
Solaris 10 Resource Manager
Developer’s Guide

Sun Microsystems, Inc.
4150 Network Circle
Santa Clara, CA 95054
U.S.A.

Part No: 817–1975–10
January, 2005

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No
part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.
Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. UNIX is a registered trademark in the U.S.
and other countries, exclusively licensed through X/Open Company, Ltd.

Sun, Sun Microsystems, the Sun logo, docs.sun.com, AnswerBook, AnswerBook2, and Solaris are trademarks or registered trademarks of Sun
Microsystems, Inc. in the U.S. and other countries. All SPARC trademarks are used under license and are trademarks or registered trademarks of
SPARC International, Inc. in the U.S. and other countries. Products bearing SPARC trademarks are based upon an architecture developed by Sun
Microsystems, Inc.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the
pioneering efforts of Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a
non-exclusive license from Xerox to the Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs
and otherwise comply with Sun’s written license agreements.

U.S. Government Rights – Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and
applicable provisions of the FAR and its supplements.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,
INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE
DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright 2005 Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 U.S.A. Tous droits réservés.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l’utilisation, la copie, la distribution, et la
décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l’autorisation préalable et écrite de Sun et de ses bailleurs de licence, s’il y en a. Le logiciel détenu par des tiers, et qui comprend la technologie relative
aux polices de caractères, est protégé par un copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l’Université de Californie. UNIX est une marque déposée aux
Etats-Unis et dans d’autres pays et licenciée exclusivement par X/Open Company, Ltd.

Sun, Sun Microsystems, le logo Sun, docs.sun.com, AnswerBook, AnswerBook2, et Solaris sont des marques de fabrique ou des marques déposées, de
Sun Microsystems, Inc. aux Etats-Unis et dans d’autres pays. Toutes les marques SPARC sont utilisées sous licence et sont des marques de fabrique ou
des marques déposées de SPARC International, Inc. aux Etats-Unis et dans d’autres pays. Les produits portant les marques SPARC sont basés sur une
architecture développée par Sun Microsystems, Inc.

L’interface d’utilisation graphique OPEN LOOK et Sun™ a été développée par Sun Microsystems, Inc. pour ses utilisateurs et licenciés. Sun reconnaît
les efforts de pionniers de Xerox pour la recherche et le développement du concept des interfaces d’utilisation visuelle ou graphique pour l’industrie
de l’informatique. Sun détient une licence non exclusive de Xerox sur l’interface d’utilisation graphique Xerox, cette licence couvrant également les
licenciés de Sun qui mettent en place l’interface d’utilisation graphique OPEN LOOK et qui en outre se conforment aux licences écrites de Sun.

CETTE PUBLICATION EST FOURNIE “EN L’ETAT” ET AUCUNE GARANTIE, EXPRESSE OU IMPLICITE, N’EST ACCORDEE, Y COMPRIS DES
GARANTIES CONCERNANT LA VALEUR MARCHANDE, L’APTITUDE DE LA PUBLICATION A REPONDRE A UNE UTILISATION
PARTICULIERE, OU LE FAIT QU’ELLE NE SOIT PAS CONTREFAISANTE DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE
S’APPLIQUERAIT PAS, DANS LA MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

040929@9495

Contents

Preface 7

1 Resource Management 11

Resource Management 11

Management Applications 11

Managed Applications 12

Components of the Resource Manager 12

2 Projects and Tasks 13

Overview of Projects and Tasks 13

project Structure 14

/etc/project File 14

Process Controls 15

Project Controls 15

Project and Task Application Programming Interface 15

Project Creation and Project Database Querying Functions 16

Code Examples to Access the Project Database 16

Print the First Three Fields of Each Entry of the Project Database 16

Get a Project Database Entry That Matches the Caller’s project-id 17

Programming Issues for Project Database Applications 17

3 Extended Accounting, C Interface 19

Overview of Extended Accounting 19

Extended Accounting Application Programming Interface 19

exacct System Calls 20

3

Operations on the exacct File 20

Operations on exacct Objects 20

Miscellaneous Operations 21

Code Examples for Accessing exacct Files 21

Display the exacct Data for a Designated pid 21

Identify Individual Tasks During a Kernel Build 22

Read and Display the Contents of a System exacct File 23

4 Extended Accounting Perl Interface 25

Extended Accounting Overview 25

Perl Interface to libexacct(3LIB) 26

Object Model 26

Design Criteria 26

Perl Double-typed Scalars 27

Perl Modules 28

Sun::Solaris::Project Module 29

Sun::Solaris::Task Module 31

Sun::Solaris::Exacct Module 32

Sun::Solaris::Exacct::Catalog Module 33

Sun::Solaris::Exacct::File Module 35

Sun::Solaris::Exacct::Object Module 37

Sun::Solaris::Exacct::Object::Item Module 38

Sun::Solaris::Exacct::Object::Group Module 39

Sun::Solaris::Exacct::Object::_Array Module 40

Perl Code Examples 41

Pseudocode Prototype 41

Recursively dump an exacct Object 41

Create a New Group Record and Write to File 43

dump an exacct File 43

Output From dump Method 44

5 Resource Controls 47

Overview of Resource Controls 47

Resource Controls Flags and Actions 48

rlimit, Resource Limit 48

rctl, Resource Control 48

rctl Privilege Values 49

4 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Local Actions and Local Flags 49
Global Actions and Global Flags 50
Resource Control Sets Associated With a Project, Processes and Tasks 51
Signals Used With Resource Controls 54

Resource Controls Application Programming Interface 56
Operate on Action-value Pairs of a Resource Control 56
Operate on Local Modifiable Values 56
Retrieve Local Read-only Values 56
Retrieve Global Read-only Actions 57

Code Examples of Resource Controls 57
Master Observing Process for Resource Controls 57
List all the Value-action Pairs for a Specific Resource Control 59
Set project.cpu-shares and Add a New Value 60
Set LWP Limit on Resource Control Blocks 61

Programming Issues Associated With Resource Controls 61

6 Resource Pools 63

Overview of Resource Pools 63
Scheduling Class 64

Resource Pools 64
System Properties 65
Pool Properties 65
Processor Sets Properties 66

libpool Pool Configuration Manipulation Library 67
Manipulate psets 68

Resource Pools Application Programming Interface 68
Create or Destroy Resource Pools 69
Associate a Pool with Resources 69
Bind Workloads to a Resource Pool 69
Iterate or Walk Through a Resource Pool 69
Query the Configuration of a Pool 70
Query Resource Pool 70
Query the Resources of a Pool 70
Query the Components of a Pool 70
Convert Elements of a Pool 70
Operate on Properties of a Pool 71
Operate on Resources of a Pool 71
Manipulate Configuration-related Information from a Pool 71

5

Operate on Values of a Pool Property 72

Retrieve Error-related Information from a Pool 72

Operate on the Resource Pool Framework 72

Code Examples of Resource Pool 73

Ascertain the Number of CPUs in the Resource Pool 73

List all Resource Pools 74

Report Pool Statistics for a Given Pool 74

Set pool.comment Property and Add New Property 75

Programming Issues Associated With Resource Pools 76

7 Configuration Examples 77

/etc/project Project File 77

Define Two Projects 77

Configure Resource Controls 78

Configure Resource Pools 78

Configure FSS project.cpu-shares for a Project 78

Configure Five Applications with Different Characteristics 79

Index 83

6 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Preface

The Solaris 10 Resource Manager Developer’s Guide describes how to write applications
that partition and manage system resources such as processor sets and scheduling
class. This book references the programming APIs provided to partition, schedule, and
set bounds on the consumption of system resources. Use the programming APIs to
make the configuration of resources persistent. This book provides programming
examples and a discussion of programming issues to consider when writing an
application.

Note – This Solaris™ release supports systems that use the SPARC® and x86 families of
processor architectures: UltraSPARC®, SPARC64, AMD64, Pentium, and Xeon EM64T.
The supported systems appear in the Solaris 10 Hardware Compatibility List at
http://www.sun.com/bigadmin/hcl. This document cites any implementation
differences between the platform types.

In this document the term “x86” refers to 64-bit and 32-bit systems manufactured
using processors compatible with the AMD64 or Intel Xeon/Pentium product families.
For supported systems, see the Solaris 10 Hardware Compatibility List.

Who Should Use This Book
Application developers and ISVs who write applications that control or monitor
system resources. These applications benefit from using, controlling, or tracking
system resources for the Solaris operating environment.

7

http://www.sun.com/bigadmin/hcl

Before You Read This Book
For an overview of zones and a discussion of when to use zones, see Chapter 16,
“Introduction to Solaris Zones,” in System Administration Guide: N1 Grid Containers,
Resource Management, and Solaris Zones.

For an overview of resource management and a discussion of when to use resource
management, see Part I, “Resource Management,” in System Administration Guide: N1
Grid Containers, Resource Management, and Solaris Zones.

How This Book Is Organized
The Solaris 10 Resource Manager Developer’s Guide has the following organization:

Chapter 1 introduces the Solaris 10 Resource Manager.

Chapter 2 describes the projects and tasks facility, provides example code, and
discusses programming issues.

Chapter 3 describes the C interface for the extended accounting facility, provides
example code, and discusses programming issues.

Chapter 4 describes the perl interface for the extended accounting facility, provides
example code, and discusses programming issues.

Chapter 5 describes resource controls, provides example code, and discusses
programming issues.

Chapter 6 describes resource pools. Sample code provides examples of how to
implement resource pools.

Related Books
For introductory information about the resource manager facility and examples of use
its administration commands, see Part I, “Resource Management,” in System
Administration Guide: N1 Grid Containers, Resource Management, and Solaris Zones.

8 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Accessing Sun Documentation Online
The docs.sun.comSM Web site enables you to access Sun technical documentation
online. You can browse the docs.sun.com archive or search for a specific book title or
subject. The URL is http://docs.sun.com.

Ordering Sun Documentation
Sun Microsystems offers select product documentation in print. For a list of
documents and how to order them, see “Buy printed documentation” at
http://docs.sun.com.

Typographic Conventions
The following table describes the typographic changes that are used in this book.

TABLE P–1 Typographic Conventions

Typeface or Symbol Meaning Example

AaBbCc123 The names of commands, files, and
directories, and onscreen computer
output

Edit your .login file.

Use ls -a to list all files.

machine_name% you have
mail.

AaBbCc123 What you type, contrasted with onscreen
computer output

machine_name% su

Password:

AaBbCc123 Command-line placeholder: replace with
a real name or value

The command to remove a file
is rm filename.

9

http://docs.sun.com
http://docs.sun.com

TABLE P–1 Typographic Conventions (Continued)
Typeface or Symbol Meaning Example

AaBbCc123 Book titles, new terms, and terms to be
emphasized

Read Chapter 6 in the User’s
Guide.

Perform a patch analysis.

Do not save the file.

[Note that some emphasized
items appear bold online.]

Shell Prompts in Command Examples
The following table shows the default system prompt and superuser prompt for the
C shell, Bourne shell, and Korn shell.

TABLE P–2 Shell Prompts

Shell Prompt

C shell prompt machine_name%

C shell superuser prompt machine_name#

Bourne shell and Korn shell prompt $

Bourne shell and Korn shell superuser prompt #

10 Solaris 10 Resource Manager Developer’s Guide • January, 2005

CHAPTER 1

Resource Management

This chapter discusses the following:

� “Resource Management” on page 11
� “Components of the Resource Manager” on page 12

Resource Management
The resource management facility enables you to control how applications use
available system resources. You can do the following:

� Allocate computing resources, such as processor time.

� Monitor how these allocations are being used. Adjust these allocations, as
necessary.

� Generate extended accounting information for analysis, billing, and capacity
planning.

For an overview of resource management, a discussion of when to use its facilities,
and a description of how to create a resource management task map, see

� “When to Use Resource Management” in System Administration Guide: N1 Grid
Containers, Resource Management, and Solaris Zones

� “Setting Up Resource Management (Task Map)” in System Administration Guide: N1
Grid Containers, Resource Management, and Solaris Zones

Management Applications
Management applications fall into the following categories:

11

Resource monitoring
Use extended accounting, exacct, to monitor system resource usage for capacity
planning.

Resource accounting or billing
Use exacct to process resource usage data by workload for billing.

Resource administration
Configure resource pools, projects, rctls, and FSS.

Managed Applications
Managed applications fall into the following categories:

Resource constrained
rctls, pools, or FSS defined by projects.

Resource aware
Handle a limit that is encountered, such as notification resulting from rctls equal
to a particular value.

Resource advisory
Provide hints of resource needs.

Components of the Resource Manager
The components of the Solaris Resource Manager include the:

� Projects and tasks facility. See Chapter 2.
� Extended accounting facility. See Chapter 3 and Chapter 4.
� Resource controls facility. See Chapter 5.
� Resource pools facility. See Chapter 6.

12 Solaris 10 Resource Manager Developer’s Guide • January, 2005

CHAPTER 2

Projects and Tasks

The chapter provides information about projects and tasks.

� “Overview of Projects and Tasks” on page 13
� “Project and Task Application Programming Interface” on page 15
� “Code Examples to Access the Project Database” on page 16
� “Programming Issues for Project Database Applications” on page 17

Overview of Projects and Tasks
A task is a collection of processes that represents a workload component. A project is a
collection of tasks that represents an entire workload. At any given time, a process can
be a component of only one task and one project.

For an overview of projects and tasks see Chapter 2, “Projects and Tasks (Overview),”
in System Administration Guide: N1 Grid Containers, Resource Management, and Solaris
Zones. For example commands for administering projects and tasks, see Chapter 3,
“Administering Projects and Tasks,” in System Administration Guide: N1 Grid
Containers, Resource Management, and Solaris Zones.

A user that is a member of more than one project can run processes in multiple
projects at the same time. All processes that are started by a process inherit the project
of the parent process. When you switch to a new project in a startup script, all child
processes run in the new project.

An executing user process has an associated user identity (uid), group indentity
(gid), and project identity (projid). Process attributes and abilities are inherited from
the user, group, and project identities to form the execution context for a task.

13

project Structure
The project structure describes the project.

struct project {
char *pj_name; /* name of the project */
projid_t pj_projid; /* numerical project id */
char *pj_comment; /* project comment */
char **pj_users; /* vector of pointers to project user names */
char **pj_groups; /* vector of pointers to project group names */
char *pj_attr; /* project attributes */

};

The project structure members include:

*pj_name
Name of the project.

pj_projid
Project ID.

*pj_comment
User-supplied project description.

**pj_users
Pointers to project user members.

**pj_groups
Pointers to project group members.

*pj_attr
Project attributes. Use these attributes to set values for resource controls and
project.pool.

/etc/project File
The project database is maintained on a system or network either through the
/etc/project file or through a network information service, such as NIS or LDAP.

/etc/project contains five standard projects.

system Used for all system processes and daemons.

user.root All root processes run in the user.root project.

noproject Special project for IPQoS.

default Serves as a catchall for users not matching any other projects.

group.staff Used for all users in the group staff.

14 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Process Controls
process.max-port-events

process.max-port-events specifies the maximum allowable number of events
per event port.

process.min-crypto-sessions
When /dev/crypto is opened, a fixed-sized session table is allocated.
process.min-crypto-sessions specifies the number of sessions in this table.
The default value is 20. It can only be changed by a privileged process.

process.add-crypto-sessions
When a session table is full, a larger table is allocated.
process.add-crypto-sessions specifies the number of additional sessions.
The default value is 20. Any process can change this value.

process.max-crypto-sessions
process.max-crypto-sessions specifies the maximum number of sessions in
a session table. The initial session table can be increased up to this maximum value.
The default value is 100. This value can only be changed by a privileged process.

process.crypto-buffer-limit
process.crypto-buffer-limit limits the number of bytes that can be
allocated for copyin of user data. The sizes of all the buffers allocated for copyin
are added together and the result is checked against this resource control. This limit
applies to each instance of /dev/crypto. The default value for this resource
control is 100,000. This value can only be changed by a privileged process.

Project Controls
project.max-device-locked-memory

project.max-device-locked-memory specifies the total amount of locked
memory allowed.

project.max-port-ids
project.max-port-ids specifies the maximum allowable number of event
ports.

Project and Task Application
Programming Interface
This section discusses the API associated with project creation and project database
querying.

Chapter 2 • Projects and Tasks 15

Project Creation and Project Database Querying
Functions
The following list contains the functions associated with project creation and project
database querying. The function name is a link to the corresponding man page.

setproject(3PROJECT)
setprojent(3PROJECT)
getdefaultproj(3PROJECT)
inproj(3PROJECT)
getprojent(3PROJECT)
fgetprojent(3PROJECT)
getprojbyname(3PROJECT)
getprojbyid(3PROJECT)
getprojbyname(3PROJECT)
endprojent(3PROJECT)

Code Examples to Access the Project
Database
This section provides code examples for accessing project database entries.

Print the First Three Fields of Each Entry of the
Project Database
The following example prints the first three fields of each entry of the project database.

The key points of the example include the following:

� setprojent() rewinds the project database to start at the beginning.
endprojent() closes the project database and frees resources.

� Call getprojent() with a conservative maximum buffer size that is defined in
project.h.

#include <project.h>

struct project projent;
char buffer[PROJECT_BUFSZ]; /* Use safe buffer size from project.h */

...
struct project *pp;

16 Solaris 10 Resource Manager Developer’s Guide • January, 2005

setprojent(); /* Rewind the project database to start at the beginning */

while (1) {
pp = getprojent(&projent, buffer, PROJECT_BUFSZ);

if (pp == NULL)
break;

printf("%s:%d:%s\n", pp->pj_name, pp->pj_projid, pp->pj_comment);
...

};

endprojent(); /* Close the database and free project resources */

Get a Project Database Entry That Matches the
Caller’s project-id
The following example calls getprojbyid() to get a project database entry that
matches the caller’s project-id. The example then prints the project name and the
project ID.

The key point of the example is to call getprojbyid() to get an entry from the
project database that matches the caller’s project-id.

#include <project.h>

struct project *pj;
char buffer[PROJECT_BUFSZ]; /* Use safe buffer size from project.h */

main()
{

projid_t pjid;
pjid = getprojid();
pj = getprojbyid(pjid, &projent, buffer, PROJECT_BUFSZ);
if (pj == NULL) {

/* fail; */
}
printf("My project (name, id) is (%s, %d)\n", pp->pj_name, pp->pj_projid);

}

Programming Issues for Project Database
Applications
Consider the following issues when writing your application:

� No function exists to explicitly create a new project.

Chapter 2 • Projects and Tasks 17

� A user cannot login if no default project for the user can be found in the project
database.

� A new task in the user’s default project is created when the user logs in.

� Process association with a new project applies the new project’s resource controls
and pools membership to the process.

� setproject() requires privilege. The newtask -c command does not. Either
can be used to create a task, but only newtask can change the project of a running
process.

� No parent/child relationship exists between tasks.

� Finalized tasks can be created by using setproject() to associate the caller with
a new project. Finalized tasks are useful when trying to accurately estimate
aggregate resource accounting.

� The reentrant functions, getprojent(), getprojbyname(), getprojbyid(),
getdefaultproj(), and inproj() use buffers supplied by the caller to store
returned results. These functions are safe for use in both single-threaded
applications and multithreaded applications.

� Reentrant functions require the additional arguments proj, buffer, and
bufsize. The proj argument must be a pointer to a project structure allocated
by the caller. On successful completion, these functions return the project entry in
this structure. Storage referenced by the project structure is allocated from the
memory specified by the buffer argument. bufsize specifies the size in number
of bytes.

� If an incorrect buffer size is used, getprojent() returns NULL and sets errno to
ERANGE.

18 Solaris 10 Resource Manager Developer’s Guide • January, 2005

CHAPTER 3

Extended Accounting, C Interface

This chapter describes the C interface for extended accounting:

� “Overview of Extended Accounting” on page 19
� “Extended Accounting Application Programming Interface” on page 19
� “Code Examples for Accessing exacct Files” on page 21

Overview of Extended Accounting
Project and task should be used to label and separate workloads. Use the extended
accounting subsystem to monitor resource consumption by workloads that are
running on the system. Extended accounting produces accounting records for the
workload tasks and processes.

For an overview of extended accounting and example commands for administering
extended accounting, see Chapter 4, “Extended Accounting (Overview),” in System
Administration Guide: N1 Grid Containers, Resource Management, and Solaris Zones and
Chapter 5, “Administering Extended Accounting (Tasks),” in System Administration
Guide: N1 Grid Containers, Resource Management, and Solaris Zones.

Extended Accounting Application
Programming Interface
The extended accounting API contains functions that perform:

� exacct system calls
� Operations on the exacct file

19

� Operations on exacct objects
� Miscellaneous

exacct System Calls
The following table lists the system calls to interact with the extended accounting
subsystem. The function name is a link to the corresponding man page.

putacct(2)
getacct(2)
wracct(2)

TABLE 3–1 Extended Accounting System Calls

Link to man page Description

putacct(2) Provides privileged processes the ability to tag accounting records
with additional data specific to that process.

getacct(2) Enables privileged processes to request extended accounting buffers
from the kernel for currently executing tasks and processes.

wracct(2) Privileged process request to the kernel to write, given its internal
state of resource usage, the appropriate data for the specified task
or process.

Operations on the exacct File
The following table lists the functions that provide access to the exacct files. The
function name is a link to the corresponding man page.

ea_open(3EXACCT)
ea_close(3EXACCT)
ea_get_object(3EXACCT)
ea_write_object(3EXACCT)
ea_next_object(3EXACCT)
ea_previous_object(3EXACCT)
ea_get_hostname(3EXACCT)
ea_get_creator(3EXACCT)

Operations on exacct Objects
The following table lists the functions that access exacct objects. The function name
is a link to the corresponding man page.

20 Solaris 10 Resource Manager Developer’s Guide • January, 2005

ea_set_item(3EXACCT)
ea_set_group(3EXACCT)
ea_match_object_catalog(3EXACCT)
ea_attach_to_object(3EXACCT)
ea_attach_to_group(3EXACCT)
ea_free_item(3EXACCT)
ea_free_object(3EXACCT)

Miscellaneous Operations
The following table lists the functions associated with miscellaneous operations. The
function name is a link to the corresponding man page.

ea_error(3EXACCT)
ea_match_object_catalog(3EXACCT)

Code Examples for Accessing exacct
Files
This section provides code examples for accessing exacct files.

Figure 3–1 shows the data flow for the ea_unpack_object() and
ea_pack_object() functions.

ea_get_object() In-memory objectSys. Accntg. File

putacct() ea_unpack_object() In-memory objectSys. Accntg. File

getacct() ea_unpack_object() In-memory objectKernel

FIGURE 3–1 Data Flow for ea_unpack_object() and ea_pack_object()

Display the exacct Data for a Designated pid
The following example displays a specific pid’s exacct data snapshot from the
kernel.

Chapter 3 • Extended Accounting, C Interface 21

...
ea_object_t *scratch;
int unpk_flag = EUP_ALLOC; /* use the same allocation flag */

/* for unpack and free */

/* Omit return value checking, to keep code samples short */

bsize = getacct(P_PID, pid, NULL, 0);
buf = malloc(bsize);

/* Retrieve exacct object and unpack */
getacct(P_PID, pid, buf, bsize);
ea_unpack_object(&scratch, unpk_flag, buf, bsize);

/* Display the exacct record */
disp_obj(scratch);
if (scratch->eo_type == EO_GROUP) {

disp_group(scratch);
}
ea_free_object(scratch, unpk_flag);

...

Identify Individual Tasks During a Kernel Build
This example evaluates kernel builds and displays a string that describes the portion
of the source tree being built by this task make. Display the portion of the source being
built to aid in the per-source-directory analysis.

The key points of this example include the following:

� To aggregate the time for a make, with possibly many processes, each make is fired
off as a task. Child make processes that arise are different tasks. To aggregate across
the make tree, the parent-child task relationship must be identified.

� Add a tag with this information to the task’s exacct file. Add a current working
directory string that describes the portion of the source tree being built by this task
make.

ea_set_item(&cwd, EXT_STRING | EXC_LOCAL | MY_CWD,

cwdbuf, strlen(cwdbuf));

...
/* Omit return value checking and error processing */
/* to keep code sample short */
ptid = gettaskid(); /* Save "parent" task-id */
tid = settaskid(getprojid(), TASK_NORMAL); /* Create new task *

/* Set data for item objects ptskid and cwd */
ea_set_item(&ptskid, EXT_UINT32 | EXC_LOCAL | MY_PTID, &ptid, 0);
ea_set_item(&cwd, EXT_STRING | EXC_LOCAL | MY_CWD, cwdbuf, strlen(cwdbuf));

/* Set grp object and attach ptskid and cwd to grp */

22 Solaris 10 Resource Manager Developer’s Guide • January, 2005

ea_set_group(&grp, EXT_GROUP | EXC_LOCAL | EXD_GROUP_HEADER);
ea_attach_to_group(&grp, &ptskid);
ea_attach_to_group(&grp, &cwd);

/* Pack the object and put it back into the accounting stream */
ea_buflen = ea_pack_object(&grp, ea_buf, sizeof(ea_buf));
putacct(P_TASKID, tid, ea_buf, ea_buflen, EP_EXACCT_OBJECT);

/* Memory management: free memory allocate in ea_set_item */
ea_free_item(&cwd, EUP_ALLOC); /* free memory allocated in ea_set_item */

...

Read and Display the Contents of a System
exacct File
This example shows how to read and display a system exacct file for a process or a
task.

The key points of this example include the following:

� Call ea_get_object() to get the next object in the file. Call ea_get_object()
in a loop until EOF enables a complete traversal of the exacct file.

� catalog_name() uses the catalog_item structure to convert a Solaris catalog’s
type id to a meaningful string that describes the content of the object’s data. The
type id is obtained by masking the lowest 24 bits, or 3 bytes.

switch(o->eo_catalog & EXT_TYPE_MASK) {
case EXT_UINT8:

printf(" 8: %u", o->eo_item.ei_uint8);
break;

case EXT_UINT16:
...

}

� The upper 4 bits of TYPE_MASK are used to find out the data type to print the
object’s actual data.

� disp_group() takes a pointer to a group object and the number of objects in the
group. For each object in the group, disp_group() calls disp_obj() and
recursively calls disp_group() if the object is a group object.

/* Omit return value checking and error processing */
/* to keep code sample short */
main(int argc, char *argv)
{
ea_file_t ef;
ea_object_t scratch;
char *fname;

fname = argv[1];
ea_open(&ef, fname, NULL, EO_NO_VALID_HDR, O_RDONLY, 0);

Chapter 3 • Extended Accounting, C Interface 23

bzero(&scratch, sizeof (ea_object_t));
while (ea_get_object(&ef, &scratch) != -1) {

disp_obj(&scratch);
if (scratch.eo_type == EO_GROUP)

disp_group(&ef, scratch.eo_group.eg_nobjs);
bzero(&scratch, sizeof (ea_object_t));

}
ea_close(&ef);

}

struct catalog_item { /* convert Solaris catalog’s type id */
/* to a meaningful string */

int type;
char *name;

} catalog[] = {
{ EXD_VERSION, "version\t" },
...
{ EXD_PROC_PID, " pid\t" },
...

};

static char *
catalog_name(int type)
{

int i = 0;
while (catalog[i].type != EXD_NONE) {

if (catalog[i].type == type)
return (catalog[i].name);

else
i++;

}
return ("unknown\t");

}

static void disp_obj(ea_object_t *o)
{

printf("%s\t", catalog_name(o->eo_catalog & 0xffffff));
switch(o->eo_catalog & EXT_TYPE_MASK) {
case EXT_UINT8:

printf(" 8: %u", o->eo_item.ei_uint8);
break;

case EXT_UINT16:
...

}
static void disp_group(ea_file_t *ef, uint_t nobjs)
{

for (i = 0; i < nobjs; i++) {
ea_get_object(ef, &scratch));

disp_obj(&scratch);
if (scratch.eo_type == EO_GROUP)

disp_group(ef, scratch.eo_group.eg_nobjs);
}

}

24 Solaris 10 Resource Manager Developer’s Guide • January, 2005

CHAPTER 4

Extended Accounting Perl Interface

The perl interface provides a perl binding to the extended accounting tasks and
projects. The interface allows the accounting files produced by the exacct framework
to be read by perl scripts. The interface also allows the writing of exacct files by perl
scripts.

This chapter has the following organization:

� “Extended Accounting Overview” on page 25
� “Perl Interface to libexacct(3LIB)” on page 26
� “Perl Modules” on page 28
� “Perl Code Examples” on page 41
� “Output From dump Method” on page 44

Extended Accounting Overview
exacct is a new accounting framework for the Solaris operating environment that
provides additional functionality to that provided by the traditional SVR4 accounting
mechanism. Traditional SVR4 accounting suffers from several drawbacks:

� The data collected by SVR4 accounting cannot be modified.

The type or quantity of statistics SVR4 accounting gathers cannot be customized
for each application. Changes to the data SVR4 accounting collects would break all
the existing consumers of the accounting files.

� The SVR4 accounting mechanism is not open.

Applications cannot embed their own data in the system accounting data stream.

� The SVR4 accounting mechanism has no aggregation facilities.

The Solaris operating environment writes an individual record for each process
that exits. No facilities are provided for grouping sets of accounting records into
higher level aggregates.

25

For an overview of extended accounting, see Chapter 4, “Extended Accounting
(Overview),” in System Administration Guide: N1 Grid Containers, Resource Management,
and Solaris Zones.

Perl Interface to libexacct(3LIB)
The perl exacct framework addresses the deficiencies of SVR4 accounting and
provides a configurable, open, and extensible framework for the collection of
accounting data.

� The data that is collected can be configured using the exacct API.

� Applications can either embed their own data inside the system accounting files, or
create and manipulate their own custom accounting files.

� The introduction of two new concepts overcomes the lack of data aggregation
facilities in the traditional accounting mechanism. The new concepts are tasks and
projects. Tasks identify a set of processes which are to be considered as a unit of
work. Projects allow the processes executed by a set of users to be aggregated into
a higher-level entity. See project(4) for more details about tasks and projects.

Object Model
The Sun::Solaris::Exacct module is the parent of all the classes provided by this
library. libexacct(3LIB) provides operations on several types of entities: exacct
format files, catalog tags and exacct objects. exacct objects are subdivided into
two types.

� Items

Single data values

� Groups

Lists of Items

Design Criteria
The perl extensions to extended accounting provide a perl interface to the underlying
libexacct(3LIB) API.

� Full equivalence to C API

Provide a perl interface that is functionally equivalent to the underlying C API. The
goal is to provide a mechanism for accessing exacct files that does not require C
coding. All the functionality that is available from C is also available via the perl
interface.

26 Solaris 10 Resource Manager Developer’s Guide • January, 2005

� Ease of use

Data obtained from the underlying C API is presented as perl data types. Perl data
types ease access to the data, and remove the need for buffer pack and unpack
operations.

� Automated memory management

The C API requires that the programmer take responsibility for managing memory
when accessing exacct files. Memory management takes the form of passing the
appropriate flags to functions, such as ea_unpack_object(3EXACCT), and
explicitly allocating buffers to pass to the API. The perl API removes these
requirements, as all memory management is performed by the perl library.

� Prevent incorrect use of API

The ea_object_t structure provides the in-memory representation of exacct
records. The ea_object_t structure is a union type, used for manipulating both
Group and Item records. As a result, an incorrectly typed structure can be passed
to some of the API functions. The addition of a class hierarchy prevents this type of
programming error.

Perl Double-typed Scalars
The modules described in this document make extensive use of the perl double-typed
scalar facility. The double-typed scalar facility allows a scalar value to behave either as
an integer or as a string, depending upon context. This behavior is the same as
exhibited by the $! perl variable (errno). The double-typed scalar facility avoids the
need to map from an integer value into the corresponding string in order to display a
value. The following example illustrates the use of double-typed scalars.

Assume $obj is a Sun::Solaris::Item
my $type = $obj->type();

prints out "2 EO_ITEM"
printf("%d %s\n", $type, $type);

Behaves as an integer, $i == 2
my $i = 0 + $type;

Behaves as a string, $s = "abc EO_ITEM xyx"

my $s = "abc $type xyz";

Chapter 4 • Extended Accounting Perl Interface 27

Perl Modules
The various project, task and exacct-related functions have been separated into
groups, and each placed in a separate perl module. Each function has the SMI
standard Sun::Solaris:: perl package prefix. The following table summarizes the
modules with links to detailed descriptions of each module.

TABLE 4–1 Perl Modules

Module Description

“Sun::Solaris::Project Module” on page 29 Provides functions to access the project
manipulation functions: getprojid(2),
setproject(3PROJECT),
project_walk(3PROJECT),
getprojent(3PROJECT),
getprojbyname(3PROJECT),
getprojbyid(3PROJECT),
getdefaultproj(3PROJECT),
inproj(3PROJECT),
getprojidbyname(3PROJECT),
setprojent(3PROJECT),
endprojent(3PROJECT),
fgetprojent(3PROJECT).

“Sun::Solaris::Task Module” on page 31 Provides functions to access the task
manipulation functions settaskid(2),
gettaskid(2).

“Sun::Solaris::Exacct Module” on page 32 Top-level exacct module. Functions in
this module access both the
exacct-related system calls getacct(2),
putacct(2), and wracct(2) as well as the
libexacct(3LIB) library function
ea_error(3EXACCT). This module
contains constants for all the various
exacct EO_*, EW_*, EXR_*, P_*,
TASK_* macros.

“Sun::Solaris::Exacct::Catalog Module”
on page 33

Provides object-oriented methods to
access the bitfields within an exacct
catalog tag as well as the EXC_*, EXD_*,
EXD_* macros.

28 Solaris 10 Resource Manager Developer’s Guide • January, 2005

TABLE 4–1 Perl Modules (Continued)
Module Description

“Sun::Solaris::Exacct::File Module”
on page 35

Provides object-oriented methods to
access the libexacct(3LIB) accounting
file functions: ea_open(3EXACCT),
ea_close(3EXACCT),
ea_get_creator(3EXACCT),
ea_get_hostname(3EXACCT),
ea_next_object(3XACCT),
ea_previous_object(3EXACCT),
ea_write_object(3EXACCT).

“Sun::Solaris::Exacct::Object Module”
on page 37

Provides object-oriented methods to
access the individual exacct accounting
file object. An exacct object is
represented as an opaque reference that is
blessed into the appropriate
Sun::Solaris::Exacct::Object
subclass. This module is further
subdivided into the two types of possible
object: Item and Group. Methods are also
provided to access the
ea_match_object_catalog
(3EXACCT), ea_attach_to_object
(3EXACCT) functions.

“Sun::Solaris::Exacct::Object::Item
Module” on page 38

Provides object-oriented methods to
access an individual exacct accounting
file Item. Objects of this type inherit from
Sun::Solaris::Exacct::Object.

“Sun::Solaris::Exacct::Object::Group
Module” on page 39

Provides object-oriented methods to
access an individual exacct accounting
file Group. Objects of this type inherit
from
Sun::Solaris::Exacct::Object,
and provide access to the
ea_attach_to_group(3EXACCT)
function. The Items contained within the
Group are presented as a perl array.

“Sun::Solaris::Exacct::Object::_Array
Module” on page 40

Private array type, used as the type of the
array within a
Sun::Solaris::Exacct::Object::Group.

Sun::Solaris::Project Module
The Sun::Solaris::Project module provides wrappers for the project-related
system calls and the libproject(3LIB) library.

Chapter 4 • Extended Accounting Perl Interface 29

Sun::Solaris::Project Constants
The Sun::Solaris::Project module uses constants from the project-related
header files.

MAXPROJID
PROJNAME_MAX
PROJF_PATH
PROJECT_BUFSZ
SETPROJ_ERR_TASK
SETPROJ_ERR_POOL

Sun::Solaris::Project Functions, Class Methods,
and Object Methods
The perl extensions to the libexacct(3LIB) API provide the following functions for
projects. The function name is a link to the corresponding man page.

setproject(3PROJECT)
setprojent(3PROJECT)
getdefaultproj(3PROJECT)
inproj(3PROJECT)
getprojent(3PROJECT)
fgetprojent(3PROJECT)
getprojbyname(3PROJECT)
getprojbyid(3PROJECT)
getprojbyname(3PROJECT)
endprojent(3PROJECT)

The Sun::Solaris::Project module has no class methods.

The Sun::Solaris::Project module has no object methods.

Sun::Solaris::Project Exports
By default, nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS getprojid()

30 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Tag Constant or Function

:LIBCALLS setproject(), activeprojects(), getprojent(),
setprojent(), endprojent(), getprojbyname(),
getprojbyid(), getdefaultproj(), fgetprojent(),
inproj(), getprojidbyname()

:CONSTANTS MAXPROJID_TASK, PROJNAME_MAX, PROJF_PATH,
PROJECT_BUFSZ, SETPROJ_ERR, SETPROJ_ERR_POOL

:ALL :SYSCALLS, :LIBCALLS, :CONSTANTS

Sun::Solaris::Task Module
The Sun::Solaris::Task module provides wrappers for the settaskid(2) and
gettaskid(2) system calls.

Sun::Solaris::Task Constants
The Sun::Solaris::Task module uses the following constants.

TASK_NORMAL
TASK_FINAL

Sun::Solaris::Task Functions, Class Methods, and
Object Methods
The perl extensions to the libexacct(3LIB) API provides the following functions for
tasks.

settaskid(2)
gettaskid(2)

The Sun::Solaris::Task module has no class methods.

The Sun::Solaris::Task module has no object methods.

Chapter 4 • Extended Accounting Perl Interface 31

Sun::Solaris::Task Exports
By default, nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS settaskid(), gettaskid()

:CONSTANTS TASK_NORMAL, TASK_FINAL

:ALL :SYSCALLS, :CONSTANTS

Sun::Solaris::Exacct Module
The Sun::Solaris::Exacct module provides wrappers for the
ea_error(3EXACCT) function, and for all the exacct system calls.

Sun::Solaris::Exacct Constants
The Sun::Solaris::Exacct module provides constants from the various exacct
header files. The P_PID, P_TASKID, P_PROJID and all the EW_*, EP_*, EXR_* macros
are extracted during the module build process. The macros are extracted from the
exacct header files under /usr/include and provided as perl constants. Constants
passed to the Sun::Solaris::Exacct functions can either be an integer value such
as. EW_FINAL or a string representation of the same variable such as. “EW_FINAL”.

Sun::Solaris::Exacct Functions, Class Methods, and
Object Methods
The perl extensions to the libexacct(3LIB) API provide the following functions for
the Sun::Solaris::Exacct module. The function name is a link to the
corresponding man page.

getacct(2)
putacct(2)
wracct(2)
ea_error(3EXACCT)
ea_error_str
ea_register_catalog
ea_new_file
ea_new_item
ea_new_group

32 Solaris 10 Resource Manager Developer’s Guide • January, 2005

ea_dump_object

Note – ea_error_str() is provided as a convenience, so that repeated blocks of
code like the following can be avoided:

if (ea_error() == EXR_SYSCALL_FAIL) {
print("error: $!\n");

} else {
print("error: ", ea_error(), "\n");

}

The Sun::Solaris::Exacct module has no class methods.

The Sun::Solaris::Exacct module has no object methods.

Sun::Solaris::Exacct Exports
By default, nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module.

Tag Constant or Function

:SYSCALLS getacct(), putacct(), wracct()

:LIBCALLS ea_error(), ea_error_str()

:CONSTANTS P_PID, P_TASKID, P_PROJID, EW_*, EP_*, EXR_*

:SHORTAND ea_register_catalog(), ea_new_catalog(),
ea_new_file(), ea_new_item(), ea_new_group(),
ea_dump_object()

:ALL :SYSCALLS, :LIBCALLS, :CONSTANTS, :SHORTHAND

:EXACCT_CONSTANTS :CONSTANTS, plus the :CONSTANTS tags for
Sun::Solaris::Catalog, Sun::Solaris::File,
Sun::Solaris::Object

:EXACCT_ALL :ALL, plus the :ALL tags for Sun::Solaris::Catalog,
Sun::Solaris::File, Sun::Solaris::Object

Sun::Solaris::Exacct::Catalog Module
The Sun::Solaris::Exacct::Catalog module provides a wrapper around the
32-bit integer used as a catalog tag. The catalog tag is represented as a perl object
blessed into the Sun::Solaris::Exacct::Catalog class. Methods can be used to
manipulate fields in a catalog tag.

Chapter 4 • Extended Accounting Perl Interface 33

Sun::Solaris::Exacct::Catalog Constants
All the EXT_*, EXC_*, EXD_* macros are extracted during the module build process
from the /usr/include/sys/exact_catalog.h file and are provided as
constants. Constants passed to the Sun::Solaris::Exacct::Catalog methods
can either be an integer value, such as EXT_UINT8, or the string representation of the
same variable, such as “EXT_UINT8”.

Sun::Solaris::Exacct::Catalog Functions, Class
Methods, and Object Methods
The perl extensions to the libexacct(3LIB) API provide the following class methods
forSun::Solaris::Exacct::Catalog. Exacct(3PERL)
andExacct::Catalog(3PERL)

register
new

The perl extensions to the libexacct(3LIB) API provide the following object
methods for Sun::Solaris::Exacct::Catalog.

value
type
catalog
id
type_str
catalog_str
id_str

Sun::Solaris::Exacct::Catalog Exports
By default, nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module.

Tag Constant or Function

:CONSTANTS EXT_*, EXC_*, EXD_*.

:ALL :CONSTANTS

Additionally, any constants defined with the register() function can optionally be
exported into the caller’s package.

34 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Sun::Solaris::Exacct::File Module
The Sun::Solaris::Exacct::File module provides wrappers for the exacct
functions that manipulate accounting files. The interface is object-oriented, and allows
the creation and reading of exacct files. The C library calls that are wrapped by this
module are:

ea_open(3EXACCT)
ea_close(3EXACCT)
ea_next_object(3EXACCT)
ea_previous_object(3EXACCT)
ea_write_object(3EXACCT)
ea_get_object(3EXACCT)
ea_get_creator(3EXACCT)
ea_get_hostname(3EXACCT)

The file read and write methods operate on Sun::Solaris::Exacct::Object
objects. These methods perform all the necessary memory management, packing,
unpacking and structure conversions that are required.

Sun::Solaris::Exacct::File Constants
Sun::Solaris::Exacct::File provides the EO_HEAD, EO_TAIL,
EO_NO_VALID_HDR, EO_POSN_MSK, EO_VALIDATE_MSK constants. Other
constants that are needed by the new() method are in the standard perl Fcntl
module. Table 4–2 describes the action of new() for various values of $oflags and
$aflags.

Sun::Solaris::Exacct::File Functions, Class
Methods, and Object Methods
The Sun::Solaris::Exacct::File module has no functions.

The perl extensions to the libexacct(3LIB) API provide the following class method
forSun::Solaris::Exacct::File.

new

The following table describes the new() action for combinations of the $oflags and
$aflags parameters.

Chapter 4 • Extended Accounting Perl Interface 35

TABLE 4–2 $oflags and $aflags Parameters

$oflags $aflags Action

O_RDONLY Absent or EO_HEAD Open for reading at the start of the file.

O_RDONLY EO_TAIL Open for reading at the end of the file.

O_WRONLY Ignored File must exist, open for writing at the
end of the file.

O_WRONLY |
O_CREAT

Ignored Create file if the file does not exist.
Otherwise, truncate, and open for
writing.

O_RDWR Ignored File must exist, open for reading or
writing, at the end of the file.

O_RDWR | O_CREAT Ignored Create file if the file does not exist.
Otherwise, truncate, and open for
reading or writing.

Note – The only valid values for $oflags are the combinations of O_RDONLY,
O_WRONLY, O_RDWR, O_CREAT. $aflags describes the required positioning in the
file for O_RDONLY. Either EO_HEAD or EO_TAIL are allowed. If absent, EO_HEAD
is assumed.

The perl extensions to the libexacct(3LIB) API provide the following object
methods forSun::Solaris::Exacct::File.

creator
hostname
next
previous
get
write

Note – Close a Sun::Solaris::Exacct::File. There is no explicit close()
method for a Sun::Solaris::Exacct::File. The file is closed when the filehandle
object is undefined or reassigned.

36 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Sun::Solaris::Exacct::File Exports
By default, nothing is exported from this module. The following tags can be used to
selectively import constants that are defined in this module.

Tag Constant or Function

:CONSTANTS EO_HEAD, EO_TAIL, EO_NO_VALID_HDR, EO_POSN_MSK,
EO_VALIDATE_MSK.

:ALL :CONSTANTS, Fcntl(:DEFAULT).

Sun::Solaris::Exacct::Object Module
The Sun::Solaris::Exacct::Object module serves as a parent of the two
possible types of exacct objects: Items and Groups. An exacct Item is a single data
value, an embedded exacct object, or a block of raw data. An example of a single
data value is the number of seconds of user CPU time consumed by a process. An
exacct Group is an ordered collection of exacct Items such as all of the resource
usage values for a particular process or task. If Groups need to be nested within each
other, the inner Groups can be stored as embedded exacct objects inside the
enclosing Group.

The Sun::Solaris::Exacct::Object module contains methods that are common
to both exacct Items and Groups. Note that the attributes of
Sun::Solaris::Exacct::Object and all classes derived from it are read-only
after initial creation via new(). The attributes made read-only prevents the
inadvertent modification of the attributes which could give rise to inconsistent catalog
tags and data values. The only exception to the read-only attributes is the array used
to store the Items inside a Group object. This array can be modified using the normal
perl array operators.

Sun::Solaris::Exacct::Object Constants
Sun::Solaris::Exacct::Object provides the EO_ERROR, EO_NONE,
EO_ITEM, EO_GROUP constants.

Sun::Solaris::Exacct::Object Functions, Class
Methods, and Object Methods
The Sun::Solaris::Exacct::Object module has no functions.

The perl extensions to the libexacct(3LIB) API provide the following class method
forSun::Solaris::Exacct::Object.

Chapter 4 • Extended Accounting Perl Interface 37

dump

The perl extensions to the libexacct(3LIB) API provide the following object
methods forSun::Solaris::Exacct::Object.

type
catalog
match_catalog
value

Sun::Solaris::Exacct::Object Exports
By default, nothing is exported from this module. The following tags can be used to
selectively import constants and functions defined in this module.

Tag Constant or Function

:CONSTANTS EO_ERROR, EO_NONE, EO_ITEM, EO_GROUP

:ALL :CONSTANTS

Sun::Solaris::Exacct::Object::Item
Module
The Sun::Solaris::Exacct::Object::Item module is used for exacct data
Items. An exacct data Item is represented as an opaque reference, blessed into the
Sun::Solaris::Exacct::Object::Item class, which is a subclass of the
Sun::Solaris::Exacct::Object class. The underlying exacct data types are
mapped onto perl types as follows.

TABLE 4–3 exacct Data Types Mapped to Perl Data Types

exacct type perl internal type

EXT_UINT8 IV (integer)

EXT_UINT16 IV (integer)

EXT_UINT32 IV (integer)

EXT_UINT64 IV (integer)

EXT_DOUBLE NV (double)

EXT_STRING PV (string)

38 Solaris 10 Resource Manager Developer’s Guide • January, 2005

TABLE 4–3 exacct Data Types Mapped to Perl Data Types (Continued)
exacct type perl internal type

EXT_EXACCT_OBJECT Sun::Solaris::Exacct::Object subclass

EXT_RAW PV (string)

Sun::Solaris::Exacct::Object::Item Constants
Sun::Solaris::Exacct::Object::Item has no constants.

Sun::Solaris::Exacct::Object::Item Functions,
Class Methods, and Object Methods
Sun::Solaris::Exacct::Object::Item has no functions.

Sun::Solaris::Exacct::Object::Item inherits all class methods from the
Sun::Solaris::Exacct::Object base class, plus the new() class method.

new

Sun::Solaris::Exacct::Object::Item inherits all object methods from the
Sun::Solaris::Exacct::Object base class.

Sun::Solaris::Exacct::Object::Item Exports
Sun::Solaris::Exacct::Object::Item has no exports.

Sun::Solaris::Exacct::Object::Group
Module
The Sun::Solaris::Exacct::Object::Group module is used for exacct
Group objects. An exacct Group object is represented as an opaque reference, blessed
into the Sun::Solaris::Exacct::Object::Group class, which is a subclass of
the Sun::Solaris::Exacct::Object class. The Items within a Group are stored
inside a perl array, and a reference to the array can be accessed via the inherited
value() method. This means that the individual Items within a Group can be
manipulated with the normal perl array syntax and operators. All data elements of the
array must be derived from the Sun::Solaris::Exacct::Object class. Group
objects can also be nested inside each other merely by adding an existing Group as a
data Item.

Sun::Solaris::Exacct::Object::Group Constants
Sun::Solaris::Exacct::Object::Group has no constants.

Chapter 4 • Extended Accounting Perl Interface 39

Sun::Solaris::Exacct::Object::Group Functions,
Class Methods, and Object Methods
Sun::Solaris::Exacct::Object::Group has no functions.

Sun::Solaris::Exacct::Object::Group inherits all class methods from the
Sun::Solaris::Exacct::Object base class, plus the new() class method.

new

Sun::Solaris::Exacct::Object::Group inherits all object methods from the
Sun::Solaris::Exacct::Object base class, plus the new() class method.

as_hash
as_hashlist

Sun::Solaris::Exacct::Object::Group Exports
Sun::Solaris::Exacct::Object::Group has no exports.

Sun::Solaris::Exacct::Object::_Array
Module
The Sun::Solaris::Exacct::Object::_Array class is used internally for
enforcing type checking of the data Items that are placed in an exacct Group.
Sun::Solaris::Exacct::Object::_Array should not be created directly by the
user.

Sun::Solaris::Exacct::Object::_Array
Constants
Sun::Solaris::Exacct::Object::_Array has no constants.

Sun::Solaris::Exacct::Object::_Array
Functions, Class Methods, and Object Methods
Sun::Solaris::Exacct::Object::_Array has no functions.

Sun::Solaris::Exacct::Object::_Array has internal-use class methods.

Sun::Solaris::Exacct::Object::_Array uses perl TIEARRAY methods.

40 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Sun::Solaris::Exacct::Object::_Array Exports
Sun::Solaris::Exacct::Object::_Array has no exports.

Perl Code Examples
This section shows perl code examples for accessing exacct files.

Pseudocode Prototype
In typical use the perl exacct library reads existing exacct files. Use pseudocode to
show the relationships of the various perl exacct classes. Illustrate in pseudocode the
process of opening and scanning an exacct file, and processing objects of interest. In
the following pseudocode, the ‘convenience’ functions are used in the interest of
clarity.

-- Open the exacct file ($f is a Sun::Solaris::Exacct::File)
my $f = ea_new_file(...)

-- While not EOF ($o is a Sun::Solaris::Exacct::Object)
while (my $o = $f->get())

-- Check to see if object is of interest
if ($o->type() == &EO_ITEM)

...

-- Retrieve the catalog ($c is a Sun::Solaris::Exacct::Catalog)
$c = $o->catalog()

-- Retrieve the value
$v = $o->value();

-- $v is a reference to a Sun::Solaris::Exacct::Group for a Group
if (ref($v))

....

-- $v is perl scalar for Items

else

Recursively dump an exacct Object
sub dump_object
{

my ($obj, $indent) = @_;

Chapter 4 • Extended Accounting Perl Interface 41

my $istr = ’ ’ x $indent;

#
Retrieve the catalog tag. Because we are doing this in an array
context, the catalog tag will be returned as a (type, catalog, id)
triplet, where each member of the triplet will behave as an integer
or a string, depending on context. If instead this next line provided
a scalar context, e.g.
my $cat = $obj->catalog()->value();
then $cat would be set to the integer value of the catalog tag.
#
my @cat = $obj->catalog()->value();

#
If the object is a plain item
#
if ($obj->type() == &EO_ITEM) {

#
Note: The ’%s’ formats provide s string context, so the
components of the catalog tag will be displayed as the
symbolic values. If we changed the ’%s’ formats to ’%d’,
the numeric value of the components would be displayed.
#
printf("%sITEM\n%s Catalog = %s|%s|%s\n",

$istr, $istr, @cat);
$indent++;

#
Retrieve the value of the item. If the item contains in
turn a nested exacct object (i.e. a item or group), then
the value method will return a reference to the appropriate
sort of perl object (Exacct::Object::Item or
Exacct::Object::Group). We could of course figure out that
the item contained a nested item or group by examining
the catalog tag in @cat and looking for a type of
EXT_EXACCT_OBJECT or EXT_GROUP.
my $val = $obj->value();
if (ref($val)) {

If it is a nested object, recurse to dump it.
dump_object($val, $indent);

} else {
Otherwise it is just a ’plain’ value, so display it.
printf("%s Value = %s\n", $istr, $val);

}

#
Otherwise we know we are dealing with a group. Groups represent
contents as a perl list or array (depending on context), so we
can process the contents of the group with a ’foreach’ loop, which
provides a list context. In a list context the value method
returns the content of the group as a perl list, which is the
quickest mechanism, but doesn’t allow the group to be modified.
If we wanted to modify the contents of the group we could do so
like this:
my $grp = $obj->value(); # Returns an array reference

42 Solaris 10 Resource Manager Developer’s Guide • January, 2005

$grp->[0] = $newitem;
but accessing the group elements this way is much slower.
#
} else {

printf("%sGROUP\n%s Catalog = %s|%s|%s\n",
$istr, $istr, @cat);

$indent++;
’foreach’ provides a list context.
foreach my $val ($obj->value()) {

dump_object($val, $indent);
}
printf("%sENDGROUP\n", $istr);

}

}

Create a New Group Record and Write to File
Prototype list of catalog tags and values.
my @items = (

[&EXT_STRING | &EXC_DEFAULT | &EXD_CREATOR => "me"],
[&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_PID => $$],
[&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_UID => $<],
[&EXT_UINT32 | &EXC_DEFAULT | &EXD_PROC_GID => $(],
[&EXT_STRING | &EXC_DEFAULT | &EXD_PROC_COMMAND => "/bin/stuff"],

);

Create a new group catalog object.
my $cat = new_catalog(&EXT_GROUP | &EXC_DEFAULT | &EXD_NONE);

Create a new Group object and retrieve its data array.
my $group = new_group($cat);
my $ary = $group->value();

Push the new Items onto the Group array.
foreach my $v (@items) {

push(@$ary, new_item(new_catalog($v->[0]), $v->[1]));
}

Nest the group within itself (performs a deep copy).
push(@$ary, $group);

Dump out the group.

dump_object($group);

dump an exacct File
#!/usr/perl5/5.6.1/bin/perl

use strict;

Chapter 4 • Extended Accounting Perl Interface 43

use warnings;
use blib;
use Sun::Solaris::Exacct qw(:EXACCT_ALL);

die("Usage is dumpexacct

Open the exact file and display the header information.
my $ef = ea_new_file($ARGV[0], &O_RDONLY) || die(error_str());
printf("Creator: %s\n", $ef->creator());
printf("Hostname: %s\n\n", $ef->hostname());

Dump the file contents
while (my $obj = $ef->get()) {

ea_dump_object($obj);
}

Report any errors
if (ea_error() != EXR_OK && ea_error() != EXR_EOF) {

printf("\nERROR: %s\n", ea_error_str());
exit(1);

}

exit(0);

Output From dump Method
The following example shows the formatted output of the
Sun::Solaris::Exacct::Object->dump() method.

GROUP
Catalog = EXT_GROUP|EXC_DEFAULT|EXD_GROUP_PROC_PARTIAL
ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_PID
Value = 3

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_UID
Value = 0

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_GID
Value = 0

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_PROJID
Value = 0

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_TASKID
Value = 0

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_USER_SEC
Value = 0

ITEM

44 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_USER_NSEC
Value = 0

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_SYS_SEC
Value = 890

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CPU_SYS_NSEC
Value = 760000000

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_START_SEC
Value = 1011869897

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_START_NSEC
Value = 380771911

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FINISH_SEC
Value = 0

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FINISH_NSEC
Value = 0

ITEM
Catalog = EXT_STRING|EXC_DEFAULT|EXD_PROC_COMMAND
Value = fsflush

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_TTY_MAJOR
Value = 4294967295

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_TTY_MINOR
Value = 4294967295

ITEM
Catalog = EXT_STRING|EXC_DEFAULT|EXD_PROC_HOSTNAME
Value = mower

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FAULTS_MAJOR
Value = 0

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_FAULTS_MINOR
Value = 0

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_MESSAGES_SND
Value = 0

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_MESSAGES_RCV
Value = 0

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_BLOCKS_IN
Value = 19

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_BLOCKS_OUT
Value = 40833

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CHARS_RDWR
Value = 0

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CONTEXT_VOL

Chapter 4 • Extended Accounting Perl Interface 45

Value = 129747
ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_CONTEXT_INV
Value = 79

ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_SIGNALS
Value = 0
ITEM
Catalog = EXT_UINT64|EXC_DEFAULT|EXD_PROC_SYSCALLS
Value = 0

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_ACCT_FLAGS
Value = 1

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_ANCPID
Value = 0

ITEM
Catalog = EXT_UINT32|EXC_DEFAULT|EXD_PROC_WAIT_STATUS
Value = 0

ENDGROUP

46 Solaris 10 Resource Manager Developer’s Guide • January, 2005

CHAPTER 5

Resource Controls

This chapter describes resource controls and their properties.

� “Overview of Resource Controls” on page 47
� “Resource Controls Flags and Actions” on page 48
� “Resource Controls Application Programming Interface” on page 56
� “Code Examples of Resource Controls” on page 57
� “Programming Issues Associated With Resource Controls” on page 61

Overview of Resource Controls
Use the extended accounting facility to determine the resource consumption of
workloads on your system. After the resource consumption has been determined, use
the resource control facility to place bounds on resource usage. Bounds that are placed
on resources prevent workloads from over-consuming resources.

For an overview of resource controls and example commands for administering
resource controls, see Chapter 6, “Resource Controls (Overview),” in System
Administration Guide: N1 Grid Containers, Resource Management, and Solaris Zones and
Chapter 7, “Administering Resource Controls (Tasks),” in System Administration Guide:
N1 Grid Containers, Resource Management, and Solaris Zones.

The resource control facility adds the following benefits.

� Dynamically set.

Resource controls can be adjusted while the system is running.

� Containment level granularity.

Resource controls are arranged in a containment level of project, task, or process.
The containment level simplifies the configuration and aligns the collected values
closer to the particular project, task, or process.

47

� Threshold preservation.

If an attempt is made to set the maximum value less than the actual resource
consumption, no change in to the maximum value is made.

Resource Controls Flags and Actions
This section describes flags, actions, and signals associated with resource controls.

rlimit, Resource Limit
rlimit is process-based. rlimit establishes a restricting boundary on the
consumption of a variety of system resources by a process. Each process that the
process creates inherits from the original process. A resource limit is defined by a pair
of values. The values specify the current (soft) limit and the maximum (hard) limit.

A process might irreversibly lower its hard limit to any value that is greater than or
equal to the soft limit. Only a process with superuser ID can raise the hard limit. See
setrlimit() and getrlimit().

The rlimit structure contains two members that define the soft limit and hard limit.

rlim_t rlim_cur; /* current (soft) limit */

rlim_t rlim_max /* hard limit */

rctl, Resource Control
rctl extends the process-based limits of rlimit by controlling resource
consumption by processes, tasks, and projects defined in the project database.

Note – The rctl mechanism is preferred to the use of rlimit to set resource limits.
The only reason to use the rlimit facility is when portability is required across UNIX
platforms.

Applications fall into the following broad categories depending on how an application
deals with resource controls. Based on the action that is taken, resource controls can be
further classified. Most report an error and terminate operation. Other resource
controls allow applications to resume operation and adapt to the reduced resource
usage. A progressive chain of actions at increasing values can be specified for each
resource control.

48 Solaris 10 Resource Manager Developer’s Guide • January, 2005

The list of attributes for a resource control consists of a privilege level, a threshold
value, and an action that is taken when the threshold is exceeded.

rctl Privilege Values
Each threshold value on a resource control must be associated with one of the
following privilege levels:

RCPRIV_BASIC
Privilege level can be modified by the owner of the calling process. RCPRIV_BASIC
is associated with a resource’s soft limit.

RCPRIV_PRIVILEGED
Privilege level can be modified only by privileged (superuser) callers.
RCPRIV_PRIVILEGED is associated with a resource’s hard limit.

RCPRIV_SYSTEM
Privilege level remains fixed for the duration of the operating system instance.

Figure 5–2 shows the timeline for setting privilege levels for signals that are defined
by the /etc/project file process.max-cpu-time resource control.

Local Actions and Local Flags
The local action and local flags are applied to the current resource control value
represented by this resource control block. Local actions and local flags are
value-specific. For each threshold value that is placed on a resource control, the
following local actions and local flags are available:

RCTL_LOCAL_NOACTION
No local action is taken when this resource control value is exceeded.

RCTL_LOCAL_SIGNAL
The specified signal, set by rctlblk_set_local_action(), is sent to the
process that placed this resource control value in the value sequence.

RCTL_LOCAL_DENY
When this resource control value is encountered, the request for the resource is
denied. Set on all values if RCTL_GLOBAL_DENY_ALWAYS is set for this control.
Cleared on all values if RCTL_GLOBAL_DENY_NEVER is set for this control.

RCTL_LOCAL_MAXIMAL
This resource control value represents a request for the maximum amount of
resource for this control. If RCTL_GLOBAL_INFINITE is set for this resource
control, RCTL_LOCAL_MAXIMAL indicates an unlimited resource control value
that is never exceeded.

Chapter 5 • Resource Controls 49

Global Actions and Global Flags
Global flags apply to all current resource control values represented by this resource
control block. Global actions and global flags are set by rctladm(1M). Global actions
and global flags cannot be set with setrctl(). Global flags apply to all resource
controls. For each threshold value that is placed on a resource control, the following
global actions and global flags are available:

RCTL_GLOBAL_NOACTION
No global action is taken when a resource control value is exceeded on this control.

RCTL_GLOBAL_SYSLOG
A standard message is logged by the syslog() facility when any resource control
value on a sequence associated with this control is exceeded.

RCTL_GLOBAL_NOBASIC
No values with the RCPRIV_BASIC privilege are permitted on this control.

RCTL_GLOBAL_LOWERABLE
Non-privileged callers are able to lower the value of privileged resource control
values on this control.

RCTL_GLOBAL_DENY_ALWAYS
The action that is taken when a control value is exceeded on this control always
includes denial of the resource.

RCTL_GLOBAL_DENY_NEVER
The action that is taken when a control value is exceeded on this control always
excludes denial of the resource. The resource is always granted, although other
actions can also be taken.

RCTL_GLOBAL_FILE_SIZE
The valid signals for local actions include the SIGXFSZ signal.

RCTL_GLOBAL_CPU_TIME
The valid signals for local actions include the SIGXCPU signal.

RCTL_GLOBAL_SIGNAL_NEVER
No local actions are permitted on this control. The resource is always granted.

RCTL_GLOBAL_INFINITE
This resource control supports the concept of an unlimited value. Generally, an
unlimited value applies only to accumulation-oriented resources, such as CPU time.

RCTL_GLOBAL_UNOBSERVABLE
Generally, a task or project related resource control does not support observational
control values. An RCPRIV_BASIC privileged control value placed on a task or
process generates an action only if the value is exceeded by that process.

50 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Resource Control Sets Associated With a Project,
Processes and Tasks
The following figure shows the resource control sets associated with tasks, processes
and a project.

Chapter 5 • Resource Controls 51

Zone

Task

Project

Task Task

Task rctl set

task.max-cpu-time
task.max-lwps

Task rctl set

task.max-cpu-time
task.max-lwps

Project rctl set

project.cpu-shares
project.max-lwps
project.max-tasks
project.max-contracts

Process rctl set

process.max-address-space
process.max-file-descriptors
process.max-core-size
process.max-stack-size
...

Process rctl set

...
process.max-data-size
process.max-file-size
process.max-cpu-time

.....

= Circle designates a process within a task

FIGURE 5–1 Resource Control Sets for Task, Project, and Process

52 Solaris 10 Resource Manager Developer’s Guide • January, 2005

More than one resource control can exist on a resource, each resource control at a
containment level in the process model. Resource controls can be active on the same
resource for both a process and collective task or collective project. In this case, the
action for the process takes precedence. For example, action is taken on
process.max-cpu-time before task.max-cpu-time if both controls are
encountered simultaneously.

Resource Controls Associated With a Project
Resource controls associated with a project include the following:

project.cpu-shares
The number of CPU shares that are granted to this project for use with the fair
share scheduler, FSS(7).

project.max-msg-ids
Maximum number of System V message queues allowed for a project.

project.max-sem-ids
Maximum number of System V semaphores allowed for a project.

project.max-port-ids
Maximum allowable number of event ports.

Resource Controls Associated With Tasks
Resource controls associated with tasks include the following:

task.max-cpu-time
Maximum CPU time (seconds) available to this task’s processes.

task.max-lwps
Maximum number of LWPs simultaneously available to this task’s processes.

Resource Controls Associated With Processes
Resource controls associated with processes include the following:

process.max-address-space
Maximum amount of address space (bytes), as summed over segment sizes,
available to this process.

process.max-core-size
Maximum size (bytes) of a core file that is created by this process.

process.max-cpu-time
Maximum CPU time (seconds) available to this process.

process.max-file-descriptor
Maximum file descriptor index that is available to this process.

Chapter 5 • Resource Controls 53

process.max-file-size
Maximum file offset (bytes) available for writing by this process.

process.max-msg-messages
Maximum number of messages on a message queue. This value is copied from the
resource control at msgget() time.

process.max-msg-qbytes
Maximum number (bytes) of messages on a message queue. This value is copied
from the resource control at msgget() time.When you set a new
project.max-msg-qbytes value, initialization occurs only on the subsequently
created values. The new project.max-msg-qbytes value does not effect existing
values.

process.max-sem-nsems
Maximum number of semaphores allowed for a semaphore set.

process.max-sem-ops
Maximum number of semaphore operations that are allowed for a semop() call.
This value is copied from the resource control at msgget() time.A new
project.max-sem-ops value only affects the initialization of subsequently
created values and has no effect on existing values.

process.max-port-events
Maximum number of events that are allowed per event port.

process.crpto-buffer-limit
Maximum number of bytes that are allocated for copying.

process.max-crypto-sessions
Maximum number of entries in the session table.

process.add-crypto-sessions
Number of entries that are added when enlarging the session table.

process.min-crypto-sessions
Minimum number of entries in the session table.

Signals Used With Resource Controls
For each threshold value that is placed on a resource control, the following restricted
set of signals is available:

SIGBART
Terminate the process.

SIGXRES
Signal generated by resource control facility when the resource control limit is
exceeded.

SIGHUP
When carrier drops on an open line, the process group that controls the terminal is
sent a hangup signal, SIGHUP.

54 Solaris 10 Resource Manager Developer’s Guide • January, 2005

SIGSTOP
Job control signal. Stop the process. Stop signal not from terminal.

SIGTERM
Terminate the process. Termination signal sent by software.

SIGKILL
Terminate the process. Kill the program.

SIGXFSX
Terminate the process. File size limit exceeded. Available only to resource controls
with the RCTL_GLOBAL_FILE_SIZE property.

SIGXCPU
Terminate the process. CPU time limit exceeded. Available only to resource controls
with the RCTL_GLOBAL_CPUTIME property.

Other signals might be permitted due to global properties of a specific control.

Note – Calls to setrctl() with illegal signals fail.

/etc/project

cgi-bin:103:cgi-bin scripts:root,apache::\
process.max-cpu-time=(privileged,1000,signal=SIGXCPU),\

(privileged,2000,signal=SIGTERM),\
(privileged,3000,signal=SIGKILL),\

SIGXCPU SIGTERM SIGKILL

CGI
script

0 1000 2000 3000
Time (ms)

FIGURE 5–2 Setting Privilege Levels for Signals

Chapter 5 • Resource Controls 55

Resource Controls Application
Programming Interface
The resource controls API contains functions that:

� “Operate on Action-value Pairs of a Resource Control” on page 56
� “Operate on Local Modifiable Values” on page 56
� “Retrieve Local Read-only Values” on page 56
� “Retrieve Global Read-only Actions” on page 57

Operate on Action-value Pairs of a Resource
Control
The following list contains the functions that set or get the resource control block. The
function name is a link to the corresponding man page.

setrctl
getrctl

Operate on Local Modifiable Values
The following list contains the functions associated with the local, modifiable resource
control block. The function name is a link to the corresponding man page.

rctlblk_set_privilege(3C)
rctlblk_get_privilege(3C)
rctlblk_set_value(3C)
rctlblk_get_value(3C)
rctlblk_set_local_action(3C)
rctlblk_get_local_action(3C)
rctlblk_set_local_flags(3C)
rctlblk_get_local_flags(3C)

Retrieve Local Read-only Values
The following list contains the functions associated with the local, read-only resource
control block. The function name is a link to the corresponding man page.

rctlblk_get_recipient_pid(3C)

56 Solaris 10 Resource Manager Developer’s Guide • January, 2005

rctlblk_get_firing_time(3C)
rctlblk_get_enforced_value(3C)

Retrieve Global Read-only Actions
The following list contains the functions associated with the global, read-only resource
control block. The function name is a link to the corresponding man page.

rctlblk_get_global_action(3C)
rctlblk_get_global_flags(3C)

Code Examples of Resource Controls
This section provides code examples of the resource controls interface.

Master Observing Process for Resource Controls
The following example is the master observer process. Figure 5–3 shows the resource
controls for the master observing process.

Note – The line break is not valid in an /etc/project file. The line break is shown
here only to allow the example to display on a printed or displayed page. Each entry
in the /etc/project file must be on a separate line.

Chapter 5 • Resource Controls 57

Task N

iPlanet

P2 P3 P4

P1

Resource Control: task.max-lwps

RCPRIV_BASIC, v=1000,
signal=SIGXRES

Recipient PID = P1

RCPRIV_PRIVILEGED, v=1000, deny

/etc/project
...
iPlanet:200:iPlanet Application Server:root::\

task.max=lwps=(PRIVILEGED,1000,deny)

FIGURE 5–3 Master Observing Process

The key points for the example include the following:

� Because the task’s limit is privileged, the application cannot change the limit, or
specify an action, such as a signal. A master process solves this problem by
establishing the same resource control as a basic resource control on the task. The
master process uses the same value or a little less on the resource, but with a
different action, signal = XRES. The master process creates a thread to wait for this
signal.

� The rctlblk is opaque. The struct needs to be dynamically allocated.

� Note the blocking of all signals before creating the thread, as required by
sigwait(2).

� The thread calls sigwait(2) to block for the signal. If sigwait() returns the
SIGXRES signal, the thread notifies the master process’ children, which adapts to
reduce the number of LWPs being used. Each child should also be modelled
similarly, with a thread in each child, waiting for this signal, and adapting its
process’ LWP usage appropriately.

rctlblk_t *mlwprcb;
sigset_t smask;

/* Omit return value checking/error processing to keep code sample short */
/* First, install a RCPRIV_BASIC, v=1000, signal=SIGXRES rctl */
mlwprcb = calloc(1, rctlblk_size()); /* rctl blocks are opaque: */

rctlblk_set_value(mlwprcb, 1000);
rctlblk_set_privilege(mlwprcb, RCPRIV_BASIC);
rctlblk_set_local_action(mlwprcb, RCTL_LOCAL_SIGNAL, SIGXRES);

58 Solaris 10 Resource Manager Developer’s Guide • January, 2005

if (setrctl("task.max-lwps", NULL, mlwprcb, RCTL_INSERT) == -1) {
perror("setrctl");
exit (1);

}

/* Now, create the thread which waits for the signal */
sigemptyset(&smask);
sigaddset(&smask, SIGXRES);
thr_sigsetmask(SIG_BLOCK, &smask, NULL);

thr_create(NULL, 0, sigthread, (void *)SIGXRES, THR_DETACHED, NULL));

/* Omit return value checking/error processing to keep code sample short */

void *sigthread(void *a)
{

int sig = (int)a;
int rsig;
sigset_t sset;

sigemptyset(&sset);
sigaddset(&sset, sig);

while (1) {
rsig = sigwait(&sset);

if (rsig == SIGXRES) {
notify_all_children();
/* e.g. sigsend(P_PID, child_pid, SIGXRES); */
}

}

}

List all the Value-action Pairs for a Specific
Resource Control
The following example lists all the value-action pairs for a specific resource control,
task.max-lwps. The key point for the example is that getrctl(2) takes two
resource control blocks, and returns the resource control block for the RCTL_NEXT
flag. To iterate through all resource control blocks, repeatedly swap the resource
control block values, as shown here using the rcb_tmp rctl block.

rctlblk_t *rcb1, *rcb2, *rcb_tmp;
...

/* Omit return value checking/error processing to keep code sample short */
rcb1 = calloc(1, rctlblk_size()); /* rctl blocks are opaque: */

/* "rctlblk_t rcb" does not work */
rcb2 = calloc(1, rctlblk_size());
getrctl("task.max-lwps", NULL, rcb1, RCTL_FIRST);
while (1) {

print_rctl(rcb1);
rcb_tmp = rcb2;
rcb2 = rcb1;

Chapter 5 • Resource Controls 59

rcb1 = rcb_tmp; /* swap rcb1 with rcb2 */
if (getrctl("task.max-lwps", rcb2, rcb1, RCTL_NEXT) == -1) {

if (errno == ENOENT) {
break;

} else {
perror("getrctl");
exit (1);

}
}

}

Set project.cpu-shares and Add a New Value
The key points of the example include the following:

� This example is similar to the example shown in “Set pool.comment Property
and Add New Property” on page 75.

� Use bcopy(), rather than buffer swapping as in “List all the Value-action Pairs for
a Specific Resource Control” on page 59.

� To change the resource control value, call setrctl() with the RCTL_REPLACE
flag. The new resource control block is identical to the old resource control block
except for the new control value.

rctlblk_set_value(blk1, nshares);

if (setrctl("project.cpu-shares", blk2, blk1, RCTL_REPLACE) != 0)

The example gets the project’s CPU share allocation, project.cpu-shares, and
changes its value to nshares.

/* Omit return value checking/error processing to keep code sample short */
blk1 = malloc(rctlblk_size());
getrctl("project.cpu-shares", NULL, blk1, RCTL_FIRST);
my_shares = rctlblk_get_value(blk1);
printout_my_shares(my_shares);
/* if privileged, do the following to */
/* change project.cpu-shares to "nshares" */
blk1 = malloc(rctlblk_size());
blk2 = malloc(rctlblk_size());
if (getrctl("project.cpu-shares", NULL, blk1, RCTL_FIRST) != 0) {

perror("getrctl failed");
exit(1);

}
bcopy(blk1, blk2, rctlblk_size());
rctlblk_set_value(blk1, nshares);
if (setrctl("project.cpu-shares", blk2, blk1, RCTL_REPLACE) != 0) {

perror("setrctl failed");
exit(1);

}

60 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Set LWP Limit on Resource Control Blocks
In the following example, our application has set a privileged limit of 3000 LWPs that
may not be exceeded. In addition, our application has set a basic limit of 2000 LWPs.
When this limit is exceeded, a SIGXRES is sent to the application. Upon receiving a
SIGXRES, our application might send notification to its child processes that might in
turn reduce the number of LWPs the processes use or need.

/* Omit return value and error checking */

#include <rctl.h>

rctlblk_t *rcb1, *rcb2;

/*
* Resource control blocks are opaque
* and must be explicitly allocated.
*/

rcb1 = calloc(rctlblk_size());

rcb2 = calloc(rctlblk_size());

/* Install an RCPRIV_PRIVILEGED, v=3000: do not allow more than 3000 LWPs */
rctlblk_set_value(rcb1, 3000);
rctlblk_set_privilege(rcb1, RCPRIV_PRIVILEGED);
rctlblk_set_local_action(rcb1, RCTL_LOCAL_DENY);
setrctl("task.max-lwps", NULL, rcb1, RCTL_INSERT);

/* Install an RCPRIV_BASIC, v=2000 to send SIGXRES when LWPs exceeds 2000 */
rctlblk_set_value(rcb2, 2000);
rctlblk_set_privilege(rcb2, RCPRIV_BASIC);
rctlblk_set_local_action(rcb2, RCTL_LOCAL_SIGNAL, SIGXRES);

setrctl("task.max-lwps", NULL, rcb2, RCTL_INSERT);

Programming Issues Associated With
Resource Controls
Consider the following issues when writing your application:

� The resource control block is opaque. The control block needs to be dynamically
allocated.

� If a basic resource control is established on a task or project, the process that
establishes this resource control becomes an observer. The action for this resource
control block is applied to the observer. However, some resources cannot be
observed in this manner.

Chapter 5 • Resource Controls 61

� If a privileged resource control is set on a task or project, no observer process
exists. However, any process that violates the limit becomes the subject of the
resource control action.

� Only one action is permitted for each type: global and local.

� Only one basic rctl is allowed per process per resource control.

62 Solaris 10 Resource Manager Developer’s Guide • January, 2005

CHAPTER 6

Resource Pools

This chapter describes resource pools and their properties.

� “Overview of Resource Pools” on page 63
� “Resource Pools” on page 64
� “Resource Pools Application Programming Interface” on page 68
� “Code Examples of Resource Pool” on page 73
� “Programming Issues Associated With Resource Pools” on page 76

Overview of Resource Pools
Resource pools provide a framework for managing processor sets and thread
scheduling classes. Resource pools are used for partitioning machine resources.
Resource pools enable you to separate workloads so that workload consumption of
certain resources does not overlap. The resource reservation helps to achieve
predictable performance on systems with mixed workloads.

For an overview of resource pools and example commands for administering resource
pools, see Chapter 12, “Dynamic Resource Pools (Overview),” in System Administration
Guide: N1 Grid Containers, Resource Management, and Solaris Zones and Chapter 13,
“Administering Dynamic Resource Pools (Tasks),” in System Administration Guide: N1
Grid Containers, Resource Management, and Solaris Zones.

A processor set groups the CPUs on a system into a bounded entity, on which a
process or processes can run exclusively. Processes cannot extend beyond the
processor set, nor can other processes extend into the processor set. A processor set
enables tasks of similar characteristics to be grouped together and a hard upper
boundary for CPU use to be set.

The resource pool framework allows the definition of a soft processor set with a
maximum and minimum CPU count requirement. Additionally, the framework
provides a hard-defined scheduling class for that processor set.

63

A resource pool defines

� Processor set groups
� Scheduling class

Scheduling Class
Scheduling classes provide different CPU access characteristics to threads that are
based on algorithmic logic. The scheduling classes include:

� Real-time scheduling class
� Inter-active scheduling class
� Fixed-priority scheduling class
� Time-sharing scheduling class
� Fair-share scheduling class

For an overview of fair share scheduler and example commands for administering the
fair share scheduler, see Chapter 8, “Fair Share Scheduler (Overview),” in System
Administration Guide: N1 Grid Containers, Resource Management, and Solaris Zones and
Chapter 9, “Administering the Fair Share Scheduler (Tasks),” in System Administration
Guide: N1 Grid Containers, Resource Management, and Solaris Zones.

Do not mix scheduling classes in a set of CPUs. If scheduling classes are mixed in a
CPU set, system performance might become erratic and unpredictable. Use processor
sets to segregate applications by their characteristics. Assign scheduling classes under
which the application best performs. For more information about the characteristics of
an individual scheduling class, see priocntl(1).

For an overview of resource pools and a discussion of when to use pools, see
Chapter 6.

Resource Pools
The libpool library defines properties that are available to the various entities that
are managed within the pools facility. Each property falls into the following categories:

Constraint.
A constraint defines boundaries of a property. Typical constraints are the maximum
and minimum allocations specified in the libpool configuration.

Objective.
An objective changes the resource assignments of the current configuration to
generate new candidate configurations that observe the established constraints. (See
poold(1M).) An objective has the following categories:

64 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Workload dependent. A workload dependent objective varies according to the
conditions imposed by the workload. An example of
the workload dependent objective is the utilization
objective.

Workload independent. A workload independent objective does not vary
according to the conditions imposed by the workload.
An example of the workload independent objective is
the cpu locality objective.

Multiplier.
Text required.

System Properties
system.allocate-method (writable string)

Allocation method to use when this configuration is instantiated. See
libpool(3LIB) for the valid values of system.allocate-method.

system.bind-default (writable boolean)
If the specified pool is not found in <filename>/etc/project </filename>, bind to
pool with the pool.default property set to TRUE.

system.comment (writable string)
User description of system. system.comment is not used by the default pools
commands, except when a configuration is initiated by the poolcfg utility. In this
case, the system puts an informative message in the system.comment property
for that configuration.

system.name (writable string)
User name for the configuration.

system.version (read-only integer)
libpool version required to manipulate this configuration.

Pool Properties
All pool properties are writable.

pool.active (writable boolean)
If TRUE, mark this pool as active.

pool.comment (writable string)
User description of pool.

pool.default (writable boolean)
If TRUE, mark this pool as the default pool. See the system.bind-default
property.

Chapter 6 • Resource Pools 65

pool.importance (writable integer)
Relative importance of this pool. Used for possible resource dispute resolution.

pool.name (writable string)
User name for pool. setproject(3PROJECT) uses pool.name as the value for the
project.pool project attribute in the project(4) database.

pool.scheduler (writable string)
Scheduler class to which consumers of this pool are bound. This property is
optional and if not specified, the scheduler bindings for consumers of this pool are
not affected. For more information about the characteristics of an individual
scheduling class, see priocntl(1). Scheduler classes include:

� RT for real-time scheduler
� TS for time-sharing scheduler
� IA for inter-active scheduler
� FSS for fair share scheduler
� FX for fixed-priority scheduler

Processor Sets Properties
pset.comment (writable string)

User description of resource.

pset.default (read-only boolean)
Identifies the default processor set.

pset.load (read-only unsigned integer)
The load for this processor set. The lowest value is 0. The value increases in a linear
fashion with the load on the set, as measured by the number of jobs in the system
run queue.

pset.max (writable unsigned integer)
Maximum number of CPUs that are permitted in this processor set.

pset.min (writable unsigned integer)
Minimum number of CPUs that are permitted in this processor set.

pset.name (writable string)
Name for the resource.

pset.size (read-only unsigned integer)
Current number of CPUs in this processor set.

pset.sys_id (read-only integer)
System-assigned processor set ID.

pset.type (read-only string)
Names the resource type. Value for all processor sets is pset.

pset.units (read-only string)
Identifies the meaning of size-related properties. The value for all processor sets is
population.

66 Solaris 10 Resource Manager Developer’s Guide • January, 2005

cpu.comment (writable string)
User description of cpu.

cpu.status (writable integer)
Processor status, on-line, offline, or interrupts disabled.

� off-line sets the CPU offline. An off-line processor does not process any
LWPs. Usually, an off-line processor is not interruptible by I/O devices in the
system. On some processors or under certain conditions, disabling interrupts
might not be possible for an off-line processor. Thus, the actual effect for being
off-line might vary from machine to machine.

A processor cannot be taken off-line if any LWPs are bound to the processor. On
some architectures, taking certain processors off-line might not be possible. For
example, the system depends on some resource provided by the processor.

� on-line sets the CPU online. An on-line processor processes LWPs and can be
interrupted by I/O devices in the system.

� powered-off sets CPU status to powered off.

� no-intr disables interrupt processing on the CPU. A no-intr processor
continues to process LWPs.

At least one processor in the system must be able to process LWPs. At least one
processor must also be able to be interrupted. An off-line processor is
interruptible. An operational system with a single no-intr processor and all
other processors off-line contains one or more processors that can be
interrupted.

� spare marks an off-line CPU as spare.

These strings are defined in <sys/processor.h> as the PS_OFFLINE,
PS_ONLINE, PS_POWEROFF, PS_NOINTR, and PS_SPARE macros. A CPU may
enter an additional faulted state, as a result of action taken by the kernel. faulted
cannot be set by the user.

cpu.sys_id (read-only integer)
System-assigned processor ID.

libpool Pool Configuration
Manipulation Library
The libpool(3LIB) pool configuration library defines the interface for reading and
writing pools configuration files. The library also defines the interface for committing
an existing configuration to becoming the running operating system configuration.
The <pool.h> header provides type and function declarations for all library services.

Chapter 6 • Resource Pools 67

The resource pools facility brings together process-bindable resources into a common
abstraction that is called a pool. Processor sets and other entities can be configured,
grouped, and labelled in a persistent fashion. Workload components can be associated
with a subset of a system’s total resources. The libpool(3LIB) library provides a C
language API for accessing the resource pools facility. The pooladm(1M),
poolbind(1M), and poolcfg(1M) make the resource pools facility available through
command invocations from a shell.

Manipulate psets
The following table lists the functions associated with creating or destroying psets and
manipulating psets. The function name is a link to the corresponding man page.

pset_setattr(2)
pset_getattr(2)
processor_bind(2)
pset_create(2)
pset_assign(2)
pset_bind(2)
pset_destroy(2)processor_bind(2)

Resource Pools Application
Programming Interface
The resource pools API contains functions that:

� “Create or Destroy Resource Pools” on page 69
� “Associate a Pool with Resources” on page 69
� “Bind Workloads to a Resource Pool” on page 69
� “Iterate or Walk Through a Resource Pool” on page 69
� “Query the Configuration of a Pool” on page 70
� “Query Resource Pool” on page 70
� “Query the Resources of a Pool” on page 70
� “Query the Components of a Pool” on page 70
� “Convert Elements of a Pool” on page 70
� “Operate on Properties of a Pool” on page 71
� “Operate on Resources of a Pool” on page 71
� “Manipulate Configuration-related Information from a Pool” on page 71
� “Operate on Values of a Pool Property” on page 72
� “Retrieve Error-related Information from a Pool” on page 72

68 Solaris 10 Resource Manager Developer’s Guide • January, 2005

� “Operate on the Resource Pool Framework” on page 72

The imported interfaces for libpool for swap sets is identical to the ones defined in this
document.

Create or Destroy Resource Pools
The following table lists the functions associated with creating or destroying resource
pools. The function name is a link to the corresponding man page.

pool_create(3POOL)
pool_destroy(3POOL)

Associate a Pool with Resources
The following table lists the functions that associate a pool with resources. The
function name is a link to the corresponding man page.

pool_associate(3POOL)
pool_dissociate(3POOL)

Bind Workloads to a Resource Pool
The following table lists the functions that bind workloads to a resource pool. The
function name is a link to the corresponding man page.

pool_set_binding(3POOL)
pool_get_binding(3POOL)

Iterate or Walk Through a Resource Pool
The following table lists the functions that iterate or walk through a resource pool. The
function name is a link to the corresponding man page.

pool_walk_components(3POOL)
pool_walk_pools(3POOL)
pool_walk_resources(3POOL)

Chapter 6 • Resource Pools 69

Query the Configuration of a Pool
The following table lists the functions that query the configuration of a resource pool.
The function name is a link to the corresponding man page.

pool_query_components(3POOL)
pool_query_pools(3POOL)
pool_query_resources(3POOL)
pool_query_resource_components(3POOL)

Query Resource Pool
The following table lists the functions that query pools. The function name is a link to
the corresponding man page.

pool_info(3POOL)
pool_query_pool_resources(3POOL)

Query the Resources of a Pool
The following table lists the functions that query the resources of a pool. The function
name is a link to the corresponding man page.

pool_resource_info(3POOL)
pool_query_resource_components(3POOL)

Query the Components of a Pool
The following table lists the functions that query the components of a resource pool.
The function name is a link to the corresponding man page.

pool_component_info(3POOL)
pool_get_owning_resource(3POOL)

Convert Elements of a Pool
Each entity for which a property needs to be read or be written must first be converted
to the element entity. A read or write of the property can then be done on this element.

70 Solaris 10 Resource Manager Developer’s Guide • January, 2005

The following list contains the functions that convert elements of a pool. The function
name is a link to the corresponding man page.

pool_to_elem(3POOL)
pool_resource_to_elem(3POOL)
pool_component_to_elem(3POOL)
pool_conf_to_elem(3POOL)

Operate on Properties of a Pool
The following list contains the functions that operate on properties of a pool. The
function name is a link to its man page.

pool_get_property(3POOL)
pool_put_property(3POOL)
pool_rm_property(3POOL)
pool_walk_properties(3POOL)

Operate on Resources of a Pool
The following list contains the functions that operate on resources of a pool. The
function name is a link to the corresponding man page.

pool_resource_create(3POOL)
pool_resource_destroy(3POOL)
pool_resource_info(3POOL)
pool_resource_transfer(3POOL)
pool_resource_xtransfer(3POOL)

Manipulate Configuration-related Information
from a Pool
The following list contains the functions that manipulate configuration-related
information from resource pools. The function name is a link to the corresponding
man page.

pool_conf_alloc(3POOL)
pool_conf_free(3POOL)
pool_conf_open(3POOL)

Chapter 6 • Resource Pools 71

pool_conf_close(3POOL)
pool_conf_commit(3POOL)
pool_conf_export(3POOL)
pool_conf_info(3POOL)
pool_conf_location(3POOL)
pool_conf_remove(3POOL)
pool_conf_rollback(3POOL)
pool_conf_status(3POOL)
pool_conf_update(3POOL)
pool_conf_validate(3POOL)

Operate on Values of a Pool Property
The following list contains the functions associated with values of pool properties. The
function name is a link to the corresponding man page.

pool_value_alloc(3POOL)
pool_value_free(3POOL)
pool_value_get_bool(3POOL)
pool_value_set_bool(3POOL)
pool_value_get_double(3POOL)
pool_value_set_double(3POOL)
pool_value_get_int64(3POOL)
pool_value_set_int64(3POOL)
pool_value_set_uint64(3POOL)
pool_value_get_uint64(3POOL)
pool_value_get_name(3POOL)
pool_value_set_name(3POOL)
pool_value_get_string(3POOL)
pool_value_set_string(3POOL)
pool_value_get_type(3POOL)
pool_value_set_type

Retrieve Error-related Information from a Pool
The following list contains the functions that retrieve error-related information from a
resource pool. The function name is a link to the corresponding man page.

pool_error(3POOL)
pool_strerror(3POOL)

Operate on the Resource Pool Framework
The following list contains the functions associated with the resource pool framework.
The function name is a link to the corresponding man page.

72 Solaris 10 Resource Manager Developer’s Guide • January, 2005

pool_dynamic_location(3POOL)
pool_static_location(3POOL)
pool_version(3POOL)

Code Examples of Resource Pool
This section contains code examples of the resource pools interface.

Ascertain the Number of CPUs in the Resource
Pool
sysconf(3C) provides information about the number of CPUs on an entire system.
The following example provides the granularity of ascertaining the number of CPUs
that are defined in a particular application’s pools pset.

The key points for this example include the following:

� pvals[] should be a NULL terminated array.

� pool_query_pool_resources() returns a list of all resources that match the
pvals array type pset from the application’s pool my_pool. Because a pool can
have only one instance of the pset resource, each instance is always returned in
nelem. reslist[] contains only one element, the pset resource.

pool_value_t *pvals[2] = {NULL}; /* pvals[] should be NULL terminated */

/* NOTE: Return value checking/error processing omitted */
/* in all examples for brevity */

conf_loc = pool_dynamic_location();
conf = pool_conf_alloc();
pool_conf_open(conf, conf_loc, PO_RDONLY);
my_pool_name = pool_get_binding(getpid());
my_pool = pool_get_pool(conf, my_pool_name);
pvals[0] = pool_value_alloc();
pvals2[2] = { NULL, NULL };
pool_value_set_name(pvals[0], "type");
pool_value_set_string(pvals[0], "pset");

reslist = pool_query_pool_resources(conf, my_pool, &nelem, pvals);
pool_value_free(pvals[0]);
pool_query_resource_components(conf, reslist[0], &nelem, NULL);
printf("pool %s: %u cpu", my_pool_ name, nelem);

pool_conf_close(conf);

Chapter 6 • Resource Pools 73

List all Resource Pools
The following example lists all resource pools defined in an application’s pools pset.

The key points of the example include the following:

� Open the dynamic conf file read-only, PO_RDONLY. pool_query_pools()
returns the list of pools in pl and the number of pools in nelem. For each pool, call
pool_get_property() to get the pool.name property from the element into
the pval value.

� pool_get_property() calls pool_to_elem() to convert the libpool entity
to an opaque value. pool_value_get_string() gets the string from the opaque
pool value.

conf = pool_conf_alloc();
pool_conf_open(conf, pool_dynamic_location(), PO_RDONLY);
pl = pool_query_pools(conf, &nelem, NULL);
pval = pool_value_alloc();
for (i = 0; i < nelem; i++) {

pool_get_property(conf, pool_to_elem(conf, pl[i]), "pool.name", pval);
pool_value_get_string(pval, &fname);
printf("%s\n", name);

}
pool_value_free(pval);
free(pl);

pool_conf_close(conf);

Report Pool Statistics for a Given Pool
The following example reports statistics for the designated pool.

The key points for the example include the following:

� pool_query_pool_resources() gets a list of all resources in rl. Because the
last argument to pool_query_pool_resources() is NULL, all resources are
returned. For each resource, the name, load and size properties are read, and
printed.

� The call to strdup() allocates local memory and copies the string returned by
get_string(). The call to get_string() returns a pointer that is freed by the
next call to get_property(). If the call to strdup() is not included, subsequent
references to the string(s) could cause the application to fail with a segmentation
fault.

printf("pool %s\n:" pool_name);
pool = pool_get_pool(conf, pool_name);
rl = pool_query_pool_resources(conf, pool, &nelem, NULL);
for (i = 0; i < nelem; i++) {
pool_get_property(conf, pool_resource_to_elem(conf, rl[i]), "type", pval);
pool_value_get_string(pval, &type);
type = strdup(type);

74 Solaris 10 Resource Manager Developer’s Guide • January, 2005

snprintf(prop_name, 32, "%s.%s", type, "name");
pool_get_property(conf, pool_resource_to_elem(conf, rl[i]),

prop_name, pval);
pool_value_get_string(val, &res_name);
res_name = strdup(res_name);
snprintf(prop_name, 32, "%s.%s", type, "load");
pool_get_property(conf, pool_resource_to_elem(conf, rl[i]),

prop_name, pval);
pool_value_get_uint64(val, &load);
snprintf(prop_name, 32, "%s.%s", type, "size");
pool_get_property(conf, pool_resource_to_elem(conf, rl[i]),

prop_name, pval);
pool_value_get_uint64(val, &size);
printf("resource %s: size %llu load %llu\n", res_name, size, load);
free(type);
free(res_name);

}

free(rl);

Set pool.comment Property and Add New
Property
The following example sets the pool.comment property for the pset. The example
also creates a new property in pool.newprop.

The key point for the example includes the following:

� In the call to pool_conf_open(), using PO_RDWR on a static configuration file,
requires the caller to be root.

� To commit these changes to the pset after running this utility, issue a pooladm
-c command. To have the utility commit the changes, call pool_conf_commit()
with a non-zero second argument.

pool_set_comment(const char *pool_name, const char *comment)
{
pool_t *pool;
pool_elem_t *pool_elem;
pool_value_t *pval = pool_value_alloc();
pool_conf_t *conf = pool_conf_alloc();
/* NOTE: need to be root to use PO_RDWR on static configuration file */
pool_conf_open(conf, pool_static_location(), PO_RDWR);
pool = pool_get_pool(conf, pool_name);
pool_value_set_string(pval, comment);
pool_elem = pool_to_elem(conf, pool);
pool_put_property(conf, pool_elem, "pool.comment", pval);
printf("pool %s: pool.comment set to %s\n:" pool_name, comment);
/* Now, create a new property, customized to installation site */
pool_value_set_string(pval, "New String Property");
pool_put_property(conf, pool_elem, "pool.newprop", pval);
pool_conf_commit(conf, 0); /* NOTE: use 0 to ensure only */

/* static file gets updated */

Chapter 6 • Resource Pools 75

pool_value_free(pval);
pool_conf_close(conf);
pool_conf_free(conf);
/* NOTE: Use "pooladm -c" later, or pool_conf_commit(conf, 1) */
/* above for changes to the running system */

}

An alternative way of modifying a pool’s comment and adding a new pool property is
to use poolcfg(1M).

poolcfg -c ’modify pool pool-name (string pool.comment = "cmt-string")’
poolcfg -c ’modify pool pool-name (string pool.newprop =

"New String Property")’

Programming Issues Associated With
Resource Pools
Consider the following issues when writing your application.

� Each site can add its own list of properties to the pools configuration.

Multiple configurations can be maintained in multiple configuration files. The
system administrator can commit different files to reflect changes to the resource
consumption at different time slots. These time slots can include different times of
the day, week, month, or seasons depending on load conditions.

� Resource sets can be shared between pools, but a pool has only one resource set of
a given type. So, the pset_default can be shared between the default and a
particular application’s database pools.

� Use pool_value_*() interfaces carefully. Keep in mind the memory allocation
issues for string pool values. See “Report Pool Statistics for a Given Pool” on page
74.

76 Solaris 10 Resource Manager Developer’s Guide • January, 2005

CHAPTER 7

Configuration Examples

This chapter show example configurations for the /etc/project file.

� “Configure Resource Controls” on page 78
� “Configure Resource Pools” on page 78
� “Configure FSS project.cpu-shares for a Project” on page 78
� “Configure Five Applications with Different Characteristics” on page 79

/etc/project Project File
The project file is a local source of project information. The project file can be used in
conjunction with other project sources, including the NIS maps project.byname
and project.bynumber and the LDAP database project. Programs use the
getprojent(3PROJECT) routines to access this information.

Define Two Projects
/etc/project defines two projects: database and appserver. The user defaults
are user.database and user.appserver. The admin default can switch between
user.database or user.appserver.

hostname# cat /etc/project

.

.

.
user.database:2001:Database backend:admin::
user.appserver:2002:Application Server frontend:admin::
.

.

77

Configure Resource Controls
The /etc/project file shows the resource controls for the application.

hostname# cat /etc/project

.

.

.
development:2003:Developers:::task.ax-lwps=(privileged,10,deny);
process.max-addressspace=(privileged,209715200,deny)
.

.

Configure Resource Pools
The /etc/project file shows the resource pools for the application.

hostname# cat /etc/project

.

.

.
batch:2001:Batch project:::project.pool=batch_pool
process:2002:Process control:::project.pool=process_pool
.
.

.

Configure FSS project.cpu-shares for a
Project
Set up FSS for two projects: database and appserver. The database project has 20 cpu
shares. The appserver project has 10 cpu shares.

hostname# cat /etc/project

.

.

.
user.database:2001:database backend:admin::project.cpu-shares=(privileged,

20,deny)
user.appserver:2002:Application Server frontend:admin::project.cpu-shares=

(privileged,10,deny)
.
.

.

78 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Note – The line break in the lines that precede “20,deny” and “(privileged,” is not valid
in an /etc/project file. The line breaks are shown here only to allow the example
to display on a printed or displayed page. Each entry in the /etc/project file must
be on a single line.

You can assign FSS as the default user-space scheduling class. However, without share
assignment, the scheduling class behaves like the timeshare class because all of the
threads would exist in one thread group. Shares can be assigned in an ad hoc fashion
to running processes and can also be defined as a project attribute.

Configure Five Applications with Different
Characteristics
The following example configures five applications with different characteristics.

TABLE 7–1 Target Applications and Characteristics

Application Type and Name Characteristics

Application server,
app_server.

Negative scalability beyond two CPUs. Assign a two-CPU
processor set to app_server. Use TS scheduling class.

Database instance, app_db. Heavily multithreaded. Use FSS scheduling class.

Test and development,
development.

Motif based. Hosts untested code execution. Interactive
scheduling class ensures user interface responsiveness. Use
process.max-address-space to impose memory
limitations and minimize the effects of antisocial processing.

Transaction processing engine,
tp_engine.

Response time is paramount. Assign a dedicated set of at
least two CPUs to ensure response latency is kept to a
minimum. Use timeshare scheduling class.

Standalone database instance,
geo_db.

Heavily multithreaded. Serves multiple time zones. Use FSS
scheduling class.

Note – Consolidate database applications (app.db and geo_db) onto a single
processor set of at least four CPUs. Use FSS scheduling class. Application app_db gets
25% of the project.cpu-shares. Application geo_db gets 75% of the
project.cpu-shares.

Edit the /etc/project file. Map users to resource pools for the app_server,
app_db, development, tp_engine, and geo_db project entries.

Chapter 7 • Configuration Examples 79

hostname# cat /etc/project

.

.

.
user.app_server:2001:Production Application Server::

project.pool=appserver_pool
user.app_db:2002:App Server DB:::project.pool=db_pool,

project.cpu-shares=(privileged,1,deny)
development:2003:Test and delopment::staff:project.pool=dev.pool,

process.max-addressspace=(privileged,536870912,deny)
user.tp_engine:Transaction Engine:::project.pool=tp_pool
user.geo_db:EDI DB:::project.pool=db_pool;

project.cpu-shares=(privileged,3,deny)

Note – The line break in the lines that begin with “project.pool” , “project.cpu-shares=”,
“process.max-addressspace”, and “project.cpu-shares=” is not valid in a project file.
The line breaks are shown here only to allow the example to display on a printed or
displayed page. Each entry must be on one and only one line.

Create the pool.host script and add entries for resource pools.

hostname# cat pool.host

create system host
create pset dev_pset (unit pset.max = 2)
create pset tp_pset (unit pset.min = 2)
create pset db_pset (unit pset.min = 4; uint pset.max = 6)
create pset app_pset (unit pset.min = 1; uint pset.max = 2)
create pool dev_pool (string pool.scheduler="IA")
create pool appserver_pool (string pool.scheduler="TS")
create pool db_pool (string pool.scheduler="FSS")
create pool tp_pool (string pool.scheduler="TS")
associate pool pool_default (pset pset_default)
associate pool dev_pool (pset dev_pset)
associate pool pool appserver_pool (pset app_pset)
associate pool db_pool (pset db_pset)

associate pool tp_pool (pset tp_pset)

Note – The line break in the line that begins with “boolean” is not valid in a
pool.host file. The line break is shown here only to allow the example to display on
a printed or displayed page. Each entry must be on one and only one line.

Run the pool.host script and modify the configuration as specified in the
pool.host file.

hostname# poolcfg —f pool.host

80 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Read the pool.host resource pool configuration file and initialize the resource pools
on the system.

hostname# pooladm —c

Chapter 7 • Configuration Examples 81

82 Solaris 10 Resource Manager Developer’s Guide • January, 2005

Index

Numbers and Symbols
(), 20

E
exacct file

display entry, 21
display string, 22

exacct file, display system file, 23
exacct file

dump, 43-44
exacct object

create record, 43
dump, 41-43
write file, 43

F
fair share scheduler, access resource control

block, 60

L
libexacct

perl interface, 26
perl module, 28

M
managed applications, 12
management applications, 11

P
programming issues

project database, 17-18
resource controls, 61-62

project database
get entry, 17
print entries, 16

R
resource controls

display value-action pairs, 59
global action, 50
global flag, 50
local action, 49
local flag, 49
master observer process, 57
privilege levels, 49
signals, 54

resource manager, components, 12
resource pools

get defined pools, 74
get number of CPUS, 73
get pool statistics, 74
pool properties, 65
processor sets properties, 66-67

83

resource pools (Continued)
properties, 64
set property, 75
system properties, 65

84 Solaris 10 Resource Manager Developer’s Guide • January, 2005

	Solaris 10 Resource Manager Developer's Guide
	Preface
	Who Should Use This Book
	Before You Read This Book
	How This Book Is Organized
	Related Books
	Accessing Sun Documentation Online
	Ordering Sun Documentation
	Typographic Conventions
	Shell Prompts in Command Examples

	Resource Management
	Resource Management
	Management Applications
	Managed Applications

	Components of the Resource Manager

	Projects and Tasks
	Overview of Projects and Tasks
	project Structure
	/etc/project File
	Process Controls
	Project Controls

	Project and Task Application Programming Interface
	Project Creation and Project Database Querying Functions

	Code Examples to Access the Project Database
	Print the First Three Fields of Each Entry of the Project Database
	Get a Project Database Entry That Matches the Caller's project-id

	Programming Issues for Project Database Applications

	Extended Accounting, C Interface
	Overview of Extended Accounting
	Extended Accounting Application Programming Interface
	exacct System Calls
	Operations on the exacct File
	Operations on exacct Objects
	Miscellaneous Operations

	Code Examples for Accessing exacct Files
	Display the exacct Data for a Designated pid
	Identify Individual Tasks During a Kernel Build
	Read and Display the Contents of a System exacct File

	Extended Accounting Perl Interface
	Extended Accounting Overview
	Perl Interface to libexacct(3LIB)
	Object Model
	Design Criteria
	Perl Double-typed Scalars

	Perl Modules
	Sun::Solaris::Project Module
	Sun::Solaris::Project Constants
	Sun::Solaris::Project Functions, Class Methods, and Object Methods
	Sun::Solaris::Project Exports

	Sun::Solaris::Task Module
	Sun::Solaris::Task Constants
	Sun::Solaris::Task Functions, Class Methods, and Object Methods
	Sun::Solaris::Task Exports

	Sun::Solaris::Exacct Module
	Sun::Solaris::Exacct Constants
	Sun::Solaris::Exacct Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct Exports

	Sun::Solaris::Exacct::Catalog Module
	Sun::Solaris::Exacct::Catalog Constants
	Sun::Solaris::Exacct::Catalog Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Catalog Exports

	Sun::Solaris::Exacct::File Module
	Sun::Solaris::Exacct::File Constants
	Sun::Solaris::Exacct::File Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::File Exports

	Sun::Solaris::Exacct::Object Module
	Sun::Solaris::Exacct::Object Constants
	Sun::Solaris::Exacct::Object Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object Exports

	Sun::Solaris::Exacct::Object::Item Module
	Sun::Solaris::Exacct::Object::Item Constants
	Sun::Solaris::Exacct::Object::Item Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::Item Exports

	Sun::Solaris::Exacct::Object::Group Module
	Sun::Solaris::Exacct::Object::Group Constants
	Sun::Solaris::Exacct::Object::Group Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::Group Exports

	Sun::Solaris::Exacct::Object::_Array Module
	Sun::Solaris::Exacct::Object::_Array Constants
	Sun::Solaris::Exacct::Object::_Array Functions, Class Methods, and Object Methods
	Sun::Solaris::Exacct::Object::_Array Exports

	Perl Code Examples
	Pseudocode Prototype
	Recursively dump an exacct Object
	Create a New Group Record and Write to File
	dump an exacct File

	Output From dump Method

	Resource Controls
	Overview of Resource Controls
	Resource Controls Flags and Actions
	rlimit, Resource Limit
	rctl, Resource Control
	rctl Privilege Values
	Local Actions and Local Flags
	Global Actions and Global Flags
	Resource Control Sets Associated With a Project, Processes and Tasks
	Resource Controls Associated With a Project
	Resource Controls Associated With Tasks
	Resource Controls Associated With Processes

	Signals Used With Resource Controls

	Resource Controls Application Programming Interface
	Operate on Action-value Pairs of a Resource Control
	Operate on Local Modifiable Values
	Retrieve Local Read-only Values
	Retrieve Global Read-only Actions

	Code Examples of Resource Controls
	Master Observing Process for Resource Controls
	List all the Value-action Pairs for a Specific Resource Control
	Set project.cpu-shares and Add a New Value
	Set LWP Limit on Resource Control Blocks

	Programming Issues Associated With Resource Controls

	Resource Pools
	Overview of Resource Pools
	Scheduling Class

	Resource Pools
	System Properties
	Pool Properties
	Processor Sets Properties

	libpool Pool Configuration Manipulation Library
	Manipulate psets

	Resource Pools Application Programming Interface
	Create or Destroy Resource Pools
	Associate a Pool with Resources
	Bind Workloads to a Resource Pool
	Iterate or Walk Through a Resource Pool
	Query the Configuration of a Pool
	Query Resource Pool
	Query the Resources of a Pool
	Query the Components of a Pool
	Convert Elements of a Pool
	Operate on Properties of a Pool
	Operate on Resources of a Pool
	Manipulate Configuration-related Information from a Pool
	Operate on Values of a Pool Property
	Retrieve Error-related Information from a Pool
	Operate on the Resource Pool Framework

	Code Examples of Resource Pool
	Ascertain the Number of CPUs in the Resource Pool
	List all Resource Pools
	Report Pool Statistics for a Given Pool
	Set pool.comment Property and Add New Property

	Programming Issues Associated With Resource Pools

	Configuration Examples
	/etc/project Project File
	Define Two Projects
	Configure Resource Controls
	Configure Resource Pools
	Configure FSS project.cpu-shares for a Project
	Configure Five Applications with Different Characteristics

	Index

