LPR,
LOG_NEWS, LOG_UUCP, LOG_CRON, and LOG_LOCALO through LOG_LOCAL7.

If no severity is specified, the default is ERR. If no facility is specified, the default is
AUTH.

The following relation may be defined to specify how to rotate kdc log files if the
FILE: value is being used to log:

kdc_rotate
A relation subsection that enables kdc logging to be rotated to multiple files based
on a time interval. This can be used to avoid logging to one file, which may grow
too large and bring the KDC to a halt.

The time interval for the rotation is specified by the period relation. The number of
log files to be rotated is specified by the versions relation. Both the period and
versions (described below) should be included in this subsection. And, this
subsection applies only if the kdc relation has a FILE: value.

The following relations may be specified for the kdc rotate relation subsection:

period=delta_time
Specifies the time interval before a new log file is created. See the TimeFormats
section in kinit(1) for the valid time duration formats you can specify for
delta_time. If period is not specified or set to "never", no rotation will occur.

Specifying a time interval does not mean that the log files will be rotated at the time
interval based on real time. This is because the time interval is checked at each attempt
to write a record to the log, or when logging is actually occurring. Therefore, rotation
occurs only when logging has actually occurred for the specified time interval.

296 man pages section 4: File Formats * Last Revised 25 May 2004

[capaths]

krb5.conf(4)

versions=number
Specifies how many previous versions will be saved before the rotation begins. A
number will be appended to the log file, starting with 0 and ending with (number -
1). For example, if versions is set to 2, up to three logging files will be created
(filename, filename.0, and filename.1) before the first one is overwritten to begin the
rotation.

Notice that if versions is not specified or set to 0, only one log file will be created,
but it will be overwritten whenever the time interval is met.

In the following example, the logging messages from the Kerberos administration
daemon will go to the console. The logging messages from the KDC will be appended
to the /var/krb5/kdc . log, which will be rotated between twenty-one log files with
a specified time interval of a day.
[logging]
admin_server = CONSOLE
kdc = FILE:/export/logging/kadmin.log
kdc_rotate = {
period = 1d
versions = 20

}

In order to perform direct (non-hierarchical) cross-realm authentication, a database is
needed to construct the authentication paths between the realms. This section defines
that database.

A client will use this section to find the authentication path between its realm and the
realm of the server. The server will use this section to verify the authentication path
used by the client, by checking the transited field of the received ticket.

There is a subsection for each participating realm, and each subsection has relations
named for each of the realms. The relation-value is an intermediate realm which may
participate in the cross-realm authentication. The relations may be repeated if there is
more than one intermediate realm. A value of ".” means that the two realms share keys
directly, and no intermediate realms should be allowed to participate.

There are n**2 possible entries in this table, but only those entries which will be
needed on the client or the server need to be present. The client needs a subsection
named for its local realm, with relations named for all the realms of servers it will
need to authenticate with. A server needs a subsection named for each realm of the
clients it will serve.

For example, ANL . GOV, PNL. GOV, and NERSC. GOV all wish to use the ES .NET realm
as an intermediate realm. ANL has a sub realm of TEST . ANL . GOV, which will
authenticate with NERSC . GOV but not PNL.GOV. The [capath] section for ANL.GOV
systems would look like this:
[capaths]

ANL.GOV = {

TEST.ANL.GOV = .
PNL.GOV = ES.NET

File Formats 297

krb5.conf(4)

NERSC.GOV = ES.NET
ES.NET =

}

TEST.ANL.GOV = {
ANL.GOV =
}

PNL.GOV = {
ANL.GOV = ES.NET
}

NERSC.GOV = {
ANL.GOV = ES.NET
}

ES.NET = {
ANL.GOV =

}

The [capath] section of the configuration file used on NERSC. GOV systems would
look like this:

[capaths]
NERSC.GOV = {
ANL.GOV = ES.NET
TEST.ANL.GOV = ES.NET
TEST.ANL.GOV = ANL.GOV
PNL.GOV = ES.NET
ES.NET = .

}

ANL.GOV = {
NERSC.GOV = ES.NET

PNL.GOV = {
NERSC.GOV = ES.NET

ES.NET = {
NERSC.GOV = .
}

TEST.ANL.GOV = {
NERSC.GOV = ANL.GOV
NERSC.GOV = ES.NET

}

In the above examples, the ordering is not important, except when the same relation is
used more than once. The client will use this to determine the path. (It is not important
to the server, since the transited field is not sorted.)

EXAMPLES | EXAMPLE 1 Sample file
Here is an example of a generic krb5 . conf file:

[libdefaults]
default_realm = ATHENA.MIT.EDU

298 man pages section 4: File Formats Last Revised 25 May 2004

FILES

ATTRIBUTES

SEE ALSO

NOTES

krb5.conf(4)

EXAMPLE 1 Sample file (Continued)

default_tkt_ enctypes = des-cbc-crc
default tgs enctypes = des-cbc-crc

[realms]
ATHENA.MIT.EDU = {
kdc = kerberos.mit.edu
kdc = kerberos-1.mit.edu
kdc = kerberos-2.mit.edu
admin_server = kerberos.mit.edu
auth to local realm = KRBDEV.ATHENA.MIT.EDU

}

FUBAR.ORG = {
kdc = kerberos.fubar.org
kdc = kerberos-1.fubar.org
admin_server = kerberos.fubar.org

}

[domain realm]
.mit.edu = ATHENA.MIT.EDU

mit.edu = ATHENA.MIT.EDU

/var/krb5/kdc.log KDC logging file

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Interface Stability Evolving

kinit(1l), rep(l), rdist(l), rlogin(l), rsh(1l), syslog(3C), SEAM(5),
attributes(5)

If the krb5 . conf file is not formatted properly, the telnet command will fail.
However, the dt1login and 1login commands will still succeed, even if the

krbs. conf file is specified as required for the commands. If this occurs, the following
error message will be displayed:

Error initializing krb5: Improper format of ifem

To bypass any other problems that may occur, you should fix the file as soon as
possible.

The max life and max_renewable life options are obsolete and will be removed
in a future release of the Solaris operating system.

File Formats 299

ldapfilter.conf(4)

300

NAME
SYNOPSIS

DESCRIPTION

ldapfilter.conf — configuration file for LDAP filtering routines

/etc/opt/SUNWconn/ldap/current/ldapfilter.conf
The 1dapfilter. conf file contains information used by the LDAP filtering routines.

Blank lines and lines that begin with a hash character (#) are treated as comments and
ignored. The configuration information consists of lines that contain one to five tokens.
Tokens are separated by white space, and double quotes can be used to include white
space inside a token.

The file consists of a sequence of one or more filter sets. A filter set begins with a line
containing a single token called a tag.

The filter set consists of a sequence of one or more filter lists. The first line in a filter
list must contain four or five tokens: the value pattern, the delimiter list, a filtertemplate, a
match description, and an optional search scope. The value pattern is a regular expression
that is matched against the value passed to the LDAP library call to select the filter list.

The delimiter list is a list of the characters (in the form of a single string) that can be
used to break the value into distinct words.

The filter template is used to construct an LDAP filter (see description below)

The match description is returned to the caller along with a filter as a piece of text that
can be used to describe the sort of LDAP search that took place. It should correctly
compete both of the following phrases: "One match description match was found for ..."
and "Three match description matches were found for...."

The search scope is optional, and should be one of base, onelevel, or subtree. If
search scope is not provided, the default is subtree.

The remaining lines of the filter list should contain two or three tokens, a filter template,
a match description and an optional search scope.

The filter template is similar in concept to a print £(3C) style format string. Everything
is taken literally except for the character sequences:

$v Substitute the entire value string in place of the $v.

$vs Substitute the last word in this field.

$vN Substitute word N in this field (where N is a single digit 1-9).
Words are numbered from left to right within the value starting at
1.

$vM-N Substitute the indicated sequence of words where M and N are

both single digits 1-9.

$vN- Substitute word N through the last word in value where N is
again a single digit 1-9.

man pages section 4: File Formats ¢ Last Revised 9 Jul 2003

ldapfilter.conf(4)

EXAMPLES | exampLE 1 An LDAP Filter Configuration File
The following LDAP filter configuration file contains two filter sets, examplel and
example2 onelevel, each of which contains four filter lists.
ldap filter file
#
examplel
=" " "Ev" "arbitrary filter"
"[0-9] [0-9-]*" "o " (telephoneNumber=*%v)" "phone number"
n@n non "(mail=%v)" "email address"
WAL] Mmoo (cn=%v1* Fv2-)" "first initial"
nox [, _] g m,om " (cn=%vl-*)" "last initial"
[, L " (| (sn=%v1l-) (cn=%v1i-))" naxact"
" (] (sn~=%v1l-) (cn~=%vl-))" "approximate"
"ok oo " (] (cn=%v1l) (sn=%v1l) (uid=%vl))" "exact"
" (] (cn~=%vl) (sn~=%vl))" "approximate"

"example2 onelevel"
nAoLgm o " (| (0=%Vv) (c=%V) (1=%v) (co=%V))" "exact" "onelevel"

" (| (o~=%V) (c~=%v) (1~=%V) (co~=%V))" "approximate"
"onelevel"
"o o (| (0=%Vv) (1=%V) (co=%Vv)" "exact" "onelevel"

" (| (0~=%V) (1~=%V) (co~=%v)" "approximate" '"onelevel"
o non " (associatedDomain=%v)" "exact" "onelevel"
"ok o " (| (0=%v) (1=%V) (co=%v) " "exact" "onelevel"

" (| (0~=%V) (1~=%V) (co~=%V)" "approximate" "onelevel"

ATTRIBUTES | See attributes(5) for a description of the following attributes:
ATTRIBUTE TYPE ATTRIBUTE VALUE
Availability SUNWIldap
Stability Level Evolving
SEE ALSO | 1dap getfilter(3LDAP), 1dap ufn(3LDAP), attributes(5)

File Formats

301

ldapsearchprefs.conf(4)

302

NAME
SYNOPSIS

DESCRIPTION

ldapsearchprefs.conf — configuration file for LDAP search preference routines

/etc/opt/SUNWconn/ldap/current/ldapsearchprefs.conf

The 1dapsearchprefs. conf file contains information used by LDAP when
searching the directory. Blank lines and lines that start with a hash (‘#’) character are
treated as comments and ignored. Non-comment lines contain one or more tokens.
Tokens are separated by white space, and double quotes can be used to include white
space inside a token.

Search preferences are typically used by LDAP-based client programs to specify what
a user may search for, which attributes are searched, and which options are available
to the user.

The first non-commment line specifies the version of the template information and
must contain the token Version followed by an integer version number. For example:

Version 1
The current version is 1, so the above example is always the correct opening line.

The remainder of the file consists of one or more search preference configurations. The
first line of a search preference is a human-readable name for the type of object being
searched for, for example People or Organizations. This name is stored in the
so_objtypeprompt member of the 1dap searchobj structure (see
ldap_searchprefs(3LDAP)). For example:

People
specifies a label for a search preference designed to find X.500 entries for people.

The next line specifies a list of options for this search object. The only option currently
allowed is "internal” which means that this search object should not be presented
directly to a user. Options are placed in the so_options member of the Idap_searchobj
structure and can be tested using the LDAP_IS_SEARCHOBJ_OPTION_SET () macro.
Use " if no special options are required.

The next line specifes a label to use for "Fewer Choices" searches. "Fewer Choices"
searches are those where the user’s input is fed to the Idap_filter routines to determine
an appropriate filter to use. This contrasts with explicitly-constructed LDAP filters, or
"More Choices" searches, where the user can explicitly construct an LDAP filter.

For example:

"Search For:"

can be used by LDAP client programs to label the field into which the user can type a
"Fewer Choices" search.

The next line specifies an LDAP filter prefix to append to all "More Choices" searched.
This is typically used to limit the types of entries returned to those containing a
specific object class. For example:

man pages section 4: File Formats ¢ Last Revised 9 Jul 2003

ldapsearchprefs.conf(4)

" (& (objectClass=person) "

would cause only entries containing the object class person to be returned by a search.
Note that parentheses may be unbalanced here, since this is a filter prefix, not an entire
filter.

The next line is an LDAP filter tag which specifies the set of LDAP filters to be applied
for "Fewer Choices" searching. The line

"x500-People"

would tell the client program to use the set of LDAP filters from the ldap filter
configuration file tagged "x500-People".

The next line specifies an LDAP attribute to retrieve to help the user choose when
several entries match the search terms specified. For example:

"title"

specifies that if more than one entry matches the search criteria, the client program
should retrieve the title attribute that and present that to the user to allow them to
select the appropriate entry. The next line specifies a label for the above attribute, for
example,

"Title:"

Note that the values defined so far in the file are defaults, and are intended to be
overridden by the specific search options that follow.

The next line specifies the scope of the LDAP search to be performed. Acceptable
values are subtree, onelevel, and base.

The next section is a list of "More Choices" search options, terminated by a line
containing only the string END. For example:

"Common Name" cn 11111 wn nn
"Surname" sn 11111 mn nn

"Business Phone" "telephoneNumber" 11101 " "
END

Each line represents one method of searching. In this example, there are three ways of
searching - by Common Name, by Surname, and by Business Phone number. The first
field is the text which should be displayed to user. The second field is the attribute
which will be searched. The third field is a bitmap which specifies which of the match
types are permitted for this search type. A "1" value in a given bit position indicates
that a particular match type is valid, and a "0" indicates that is it not valid. The fourth
and fifth fields are, respectively, the select attribute name and on-screen name for the
selected attribute. These values are intended to override the defaults defined above. If
no specific values are specified, the client software uses the default values above.

The next section is a list of search match options, terminated by a a line containing
only the string END. Example:

File Formats 303

ldapsearchprefs.conf(4)

"exactly matches")
"approximately matches" "(%a~=%v))"
"starts with" " (Fa=%vr))"

"ends with" "(%a=*3v))"

"contains" "(Sa=*Fvr))"

END

In this example, there are five ways of refining the search. For each method, there is an
LDAP filter suffix which is appended to the ldap filter.

EXAMPLES | EXAMPLE 1 A Sample Configuration Using Search Preference for “people”

The following example illustrates one possible configuration of search preferences for
"people".

Version number

Version 1

Name for this search object

People

Label to place before text box user types in

"Search For:"

Filter prefix to append to all "More Choices" searches

" (& (objectClass=person) "

Tag to use for "Fewer Choices" searches - from ldapfilter.conf file
"x500-People"

If a search results in > 1 match, retrieve this attribute to help
user distinguish between the entries...

multilineDescription

...and label it with this string:
"Description"

Search scope to use when searching
subtree

Follows a list of "More Choices" search options. Format is:
Label, attribute, select-bitmap, extra attr display name, extra attr ldap name
If last two are null, "Fewer Choices" name/attributes used

304

"Common Name"
"Surname"
"Business Phone"
"E-Mail Address"
"Unigname"

END

Match types
"exactly matches"
"approximately matches"
"starts with"
"ends with"
"contains"

END

In this example, the user may search for People. For "fewer choices" searching, the tag

cn
sn
"telephoneNumber"
"mail"

"uid"

1
o\
s

0P
<

poooe
]
<
*

T S X2 C

for the 1dapfilter.conf(4) file is "x500-People".

man pages section 4: File Formats ¢ Last Revised 9 Jul 2003

11111
11111
11101
11111
11111

ATTRIBUTES

SEE ALSO

ldapsearchprefs.conf(4)

See attributes(d) for a description of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability

Stability Level

SUNWIldap

Evolving

ldap searchprefs(3LDAP), attributes(b)

File Formats

305

ldaptemplates.conf(4)

306

NAME
SYNOPSIS

DESCRIPTION

ldaptemplates.conf — configuration file for LDAP display template routines

/etc/opt/SUNWconn/ldap/current/ldaptemplates.conf

The 1daptemplates. conf file contains information used by the LDAP display
routines.

Blank lines and lines that start with a hash character (‘#’) are treated as comments and
ignored. Non-comment lines contain one or more tokens. Tokens are separated by
white space, and double quotes can be used to include white space inside a token.

The first non-commment line specifies the version of the template information and
must contain the token Version followed by an integer version number. For example,

Version 1
The current version is 1, so the above example is always the correct first line.

The remainder of the file consists of one or more display templates. The first two lines
of the display template each contain a single token that specifies singular and plural
names for the template in a user-friendly format. For example,

"Person"
"People"

specifies appropriate names for a template designed to display person information.

The next line specifies the name of the icon or similar element that is associated with
this template. For example,

"person icon"

"

The next line is a blank-separated list of template options. " can be used if no options
are desired. Available options are: addable (it is appropriate to allow entries of this
type to be added), modrdn (it is appropriate to offer the modify rdn operation),
altview (this template is an alternate view of another template). For example,

"addable" "modrdn"

The next portion of the template is a list of X.500 object classes that is used to
determine whether the template should be used to display a given entry. The object
class information consists of one or more lines, followed by a terminating line that
contains the single token END. Each line contains one or more object class names, all of
which must be present in a directory entry. Multiple lines can be used to associate
more than one set of object classes with a given template. For example,

emailPerson
orgPerson
END

means that the template is appropriate for display of emailPerson entries or
orgPerson entries.

man pages section 4: File Formats ¢ Last Revised 9 Jul 2003

ldaptemplates.conf(4)

The next line after the object class list is the name of the attribute to authenticate as to
make changes (use "" if it is appropriate to authenticate as the entry itself). For
example,

"owner"

The next line is the default attribute to use when naming a new entry, for example,

nen"

The next line is the distinguished name of the default location under which new
entries are created. For example,

"o=XYZ, c=US"

The next section is a list of rules used to assign default values to new entries. The list
should be terminated with a line that contains the single token END. Each line in this
section should either begin with the token constant and be followed by the name of
the attribute and a constant value to assign, or the line should begin with addersdn
followed by the name of an attribute whose value will be the DN of the person who
has authenticated to add the entry. For example,

constant associatedDomain XYZ.us
addersdn seeAlso
END

The last portion of the template is a list of items to display. It consists of one or more
lines, followed by a terminating line that contains the single token END. Each line is
must begin with the token samerow or the token item

It is assumed that each item appears on a row by itself unless it was preceded by a
samerow line (in which case it should be displayed on the same line as the previous
item, if possible). Lines that begin with samerow should not have any other tokens on
them.

Lines that begin with item must have at least three more tokens on them: an item
type, a label, and an attribute name. Any extra tokens are taken as extra arguments.

The item type token must be one of the following strings:

cis case-ignore string attributes

mls multiline string attributes

mail RFC-822 conformant mail address attributes

dn distinguished name pointer attributes

bool Boolean attributes

jpeg JPEG photo attributes

jpegbtn a button that will retrieve and show a JPEG photo attribute
fax FAX T.4 format image attributes

File Formats 307

ldaptemplates.conf(4)

EXAMPLES

faxbtn a button that will retrieve and show a FAX photo attribute
audiobtn audio attributes

time UTC time attributes

date UTC time attributes where only the date portion should be shown
url labeled Uniform Resource Locator attributes

searchact define an action that will do a directory search for other entries
linkact define an action which is a link to another display template
protected for an encrypted attribute, with values displayed as asterisks

An example of an item line for the drink attribute (displayed with label "Work

Phone"):

item cis "Work Phone" telephoneNumber

EXAMPLE 1 A Sample Configuration File Containing a Template that Displays People Entries

The

following template configuration file contains a templates for display of people

entries.

#

LDAP display templates

#

Version must be 1 for now
#

Version 1

#

Person template

"Person"

"People"

name of the icon that is associated with this template
"person icon"

blank-separated list of template options ("" for none)
"addable"

#

objectclass list
person

END

#

name of attribute to authenticate as ("" means auth as this entry)

#

default attribute name to use when forming RDN of a new entry

#

nen"

308 man pages section 4: File Formats ¢ Last Revised 9 Jul 2003

ATTRIBUTES

SEE ALSO

ldaptemplates.conf(4)

EXAMPLE 1 A Sample Configuration File Containing a Template that Displays People

Entries (Continued)

#
default location when adding
"o=XYZ, c=Us"

new entries (DN; "" means no default)

#

rules used to define default values for new entries
END

#

list of items for display

item jpegbtn "View Photo" jpegPhoto "Next Photo"
item audiobtn "Play Sound" audio

item cis "Also Known As" cn

item cis "Title" title

item mls "Work Address" postalAddress

item cis "Work Phone" telephoneNumber

item cis "Fax Number" facsimileTelephoneNumber
item mls "Home Address" homePostalAddress

item cis "Home Phone" homePhone

item cis "User ID" uid

item mail "E-Mail Address" mail

item cis "Description" description

item dn "See Also" seeAlso

END

See attributes(d) for a description of the following attributes:

ATTRIBUTE TYPE

ATTRIBUTE VALUE

Availability
Stability Level

SUNWIldap

Evolving

ldap disptmpl(3LDAP), ldap_entry2text(3LDAP), attributes(5)

File Formats 309

1c2(4)
NAME
SYNOPSIS

DESCRIPTION

MAC specific
Parameters

Host-Based LLC2
Parameters

llc2 — LLC2 Configuration file

/etc/11lc2/default/11c2.*

The [lc2 files contain information needed by LLC2 to establish the appropriate links to
the underlying MAC layer drivers as well as the parameters necessary to configure the
LLC (Logical Link Control) Class II Station Component structures for that link.

The comments are made up of one or more lines starting with the "#" character in
column 1.

The main section consists of keyword/value pairs of the form keyword=value, used to
initialize the particular adapter.

A sample of the lic2 is presented below:

devicename=/dev/dnet

deviceinstance=1

1lc2_on=1 # LLC2: On/Off on this device
deviceloopback=1
timeinterval=0
acktimer=2
rsptimer=2
polltimer=4
rejecttimer=6
rembusytimer=8
inacttimer=30
maxretry=6
xmitwindowsz=14

LLC2: Timer Multiplier
LLC2: Ack Timer

LLC2: Response Timer

LLC2: Poll Timer

LLC2: Reject Timer

LLC2: Remote Busy Timer
LLC2: Inactivity Timer
LLC2: Maximum Retry Value
LLC2: Transmit Window Size

#
#
#
#
#
#
#
#
#
#

rcvwindowsz=14 LLC2: Receive Window Size

The llc2.ppa file contains 4 parameters directly related to the underlying MAC-level
driver. These are the name of the physical device, the instance of the device, whether
LLC2 can be used with this device, and whether the device is capable of looping back
data addressed to the node’s unique MAC address, broadcast address, or multicast
addresses.

Setting the 11c2_on parameter to 1 means that LLC2 can be used with this device;
setting it to 0 means otherwise. Setting the loopback parameter to 1 means that the
LLC2 module will loop back data addressed to this node’s unique MAC address or to
a broadcast/multicast address.

The most likely use is for a media that cannot receive its own transmissions (for
example, ethernet) or when the MAC-level driver intentionally does not loop back
data addressed to the local node under the assumption that the upper layers have
already done so.

The LLC2 contains ten parameters in the configuration file
(/etc/1lc2/default/11c2.ppa) that apply to configurations using the Host-Based
LLC2 component for connection-oriented operation over an Ethernet, Token Ring, or
FDDI media.

The ten parameters break down into the following four groups:

310 man pages section 4: File Formats Last Revised 7 Feb 2000

1c2(4)

Six parameters deal with timer settings for managing the flow of LLC elements of
procedure (PDUs) on a data link connection.

One parameter is the multiplier that is used to determine the period of the interval
timer for the station. A value of 1 means that each tick count represents 100
milliseconds; 5 means each tick count is 500 milliseconds. Should the parameter be
omitted, the default value is 5, except for Token Ring links which use a default of
1.

One parameter indicates how many times an operation should be retried on a data
link connection.

Two parameters are for controlling the number of unacknowledged I PDUs to send

or receive on a data link connection.

Additional information on these parameters can be found in ISO 8802-2:1989, Section

7.8.

The following table of Logical Link Control Parameters provides the LLC
configuration parameter names, default values, and ranges.

Parameter Description Default Range

timeinterval The timer ticks in 100 ms intervals. This 5, except TPR- 0-10
parameter is used to scale the following 5 1
timer parameters.

acktimer The connection acknowledgment timer 2 >0
length in (100 * timeinterval) ms.

rsptimer The response acknowledgment timer 2 >0
length in (100 * timeinterval) ms.

polltimer The connection poll timer length in (100 * 4 >0
timeinterval) ms.

rejecttimer The connection reject timer length in (100 * 6 >0
timeinterval) ms.

rembusytimer The connection remote busy timer length 8 >0

in (100 * timeinterval) ms.

File Formats 311

1c2(4)

Timer Parameter

Descriptions

Parameter Description Default Range

inacttimer The connection inactivity timer lengthin 30 >0
(100 * timeinterval) ms.

maxretr e maximum number of retries of an -
try Th ber of ret f 6 0-100
action on a connection.

xmitwindowsz The maximum number of 14 0-127
unacknowledged I-format protocol data
units that can be transmitted on a
connection before awaiting an
acknowledgment.

rcvwindowsz The maximum number of 14 0-127
unacknowledged I-format protocol data
units that can be received on a connection
before an acknowledgment is sent.

Default values are set when the following conditions are true:

m The parameter is not set by the user.

® The user requests a default /etc/11c2/default/11lc2.instance file, where
instance is the sequence number, starting with 0, of the adapter as detected by
ifconfig(1M). For example, if there are 3 adapters on the machine, the default
configuration files will be named in order as /etc/11c2/default/11c2.0,
/etc/1llc2/default/11c2.1,and /etc/1llc2/default/11lc2.2.

m The user codes a value of 0 for a parameter.

acktimer The acktimer parameter is used to manage the following sample
sequences:

1. Attempting to establish, reset, or disconnect a connection.

SABME start acknowledgment timer
OF o m oo o e >
DISC

The acknowledgment timer expires before the receipt of a
response.

SABME start acknowledgment timer
OF mmmmm oo e m oo >
DISC

stop acknowledgment timer

2. Sending an FRMR in response to a received PDU of dubious
distinction:

312 man pages section 4: File Formats Last Revised 7 Feb 2000

polltimer

1c2(4)

PDU with invalid N(R)
or

I PDU with invalid N(S)
or

K-mmmmmmmmooo——oooo - PDU of invalid length

or

unexpected UA PDU
or

response PDU with

invalid P/F setting

start acknowledgment timer

Acknowledgment timer expires before the receipt of a PDU.

start acknowledgment timer

SABME, FRMR
Cmmm e DISC, or DM

There is also a special case of the acknowledgment timer,

referred to in this implementation as the response

acknowledgment timer (rsptimer). It is used when sending

an I PDU.

start response acknowledgement timer

Response acknowledgment timer expires before the receipt of
an acknowledgment.

start poll timer
RR -------mmmmmmmmm e m e >

The polltimer parameter is used to manage situations where a
Supervisory command PDU (RR, RNR, or REJ) is sent with the
P/F bit set. This type of PDU is typically sent when:

There has been a period of inactivity on a connection in
information transfer mode.

The remote node must be notified of a local busy condition
occurring in information transfer mode.

The expiration of the poll timer causes another Supervisory
command PDU (which may be of a different type than the first) to
be sent with the P/F bit set, provided the retry count has not
exceeded the maximum retry value. This timer, then, provides an
extended retry mechanism for a connection in information transfer
mode.

File Formats 313

1c2(4)

rejecttimer

rembusytimer

inacttimer

The rejecttimer parameter controls the frequency with which a
RE]J PDU is sent to a remote node from which an I PDU with an
unexpected N(S) was received and which has not corrected the
situation by sending an I PDU with the expected N(S).

Cmmm I PDU with
unexpected N(S)
start reject timer

Reject timer expires before the receipt of an I PDU with an
expected N(S).

start reject and poll timer

T I PDU with
expected N(S)

The rembusytimer parameter is used to determine how long the
local node should wait, after the remote node sends an RNR to
indicate it is busy, before sending a Supervisory PDU with the P/F
bit set to solicit the current state of the remote node. If the remote
node indicates that it has cleared its busy condition before the
timer expires, the local node stops the remote busy timer.

The inacttimer parameter controls how much time is allowed to
elapse on a connection in information transfer mode between the
issuing of command PDUs by the local node. If the inactivity timer
expires because a command PDU has not been generated in the
configured time interval, a Supervisory PDU with the P/F bit set is
sent to the remote node to solicit its current state, provided that
the connection is in information transfer mode. Each time a
command PDU is sent by the local node, the inactivity timer is
restarted.

The following rules of thumb should apply for the timer parameters:

®m The acktimer, rsptimer, and polltimer parameters should have small
relative values to allow for quick recovery from common transient error conditions

on a connection.

® The rejecttimer and rembusytimer parameters should have intermediate
relative values to allow the local and remote nodes time to recover without
resorting to possibly unnecessary polling cycles.

® The inacttimer parameter should be set to a large relative value to provide a
safety net in information transfer mode.

You may need to shift the values for the timer parameters to higher values if bridges
are included in the network or a user application requires a substantial amount of time
to respond to connection establishment requests or handle information flow.

314 man pages section 4: File Formats Last Revised 7 Feb 2000

Maximum Retry
Parameter
Description

Window Size
Parameter
Descriptions

FILES

SEE ALSO

1c2(4)

The maxretry parameter determines the number of times a recovery operation is
performed before notifying the user that an error has occurred on a connection.
Typical examples of its use include the following:

® When the remote node fails to respond to a SABME sent by the local node to
establish or reset the connection, the SABME is resent each time the
acknowledgment timer expires, up to maxretry number of times.

® In information transfer mode, if the response acknowledgment timer expires after
an I PDU has been sent, an RR with the P/F bit set is sent (and resent each time the
poll timer expires) until the remote node responds or maxretry number of RRs
have been sent.

In general, the maxretry value should not need to be large. Since the
acknowledgment and poll timers are typically used in recovery operations that
involve the maxretry parameter, the product of maxretry and either acktimer,
rsptimer, or polltimer gives a rough estimate of the length of time allotted for the
connection to attempt internal error recovery before notifying the user.

rcvwindowsz The rcvwindowsz parameter is used to set the receive window
size for I PDUs received locally on a connection. This value should
agree with the transmit window size set for the connection at the
remote node. If the local rcvwindowsz is greater than the remote
transmit window size, I PDUs sent by the remote node are not
acknowledged quickly. If the local revwindowsz is less than the
remote transmit window size, there is a greater risk of the local
node generating FRMR PDUs, requiring intervention by the user
application when transient errors on the connection require the
remote node to retransmit an I PDU. REJ PDUs are recovered
internally.

xmitwindowsz The xmitwindowsz parameter sets the local transmit window size
for a connection. It denotes the number of unacknowledged I
PDUs that the local node may have outstanding. The configured
value should match the receive window size for the connection at
the remote node, based on the same reasoning as for the
rcvwindowsz parameter.

In many cases, the values assigned to rcvwindowsz and xmitwindowsz for adapters
on a server node will depend on the transmit and receive window sizes specified for
another LLC implementation on a client node. In cases where this LLC
implementation is resident in both nodes, larger values for these parameters are useful
in environments where much of the activity on a connection consists of file transfer
operations. Smaller values are warranted if analysis of LLC2 connection component
statistics reveals that connections are entering local or remote busy state frequently.

/etc/llc2/default/llc2.*

1lc2 autoconfig(l), 11c2 config(l), ifconfig(1M), 11c2(7D)

File Formats 315

logadm.conf(4)

316

NAME
SYNOPSIS

DESCRIPTION

ATTRIBUTES

SEE ALSO

logadm.conf — configuration file for logadm command

/etc/logadm.conf

/etc/logadm. conf is the default configuration file for the log management tool
logadm(1M). Comments are allowed using the pound character (#) and extend to the
end of line. Each non-comment line has the form:

logname options

where logname is the name of the entry and options are the default command line
options for the 1logadm command. The name of the entry may be the same as the
name of the log file, or a log file name may be given in the options section of the entry.
Long lines may be folded using a backslash followed by a newline to continue an
entry on the next line. Single or double quotes may be used to protect spaces or
alternate-style quotes in strings.

The preferred method for changing /etc/logadm.conf is to use the -V, -w, and -r
options to the 1ogadm(1M) command, which allow you to lookup an entry, write an
entry, or remove an entry from /etc/logadm. conf.

A full description of how and when /etc/logadm. conf is used and sample entries
are found in 1ogadm(1M).

See attributes(5) for descriptions of the following attributes:

ATTRIBUTE TYPE ATTRIBUTE VALUE

Availability SUNWecsr

logadm(1M), attributes(5)

man pages section 4: File Formats ¢ Last Revised 6 Dec 2001

NAME
SYNOPSIS

DESCRIPTION

FILES
SEE ALSO

NOTES

logindevperm(4)
logindevperm, fbtab — login-based device permissions

/etc/logindevperm

The /etc/logindevpern file contains information that is used by 1ogin(1) and
ttymon(1M) to change the owner, group, and permissions of devices upon logging
into or out of a console device. By default, this file contains lines for the keyboard,
mouse, audio, and frame buffer devices.

The owner of the devices listed in /etc/logindevpermis set to the owner of the
console by 1ogin(1). The group of the devices is set to the owner’s group specified in
/etc/passwd. The permissions are set as specified in /etc/logindevperm.

Fields are separated by TAB and/or SPACE characters. Blank lines and comments can
appear anywhere in the file; comments start with a hashmark, ‘ #’, and continue to the
end of the line.

The first field specifies the name of a console device (for example, /dev/console).
The second field specifies the permissions to which the devices in the device_list field
(third field) will be set. These permissions must be expressed in octal format. For
example, O774. A device_list is a colon-separated list of device names. Note that a
device name must be a /dev link. A device entry that is a directory name and ends

with "/*" specifies all entries in the directory (except "." and ".."). For example,
"/dev/fbs/*" specifies all frame buffer devices.

Once the devices are owned by the user, their permissions and ownership can be
changed using chmod(1) and chown(1), as with any other user-owned file.

Upon logout the owner and group of these devices will be reset by ttymon(1M) to
o