PointBase
Ve

Developer’s Guide

Version 4.8

Version 4.8

Proprietary and Trademark
| nformation

Copyright © 1999-2004, DataMirror Mobile Solutions Inc.
All Rights Reserved
Version 4.8

This product and related documentation are protected by copyright and distributed under
license agreement restricting its use, copying, reproduction, distribution, performance, and
decompilation. No part of this product, or any other product of DataMirror Mobile Solutions,
Inc. or related documentation may be stored, transmitted, reproduced or used in any other
manner in any form by any means without prior written authorization from DataMirror Mobile
Solutions, Inc.

PointBase™ and UniSync™ are trademarks of DataMirror Maobile Solutions, Inc.

Microsoft, Windows, Windows 95, Windows 98, Windows 2000, and Windows NT are
registered trademarks of Microsoft Corporation. Adobe and Acrobat are registered trademarks
of Adobe Systems, Inc. Java™ is aregistered trademark of Sun Microsystems, Inc. Other
brands and products are trademarks of their respective holders.

PointBase Developer 2

Version 4.8

Table of Contents

Preface
Purpose
Audience
Release Notes
Document Feedback
Document Conventions Used in This Guide

Developer’s Overview
JDBC and PointBase
SQL and PointBase
Y our Application and PointBase
What's New With PointBase Embedded

PointBase JDBC Basic Tutorial
Refreshing the Sample Database
Making a Connection to PointBase
Creating and Executing Static JDBC Statement
Retrieving Row Vaues From Non-Scrollable Result Sets
Closing and Committing Objects

PointBase JDBC Advanced Tutorial
Creating and Executing a Dynamic JDBC Statement
Using Result Sets
Flushing the Database Log
Performing Batch Operations
Retrieving Data From BLOB Columns
Retrieving Data From CLOB Columns
Creating Functions
Creating Stored Procedures
Connecting to Multiple Databases

Basic SQL Data Objects
Data Objects Within PointBase Embedded
Database
User
Schema
Table

00~~~

© O

10
11
12

14
14
15
16
18
19

20
20
22
30
30
31
31
32
33
37

38
38
39
40
41
42

PointBase Developer

3

PointBase

Derived Table 42
View 43
Temporary Table 43
Column 44
Connection Pools 46
com.pointbase.jdbc.jdbcPool edDatasource 46
INDI 49
SQL Data Types 52
CHARACTER [(length)] or CHAR [(length)] 53
VARCHAR (length) 53
BOOLEAN 54
SMALLINT 55
INTEGER or INT 55
BIGINT 56
DECIMAL [(p[,s])] or DEC [(p[,9])] 57
NUMERIC [(p[,9])] 57
REAL 58
FLOAT(p) 58
DOUBLE PRECISION 58
DATE 59
TIME 60
TIMESTAMP 60
CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR LARGE OB-
JECT [(length)] LONGVARCHAR[(Iength)] 61
BLOB [(length)] or BINARY LARGE OBJECT [(length)] LONGVARBIN-
NARY[(length)] BINARY [(length)] VARBINARY [(length)] 62
Data Conversions and Assignments 62
SQL Scalar and Aggregate Functions 66
SQL Scalar Numeric Functions 66
SQL Scalar Character String Functions 67
SQL Scalar Date/Time Functions 70
SQL Scalar CAST Function 72
SQL Scalar Routine Invocation 73
SQL Aggregate Functions 73
SQL Special Registers 75
Indexes and Constraints 76
Indexes 76
Keys 77
Congtraints 77
Index Organized Tables 79
Sear ch Conditions and Predicates 80
Search Conditions 80
Predicates 82
Transactions and L ocks 88

Version 4.8 PointBase Developer 4

PointBase

Transactions 88
Row Level Locking 89
Transaction Isolation Levels 89
Distributed Transactions 91
PointBase's Role in a DTP Environment 91
Java Transaction APl (JTA) 93
JDBC 2.0 Optional Package API 93
Implementing javax.sgl.X ADataSource 94
Using PointBase in a DTP Environment 96
Mixing Global and Loca Transactions 100
Unsupported in PointBase 101
SQL Security and Privileges 102
Predefined Users 103
Granting and Revoking Privilegesto Users 104
Predefined Roles 107
Granting and Revoking Privilegesto Roles 107

Application Programming

Interface Tools 112
Load and Unload API's 112
116
Database Compress Tool 116
Appendix A: SQL Reference 117
Conventions 117
Page Format Conventions 117
Syntax Conventions 118
Data Definition Language 118
CREATE SCHEMA 119
CREATE TABLE 120
CREATE VIEW 132
CREATE USER 134
CREATE ROLE 135
CREATE INDEX 136
CREATE FUNCTION 137
CREATE PROCEDURE 141
CREATE TRIGGER 144
ALTERTABLE 151
ALTER USER 153
Dropping SQL Objects 155
DROP INDEX 155
DROP FUNCTION or DROP PROCEDURE 156
DROP SCHEMA 157
DROP TABLE 157
DROP VIEW 158
DROP TRIGGER 159
DROP USER 160
DROP ROLE 160
Data Query Language and
Data Manipulation Language 161

Version 4.8 PointBase Developer 5

PointBase

SELECT 162
INSERT 176
UPDATE 179
DELETE 181
Data Control L anguage 182
CALL 182
RETURN 183
SET assignment 184
SET PATH 185
SIGNAL 186
VALUES 187
SET CONSTRAINTS 187
Transaction Control 189
SAVEPOINT 189
COMMIT 190
RELEASE SAVEPOINT 191
ROLLBACK 192
SET DATALOG 193
START TRANSACTION ISOLATION LEVEL 194
PointBase-Specific SQL 196
SHUTDOWN 196
BACKUP 196

200

BACKUPTABLE 200
RESTORE TABLE 201
BACKUP/RESTORE TABLE AP 202
BACKUPLOG 204
SET ROLLFORWARD 204

205

ROLLFORWARD RESTORE UTILITY 205

Appendix B: Unsupported JDBC Methodsin PointBase 207
Appendix C: Reserved Words 209

Appendix D: SQL Data Type Code 216

Version 4.8 PointBase Developer 6

Purpose

Audience

Release Notes

Version 4.8

Preface

Thank you for your interest in Version 4.8 of the PointBase product line.

This guide describes how to devel op applications using PointBase Embedded and Embedded -
Server Option. Thefollowing is alist of some things you can expect from this guide.

* PointBase JDBC Tutorials

e Supported SQL Standards and Syntax

» PointBase Database Concepts and Techniques

This guide is geared towards the Java devel opment community. Because PointBase is the
100% Pure Java Application Database, this guide assumes that you know the following
concepts:

» Havebasic knowledge of the Standard Query Language (SQL).

* Havebasic knowledge of the Java programming language.

« Havebasic knowledge of Java Database Connectivity (JDBC).

e Understand basic database concepts.

« Haveknowledge of your operating system and server and client concepts.

The following link displays the most up-to-date information on PointBase products.
WWW.pointbase.com/support/rel easenotes.html

PointBase Developer 7

http://www.pointbase.com/support/releasenotes.html

PointBase

Document Feedback

Please send comments or suggestions for all PointBase documentation to the following email

address.

pbdocfeedback @pointbase.com

Document Conventions Used in This Guide

Convention Identifies Examples
ALL e Environment variables « PATH
UPPERCASE |« Databasetable names e S LST OF VAL
LETTERS « SQL Keywords « CREATETABLE
Couri er « Directory, file, folder, and path « c:\pointbase\ing. bnp
New f ont names * Set PointBase =
. Code . Type Your Conpany
Name Here
« Datayou need to type
Initial PointBase hames, objects, properties, | PointBase Embedded,
Uppercase windows, screens, dialog boxes, Business Component object,
Letters menus, buttons, tabs, applets, fields, List Editor window, Main
and icons menu, and Cancel button
Italics « Book titles e User'sGuide
e Crossreferencesin an index or e seealsoorsee
glossary
e Vaiables e APPSRVR 4X_ROOT
e Argumentsto statements of e variable, rate, prompt$
functions
e First appearance of anew wordor | newword or phrase
phrase
e Emphasis e Do not do this before you
do that.
[Optional italicized arguments or [caption$]
characters inside angle brackets
{1} Choice from listed arguments; use OR | { Goto label | Resume Next |
operator (|) to separate Goto 0}

Version 4.8

PointBase Developer 8

mailto:docfeedback@pointbase.com

Developer’s Overview

This chapter outlines the PointBase Relational Database Management System (RDBMS),
referring to PointBase Embedded and Server Option. It describes the JDBC driver, the JDBC
API, and the SQL standards supported by PointBase. This chapter also describes new features
and changes with PointBase Embedded Version 4.8.

JDBC and PointBase

Version 4.8

The core JDBC Application Program Interface (API) consists of aset of call level interfaces
found in the java.sgl package. The JDBC API is used by Java applications to access and
manipul ate the data stored in a database by invoking SQL commands. For more details on the
JDBC API refer to the Sun Microsystems Inc.’s website: http://java.sun.com/ or the Sun
Microsystems JDBC manual.

PointBase fully supports JIDBC 1.x, asubset of JIDBC 2.0 API, asubset of JIDBC 2.0 Extension
Interfaces, and a subset JIDBC 3.0 which Table 1 describes. PointBase also supports additional
JDBC 2.0 Extension Interfaces for “ distributed transactions.” (See "JDBC 2.0 Optional
Package API" on page 93.) You can aso view any unsupported methods at, "Appendix B:
Unsupported JIDBC Methods in PointBase" on page 207.

PointBase Developer 9

PointBase

Table 1: JDBC 3.0 API Supported by PointBase

API

Description

java.sgl.BatchUpdateException

Provides information about errors that occurred during batch operations

java.sgl.Blob

Provides access to and manipulation of Binary Large Object data

java.sgl.Call ableStatement

Provides access to and manipulation of Stored Procedures

java.sgl.Clob

Provides access to and manipulation of Character Large Object data

java.sgl.Connection

Constructs and manages the connection to the database

java.sgl.DatabaseM etaData

Provides metadata information about the database

java.sgl.Driver

Provides information about and manages the JDBC driver

java.sgl.PreparedStatement

Manages dynamic SQL statements

java.sgl.ResultSet

Provides metadata information about the result set

java.sgl.ResultSetM etaData

Manages result set metadata information

java.sgl.Statement

Manages static SQL statements

javax.sgl.DataSource

Provides access to JDBC drivers and manages data sources. [See "Additional
PointBase Methods' on page 96.]

The PointBase JDBC Driver

The PointBase JDBC driver provides access to PointBase Embedded and Server Option. The
driver interprets the database Universal Resource Locator (URL) to connect to the appropriate
database. PointBase implements a“ Type 4" JDBC driver, directly accessing PointBase
Embedded using JDBC calls.

To use the PointBase JDBC driver in your application, you must first load and register the
driver with the JDBC DriverManager, and then provide the URL of the database to which you
want to connect. The database URL specifies the connection protocol, database location,
“listener” port, and the database name. Pleaserefer to the basic tutorial chapter in thisguide for
amore detailed explanation.

SQL and PointBase

PointBase Embedded adheres to SQL-92 Entry and Transition levels, as defined by ANSI and
I SO standards. PointBase a so implements some features defined in the SQL-99 (SQL3)

standard.

For more specific information about using SQL with PointBase, please refer to “ Appendix A:
SQL Reference,” of this guide and the “SQL Data Types’ Chapter, which defines the data type
mappings from SQL to JDBC and Java.

Version 4.8

PointBase Developer 10

PointBase

Your Application and PointBase

This section shows how PointBase Embedded interacts with Java applications to provide
database functionality.
Figure 1.2 shows PointBase Embedded, which is designed to be deployed as an integral part of

your application. Both the Java Application and PointBase Embedded run within the same
JVM. Applications can make multiple database connections to the PointBase database.

Java Application

JDBC Driver

PointBase Embedded < 1/O > .
atabase

Java Virtual Machine

Figure 1.2 Using PointBase Embedded

Figure 1.3 shows PointBase Server Option, which is deployed using the traditional client-
server model. A thin client is deployed as an integral part of the client application that both
residein asingle VM. This connects over the network to PointBase Server Option that runsin
asecond VM.

Figure 1.3 Using PointBase Server Option

Java Application

JDBC Driver

PointBase Client

Java Virtual Machine

Version 4.8

—r
TCP/IP

PointBase Server

Java Virtual Machine

-
<4+—>
Database

PointBase Developer 1n

PointBase

What’s New With PointBase Embedded

Version 4.8

This section describes all of the new features and changes to PointBase Embedded.

PointBase Embedded (and Server Option) Enhancements

Roll Forward Recovery

Previously, PointBase could only recover using last full backup. Since backups can take along
time for alarge database, the inconvenience of performing a backup meant that it was not
always done as often as was necessary, sometimes creating a significant window of exposure.
In 4.8, changes can be applied using log files that were backed up since the last full backup
(known as "roll forward recovery") Backing up just the log files provides much shorter backup
times and less exposure to data | oss.

Count(*) Optimization

Count(*) returns the number of rows (typically in awhole table). In the past, PointBase read
each row in order to determine the value to be returned. Counting thisway is slow, but gives
the correct answer. In 4.8, we have added an optimization that will return the number of rows
from an internal structure when possible. Count(*) will always return the correct answer, but in
some cases must resort to the slower method. However in many cases, it will return the correct
value much faster.

Nested Query Optimization

Prior to 4.8, temp tablesin nested queries were not indexed, so a query could be dow if it
required alarge temp table. In 4.8, we have added indexing to temp tables that results in faster
performance for queries of thistype.

Security for Stored Procedures

Previousto 4.8, stored procedures had no security model and could be used maliciously to
crash the VM that the PointBase Server Option was running in. In 4.8, anew, optional
permission has been added using the Java Security Manager to limit what files can be used for
stored procedures.

Space Release Optimization

Previoudly, PointBase used a conservative algorithm for space reuse, but in abusy system free
space could be held for along time causing the database to grow unnecessarily. In 4.8 the
algorithm has been refined so that space can be safely reused more quickly. In an environment
where many concurrent updates are taking place, the database will not grow unnecessarily.

getParameterM etaData()

This JDBC 3.0 feature has been fully implemented in release 4.8.

PointBase Developer 12

PointBase

PointBase Commander Output to File

The ability to capture screen output to afile has been added for the PointBase Commander and
Console tools.

Version 4.8 PointBase Developer 13

PointBase JDBC Basic Tutorial

Thistutorial isintended as a quick reference to the JDBC API. PointBase recommends that
you consult a JDBC reference manual or http://java.sun.com for more comprehensive and the
most up to date information.

The basic tutorial describes fundamental JDBC operations to access and manipul ate data using
the IDBC API with PointBase Embedded. The code snippetsin thistutorial are taken from the
sample application included in the * <install_fol der>\samples\server_embedded\” directory of
your PointBase installation. The examples in this tutorial include: connecting to the database,
creating executable statements and closing the connection to the PointBase database.

Each example provides:. a brief description of the code snippet illustrated, a code snippet from
the sampl e application code, and any additional information to explain the code snippet in
more detail.

Refreshing the Sample Database

If you have deleted or overwritten the sample database provided with your PointBase
installation, you must refresh the sample database by using the following steps:

Step 1. Launch the “embedded_commander .exe” filein the “ <install
directory>\tools\embedded” directory.

Step 2. Follow the promptsto create a new database called “ sample.”

Step 3. Typerun sanpl e. sql . You must type the complete path to the
“sample.sgl” file, for example,
run c:/poi ntbase/ sanpl es/ server _enbedded/ sanpl e. sql ;

Version 4.8 PointBase Developer 14

PointBase

Making a Connection to PointBase

The following section describes the process of connecting to a PointBase database, using the
JDBC API.

L oading the PointBase JDBC Driver

This code snippet instantiates the PointBase JDBC driver:

/' The Poi nt Base Uni versal JDBC Driver
String | _driver = "com pointbase. | dbc. jdbcUniversal Driver";

/] Load the PointBase JDBC Driver
Cl ass. forNanme(l _driver).new nstance();

Connecting to the PointBase database

This code snippet establishes a connection with the PointBase database by passing the database
URL, ausername and password. By connecting with the database you create a connection
object (m_conn in the sample application). The User name and Password both default to
PBPUBLIC if they are not specified explicitly.

/1 The URL for the sanpl e PointBase database
String | _URL = "jdbc: pointbase://" + p_product + "/sanple";

/'l Dat abase User| D
String | _U D = "pbpublic";

/| Dat abase Password
String | _PWD = "pbpublic";

/] Establish connection with the database and return a Connection object
m conn = Driver Manager. get Connection(l _URL, | _U D, |_PWD);

The form of the PointBase URL, depends on which PointBase database you are using. The
following gives examples for the PointBase Embedded and Server Option databases:

* PointBase Embedded
"j dbc: poi nt base: enbedded: sanpl e"

* PointBase Embedded — Server Option
"jdbc: poi ntbase: server://<server ip address>/sanple"
or

"j dbc: poi nt base: server://<server nane>/sanpl e"

To create anew database, you must use one of the specified PointBase flags. The following
exampl e uses the new flag.

"j dbc: poi ntbase: server://<server nane>/sanpl e, new'

Make sure you refer to the PointBase System Guide before using any flag in the URL. Each
flag adheresto different rules when applied. (See the chapter, “ Advanced Tips for Starting
PointBase,” of the PointBase System Guide, and then browse the section, “Variable
Descriptions.”)

Version 4.8 PointBase Developer 15

PointBase

Using DataSource

Instead of using the DriverManager facility to connect to the PointBase database, you may use
aJDBC DataSource by initializing a DataSource object. The following example describes how
to connect to a PointBase database using a DataSource object.

/1 The URL for the sanple PointBase database
String | _URL = "jdbc: pointbase://" + p_product + "/sanple";

/| Dat abase User|D
String | _U D = "pbpublic";

/| Dat abase Password
String | _PW = "pbpublic";

/'l Create DataSource object
j dbcDat aSour ce ds = new j dbcDat aSource();
ds. set Dat abaseNanme(| _URL) ;
ds. setUser (1 _UD);
ds. set Password(| _PWD);
ds. set Cr eat eDat abase(true);

/1 Establish connection with the database and return a Connection object
m conn = ds. get Connection();

Using Connection Pool with DataSource

To use the connection pool implemented by PointBase, you need to use

com poi nt base. j dbc. j dbcPool edDat asour ce classto create DataSource object.
Connection obtained from this DataSource uses the Connection Pool. The following example
shows how to connect to a PointBase database using the DataSource that supports the
Connection Pool.

Example

/| create pool ed DataSource Cbject

j dbcPool edDat aSour ce pds = new j dbcPool edDat asource();

pds. set Dat abaseNanme("sanpl e");

pds. set User (" PBPULI C") ;

pds. set Passwor d(" PBPUBLI C") ;

pds. set Descri pti on(" Sanpl e dat abase");

pds. dbl ni ("create=true");// option to create database, if it doesn’t exist
/1 get a connection object

Connection con = pds. get Connection();

/1 perform operations using the connection object

/1 finally close the connection and return the connection to the pool
con. cl ose()

Creating and Executing Static JDBC Satement

The following code snippet gives an example of how to create and execute static JDBC
statements. First, it defines the SQL statement that the statement will execute, a statement is
then created and executed to return a read-only, non-scrollable Result Set object. Updateable
and scrollable result sets are discussed further in the advanced JDBC tutorial.

/'l Create the SQL Query

String SQ._SELECT = "SELECT custoner_tbl.nane, custoner_tbl.city,"
+ " manufacture_tbl.name, manufacture_tbl.city"

Version 4.8 PointBase Developer 16

PointBase

+ " FROM custoner_tbl, manufacture_tbl WHERE"

+ " UPPER(custoner _tbl.city) = UPPER(manufacture_tbl.city)";

/] Create a static JDBC statenent
m stm = mconn.createStatement();

/'l Execute the SQL statenent and return a Non-Scroll able Result Set
mrs = mstnt.execut eQuery(SQ._SELECT);

Version 4.8 PointBase Devel oper 17

PointBase

Retrieving Row Values From Non-Scrollable Result Sets

A non-scrollable result set only allows you to retrieve the values stored in the result set in
sequential order. The following example describes how to retrieve values from a non-
scrollable result set.

When aresult set is returned, the cursor is positioned before the first row of the result set. To
access the first value of the result set you must advance the cursor to the first row using the
resul t Set. next () method. This method is used to move the cursor from row to row in
the result set, and returns a Boolean TRUE value if there is datain the row to which the cursor
is pointing.

/1 Scroll through the result set (top to bottom

whil e(p_rs.next())

/1 Loop through the colums
for (int i =1; i <= rsColums; i++)

/1l Get the data fromthe result set
/1 Place nethods to retrieve data here

The following code snippetsillustrate how to retrieve specific data types from the result set.
These methods would be placed inside the “for” loop of the snippet above.

/'l Retrieve JDBC Char and Varchar data types
String rsString = p_rs.getString(i);

/1l Retrieve JDBC Integer data types
Integer rsint = new Integer(p_rs.getlnt(i));

/1 Retrieve JDBC Snallint data types
Short rsShort = new Short(p_rs.getShort(i));

/] Retrieve JDBC Bool ean data types
Bool ean rsBool = new Bool ean(p_rs. get Bool ean(i));

/] Retrieve Float, Double, Nuneric and Decimal JDBC data types
Doubl e rsDoubl e = new Doubl e(p_rs. get Doubl e(i));

NOTE: PointBase recommends that you usethe Resul t Set . get Bi gDeci nal () method
to retrieve Numeric and Decimal JDBC data types. This method is omitted in this
example for JDK 1.1.8 and JView compatibility.

/'l Retrieve JDBC Real data types
Fl oat rsFloat = new Float(p_rs.getFloat(i));

/'l Retrieve JDBC Date data types
java.sql .Date rsDate = p_rs.getDate(i);

/] Retrieve JDBC Tine data types
java.sqgl . Time rsTine = p_rs.getTime(i);

/] Retrieve JDBC Tine Stanp data types
java.sqgl . Timestanp rsTimestanp = p_rs.getTimestanp(i);

Version 4.8 PointBase Developer 18

PointBase

Closing and Committing Objects

The following examples describe how to close result sets, static JIDBC statements and finally
database connections. However, before closing a connection to the database or when you have
completed atransaction, you must either commit or rollback any changes made.

Rolling Back or Committing the Transaction

The following code snippet describes how the sample application rolls back all changes made
to the database up to this point. It usesther ol | back() method.
/1 Rol I back any changes made to the database

/1 Use mconn.comit() if you don’'t wish to rollback the transaction
m_conn. rol | back();

NOTE: If you fail to commit atransaction prior to disconnecting from the database, and you
do not have “auto commit” switched on, the transaction will be rolled back by default
and any changes made will be lost.

Closing the Result Set

When you close aresult set, you invalidate the result set. That is, it cannot be used for any
subsequent operations. The following code snippet describes how the sample application
closes the result set object.

/'l Close the Result Set
mrs.close();

Closing the JDBC Satement
The following code snippet describes how the sample application closes the JDBC statement

object.

/1 Close the JDBC stat enment
m stnt.close();

Closing the Connection to the Database

The following code snippet describes how the sample application closes the connection object.
This closes the connection to the database.

/'l Close the connection
m conn. cl ose();

Version 4.8 PointBase Developer 19

PointBase JDBC Advanced Tutorial
|

Thistutorial isintended as a quick reference to the JDBC API. PointBase recommends that
you consult a JDBC reference manual or http://java.sun.com for more comprehensive and the
most up to date information.

The advanced tutorial describes how to perform more complex operations using the JDBC API
with PointBase Embedded. The code snippets in this tutorial are taken from the sample
application included in the “<install_folder>\samples\server_embedded\src” directory of your
PointBase installation. The examplesin thistutorial include returning scrollable result sets and
performing batch updates.

Each example provides:. a brief description of the code snippet illustrated, a code snippet from
the sampl e application code, any additional information to explain the code snippet in more
detail. The examples assume you have already connected to the PointBase sample database.
(Refer to the Basic Tutorial for information about connecting to a PointBase database.)

Creating and Executing a Dynamic JDBC Satement

The following example describes how to create and execute a dynamic JDBC statement. A
dynamic JDBC statement can improve performance of applicationsrelative to static JDBC
statements. Unlike a static JDBC statement, dynamic or prepared statements are only compiled
once, regardless of the number of times that they are used. For example, use adynamic JDBC
statement is when you need multiple executions of a particular SQL statement that has
changing values associated with it.

Version 4.8 PointBase Developer 20

PointBase

Creating a Prepared Satement

The following code snippet shows an example of an SQL string for use within a prepared
statement. The pr epar edSt at enment () method usesthis string as its argument. The
prepared statement executes the INSERT statement as many times as required. The question
marks indicate dynamic parameters that will be bound to the prepared statement. The prepared
statement object is created using the Connect i on. pr epar eSt at erent () method.

/1 Initialize SQL for the prepared statenent

String SQL_PREP_| NSERT = "I NSERT | NTO order _tbl (order_num custoner_num"
+ " rep_num product_num sales_tax_st_cd, quantity,"

+ " shipping_cost, sales_date, shipping_date,"

+ " delivery_ datetinme, freight_conpany) VALUES"

+ " (?,0?,0?, 2, ?, 2, ?2,?, 2,2, 7",

/] Create a prepared statenent
m prepStnt = m _conn. prepar eSt at enent (SQL_PREP_| NSERT) ;

Binding the Dynamic Variablesto the Prepared Statement

The following code snippet provides an example of binding dynamic variables to the prepared
statement and executing the prepared statement. Bind the variables by using the

pr epar edSt at enent . set <Dat aType> method, for example
preparedStatement.setint(). The first input argument for this method is the bind parameter
index (i.e. which question mark it represents), the second input argument isthe desired value to
be bound. The prepared statement is executed using the

pr epar edSt at enent . execut e() method.

/1 Bind the paraneters to the prepared statenent
m prepStnt.setlnt(1, varl[i]);
mprepStnt.setint(2, var2[i]);

m prepStnt.setlnt(3, var3[i]);

m prepStnt.setlnt(4, var4[i]
m prepStnt.setString(5, var5[i]);
m prepStnt.setlnt(6, var6[i]

m prepStnt. set Doubl e(7, var7[i]);
m prepStnt.set Date(8, var8[i
m prepStnt. set Date(9, var9[i
m prepStnt . set Ti mest anp(10,
m prepStnt.setString(1l1, var

)
[i
)
[i
]
]
v i1);
1

i
)
)
ar 10[
il
/1l Execute the SQL prepared statenent and return a result set
m prepSt nt . execute();

Version 4.8 PointBase Developer 21

PointBase

Using Result Sets

This section explains how to create a statement object for returning and manipul ating different
types of result sets. By returning a scrollable type of result set, you have the capability to
retrieve result set row valuesin any order. Conversely, using a non-scrollable result set, you
can only retrieve result set row values as you scroll forward. With scrollable result sets,
however, you can scroll either forward or backward. Additionally, you can also scroll by
specifying a position in the result set.

To begin returning any type of result set, you have the option to specify the result set type,
concurrency, and the holdability type, when you create the SQL statement. Refer to the
ResultSet interface section of Sun Microsystems’ JDBC 2.0 and 3.0 Javadocs for more
information about the following types, concurrencies, and holdability types.

Result Set Types, Concurrency, and Holdability

To create a scrollable result set you must specify its result set type. The following table
describes the different result set types:

Result Set Type Description

TYPE_FORWARD_ONLY Specifies aresult set that you can move the cursor
forward only. The default result set typeis
TYPE_FORWARD_ONLY.

TYPE_SCROLL_INSENSITIVE | Specifiesaresult set that you can scroll forward,
backward, and to a specified position. You may not see
changes made by other usersin the current result set.

TYPE_SCROLL_SENSITIVE Specifies aresult set that you can scroll forward,
backward, and to a specified position. It allows you to
see changes made by other usersin the current result set.

In addition to the result set type, you must also specify the result set concurrency. It defines
whether or not the result set is read-only or updateable. In PointBase, you can specify
CONCUR_READ_ONLY or CONCUR_UPDATEABLE. Using CONCUR_UPDATEABLE,
you have the ability to update rowsin aresult set using methods in the Java programming
language rather than having to update them with an SQL statement.

For example, you can INSERT, UPDATE, or DELETE aresult set row, and make your changes
permanent to the database. Using CONCUR_READ_ONLY, you may read the rowsin the
result set only; you cannot change them in any way.

Result Set Concurrency | Description

CONCUR_READ_ONLY Specifies aresult set to be read-only. It is the default
concurrency.

Version 4.8 PointBase Developer 22

PointBase

Result Set Concurrency | Description

CONCUR_UPDATEABLE Specifies aresult set to be updateable.

Finally, you may specify the holdability of your result set. The holdability of aresult set
defines whether or not the current result set will close after an implicit or explicit transaction
commit. Regardless of holdability, PointBase rel eases | ocks once the transaction is committed.

If cursor holdability is specified, locks will be lost for this statement and result set. Since this
result set is still open, locks need to be re-acquired prior to the next operation on this result set.
PointBase automatically re-acquires table locks required for this Statement, but row locks will
not be re-acquired. Row locks on the newly fetched rows will be determined and acquired in
the next operation depending on the transaction-isolation level.

Transaction isolation cannot be preserved for result sets that specify

HOLD_CURSORS OVER_COMMIT. Non-repeatable read and phantom phenomenon may
happen even for isolation levels, REPEATABLE_READ and SERIALIZABLE &after a
transaction commit.

So, the recommended isolation level for results sets specifying
HOLD_CURSORS OVER _COMMIT isREAD_COMMITED, which gives the most
consistent results when compared to result sets with the holdability type,
CLOSE_CURSORS_AT_COMMIT.

Additionally, result sets with the holdability type, HOLD CURSORS OVER COMMIT, will
be closed after aROLLBACK.

Note that methodsfor holdability are only supported in JDBC3.0. You must use JVM 1.4
or aboveto specify holdability. The following table explains the different holdability types
that PointBase supports:

Holdability Type Description

HOLD_CURSORS OVER _COMMIT | ResultSet objects are not closed; they are held open
when acommit operation isimplicitly or explicitly
performed.

CLOSE _CURSORS AT COMMIT ResultSet objects are closed when a commit operation
isimplicitly or explicitly performed. The default
holdability of ResultSet objectsisimplementation
defined. For backward compatibility,
CLOSE_CURSORS AT_COMMIT isthe default for
PointBase.

To change the holdability default, locate the
“pointbase.ini,” and specify the parameter
“cursor.holdAcrossCommit=true” to change the
default to HOLD_CURSORS OVER_COMMIT.

Version 4.8 PointBase Developer 23

/'l Create a st

Version 4.8

PointBase

Creating Scrollable Result Sets

The following code snippet illustrates how to create a statement object that can return a read-
only scrollable result set that closes after a transaction commit. You may substitute any of the
supported result set types, concurrencies, or holdability types. You may use either the
“createStatement(),” “ prepareStatement(),” or “prepareCall()” method from the Connection
interface. The following uses the “ createStatement()” method.

atement and set the Result Set paraneters to make it scrollable
m stm = m.conn. createStatenment (ResultSet. TYPE_SCROLL_| NSENSI Tl VE,
Resul t Set . CONCUR_READ_ONLY, Result Set.CLOSE_CURSORS AT_COW T);

Notes on Scrollable Result Sets

While updating, inserting, or deleting arow in an updateable scrollable result set, PointBase
will change the lock on the row to an exclusive lock. If PointBase cannot acquire the lock, it
will throw an exception.

While using updateable scrollable result sets, you must set autocommit to false. If you set it
to true, PointBase commits the result sets, which invalidates them.

Verification

Before inserting any new rows or updating any row values, PointBase will perform any
necessary checking, including constraints and reference integrities. If anew row or row value
fails to satisfy any of them, PointBase will throw an exception. Also, while inserting a new
row, make sure to define all column val ues, because PointBase automatically sets undefined
column values to the database defaullt.

Restrictions

PointBase enforces the following restrictions for scrollable result sets specified with the
CONCUR_UPDATEABLE and TYPE SENSITIVE properties:

e A query that returns aresult set can select from only asingle table, and cannot contain
any join operation.

e A query that returns aresult set must select table columns only. It cannot select derived
columns or aggregates.

e A query that returns aresult set cannot have ORDER BY, GROUP BY, or HAVING
clause.

Behavior

The PointBase JDBC driver will automatically specify the scrollable result set concurrency or
type, if it observes the following behavior:

e If you specify aresult set to be CONCUR_UPDATEABLE and attempt any of the
previously mentioned restrictions, the PointBase JDBC Driver will return aresult set of
CONCUR_READ_ONLY.

e If you specify aresult set to be TYPE_SENSITIVE and attempt any of the previously
mentioned restrictions, the PointBase JDBC Driver will return aresult set of
TYPE_INSENSITIVE.

PointBase Developer 24

PointBase

Moving the Cur sor

After returning a scrollable result set using a statement object, you can move the result set
cursor. The following examples describe how the sample application moves the cursor in a
scrollable result set. Similar to non-scrollable result sets, you access sequentia rows of the
result set by using the Resul t Set . next () method. You can also move the cursor
anywhere in a scrollable result set using the following methods.

First()

The following code snippet describesthef i r st () method. It moves the cursor to the first
row in the result set.

/1 Move the cursor to the first entry in the result set - this is the data we just
/1 inserted
mrs.first();

Last()

The following code snippet demonstratesthe | ast () method. It moves the cursor to the last
valueintheresult set m rs

/'l Move the cursor to the last entry in the result set
mrs.last();

Previous()

The following code snippet demonstrates the pr evi ous() method. It moves the cursor to
the previous position in the result set m_rs.

/1l Moving back to the previous entry in the result set
m rs. previous();

Absolute()

The following code snippet demonstrates the absol ut e() method. It moves the cursor to a
specific position in the result set. For example, this code snippet describes how to move the
cursor to the first row in the result set.

/1 Moving to the first entry in the result set using its absolute row reference
m rs. absol ute(1);

BeforeFirst()

The following code snippet demonstrates the bef or eFi r st () method. It moves the cursor
before the first value in the result set.

/1 Moving before the first row
mrs. beforeFirst();

AfterLast()

The following code snippet demonstratesthe af t er Last () method. It moves the cursor
after the last value in the result set.

/1 Move after the last row
mrs.afterlLast();

Version 4.8 PointBase Developer 25

PointBase

Relative()

Ther el ati ve() method moves the cursor to the specified position relative to the current
position of the cursor. This code snippet demonstrates how to move the cursor two rows
forward from the current position of the cursor.

/1 Move cursor relative to current position
mrs.relative(2);

Next()

The following code snippet demonstratesthe next () method. It movesthe cursor to the next
row in theresult set m_rs.

/1 Move the cursor to the next entry in the result set
mrs.next();

Setting the Direction of the Cursor in Scrollable Result Sets

When you change the direction of the cursor, it effectively reverses al of the previous
methods. To set the direction of the cursor you must usetheset . Fet chDi recti on()
method. The fetch direction is set to FETCH_FORWARD by default, and the cursor movesin
the forward direction. PointBase supports the two following fetch directions:

FETCH_REVERSE

The following code snippet demonstrates how to reverse the direction of the cursor in the
scrollable result set.

/1 Set the cursor to scroll backwards through the Result Set

m rs. set FetchDirecti on(Resul t Set. FETCH _REVERSE) ;

Asan example of cursor behavior with the fetch direction set to FETCH_REVERSE, if you
call thebef or eFi r st () method, the cursor is moved after the last row of the result set.

FETCH_FORWARD

The following code snippet demonstrates how to set the fetch direction of the scrollable result
set to FETCH_FORWARD.

/] Set the cursor to scroll forwards through the result set
mrs. set FetchDirecti on(Resul t Set. FETCH_FORWARD) ;

Retrieving Information About a Result Set

The following examples describe how to retrieve information about a result set. This example
refersto only afew of the methods available for retrieving information about the result set.
Refer to JIDBC API documentation at http://java.sun.com or your JDBC reference for a
comprehensive list of the available methods, and “ Appendix B: Unsupported JDBC Methods
in PointBase,” for the list of methods that PointBase does not support.

Version 4.8 PointBase Developer 26

PointBase

ResultSet.getType()

Ther esul t Set . get Type() method can return TYPE_SCROLL_INSENSITIVE or
TYPE_FORWARD_ONLY. The following code snippet describes how to get the type of the
result set m_rs.

/1l Check if result set is scroll insensitive

m rs. get Type()

ResultSet.getConcurrency()

Theget Concur r ency() method can return CONCUR_READ_ONLY or
CONCUR_UPDATEABLE. Thefollowing code snippet describes how to get the concurrency
of theresult set m rs.

/'l Check the concurrency of the result set
m rs. get Concurrency()

ResultSet.getM etaData()

Theget Met aDat a() method obtains information about the result set, for example, the
column names and column data types. The following code snippet describes how to get the
meta data of the result set m_rs.

/1l Retrieve Result Set Meta Data to obtain result set properties
mrsnd = mrs. get MetaData();

Version 4.8

Setting the Number of Returned Rowsin Scrollable Result Sets

The following code snippets demonstrate how to set the fetch size or number of returned rows
in ascrollable result set using two different methods. Thisis applicable to PointBase Server
Option only. Also note that in most cases the default fetch sizeis optimal.

ResultSet.setFetchSize(int p_Rows)

The result set can change its default fetch size using this method. It will only affect the
specified result set.

mrs.set FetchSize(2);:

To set the default fetch size for all result sets created by a statement object, you can use the set
fetch size using the Statment object. This method affects all result sets generated by this
statement. For example:

St at ement . set Fet chSi ze(int p_Rows)

Updating Row Valuesin Scrollable Result Sets

To update arow valuein aresult set, PointBase provides you with four different methods.
Among their uses, you can set the row value of the result set that you want to update and most
importantly, perform the actual update to the underlying database. PointBase al so providestwo
additional methods that you can use to perform the following: cancel all updatesto arow or
verify arow value you just updated.

PointBase Developer 27

PointBase

updatexXXX()

To update arow value in aresult set, you must first set the value using the method,
updat exxX() . It hastwo different forms:

. updat e<dat at ype>(int columPosition, value)
. updat e<dat at ype>(String col unmNane, val ue)

This method supports al PointBase data types. The following example sets the quantity
column value in the current row to 150 using the Int data type:

/1 mrs.updatelnt() nmethod updates the field in question with supplied integer val ue
m rs.updatel nt("quantity", 150);

updateRow()

To update the row value of the actual underlying database on the next transaction commit, you
use the method, updat eRow() . After updating arow value, you will be able to view your
updated row value in the current result set. The following is an example of how to use this
method:

/1 mrs.updateRow() nethod updates the row in the database.
m rs. updat eRow() ;

rowUpdated()

To verify that you updated the row value in the underlying database, you may use the method,
rowdpdat ed() . The following is an example of how to use this method:

m rs. rowUpdat ed()

cancel RowUpdates()

To cancel the updated row value in the result set, you may use the method,

cancel RowUpdat es() . You cannot cancel the update if you have already made the change to
the underlying database; that is, you cannot cancel the update after calling the updat eRow()
method. The following is an example of how to use this method:

/1 mrs.cancel RowUpdat es() cancels in case a wong update has been made.
m rs. cancel RowUpdat es() ;

Inserting Rows Into Scrollable Result Sets

To insert anew row into aresult set, PointBase provides you with four methods. Using them,
you perform the following things: place the cursor to the insertion row in caseit is not
currently on the row, to which you want to insert; set the new values of the row, similar to
updating a row value; and, insert a new row making it permanent to the underlying database.
After inserting a new row, you must use another method to move the cursor from the insertion
row to the current row, a non-insertion row.

moveTol nsertRow()

To move the result set cursor to the row into which you want to insert, you must use the
method, moveTol nsert Row() . The following is an example of how to use this method:

m rs. noveTol nsert Row() ;

updatexXXX()

You must use the method, updat exxX() to set therow valuesfor the new row, asyou similarly
used this method to update arow value. See previous section on updating row values.

Version 4.8 PointBase Developer 28

PointBase

insertRow()

To permanently insert the new row into the underlying database on the next transaction
commit, you use the method, i nsert Row() . The following is an example of how to use this
method:

mrs.insertRow();

moveToCurrentRow()

To move the cursor to a non-insertion row, if you do not want to insert another row, you must
use the method, noveToCur r ent Row() . The following is an example of how to use this
method.

m rs. noveToCur rent Row() ;

Deleting Rows From Scrollable Result Sets

To delete rows from result sets, PointBase provides you with two methods. For example, one
method del etes the row permanently from the underlying database on the next transaction
commit. The second method verifiesif the row has been deleted from the database. Please note
that if you try to retrieve a deleted row value from the current result set, PointBase will return
only NULL values.

deleteRow()

To permanently delete arow from the underlying database, use the method, del et eRow() . The
following is an example of how to use this method:

/1 Deleting currentrow.
m rs. del et eRow() ;

rowDeleted()

To verify whether or not arow still existsin the current result set, use the method,
rowDel et ed() . The following is an example of how to use this method:

nrs. rowDel et ed();

Viewing Changesto Current Result Sets

To view changes made to arow in the current result set by other users, the row must bein a
result set that was defined with the TYPE_SENSITIVE property. All values are also refetched
subject to the transaction-isolation level. If the result set was created with the required
properties, you can call the ResultSet method, “refreshRow().”

It refreshes the current row with its most recent value in the database. This method cannot be
called when the result set cursor is on the insert row, however. The following is an example of
how to use the “refreshRow()” method.

nrs.refreshRow();

Version 4.8 PointBase Developer 29

PointBase

If you also specified the result set with the property, CONCUR_UPDATEABLE, you may
want to use the “refresh()” method before calling the “ udpateRow()” method to verify the
newest row values. The following is an example of how to verify the newest row values before
calling the “updateRow()” method.

nrs.refresh();

/1 Verify row values are correct
nTs. updat eRow() ;

Flushing the Database L og

The following examples describe how to switch to afresh database log file. The old log fileis
deleted as soon asit is no longer required by the DBMS. The database log fileisflushed in
different ways for embedded and server option. The code snippets below illustrate log file
switching fro both products:

/1 Switch log file for PointBase Enbedded
((com poi ntbase. j dbc. j dbcConnecti on) m conn). swi tchLogFil e();

/1 Switch log file for PointBase Server Option
((com poi nt base. net. net JDBCConnecti on) m conn) . switchLogFil e();

Performing Batch Operations

The following examples demonstrates how to perform batch operations. Batch updates can
improve performance for large numbers of SQL operations. You can use them for any SQL
operation that returns an integer update count, but not a result set for example, INSERT,
UPDATE, or DELETE. You can aso use batch operations for any SQL DDL statement, for
example, CREATE TABLE, DROP TABLE, or ALTER TABLE.

NOTE: Batch updates offer the most significant performance improvement when used with
PointBase Server Option, due to reduced network access.

The following code snippet demonstrates the creation of aprepared statement, binding of
variables, and adding the prepared statement to a batch using the
pr epar edSt at enent . addBat ch() method. The batch is executed, using the
pr epar edSt at enent . execut eBat ch() method, once all the required prepared
statements have been added.

/'l Create a SQL statenment for the batch update

String SQL_BATCH UPDATE = "UPDATE sal es_tax_code_tbl SET effect_date = ?, rate = ? where
state_code = ?";

/'l Prepare a statenent
m prepStnt = m _conn. prepar eSt at enent (SQL_BATCH _UPDATE) ;
for (int i=0; i<=9; i++)

/1 Binding variables to the prepared statenent

m prepStnt.setDate(1l, java.sql.Date.valueO (BATCH DATA[1][i]));

m prepStnt.set Fl oat (2, (float)Float.val ueOr (BATCH DATA[2][i]).fl oatVal ue());
m prepStnt.setString(3, BATCH DATA[O][i]);

/1 Adding the prepared statenent to the batch
m prepSt nt. addBat ch() ;

Version 4.8 PointBase Developer 30

PointBase

/| Execute the batch
int[] updateCounts = m prepStnt.executeBatch();

NOTE: If Auto commit is set ON, the transaction will be committed when the
pr epar edSt at enent . execut eBat ch() method is called.

Retrieving Data From BLOB Columns

Thefollowing code snippet shows how the sample application retrieves BLOB values from the
result set usingtheget BLOB() method to retrieve the column value. Thefinal two operations
create a binary stream from the BLOB object to read it into a byte array. This byte array can
then be used as required by your application.

/'l Retrieve the BLOB containing the sales rep inmage fromthe second colum of

/1 the result set and find out its length
Bl ob image = mrs.getBlob(2);
int lob_length = (int)imge.length();

/] Create a Buffered input streamfromthe BLOB data and read it into a byte
/'l array

Buf f er edl nput St r eam buf f er edl nStream = new Buf f er edl nput Strean(i mage. get Bi naryStrean()

)

byte[] byteBuffer = new byte[lob_length];

buf feredl nStream read(byteBuffer, 0, lob_length);
buf f eredl nStream cl ose();

Retrieving Data From CLOB Columns

Thefollowing code snippet shows how the sample application retrieves CLOB values from the
result set using the get CLOB() method to retrieve the row value. The final two operations
create a character stream from the CLOB object to read it into a character array. This character
array can then be used as required by your application.

/1 Retrieve the CLOB containing the sales rep resunme fromthe result set and determ ne
its length

Clob resune = mrs.getd ob(3);

lob_length = (int)resune.length();

/1l Create a buffered reader to read the character streaminto a character array
Buf f er edReader bufferedReader = new BufferedReader (resune. getCharacterStrean());
char[] charBuffer = new char[lob_length];

buf f er edReader.read(charBuffer, 0, lob_length);

buf f er edReader . cl ose();

Version 4.8 PointBase Developer 31

PointBase

Creating Functions

This section describes functions in PointBase. Using afunction, you can transparently convert
datato be stored in a PointBase database. Functions may only return a single value of the type
specified in the CREATE FUNCTION SQL statement. To create a function (stored function),
you must use the CREATE FUNCTION statement and specify an external Java method for the
stored function to invoke. This section explains how to create and use stored functionsin
PointBase.

External Java M ethods and Functions

In PointBase, functions may be implemented using external Java methods. These user-defined
methods mani pulate SQL datawhen the functionis called by the database. Thisjavamethod can
be static or non-static. If it is hon-static, a connection object will be established during function
invocation, so anon-static member variable of typejava.sgl.connection and a constructor having
a parameter of type java.sqgl.connection needs to be implemented. If it is static, the method is
called directly and no connection object will be established during function invocation.

Creating an External Function

Suppose you want to INSERT a european formatted date into a table making sure that the date
format is Y 2K compatible. The following external Java method, dateConvert, is called from the
stored function in the database. This external Java method converts a date from dd-mm-yyyy to
yyyy-mm-dd, and then convertsit to ajava.sgl.Date type.

public static java.sql.Date dateConvert(String p_val ue)

Version 4.8

String | _day = new String(p_val ue. substring(0,2));
String | _nonth = new String(p_val ue.substring(2,6));
String | _year = new String(p_val ue. substring(6, 10));

return(java. sql.Date.val ueX (I _year + | _nonth + | _day));

Specifying the External Function in a Sored Function

To invoke the dateConvert external Java method from a stored function, you must use the
CREATE FUNCTION statement. The dateConvert external Java method is called from the
class, SampleExternal M ethods.

In order for the database to access this external Java method, the class SampleExternal M ethods
must be included in the database CLASSPATH. For PointBase Embedded - Server Option, it
must be in the Server CLASSPATH, but not in the Client CLASSPATH.

If PointBase Server is run with the Java Security Manager, in the java poalicy file grant
‘com.pointbase.sp.spPermission’ to the class that implements the external Java method.

An "spPermission” consists of a class name with no action. The class nameisaname of aclass
that could be used in creating a Stored Procedure in PointBase. The naming convention follows
the hierarchical property naming convention and that is supported by
"java.security.BasicPermission”. An asterisk may appear by itself, or if immediately preceded

by ".", may appear at the end of the name, to signify awildcard match. The name cannot
contain any white spaces.

PointBase Developer 32

PointBase

Examples:

ab.cd afully quaified class name
ab.* any classin any package that starts with "a.b."
* any classin any package

An "spPermission” is needed only to create afunction and not for executing the
function. A stored procedure is always executed in its own protection domain that is
security controlled. The administrator can configure permission for a group of stored
procedures or any individual stored procedure..

/1 SQ. statenent to Create a function

String SQL_CREATE_FUNC = " CREATE FUNCTI ON dat eConvert(| N P1 VARCHAR(20))"
+ " RETURNS Dat e"
+ " LANGUAGE Java"
+ " NO SQL"
+ " EXTERNAL NAME \" Sanpl eExt er nal Met hods: : dat eConvert\""
+ " PARAMETER STYLE SQL";

/'l Create a statenent and execute the SQL

m stm = mconn.createStatement();
m st nt . execut eUpdat e(SQL_CREATE_FUNC) ;

/1 Close the statenent
m stnt.close();

NOTE: The stored function converts the data before inserting it into the database, and after
selecting data from the database.

Using the Function

The following code snippet describes how the dateConvert function isused in a SELECT
statement by the Sample Database Application.

/1 SQL SELECT using the external function to convert the date in the WHERE cl ause

String SQ_USE FUNC = "SELECT city FROM of fice_tbl WHERE open_date ="
+ " dateConvert(’01-02-1993")";

/] Create the statenent
m stnt = m.conn. createStatenent();

/'l Execute the statnent
mrs = mstnt.executeQuery(SQ._USE_FUNC) ;

Creating Stored Procedures

Version 4.8

You can create and use PointBase stored procedures in asimilar way to functions. Stored
Procedures may also use external Java methods to perform the procedure action. In addition,
stored procedures may take any number of input parameters and return any number of output
parameters, unlike functions which may only return one parameter. Stored procedures are
invoked explicitly using JDBC callable statements or may be invoked using the CALL
command in atrigger action. However, they cannot be invoked within SQL statementslike a
function.

The java method can be static or non-static. If it is non-static, connection object will be
established during function invocation, so a non-static member variable of java.sgl.connection

PointBase Developer 33

Version 4.8

PointBase

and a constructor having parameter java.sgl.connection needs to be implemented. If it is static,
the method is called directly and no connection object will be established during function
invocation.

If PointBase server isrun with Java Security Manager, in the java policy file grant
‘com.pointbase.sp.spPermission’ to the class that implements the external Java method. For
more detailsrefer to the earlier section " Specifying the External Function in a Stored Function”

Using INOUT and OUT Parameters

When using a stored procedure with Java external methods, special care must be taken to
properly handle parameters passed to the procedure. Parameters may be of type IN, OUT, or
INOUT. Java passes arguments by value, not by reference; therefore, it is generally impossible
to use stored procedures with argument val ues that need to be returned through the parameters.
PointBase has added special JDBC Wrapper classes to remedy thisissue. This section explains
how you can use this wrapper with INOUT and OUT parameters.

PointBase Developer 34

PointBase

Using JDBC Wrapper Classes

The jdbclnOut Wrappers are used by the database to enabl e the database to return values from
Java methods using Callable Statements. They are only required for OUT or INOUT
parameters. Each wrapper class has two constructors, a get and set method, and a toString
method. The wrapper classes are contained in the package "com.pointbase.jdbc" included in
your PointBase jar file.

The wrapper name corresponds to the JAVA data type represented by the wrapper. All
mappings between SQL and JAVA data types are compliant with the JDBC specification. For
the JDBC Binary and BLOB data types, awrapper is not required, and a Java byte array is
passed as the input argument to your Java method.

e jdbcInOutDateWrapper—>Date Data Type

e jdbcInOutTimeWrapperTime—>Time Data Type

e jdbcInOutTimeStampWrapper—>TimeStamp Data Type

e jdbcInOutBool eanWrapper—>Boolean Data Type

e jdbcInOutLongWrapper—>BigInt Data Type

e jdbclnOutDoubleWrapper—>Double and Float Data Types

e jdbcInOutFloatWrapper—>Real Data Type

e jdbcInOutIntWrapper—>Integer Data Type

e jdbcInOutStringWrapper—>Char, Varchar, Clob Data Types
e jdbcInOutShortWrapper—>Smalllnt Data Types

e jdbcInOutBigDecimalWrapper—>Decimal and Numeric Data Types
e jdbcInOutByteArrayWrapper —>BLOB Data Type

Creating an External Procedure Using JDBC Wrapper Classes

The code snippet below defines the getCost external procedure found in the class
SampleExternalMethods. Initially, you must first use a constructor to obtain a connection to
the database.

*/

i mport java.sql.*;
i mport com poi nt base. j dbc. j dbcl nQut Doubl eW apper ;

public class Sanpl eExt er nal Met hods

/1 A connection object to allow database cal | back
private Connecti on m.conn;

/1 Constructor accepts a java.sql.Connection object to all ow database cal | back
publ i ¢ Sanpl eExt er nal Met hods(Connecti on p_conn)
{

m.conn = p_conn;

}

Version 4.8 PointBase Developer 35

PointBase

The following Javamethod is called as a stored procedure by the database. Procedure uses the
net order cost (INOUT) and state code (IN) to return the net order cost (INOUT). This
particular procedure also makes a callback into the database

NOTE: A jdbcInOutDoubleWrapper is passed into this method as an argument rather than the
FLOAT JDBC data type that was bound to the callable statement.

public static void getCost(String p_productlnfo, String p_state, jdbclnQutDoubl eWa
pper p_price)
{

try
{
/'l Query the database for the sales tax rate
Statement | _stnt = |_conn.createStatenent();
ResultSet | _rs = | _stnt.executeQuery("SELECT rate FROM public.sal es_tax_cod
e thl"
+ " WHERE state_code ="" + p_state + """

/1 Calculate the totoal cost of the itemusing the sales tax rate
/] obtained fromthe database.
| _rs.next();

float total _cost = (float)p_price.get() * (1 + (|l _rs.getFloat(1)/100));

/1 Bind the total cost to the INOUT variable to return
p_price.set(total cost);

/1 Close the result set
| rs.close();

/'l Close the statenent
| _stnt.close();

Executing a Stored Procedure

To allow a stored procedure to call out from the database system to an external procedure,
follow these two mandatory steps:

Create a stored procedure in the database.

The code snippet below shows how to create stored procedure, getCost in PointBase, where
EXTERNAL NAME refers to the class and the getCost external procedure.

In the following example, getCost is a method contained within the class
SampleExternal M ethods.

/] SQL statenment to create a stored procedure
String SQL_CREATE _PROC = " CREATE PROCEDURE get Cost (I N P1 VARCHAR(20), IN P2

VARCHAR (2), | NOUT P3 FLOAT)"

+ " LANGUAGE JAVA"

" SPECI FI C get Cost "

' NO SQL"
" EXTERNAL NAME \" Sanpl eExt er nal Met hods: : get Cost\""
' PARAMETER STYLE SQL";

+ 4+ +

/1l Create a SQL statenent
m stnt = m.conn. createStatenent();

/] Execute the SQ

Version 4.8 PointBase Developer 36

PointBase

m st m . execut eUpdat e(SQL_CREATE_PROC) ;

/'l Close the statenent
m stnt.close();

Create a JDBC CallableStatement that executes the stored procedure.
The code snippet below is an example of how to create a CallableStatement that invokes the
stored procedure.

You must set the appropriate inbound arguments with values. After the execution of the
CallableStatement, you may obtain the values for each applicable outbound argument.

/l Create SQL to invoke stored procedures

String SQL_USE PROC = "{ call getCost(?,?,?) }";

/'l Create a callable statement with three binding paraneters
m cal | Stnt = m _conn. prepareCal | (SQL_USE_PROC) ;

m cal | Stnt.setString(1l, mproductlnfo);

mcall Stnt.setString(2, "CA");

m cal | Stnt. set Fl oat (3, 449. 00F);

m cal | Stnt. executeQuery();

/1 Close the callabl e statenent
m cal | Stnt. cl ose();

For further details on OUT and INOUT parameters, see ‘JDBC API Tutorial and Reference’,
Second Edition, Sun Microsystems, by White, Fisher, Cattell, Hamilton and Harper.

Connecting to Multiple Databases

Version 4.8

You can connect to multiple databases in the same VM using Pointbase Embedded. All
databases must be in the same directory specified by database.home parameter.

Pointbase.ini

Pointbase.ini behavior is not changed in this case. There will be only one Pointbase.ini used in
the same VM. Any setting in Pointbase.ini file may apply to all databases opened in the same
VM.

Transactions

Each connection will have its own transaction, which means every connection works
independently to each other. They may start, commit or rollback their own transactions.

Shutdown Command

Shutdown command will shutdown one database, which the current connection connectsto. It
will not shut down all databases opened in the VM. For shutting down all databases, user may
have to shutdown every database opened in the VM one by one.

Backup Command

Same as shutdown command, backup command will only backup one database, which the
current connection connects to.

PointBase Developer 37

Basic SQL Data Objects

This section describes basic data objects relative to PointBase Embedded. It describes each
data object individually and explains how PointBase data objects interact with one another.
Read this chapter before creating a database to fully understand the behavior of each data
object within PointBase Embedded.

Data Objects Within PointBase Embedded

The following diagram illustrates the rel ationship between basic data objectsin PointBase
Embedded. The database itself is a data object that encompasses all other data objects. A
database contains Schema objects, which in turn contain Table objects. Tables whose values
are derived from other tables are called Derived Tables or Views. Finally, a Column is located
within a Table. Columns are the smallest data object within PointBase Embedded.

Database

User

Schema

Table

Column

View

Figure 1.1 PointBase Embedded Data Objects

Version 4.8 PointBase Developer 38

Database

Version 4.8

PointBase

PointBase Embedded can contain one or more database(s). A databaseis at the highest level of
abstraction and is simply an operating system file. PointBase stores all datain dbn files and all
log information in wal files. For example, the sample database fileis“sanpl e. dbn” and the
samplelog fileis“sample.wal.” You can locate these filesin the directory, “<install
directory>\databases.”

PointBase automatically creates other . dbn or . wal fileslikesanpl e$$1. dbn or
sanpl e$$1. wal whena. dbn or. wal filereachesits maximum size. All automatically
created . dbn and . wal files have the same page size asthe original . dbn or . wal file.

Database Size Limit

For the default page size of 4 K, the database sizeislimited to 0.5 terabytes. If the default page
sizeis 1K, the database sizeis limited to 128 GB, and for the default page size of 32 K, the
databaseis limited to 4 terabytes.

Because PointBase supports multiple page sizes for a database, the previous limits are true
assuming that the database does not use additional page sizes. If the database has more than
one page size, the database size limit increases. For example, if the database has two different
page sizes, one page size of 4K (0.5 terabytes), plus another page size of 32K (4 terabytes), the
total database size limit is 4.5 terabytes.

Concurrent Databases

PointBase supports multiple databases, but only one database concurrently. If multiple
connections are made to PointBase Embedded, then each connection needs to access the same
database. When the set of connectionsto a particular database is completed, then the next set of
connections can beinitiated to another database.

Typically, multiple databases separate data for different applications. Schemas can be used to
accomplish the same effect. Refer to “ Schemas” in this chapter for more information

Read-Only Support

Using PointBase, you may query adatabase on a CD. In this section we use the term “read-
only database,” when the database files are on a CD or, when the database files are set to the
operating system property “read-only.” PointBase supports only SELECT statements for read-
only databases. Using any other statements, such as INSERT, CREATE TABLE,... etc. witha
read-only database causes PointBase to throw an exception. The error message states “Invalid
statement.”

To have a database on a CD, you must first create the database on awritable drive. After
creating the database, connect to it using the PointBase Commander or any Java program [see
PointBase System Guide], and then close the connection without performing any other
operations during the connection.

PointBase Developer 39

User

Version 4.8

PointBase

By performing this step, you ensure that all the datais completely recovered from the log
(.wal) beforeloading the . dbn and . wal fileson aCD. You cannot recover datafrom a
database on aCD. If the database on a CD needs recovery, the application terminates with the
following message on the screen (standard system output): “ Database needs recovery from log.
This version does not support recovery.”

To connect to the database on CD or any other location use the poi nt base. i ni file's
"dat abase. hone" parameter or the Java command line -D option to specify the location of
the database. See the PointBase System Guide for more information about starting PointBase.

Restrictions

Operations that involve writing to the database (dbn) or log (wal) files are not allowed.
Additionally, PointBase does not allow the following statements, because they use temporary
tables and writes into the database.

* Non-correlated subqueries that are part of IN predicate
e Read-only views
* Scrollable Cursors

Databases contain collections of users. Users are a means of providing security at the schema
level. Each schema has explicit user(s) associated with it, one of which must own the schema.
The schema owner has full access to the schema and determines the access privileges of the
other users. To manage users, use the CREATE USER and DROP USER SQL statements.

When you create a PointBase database using PointBase Commander, PointBase Console, or
the IDBC AP, the system creates a default user PBPUBLIC with the password PBPUBLIC
who owns the default schema PBPUBLIC. Only the PBSY SADMIN, the database owner, or
users with the PBDBA role may create new users. (See " SQL Security and Privileges' on page
102.)

You cannot connect to a database as a user who does not exist in the SY SUSERS table, which
is one of the system tablesin the POINTBASE schema. For alist of predefined system tables
and their attributes within the POINTBASE schema, please refer to “ Appendix A: System
Tables’ of the PointBase System Guide.

PointBase Developer 40

Schema

Version 4.8

PointBase

Databases contain collections of independent schemas. A schemais alogical grouping of
tables, indexes, triggers, routines, and other data objects under one qualifying name.
Internationalization characteristics and user-level security can also be defined for schema
objects.

When a database is created using PointBase Commander, PointBase Console, or the JDBC
API, PointBase Embedded creates two schemas:

e Aninterna schemacalled POINTBASE, in which the system keeps all of the system
catalogs and tables
* A default schema called PBPUBLIC

You cannot create any user-defined data objects within the POINTBASE schema. For alist of
predefined system tables and their attributes within the POINTBASE schema, please refer to
“Appendix A: System Tables” in the PointBase System Guide.

Previous Schema PUBLIC

Inversions 4.1 and earlier, PointBase used the default schema, PUBLIC. By default, it also has
the password and user, PUBLIC. These names will still remain effective in versions 4.2 and
later; however, PointBase will now use PUBLIC for superficial purposes only. That is, you
may still connect to the database using PUBLIC. But internally, PointBase converts the user
and the password, PUBLIC, to PBPUBLIC every time you connect, and PointBase recognizes
the schema, PUBLIC asif it were the schema, PBPUBLIC. Additionally, you cannot drop the
superficial schema name, PUBLIC. However, you may create and later drop a new schema
called PUBLIC, and PointBase will not affiliate it with the schema, PBPUBLIC.

Schema Owners

The PointBase predefined user, PBPUBLIC, with the password, PBPUBLIC, is the owner of
the PBPUBLIC schema and has full accessto all objects within this schema. The predefined
user, PBSY SADMIN, has access to all objectsin the database. (See "Predefined Users' on

page 103.)

Unlessyou specify adifferent user explicitly, you automatically becomethe owner of aschema
if you created it. The schema owner has full access privileges and must grant access privileges
to other users for them to access that schema. PointBase recommends that you create new
schemas with the same name as your user name (if you are the schema owner) or with the same
names as the user who owns the schema. When you access the database, PointBase will
automatically search for the schema with the same name as the current user, making this the
current schema.

Schema Referencing
Data objects are mapped to the current schema by default, without the need for an explicit
reference. The CURRENT_SCHEMA special register contains the name of the current

schema. Please refer to the “ SQL Scalar and Aggregate Functions” chapter in this guide for
more information about the CURRENT_SCHEMA special register.

PointBase Developer 41

Enpl oyee_I nfo

Table

Derived Table

Version 4.8

PointBase

In databases with multiple schemas, data objects must explicitly reference the schemafor
which they are intended. If no explicit reference is made, PointBase automatically tries to
associate the data object with the current schema. If the data object cannot be logically
associated with the current schema, it references the default (PBPUBLIC) schema.

In databases with multiple schemas, when referencing a data object that is not in the current
schema, you must append the schema name to the data object name, separated by a period. For
example, if you have a schema named Employee Info, which contains a table named
Employees. Then, you must refer to that table in the following way:

Enpl oyees

Managing Schemas

To manage schemas, use the CREATE SCHEMA and DROP SCHEMA SQL statements.
CREATE SCHEMA initially creates a schema and conversely, DROP SCHEMA drops a
schema. The user that creates the schema owns the schema unless the optional
AUTHORIZATION qualifier is used to specify another user. The schema owner can grant
applicable privileges to the appropriate users.

A table is comprised of a number of column objects and contains rows of data. A row isa
nonempty sequence of values that correspond to the column objectsin the table. Every row of
the same table has the same number of columns and contains a value for every column of that
table.

The following are three types of tables used in PointBase Embedded:

« BaseTable: atable whose datais actually stored in the database.

« Derived Table: atable obtained from other tables directly or indirectly through the
evaluation of a query expression.

e Global Temporary Table: atablethat persists datafor aslong as the current database
connection or transaction exists. The table definition, however, persists until you
manually drop it from the database. Please see sdf for more information about creating
global temporary tables and their behavior.

NOTE: Dueto known limitations, it is highly recommended that you always use uppercase
letters when specifying table names or column names wherever applicable.

A derived tableis atable derived directly or indirectly from one or more other tables by the
evaluation of a<query expression> whose result has an element type that is arow type. The
values of aderived table are derived from the values of the underlying tables when the <query
expression> is evaluated.

A viewed tableis a named derived table defined by a <view definition>. A viewed tableis
sometimes

caled aview.

PointBase Developer 42

View

PointBase

A view isaderived table with aname. They provide an alternative way to look at the data of
one or more tables. This view derivesits values from the evaluation of a query expressionin a
CREATE VIEW statement. The query expression can reference base tables, other views,
aliases, etc. Essentialy, aview isastored SELECT statement, of which you can retrieve the
results at alater time by querying the view asthough it were atable. See also "CREATE
VIEW" on page 132. A view can be read-only or updateable. Currently, PointBase supports
Read-Only Views only.

The definition of each view is stored in PointBase's system catalog SY SVIEWS. If no errors
are encountered, PointBase adds the view nameto the SY SVIEWS catal og table. Additionally,
all referenced columns of all referenced tables will be added to the SYSVIEWTABLES
catalog table.

Security for Views

Because aview is atype of table, you can grant privileges on it, and the privileges can be
different than the privileges on any base table from which the view was derived. Unlike base
tables, however, an owner of aview does not automatically have the authority to grant
privileges on the view to others.

To grant privileges on the view to others, you must have grant privileges on every referenced
column and table in the view's query expression. If you have privileges revoked on any of the
referenced columns or tables, you also have the same privileges revoked on the view.

Revoking privileges on aview using the RESTRICT option will raise an error, if any users of
that view had the grant option privilege and they granted that privilege to other users. If you
revoke privileges on aview using the CASCADE option, you will revoke all the users
privileges on that view. Likewise, you must verify if the view has any dependent views, and
verify the privileges on those as well.

NOTE: Revoking privileges on aview does not affect base table privileges.

Temporary Table

Version 4.8

A temporary tableis akind of base table. Temporary tableis created by CREATE TABLE
command with TEMPORARY keyword. For temporary table, an indication of whether ON
COMMIT DELETE ROWS or ON COMMIT PRESERVE ROWS needs to be specified.
Temporary table can be global temporary, created local temporary or declared local temporary
table. PointBase only supports global temporary tables. Global temporary table is a named
table defined by a <table definition> that specifies GLOBAL TEMPORARY. Global
temporary table are effectively materialized only when referenced in a SQL-Session. Different
SQL -Sessions cause a distinct instance of that created global temporary tableto be
materialized. That is, the contents of global temporary table cannot be shared between SQL -
Sessions.

A global temporary tableislike persistent base table. You can insert, update, delete, create
indexes, create constraints or create triggers to a global temporary table.

PointBase Developer 43

Column

Version 4.8

PointBase

Each PointBase table can have amaximum limit of 32,000 columns and aminimum of one. All
values contained within a specific column are of the same data type and every column has an
associated default value. The system uses the default value when data is entered into a table
without specifying avaue for the column. The default value for a column isNULL unless the
column specifiesthe NOT NULL constraint or a different default value. If a column specifies
the NOT NULL constraint and has no default value defined, then you must specify avalue for
this column whenever datais inserted or updated in the table.

NOTE: Dueto known limitations, it is highly recommended that you always use uppercase
letters when specifying table names or column names wherever applicable.

IDENTITY Property for Autoincrement

PointBase has autoincrement capability using the IDENTITY property. By defining it for a
column (making it an IDENTITY column), PointBase or you can generate values for every
row in atable. You can defineit for only a column that has either of the data types:

* INTEGER
e SMALLINT
« NUMERIC
« DECIMAL

You can create atable with an IDENTITY column or you can add an IDENTITY column at a
later time using the ALTER TABLE statement. Please note, however, each table may have only
one IDENTITY column, and once you have created atable with an IDENTITY column or
added it at alater time, you cannot update any valuesin the IDENTITY column.

PointBase Generated Values

If you create, alter, or insert into atable without specifying avaluefor the IDENTITY column,
PointBase automatically assignsincremental valuesto every row in atable. If you allow
PointBase to generate the values, the default value for the first row is 1 (one). By defaullt,
PointBase will aso assign increments of 1 to the rows that follow. For example, PointBase
automatically assigns the default value of 1 to the first row of the table and continuesto give
the value 2 for the second row, 3 to the third row, and so on. (See “identity _property” on page
123)) If you insert arow value into an IDENTITY column without specifying a value for the
IDENTITY column, PointBase will continue to generate incremental values based on the
highest value assigned for the column—even if the highest value was deleted. (See
“insert_column_list” on page 176.)

User-defined Values

You can also opt to specify the values yourself. If you are creating or adding the IDENTITY
column and specifying its values, you must specify the value of the first row, and you must
specify the incremental value, which affects the rest of the rows in the table. (See
“identity_property” on page 123.) If you areinserting arow valueinto an IDENTITY column,
you must specify only the column value. PointBase will continue to generate incremental
values based on the highest value assigned for the column—even if the highest value was
deleted. (See“insert_column_list” on page 176.) Please note that PointBase recommends that
you allow PointBase to generate the IDENTITY column values when inserting new rows.

PointBase Developer 44

Version 4.8

PointBase

Deleting Rows

Additionally, PointBase supports deleting rows from an IDENTITY column. However, once
you delete arow value from an IDENTITY column, PointBase will not generate that value
again; PointBase generates only unique values. PointBase will generate incremental values
based on the highest row value assigned for the column—even if the highest value was
deleted.

PointBase Developer 45

Connection Pools

This chapter describes the Connection Pool feature implemented by PointBase. Basically a
Connection Pool isafeature to maintain apool of connectionsto the database and to reduce the
need for creating new connection. The maintained pool of connections can be used and reused
by an application. It is useful when applications frequently ask for a new connection and close
it after a short usage. In PointBase the pool is maintained on the server side.

The connection poal is transparent to the user. The only requirement from the user is to use
com.pointhase.j dbc.jdbcPool edDatasource to get connection.

com.pointbase.jdbc.jdbcPooledDatasour ce

com.pointbase.jdbc.j dbcPool edDatasource implements the following interfaces:

javax.sql.DataSource
javax.naming.Referenceable
javaio.Serializable

Datasour ce Properties
A datasource object has properties to identify and describe the database that it represents.

com.pointbase.jdbc.jdbcPool edDatasource has the following properties to describe the
database. Each property has a setter and getter method

Version 4.8 PointBase Developer 46

PointBase

Property
Name Type | Description Methods Default
databaseName | String | The name of the getDatabaseName() NULL
database setDatabaseName(String)
dblni String | A list of ini parameters | getDblni() NULL
for the database. Each setDblni(String)
parameter is separated
by a’;". E.g.Thestring
"database.home=c:\\poin
tbase;cache.size=4001"
sets database.home and
cache.sizeini
parameters. It is not
recommended to use
create=force parameter.
description String | A description of this getDescrition() NULL
datasource setDescrption(String)
user String | The user id for the getUser “PBPUBLIC”
database setUser(String)
password String | The user's database getPassword() “PBPUBLIC”
password setPassword(String)
portNumber int The port number where | getPortNumner() 9092
aserverislistening for | setPortNumber(int)
requests. Required for
Server Option only
serverName String | The machine name getServerName() NULL
where the database setServerName(String)
server isrunning. It can
be "localhost" for the
local computer.
Required for Server
Option only.

Connection Pool Size

Ini parameter conpool .size=<postive number> specifies the number of connectionsto kept in
the connection pool. The default is 10. This number specifies the number of connections that
has to be kept in the pool for reuse. If the sizeis set to n, then first n connections are kept in the
pool. However, thereis no set limit for the number of database connections. When the database
is opened, the system does not rush to create connections to fill the connection pool. A
connection is created as and when requested.

Version 4.8 PointBase Developer 47

Version 4.8

PointBase

Thereisno direct call to create or close the Connection Pool. When the first connection
through the Database object is requested, the Connection Pool is automatically created. The
connection pool is closed when any of the following occurs:

*SHUTDOWN SQL statement is executed
*The application that embeds PointBase exits the jvm
«In PointBase Server Option, the server is closed

PointBase Embedded or Server Option

If you're using Server Option, you must set the port number and the server name.

If server name are set, then Pointbase will expect to find pbclient jar filein the classpath. If itis
not set, then PointBase will expect to find the pbembedded jar file in the classpath.

If pbclient jar fileisfound it will be used to load the driver class and look for PointBase Server.
If pbembedded jar fileisfound, the driver will be loaded from there and the calling application
will embed the database.

Other Methods

In addition to the methods to set and get the properties specified in the above table, the
following methods are supported.

Connecti on get Connection() throws SQ.Exception
Connecti on get Connection(String user, String password) throws SQLException

The above methods get Connection to the database specified in the datasource. In fact what is
returned is awrapper to the Connection. When close() isinvoked on this wrapper, any open
result set or statements are closed and returned to the pool. The physical connectionis not
closed. If the user and password specified in the call overrides the user and password provided
in the datasource.

One has to be cautious while setting ‘create=force' through dblni property. The first
getConnection() creates a new database by deleting any existing database in that name.
Subsequent, getConnection() calls throws SQL Exception.

int getlLoginTineout throws SQLException
voi d set Logi nTi meout (int seconds) throws SQLException

The above methods set and get the login timeout. However, login timeout is not enforced by
the database.

PrintWiter getLogWiter() throws SQLException
Void setLogWiter(PrintWiter out)

The above methods get and set the 10 stream for trace messages. However, as of the current
release the datasource does not write any messages

PointBase Developer 48

JNDI

Version 4.8

PointBase

Creating a Datasour ce Obj ect

The following code snippet shows how to created a datasource object for the connection
pooaling.

j dbcPool edDat asource pds = new jdbcPool edDat asource();
pds. set Dat abaseNane("denn");

pds. set Descri pti on("datasource for denp database");
pds. set User (" PBPUBLI C") ;

pds. set Passwor d(" PBPUBLI C") ;

Connecti on conn = pds. get Connection();
/] perform any operation on the connection

conn.close();// returns the connection to the connection pool

Itispossibleto register the Datasource object with aJNDI naming service. The naming service
may be INDI File System or LDAP or some other naming service that supports JINDI.

Registering Datasour ce with JNDI

File System Service Provider Example

The following method is a sample which demonstrates registering a datasource with JNDI.
/**

* Method to save the jdbcPool edDat asource object via JNDI

* This method uses the File System Service Provider for the Java Nam ng and
* Directory InterfaceTM (JNDI) from Sun M crosystens, available for

* downl oad from Sun M crosystens. You nust have the JARs fscontext.jar and
* providerutil.jar in the classpath.

**/

public static void saveDat aSource(j dbcPool edDat aSour ce pds) {

Properties props = new Properties();
Cont ext ctx=null;

//create the directory if it doesn't exist

File f = new File("c:\\jndi");

if (! f.exists()) { f.nkdir(); }

props. put (Cont ext. | NI TI AL_CONTEXT_FACTCRY,
"com sun. j ndi . f scont ext . Ref FSCont ext Fact ory");

try {
ctx = new I nitial Context(props);
//the bind method will create a file called .bindings in c:\jndi
//to store values of object pds identified as jndiex
ctx. bind("c:\\jndi\\jndiex", pds);
ctx.close();

}

cat ch(NaneAl readyBoundExcepti on nabe) {
try {
ctx.rebind("c:\\jndi\\jndiex", pds);
ctx.close();
catch(Exception e)

e.printStackTrace();

} _

catch(Exception e) {
e.printStackTrace();

}
}/ 1 saveDat aSour ce

PointBase Developer 49

Version 4.8

PointBase

The datasource object is created and its properties are set as shown above. The bind method
registers the datasource with the logical name "jndiex".

Readers are referred to the INDI File System manual for further information.

LDAP example

/1 set all needed environnent variables to access the LDAP
Hasht abl e env = new Hashtabl e();
env. put (Cont ext. | NI TI AL_CONTEXT_FACTORY, "com sun. j ndi . | dap. LdapCt xFact ory)

env. put (Cont ext. PROVI DER_URL, "I dap://JUPI TER 389");
/1 set security information, if any

/'l create the context and register

Context ctx = new Intial Context(env);

ct x. bi nd("j ndi ex", pds);

In the above bind statement "jndiex" is the logical name for the datasource. Readers are
referred to the LDAP manual for further information on LDAP usage.

Retrieving from JNDI

If the datasource object is registered with a JINDI naming service, to retrieve the object one
needs to set up the context and use the logical name of the datasource.

File System Service Provider Example

The following sample method shows how to retrieve the datasource object form the INDI File
System.

/**
* Method to retrieve a jdbcPool edDat asource object via JNDI
* This method uses the File System Service Provider for the Java Nam ng and
* Directory InterfaceTM (JNDI) from Sun M crosystens, available for
* downl oad from Sun M crosystens. You nmust have the JARs fscontext.jar and
* providerutil.jar in the classpath.
* %
/

publ i c j dbcPool edDat aSour ce get Dat aSource() {

Properties props = new Properties();
Cont ext ctx;
j dbcPool edDat aSour ce pds = new j dbcPool edDat aSour ce();
try {
props. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"com sun. j ndi . f scont ext . Ref FSCont ext Fact ory");

ctx = new I nitial Context(props);

//the I ookup method will look in c:\jndi for file .bindings
//and will return an object with the values for jndiex,
//which can be cast as a jdbcPool edDat aSour ce obj ect

pds = (j dbcPool edDat aSource)ctx. |l ookup("c:\\jndi\\jndiex");

ctx.close();

Yitry

catch(Exception e) {
e.printStackTrace();

}
finally {
return pds;

}
}/ 1/ get Dat aSour ce

The lookup method returns the datasource object.

PointBase Developer 50

Version 4.8

PointBase

LDAP example
The following code shows how to retrieve the datasource object from LDAP.

/1 set all needed environment variables to access the LDAP
Hasht abl e env = new Hasht abl e();
env. put (Cont ext . | NI TI AL_CONTEXT_FACTORY,
"com sun. j ndi .| dap. LdapCt xFact ory) ;
env. put (Cont ext . PROVI DER_URL, "I dap://JUPI TER 389");
/'l set security information, if any
/'l create the context and retrieve datasource object
[/ use the | ogical name used in the bind nmethod
/] cast the retrieved object to com pointbase.jdbc.jdbcPool edDat asour ce
Context ctx = new Intial Context(env);
Dat asource pds = (Datasource)ctx.| ookup("jndiex");

The lookup method returns the datasource object.

PointBase Developer 51

SQL Data Types

This chapter describes all of the SQL data types that PointBase supports. Data types define
what type of data a column can contain. The following sections describe each PointBase data
typein detail and discuss converting data types. Tables are provided at the end of the chapter to
show the mappings between PointBase data types and industry standard and other common
non-standard data types.

PointBase supports the following data types for its column and parameter declarations.

e CHARACTER [(length)] or CHAR [(length)]
*« VARCHAR (length)

« BOOLEAN

e SMALLINT

* INTEGER Or INT
* BIGINT

« DECIMAL [(p[,s])] or DEC [(p[,s])]
« NUMERIC [(p[,9])]

- REAL
« FLOAT(p)

« DOUBLE PRECISION
. DATE

. TIME

« TIMESTAMP

. CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR LARGE
OBJECT [(length)]

« LONGVARCHAR](length)]

« BLOB [(length)] or BINARY LARGE OBJECT [(length)]

« BINARY[(length)]

« VARBINARY(length)]

« LONGVARBINARY/[(length)]

Version 4.8 PointBase Developer 52

PointBase

CHARACTER [(length)] or CHAR [(length)]

The CHARACTER data type accepts character strings, including Unicode, of afixed length.
Thelength of the character string should be specified in the data type declaration; for example,
CHARACTER(n) where n represents the desired length of the character string. If no lengthis
specified during the declaration, the default length is 1.

The minimum length of the CHARACTER datatypeis 1 and it can have a maximum length up
to the table page size. Character strings that are larger than the page size of the table can be
stored as a Character Large Object (CLOB).

NOTE: CHARACTER(O) is not allowed and raises an exception.

If you assign avalue to a CHARACTER column containing fewer characters than the defined
length, the remaining space is filled with blanks characters. Any comparisons madeto a
CHARACTER column must take these trailing spaces into account.

Attempting to assign a value containing more characters than the defined length resultsin the
truncation of the character string to the defined length. If any of the truncated characters are
not blank, an error israised.

Character String Examples:
CHAR(10) or CHARACTER(10)

 Vaid
"Race car’

" RACECAR

' 24865
'1998-10- 25
’1998-10- 25

* |nvaid

24865
1998-10- 25
Date: 1998-10-25

VARCHAR (length)

Version 4.8

The VARCHAR data type accepts character strings, including Unicode, of avariablelengthis
up to the maximum length specified in the data type declaration.

A VARCHAR declaration must include a positive integer in parentheses to define the
maximum allowable character string length. For example, VARCHAR(n) can accept any
length of character string up to n charactersin length. The length parameter may take any value
from 1, to the current table page size minus 42 bytes. For example, the maximum length
parameter for a page size of 4k (4096) would be 4096 minus 42 bytes, equaling 4054 bytes.
Attempting to assign a value containing more characters than the defined maximum length
resultsin the truncation of the character string to the defined length. If any of the truncated
characters are not blank, an error israised.

PointBase Developer 53

PointBase

NOTE: VARCHAR(O) is not alowed and raises an exception.

If you need to store character strings that are longer than the current table page size, the
Character Large Object (CLOB) data type should be used.

Examples
VARCHAR(10)

+ Vaid

" Race car’

" RACECAR

' 24865
’1998-10- 25
'1998-10- 25

 Invalid

24865
1998- 10- 25
Date: 1998-10-25

BOOLEAN

The BOOLEAN data type accepts asingle value that can be TRUE or FALSE. No parameters
are required when declaring aBOOLEAN data type.

Use the case insensitive keywords TRUE or FAL SE to assign avalue to aBOOLEAN data
type. Comparisons using the BOOLEAN data type should also use these keywords. If you
attempt to assign any other value to aBOOLEAN data type, an error is raised.

Examples

BOOLEAN

« Vadid

TRUE

true
True
Fal se

* |nvaid
1
0
Yes
No

Version 4.8 PointBase Developer 54

SMALLINT

PointBase

The SMALLINT data type accepts a 16 bit signed integer value with an implied scale of zero.
It stores any integer value between the range 2" -15 and 215 -1. Attempting to assign values
outside this range causes an error.

If you assign a numeric value with a precision and scale to a SMALLINT datatype, the scale
portion truncates, without rounding.

NOTE: To store values beyond the range (2*-15) to (2°15)-1, use the INTEGER data type.

Examples
SMALLINT
e Vdlid
-32768
0
-30.3 (digits to the right of the decinmal point are trun-
cat ed)
32767
* Invaid
- 33, 000, 567
-32769
32768

1, 897, 536, 000

INTEGER or INT

Version 4.8

The INTEGER data type accepts a 64-hit signed integer value with an implied scale of zero. It
stores any integer value between the range 2 -31 and 231 -1. Attempting to assign values
outside this range causes an error.

If you assign a humeric value with a precision and scale to an INTEGER data type, the scale
portion truncates, without rounding.

NOTE: To store integer values beyond the range (2"-31) to (2"31)-1, use the DECIMAL data
type with a scale of zero.

PointBase Developer 55

BIGINT

Version 4.8

PointBase

Examples
INTEGER or INT

+ Vaid

-2147483648
-1025

0

1025.98 (digits to the right of the decinal point are
truncat ed)

2147483647

* |nvaid

-1, 025, 234, 000, 367
- 2147483649
2147483648

1, 025, 234, 000, 367

The BIGINT data type can accept numeric values up to 8 bytes. It can be used in place of the
LONG datatype. It stores any integer value between the range of 9223372036854775807 and
-9223372036857447808. Attempting to assign values outside this range causes an error.

Examples
BIGINT
e Vdid
-3372036857447808
- 857447808
0
23372036854775807
e Invaid
-1, 025, 234, 000, 367
-9999999999999999999
9999999999999999999

1, 025, 234, 000, 367

PointBase Developer 56

PointBase

DECIMAL [(p[.s])] or DEC [(p[.s])]

The DECIMAL data type accepts fixed-precision decimal values, for which you may define a
precision and a scale in the data type declaration. The precision is a positive integer that
indicates the number of digits that the number will contain. The scaleis a positive integer that
indicates the number of these digits that will represent decimal places to the right of the
decimal point. The scale for aDECIMAL cannot be larger than the precision.

DECIMAL datatypes can be declared in one of three different ways.
+ DECIMAL - Precision defaults to 38, Scale defaultsto O

e« DECIMAL(p) — Scale defaultsto 0
 DECIMAL(p, s) — Precision and Scale are defined by the user

In the above examples, p is an integer representing the precision and sis an integer
representing the scale.

NOTE: If you exceed the number of digits expected to the | eft of the decimal point, an error is
thrown. If you exceed the number of expected digits to the right of the decimal point,
the extra digits are truncated.

Examples
DECIMAL(10,3)

* Vdid

1234567

1234567. 123

1234567. 1234 (Final digit is truncated)
- 1234567

-1234567. 123

-1234567.1234 (Final digit is truncated)

* |nvaid

12345678
12345678. 12
12345678. 123
-12345678
-12345678. 12
-12345678. 123

NUMERIC [(p[,9])]

PointBase treats the NUMERI C data type in exactly the same way asthe DECIMAL datatype.

Version 4.8 PointBase Developer 57

REAL

FLOAT (p)

PointBase

The REAL datatype accepts single-precision fl oating point number values, up to a precision of
32. No parameters are required when declaring a REAL datatype. If you attempt to assign a
value with a precision greater than 32 an error is raised.

Examples
REAL

+ Vidlid

- 2345

0

1E-3

1. 245
123456789012345678901234567890

 Invalid
123, 456, 789, 012, 345, 678, 901, 234, 567, 890, 123

The FLOAT datatype accepts a single or double precision floating point number value, for
which you may define a precision up to a maximum of 64. If no precision is specified during
the declaration, the default precision is 32. Attempting to assign avalue larger than the
declared precision will cause an error to be raised.

Examples
FLOAT(8)

+ Vdid
12345678
1.2

123. 45678
- 12345678
-1.2

-123. 45678

* |nvaid

123456789
123. 456789
- 123456789
-123. 456789

DOUBLE PRECISION

Version 4.8

The DOUBLE PRECISION data type accepts a double precision floating point value, upto a
precision of 64. No parameters are required when declaring a DOUBLE PRECISION data
type. If you attempt to assign a value with a precision greater than 64 an error is raised.

PointBase Developer 58

DATE

Version 4.8

PointBase

Examples
DOUBLE PRECISION

e Vdid
123456789012345678901234567890123456789012345678901234567890

-123456789012345678901234567890123456789012345678901234567890

* |nvaid
123, 456, 789, 012, 345, 678, 901, 234, 567, 890, 123, 123, 456, 789,

012, 345, 678, 901, 234, 567, 890
-123, 456, 789, 012, 345, 678, 901, 234, 567, 890, 123, 123, 456, 789,
012, 345, 678, 901, 234, 567, 890

The DATE data type accepts date val ues, consisting of year, month, and day. No parametersare
required when declaring a DATE data type. Date values should be specified in the form:
YYYY-MM-DD. However, PointBase will also accept single digits entries for month and day
values.

Month values must be between 1 and 12, day values should be between 1 and 31 depending on
the month and year values should be between 0 and 9999.

Values assigned to the DATE data type should be enclosed in single quotes. The case
insensitive keyword, DATE, may or may not precede the value, for example: DATE ‘ 1999-04-
04’ or ‘1999-04-04." Note that, PointBase does not determine the SQL type of the Literal
(keyword + String value) by parsing the String value and checking for DATE patterns. That is,
PointBase determines the SQL type from the operation. For example:

CREATE TABLE T1(Cl VARCHAR(20));

CREATE TABLE T2(Cl DATE);
I NSERT | NTO T2 SELECT C1 FROM T1

PointBase automatically converts the value from “T1.C1" to the DATE type and inserts it into
thetable “T2,” because the column into which it isinserting accepts only DATE types.

Examples
DATE

 Vaid

DATE ‘ 1999-01-01’
DATE * 2000- 2- 2’
date ‘0-1-1’
©1999-01-01’
©2000- 2-2’

‘0-1-1’

PointBase Developer 59

TIME

TIMESTAMP

Version 4.8

PointBase

 Invalid

DATE * 1999-13-1’
date 2000-2-27
date ‘2000-2-50

The TIME data type accepts time values, consisting of hours, minutes, and seconds. No
parameters are required when declaring a TIME data type. Date values should be specified in
the form: HH:MM:SS. An optional fractional value can be used to represent nanoseconds.

The minutes and seconds values must be two digits. Hour values should be between zero 0 and
23, minute values should be between 00 and 59 and second values should be between 00 and
61.999999.

Values assigned to the TIME data type should be enclosed in single quotes. The case
insensitive keyword, TIME, may or may not precede the value, for example: TIME ‘00:00:00°
or ‘00:00:00.” Notethat, PointBase does not determine the SQL type of the Literal (keyword +
String value) by parsing the String value and checking for TIME patterns. That is, PointBase
determines the SQL type from the operation. For example:

CREATE TABLE T1(Cl VARCHAR(20));

CREATE TABLE T2(Cl TIME);
I NSERT | NTO T2 SELECT Cl1 FROM T1

PointBase automatically converts the value from “T1.C1” to the TIME type and insertsit into
thetable “T2,” because the column into which it isinserting accepts only TIME types.

Examples
TIME

 Valid

TI ME * 00: 00: 00’
TIME * 1: 00: OO’
TIME * 23:59: 59’
time ‘23:59:59.99
*00: 00: 00’

‘1:00: 00

$23:59: 59
©23:59:59. 99’

TI ME * 00: 3: 00’

 Invalid

TI MVE * 00: 62: 00’
TIMVE *23: 01’

The TIMESTAMP data type accepts timestamp values, which are acombination of a DATE
value and a TIME value. No parameters are required when declaring a TIMESTAMP data
type. Timestamp values should be specified in theform: YYYY-MM-DD HH:MM:SS. There
is a space separator between the date and time portions of the timestamp.

PointBase Developer 60

PointBase

All specifications and restrictions noted for the DATE and TIME data types a so apply to the
TIMESTAMP data type.

Values assigned to the TIMESTAMP data type should be enclosed in single quotes. The case
insensitive keyword, TIMESTAMP, may or may not precede the value, for example:
TIMESTAMP 1999-04-04 07:30:00 or ‘1999-04-04 07:30:00." Note that, PointBase does not
determine the SQL type of the Literal (keyword + String value) by parsing the String value and
checking for TIMESTAMP patterns. That is, PointBase determines the SQL type from the
operation. For example:

CREATE TABLE T1(Cl VARCHAR(20));

CREATE TABLE T2(Cl TI MESTAWP);
I NSERT I NTO T2 SELECT C1 FROM T1

PointBase automatically convertsthevaluefrom “T1.C1” to the TIMESTAMP type and inserts
itintothetable “T2,” because the columninto which it isinserting accepts only TIMESTAMP
datatypes.

Examples
TIMESTAMP

+ Vidlid

TI MESTAWP ‘ 1999-12-31 23:59: 59. 99’
TI MESTAWP ‘ 0-01-01 00: 00: 00’
©1999-12-31 23:59: 59. 99’

‘0-01-01 00: 00: 00’

* |nvaid

1999- 00- 00 00: 00: 00
TI MESTAWP ‘ 1999-01-01 00: 64: 00’

CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR
LARGE OBJECT [(length)] LONGVARCHAR[(length)]

Version 4.8

The Character Large Object (CLOB) data type accepts character strings longer than those that
aredlowed in the CHARACTER [(length)] or VARCHAR (length) data types. The CLOB
declaration uses the following syntax to specify the length of the CLOB in bytes:

n[K| M| G

In the above syntax, n is an unsigned integer that represents the length. K, M, and G
correspond to Kilobytes, Megabytes or Gigabytes, respectively. If K, M, or G is specified in
addition to n, then the actual length of n isthe following:

e K=n*1024

e M=n* 1,048,576

e G=n*1,073,741,824

The maximum size allowed for CLOB datatypesis 2 gigabytes. If alength is not specified,
then adefault length of 2 gigabytesis used. CLOB values can vary in length from one byte up
to the specified length.

PointBase Developer 61

PointBase

NOTE: The CLOB data type supports Unicode data.

BLOB [(length)] or BINARY LARGE OBJECT [(length)] LONGVARBIN-
NARY [(length)] BINARY[(length)] VARBINARY[(length)]

The Binary Large Object (BLOB) data type accepts binary values. The BLOB declaration uses
the following syntax to specify the length in bytes:

n[K| M| G

In the above syntax, nis an unsigned integer that represents the length. K, M, and G
correspond to Kilobytes, Megabytes or Gigabytes, respectively. If K, M, or G is specified in
addition to n, then the actual length of nisthe following:

e K=n*1024

e M=n* 1,048,576

e G=n*1,073,741,824

The maximum size allowed for BLOB datatypesis 2 gigabytes. If alength is not specified,
then a default length of 2 gigabytesisused if the type was BLOB or LONGVARBINARY. If
the type was BINARY or VARBINARY, then a default length of one byte is used. BLOB
values can vary in length from one byte up to the specified length.

NOTE: BLOB data types cannot be used with SQL scalar functions.

Data Conversions and Assignments

The PointBase database allows two types of data conversions - implicit and explicit. An
implicit data conversion is automatically performed between data types that are in the same
datatype family. Table 1 describes the data type families supported by PointBase. Implicit data
conversions are performed as needed and are transparent to the user.

PointBase handles explicit data conversion using the SQL Scalar CAST function. This
function converts avalue from one PointBase data type to another in the same data type family.

Table 1: Data Type Families and Data Types

Data Type Family Data Types
Character String CHARACTER, VARCHAR, CLOB, LONGVARCHAR
Boolean BOOLEAN
Binary String BLOB, BINARY, VARBINARY, LONGVARBINARY
Date Time DATE, TIME, TIMESTAMP
Version 4.8 PointBase Developer 62

PointBase

Table 1: Data Type Families and Data Types

Data Type Family

Data Types

Number

SMALLINT, INTEGER, DECIMAL, NUMERIC, REAL, FLOAT, DOUBLE

Version 4.8

Table 2: Mapping Standard Data Types to PointBase SQL Data Types

JDBC Data Types

Java Data Types

PointBase SQL Data Types

BIT boolean boolean
TINYINT byte smallint
SMALLINT short smallint
INTEGER int integer

BIGINT long numeric/decimal

NUMERIC

FLOAT double float
REAL float real
DOUBLE double double

javamath.BigDecimal

numeric

DECIMAL

java.math.BigDecimal

decimal

CHAR String char
VARCHAR String varchar
LONGVARCHAR String longvarchar

DATE java.sgl.Date date
TIME java.sgl.Time time
TIMESTAMP javasgl. Timestamp timestamp

BINARY byte(] binary
VARBINARY byte[] varbinary
LONGVARBINARY | byte[] longvarbinary

PointBase Developer

63

PointBase

Table 2: Mapping Standard Data Types to PointBase SQL Data Types

JDBC Data Types |Java Data Types PointBase SQL Data Types

BLOB Blob blob

CLOB Clob clob

Version 4.8 PointBase Developer 64

PointBase

PointBase al so supports other non-SQL standard data types. Table 3 describes the mapping of
non-SQL standard data types from other database vendors to PointBase data types.

Table 3: Mapping Non-standard Data Types to PointBase SQL Data Types

Oracle
Data Types

Sybase and Microsoft
Data Types

DB2
Data Types

PointBase
Data Types

NUMBER

Version 4.8

Bl NARY

VARBI NARY

I MAGE

DECI MAL

SMALLI NT

VARCHAR

LONGVARCHAR

CLOB

CLCB

VARBI NARY(2000)

LONGVARBI NARY

Bl NARY

VARBI NARY

LONGVARBI NARY

CHAR f or Bl NARY

BI T DATA

VAR CHAR VARBI NARY
for BIT

DATA

PointBase Developer

65

SQL Scalar and Aggregate
Functions

This chapter describes the SQL Scalar Functions supported in PointBase. PointBase provides
these ready to use functions to perform in-statement operations when querying or inserting
datainto the database. For example, you can use the CAST function to convert data types to
other datatypes or use a numeric function to perform calculations. The following sections
describe the behavior of these functions and examples of how to use them.

NOTE: Unless specified otherwise, when applying any of the following functionsto a column
containing NULLS, the NULL rows are not counted or used and the following warning
isgiven:

java.sgl.SQLWar ning: Warning--null value eliminated in set function

To eliminate this warning and ignore the NUL L s in aggregate functions, you can use the
DISTINCT keyword in front of the column reference, for example:

sel ect (count (DI STINCT product_code)) from product _tbl

SQL Scalar Numeric Functions

Version 4.8

The Scalar Numeric Function operates on numeric values (i.e. INTEGER, SMALLINT,
DECIMAL, FLOAT, DOUBLE and NUMERIC data types). The PointBase database supports
the following standard Numeric Functions:

e Multiplication

* Division
* Addition
e Subtraction

e ABY() - absolute value
e MOD() - remainder

The numeric functions are evaluated in the following order. Numeric Functions within
parentheses are evaluated from the innermost set of parentheses, following the same rules of
precedence:

PointBase Developer 66

PointBase

1. Multiplication (*) and division (/) from left to right
2. Addition (+) and subtraction (-) from left to right

Numeric Functions are calculated as floating point numbers with a precision of 17 significant
digits (and arounding error). However, if you use these functions when inserting or updating
datathe accuracy is dependent up on the data type of the column for which the datais intended.

Examples

243 * 4/ 2 =38
2+(3*4)/ 2=28

2+3/ 2=3.5

100/3 = + 3/ 2 = 33.333333333333333
ABS(-123)=123

MOD(100,3)=1

SQL Scalar Character Sring Functions

Scalar Character String Functions operate on character strings. These functions all return either
character strings or numeric values. PointBase currently supports the following functions.

CONCATENATION

The concatenation operator (||) joins the values of two or more character strings into asingle
string. You may use the concatenated string expression anywhere you would use a character
string and there is no limit to the number of string expressions you can concatenate. The
following isthe CONCATENATION Function syntax:

string_value || string_value [{|| string_value}...]
Examples:
"$ |1 || 150" ----> "$150°
SELECT order_num sales_tax_st_cd, 'Shipping Cost', '$ || shipping_cost FROM order_tbl

WHERE shi ppi ng_cost > 300 AND UPPER(sal es_tax_st_cd) NOT LIKE '%L" ORDER BY order_num

ASC,

Version 4.8

PointBase Developer 67

PointBase

SUBSTRING

The SUBSTRING Function extracts a specified portion of the character string on whichitis
operating. The following isthe SUBSTRING Function syntax:

SUBSTRI NG (string_value FROM start [FOR | ength])

Version 4.8 PointBase Developer 68

PointBase

In the previous syntax, the start variable is an integer that represents the starting position for
the sub string. The first character in a string is considered to be position 1. The length variable
isoptional and indicates the length of the sub string; if it is missing, the SUBSTRING Function
returns the characters from the start position to the end of the character string.

Examples
SUBSTRI N’ George Valentie’ FROM 3) ----> 'orge Valentine’
SUBSTRI N&(' Ceorge Valentie’ FROM 3 FOR 2) ----> 'or’

CHARACTER_LENGTH

The CHARACTER _LENGTH function returns the length of a character string as the numeric
datatype. There are two syntax variations for the CHARACTER_LENGTH function:

1. CHARACTER _LENGTH (string_value)
2. CHAR_LENGTH (string_value).

Examples

CHAR _LENGTH(' George Valentine') ----> 16
CHARACTER_LENGTH(’ $150") ----> 4

POSITION

The POSITION function searches for a specified string pattern in another string. If the pattern
isfound, avalueis returned that indicates the beginning position of the location of the pattern.
If the pattern is not found, then avalue of zero isreturned. If the pattern is a string length of
zero (0, aNULL string), then avalue of oneisreturned. All returned values are of the numeric
datatype. The following illustrates the syntax for the POSITION Function:

POSI TION (string_pattern IN string_val ue)

Examples
POSI TI ON(* Val entine’” IN ‘CGeorge Valentine') ----> 8
POSITION(*’ IN ‘CGeorge Valentine’) ---->1

TRIM

The TRIM function allows you to strip trailing and/or leading characters from a character
string. The following illustrates the syntax for the TRIM Function:

TRIM (LEADING | TRAILING | BOTH 'character' FROM string_val ue)

Version 4.8 PointBase Developer 69

PointBase

Although it is common only to strip ablank characters(’ ') from the start and ends of character
strings, using the TRIM function you can strip any character. The character variable, enclosed
in single quotes, represents the character that is to be stripped from the character string. The
keywordsLEADING, TRAILING, and BOTH indicate whether you strip the character variable
from the front of the character string, at the end of the character string, or both.

Examples

TRIM (LEADING * * FROM*‘ George Valentine ‘)
----> '"George Valentine '

TRIM (TRAILING * * FROM* Ceorge Valentine ‘)
---->"' Ceorge Valentine *

TRIM (BOTH * * FROM ‘ George Valentine ‘)
----> ‘Ceorge Val entine’

TRIM (LEADI NG *$ FROM ‘ $150’)
--> 150

UPPER and LOWER

The UPPER function returns the value specified in the character string entirely in upper case
letters, regardless of the initial capitalization of the character string. The LOWER Function
returns the value specified in the character string entirely in lower case letters, regardless of the
initial capitalization of the character string variable. The following syntax is used for the Case
Functions:

UPPER(st ri ng_val ue)
LOVER(st ring_val ue)

Examples
LOVNER(’' George Valentine') ----> 'george val entine’
UPPER(’ George Valentine') ---->"GEORCE VALENTI NE

SQL Scalar Date/Time Functions

The SQL Scalar Date Time Functions operate on date/time values and return of date/time
values. PointBase supports the following Date/Time Functions.

CURRENT_DATE

The CURRENT_DATE Function returns the current system date from the machine that is
hosting the PointBase database as a DATE datatype. You may use the CURRENT_DATE
Function anywhere you specify a DATE value.

Version 4.8 PointBase Developer 70

PointBase

Example

UPDATE order _tbl SET shi ppi ng_date = CURRENT_DATE

If the current date is April 4, 1998, the CURRENT_DATE Function returns: 1998-04-04.

CURRENT_TIME
The CURRENT _TIME Function returns the current system time from the machine that is

hosting the PointBase database as a TIME data type. You may use the CURRENT_TIME
Function anywhere you specify atime value.

Example

if the current time is exactly 9:00 AM, the CURRENT _TIME Function returns; 09:00:00.

CURRENT_TIMESTAMP

The CURRENT_TIMESTAMP Function returns the current system date and time from the
machine that is hosting the PointBase database as a TIMESTAMP data type. You may use the
CURRENT_TIMESTAMP Function anywhere you specify a timestamp value.

Example

UPDATE order _thl SET delivery dateti nme = CURRENT_DATE

If the current date and time is 9:00 AM on April 4, 1998, the CURRENT_TIMESTAMP
Function returns; 1998-04-04 09:00:00.

EXTRACT

The EXTRACT Function returns a portion of a DATE, TIME, or TIMESTAMP value. It
extracts the year, month, or day from a DATE value; an hour, minute, or second froma TIME
value; or any of theseintervals from a TIMESTAMP value. The EXTRACT Function always
returns a numeric data type. The following syntax is for the EXTRACT Function.

EXTRACT (extract_field FROM dateti nme_val ue)

Use one of the keywords YEAR, MONTH, DAY, HOUR, MINUTE, or SECOND in place of
the extract_field. Format the datetime_value inside the single quotes appropriately, according
to the value the extract_field seeks.

Version 4.8 PointBase Developer 71

PointBase

Examples
EXTRACT(YEAR FROM DATE ' 1998-04-01") ----> 1998
EXTRACT(MONTH FROM DATE ' 1998-04-01") ----> 4
EXTRACT(DAY FROM TI MESTAMP ' 1998-04-01 09:00: 00") ---->1

EXTRACT(HOUR FROM Tl MESTAMP ' 1998- 04-01 09:00:00") ----
EXTRACT(M NUTE FROM TI ME ' 09: 00: 00")
EXTRACT(SECOND FROM TI ME ’ 09: 00: 00")

---->0
---=->0

SQL Scalar CAST Function

The SQL Scalar CAST Function explicitly converts a value from one PointBase data type to
another. To perform an explicit data conversion, use the following syntax for the SQL Scalar
CAST Function.

CAST (val ue AS dat atype)

Table 1 lists the data types that can be CAST into other datatypes. If thereisa inthe
intersection of two data types, the CAST Function can perform an explicit conversion from the
datatypein the vertical axisto the data type on the horizontal axis.

Table 1: Converting Data Types With the CAST Function

CcC |vC|B |I SS |DEC (N |R |F |DB |D |T |TS |BB |CB
CHARACTER (C) Y |Y Y |Y Y |Y Y |[Y |Y |Y Y |Y |Y N |Y
VARCHAR (VC) Y |Y Y |Y Y |Y Y |[Y |Y |Y Y |Y |Y N |Y
BOOLEAN (B) Y |Y Y |N N N N [N [N [N N [N | N N N
INTEGER (1) Y |Y N | Y Y |Y Y |[Y |Y |Y N [N | N N N
SMALLINT (SlI) Y |Y N | Y Y |Y Y |Y |Y |Y N [N | N N N
DECIMAL (DEC) Y |Y N | Y Y |Y Y |[Y |Y |Y N [N | N N N
NUMERIC (N) Y |Y N | Y Y |Y Y |Y |Y |Y N [N | N N N
REAL (R) Y |Y N | Y Y |Y Y Y |Y |Y N [N | N N N
FLOAT (F) Y |Y N | Y Y |Y Y |Y |Y |Y N [N | N N N
DOUBLE (DB) Y |Y N | Y Y |Y Y |[Y |Y |Y N [N | N N N
DATE (D) Y |Y N | N N N N [N [N [N Y [N |Y N N
TIME (T) Y |Y N | N N N N [N [N |N N |[Y |Y N N
TIMESTAMP(TS) |Y |Y N | N N N N [N [N |N Y |Y |Y N N
BLOB (BB) N | N N | N N N N [N [N [N N [N | N Y N
CLOB (CB) Y |Y N | N N N N [N [N [N N [N | N N |Y
Version 4.8 PointBase Developer 72

PointBase

NOTE: A VARCHAR(10) cast to CHAR(5) will be truncated at the 5th character. The system
will display awarning if the truncated characters are nonwhite spaces.

The CAST function throws an exception if the data is not convertible, for example:
CAST('d ASINT) -------- > Exception

SQL Scalar Routine Invocation

Using SQL Scalar Routine Invocation, you can call a pre-defined SQL Routine that returns a
scalar value. The Routine Invocation can be used anywhere you use a scalar expression. The
following syntax is for the Routine Invocation Function. For more information about creating
SQL routines (functions and procedures) refer to “Appendix A: SQL Reference.”

routine_name([SQL_argunent _list])

Routine_name is the name of the routine (SQL Function or Procedure). SQL_argument_list
consists of expressions separated by commas. Each expression will result in a SQL data type
dependent on the routine called.

NOTE: If you use a Routine Invocation Function as a scalar expression, it must only return a
single value, otherwise an error is raised.

Routine Deter mination

Routine determination isthe process that determines the routine to invoke, based on theroutine
name, SQL argument list, and the current path of schemas. The routine name and SQL
arguments make up the signature of the routine. It is possible that more than one routine could
have the same signature. If more than one possible routine has the same signature, then
PointBase uses a precedence list to match each argument of each routine, to determine which
oneisthe best match.

Examples

Dat eConvert (’ 01- 02- 1993’)

SQL Aggregate Functions

SQL Aggregate Functions operate on compl ete sets of data and return a single result.
PointBase supports five Aggregate Functions: AVG, COUNT, MAX, MIN, and SUM.

Version 4.8 PointBase Developer 73

PointBase

AVG

The AVG Function returns the average value for the column when applied to a column
containing numeric data. The following is the syntax for the AVG Function.

AVG (col unm_nane)

Example

SELECT AVGE conmi ssion_rate) FROM sal es_rep_tbl

COUNT

The COUNT Function returns the number of rows in a specified result set. The following
syntax is one form of the COUNT Function:

COUNT(*)

Example

SELECT COUNT(*) FROM sal es_rep_thl

The second form of the COUNT Function returns the number of rows in aresult set where the
specified column has a distinct, non-NULL value. The following syntax is the second form of
the COUNT Function.

COUNT(DI STI NCT col utm_nane)

MAX

The MAX Function returns the dataitem with the highest value for a column when applied to a
column contai ning numeric data. If you apply the MAX Function to a CHARACTER value, it
returnsthe last valuein the sorted values for that column. The following syntax isfor the MAX
Function.

MAX(col umm_nane)

Example

SELECT MAX(conmi ssion_rate) FROM sal es_rep_tbl

MIN

The MIN Function returns the data item with the lowest value for a column when applied to a
column containing numeric data. If you apply the MIN Function to a CHARACTER value, it
returns thefirst value in the sorted values for that column. The following syntax is for the MIN
Function.

M N(col um_nane)

Version 4.8 PointBase Developer 74

PointBase

Example

SELECT M N(conmi ssion_rate) FROM sal es_rep_tbl

SUM

The SUM Function returns the sum of all valuesin the specified column. The result of the
SUM Function has the same precision as the column on which it is operating. The following
syntax is for the SUM Function.

SUM col utm_nane)

Example

SELECT SUM ytd_sal es) FROM sal es_rep_t bl

SQL Special Registers

PointBase Embedded supports the following list as special registers. These can be used
anywhere a scalar/value expression is allowed.

e CURRENT_USER: isthe current user on the system and is an SQL varchar data type of
maximal length 128.

e CURRENT_SCHEMA: isthe name of the current schemain use and is an SQL varchar
data type of maximal length 128.

e CURRENT_DATABASE: isthe name of the database in use and is an SQL varchar data
type of maximal length 128.

e CURRENT_SESSION: givesthe current session ID.

e CURRENT_PATH: isthelist of schemas in the path of the current user. The return data
typeisan SQL varchar of undetermined length. The length depends upon the number of
schema namesin the path.

Version 4.8 PointBase Developer 75

| ndexes

Version 4.8

| ndexes and Constraints

This chapter gives a brief outline of indexes and constraints in PointBase Embedded. Indexes
and constraints are used to reinforce data integrity and increase database performance. Using
indexes and constraints, you can access information from the database quicker and guarantee
the referential integrity of information. The following sections describe indexes, keys, and
constraints.

Anindex isaset of ordered referencesto rows of atable. It can contain data from one or more
columns of atable. An index improves the performance of dataretrieval by reducing the
number of physical pages that the database must access in order to read arow in the database.
Because indexes store data in order, they aso eliminate the need to create temporary storage
for the ORDER BY clauseif the relevant column isincluded in an index. Every index has a
header, which contains the following information:

e thedepth of the index
e number of leaf pages
* theselectivity factor

PointBase builds and maintains indexes without user intervention and provides current
information to the query optimizer.

NOTE: Whenever you specify a unique constraint, PointBase creates a unique index
automatically.

You can also create and drop an index using the CREATE INDEX and DROP INDEX
statements. For information on the query optimizer refer to “ Optimizing Query Expressions,”
in the PointBase System Guide. For CREATE INDEX and DROP INDEX syntax refer to
“SQL Reference” of this guide.

PointBase Developer 76

Keys

Constraints

Version 4.8

PointBase

In a database, akey consists of one or more columns of atable that have been granted specific
properties. When defining atable or index, you specify the key (primary or foreign). PointBase
supports the following types of keys:

Primary Key

The primary key is used as a master reference for columns defined as foreign keysin other
tables. Foreign keys can only contain values defined in the Primary key to which they refer. A
table can only have one primary key, and the key must contain only unique values without any
NULL values. The table containing the primary key isreferred to as the parent table.

Foreign Key

A foreign key associates val ues contained in one or more columns of atableto primary keys of
other tables. The table containing the foreign key isreferred to as the child table.

The child table references a parent table, which must contain a primary key. Thevaluesin a
foreign key column must match either all the values, or a subset of the valuesin the referenced
Primary Key. A foreign key cannot contain values that are not in the primary key to which it
refers. A column defined as aforeign key can contain NULL values.

Constraints are rules that the database enforces to improve dataintegrity. You can specify all of
the following constraints at either the column level or at the table level in PointBase

Unique Constraint

A unique constraint forces a column to contain only unique values. PointBase allows NULL
values in unique columns, unless you specify NOT NULL when creating or altering atable.
When creating or altering atable, you must define unique constraints. However, you can also
create a unique constraint automatically when you create a primary key. Although atable can
contain any number of unique columns, only one can be the primary key.

NOTE: Whenever you specify aunique constraint, PointBase creates a unique index
automatically.

Referential Constraint

You can use areferential constraint to link foreign key columns with primary key columns.
You can define referential constraints as you create or alter atable.

PointBase Developer 77

Version 4.8

PointBase

Check Constraint

The body of a check constraint is a search condition. You can use a check constraint to make
sure that a value going into a column meets the criteria of the search condition. Similar to the
other constraints, you can define acheck constraint when creating or altering atable. However,
you can also use this constraint when updating a column(s) of atable. The value being inserted
or modified (through an UPDATE) must cause the search condition to evaluate to TRUE, in
order for the data to be inserted or updated.

Deferrable Constraint

Normally constraint checking is performed immediately after arow isinserted, updated or
deleted. In this case, if an operation takes several statementsto completely satisfy a constraint,
this operation may fail with constraint checking.

In SQL99, deferrable constraint is defined to avoid this problem. A user may define a
congtraint as deferrable, so the constraint checking will not be performed until the transaction
commits. If the constraint is defined as deferrable, then it can be set to immediate or deferred in
each transaction using the set constraints statement. If it is set to immediate, constraint
checking is performed immediately after arow is modified. Otherwise, it is checked at the end
of atransaction. The scope of the set constraints statement is for the current transaction only.
See table constraint and set constraints statement for more detail.

When aconstraint is effectively checked, if the constraint is not satisfied, then an integrity
violation exception condition is raised:

If this exception condition is raised as aresult of executing a commit statement, then the
SQLSTATE is not set to integrity violation, but is set to transaction rollback - integrity
violation, and the transaction needs to be rolled back. In this case, Pointbase automatically
rolls back the transaction implicitly.

NOTE: Pointbase supports deferrable check and referential constraints.

PointBase Developer 78

Version 4.8

Index Organized Tables

This chapter gives a brief outline of index organized tables in PointBase Embedded.

The organization of atable refersto the order in which the rows of the table are physically
ordered on disk. In aregular (HEAP) table organization, all rows are stored in no particular
order. Each row has a system generated "row pointer” that identifies the location of the data
for that row. All indexes on the table then contain rows that consist of key valuesfor that index,
followed by the row pointer for the row that contains those values. The row pointer is used to
fetch any non-key values that are needed from the base table.

In an index-organized table, the data for the table is stored directly in the primary key index.
The primary key index contains the primary key values, asin the primary key on aregular
table. But, instead of each row in the primary index being followed by the row pointer, each
row consists of the primary key column values followed by the non-key column values.

Alternate indexes are allowed on index organized tables. Each entry in an alternate index on a
index organized table consists of the alternate index key column values, followed by the
primary key values. The primary key values are used to fetch any non-key values from the
primary key.

Because rows are stored directly in the primary key index, index organized tables provide
faster access for queriesinvolving equality predicates or range predicates on the primary key
columns. For range queries, accesstime is potentially much faster. Thisis because rows with
similar primary key values are stored physically close to each other on disk, i.e. therows are
clustered on the primary key values. Because of this, fewer pages of data need to beread to
fetch al the requested rows, and access times are reduced. In most cases, rows with the same
or similar key valueswill be on the same page(s). If nisthe number of rows that satisfy the key
predicates, then on average, a select from akey sequenced table viathe key valueswill have to
access (n / # of rows/page) pages, instead of n pages.

If no alternate indexes exist, then an index organized table requires | ess storage space then the
corresponding base table + primary key for aregular table. Thisis because the primary key
values do not need to be duplicated, and no storage is required for the row pointer values.
However, if many alternate indexes are needed, then the storage requirements can be greater,
because the primary key values must be duplicated in each alternate index row.

Any change to the table, such asinserting, updating or deleting rows, result in changes to the
primary key index and any alternate indexes.

PointBase Developer 79

Search Conditions and Predicates

s

This chapter describes search conditions and predicatesin PointBase. Search conditions and
predicates help return specific values from the database. To use a search condition, you must
use it with an SQL statement. To use a predicate, you must use it with a search condition. You
can specify certain criteriain a search condition and predicate for an SQL statement to perform
to the database. The following sections describe search conditions and predicates and their
behaviorsin PointBase.

Search Conditions

A search condition specifies a condition of “TRUE”, “FALSE”, or “UNKNOWN” about a
specific row. It iscomprised of predicates associated with thelogical operators: AND, OR, and
NOT. The syntax for a search condition is as follows:

[NOT] {predicate | (search_condition)}
[{AND | OR} [NOT] {predicate | (search_condition)}...]

Search conditions contained within parentheses first reads the values from left to right. The
precedence order for the logical operators are: NOT, AND, and then OR. If more than one
operator of the same precedence is used in a search condition, the optimizer will determine
which one to execute before the other. If a search condition does not comprise any logical
operators, then the result is the result of the predicate specified.

Simple search conditions

A search condition—in its simplest form—is alogical test that can be applied to each row. It
takes the format of two value expressions and an operator and tests the relationship between
the two values, for example:

value 1 > value 2
X > 2

Version 4.8 PointBase Developer 80

PointBase

Values

Any one of the values in a search condition may be one of the following:

e aconstant

e thevalueinacolumn name that is used in the place of one of the value expressions

e avalue derived from either one of these two values, using standard operators and non-
aggregate functions, such as BALANCE + 10.

Operators

PointBase SQL supports all standard relational operators:
© equas(s)

e greater than (>)

e lessthan (<)

e notequal to (<>)

e lessthan or equal to (<=)

e greater than or equal to (>=)

Noticein acombined relation, for example, lessthan or equal to or greater than or equal to, the
equal sign must be the last sign in the relation.

Complex search conditions

A complex search condition can contain multiple boolean expressions, linked by the keywords
AND or OR. A boolean expression uses all the same syntax and operators as a boolean
condition.

The AND keyword returns TRUE if the search conditions on both sides of the AND keyword
return TRUE. If either one of the conditions return FAL SE, the joined condition returns
FALSE.

The OR keyword returns TRUE if the expressions on either side of the OR keyword return
TRUE. If both conditions return FAL SE, the joined condition returns FAL SE.

The search conditions that make up a complex search condition return according to four rules
of precedence:

Conditions within parentheses
Conditions joined by an AND keyword
Conditions joined by an OR keyword
Conditions prefixed by aNOT keyword

A w DN PE

Version 4.8 PointBase Developer 81

Predicates

Version 4.8

PointBase

Order of Evaluation

Any set of expressions within parentheses return first. If there are more than one set of
conditions within parentheses in a boolean expression, the sets evaluate from right to left. If
sets of conditions within parentheses contain other sets of conditions within parentheses, the
innermost sets evaluate first. Although it is not required that complex search conditions, which
contain multiple sets of search conditions, use parentheses to separate the conditions, it is
highly recommended to improve the readability of the conditions.

The AND, OR, and NOT keywords are reflexive, which means that the ordering of the
expressions in a boolean expression does not matter. Regardless of the order, you receive the
same result. A code optimizing program may execute the AND, OR, and NOT keywords
differently than they appear in a boolean expression, but the boolean expression returns the
same resullt.

Examples

In thefirst example below, the statement executes from | eft to right, because AND has a higher
precedence than OR. In the second example, the search condition in parenthesis executes first.

1. emp_id>201 AND d_name= ‘engineering’ OR d_name = ‘research’

2. emp_id > 201 AND (d_name = ‘engineering’ OR d_name = ‘research’)

A predicateis an SQL expression that evaluates a search condition that is either TRUE,
FALSE or UNKNOWN. TRUE means the expression is correct. FAL SE means the expression
isincorrect. UNKNOWN means the expression is neither TRUE nor FALSE. All SQL values
used in a predicate must be of a compatible data type (family) for comparison.

PointBase supports the following types of predicates:
e comparison (=, <>, <, >, <=, >=, 1=)

« BETWEEN

« LIKE
 EXITS|NOT EXISTS
* IN|NOTIN

« NULL

NOTE: PointBase does not support multi-valued predicates.

PointBase Developer 82

PointBase

COMPARISON

The COMPARISON predicates compare two values. If either valueis NULL, then the result of
the predicateis UNKNOWN.

NOTE: When comparing two string values, PointBase ignores any spaces that trail after the
string. PointBase ignores trailing spaces in queries and in the table. This behavior
supports the ANSI standard; however, it may vary with other database vendors.

Table 1: Comparison Predicate Symbols

Symbol Result
Comparison Symbol | Description Description
= equal to This symbol resultsto TRUE if both
values are the same.
<>orl= not equal to This symbol resultsto TRUE if the first
valueis equal to the second value.
< less than This symbol resultsto TRUE if the first
valueisless than the second value.
> greater than This symbol resultsto TRUE if the first
value is greater than the second value.
<= less than or equal to This symbol resultsto TRUE if the first
valueislessthan or equal to the second
value.
>= greater than or equal to | This symbol resultsto TRUE if thefirst
valueis greater than or equal to the
second value.
Examples

The following are examples of using the comparison predicates. The results (TRUE, FALSE,
or UNKNOWN) of the predicates are based on the values of the column.

e enp_id =200 ---> TRUE if enp_id is 200

e enp_nanager <> ‘Jones’ ----> TRUE if the manager is not
JONES

e salary > 50000 ----> TRUE if salary is greater than $50, 000

BETWEEN

The BETWEEN predicate determinesif avalueis between arange of values. The BETWEEN
predicate isashort hand notation. It is equivalent to saying the value is greater than or equal to
the beginning range and less than or equal to the ending range. For example, valuel
BETWEEN value2 AND value3 is equivalent to the following search_condition:

val uel >= val ue2 AND val uel <= val ue3

Version 4.8 PointBase Developer 83

PointBase

The following is the syntax for a between predicate:

expression [NOT] BETWEEN |iteral AND literal

mat ch_expr essi

Version 4.8

Examples

In the first example below, the system returns TRUE if the emp_deptid is between 200 and
1000. In the second example, the system returns TRUE if emp_managerid is less than 100 or
greater than 400.

1. enp_deptid BETWEEN 200 AND 1000
2. enp_nanagerid NOT BETWEEN 100 AND 400

LIKE

The LIKE predicate searches a string to determine if the string has a particular pattern. The
pattern is a string with a combination of the following special characters: underscore character,
_and percent sign, %. If the value of any of the argumentsis NULL, then theresult is
UNKNOWN. The following is the syntax for the LIKE predicate:

on [NOT] LIKE pattern [ESCAPE escape]
match_expression

The match_expression is a string that will be searched to determineif the pattern specified can
be found. Escape, if specified, represents a character string that evaluates to a single character,
and allows the special interpretation given to the characters”_" and "%" to be disabled by
preceding them with the defined escape character.

NOTE: The LIKE predicateis case-sensitive.

Examples

In the following example, the LIKE predicate looks for any row where the column contains a
pattern of “engineer” as eight characters contained within the column. The percent sign
represents any string of zero or more characters.

1. enp_description LIKE ‘%ngi neer %

In the next example, the LIKE predicate looks for al rows that do not contain only a pattern of
some character followed by ‘bc’ value for a column. The underscore character represents a
single character. All other characters in both examples represent themselves.

2. dept _description NOT LIKE * _bc’

In the last example, the LIKE predicate looks for all rows where the department name begins
with the underscore character *_", followed by the letter “€” plus zero or more characters. This
disables the specia interpretation given to the underscore character " ", allowing it to be used
as part of the character pattern to be matched.

3. 3. dept_description LIKE '=_e%' ESCAPE '='
PointBase al so supports parameterized escape values for LIKE in prepared statements.

PointBase Developer 84

PointBase

EXISTS|NOT EXISTS

These quantified operators verifies the existence of rows. The boolean result of an EXISTS or
NOT EXISTS predicate is determined by the number of rows returned by the subquery. For
EXISTS, the boolean result is TRUE if the subquery returns at least one row and FALSE if the
subquery does not return any rows. For NOT EXISTS, the boolean result is TRUE if the
subquery does not return any rows and FAL SE if the subquery returns at least one row.

Notes

* PointBase supports any level of nested subqueries.

* PointBase allows a subquery to return multiple values only using EXITS, NOT EXISTS,
IN, or NOT IN.

e Currently, PointBase does not support any form of the quantified operators, ANY or
ALL, for example: =ANY, <=ANY, >=ALL, <>ALL,... etc.

Example
This exampleretrieves all cities, in which at least one sales representative works.

SELECT a.city

FROM of fice_tbhl a

WHERE EXI STS

(SELECT *

FROM sal es_rep_thl b

WHERE a. of fice_num = b.office_num;

Results:

CITY

Miami
Atlanta

San Mateo
San Francisco
San Diego
Oakland
Detroit

New York

Version 4.8 PointBase Developer 85

PointBase

IN|NOT IN

You can use these predicate keywords to return avalue list or a subquery.
Value List

TheIN predicate determinesif avalueis TRUE for alist of values. The following is the syntax
for an IN predicate. The NOT IN predicate also follows the same format asthe IN predicate.

SELECT| UPDATE| DELETE FROM t abl e
VWHERE expression [NOT] IN (list_of_val ues)

Thelist_of values can be represented only by literals with the IN predicate. The NOT IN
predicate returns a TRUE value only when it does not find the list_of values specified.

Example
In the following example, the IN predicate returns TRUE if the “emp_deptid” isany of the
values 10, 100, or 1000.

enp_deptid IN (10, 100, 1000)
Subquery

IN or NOT IN can compare a single value of each row of atable to avalue from potentially
multipleresult rows from a subquery. IN returns TRUE, if at |east one of the resultant subquery
row valuesisequal to the expression; it returns FAL SE otherwise. NOT IN returns TRUE if all
of the resultant subquery row values are not equal to the expression.

Example
This exampl e retrieves the names of all sales reps working in the western region.

SELECT a.first_nane, a.last_nane
FROM sal es_rep_tbhl a

VWHERE a. of fi ce_num I N

(SELECT b.office_num

FROM of fice_thl b

WHERE b.region = 'Western');

Results:

FIRST_NAME LAST_NAME

Heather Smith
George Valentine
Raymond Brown
Jack Smith

Version 4.8 PointBase Developer 86

PointBase

NULL

The NULL predicate determinesif acolumn in a selected row contains the SQL value: NULL.
If the column value is NULL, then PointBase returns TRUE. The following is the syntax for
the NULL predicate:

columm_nane |I'S [NOT] NULL

Version 4.8

Examples

In the first example, the NULL predicate looks for any row where the column contains a
NULL value. In the second example, the NULL predicate looksfor all rowsthat do not contain
aNULL value for acolumn.

1. enp_dept I'S NULL
2. enp_manager |'S NOT NULL

PointBase Developer 87

Transactions

Version 4.8

Transactions and L ocks

This chapter describes the behavior and usage of transactions and locks in PointBase. By
understanding how transactions and locks work in PointBase, you can maximize concurrent
database utilization while maintaining appropriate data integrity for your application. The
following sections describe transactions, locking concepts, and the different isolation levels
that PointBase supports.

A transaction is the primary mechanism used by PointBase to protect the integrity of data that
can be accessed from the database. All of the changes (INSERT, UPDATE, DELETE) made to
a database during a transaction are added to the database when the transaction commits.

A transaction implicitly starts if any Data Manipulation Language (DML) statement is
executed, such as SELECT, INSERT, UPDATE, and DELETE, or if any Data Definition
Language (DDL) statement is executed, such as CREATE TABLE, CREATE INDEX, etc. A
transaction can be explicitly started by executing a START TRANSACTI ON | SOLATI ON
LEVEL statement.

A transaction commits, when you issue a COMMIT statement. An application can also cancel
all the changes made within atransaction by rolling back the transaction. A transaction rolls
back when you issue a ROLLBACK statement or when an exception occurs.

If you set AUTOCOMMIT to on, atransaction will automatically commit after each statement
(INSERT, UPDATE, DELETE) is completed. For example, a statement is completed when all
result sets and/or update counts have been retrieved. To bound transactions explicitly,
AUTOCOMMIT must be set to off.

A transaction is associated with a connection to the database. If multiple statements or threads
use the same connection, they are part of the same transaction. If you decide to allow multiple
threads to share one connection, you must synchronize al threads in order to commit the
transaction.

For example, if one thread in atransaction issues commit, all the threads within the same
transaction will be committed, invalidating threads that have not finished executing. PointBase
recommends that you use one connection per thread.

PointBase Developer 88

PointBase

Row Level Locking

When multiple connections or threads access the database concurrently, PointBase ensures the
integrity of the datausing row level locking. PointBase locks only the rows affected by an SQL
statement rather than pages or tables, to ensure maximum concurrent activity. For example,
when transaction T1 is updating row 10 in page 100, transaction T2 is able to update row 20 in
the same page (100) or to read other rows in page 100.

Locksand Memory

PointBase stores al locksin memory. For efficient use of memory, you can limit the number of
locks asingle transaction can hold. The default limit is 2000, but you can change this using the
locks.maxCount property inthe poi nt base. i ni file. (Refer to the PointBase System Guide
for more information about the pointbase.ini file, which you can use to configure the system
properties.)

When atransaction reaches the specified limit of locks, PointBase automatically convertsall of
therow-level locks, to atable-level lock, reducing concurrency as aconsequence. If the system
cannot convert the row level locks to the table level lock within areasonable time, the
transaction is aborted. This may happen, if other transactions hold row-level locks on the same
table.

Transaction I solation Levels

Version 4.8

The following section describes the transaction-isolation levels that PointBase supports. The
transaction-isolation level defines the rules for releasing locks, allowing other users access to
the row or table. By understanding PointBase isolation levels, you can understand how the
system locking mechanism behaves.

NOTE: For all isolation levels, PointBase holds locks on rows that are modified until the end
of the transaction.

READ_COMMITTED

When the transaction-isolation level is set to READ_COMMITTED, PointBase releases the
lock on arow as soon it returns the row data to the user. For example, if a query returns 100
rows, the system locksthe first row, reads the data and returnsit to the user. Before locking and
reading from the second row, PointBase rel eases the lock on the first row to minimize resource
usage and maximize concurrency. After all the reads are complete, no locks are held.

PointBase Developer 89

Version 4.8

PointBase

SERIALIZABLE and REPEATABLE_READ

When the isolation level is set to SERIALIZABLE or REPEATABLE_READ, PointBase does
not release locks on rows read until the end of the transaction. For example, if a query returns
100 rows, the system applies the lock on each row as it reads them. The system releases the
locks only when it returns the data from all 100 rows to the user and the transaction is
complete.

Recommended I solation L evel
The READ_COMMITTED isolation level gives maximum concurrency and minimum

resource usage while providing the required data integrity for most applications. The default
isolation level isREAD_COMMITTED.

PointBase Developer 90

Distributed Transactions

This chapter summarizes distributed transaction processing (DTP) environments and how to
use PointBase Embedded in a DTP environment. Following the section, “ PointBase's Rolein a
DTP Environment,” this chapter briefly describes Sun’s Java Transaction APl (JTA), the Java
mapping for X/Open’s XA Specification, and also the JDBC API Extensions for distributed
transactions. Finaly, this chapter describes how to use PointBase Embedded inaDTP
environment by providing code snippets, explaining important restrictions, and supplying
specific java classes that PointBase Embedded implements for distributed transactions.
Although this chapter summarizes DTP concepts, it is only a summary, and it pertains

specifically to PointBase Embedded. For more information about the topics discussed in this
chapter, PointBase recommends reading the following books or documents:

e X/Open'sDistributed Transaction Processing: The XA Specification
e Sun Microsystem’s JDBC API 2.0
e Sun Microsystem’s Java Transaction APl (JTA) 1.0.1

Important Note

To successfully run your XA application with PointBase, you must obtain the following two
JAR files from the Sun Microsystem’s website, “jtajar” and “jdbc2_O-stdext.jar” and, include
them in your classpath with the PointBase JAR's.

* Download the “jtajar “at http://java.sun.com/products/jta/index.html
e Download the “jdbc2_O-stdext.jar” at http://java.sun.com/products/jdbc/
download.html#corespec21.

PointBase'sRolein a DTP Environment

Version 4.8

According to the X/Open'’s Distributed Transaction Processing (DTP) Model, aDTP
environment specifies that application programs can use Resource Managers and a
Transaction Manager to access multiple data sources through one global transaction.
PointBase acts as a resour ce manager (RM) in a DTP environment.

PointBase Developer 91

http://java.sun.com/j2se/1.3/docs/guide/jdbc/index.html
http://java.sun.com/products/jta/

PointBase

You can use PointBase in a DTP environment to write Enterprise JavaBeans that are
transactional across multiple PointBase servers. Workgroup environments, such as J2EE and
J2SE where the data extends across multiple databases can benefit using PointBase, because
the PointBase JDBC driver supports the 2-phase commit protocol used by the Java
Transactional APl (JTA).

Transaction Manager s, Resour ce Manager s, and Global Transactions

A transaction manager (TM) manages global transactions by ultimately deciding to commit, to
rollback, or to recover global transactions. A global transaction is known as a unit of work. For
example, an application can group multiple updates to several different data sources into one
unit of work—a global transaction. A TM also associates resource managers with global
transactions.

Each resource manager (RM) involved in aglobal transaction is unaware of any other RMs
involved besides itself. For this reason, each RM requests and receives “permission” from the
TM before it performs any work requested by an application. The RM also communicates all
work it completes for a global transaction to the TM—whether it successfully completes or
fails. With thisinformation, the TM decides how to handle the global transaction.

NOTE: If any RM failsto successfully complete its part of aglobal transaction, all RMs
involved in that global transaction must rollback the work for that particular global
transaction.

Interaction Among DTP Components

The following illustration shows PointBase interacting with the application program and the
transaction manager. Notice that the application program also interacts with the transaction
manager. |n thisinteraction, the application program defines the transaction boundaries or
rules with the transaction manager. This guide, however, does not discuss this interaction. For
more information about this topic, please refer to the relevant application program
documentation. The following list describes the interaction flow among the application
program (AP), the resource manager (RM), and the transaction manager (TM).

Application Program (AP)

Transaction Manager (TM)

TN

Resource Manager (RM)
PointBase
Embedded

U

Version 4.8 PointBase Developer 92

PointBase

Java Transaction API (JTA)

The Java Transaction APl (JTA) is part of the Sun J2EE standard which deals with distributed
transactions. JTA defines a high-level transaction management interface intended for resource
managers and transactional applications in DTP environments. PointBase implements the
XAResource and Xid Interface of JTA, which maps the industry standard, X/Open XA
Interface, to Java. Theinterface, X/Open XA Interface all ows a transaction manager to manage
operations performed by multiple resource managers, using the two-phase commit X/Open XA
protocol.

JDBC 2.0 Optional Package API

Sun Microsystems created the JDBC APl 2.0 Extensions, j ava. sql . XAConnect i on and
j avax. sql . XADat aSour ce, so that JDBC drivers can support distributed transactions
using the Java Transaction API’s XAResource Interface. Refer to the JIDBC 2.0 Standard
Extension Specification for more details on JDBC APl 2.0 Extensions (http://java.sun.com/
products/ jdbc).

The PointBase JDBC driver supports distributed transactions by implementing the following
interfaces. For unsupported methods, you can view both, “Appendix B: Unsupported JDBC
2.0 Methods in PointBase” and the section, “Unsupported in PointBase” at the end of this
chapter.

API Description

javax.transaction.xa. X AResource | Thisinterface maps the industry standard X/Open XA
Interface to Java. It defines APIs between the transaction
manager and the resource manager. PointBase implements
the JDBC standard for thisinterface. For more information
about thisinterface, refer to http://java.sun.com/products/
jtaljavadocs-1.0.1/javax/transacti on/xa/ X AResource.html.

javax.transaction.xa.Xid Thisinterface defines the global transaction identification
structure of the X/Open XA Interface. PointBase
implementsthe JDBC standard for thisinterface. For more
information about this interface, refer to http://
javasun.com/products/jta/javadocs-1.0.1/javax/
transaction/xa/Xid.html.

Version 4.8 PointBase Developer 93

http://java.sun.com/products/ jdbc
http://java.sun.com/products/ jdbc
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/XAResource.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/XAResource.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/Xid.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/Xid.html
http://java.sun.com/products/jta/javadocs-1.0.1/javax/transaction/xa/Xid.html

PointBase

API Description

javax.sgl. X ADataSource Thisisthe JDBC Extension DataSource Interface for
JTA's XAResource Interface. PointBase implements the
class,com poi nt base. xa. xaDat aSour ce for this
interface. In addition to the JDBC standard methods,
PointBase implements some of its own methods.

For more information about PointBase's implementation
of thisinterface, see the section, "Implementing
javax.sgl.X ADataSource" on page 94.

For more information about the standard JDBC interface,
j avax. sql . XADat aSour ce, refer to http://
java.sun.com/products/jdbc/jdbc20.stdext.javadoc/.

javax.sgl.X AConnection Thisinterface isthe JDBC Extension Connection Interface
for JTA’s XAResource | nterface. PointBase usesthe JDBC
standard for thisinterface. For more information about this
interface, refer to http://java.sun.com/products/jdbc/
jdbc20.stdext.javadoc/.

| mplementing javax.sql.XADataSource

Theclass, com poi nt base. xa. xaDat aSour ce isthe PointBase implementation of the
JDBC Extension Interface, j avax. sql . XADat aSour ce. Itisnormally used with the Java
Naming and Directory Interface (JNDI) for defining data sourcesin a DTP environment.

Because database vendors may support different data source properties, this section describes
what PointBase supports. And, in addition to the standard JDBC Extension methods of

j avax. sql . XADat aSour ce, PointBase has created its own methods, which this section
also describes.

XADataSource and JNDI

Usingcom poi nt base. xa. xaDat aSour ce toinitialize an XADataSource object, isthe
first step to distributed transactions with PointBase. To initialize an X ADataSource object, for
example, you provide the database URL information, password, user name, etc., to get a
connection with a database. However, you can also use JNDI.

Using JNDI, an application can find and access remote services, such as a database service
across a network. After registering an X ADataSource object with a JINDI naming service, an
application can access that object to connect to the data source it represents.

Version 4.8 PointBase Developer 94

http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/

PointBase

With PointBase, you can use a INDI naming service to manage data sources and connections.
JNDI adds portability to the application code, for example, you do not have to include data
source propertiesin the application code, such asthe database name or the password. Also, you
do not have to change the application code if you want to change a data source property. For
example, instead of changing the application code to reflect a new user name, you can change
the user name with the INDI naming service.

Support for XADataSource Properties

Database vendors may vary when it comes to supporting XADataSource properties. For every
supported X ADataSource property, the database vendor must provide set and get methods.
PointBase supports the following X ADataSource methods for their respective XADataSource

properties:

XADataSource Method

Description

set Dat abaseNanme(String url)

Sets the databaseName property, defining the name of a
particular database on a server. In PointBase, this defines the
URL.

String get Dat abaseNane()

Returnsthe URL of aparticular database on a server

setDescription(String description)

Sets the description property, defining a description of this data
source

String getDescription()

Returns a description of this data source

set Password(String password)

Sets the password property, defining the user’s database
password

String getPassword()

Returns the user’s database password

setUser(String user)

Sets the user property, defining the user name

String getUser()

Returns the user name

Version 4.8

PointBase Developer 95

PointBase

Additional PointBase M ethods

In addition to the standard methods of the javax.sgl.XADataSource interface and

javax.sgl.DataSource for that matter, PointBase provides the following methods.

XADataSource Method

Description

set Cr eat eDat abase(

bool ean p _Create) Sets TRUE or FALSE. If set to TRUE, it creates a new database.
Default is FALSE.

Bool ean get Cr eat eDat abase() Returns TRUE if database exists and FALSE if it does not exist.

Using PointBasein a DTP Environment

xaDat aSour ce X

This section describes how to use PointBase in a DTP environment. PointBase acts asthe
resource manager (RM) in a DTP environment, which reads or writes the data requested by an
application in aglobal transaction. The following sections describe step-by-step how to use
PointBase in a DTP environment.

Getting the XAResour ce Object

First, the transaction manager (TM) must get an XAResource object to start and end the
association between an X A Connection object and a global transaction. To get an XAResource
object, you must do the following:

Initialize XADataSource

Create a DataSource object to produce an X AConnection object. An XAConnection object is
similar to atypical Connection object; however, an XA Connection object can obtain an
XAResource object, which you need to perform a global transaction.

ads = new com poi nt base. xa. xaDat aSour ce() ;

xads. set Dat abaseNane(url);

xaDat aSour ce x

XAConnection ¢

Version 4.8

NOTE: Initializing a INDI XADataSource compared to a JDBC XADataSource is similar.
The following example initializes a INDI X ADataSource—assuming the
XADataSource object has been stored with a INDI naming service previously.

ads = (xaDat aSource)ctx. | ookup(*“poi nt base/ dat asourcel”);

Get XAConnection Object

Get an XA Connection to “datasourcel,” using the getX AConnection method. You need an
XAConnection object to obtain an X AResource object.

onxa = xads. get XAConnection();

PointBase Developer 96

http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/
http://java.sun.com/products/jdbc/jdbc20.stdext.javadoc/

PointBase

Get Connection Object

Get a connection to the data source that “ datsourcel” represents, using the getConnection
method. The application involved with the global transaction uses this connection to perform
necessary work with the data source.

Connection con = conxa. get Connection();

Get XAResource Object

Get an X AResource object from the X A Connection object, using the getX AResource method.
The TM usesthe X AResource object to manage aglobal transaction and its association with an
XAConnection object.

xaResource xrs = conxa. get XAResour ce();

NOTE: Only one X AResource object may exist for each X AConnection object. For example,
if you call a second getX AResource method on the same X A Connection object, you
obtain the same X AResource object.

Using the XAResour ce Object

Obtaining an X AResource object prepares you for starting and ending the association between
aglobal transaction and an X A Connection object. The following examples describe the syntax
that starts and ends the association between an X AConnection and a global transaction; “xrs’
isthe XAResour ce object:

e Start
xrs.start(Xid, Flag);
e End
xrs.end(Xid, Flag);
Xid

The TM assigns Xids to identify a global transaction. Xid consists of two parts, GTRID
(transaction ID) and BQUAL (branch ID); both can be a maximum of 64 bytes. PointBase uses
a constructor that requires the following parameters:

Parameter Name Parameter Type

formatld int
trid byte[]
brid byte[]

The following example describes the syntax that a TM can use to define an Xid using the
PointBase class, com poi nt base. xa. xaXi d:

Xid xi dl = new com poi ntbase. xa.xaXid (formatld, trlid , brid);

Version 4.8 PointBase Developer 97

PointBase

Flags

The following “Flags’ help start and end the association between a global transaction and an
XAConnection object.

e TMNOFLAGS: indicates the start of anew global transaction. If you try to start aglobal
transaction with an Xid that is currently in use, you receive the error, XAER_DUPID.
xrs.start(xidl, TMNOFLAGS);

e TMJOIN: indicates the joining of another existing global transaction branch. If you try to
start a global transaction with an Xid that is currently in use, you receive the error,
XAER_PROTO.
xrs.start(xidl, TMION);

e« TMRESUME: indicates resuming a suspended global transaction, which must have been
previously suspended using the TM SUSPEND flag. Y ou can use the TMRESUME flag
in adifferent thread than the thread that suspended the global transaction, but it must use
the same X AConnection.

xrs.start(xidl, TMRESUME);

« TMSUCCESS: indicates that a global transaction has completed successfully.
xrs.end(xidl, TMSUCCESS);

« TMFAIL: indicates that a global transaction failed. You must rollback this global
transaction.
xrs.end(xidl, TMFAIL);

« TMSUSPEND: indicates suspending a global transaction. Y ou must continue this global
transaction with the flag, TMRESUME, within the same X AConnection.
xrs.end(xidl, TMSUSPEND);

Committing Global Transactions

Starting and ending a global transaction is similar to committing one, because you must
commit aglobal transaction, using the X AResource object. After calling the

XAResour ce. end(Xi d, TMSUCCESS) method, you may commit the global transaction.
The beginning of this chapter mentioned that TMs ultimately decide to commit a global
transaction. TMs have the choice to use a*“ Two Phase Commit” or a* One Phase Commit”
protocol. PointBase (the RM) supports both protocols.

One Phase Commit

A TM can use the one phase commit protocol, if it knows that only one RM inthe DTP
environment made changes to the shared data sources.

The following example describes the syntax for committing a global transaction using the one
phase commit protocol; “xrs’ isthe XAResour ce abject:

xrs.commt(xidl, true);

Version 4.8 PointBase Developer 98

PointBase

Two Phase Commit

A TM uses the two phase commit protocol, if multiple RMs made changes to shared data
sources. In the first phase, (absent in the one phase commit protocol), the TM must confirm
that all RMs involved in the global transaction have completed the necessary work
successfully. If one RM does not complete its work successfully, the TM must rollback the
global transaction. If the TM received a successful response from all RMs, however, the TM
proceeds to phase two, committing the global transaction.

The following example describes the syntax for committing a global transaction using the two
phase commit protocol; “xrs’ isthe X AResour ce object:

¢ Phase One

Xrs. prepare(xidl);

e Phase Two

xrs.commt(xidl, false);

xrs. rol |l back(

Rolling Back Global Transactions

The TM must rollback a global transaction if any RM does not complete its work successfully
or if the application requests that the TM rollback the global transaction. The following
exampl e describes the syntax for rolling back a global transaction; “xrs’ isthe XAResource
object:

xidl);

Recovering Global Transactions

A DTP environment or system may need to recover after a storage, connection path, or
program failure. PointBase (the RM) provides the TM alist of Xidsthat it has prepared for
commitment by the two phase commit protocol. The TM must recover the Xids by either
committing them or rolling them back. The following example describes the syntax for
recovering a global transaction; “xrs’ isthe X AResour ce obj ect:

Xid[] xids = xrs.recover(Flags);

Version 4.8

Flags

e« TMSTARTSCAN: indicates the start of anew recovery process.
Xid[] xids = xrs.recover(TMSTARTSCAN);

« TMENDSCAN: indicates the end of arecovery process.
Xid[] xids = xrs.recover(TMENDSCAN);

e TMNOFLAGS: indicates that no other flags are specified. Use this flag only after you
started the recovery scan.

Xid[] xids = xrs.recover(TMNOFLAGS);

e TMSTARTSCAN | TMENDSCAN: indicates the retrieval of al pending Xids.
Xid[] xids = xrs.recover(TMSTARTSCAN TMENDSCAN) ;

PointBase Developer 99

PointBase

Example

The following example describes a global transaction using a single thread and asingle
resource manager.

/1 initialize DataSource

com poi nt base. xa. xabDat asource xads = new com poi nt base. xa. xaDat aSour ce()

xads. set Dat abaseNane(“j dbc: poi nt base: embedded: xyz”);
xads. set Cr eat eDat abase(true);

/1 get a connection object from DataSource
XAConnection conxa = xads. get XAConnection ();
Connecti on con = conxa. get Connection();

/1 get a resource object from Connection
XAResour ce xrs = conxa. get XAResource ();

/] define an Xid
Xid xid = new com poi nt base. xa.xaXid (“tr001” , “br001”);

/1l start a new transaction
xrs.start (xid, XAResource. TMNOFLAG);

/1 do sonething

Statement stnt = con.createStatement ();
stnt.execute (“ create table xxx (cl int)“);
stnt.execute (“ insert into xxx values (1) “);

/1 end an Xid
xrs.end (xid, XAResource. TMSUCCESS);

/1 commt the transaction
xrs.prepare (xid);
xrs.conmt (xid, false);

/1 close the connection
con. cl ose();
conxa. cl ose();

Mixing Global and L ocal Transactions

Using PointBase, you can mix global and local transactionsin the same X AConnection. If you
execute an SQL statement and have not started a global transaction, (for example, getting an
XAResource object) PointBase starts alocal transaction automatically.

If you execute alocal transaction, you must commit or rollback the transaction before you can
start aglobal transaction.

NOTE: If autocommit is ON, local transactions commit automatically.

Version 4.8 PointBase Developer 100

PointBase

Unsupported in PointBase

PointBase does not support the following for distributed transactions:

* setTransactionTimeout: this method sets the transaction time-out value for this
XAResource instance.

e getTransactionTimeout: this method gets the transaction time-out value set for this
XAResource instance.

Version 4.8 PointBase Developer 101

Version 4.8

SQL Security and Privileges

This chapter describes PointBase security and privileges. Schemas are an integral part of
security in PointBase. When creating a PointBase user, they do not have any access privileges
to schemas or other data objects within the database. PointBase only permits the schema or

database owner, PBSY SADMIN, or the PBDBA role to grant privileges to the schema and

data objects within the schema. These users can grant privileges to the following data objects

in the schema:
e Tables

¢ Columns
« Roles

* SQL Procedures and Functions

Table 1 describes the privileges that the previously mentioned users can grant to other usersfor

tables and columns:

Table 1: User Privileges for Tables and Columns

Privilege Statements

Privilege
Description

DELETE Allows a user to delete rows from tables within the schema

INSERT Allows a user to insert rows of data into tables within the
schema

REFERENCES Allows a user to set up references to primary keys within
the schema

SELECT Allows a user to select rows from tables within the schema

TRIGGER Allows a user to create triggers on tables within the schema

UPDATE Allows a user to update rows in tables within the schema

EXECUTE Allows users to execute functions or stored procedures

within the schema

PointBase Developer

102

PointBase

Predefined Users

PointBase provides you with two predefined users. They each have their own purposes for the
database. For example, anyone connected to the database using the predefined user,
PBPUBLIC, has the capability to perform the following:

e connect to the database
* accessthe PBPUBLIC schema
e dter any objects within the default schema

In addition, PointBase provides one more type of predefined user. It has complete authority
and privileges over all databases in the system. However, it does not have the privilege to
modify or drop the system catalog tables.

Internal_System_Administrator (1SA)

This type of predefined user isfor PointBase internal use only.

PBSYSADMIN

This type of predefined user has complete authority and privileges over all objectsin the
database, for example, it can create new usersin the database. However, it does not have the
privilege to modify or drop the system catalog tables. You may not grant additional
privileges to the predefined user, PBSY SADMIN. To connect using PBSY SADMIN, you will
initially have to use the password, “PBSY SADMIN.” After using it to connect, PointBase
encourages you to change the password immediately.

PBPUBLIC

Another PointBase predefined user is PBPUBLIC. To connect using thistype of user, you must
use the default password, PBPUBLIC. With this type of user, you may access objectsin the
default schema, PBPUBLIC.

Previous User PUBLIC

Inversions 4.1 and earlier, PointBase used the default user, PUBLIC. By default, it also hasthe
password and schema, PUBLIC. These names will still remain effectivein versions 4.3 and
later; however, PointBase will now use PUBLIC for superficial purposes only. That is, you
may still connect to the database using PUBLIC. But internally, PointBase converts the user
and the password, PUBLIC, to PBPUBLIC every time you connect, and PointBase recognizes
the schema, PUBLIC as if it were the schema, PBPUBLIC. Please note that the passwords,
PBPUBLIC and PUBLIC act as the same password, so if you alter either password, it affects
the other.

Version 4.8 PointBase Developer 103

PointBase

Granting and Revoking Privilegesto Users

When you initially create a PointBase database, it automatically creates the user, PBPUBLIC
with a password of PBPUBLIC. The PBPUBLIC user owns the default PBPUBLIC schema.
For security reasons, PointBase does not recommend using this schemato store sensitive data.
Like any PointBase user, PBPUBLIC must be granted the appropriate privileges to access data
objects in schemas owned by other users.

PBPUBLIC userswill own any new schemathat they create unless otherwise specified while
creating the schema. New users are then able to create their own new schema and grant
appropriate privileges on objects in the schema that they own. All new users must be granted
privileges to access the abjects in the PBPUBLIC schemaif thisis required.

To grant the ability for a user to pass a privilege on to other users, you must specify the
optional WITH GRANT OPTION qualifier when granting the privilege.

GRANT Syntax

GRANT <privilege-list>

ON <obj ect >

TO <user> [WTH GRANT OPTION | | PUBLIC]
[GRANTED BY <gr ant or >]

Usethe GRANT statement to grant privileges on a data object. The following describes the
GRANT statement syntax.
GRANT <Privilege-list> Syntax

privilege [, privilege [, privilege].] | ALL PRI VILEGES

<Privilege> Syntax

SELECT [(colum-nane [, colum-nane].)]
| DELETE
| INSERT [(columm-nane [, columm-nane].)]
| UPDATE [(colum-nanme [, columm-name]..)]
| REFERENCES [(colum-nanme [, colum-nane].)]
| TRRGGER [(colum-nane [, colum-nanme]..)]
| EXECUTE
Usage Notes

e |f you do not include one or more of these privilegesin the GRANT statement, an error
will be raised.

e |f theoptional “column-names’ are not specified for the SELECT, INSERT, UPDATE,
REFERENCES and TRIGGER privileges, the GRANT is atable-level grant that alows
accessto all present and future columns of the table.

« If you execute a GRANT statement that contains privileges that you don’t have or for
which you do not have the right to grant, then PointBase raises an error.

Version 4.8 PointBase Developer 104

PointBase

ON <Object> Syntax

[TABLE] tabl e-nane

| SPECI FI C routine_type specific_routine-nane

| routine_type routine_nane (paraneter_types_list)
[TRIGGER] trigger-nane

Usage Notes

e You may only grant the EXECUTE privilege on an SQL Function or Procedure. The user
cannot access tables that the SQL Function or Procedure uses.

TO <user/role-list> | [WI TH GRANT OPTION] | PUBLIC Syntax

user [, user]... [WTH GRANT OPTION] | PUBLIC

Usage Notes

e |f you do not specify WITH GRANT OPTION, the user cannot pass the same privilege
on to other users. However, if you do specify WITH GRANT OPTION, you have given
the user permission to pass on the privilege to other users.

e Granting aprivilegeto PUBLIC grants the privilege to all present and future users.
PUBLIC isakeyword, representing all usersin the database.

e If you grant aprivilege twice, and one of the times—either first or second—you granted
the optional WITH GRANT OPTION and the other time you granted it without the grant
option, the user will retain the grant option.

[GRANTED BY <grantor>] Syntax

[GRANTED BY CURRENT_USER | user_nane]

Usage Notes

e Usethisoption to indicate whether you want the grant to be from the CURRENT _USER
or the CURRENT _ROLE, or whether you want to revoke authorization records that were
granted from the CURRENT_USER or from the CURRENT_ROLE.

e |f GRANTED BY <grantor> is not specified, then the grantor isthe CURRENT_USER.

+ If GRANTED BY CURRENT_ROLE is specified, then the CURRENT_ROLE must not
be NULL.

e A <grantor> of user_nameisnot ANSI standard. Only the users, PBSY SADMIN,
database owner, or someone with the PBDBA role can specify a <grantor> of
user_name.

Examples

e Thefollowing statement grants the SELECT privilege onthe CUSTOMER_TBL tableto
the user MARKETING_MGR.

GRANT SELECT
ON cust omer _t bl
TO mar keti ng_nor;

Version 4.8 PointBase Developer 105

PointBase

« Thefollowing GRANT statement allows the user FINANCIAL_MGR to delete, insert
and update rows from the DISCOUNT_CODE_TBL table; it also allows this user to
grant the same privileges to others.

GRANT DELETE, | NSERT, UPDATE
ON di scount _code_t bl

TO financi al _nmgr

W TH GRANT OPTI ON,

e Thefollowing GRANT statement allows the user HR_MGR to have ALL PRIVILEGES
on thetable SALES REP_DATA_TBL. However, the user HR_MGR will only be
granted privileges that the user granting the privileges has the right to grant. For example,
if the user granting the privileges does not have the right to grant DELETE privileges, the
HR_MGR will not have the delete privilege.

GRANT ALL PRI VI LEGES
ON sal es_rep_data_thl
TO hr _nor

REVOKE Syntax

REVOKE [GRANT OPTION FOR] <privilege_list>
ON <obj ect >

FROM <user _nanme> [RESTRICT | CASCADE]

[GRANTED BY <grant or >]

To revoke arole from auser, use the SQL command, REVOKE. This command revokes only
the privileges that the specified <grantor> granted to the <user_name>. If another <grantor>
granted the same privileges to the <user_name>, then the <user_name> will till have those

privileges.

Please note that the syntax rules for the REVOKE syntax is similar to the GRANT statement.
The major differenceis the additional RESTRICT or CASCADE keyword and the GRANT
OPTION FOR clause. The following describes the optional clauses GRANT OPTION FOR
and RESTRICT or CASCADE.

NOTE: You may only revoke privileges, which you have granted.
GRANT OPTION FOR

If the optional GRANT OPTION FOR clauseis used, the WITH GRANT OPTION right is
revoked, but the actua privilegeitself isnot revoked. CASCADE and RESTRICT may be used
in the same way as anorma REV OKE statement.

RESTRICT | CASCADE

If you specify the RESTRICT keyword, only the privilege granted by you, will be revoked
from the specified user. If the specified user had the grant option and granted the same
privilege to other users, then PointBase will raise an error.

If you specify CASCADE, only the privilege granted by you, will be revoked from the
specified user and any other privileges dependent on your grant.

If the optional RESTRICT or CASCADE keywords are not used, PointBase uses CASCADE
by default.

Version 4.8 PointBase Developer 106

PointBase

Predefined Roles

This section describes predefined roles in PointBase. Predefined roles and rolesin general can
save you time granting commonly-used privileges to a user, a group of users, or another role.
Predefined roles can provide you some type of authority over databases. Predefined roles and
rolesin general are multiple privileges bundled into one object. You can typically use a
predefined role to apply commonly-used privileges to one user or a group of users or another
role. For example, one predefined role gives specified users all the privileges that a database
owner has. The other predefined role gives specified users read authority on all objectsin the
database. You may not grant additional privilegesto predefined roles. PointBase provides
the following predefined roles:

PBDBA Role

You have complete authority, including all privileges over the database using the PBDBA role.
Please note that it cannot be granted to other roles.

READALL Role

You can grant other userstheread or SELECT authority on all objectsin the database using the
READALL role. With it, any user can unload the entire database—regardl ess of who ownsthe
objects or what privileges have been granted on them.

Granting and Revoking Privilegesto Roles

With PointBase, you have the capability to grant or revoke roles. They may contain multiple
privileges, which you can apply towards multiple users, without having to apply each privilege
one user at atime. Any user can grant roles to other users or to other rolesif they have the
authority. Any user with the authority may grant additional privilegesto roles.

To enable your current role, you must use the SQL command, SET ROLE. PointBase allows
you to enable or set your current roleif your current user has been granted that role. A user
may only have one enabled role—one current role, at any given time—though a user may have
been granted several different roles. Please note that at any given time, users' total privileges
arethe sum of all privilegesdirectly granted to them and any privileges or roles granted to their
current role.

The following diagram briefly characterizes roles by illustrating User | granting Role A to
User Il and Role B. It also displays User |11 granting Role C to Role A and how User |1 and
Role B are affected by this change.

Version 4.8 PointBase Developer 107

PointBase

Step 1
User |
Role A —— GRANT ROLEA to User I
Privilege A ;
Privilege B Role B
Result of Step 1
User | User I Role B
Role A Role A Role A
Privilege A Privilege A Privilege A
Privilege B Privilege B Privilege B
Step 2
User 111 Role A Role A
RoleC —GRANT ROLE C to—| Privilege A Privilege A
Privilege C Privilege B Privilege B
Privilege D RoleC
Privilege C
Privilege D
Result of Step 2
User | User I Role B
Role A Role A Role A
Privilege A Privilege A Privilege A
Privilege B Privilege B Privilege B
Role C Role C Role C
Privilege C PrivilegeC PrivilegeC
Privilege D Privilege D Privilege D

CREATE ROLE Syntax

CREATE ROLE <rol e_nane> [W TH ADM N <gr ant or >]

To create arole that can have privileges granted to it, use the SQL command CREATE ROLE.
The following explains the CREATE ROLE syntax.

<rol e_nane>

It is the name of the role you are creating. For <role_name>, you may use any valid user
name, except PUBLIC, NONE, or the same name as an existing user.

<grantor> = CURRENT_USER | CURRENT_ROCLE |

Version 4.8

user _name

PointBase Developer 108

PointBase

« If WITH ADMIN <grantor> is not specified, then the grantor isthe CURRENT_USER.

 IFWITH ADMIN CURRENT_ROLE is specified, then the CURRENT_ROLE must not
be NULL.

e A <grantor> of user_nameisnot ANSI standard. Only the PBSY SADMIN, database
owner, or someone in the PBDBA role can specify a<grantor> of user_name.

Examples

If the current user is SALES MANAGER:
CREATE ROLE SALES W TH ADM N CURRENT_USER

Thiswill create arole called SALES whose owner isthe user SALES MANAGER. Privileges
can now be granted to therole SALESjust asthey can to auser. Theuser SALES MANAGER
can then grant the role SALES to other users, or to other roles. These users or roles will then
have al the privileges that were granted to the role SALES, the same asif these privileges
were granted to them individually.

ed examples>

GRANT ROLE Syntax

GRANT <role_nanme> [{ , <role_name>} .]
TO <grantee> [{ , <grantee>} ...]

[WTH ADM N OPTI ON|

[GRANTED BY <gr ant or >]

To grant users arole, use the SQL command, GRANT ROLE. The following explainsits
syntax.

<rol e_nane>

It is the name of the role you are granting. You may grant more than onerole.

<grantee> = PUBLIC | <role_nane>

e A rolecan be granted to users or other roles.

e You cannot grant aroleto itself.

e You cannot grant one role to a second role, and then attempt to grant the second role back
to the first. For example, you can grant Role (A) to Role (B) or Role (B) to Role (A), but
not both. Such a series of grants would result in arole grant cycle, which is not allowed.

e Granting to PUBLIC grantstheroleto all present and future users and roles.

[WTH ADM N OPTI ON|
If WITH ADMIN OPTION is specified, then the <grantee> can grant the role to other usersor
roles. It also gives the <grantee> theright to drop therole.

<grantor> = CURRENT_USER | CURRENT_ROCLE | user_nane

e |f you do not specify GRANTED BY <grantor>, then the grantor isthe
CURRENT_USER.

Version 4.8 PointBase Developer 109

PointBase

e If you specify GRANTED BY CURRENT_ROLE, then the current role must not be
NULL.

e Tosuccessfully execute this command, current users must either be the PBSY SADMIN
or the database owner. Or, current users must either have the PBDBA role, or the
<grantor>s must have admin option for every role that they grant.

e A <grantor> of user_nameisnot ANSI standard. Only the PBSY SADMIN, database
owner, or someone in the PBDBA role can specify a<grantor> of user name.

REVOKE Syntax

REVOKE [ADM N COPTION FOR] <role_nane> [{ , <role_nane> } .]
FROM <grantee> [{ , <grantee>} ...]

[GRANTED BY <grant or >]

<dr op_behavi or >

To revoke arolefrom auser or another role, use the SQL command, REVOKE. This command
revokes only the roles that the specified <grantor> granted to the <grantee>. If another
<grantor> granted the same role the <grantee>, then the <grantee> will still have privileges
to that role.

Please note that the syntax rules for the REVOKE syntax is similar to GRANT ROLE, except
for the following.

NOTE: You may only revoke roles, which you have granted.

[ADM N OPTI ON FOR]

If ADMIN OPTION FOR is specified, then only the admin option for therole is revoked.

<dr op_behavi or> = CASCADE | RESTRI CT

e |If you specify the RESTRICT keyword, only the role granted by you, will be revoked
from the specified <grantee>. If the specified <grantee> had the ADMIN OPTION and
granted the same privilege to other users, they will retain the privilege.

« If you specify CASCADE, only the role granted by you, will be revoked from the
specified <grantee> and any other roles dependent on your grant.

e If the optional RESTRICT or CASCADE keywords are not used, PointBase uses
CASCADE by default.

DROP ROLE Syntax

DROP ROLE <rol e_name> [<drop_behavi or >]

To successfully execute this command, the current user must be the PBSY SADMIN or the
database owner, or the current role must be PBDBA. If your current user or role has been
granted admin option on the role being dropped, you may also use this command.

<dr op_behavi or> = CASCADE | RESTRI CT

Version 4.8 PointBase Developer 110

PointBase

If the drop behavior is CASCADE, then all schemas owned by this role will be dropped.
Also, al privilege entries in the catalog tables where thisrole is the <grantor>, the
<grantee>, or the object being granted will be dropped.

If the drop behavior is RESTRICT, then an error will be raised if there are any schemas
owned by thisrole or if there are any privilege entries, where thisrole isthe <grantor>,
the <grantee>, or the object being granted.

If drop behavior is not specified, then CASCADE is the default.

Y ou cannot drop the predefined roles: PBDBA and READALL.

SET ROLE Syntax

SET ROLE <rol e_nane> | NONE

Version 4.8

Usage Notes

To successfully execute this command, the current user must be the PBSY SADMIN, the
database owner, or a user granted to use thisrole. Or, the current role must be PBDBA.
This statement will set the current role for the current user to either the role specified or
to the null value if NONE is specified.

If this statement is executed and an SQL transaction is currently active, then an error will
be raised: dbexcpl TSActiveSQLX : "Invalid transaction state - active SQL -transaction”.

PointBase Developer m

Application Programming
| nterface Tools

This chapter describes what application programming interface (API) tools PointBase offers
and how to use them. Unlike other PointBase tools, for example, Commander and Console,
you can integrate the API tools explained in this chapter with a Java application. This chapter
will divide each API tool or combination of tools into sections, beginning with the main
purpose for using the tool(s), followed by a description of the Java classes and other
components, accompanied with a brief summary of how the different parts can work together
(if needed), and finally, ending with examples of how to implement the tool (s). After reading
or browsing this chapter, you may find a useful tool(s) that an application can integrate.

Load and Unload API’s

Version 4.8

PointBase provides tools that you can use to either load or unload a database, or unload atable
using the load and unload API’s. Using it, you can write your application once and call
methods to unload or load a database without having to write anything on a command line.
However, you can also create a stand-alone tool or acommand-line tool using the load and
unload API’s. Either way you choose, PointBase gives you the needed tools to load or unload a
database, or unload atable.

Unload API

To unload a database or table using the unload API, you must use the PointBase class,
“com.pointbase.tools.toolsUnload.” It contains two static methods,
“unloadDatabase(Connection p_conn, String p_filename, boolean p_preserve)” and
“unloadTable(Connection p_conn, String p_filename, String p_tableName).”

unloadDatabase(Connection p_con, String p_filename, boolean p_preserve)

To unload a complete database into directory as a specific .sql file, you must use the static
method, “unloadDatabase(Connection p_conn, String p_filename, boolean p_preserve).” You
need to create the connection and then pass the connection reference to the API. You also need
to provide the file name with the complete path; if you do not provideit, the APl will unload
the database into a .sql file located in the directory, where you launched the application.

PointBase Developer 112

PointBase

The third parameter preserves ownership when unloading. TRUE preserves the ownership of
schemas, grantorsin GRANT statements, and create ROLE owners. But, it does not preserve
the DATABASE OWNER. Whoever creates the new database becomes the database owner.
See the exampl e after the unload table method.

unloadTable(Connection p_conn, String p_filename, Sring p_tableName)

To unload an entire table into a specific .sql file and directory, you must use the static method,
“unloadTable(Connection p_conn, String p_filename, String p_tableName).” You need to
create the connection and then pass the connection reference to the API. You also need to
provide the file name with the complete path; if you do not provide it, the API will unload the
table into a .sql file located in the directory where you launched the application. If you unload
atable, you must provide the complete-qualified name of the table; that is,

“<schema _name>.<tableName>"; if you do not provide it, the API will search for the table
name in the current schema path. For mixed-case-table names, the example describes the
supported syntax.

i nport com poi nt base. t ool s. t ool sUnl oad;
i mport java.sql.*;

public class test

{

Connecti on m con;
public test() throws Exception

Cl ass. for Name("com poi nt base. j dbc. j dbcUni versal Driver");
m con = Driver Manager. get Connecti on("j dbc: poi nt base: enbedded: sanpl e", "pbpublic",
"public");

public void unl oadDat abase() throws Exception

t ool sUnl oad. unl oadDat abase(m con, "e:\\pointbase\\database.sql", true);

t ool sUnl oad. unl oadTabl e(m con, "e:\\pointbase\\table.sql", "public.t1");
/ltabl e names are case-sensitive, see the follow ng:

t ool sUnl oad. unl oadTabl e(m con, "e:\\pointbase\\tablel.sql", "public.ajay");

public static void main(String[] args)

{

Version 4.8

test t = new test();
t. unl oadDat abase() ;

cat ch(Exception ex)

System out. println("Exception occurred: " + ex);

Sand-Alone or Command Line Tool

To use the unload tool on the command line, you can use the following example, which
unloads a complete database into the file, “ database.sql” in the directory, “e\.” It also
preserves the ownership of schemas, grantorsin GRANT statements, and create ROLE
owners. But, it does not preserve the DATABASE OWNER. Whoever creates the new
database becomes the database owner. You must provide the file name with the complete path;
if you do not provide it, the API will unload the table into a .sql file located in the directory
where you launched the application.

PointBase Devel oper 113

PointBase

If you unload atable, you must provide the complete-qualified name of the table; that is,
“<schema_name>.<tableName>"; if you do not provide it, the APl will search for the table
name in the current schema path. For mixed-case-table names, the example describes the
supported syntax. It uses the following default options:

e -driver com.pointbase.jdbc.jdbcUniversal Driver
e -url jdbc:pointbase:embedded:sample
e -user PBPUBLIC

e -password PBPUBLIC
java com poi ntbase. tool s. t ool sUnl oad
—driver com poi ntbase.jdbc.jdbcUniversal Driver —url jdbc: poi ntbase: enbedded: sanpl e —
file e:\database.sql -preserve true —user pbpublic —password pbpublic -table null
To unload atable, you can refer to the following example:
java com poi ntbase. tool s. t ool sUnl oad

—driver com poi ntbase.jdbc.jdbcUniversal Driver —url jdbc: poi ntbase: enbedded: sanpl e —
file e:\table.sql —user pbpublic —password pbpublic -table pbpublic.tablel

Load API

To load a database using the load API, you must use the PointBase class,

"com.pointbase.tools.toolsLoad.” It contains couple of static method, First "load (Connection
p_conn, String p_filename)."

load(Connection p_conn, Sring p_filename)

Using this method, you must first create the connection and then pass the connection reference
to the API. You must also provide the file name with the complete path, if you do not provide
the complete path, the API will try to load the file from the current location of the application.

The following example describes the connection, "m_con" and the complete path and file
name, "e:\pointbase\database.sql."
i nport com poi ntbase. tool s. tool sLoad ;
i mport java.sql.*;
public class test
Connecti on m con;
public test() throws Exception

Cl ass. for Name("com poi nt base. j dbc. j dbcUni versal Driver");
m con = Driver Manager. get Connecti on("j dbc: poi nt base: enbedded: sanpl e", "pbpublic",
"pbpublic");
oo _ _
public void | oadDat abase() throws Exception

tool sLoad. | oad(m.con, "e:\\pointbase\\database.sql");

public static void main(String[] args)

{
try
test t = new test();
t. | oadDat abase();
cat ch(Exception ex)
System out. println("Exception raised: " + ex);
}

Version 4.8 PointBase Devel oper 114

PointBase

Second "load (Connection p_conn, InputStream p_in)".
load (Connection p_conn, InputStream p_in)

Using this method, you must first create the connection and then pass the connection reference

tothe API. You must also provide the InputStream; if you do not provide it, your program will
not compile. The following example describes the connection, "m_con" and an Input file
Stream to read from afile with the specified name "e:\pointbase\database.sql."

i nport com poi nt base. t ool s. t ool sLoad;
i mport java.sql.*;

import java.io.*;

public class test

Connecti on m con;
public test() throws Exception

Cl ass. for Name(" com poi nt base. j dbc. j dbcUni versal Driver");
m con = Driver Manager. get Connecti on("j dbc: poi nt base: enbedded: sanpl e", "pbpublic",
"pbpublic");

}
public void | oadDat abase() throws Exception
t ool sLoad. | oad(m_con, new Fil el nput Strean{"e: \\ poi nt base\\ dat abase. sql"));

public static void main(String[] args)

try

test t = new test();
t. | oadDat abase() ;

cat ch(Exception ex)

System out. println("Exception raised: " + ex);

Sand-Alone or Command Line Tool

To use the load tool on the command line, you can use the following example, which loads a
complete database into thefile, “database.sgl” in the directory, “e:\.” You must provide the
file name with the complete path; if you do not provideit, the APl will try to load the file from
the current location of the application. It uses the following default options:

e -driver com.pointbase.jdbc.jdbcUniversal Driver
e -url jdbc:pointbase:embedded:sample

e -user PBPUBLIC

e -password PBPUBLIC

java com poi nt base.tool s.tool sLoad —driver com poi nt base.j dbc.j dbcUniversal Driver -
url jdbc: poi nt base: enbedded: sanpl e —file e:\database.sql —-user pbpublic —
password pbpublic -l og true

Version 4.8 PointBase Devel oper 115

PointBase

Database Compress Tool

PointBase provides atool that you can use to compress the database. Thistool can be only used
asacommand linetool.

Command Line Tool

To use the Compresstool on the command line, you can use the following example, which will
compress the database called "sample" in the directory "e:\". Make sure that the user specified
isPBSYADMIN, Database Owner or the default role for that user is PBDBA. A backup of the
existing database will made and the name of the backed up database will renamed as
<database>.bak. The tool uses the following default options:

-database sample

-user PBPUBLIC

-password PBPUBLIC
-unloadfolder <current folder>
-unloadfilename sample.sql

java com poi nt base. t ool s. t ool sDbConpress -database sanple -user PBPUBLIC -password
PBPUBLI C - unl oadf ol der e:\ -unloadfilenane sanpl e. sql

The database must be located on thelocal machine. This utility will not work over the network.
The user needs to set the database home either using the java -D option or by providing
pointbase.ini in the current folder from where this utility isrun. The user should have enough
disk space for the unload file, the backed up database and the new database.

Important Note for UniSync Users

If you are using Uni Sync - the database synchronization tool for PointBase databases - to
synchronize adatabase and you use the compress tool on it, the next synchronization must be a
snapshot operation. UniSync tracks incremental activity using the database log files and
performing a compress operation results in the log files being completely regenerated.
Incremental activity tracking cannot survive this, and so afresh snapshot is required following
a database compress operation.

Version 4.8 PointBase Devel oper 116

Appendix A: SQL Reference

Conventions

This section describes documentation conventions. There are two basic conventions:

1. Pageformat conventions provide a structure for the organization of individual pages
in the documentation.

2. Syntax conventions convey specific information about keywords and clauses in the
SQL statements described in this document.

Page Format Conventions

Each SQL statement in the data manipulation language, data definition language, and
transaction control sections of the PointBase SQL documentation uses a specific page format.

Version 4.8

Each statement page starts with the primary keyword of the statement, which displays at
the heading of the page; for example, SELECT.

The statement keyword(s) is followed by the syntax of the statement. The statement
syntax follows the conventions described in “ Syntax Conventions,” below.

Immediately following the statement syntax is a brief description of the overall statement.

Detailed explanations are then described for each keyword and clause in the statement.
Some clauses may include a more detailed explanation of their own syntax or linksto
other documents that describe clauses that are common to more than one SQL statement.

PointBase Developer 117

PointBase

Syntax Conventions

Each SQL statement uses certain types of capitalization, formatting, and punctuation that
describe the attributes of different portions of the statement.

« |If aportion of an SQL statement displaysin UPPERCASE, the capitalized words are
keywords, which are generally required in the SQL statement or clause. Keywords are not
case sensitive, and they must be spelled exactly as they display in this document.

» Portions of SQL statements that display in lowercase italic are SQL values. SQL values
used in PointBase SQL can be constants, column names, values formed from
combinations of column values and constants, or the result of any function that returns a
single value. The values for variables in conditional expressions are case sensitive.

» Theclausesin an SQL statement that display between [brackets] are optional. If an
optional clause has several components or keywords, they display within the brackets.

e Curly braces{} in SQL statements indicate that one or more clauses are used together.

e Ellipsesare sets of periods (such as*“...”). Ellipsesin an SQL statement have the same
meaning as “ etc.”; they denote that the series of keywords, clauses, or variables that
precede the ellipses go on indefinitely.

Data Definition Language

The following section describes the syntax for creating and managing logical data objects. The
Data Definition Language (DDL) is essential to creating a database. Use the following DDL
statements and operations to begin building your PointBase database.

e "CREATE SCHEMA" on page 119

e "CREATE TABLE" on page 120

e "CREATE VIEW" on page 132

¢ "CREATE USER" on page 134
 "CREATE ROLE" on page 135

e "CREATE INDEX" on page 136

e "CREATE FUNCTION" on page 137
e "CREATE PROCEDURE" on page 141
 "CREATE TRIGGER" on page 144
 "ALTER USER" on page 153

e "ALTER TABLE" on page 151

Version 4.8 PointBase Developer 118

PointBase

CREATE SCHEMA

CREATE SCHEMA schema_nane
[AUTHORI ZATI ON user _nane]

[COUNTRY country_code [LANGUAGE | anguage_code]]

The CREATE SCHEMA statement creates a schemain a PointBase database.

Syntax

CREATE SCHEMA

The CREATE SCHEMA keyword isrequired as the first words
ina CREATE SCHEMA statement.

schema_name?

The name of the schema.

user_name

The schema owner name or the role name. If you specify arole
name, any user who enables the specified role can have full
schema ownership privileges. The schema owner name or the
role name must exist in the database or an error is raised. If
user_name is not specified the current user_name is the owner of
the schema.

country_codeb

Specifies the country code. The default country codeisUS
English. When this option isused, char datais stored as Unicode.
If thisoption isNOT used, char, varchar, and CLOB columns use
US ASCII values.

language code

Specifies the language code. The default language codeisUS
English. When this option isused, char datais stored as Unicode.
If thisoption isNOT used, char, varchar, and CLOB columns use
US ASCII values.

a. PointBase recommends to use the same name for both the schema_name and the
user_name. Once you log in, PointBase creates new objects in the schemathat has the
same name as your user_name. If no schema has the same name as your user_name,
PointBase creates the new objectsin the PBPUBLIC schema.

b. Please refer to Country and Language Codes of the PointBase System Guide for a
list of valid country codes and languages.

Version 4.8

PointBase Developer 119

PointBase

Examples

CREATE SCHEMA ORDERS
AUTHORI ZATI ON Or ders_Myr
COUNTRY FR

LANGUAGE FR;

CREATE TABLE

CREATE [GLOBAL TEMPORARY] TABLE table_name (colum_definition

tabl e_constrai nt _definition

[{, colum_definition | table_constraint_definition}...]) [TABLE PACESI ZE si ze, LOB
PAGESI ZE size] [ON COWM T { PRESERVE| DELETE} ROW8]
[COUNTRY country_code [LANGUAGE | anguage_code]]

[ORGANI ZATI ON { i NDEX| HEAP} |

The CREATE TABLE statement creates the table structures for the PointBase database. The
CREATE TABLE statement allows you to define the table by name, to define the columns,
default values, keys, and constraints on the table.

Syntax

CREATE TABLE

The CREATE TABLE keywords are required as the first words
in a CREATE TABLE statement.

GLOBAL TEMPORARY

The GLOBAL TEMPORARY keyword creates a global
temporary table. Once a global temporary table is defined, the
definition will be persistent in SY STABLES. Global temporary
table is materialized only when referenced in an SQL-Session.
Each SQL-Session maintains distinct instance of global
temporary table materialized in that session. Hence contents of
global temporary tableis not shared between SQL -Sessions. For
global temporary table, ON COMMIT clause must be supplied or
ON COMMIT DELETE ROWSisimplicitly implied.

tabl e_nane

The table_nameis the name of the table structure. The table
name cannot be the same as a PointBase keyword. Table names
in the PointBase database are not case sensitive and can be up to
128 characters long.

column_definition

The column_definition contains al the information needed to
define the columns that are a part of atable. See the following
pages for the section on column_definition syntax.

table_constraint_definition

Thetable _constraint_definition allows you to define a constraint
that is applicable to the table. Usually this type of constraint is
used when you specify multiple columns for any type of
congtraint. See the following pages for the section on
table_constraint_definitions.

Version 4.8

PointBase Developer 120

Version 4.8

PointBase

ON COMMIT
{PRESERVE | DELETE}
ROWS

This parameter specifies the lifespan of temporary tables. For on
commit preserve rows, the life of temporary tablesis for the
entire session. For on commit delete rows, the life of temporary
tablesisonly for each transaction.

TABLE PAGESI ZE si ze

Use the TABLE PAGESIZE keywords after al the column
definitions and table constraint definitions to define the page size
of thetable. If this specification is omitted, the table uses the
default pagesize as set in the database properties file

(poi nt base. i ni). Sze can be one of the following:

e anumber, such as 1024
« Kilobytes, such as 1K
¢ Megabytes, such as 1M

LOB PAGESI ZE si ze

Use the LOB PAGESIZE keywords after all the column
definitions and table constraint definitions to define the page size
of the BLOB and CLOB columns. If this specification is omitted,
the LOB uses the default pagesize. If both table and LOB
pagesizes are specified, either the table or the LOB pagesize can
be defined before the other. Sze can be the following:

e anumber, such as 1024
¢ Kilobytes, such as 1K
¢ Megabytes, such as 1M

Itisrequired only if one or more columns in the table contain
LOB characters. You should specify this only once, even if the
table has multiple LOB columns. All LOBs will use pages of this
size for storing LOBS, unless the LOB fitsinto the data page.

If this specification is omitted, the LOB pages use the default
page size.

COUNTRY country_code

Specifies the country code. The default country codeis US

English® When this option is used, char datais stored as
Unicode. If thisoption is NOT used, char, varchar, and CLOB
columns use US ASCII values.

PointBase Developer 121

Version 4.8

PointBase

LANGUAGE
language code

Specifies the language code. The default language codeisUS
English. When this option is used, char datais stored as Unicode.
If thisoption isNOT used, char, varchar, and CLOB columns use
US ASCII values.

ORGANIZATION (INDEX |
HEAP)

Specifies how the rows of the table are to be physically stored.
ORGANIZATION HEAP is the default and is sometimes
referred to in thisdocument asa"regular" table organization. Ina
regular table organization, all the rows of the table are stored in
no particular order. If ORGANIZATION INDEX is specified,
then the rows are stored in the order of the primary key values.
Therefore, aprimary key constraint must be declared if
ORGANIZATION INDEX is specified. The total declared
maximum size of al columnsin an index-organized table must
fit within the table page size, including lobs. Dropping a column,
or adding or dropping the primary key viathe ALTER TABLE
command is not allowed on an index organized table. Please see
the chapter "Index Organized Tables" for more information about
this type of table organization.

a. Pleaserefer to Country and Language Codes of the PointBase™ System Guide for alist
of valid country codes and languages

A table hasagiven locale property if the following items are fulfilled:

the country code or language code is explicitly specified in the CREATE TABLE

statement.

the country code or language code is explicitly specified in the CREATE SCHEMA

statement.

language and country settings are specified in the poi nt base. i ni file.

PointBase Developer 122

PointBase

Column_Definition Syntax

colum_nane data_type [identity_property | default_clause] [colum_constraint]

column_name

The column_name is the name of the column structure within the
table created with the CREATE TABLE statement. The column
name must be composed of aphanumeric characters or the
equivalent in another language, for example, aword in Japanese
characters and cannot be the same as a PointBase keyword. The
column name must be unique within the table that containsiit.
Column names in the PointBase database are not case sensitive
and can be up to 128 characters in length.

data_type

The data type describes the type of datathat can be stored in the
column.

identity property

| DENTITY [(start_val ue, increnment_val ue)]

IDENTITY [(start_value, increment_value)] The IDENTITY
keyword is used indicate that this column should have its values
generated by the database system. Each value is guaranteed to be
unique, starting with start_value, and is automatically
incremented by increment_value after every insert into the table.
AnIDENTITY column is sometimes referred to as an auto-
increment column, and is suitable for use as a primary key.
start_valueisthe valuethat should be used for thefirst insert into
the table. The value must be avalue greater than zero. If you do
not specify this value, the default is 1 (one). increment_valueis
an incremental value based on the start_value. The value must be
avalue greater than zero. If you do not specify this value, the
default is 1.The maximum value for either start value or
increment_valueis equal to the maximum value possible for the
datatype. For example, The maximum value possible for
NUMERIC (4,0) is9999. You can have IDENTITY columns
with exact numeric data types and a 0 (zero) scale only. The
exact numeric datatypesinclude INTEGER, SMALLINT,
NUMERIC, or DECIMAL. You cannot update IDENTITY
columns nor can you specify NULL for them. Also, you can only
have one IDENTITY columnin atable.

(See"IDENTITY Property for Autoincrement” on page 44.)

Version 4.8

PointBase Developer 123

PointBase

default_clause The default_clause allows one to specify default values for a
given column. The clause must begin with the keyword
DEFAULT. Possible default values and an example are:

e character string literal: ‘abc’

e numeric literal: 123

e datetimeliteral: time‘22:45:21’

e binary string literal: X’ 104dc2’

* boolean literal: TRUE

* NULL vaue

e datetime value functions: CURRENT_DATE,
CURRENT_TIME, CURRENT_TIMESTAMP

e gpecid registers

e SQL routine

The default value can be used with SQL Insert and Update

statements. Specify either DEFAULT or specify nothing at all
and the default value will be inserted.

Example: CREATE TABLE T1 (C1INT, C2 TIMESTAMP
DEFAULT CURRENT_TIMESTAMP)

column_constraint The column_constraint is one or more keywords that restricts the
datathat can be written to a particular column. The PointBase
database currently supports the following column constraints. All
column constraints are optional .

« NOT NULL

« PRIMARY KEY
« UNIQUE

« FOREIGN KEY
« CHECK

Version 4.8 PointBase Developer 124

PointBase

Column_Constraints

NOT NULL The optional NOT NULL keyword indicates that a particular
column must have anon-NULL value associated with it. If one
performs any action to atable that resultsin aNOT NULL
column having a NULL value, the PointBase database returns a
runtime error. The syntax for the NOT NULL column constraint
is

NOT NULL
PRIMARY KEY The optional PRIMARY KEY keyword creates an index for a

column. The syntax for the PRIMARY KEY column constraint
is:

PRI MARY KEY

The PRIMARY KEY column constraint can specify only one
column. To specify a PRIMARY KEY constraint with multiple
columns, use atable constraint.

UNIQUE The optional UNIQUE constraint defines a unique key on the
column. All values for this column must be unique.

The syntax for the UNIQUE column constraint is:
UNI QUE

The UNIQUE column constraint can specify only one column.
To specify a UNIQUE constraint with multiple columns, use a
table_constraint.

FOREIGN KEY The optional FOREIGN KEY keyword indicates that a
relationship exists between the column value of thistable
(known asthe child table) and the primary key of the parent table
referenced in the REFERENCES clause. The syntax for the
FOREIGN KEY constraint is:

FOREI GN KEY

REFERENCES t abl e_nanme (col um_nane)

[ON DELETE {NO ACTI ON | RESTRICT | CASCADE | SET

DEFAULT | SET NULL}]

[ON UPDATE {NO ACTi ON | RESTRI CT | CASCADE | SET
DEFAULT | SET NULL}]

The ON DELETE clause defines the rules for deleting specific
columns on the specified table. To do this, specify either:

NO ACTION, CASCADE, RESTRICT, SET DEFAULT or SET
NULL.

You must specify at least one identifier. NO ACTION omits the
ON DELETE clause. RESTRICT looks to see what objects are
dependent on the object being dropped and if there are dependent
objects, then the dropping of the object does not occur.
CASCADE hasthe effect of dropping all SQL objects that are
dependent on that object. SET DEFAULT assigns default values
to all components of the target column. SET NULL assigns null
values to all components of the target column.

Version 4.8 PointBase Developer 125

PointBase

The ON UPDATE clause defines the rules for updating specific
columns on the specified table. To do this, specify either:

NO ACTION, RESTRICT, CASCADE, SET DEFAULT or SET
NULL.

If the ON DELETE or ON UPDATE clauses are omitted, the
default isNO ACTION.

FOREIGN KEY REFERENCES are required keywords,
table_name is the name of atable that already existsin the
PointBase database, and the column_names are the names of the
columns that define the primary key of the referenced table.

This column and the column in the referenced table must have
exactly the same datatype. The referenced table must have a
unique or primary index on the specified column.

A foreign key relationship means that any values written to a
column with an INSERT or UPDATE statement must already
exist asavaluein the primary key of the referenced table and
columns.

CHECK The optional CHECK keyword indicates that the value of a
column to be inserted or updated must meet the criteria of the
check constraint. The syntax for the CHECK constraint is:

CHECK (search_condition)

wherethesearch_condition followstherulesof search conditions.

Table Constraint_Definition

Thetable _constraint_definition allows you to define aconstraint that is applicable to the table.
Usually thistype of constraint is used when you specify multiple columns for any type of
constraint. There can only be asingle column_constraint per column. The
table_constraint_definition uses the syntax of:

[CONSTRAI NT constrai nt _nanme] {unique_constraint | referential _constraint
| check_constraint} [<constraint characteristics>]

<constraint characteristics> ::= <constraint check time> [[NOT | DEFERRABLE]
| [NOT] DEFERRABLE [<constraint check tine>]
<constraint check tinme> ::= N TIALLY DEFERRED | | N TI ALLY | MVEDI ATE
constraint_name The name that one supplied to identify a constraint. Each

constraint_name must be unique for atable. The
constraint_name is optional but if two constraints have the same
definition, then they will each need a name for uniqueness.

unique_constraint The unique_constraint defines an explicitly named primary key
or unigue constraint of one or more columns.

The syntax for the unique_constraint is:

{UNI QUE | PRI MARY KEY} (columm_nane [{,
colum_nane}...])

Version 4.8 PointBase Developer 126

Version 4.8

PointBase

referential_constraint

Thereferential_constraint defines an explicitly named foreign
key constraint of one or more columns.

The syntax for the referential_constraint is:

FOREI GN KEY (colum_nane [{, columm_nane}...])
REFERENCES t abl e_name [{col um_nane,
col umm_nane, ...}]

[ON DELETE { NO ACTI ON | CASCADE | RESTRICT | SET
DEFAULT | SET NULL}]

[ON UPDATE { NO ACTI ON | CASCADE | RESTRICT | SET
DEFAULT | SET NULL}]

[I NDEX PAGESI ZE <si ze>]

A given foreign key and its matching candidate key must contain
the same number of columns, N, such as: the Ith column of the
foreign key corresponds to the Ith column of the matching key (I
= 1to N), and corresponding columns must have exactly the
same data type.

The referenced table must have a unique or primary index on the
specified columns. Not allowed on a view. PointBase raises an
error if you attempt thison aview.

If the column_name for the referenced table is omitted, it
defaults to the columns in the primary key of the referenced
table.

PointBase Developer 127

PointBase

ON DELETE The ON DELETE clause defines the rules of behavior when an
attempt is made to delete arow in the parent table that has a
corresponding row in the referencing table that is dependent on
the row in the parent table. The dependency is based on the
columns of the FOREIGN KEY in the parent table and
corresponding columns in the referencing table. The purpose of
this clause isto avoid dangling references.

If the behavior ruleis CASCADE, then all dependent or
matching rows in the referencing table are deleted when the row
in the parent table is deleted.

If the behavior ruleisNO ACTION, then if an attempt ismade to
delete arow in the parent table that has a dependent row in the
referencing table, the row in the parent table will not be deleted.

If the behavior ruleis RESTRICT, then if an attempt is made to
delete arow in the parent table that has a dependent row in the
referencing table, the row in the parent table will not be deleted.
The database checks before attempting to delete the row in the
parent table.

If the behavior ruleis SET DEFAULT, then the columns of the
rows in the referencing table are set to default values for their
respective columns when the row in the parent table is deleted.
Each column of the referencing table that corresponds to the
FOREIGN KEY in the parent table must have a default value or
an exception will be raised.

If the behavior ruleis SET NULL, then the columns of the rows
in the referencing table are set to the SQL NULL value for their
respective columns when the row in the parent table is del eted.
Each column of the referencing table that corresponds to the
Foreign Key in the parent table must allow SQL NULL valuesor
an exception will be raised.

Version 4.8 PointBase Developer 128

PointBase

ON UPDATE

The ON UPDATE clauses defines the rules of behavior when an
attempt is made to update the FOREIGN KEY columnsin the
parent table that has a corresponding row(s) in the referencing
table that is dependent on the values of the FOREIGN KEY
columnsin the parent table.

If the behavior ruleis CASCADE, then all dependent or
matching columns of rows in the referencing table are updated
with the new values in the FOREIGN KEY columns of the
parent table row.

If the behavior ruleisNO ACTION, then if an attempt ismade to
update columns of the FOREIGN KEY in the parent table and
there are columns of rowsin the referencing table that are
dependent on the pre-updated values, then the update of the
FOREIGN KEY columnsin the parent table do not occur.

If the behavior rule is RESTRICT, then if an attempt is made to
update columns of the FOREIGN KEY in the parent table and
there are columns of rowsin the referencing table that are
dependent on the pre-updated values, then the update of the
FOREIGN KEY columnsin the parent table does not occur. The
database checks before attempting to update the row in the parent
table.

If the behavior ruleis SET DEFAULT, then all dependent or
matching columns of rows in the referencing table are updated
with the default values of the referencing table. Each column of

the referencing table that corresponds to the FOREIGN KEY in
the parent table must have a default value or an exception will be
raised.

If the behavior ruleis SET NULL, then the columns of the rows
in the referencing table are set to the SQL NULL value for their
respective columns when the row in the parent table is updated.
Each column of the referencing table that corresponds to the
Foreign Key in the parent table must allow SQL NULL valuesor
an exception will be raised.

check constraint

The check_constraint defines an explicitly named check
constraint of one or more columns.

The syntax for the check_constraint is:

CHECK (columm_nane search_condition)

Version 4.8

PointBase Developer 129

Version 4.8

PointBase

constraint
characteristics

The constraint_characteristics defines deferrable characteristics
for this constraint. A constraint may be set to deferrable or not
deferrable and initial behavior of constraint check time to be
initially deferred or initially immediate. The syntax rule is as
follows:. If constraint check time is not specified, then initialy
immediateisimplicit.. If deferrable is not specified, then not
deferrable isimplicit.

constraint check time

The constraint check time defines the initial behavior of a
constraint, it can be initially deferred or initially immediate. The
syntax ruleis asfollows.. If initially deferred is specified, not
deferrable shall not be specified or deferrable isimplicit. If
initially immediate is specified or implicit and neither deferrable
nor not deferrable is specified, then not deferrable isimplicit.

NOTE: Creating atable with the CREATE TABLE statement creates the table structures, but
does not add any datato the table. An INSERT statement for atable, or aLOAD viaan
IMPORT statement in PointBase Console, or a RUN in PointBase Commander, must
follow the creation of the table.

PointBase Developer 130

PointBase

Example 1
CREATE TABLE ORDER TBL

(ORDER_NUM I NT,
CUSTOVER_NUM I NT,
REP_NUM I NT,
PRCDUCT_NUM I NT,
SALES TAX_ ST CD CHAR (2),
QUANTI TY SMALLI NT,
SHI PPI NG_COST DECI MAL(12, 2),
SALES DATE DATE,
DELI VERY_DATETI ME Tl MESTAMP,
FREI GHT_COMPANY VARCHAR (30))
COUNTRY FR
LANGUAGE FR;

Example 2

This creates a table with a 5k page size:
CREATE TABLE TM6 (Cl | NT PRI MARY KEY) TABLE PAGESI ZE 5K;

This creates a table with a default page size, but the primary key constraint specifies a page
size of 2K for theindex:

CREATE TABLE TM (C1 I NT NOT NULL, C2 CHAR (10),
CONSTRAI NT PKCONSTRAI NT PRI MARY KEY (Cl1)
| NDEX PAGESI ZE 2K);

In this example, each index has a different pagesize:

CREATE TABLE TMF (C1 INT, C2 CHAR (10), C3 I NT NOT NULL,
CONSTRAI NT PK_TMF PRI MARY KEY (C3) | NDEX PAGESI ZE 5K
CONSTRAI NT FK_TMF FOREI GN KEY (Cl1) REFERENCES TM (Cl) | NDEX PACESI ZE 3K);

In this example, al LOBs in the table have pagesize and the LOBs automatically create 5K
pagesize file for the LOB index:

CREATE TABLE TMBLOB (C1 INT NOT NULL, C2 BLOB (10K), C3 BLOB (5K))
LOB PAGESI ZE 5K;
CREATE | NDEX TM X ON TMBLOB (Cl) | NDEX PAGESI ZE 6K;

Example 3

This creates a table with a column having the IDENTITY property. This column will have the
ability to autoincrement the values for each row.

CREATE TABLE TAB1(ID I NT | DENTITY, NAME VARCHAR(30));

Example 4

CREATE TABLE T1 (C1 INT, C2 TI MESTAMP DEFAULT CURRENT_TI MESTAWP) ;

Version 4.8 PointBase Developer 131

PointBase

CREATE VIEW

CREATE VI EW <vi ew nane> [(view colum_list)]

AS query_expression

[WTH [levels_clause] CHECK OPTI ON]

The CREATE VIEW statement creates a view or derived table in the PointBase database.

Notes

e Tocreate aview, you must own the schema, in which you are creating the view.
e You must have SELECT permission on all referenced columns of all referenced tablesin

the query expression.

* You can have “nested views,” which are views that reference other views.
e Togrant privileges on aview, you must have SELECT grant privileges on all referenced
columns of all referenced tables in the query expression.

Syntax

CREATE VIEW

The CREATE VIEW keywords are required as the
first wordsin a CREATE VIEW statement

view_name

The name of the view. The nameis not case sensitive
and can be up to 128 characters long.

view_column_list

Specify aview column list if the query expression
includes two columns with the same name. The view
column list and the query expression must specify the
same amount of column names. If no view column
list is specified, then the view column names are
derived from the query expression (select column
list).

query_expression

Thisisa SELECT statement. If the query expression
does not include a column, it must have an AS clause
correlation name defined. If it includes a column, the
view column name is the column name without any
table correlation name. The query expression is not
allowed to contain any parameters and is limited to
3958 characters.

Version 4.8

PointBase Developer 132

PointBase

WITH CHECK OPTION This option uses the WHERE clause in the view'’s
query_expression like atable constraint: all resultant
rowsfrom an INSERT or UPDATE on the view must
satisfy the WHERE clause. If no levels_clauseis
specified, CASCADED isimplicit.

However, PointBase currently does not support
Updateable Views. That is, PointBase supports the
syntax for WITH CHECK OPTION, but currently
not the semantics.

levels clause CASCADED indicatesthat all resultant rowsfrom an
INSERT or UPDATE on the view must satisfy theits
own WHERE clause and the WHERE clause of any
views that are referenced.

LOCAL indicates that all resultant rows from an
INSERT or UPDATE on the view must only satisfy
its own WHERE clause.

If nolevels clauseis specified, CASCADED is
implicit.

Examples

CREATE VI EW cust oner _or der

AS sel ect order_num order _tbl.custoner_num custoner_tbl.nane
FROM order _thl, custoner_thl

WHERE product _num = 10;

CREATE VI EW cust oner _order 1

AS sel ect order_num order _tbl.custoner_num

FROM order _thl, custoner _thl

VWHERE or der _tbl. customer_num = custoner _tbl.custonmer_num

CREATE VI EW cust oner _or der 2

AS sel ect order_num order _tbl.custoner_num

FROM order _thl, custoner_thbl

VWHERE or der _tbl. customer_num = custoner_tbl.custoner_num and product _num=10;

CREATE VI EW naner eps

AS sel ect first_nane, | ast_nane

FROM sal es_rep_tbl

VWHERE | ast _yr_sales in (4000, 6000, 10000);

CREATE VI EW order _by _rep (who, how_many, total, | ow, hi gh, aver age)
AS sel ect rep_numcount(*), sun(quantity),mn(quantity), max(quantity), avg(quantity)
FROM order _tbl group by rep_num

CREATE VI EW cust oner _or der 3
AS sel ect order_numfirst_name
FROM cust onmer _or der, naner eps;

CREATE VI EW exceed_quot as

AS sel ect office_num sun{quota) as sumquota, sum(ytd_sales) as sumytd
FROM sal es_rep_t bl

GROUP BY office_num

HAVI NG sum(ytd_sal es) > sun{quota);

Version 4.8 PointBase Developer 133

PointBase

CREATE USER

The CREATE USER statement creates a user in a given PointBase database and can assign a
default role to that user. To successfully execute this command, the current user must be the
PBSY SADMIN or the database owner. [See "Predefined Users" on page 89.] Or, the current
role must be PBDBA. [See "Predefined Roles" on page 93.]

The user_name and password are SQL identifiers and behave like any other identifiers. They
will be converted to uppercase if not specified within double quotes and will be taken asit is
when specified within the double quotes.

The user names and passwords are used by JDBC methods, which create a connection. The
user names and passwords are specified as java strings in these methods and do not follow
samerules as SQL identifiers. This could lead to problems where connection will fail dueto
invalid password. To avoid this problem the INI parameter
connection.convertUserInfoToUppercase will indicate the behavior of username and password
strings in the JDBC connection methods. This INI parameter will determine whether the
usernames and passwords in the JDBC connection methods will be converted to upper case or
taken as specified. The default valueisto convert to uppercasei.e value of the INI parameter is
true. For enhanced security the value for thisINI parameter can be set to false which meansthe
usernames and passwords have to be specified as created in the CREATE USER and ALTER
USER statements. Also note that the username and password for the default user PBPUBLIC
will always be treated as uppercase.

Syntax

CREATE USER user _name PASSWORD password [DEFAULT ROLE Rol e- Speci fi cati on]

<user _nane>:
<passwor d>:

| DENTI FI ER

| DENTI FI ER

<Rol e- Speci fication> | DENTI FI ER

CREATE USER The CREATE USER keyword are required asthefirst wordsin a
CREATE USER statement.
user_name The name of the new user. You cannot use the keyword
PUBLIC or an existing role name for the user name.
password The password associated with the user.
role_specification The default role_specification is NONE.
Example

1. CREATE USER Pol nT PASSWORD BaSE;
Creates a user PO NT with password BASE.

2. CREATE USER "Pol nT" PASSWORD "BaSE";
Creates a user PolnT with password BaSE.

Version 4.8

PointBase Developer 134

PointBase

CREATE ROLE

PointBase supports this statement. Please refer to the section, "CREATE ROLE Syntax" on
page 108

Version 4.8 PointBase Developer 135

PointBase

CREATE INDEX

CREATE [UNI QUE] | NDEX i ndex_nane

ON t abl e_nane

(columm_nane [sort_order] {, colum_name [sort_order]...})
[1 NDEX PAGESI ZE si ze]

The CREATE INDEX statement creates the index structures.

Syntax

CREATE INDEX The CREATE INDEX keywords arerequired asthefirst wordsin
aCREATE INDEX statement.

[UNIQUE] If the UNIQUE keyword is specified, then the index will be
defined as a unique index where duplicate values of the keys are
not allowed.

index_name Theindex_nameisthe name of the index. Compose the index
name of alphanumeric characters or the equivalent in another
language, for example, aword in Japanese characters, which are
not the same as a PointBase keyword, unless the nameisa
delimited identifier. The index name must be unique for itstable.
Index namesin the PointBase database are not case sensitive and
can be up to 128 characters in length.

ON Use the ON keyword between the index_name and the
table_name.

tabl e_nane The table_name refersto atable in the PointBase database. The
table_name must refer to atable that has already been created at
the time the CREATE INDEX statement executes.

Not allowed on a view. PointBase raises an error if you attempt
to use aview.

column_name The column_name identifies a column in the table named in the

table_name of the CREATE TABLE statement. There can be any
number of columns. Total maximum length of all columnsin an

index must not exceed the pagesize.

[sort-order] This optional clause specifies the sorting order of the column or
columnsin the index. The acceptable values for the ordering
keyword are ASC or ASCENDING for columns that sort from
the lowest value to the highest value in the column, and DESC or
DESCENDING for columns that sort from the highest value to
the lowest value in the column. Each column-name can only have
one ordering keyword. If you do not include an ordering
keyword, the sort order is ASCENDING.

Version 4.8 PointBase Developer 136

CREATE

PointBase

| NDEX PAGESI ZE Use the INDEX PAGESIZE keywords between the sort_order
and the size.

size Theindex size identifies the number of digits, KB, or MB
reserved for theindex. Size can be:
e anumber, such as 1024
* KiloBytes, such as 1K
Theindex page size should be less than or equal to 32KB and the
minimum is 1 KB. The default pagesize is 4KB unless a specific
size hasbeen set inthe poi nt base. i ni file.

Examplel

This creates an index:
| NDEX ORDER_| ND

ON ORDER TBL (ORDER NUM DESC, CUSTOVER NUM ASC);

CREATE

Example2

This creates an index with a pagesize of 2K:

UNI QUE | NDEX | NDEX1

ON SALES_TBL
(CUSTOVER_NUM SALES DATE, PRODUCT_NUM

| NDEX

PAGESI ZE 2K;

CREATE FUNCTION

CREATE FUNCTI ON functi on_nane([paraneter_definition [{,paraneter_definition}...]])

Version 4.8

RETURNS return_cl ause
LANGUAGE JAVA
SPECI FI C speci fic_nane
sql _data_access

EXTERNAL NAME external function

PARAMETER STYLE SQL

Using a stored function, you can automatically convert data to be stored in a PointBase
database, without ever seeing the underlying conversion.

PointBase Developer 137

Version 4.8

PointBase

Syntax

Function_name

Function_name defines a stored function in a schema. The
following are usage rules.

e Including a schemaname is optional. The following syntax
isfor function_name:

[schenma_nane.] functi on_nane

e |t must be composed of aphanumeric characters or the
equivalent in another language, for example, Japanese
characters.

e |t hasamaximum limit of 128 characters long.

e Itisnot case sensitive.

e |t cannot have the same name as a PointBase keyword.
e |t must be unique in the schema specified.

Parameter_definition

The parameter _definition specifies the parameter_mode,
parameter_name, and parameter_data_type. (The
parameter_name is optional.) The parameter_mode must be the
value, IN. The parameter_data_type must be one of the
PointBase data types. Separate multiple parameter_definitions
with acomma. The following syntax isfor
parameter_definitions.

I N [paranet er_nane] Poi nt Base_data_type

RETURNS
return_clause

This clause specifies the return data type in a stored function.
The data_type must be one of the PointBase data types.

Thereturn_clause allows the following syntax: <PointBase data
types> or TABLE (pointbase data type
[{,pointbase_data_type}...]), or

<return_type> CAST FROM <original_return_type>, where you
cast the <original_return_type> from the Java function to the
new type, <return_type>.

NOTE: RETURNS return_clause is used with stored functions
only. Stored procedures do not useit.

LANGUAGE JAVA

The clause specifies the language that the stored function usesto
call the external function. It can take the following value: JAVA.

PointBase Developer 138

PointBase

SPECIFIC The SPECIFIC specific_name clause specifies a name that you
specific_name can use instead of the function_name when invoking a stored
function. The specific_name must be unique within its schema. If
a specific_name is specified, then routine determination is not
used. Routine determination is the process that determines which
function to invoke based on the function_name, SQL argument
list, and the current path of schemas. Refer to the “ Search
Conditions and Predicates’ chapter for more information on
routine determination.

Sql_data_access This clause indicates the usage of SQL statements within the
external function of astored function. Table 1 describes the
values that the sql_data_access clause allows.

EXTERNAL NAME The EXTERNAL NAME specifies an external function. The
external function external function must be static, or the class the function isin
must define a constructor that takes a“java.sgl.Connection”
object. If itisstatic, it iscalled directly, no instance of the class
will be created hence no connection object will be established in
the procedure.

PARAMETER STYLE This clause represents the parameters being passed according to
L SQL rulesrather than a host language.

Table 1: Sql_data_access Values

Value Description

NO SQL It signifies that the external function cannot contain any SQL
Statements.

CONTAINS SQL It specifies that the external function can contain SQL statements

but none that read or modify data.

READS SQL DATA It specifies that the external function can contain any SQL statement
that does not modify SQL data.

MODIFIES SQL DATA | It specifiesthat the external function can contain any SQL statement
that isnot a DDL or Transaction Control statement

Example

CREATE FUNCTI ON dat eConvert(| N P1 VARCHAR(20))
RETURNS Dat e

LANGUACGE Java

NO SQL

EXTERNAL NAME " Sanpl eExt er nal Met hods: : dat eConvert"
PARAMETER STYLE SQL;

NOTE: Seethe“PointBase JDBC Advanced Tutorial” chapter in this guide for more
information about functions in PointBase.

Version 4.8 PointBase Developer 139

PointBase

Version 4.8 PointBase Developer 140

PointBase

CREATE PROCEDURE

CREATE PROCEDURE procedure_nane([paranmeter_definition [{, parameter_definition}...]])
LANGUAGE JAVA
SPECI FI C speci fi c_nane
sql _data_access
EXTERNAL NAME external _procedure
PARAVETER STYLE SQL
[REENTRANT| NON_REENTRANT]

Using astored procedure you can return data from a database to a user interface. When the
database system returns the data, it is automatically converted from the original valueinto a
user-defined data type value.

Syntax

Procedure_name Procedure_name defines a stored procedure in a schema. The
following are usage rules.

e Including a schemaname is optional. The following syntax
isfor procedure_name:

[schena_nane.] procedur e_nane

e It must be composed of aphanumeric characters or the
equivalent in another language, for example, Japanese
characters.

e |t hasamaximum limit of 128 characters long.

* Itisnot case sensitive.

e |t cannot have the same name as a PointBase keyword.

e |t must be unique in the schema specified.

Parameter_definition The parameter_definition specifies the parameter_mode,
parameter_name, and parameter_data type. (The
parameter_name is optional.) The parameter_mode can be the
values, IN, OUT, or INOUT. The parameter_data_type must be
one of the PointBase data types. Separate multiple
parameter_definitionswith acomma. Thefollowing syntax isfor
parameter_definitions.

I N [paraneter_nane] PointBase_data_type

LANGUAGE JAVA The clause specifies the language that the stored procedure uses
to call the external procedure. It can take the following value:
JAVA.

Version 4.8 PointBase Developer 141

PointBase

SPECIFIC The SPECIFIC specific_name clause specifies a name that you
specific_name can use instead of the procedure_name when invoking a stored
procedure. The specific_name must be unique within its schema.
If a specific_name is specified, then routine determination is not
used. Routine determination is the process that determines which
procedure to invoke based on the procedure_name, SQL
argument list, and the current path of schemas. Refer to the
“Search Conditions and Predicates’ chapter for moreinformation
on routine determination.

Sql_data_access This clause indicates the usage of SQL statements within the
external procedure of a stored procedure. Table 2 describes the
values that the sql_data_access clause allows.

EXTERNAL NAME The EXTERNAL NAME specifies an external procedure. The

external procedure external procedure must be static, or the classthe procedureisin
must define a constructor that takes a“java.sgl.Connection”
object.

PARAMETER STYLE This clause represents the parameters being passed according to
L SQL rules rather than a host language.

REENTRANT | This parameter specifies this procedure to be reentrant or non-
NON_REENTRANT reentrant.

Default is non-reentrant.

Reentrant procedure allows user to reuse external procedure
instances without recreating instances every time the procedure
iscalled, hence it has better performance than non-reentrant
procedures. PointBase creates only one external procedure
instance for each external procedure called in each connection.
This procedure instance is reused next time the same procedure
is called in the same connection. Since the procedure instance is
reused, values of object members may remain the same value as
last run. User isresponsible to re-initialize them if necessary.

Non-reentrant, the default, procedure will create external
procedure instance every timeit is called. Members of this
instance will be their default value because thisis anew instance
every time.

User may also make the procedure to be static. Static procedures
will be called without creating an external procedure instance.
But, for static procedure, user will not be able to associate
connection object with procedures, which mean it may not be
able to perform database operation in the same connection as
caller. But, if same connection is not a requirement for this
procedure, static procedure performs better than reentrant and
non-reentrant procedures.

Version 4.8 PointBase Developer 142

PointBase

Table 2: Sql_data_access Values

Value Description

NO SQL It signifies that the external procedure cannot contain any SQL
statements.

CONTAINS SQL It specifies that the external procedure can contain SQL statements

but none that read or modify data.

READS SQL DATA It specifies that the external procedure can contain any SQL
statement that does not modify SQL data.

MODIFIES SQL DATA | It specifiesthat the external procedure can contain any SQL
statement that is not a DDL or Transaction Control statement

Example 1

CREATE PROCEDURE get Cost(I N P1 VARCHAR(20), I N P2 VARCHAR(2), |NOUT P3 FLQOAT)
LANGUAGE JAVA

SPECI FI C get Cost

NO SQL

EXTERNAL NAME " Sanpl eExt er nal Met hods: : get Cost "

PARAVETER STYLE SQL;

Example 2

CREATE PROCEDURE get Cost(I N P1 VARCHAR(20), I N P2 VARCHAR(2), |NOUT P3 FLQOAT)
LANGUAGE JAVA

SPECI FI C get Cost

NO SQL

EXTERNAL NAME " Sanpl eExt er nal Met hods: : get Cost "

PARAMVETER STYLE SQL

REENTRANT;

Example 3

This exanpl e shows a non-reentrant procedure. In this procedure, mTinmestanp is
initialized in constructor, reentrant procedure calls construct the first tine it is
called, so mTinmestanp will not be reset every tinme it is called.

Public class Procl {
private Connection m Con;
private | ongm Ti meSt anp;

public Procl (Connection p_Con) {
m Con = p_Con;
m Ti mneStanp = SystemcurrentTimeM I 1is();

}

public void log(String p_Mg)
Pr epar edSt at enent ps = m Con. prepar eSt at enent (
"insert into Log values (?,?)");
ps.setLong(1, mTimeStanp);
ps.setString(2, p_Msg);
ps. execute();

Version 4.8 PointBase Developer 143

PointBase

Example 4

By moving m Timestanp fromexanple 3 to be a local variable in nethd log(), this
procedure can be nmade to be reentrant.

Public class Procl {
private Connection m Con;

public Procl (Connection p_Con) {
m Con = p_Con;
}

public void log(String p_Mg) {
long | _TimeStanp = SystemcurrentTimeM I 1is();
Pr epar edSt at enent ps = m Con. prepar eSt at enent (
"insert into Log values (?,?)");
ps.setLong(1, | _TimeStanp);
ps.setString(2, p_Msg);
ps. execute();

NOTE: Seethe“PointBase JDBC Advanced Tutorial” chapter in this guide for more
information about stored procedures in PointBase.

CREATE TRIGGER

CREATE TRI GGER <trigger nane>
<trigger action time> <trigger event>
ON <tabl e nane>

[REFERENCI NG <r ef erenci ng cl ause> |
<trigger action>

A trigger can specify additional constraints and business rules within the database to manage
the various executions of an application. A trigger operates automatically by executing or
firing aDELETE, INSERT, or UPDATE SQL statement on a table with which the trigger is
associated. The trigger definitions are saved in the SY STRIGGERS and

SY STRIGGERCOLUMNS system catal ogs.

Please note that SQL triggers are not automatically upgraded to version 4.3 or later. If there are
triggers defined in your PointBase Embedded 4.2 database or prior to version 4.2, you must
drop all triggers manually, upgrade to version 4.3 or later, and then manually recreate the
triggers. The procedureis as follows:

1. Start the database using 4.2 JAR or earlier versions.

2. Drop al triggers by browsing through the table, POINTBASE.SY STRIGGERS, and drop
all triggersin thistable.
DROP trigger_name.

Stop the database.
Start the database using 4.3 JAR (or later).
Recreate triggers.

Version 4.8 PointBase Developer 144

PointBase

Syntax

CREATE TRIGGER
<trigger_name>

The CREATE TRIGGER keywords are required when creating a
trigger. <Trigger_name> defines a unique trigger in a database
schema. To drop atrigger from atable, you must use the
trigger_name.

Usage Rules for <trigger_names>:

e Including a schemaname is optional. The following syntax
isfor trigger_name:

[schema_nane.]trigger_name

e |t must be composed of aphanumeric characters or the
equivalent in alanguage other than English.

e |t hasamaximum limit of 128 characters long.

e Itisnot case sensitive.

e |t cannot have the same name as a PointBase keyword.

e |t must be unique in the schema specified.

<trigger actiontime> ::=
BEFORE | AFTER

<Trigger_action_time> signifieswhen thetrigger can befired or
executed relative to the <trigger event>. It takes one of the
following values: BEFORE or AFTER.

If you specify BEFORE as the <trigger_action_time>, the SQL
statements defined in the <triggered SQL statement> cannot
directly or indirectly modify SQL data by invoking a stored
function or procedure.

BEFORE trigger is executed prior to any change made to the
row. The BEFORE trigger will be executed once for every
change made to the row for ROW trigger and once for every
SQL statement for STATEMENT trigger.

If BEFORE is specified, <trigger SQL statement> should not
contain any data modification statements or statements that
invoke a procedure or function which is an SQL-invoked
procedure or function that possibly modifies SQL data. If thisis
violated, the result is unknown.

PointBase does not support cascading BEFORE triggers.

If you specify AFTER for the <trigger action time>, PointBase
executes the trigger after changes have been made to the row.
The AFTER trigger will be executed once for every change made
to the row for ROW trigger and once for every SQL statement
for STATEMENT trigger.

Version 4.8

PointBase Developer 145

PointBase

<trigger_event> ::= INSERT | It allows you to specify eventswhich causetriggersto fire. These
DELETE | UPDATE [OF events can be INSERT, UPDATE or DELETE. Only one event
<trigger column list>] can be defined in onetrigger. If you specify INSERT, then only

an INSERT operation will cause the trigger to fire. The sameis
true for UPDATE and DELETE. Thetrigger can be fired by an
INSERT, UPDATE or DELETE SQL statement or by a
referential integrity constraint.

<trigger column list> ::=
<column name list>

If you specify UPDATE, you may also specify an optional
column list. If this column list is present, the trigger fires only
when one of those columns specified in the column list is
updated. Otherwise, if not column list is present, any column
updated will cause the trigger to be fired.

ON <table name> <Table_name> specifies the name of the table to which the
trigger belongs. A tableis allowed to have multiple triggers. If
more than one trigger is associated with atable, the triggers are
executed in ascending order of their creation timestamps.

Not allowed on a view. PointBase raises an error if you attempt
thison aview.

Version 4.8 PointBase Developer 146

Version 4.8

PointBase

REFERENCING
<referencing_clause>

<referencing_clause> ::=<old
or new value aliases>...

<old or new value aliases> ::=
OLD [ROW] [AS] <old values
correlation name> | NEW[ROW
] [AS] <new values correlation
name> | OLD TABLE[AS] <old
valuestable alias> | NEW
TABLE [AS] <new valuestable
alias>

<old valuestablealias> ::=
<identifier>

<new valuestable alias> ::=
<identifier>

<old values correlation name>
1= <correlation name>

<new values correlation name>
::= <correlation name>

This clause alows you to specify aliases for new or old rows and
new or old tables. NEW [ROW] [AS] are keywords that specify
the current row on which the triggering SQL statement is
modifying and the columns of the current row contains the
changes made by the triggering SQL statement. Conversely,
OLD [ROW] [AS] are keywords that specify the current row
whose columns contain the original value.

PointBase creates two transition tables during the execution of
triggers: one for new rows and another for old rows. A transition
tableis atemporary table where the new values and old values of
the row are stored. PointBase destroys these new tables once the
triggering SQL statement is compl eted.

NEW or OLD TABLE dliases are the aliases referencing the two
transition tables. The NEW TABLE aliasis referencing the
transition table containing new rows, and the OLD TABLE alias
is referencing the transition table containing old rows. OLD or
NEW TABLE will be supported only for STATEMENT triggers.
These aliases cannot be passed as parameters to call statements.

The scope of <referencing_clause> isthe entire CREATE
TRIGGER statement.

If <trigger event> specifies INSERT, neither OLD ROW nor
OLD TABLE will be allowed.

If <trigger event> specifies DELETE, neither NEW ROW nor
NEW TABLE will be alowed.

If BEFORE is specified for the <trigger action time>, neither
OLD TABLE nor NEW TABLE will be alowed.

If FOR EACH STATEMENT is specified for the <trigger
action>, neither OLD ROW nor NEW ROW will be allowed.

If <trigger event> specifies UPDATE, NEW ROW values will
be null for those columns which do not have new values.

If no row or table aliasis specified, you may not refer to the
current row or the transition table. There is no default alias.

PointBase Developer 147

Version 4.8

PointBase

<trigger action> ::=

[FOREACH { ROW |
STATEMENT }]

[WHEN (<search condition>)]
<triggered QL statement>

<triggered QL statement> ::=
<SQL procedure statement> |
BEGIN ATOMIC { <SQL
procedure
statement><semicolon> }...

END

<Trigger action> alows you to specify ROW trigger or
STATEMENT trigger. If you specify a ROW trigger, PointBase
firesthe trigger once for each row on which the defined <trigger
event> occurs. A STATEMENT trigger will be fired once for
each SQL statement on which causes the defined trigger event to
occur.

ROW triggers may not work on self-referencing tables. In this
case, referential constraint may go into recursion and may lead to
awrong row value while executing triggers.

If you do not specify a STATEMENT or ROW trigger, PointBase
usesthe STATEMENT trigger for the defaullt.

<Trigger action> allows you to specify a WHEN clause which
defines the search condition to evaluate if the trigger will fire.
You can define one or more predicates. If these predicates are
evaluated TRUE, then the trigger will be fired; otherwise, it will
not be fired.

<Triggered SQL statement> allows you to specify the action for
the trigger. You can specify one SQL statement or, a compound
SQL statement embraced by the BEGIN ATOMIC and END
keywords. The size of each SQL statement is limited to 900
bytes. Seetrigger-related SQL statements: SET assignment,
VALUE, and SIGNAL on page 182.

No transaction control statements are allowed for the <triggered
L statement>. (Transaction control statementsinclude
commit, rollback, savepoint, etc. See section Transaction Control
in Appendix A inthis guide for further details on transaction
control statements.) If you violate thisrule, PointBase throws an
error. If an error occurs during the execution of <triggered SQL
statement>, PointBase throws an error and the execution of the
<triggering QL statement> isinterrupted, and all the changes
arerolled back.

Since <triggered SQL statement> can contain any SQL
statement, it is possible that an INSERT, UDPATE or DELETE
SQL statement could cause the same trigger to be executed
again. Thisiscalled arecursive trigger. PointBase allows
recursive triggers. But, you should avoid writing recursive
triggers, because they can lead to infinite loops.

It is possible for recursive triggers to modify the same row
multipletimes. In this case, the latest row value or new row value
may be seen in the subsequent trigger execution.

PointBase sets alimit of 16 levelsfor recursive trigger execution
context. For example, if onetrigger isfired, it is counted aslevel
one, if this trigger causes another trigger to be fired beforeitis
finished, the second trigger is counted aslevel two, and so on. An
exception will be thrown if trigger level exceeds the limit.

PointBase Developer 148

PointBase

Security

PointBase checks authorization at the trigger creation time. If atrigger is successfully created,
security will not be checked again at trigger execution time. For example, User A must have
creation privilege on the schemato which the trigger belongs; that is, User A must have trigger
privilege ontable (T1), and UDPATE privilege on table (T2). Then User A can create atrigger
(TR1) onT1, where TR1isa ROW trigger specifying an UPDATE event and is updating rows
on T2. User B has UDPATE privilege on T1, but does not have UPDATE privilege on T2,

While User B isdoing updateson T1, TR1 will beinvoked and UPDATE rowson T2. User B's
privilege will not be used to check against T2 while executing TR1.

Examples

To use all of the following trigger examples, you must compl ete the following:

e Include the SampleExternalMethods.class file in your CLASSPATH when you connect
to PointBase.

e Follow the prompts to create a new database called “sample.”

e Type run sanpl e. sql ; Youmust type the complete path to the “sample.sql” file
located in the directory “<install directory>\samples\server _embedded,” for example,
run c:/poi ntbase/ sanpl es/ server _enbedded/ sanpl e. sql ;

Example 1

CREATE TRI GGER trigger2
BEFORE UPDATE ON product _t bl
REFERENCI NG NEW AS NEWROW
FOR EACH ROW

VWHEN (NEWROW gqty_on_hand < 0)
SET NEWROW qty_on_hand = O;

CREATE TRI GGER trigger3

BEFORE UPDATE ON product _t bl

REFERENCI NG NEW AS NEWROW

FOR EACH ROW

VWHEN (NEWROW pur chase_cost < 0)

SI GNAL ' Products prices cannot be negative’

CREATE TRI GGER trigger4

AFTER UPDATE ON product _t bl

REFERENCI NG NEW AS NEWROW

FOR EACH ROW

VWHEN (NEWROW qty_on_hand > 100)

VALUES(showQuantity(’ You have increased the quantity above', 100));

Version 4.8 PointBase Developer 149

PointBase

Example 2

Step 1.

CREATE PROCEDURE showTi me (I N pl VARCHAR(30), IN P2 TI MESTAWP)
LANGUAGE JAVA

NO SQL

EXTERNAL NAME " Sanpl eExt er nal Met hods: : showTi ne";

Step 2.

CREATE TRI GGER triggerl

AFTER | NSERT ON di scount _code_t bl

FOR EACH ROW

CALL showTi me(’ New di scount code inserted , CURRENT_TI MESTAWP);

Version 4.8 PointBase Developer 150

PointBase

ALTER TABLE

ALTER TABLE tabl e _nanme alter_table_action [{,alter_table_action},...]

The ALTER TABLE statement modifies the structure of atable in the PointBase database.
With this statement, constraints or columns may be added or dropped. A table may also be
renamed with ALTER TABLE.

Syntax

ALTER TABLE

The ALTER TABLE keywords are required as the first words in
an ALTER TABLE statement.

table_name

Thetable_name variable must be the name of an existing tablein
a PointBase database. The ALTER TABLE statement generates
an error if the value of the table_name does not exist.

alter_table action

The action allows adding or dropping a constraint or column. See
the following section for the alter_table action syntax.

Alter_Table Action Syntax

ADD t abl e_constraint_definition
| DROP CONSTRAINT constrai nt_nanme [CASCADE | RESTRI CT]
| ADD [COLUMN] col um_definition

| DROP [COLUMN] col umm_nanme [CASCADE | RESTRI CT]
| RENAME TO <new_t abl e_nane>

Version 4.8

ADD
table_constraint_definition

Adds a table constraint definition to the table. Not allowed on a
view. PointBase raises an error if you attempt thison aview. If
the constraint is areferential constraint that references aview, an
error will beraised.

DROP CONSTRAINT
constraint_name

Drops an existing named constraint from the table. The system
automatically provides a name for the constraint if none was
specified when it was added. The constraint name can be found
in the table SysTableConstraint.

ADD [COLUMN]
column_definition

Adds a column to the end of the column_definition for the table.
(See column_definition on page 123.) Thedefault valueisNULL,
unless declared NOT NULL with an assigned default value. This
will only affect columns that you create after the default valueis
assigned.

Not allowed on a view. PointBase raises an error if you attempt
thison aview.

PointBase Developer 151

PointBase

DROP [COLUMN] Drops one or multiple existing named column(s) from the table.
column_name Not allowed on a view. PointBase raises an error if you attempt
thison aview. If thetable_name + column_nameisin the system
catalog, SysViewTables, then either an error will beraised (if
RESTRICT) or al dependent views will be dropped (if
CASCADE).

[CASCADE/RESTRICT] The optional RESTRICT qualifier to a DROP statement alows a
drop only if no objects are dependent on the column or constraint.

The optional CASCADE qualifier to aDROP statement drops all
related objects to the column or constraint.

RENAME TO Renamesthe current tableto the new_table_name. Thefollowing
<new_table name> are the restrictions for RENAME clause of ALTER TABLE.

- Only Schema owner or a user who has DBA level authority can
perform rename table operation.

- The rename table operation in ALTER TABLE can not be
combined with other operationsinthe ALTER TABLE statement.

- A table can only be renamed within same Schema and can not
be moved to another schema.

- If there are Views or Triggers defined on the table, then rename
table operation is not allowed.

- Pointbase automatically transfers all constraints, indexes and
grants on the old table to the new table.

- The behavior of objects such as Stored Procedures, Functions
etc. that depend on or refer to old table by name is undefined. If
the old table does not exist then they will get asyntax error. If a
new tablewith the old nameis created then these objectswill refer
to newly created table and if the new definition of thetableis
compatible with the definition of these objects then they will
continuetowork. If the new definition of thetableisincompatible
with these objects then they will get errors.

- PointBase system generated constraint names and index names
will be changed to reflect the new table name. Thisallowstheold
table name to be reused.

- Views can not be renamed using rename clause.
- Temp Tables can not be renamed using rename clause.

- When atableis renamed, already compiled PreparedStatements
and cached Statements that refer to the renamed table will detect
this when they are executed next time and throw an exception if

the table does not exist.

Version 4.8 PointBase Developer 152

PointBase

ALTER TABLE T2
ALTER TABLE T2
ALTER TABLE T2
ALTER TABLE T2
ALTER TABLE T2
ALTER TABLE T2

ALTER USER

ALTER USER use

Examples

ADD UNI QUE (C1);

ADD ORDER_NUM | NT;

ADD CONSTRAI NT constraint_0 FOREI GN KEY (Cl) REFERENCES T1 (Cl);
ADD CONSTRAI NT constraint_1 PRI MARY KEY (Cl1, C2);

DROP ORDER_NUM CASCADE;

RENAME TO T1;

r_nane {PASSWORD password | DEFAULT ROLE rol e_nane}

To change the password or default role of a database user, you must use the non-standard SQL
command, ALTER USER. It can only be used by the following types of users:

« PBSYSADMIN

e Any user whose current roleisthe PBDBA role

e Owner of database (i.e. the user who created the database)

You may also use ALTER USER to change your own password or default role.

Note: Seethe description for CREATE USER for informati on about the behavior of usernames
and passwords.

Syntax
ALTER USER The user_name specifies the name of the user, for whom you will
user_name change the password or default role.

PASSWORD password | The password defines the new password for the specified user.

DEFAULT ROLE Therole_name definesthe new default role for the specified user.
role_name

Version 4.8

PointBase Developer 153

PointBase

Examples

ALTER USER Scott PASSWORD |i on;
ALTER USER Scott DEFAULT ROLE CEQ,

Version 4.8 PointBase Developer 154

PointBase

Dropping SQL Objects

DROP INDEX

The following sections describes how to drop SQL objectsin PointBase:

* “DROPINDEX”

* “DROP FUNCTION or DROP PROCEDURE"
* “DROP SCHEMA”

e “DROPTABLE"

- “DROPVIEW’

« “DROP TRIGGER”

* “DROPUSER’

Drop Behavior (Optional)

Side effects can occur when an SQL object isdropped. For example, if atable isdropped, what
becomes of an index that is based on that table? SQL allows you to specify the drop behavior.
To do this, specify either: CASCADE or RESTRICT. The syntax for drop_behavior isas
follows:

CASCADE | RESTRICT

You may specify one or the other. CASCADE has the effect of dropping all SQL objects that
are dependent on that object. RESTRICT is the default for the drop behavior. RESTRICT
looks to see what objects are dependent on the object being dropped. If there are dependent
objects, then the dropping of the object does not occur.

DROP | NDEX table_name.index_name

Version 4.8

The DROP INDEX statement deletes an index structure of atable from the PointBase
database.

Syntax

DROP INDEX The DROP INDEX keyword is required at the beginning of a
DROP INDEX statement.

table_name.index_name | Theindex_name must be the name of an existing index in a
PointBase database. The index_name must be qualified with the
name of the table that theindex ison, asin

table name.index_name. The DROP INDEX statement raises an
error if the value of the index_name does not exist.

PointBase Developer 155

PointBase

Examples

DRCP | NDEX ORDER_TBL. ORDER;

DROP FUNCTION or DROP PROCEDURE

DROP { SPECI FIC routine_type specific_routine_nane}
| {routine_type routine_nane [paranmeter_data_type_ list])}

[drop_behavi or]

The DROP ROUTINE statement destroys a routine in a schema of a PointBase database.

Syntax

The DROP keyword is required as the first word in a DROP
ROUTINE statement. The SPECIFIC clause refers to a specific
function that shares the same name with other functions.
specific_routine_name must be unique in the database.

specific_routine_name

The specific_routine_name that was specified when the function
or procedure was defined.

routine_type

FUNCTI ON | PROCEDURE | ROUTI NE

routine_name

The name of the SQL function or procedure.

parameter_data type list

The optional parameter_list clause specifies selection criteriafor
a DROP statement. Only SQL data types are specified. No
parameter mode or nameis allowed.

drop_behavior

If RESTRICT is specified, then if there are any other SQL
routines, or constraints, then the routine is not dropped and
neither are the other SQL routines, triggers, nor constraints.

With CASCADE, al SQL objects (other SQL routines, and
constraints) that use the SQL routine are dropped as well asthe
SQL routine. RESTRICT isthe defaullt.

Examples

DROP FUNCTI ON ORDERS_TOTAL (char (10),

Version 4.8

int) CASCADE;

PointBase Developer 156

PointBase

DROP SCHEMA

DROP SCHEMA schema_nane [drop_behavi or]

The DROP schema statement destroys a schema in the PointBase database.

Syntax

DROP SCHEMA

The DROP SCHEMA keywords are required asthefirst wordsin
aDROP SCHEMA statement.

schema_name

The name of the schema. If the schema contains any views, than
either PointBase raises an error (if RESTRICT) or drops all
views (if CASCADE).

drop_behavior

If RESTRICT is specified, then if there are any tables or SQL
routines in schema_name, then the schemaiis not dropped and
neither are the tables, nor the SQL routines.

With CASCADE, al tables, indexes, columns, constraints,
triggers, and SQL routinesthat are associated with schema_name
are dropped as well as the schema. RESTRICT isthe default.

Examples

DROP SCHEMA ORDERS CASCADE;

DROP TABLE

DROP TABLE tabl e_name [drop_behavi or]

The DROP TABLE statement destroys a table in the PointBase database.

Version 4.8

PointBase Developer 157

PointBase

Syntax

DROP TABLE

The DROP TABLE keywords are required as the first wordsin a
DROP TABLE statement.

table_name

Thetable_name variable must be the name of an existing tablein
a PointBase database. The DROP TABLE statement generates an
error if the value of the table_name does not exist.

If the tableisin the system catalog, SysViewTables, then either
PointBase raises an error (if RESTRICT) or drops all dependent
views (if CASCADE).

drop_behavior

If RESTRICT is specified, then if there are any table constraints,
or SQL routines that use table_name, then the tableis not
dropped and neither are the table constraints nor the SQL
routines.

With CASCADE, all indexes, columns, constraints, triggers, and
SQL routines that are associated with table_name are dropped as
well asthetable. RESTRICT isthe default.

Examples

DROP TABLE ORDER_TBL CASCADE;

DROP VIEW

DROP VI EW <vi ew name> [RESTRICT |

Version 4.8

CASCADE]

This statement removes a specified view or viewed table from the PointBase database.

Notes

« Theonly objectsthat can be dependent on a view are other views.

PointBase Developer 158

PointBase

Syntax

DROP VI EW

The DROP VIEW keywords are required as the first wordsin a
DROP VIEW statement.

view name

The view name variable must be the name of an existing view in
the PointBase database.

RESTRICT |
CASCADE

RESTRICT verifiesif there are any dependent views. If other
views depend on this view, an error israised and this view is not
dropped.

CASCADE does not verify if there are any dependent views.
Thisview isdropped aswell as all dependent views.

Examples

DROP VI EW cust oner _order cascade;
DROP VI EW cust oner _order restrict;

DROP TRIGGER

DROP TRI GCGER tri gger_name

The DROP TRIGGER statement deletes atrigger structure from the PointBase database.

Syntax

DROP TRIGGER

The DROP TRIGGER keywords are required as the first words
in aDROP TRIGGER statement.

trigger_name

Thetrigger_nameisatwo-part name which includes the name of
the schema. The trigger name must be composed of
alphanumeric characters or the equivalent in another language,
for example, aword in Japanese characters and cannot be the
same as a PointBase keyword. Trigger names in the PointBase
database are not case sensitive and can be up to 128 characters
long. They must be unique in their schema.

Version 4.8

PointBase Developer 159

PointBase

Examples

DROP TRI GGER TRGL;

DROP USER

DROP USER user_name [drop_behavior]

The DROP USER statement del etes a user object from the PointBase database. To successfully
execute this command, the current user must be the PBSY SADMIN or the database owner.
[See "Predefined Users' on page 103.] Or, the current role must be PBDBA. [See " Predefined
Roles" on page 107.] You cannot drop the predefined users: PBPUBLIC or

PBSY SADMIN. Additionally, you cannot create nor drop the user PUBLIC.

Syntax
DROP USER The DROP USER keyword isrequired at the beginning of a
DROP USER statement.
user_name The user_name must be the name of an existing user in
PointBase database. The DROP USER statement raises an error
if the value of the user_name does not exist.
drop_behavior If RESTRICT is specified and if any schemas have user_name
specified, the system does not drop the user and the schema.
With CASCADE, the system drops all schemas that have
user_name as the owner, in addition to dropping the user_name.
RESTRICT is the defaullt.
Examples

DRCOP USER ENG NEERI NG_VMANAGER CASCADE;

DROP ROLE

PointBase supports this statement. Please refer to the section, "DROP ROLE Syntax" on page
110.

Version 4.8 PointBase Developer 160

PointBase

Data Query Language and
Data Manipulation Language

Version 4.8

To retrieve, INSERT, DELETE and modify datain PointBase, use the Data Query Language
(DQL) and Data Manipulation Language (DML). DQL and DML allows an application to do
the following:

* SELECT: Retrieve rows of data.

* INSERT: Place new rows of datain the database.

* UPDATE: Replace existing values in the database with new values.

» DELETE: Delete rows of datain the database.

PointBase Developer 161

PointBase

SELECT

SELECT [DISTINCT] colum_list [AS alias_nane]
FROM t abl e_expression
[WHERE search conditions]
[GROUP BY col umm_li st]
[HAVI NG search_condition]
[ORDER BY {colum_nane | value} [sort_order]]
[FOR UPDATE [OF colum-1list] [WAIT| NOMAI T]]

The SELECT statement retrieves data from the PointBase database.

Syntax

SELECT [DISTINCT] | The SELECT keyword isrequired asthe first wordina SELECT
statement.

The DISTINCT keyword is optional. When specified, the
distinct function eliminates duplicate occurrences of the same
row (not columns) and returns only distinct values. The
DISTINCT keyword can only be used once in a query.

column_list The column_list can be a string of comma-separated column
names or expressions, or the wild card character (*). If acolumn
name exists in more than one of the tablesin the SELECT
statement, a table name or correlation name must be used to
qualify the column name. You can use a function that returns a
single value for each row in the column listing of a SELECT
statement.

AS alias name An alias_ nameis ameans of giving adifferent nameto an
element in acolumn_list that appliesindividually to the item for
which it serves as an alias. Each item in the column_list may
haveits own aias_name.

FROM The FROM keyword isrequiredina SELECT statement between
the select-expression and the table-expression.

Version 4.8 PointBase Developer 162

Version 4.8

PointBase

table_expression

The table_expression contains all the information needed to
specify the tablesin a SELECT statement and the rel ationship
between multiple tablesin the statement. The table_expression
takes the syntax of:
tabl e_expression:: =
tabl e_nane_exp
| derived_table

| table_nane joined_table_exp
[join_table_exp...]

where:
tabl e_nane_exp::= table_name [[AS]
correl ati on_nane]
derived_tabl e:: = subquery
subquery:: = <l eft paren><query expression>right
par en>
joined_table_exp::=join_type tabl e_name_exp

[ON_cl ause | USI NG cl ause]

and the ON_clause or USING_clause are known as the join
specification:

ON_cl ause: : = ON search_condi tion

USI NG_cl ause: : = USING (col um_nane_| i st)

The table_expression can contain any number of table_names. It
does not require you to give any specific ordering of the
table_names. The optimizer will determine the appropriate
ordering of execution. For more on the optimizer, see
“Optimizing Query Expressions’ in the PointBase System Guide.

table_name

The names represented by table _name are the names of the
tables that should be accessed. If you join more than onetable in
the SELECT statement, separate the table names with commas.

NOTE: If morethan onetableis specified inthetablelist, then it
isknown as ajoin. PointBase supports CROSS, INNER,
and LEFT and RIGHT OUTER jains.

[AS]
correlation_name

A correlation name is ameans of giving adifferent nameto a
table that qualifies the names of columnsin the SELECT
statement. A correlation name is sometimes used to document
the source of columns even when there are not duplicate column
names. It is not required to provide a correlation name for every
tablein a SELECT statement.

derived_table

The derived table is atemporary table generated dynamically
from asubquery.. If derived table is used, correlation name for
the derived table must be supplied. If column list contains
expressions or duplicate column names, correlation names for
those columns must be supplied.

ON_clause

With the ON_clause, you can specify a search_condition when
joining two tables. The effect of the ON_clause is the Cartesian
product of the two tables that meet the search_condition criteria.

PointBase Developer 163

PointBase

USING The USING_clause can only be used if each joining table hasthe
same column names as the other joining table. For example, if
we have:

USING (Cl, C2)

the effect of the USING_clauseisan ON_clause of the following
(if wearejoining tables T1 and T2):

ON T1. C1=T2.Cl AND T1.C2=T2.C2

WHERE search The WHERE clause is an optional clause that specifies selection
conditions criteriafor a query. The search condition(s) that follow the
WHERE keyword evaluates each row that could be included in
the result set. [You may use a subquery as part of the search
condition. See“ Subqueries’ in this section for more
information.]

If the search conditions returns false for a row, the row is not
included in the result set; if the search conditionsreturnstrue, the
row isincluded in theresult set. If a WHERE clause is not
specified, then al rows of the table(s) are included in the result
set.

For more information on search conditions, see the chapter,
“Search Conditions and Predicates.”

GROUPBY The format of the Group-By clauseis:

column_list GROUP BY grouping colum [, grouping-colum
...
Grouping-column is a column-reference.

Theresult of agroup-by-clauseisavirtual table, but that result is
called agrouped table. The input table is partitioned into one or
more groups; the number of groupsis the minimum such that, for
each grouping -column, no two rows of any group have different
values for that grouping — column. For any group in the resulting
grouped table, every row in the group has the same value for the
grouping - column. Otherwise, the group- by - clause produces
an output table that isidentical to the input table.

HAVING The having-clause is afilter. Thefiltering operation is applied to
search_condition the grouped table resulting from the preceding clause. If thereis
agroup-by-clause, the grouped table resulting from it is theinput
to the having-clause. If there is no group-by-clause, the entire
table resulting from the where-clause is treated as a grouped
table with exactly one group. In this case, there is no grouping-
column. The format of the having-clauseis:

HAVI NG search-condition

The search-condition is applied to each group of the grouped
table. That's because the only columns of the input table that the
having-clause can reference are the grouping columns, unlessthe
columns are used in a set function.

Version 4.8 PointBase Developer 164

Version 4.8

PointBase

ORDER BY ORDER BY {colum_nane | value} [sort_order]
[{, colum_nane | value} [sort_order]...}]

The optional ORDER BY clause specifies the ordering of the
rowsreturned from a SELECT statement. An ORDER BY clause
can contain one or more column values, separated with commas;
functions are not allowed. If acolumn_nameis specified in the
ORDER BY clause, then that column_name must also be
specified in the column_list.

Each column or value in the ORDER BY clause can include an
optional sort_order qualifier. Acceptable sort order qualifiersare
ASC, for ascending sort order, and DESC, for descending sort
order. If no sort order is specified, the default is ascending. If the
ORDER BY clause contains multiple columns, the order of the
columns designates the order of the grouping.

If a query contains any UNION operators, the ORDER BY clause
must be specified last after all the unions are specified.

FOR UPDATE The optional FOR UPDATE clause allows user to change
PointBase's default locking mechanism.

PointBase, by default, places share locks on rows returned from
select statement. SELECT FOR UPDATE will place exclusive
locks on rows returned from select statement. This guaranteesthe
subsequent modification on those rows without being blocked by
other users.

This option may cause deadlock situation, and should be used
with care and in short transaction only to avoid deadl ock.

This clause can't be used in read uncommitted transactions.

FOR UPDATE can only be used in main select statement (not in
any subquery select statement.)

FOR UPDATE cannot be used conjunction with order by clause,
sort by clause, aggregation functions, views and temporary
tables.

OF column_list This clause specifies what table to be affected. Only tables
containing columnsin column_list will be affected. If this clause
is not specified, all tables are affected.

WAIT | NOWAIT This clause specifies wait or no wait locks. In the case of rows
arelocked by other user, select statement will return immediately
with lock wait timeout exception if nowait is specified, otherwise
it will wait until lock timeout specified in .ini parameter.

NOTE: The SELECT statement returns the qualified result set to the calling application. For
more information on how PointBase optimizes SELECT statements and the joins they
contain, see the chapter, “ Optimizing Query Expressions’ in the PointBase System
Guide.

PointBase Developer 165

PointBase

Examples

All of the following examples were created using the sample database that comes with every
database product.

Example 1

When querying a column that is not unique, the keyword DISTINCT will alow you eliminate
duplicate rows. The ORDER BY clause will sort one or more columns based on ascending or
descending sequences. By default the sort order is set to ascending sequence.

SELECT DI STI NCT name FROM manuf acture_tbl ORDER BY nanme DESC;

Results:

NAME

Zetsoft

World Savings
Wells Fargo
Toshiba

Sony
SoftClip
Sams Publishing

Rico Enterprises

MicroSoft

Matrox

Note the use of a column alias for asimilar query. (The result is deliberately truncated for
brevity in this example, but would be the same as the above.)

SELECT DI STI NCT name AS conpany FROM manuf acture_t bl ORDER BY nanme DESC,

Results:

COMPANY

Zetsoft

World Savings

(etc....)

Version 4.8 PointBase Developer 166

SELECT order _num sales_tax_st_cd,
VWHERE shi ppi ng_cost > 300 AND UPPER(sal es_tax_st_cd) NOT LIKE

PointBase

Example 2

It is possible to use an SQL constant that will help produce results that are easier to interpret.
The example below illustrates two variations of SQL constants. The first example 'Shipping
Cost' demonstrates a fixed column type and the second example ‘$' is concatenated to a select
list. Also notice the comparison test that finds the al records that were charged over $300 in
shipping costs and not shipped to Florida.

" Shipping Cost’, '$ || shipping_cost FROM order_tbl

oL’ ORDER BY order_num

ASC,
Results:
ORDER_NUM SALES TAX | Shipping Cost | '$' || shipping
10398002 X Shipping Cost | $359.99
10398009 CA Shipping Cost | $700
20598101 Ml Shipping Cost | $2500
30198001 NY Shipping Cost | $2000.99
30298004 NY Shipping Cost | $700
Joins
Relational join operations are implemented through the basic SELECT... WHERE statement.
See SELECT for additional information. PointBase supports the following join operations:
*+ CROSSJOIN
* INNER JOIN
« OUTERJOIN
CROSSJOIN
The cross join operation performs a cross product on the joining tables.
SELECT *

FROM t1 CROSS JON t2

The crossjoinisthe sametype of join found in earlier versions of SQL. Those versions of SQL
that did not use the JOIN keyword, used a comma instead.

INNER JOIN

In inner joins, columns with the same names have compatibl e data types and the rows will be
selected only when every matching column has the same value asits data type.
SELECT *

FROM t1 INNER JON t2
ONtl.cl =12.¢c3;

Version 4.8 PointBase Developer 167

PointBase

INNER JOIN Example:

This exampleisjoining common values from the sales rep table and salestax code table based
on acommon type ‘decimal rat€’. Asyou can seg, it is returning al rows that have a common
rate and commission values. Also notice that the data is being filtered base on atax code rate
that is over 7.0.

SELECT | ast _nane, commi ssion_rate, sales_tax_code_thl.rate fromsales_rep_tbl INNER JO N

sal es_tax_code_thl ON (sales_rep_tbl.conm ssion_rate = sales_tax_code_tbl.rate) AND
(sal es_tax_code_thl.rate > 7.0);

The SELECT statement returns the following:

LAST_NAME | COW SSI ON | RATE
Longer 8 8

Hillerger |9 9

Smith 7.75 7.75
Smith 7.75 7.75
Smith 7.75 7.75
Smith 7.75 7.75
Donohue 7.75 7.75
Donohue 7.75 7.75
Donohue 7.75 7.75
Donohue 7.75 7.75

OUTER JOIN

Outer join operations preserve unmatched rows from one or both tables, depending on the
keyword used. PointBase supports the following:

» LEFT OUTERJOIN
* RIGHT OUTER JOIN

Version 4.8 PointBase Developer 168

PointBase

LEFT OUTER JOIN

The LEFT OUTER JOIN preserves unmatched rows from the | eft table, the one that precedes
the keyword JOIN
SELECT *

FROM t1 LEFT OQUTER JO N t2
ON tl.cl=t2.c3;

LEFT OUTER JOIN Example:

The example below is performing a Left Outer Join based on where the sal es representative
commission rate and the sales tax code table’srate are equal. Notice that all of the valuesin the
left table (sales rep thl) are preserved.

SELECT | ast _nane, ytd_sales, conm ssion_rate, sales_tax code_tbl.rate FROM sal es_rep_tbl

LEFT

QUTER JON sales_tax_code_tbl ON (sales_rep_tbl.conm ssion_rate =

sal es_tax_code_tbhl.rate) AND (sales_tax_code_thl.rate > 6.0) AND
(sales_rep_thl.comm ssion_rate >= 8);

The SELECT statement returns the following:

LAST_NAME YTD_SALES | COMMISSION | RATE
Longer 80000 8 8
Hillerger 675000 9.5 95
Valentine 857000 9 NULL
Smith 950000 8.75 NULL

RIGHT OUTER JOIN

The RIGHT OUTER JOIN operates similarly to a LEFT OUTER JOIN except the RIGHT or
second named table of unmatched rows are preserved.

SELECT *
FROMt1 RI GHT OQUTER JO N t2
ON tl.cl=t2.c3;

Right Outer Join Example:

Thisexampleisusing aright outer join to display all distinct unmatched records from the sales
tax code table based the sales rep table.

SELECT DI STI NCT sal es_tax_code_tbhl.rate fromsales_rep_thl R GHT OQUTER JO N
sal es_tax_code_thl ON (sales_rep_tbl.conm ssion_rate = sales_tax_code_tbl.rate) AND
(sales_tax_code_thl.rate > 8.0);

Version 4.8 PointBase Developer 169

Version 4.8

PointBase

The SELECT statement returns the following:

RATE
8.25
85
9.5

9.75

10.25

115
13

UNION operator

SELECT a, b
FROM t 1

UNI ON
SELECT a, b
FROM t 2

One of the core SQL operators in conjunction with the SELECT statement isthe UNION
operator. It isarelational operator that combinesthe output of two SELECT statements; that is,
they combine two or more result tables whose respective column data types are of the same
family data type. For example, aUNION on a CHARACTER and VARCHAR will work
because they are part of the String data type family. A SMALLINT and an INTEGER UNION
will also work, because they are part of the exact NUMERIC data type family.

The UNION operator has two forms: the first, UNION DISTINCT, returns only unique rows
from aquery and discards any duplicate rows; the second, UNION ALL, does not discard
duplicate rows; it returns al rows from the first SELECT statement followed by all rows from
the second SELECT statement. You may specify any number of UNION operators, however
you may not mix UNION ALL and UNION DISTINCT in the same query scope. However,
you may have UNION ALL inthe main query and UNION DISTINCT in a subquery, for
example. You will receive an error if you mix two different forms of the UNION operator in a
the same query scope.

The output column names resulting from a UNION will have the same column names that the
expressionsin the very first SELECT statement had. If the UNION query usesthe ORDER BY
clause, PointBase will order the final results after evaluating all UNIONs. The ORDER BY
clause must be last in the query—after specifying al of the UNIONs. Any column namesin
the ORDER BY clause must refer to the column namesin the very first SELECT statement in
the query, asthe ORDER BY clause sorts the final results by the output column names.

PointBase Developer 170

PointBase

Union Examples:

This example is combining two character columns from the office table and product table. The
resultswill include all of the rows of data from each table.

SELECT type_code FROM of fice_tbl UN ON ALL SELECT prod_code FROM product_code_tbl;

Version 4.8 PointBase Developer 171

PointBase

The SELECT statement returns the following:
type_code

This example uses the columns as in the previous example; however, it uses UNION
DISTINCT and orders the results by “type _code.” The result will not return any duplicate
rows.

SELECT type_code FROM of fice_tbl UN ON DI STI NCT SELECT prod_code FROM product _code_t bl
order by type_code;

type_code

Version 4.8 PointBase Developer 172

PointBase

Subqueries

Subqueries can be either a SELECT statement or an expression that you can usein any DML
statement, for example, SELECT, INSERT, DELETE, UPDATE. The following describes
different types of subqueries that PointBase supports.

(with one column)

Subquery Type Description
Scalar Subquery A subquery that returns at most one row and one column.
Table Subquery A subquery that may return any number of rows within

one column. A table subquery may only appear on the

Version 4.8

right hand side of a quantified comparison predicate. This
type of predicate compares asingle row value of atableto
potentially multiple result row values from a subquery.

PointBase supports table subqueries only in a quantified
comparison predicate that uses the quantified operators,
IN, NOT IN, EXISTS, or NOT EXISTS. Also see
"Predicates’ on page 82 for more information about these
quantified operators.

A subquery that does not use a correlated (outer)
reference. It references a column, which an enclosing
(outer) query block does not define.

Non-correlated Subquery

Correlated Subquery A subquery that uses a correlated reference, sometimes
referred to as an “outer reference”. It references a column,
which an enclosing (outer) query block defines.

Nested Subqueries A subquery located within another subquery. PointBase

supports any level of nested subqueries.

Notes on PointBase Subqueries

« PointBase allows a subquery to return multiple values using the quantified operators,
EXITS, NOT EXISTS, IN, or NOT IN only. See "Predicates" on page 82 for more
information about IN, NOT IN, EXISTS, or NOT EXISTS.

e Currently, PointBase does not support row subqueries.

Scalar Subquery (Non-correlated) Example

This exampl e retrieves the names of all sales peoplein the Miami office.

SELECT a.first_nane, a.last_nane
FROM sal es_rep_thl a

WHERE a. of fice_num =

(SELECT b.office_num

FROM of fice_thl b
WHERE city = "Mam’);

PointBase Developer 173

PointBase

Results:
FIRST_NAME LAST_NAME
John Longer

Scalar Subquery (Correlated) Example

This example retrieves the cities of all the offices whose target sales exceed all the sales
representative’s quotas working in them.

SELECT a.city

FROM of fice_tbhl a

WHERE a.target_sal es >

(SELECT sum(b. quot a)

FROM sal es_rep_thl b

VWHERE b. of fice_num = a.office_num;

Results:

CITY

Miami
Atlanta

San Mateo
San Francisco
San Diego
Oakland
Detroit

New York

Table Subquery (Non-correlated) Example

This example retrieves the names of all sales reps working in the western region.

SELECT a.first_nane, a.last_nane
FROM sal es_rep_thl a

WHERE a. of fice_num I N

(SELECT b.of fice_num

FROM of fice_tbl b

VWHERE b.region = 'Western');

Version 4.8 PointBase Developer 174

SELECT a.city

PointBase

Results:
FIRST_NAME LAST_NAME
Heather Smith
George Valentine
Raymond Brown
Jack Smith

FROM of fice_thl a

WHERE EXI STS
(SELECT *

FROM sal es_rep_tbl b

VWHERE a. of fi ce_num = b. of fice_num;

Version 4.8

Results:

CITY

Miami
Atlanta

San Mateo
San Francisco
San Diego
Oakland
Detroit

New York

Table Subquery (Correlated) Example

This exampleretrieves all cities, in which at least one sales representative works.

PointBase Developer 175

PointBase

INSERT

I NSERT | NTO table_name [(insert_colum_list)]
guery_expression

The INSERT statement adds new rows to a table in a PointBase database.

NOTE: Toinsert, you must have privileges on the entire table. Partial privilege on some
columns will not work because you have to insert some data (null) into other columns.

Syntax
INSERT INTO The INSERT INTO keywords are required as the first wordsin
an INSERT statement.
tabl e_nane table_name identifies the table that will receive the new data
specified in the INSERT statement.
(insert_column_list) The optional list of columns that receive valuesin an INSERT

statement are indicated between parentheses and separated by
commas. The order of the list of columns isimportant, since the
first value following the VALUES clause insertsinto the first
column in the list of columns. Each subsequent column matches
with its counterpart in the query_expression. The
insert_column_list is optional. If it is not specified, then an
implicit column list is assumed.

Please note: when inserting a specific valueinto an IDENTITY
column, every row value that followsin that column will
continue to have an incremental value based on the highest value
assigned for that column—even if the highest value was del eted
or rolled back. (See"IDENTITY Property for Autoincrement” on
page 44.)]

query_expressi on | Thequery expression indicates the values that insert into the
table in the INSERT statement.

Query Expression

The query_expression can take one of the following forms:

NOTE: PointBase effectively ignores any spaces that trail after a string when using the
INSERT statement. This behavior supportsthe ANSI standard; however, it may vary
with other database vendors.

Version 4.8 PointBase Developer 176

PointBase

Form 1: Table values constructor

Thetable values constructor can be lists of values to be inserted into the columns in the
insert_column_list. The keyword VALUES, asin VALUES(valuel, value2, value3), precede
thelist of table constructor values.

Anocther variation of the table values constructor allows more than one row at atime with a
single INSERT statement. Each row of data must contain avalue for each column in the list of
columns that matches the data type of the column. Enclose each row of datain its own set of
parentheses.

Examples

The following INSERT statement inserts arow of datawith discrete values:

| NSERT | NTO OFFI CE_TYPE_CODE_TBL (TYPE_CODE, DESCRI PTI ON, M SC)

VALUES (' C,

"Caller’, NULL);

This example inserts into a table where one of the columns hasthe IDENTITY property. This
column will have the ability to autoincrement the values for each row. Note that you can insert
values explicitly for the IDENTITY column or allow values to be automatically generated by
not explicitly inserting them. Remember that, PointBase will continue to generate incremental
values based on the highest value assigned for the column—even if the highest value was
deleted or rolled back.

CREATE TABLE TAB1(ID I NT | DENTITY, NAME VARCHAR(30));

I NSERT | NTO TAB1(| D, NAME) VALUES(100, 'Palo Alto’);

I NSERT | NTO TABL(| D, NAME) VALUES(101, ’'Menlo Park’);

| NSERT | NTO TAB1(NAME) VALUES(' Cupertino’);
Unicode data values use the “\u” delimiter for each character with PointBase Commander. For
example, unicode representation of the French alphabet is the following:
\ u05d0 t hrough \uO5ea
such as:

| NSERT | NTO OFFI CE_TYPE_CODE_TBL VALUES (' F', 'French', 'gar_on’);
From a JAVA program, unicode characters are treated like others and may be expressed
through their escape literal representation, such as the following:

I NSERT | NTO OFFI CE_TYPE_CODE_TBL VALUES (' X', 'French', '\u00f4’);
Inserting Multiple Rows
A single INSERT statement can use discrete values to insert more than one row of data by
nesting the vaues for rows enclosed in parentheses, such as the following:

I NSERT | NTO OFFI CE_TYPE_CODE _TBL VALUES (' B, ' ‘Buyer’, ’Decision Maker’'), (°S,

"Seller’, Sales Rep’), ('T, 'Talker’, ' Not a Programer’);

Version 4.8 PointBase Developer 177

PointBase

In the PointBase Commander or Console, this example uses dynamic SQL wherethevalueis
supplied at runtime.
I NSERT | NTO ORDER_TBL(ORDER_NUM CUSTOVER NUM REP_NUM PRODUCT_NUM SALES_TAX_ST_CD,

QUANTI TY, SHI PPI NG_COST, SALES_DATE, SHI PPI NG _DATE, DELI VERY_DATETI MVE,
FRElI GHT_COMPANY) VALUES(?, 2, ?, ?, ?2, 2, ?, ?, ?, 2, ?);

{

010398552, 1, 5001, 980001, 'FL', 000010, 449.00, ’'1998-01-02', ’'1998-01-02', ' 1998-01-15
15: 00: 00’ , ' Sout hern Freight’

010398967, 1, 5001, 980001, 'CA', 000010, 449.00, ’'1998-01-02', ’'1998-01-02', ' 1998-01-15
15:00: 00", 'California Freight’

b

Form 2: DEFAULT VALUES

Default values can be the list of values that are created to be inserted into the table. It will
contain the default values as specified in the CREATE TABLE statement. If the default value
of acolumnisthe NULL value and null values are not allowed (NOT NULL), then an error is
raised.

DEFAULT and NULL can be used to represent values to be inserted into the table. If
DEFAULT is specified, then the default value specified (explicitly or implicitly) isinserted
into the column. If NULL is specified, then the NULL value isinserted into the column. Note:
If an attempt to insert aNULL value in acolumn and nulls are not allowed (NOT NULL), then
an error israised.

Examples

| NSERT | NTO T2 VALUES (DEFAULT);
or

I NSERT | NTO T2 VALUES (DEFAULT VALUES);

Form 3: Query Specification

Query specificationisthelist of valuesthat you create from an SQL SELECT query. Theresult
set returned from the query must have the same number of column values, with the same data
types, asthe list of columnsin the INSERT statement.

If you duplicate column names between the source table and the target table in a query
specification, each table name must have a correlation name and you must qualify the column
names with the correlation name.

Example

| NSERT | NTO LOCAL_SALES_TAX_CODE_TBL SELECT * FROM SALES TAX CODE_TBL WHERE STATE_CODE =
CEL

Version 4.8 PointBase Developer 178

UPDATE

PointBase

UPDATE t abl e_nane
SET set _clause_|i st
[WHERE search_condi tion]

The UPDATE statement changes the values of datain the table(s) contained in the PointBase
database.

Syntax
UPDATE The UPDATE key word is required as the first word in an
UPDATE statement.
table_name Table_name identifies the table that contains the columns to
update.
SET The SET clauseisrequired in an UPDATE statement between
the table_name identifier and the list of columns to be updated.

The set_clause _list has two possible forms:

colum_nanme = value [{, colum_nanme = value}...]

or

(colum_name [{, colum_nane}...]) = VALUES(value [{,value}...])

Version 4.8

Thelist of value expressions sets the value of the columnsin the target table. Each value
expression includes the name of acolumn in the table, the equal sign (=), and the new value for
the column. The new value for the column can be a constant, a column in the table, DEFAULT
keyword, NULL keyword, or a value computed with either one of these value types using an
SQL Scalar function.

A single UPDATE statement can update one or more columnsin the designated table. If you
update more than one column, separate the val ue expressions with commas.

If DEFAULT is specified, then the default value of the column on the CREATE TABLE is
inserted into the column. If NULL is specified, then the NULL valueisinserted into the
column. If an attempt to insert null value into a column and the column does not allow this
(NOT NULL) then an error is raised.

An alternative syntax for the set_clause list is SET (column list) = VALUES (value list).

WHERE The WHERE clause specifies selection criteria for an UPDATE
search_condition statement. The search_condition that follows the WHERE
keyword evaluates for each row in the indicated table. If the
search_condition returns true for arow, the columnsin the row
update with the new values indicated in the UPDATE statement;
if the search_condition returns false or unknown, therow is

ignored by the UPDATE statement.

PointBase Developer 179

PointBase

NOTE: If an UPDATE statement does not contain a WHERE clause, al rows in the target
table update with the new values. The UPDATE statement writes new valuesto rowsin
a PointBase database, but the changes become permanent only when a COMMIT
statement executes following an UPDATE statement, which finalizes changes to the
database.

If the UPDATE of arow causes the row to expand past the limits of the page or pages
that contained it originally, PointBase will automatically allow the row to span pages.

The JDBC calls that execute the UPDATE statement return the number of rows
updated.

Examples

UPDATE ORDER_TBL SET FREI GHT_COWPANY=' Shi ppi ng Express’, cust omer _nunr25 WHERE
order _num=10398001,;

Version 4.8 PointBase Developer 180

PointBase

DELETE

DELETE FROM t abl e_nane
[WHERE search_conditi on]

The DELETE statement deletes arow in atable in a PointBase database.

Syntax
DELETE FROM The DELETE FROM keyword isrequired inaDELETE
Statement.
table_name Thetable_name isthe name of the table from which the selected
rows are to be deleted.
VWHERE The optional WHERE clause specifies selection criteriafor a

search_condi ti on | DELETE statement. The conditional expression that follows the
WHERE keyword is evaluated for each row in the identified
table. If the search_condition returns true for arow, therow is
deleted; if the search_condition returns false, the row is not
deleted. If no WHERE clause is specified, all rows are deleted
from the table. See “ Search Conditions and Predicates,” for more
information.

The DELETE statement marks rows in the database for deletion. The rows are actually
removed when a commit occurs after the statement executes, which completes any changesto
the database. For more information on COMMIT, see “ Transaction Control.”

The JDBC callsthat execute the DELETE statement return the number of rows to be del eted.

Examples

DELETE FROM ORDER_TBL

VWHERE SHI PPI NG_COST <= 275. 00;
DELETE FROM ORDER_TBL

VWHERE SHI PPl NG_COST =?

Version 4.8 PointBase Developer 181

PointBase

Data Control Language

To manipulate data, use the Data Control Language (DCL). With DCL, you can perform the
following:

CALL: Execute an SQL procedure.

RETURN: Return avalue from an SQL function.

SET assignment: Assign avalue to an SQL variable.

SET PATH: Set or change the current path being used to locate the SQL objectsin

CALL

CALL procedure_nane([argunent list])

various schemas.

SIGNAL: Raise an SQL State exception.
VALUES: Invoke an SQL routine.

The CALL statement executes an SQL routine that is a procedure.

Syntax

CALL

The CALL keyword isrequired in a CALL statement.

procedure_name

The procedure_name is the name of the procedure whichis
executed. No results are returned.

argument_list

The optional argument_list clause specifies values for the CALL
statement.

NOTE: Only constants can be used. You cannot use new or old
row values.

Examples

CALL PROC1();
CALL PROC2(* abc

Version 4.8

")

PointBase Developer 182

PointBase

RETURN

RETURN routi ne_i nvocation

The Return statement returns a scalar value from a Java stored procedure that is afunction, in
theform aresult set.

Syntax
RETURN The RETURN keyword isrequired asthe first word in a
RETURN statement.
routine_invocation Theroutine_invocation must be an SQL routine invocation,
Examples

RETURN PROCL() ;
RETURN PROC2(*‘ abc’);

Version 4.8 PointBase Developer 183

PointBase

SET assignment

SET assi gnment _target = assignnent_source

You may use SET assignment statements for BEFORE triggers only. The SET assignment
statement assigns a value to an SQL Trigger row correlation variable. The SET assignment
statement is much like the set_clause of an SQL UPDATE statement.

Syntax

SET The SET keyword is required as the first word in a SET
assignment statement.

assignment_target The assignment_target consists of both, an SQL correlation
variable of an SQL Trigger and acolumn_name. The
column_name refers the column of the SQL correlation variable.
You may use new or old row values.

assignment_source The assignment_source is one or more SQL expressions that can
be a constant, an SQL routine invocation, one of the SQL Scalar
functions, an SQL Cast functions, or an SQL Special Register.

You may not use an SQL correlation variable; however, you can
reference new or old row valuesin the WHEN search_condition.

Assignment_source values are assigned to the assignment_target.

Examples

SET new ow. i nventory = getnewalue ();
SET new ow. sel | dat e = CURRENT_DATE;
SET ny_newal i as. frui tname = ‘apples’;

Version 4.8 PointBase Developer 184

PointBase

SET PATH

SET PATH schema_name [{, schenma_nane}...]

With the SET PATH statement, you can use it to set or change the current path that you are
using to locate the SQL objects in various schemas. Thisresults in the setting of the
CURRENT_PATH of a SQL session. To find the correct system tables, the schema
POINTBASE must be included in the path.

Syntax
SET PATH The SET PATH keywords are required asthe first wordsinaSET
PATH statement.
schema_name Required keywords to begin the statement.
Examples

SET PATH Enpl oyees, Engi neering, Sal es, PointBase;

This setsthe CURRENT_PATH to the following schemasin the order specified: Employees,
Engineering, Sales, and PointBase. If you wish to append the Marketing schemato the
CURRENT_PATH so that the order becomes Employees, Engineering, Sales, PointBase, and
Marketing, enter:

SET PATH CURRENT_PATH, Marketing;

If you never execute a SET PATH statement, then the CURRENT_PATH consists of the
schema POINTBASE, followed by your existing schema. When a SET PATH statement is
issued, it completely replacesthe existing CURRENT_PATH, unless CURRENT_PATH is part
of the schemas being set in the path.

The order of the schemasin the path is generally crucial. When the database system islooking
for SQL objects, it looks for them in each schema (unless explicitly referenced otherwise),
starting with the first schemain the path, then the next, etc...., until an SQL object isfound that
meets the criteria. One way to override the CURRENT_PATH isto explicitly reference the
SQL object. For example, to reference atable, you can specify schema_nametable name. In
the above examples, the SQL object of table_name would be searched in the schema of name
schema _name.

Version 4.8 PointBase Developer 185

PointBase

SIGNAL

SI GNAL ‘ sql st ate_nessage

With the SIGNAL statement, you can use it to raise an SQL STATE exception. This statement
can only be used within atrigger_body or within the body of an SQL routine, whose language
typeis SQL. This statement will cause an SQLSTATE exception to be thrown and propagated
back to your program. You provide the text of the message.

NOTE: The SIGNAL statement rolls back the specific event that activated its trigger and all
the changes caused by the trigger, as well asthe original SQL statement of the user,
which includes all the triggers and cascading actions that it invoked.

Syntax

SI GNAL

The SIGNAL keyword isrequired asthefirst word in aSIGNAL
statement.

sglstate_message

The sglstate_message isan SQL string literal value. You can
specify any text they would like. The actual SQL STATE code
will be ZG014 and the SQL error code is 25014.

Examples

SI GNAL' The oranges inventory is enpty’;
SIGNAL ‘' The sal ary of an enpl oyee woul d have been hi gher than the salary of his/her Man-

ager’;

Version 4.8

PointBase Developer 186

VALUES

PointBase

VALUES (SQL_expression [{ , SQ._expression} ...])

VALUES (addnewfruit(‘ap
VALUES (i ncreaseorders(2

The VALUES statement is an SQL stand alone SQL statement. It should not be confused with
the values_clause of an INSERT statement or with the from_clause of an SQL Select
statement.

Typically, the VALUES statement is used to invoke SQL routines. The VALUES statement
discards al SQL expression values returned by either a constant, an SQL routine invocation,
one of the SQL Scalar functions, one of the SQL Cast functions, or an SQL Special Register.

Syntax

VALUES The VALUES keyword isrequired as the first word in a
VALUES statement.

L_expression The SQL_expression can be a constant, an SQL routine
invocation, one of the SQL Scalar functions, an SQL Cast
functions, or an SQL Specia Register.

Examples

ple’));
00));

VALUES (CURENT_DATE) ;

SET CONSTRAINTS

SET CONSTRAI NTS <constraint name |ist> { DEFERRED | | MVEDI ATE }

<constraint name list> ::= ALL

Version 4.8

| <constraint nanme> [{ <conma> <constraint name> }...]

You may use SET CONSTRAINTS statements to change when the constraint checking will be
performed. The scope of this statement is for the current transaction only. If no active
transaction exists while executing this statement, this setting will be effective on the next
transaction. Only constraint which is defined deferrable can be specified in the constraint name
list, otherwise an exception will be thrown.

If constraint mode is set to immediate from deferred, constraint checking will be performed on
all deferred rows of this constraint. This only gives the current status of deferred rows of this
congtraint. All deferred rows will be effectively checked at the end of the transaction again.

PointBase Developer 187

PointBase

Syntax

SET CONSTRAINTS SET CONSTRAINTS keyword is required as the first
two wordsin a SET CONSTRAINTS statement.

All | constraint_name_list The constraint_name _list contains those constraints to
be set. You can either give ALL or alist of constraint
names separated by comma. Only deferrable
constraints can be specified in the list.

DEFERRED | IMMEDIATE Set to DEFERRED or IMMEDIATE.

Examples

SET CONSTRAI NTS al | deferred;
SET CONSTRAI NTS conl, con2 i medi at e;

Version 4.8 PointBase Developer 188

PointBase

Transaction Control

SAVEPOINT

In this section you can find the following transaction control statements:

* “SAVEPOINT”

« “COMMIT”

* “RELEASE SAVEPOINT”

« “ROLLBACK”

e “SET DATALOG”

« “START TRANSACTION ISOLATION LEVEL”

SAVEPO NT savepoi nt _nane

The PointBase transaction model supports savepoints. Savepoints allow transactions to be
partially rolled back by establishing a point within a transaction. Savepoints are destroyed
automatically when a transaction commits.

NOTE: Make sure that auto commit is turned off when using savepoint.

Syntax
SAVEPOINT The savepoint_name can either be an SQL identifier or anumeric
savepoint_name value with a scale of zero.

Examples

SAVEPO NT SVP1;

SAVEPO NT 2;

Version 4.8

PointBase Developer 189

COMMIT

COW T [WORK]

COW T WORK;

Version 4.8

PointBase

The COMMIT statement successfully terminates a PointBase transaction.

Syntax

COW T [WORK] The COMMIT statement takes no qualifiers. The keyword
WORK isoptional.

Issuing a COMMIT statement ends the current PointBase transaction. The COMMIT causes
three basic actions in the PointBase database:

1. Writesany and all changes that have occurred to the data during the current
transaction to the database.

Releases any locks that have been placed on data in the PointBase database.
Destroys any result setsthat have been returned from a query.

Examples

PointBase Developer 190

PointBase

RELEASE SAVEPOINT

RELEASE SAVEPO NT savepoi nt _nane

The RELEASE SAVEPOINT statement destroys a savepoint within a transaction and all the
savepoints created after the specified savepoint. The savepoint is automatically released when
aCOMMIT or ROLLBACK occurs.

The savepoint name specified in this command should have been created earlier by a savepoint
command in the current transaction. If the savepoint nameis not found, an exception is raised
for theinvalid savepoint name.

NOTE: Make sure that autocommit is turned off when using savepoint.

Syntax
RELEASE The savepoint_name can either be an alphanumeric SQL
SAVEPOINT identifier or an integer number.
savepoint_name

Example 1

RELEASE SAVEPO NT SVP1,
RELEASE SAVEPO NT 2,

Example 2

CREATE TABLE T1 (cl int);
Savepoi nt spl;

| NSERT I NTO T1 val ues (1);
Savepoi nt sp2;

| NSERT I NTO T1 val ues (2);
Savepoi nt sp3;

I NSERT | NTO T3 val ues (3);
RELEASE savepoi nt sp2;

NOTE: Inthelast statement of Example 2, the savepoint sp2 is destroyed.

Version 4.8 PointBase Developer 191

ROLLBACK

PointBase

ROLLBACK [WORK] [TO SAVEPO NT savepoi nt _nane]

ROLLBACK WORK;

The ROLLBACK statement rolls back any changes that have taken place in a PointBase
transaction to the beginning of the transaction or to a savepoint.

A ROLLBACK TO SAVEPOINT statement allows you to undo all changes to the database
back to the savepaint. This action does not terminate atransaction. If aROLLBACK
statement references a savepoint, then the transaction rolls back to where the savepoint was
specified.

NOTE: Make sure that auto commit is turned off when using savepoint.

Syntax
ROLLBACK TO The savepoint_name can either be an SQL identifier or anumeric
SAVEPOINT value with a scale of zero.

savepoint_name

Examples

ROLLBACK WORK TO SAVEPO NT SVP1;

Version 4.8

Issuing a ROLLBACK statement restores the data changed in a transaction to the values that
existed before the PointBase transaction began. If you specify a savepoint_name, then all
changes made to data in the transaction, after the SAVEPOINT savepoint_name statement was
executed, rolls back. The specified savepoint and all savepoints issued subsequent to this
savepoint are destroyed. The transaction resumes after the savepoint statement.

A ROLLBACK statement without any qualifier ends the current transaction, which causes
two actionsin the PointBase database:

1. Releasesany locks that have been placed on data in the PointBase database.
2. Destroysany result sets that have been returned from a query.

PointBase Developer 192

PointBase

SET DATALOG

SET DATALOG OFF | ON FOR TABLE tabl e_nane

The SET DATALOG command allows administrators to turn OFF or ON data logging for a
specific table. By default, datalogging is set to ON for all tables. When set to OFF, deletions or
updates are not allowed on the specified tables. You should turn DATAL OG to OFF for
insertions only. If the specified table has one or more indexes, during insertions itsindexes
will automatically be updated and the index will be logged.

No transaction should be active while executing a SET DATALOG command. PointBase
recommends that you execute this command just after aROLLBACK or aCOMMIT statement
and before a START TRANSACTION ISOLATION LEVEL statement (or any statement that
starts a transaction.) Any transaction that starts after the SET DATALOG statement will turn
OFF logging for the specified table. At the end of the transaction, logging is automatically
turned back ON. Optionally, before the end of the transaction, you can turn logging ON by
setting the ON option in the SET DATALOG statement.

The main purpose of the SET DATALOG statement is to increase performance by turning off
datalogging while inserting alot of data (via bulk loading) into atable. The tableislocked
exclusively by thefirst insert into the specified tablein this transaction. This exclusivelock is
then released at the end of the transaction.

Example 1

In the following example, after the COMMIT statement, the datalogging is turned OFF for the
table T1. The INSERT statement starts atransaction, turns off the datalogging for table T1 and
inserts al the datafrom thefile ‘data.tab’ into table T1. The final COMMIT commits all the
inserted data and turns data logging ON for table T1.

commt work;

set datalog off for table T1;

SET BULK ON;

insert into Tl values (?,?,?) use c:\data.tab delinmter tab;
comm t worKk;

Example 2

In this example, datalogging isturned OFF and one row isinserted into table T2. Although
thisis allowed, there is no advantage to turning OFF data logging for only afew row inserts.

comm t worKk;

set datalog off for table T2;
SET BULK ON;

insert into T2 val ues (10, 20, 30);
commt worKk;

Version 4.8 PointBase Developer 193

PointBase

START TRANSACTION ISOLATION LEVEL

START TRANSACTI ON | SCLATI ON LEVEL
i solation_|level [access_npde], [DI AGNOSTICS Sl ZE di agnostics_si ze]

The START TRANSACTION ISOLATION LEVEL statement is an explicit way to start a

transaction.
Syntax
isolation_level PointBase supports the following transaction isolation levels:
* READ UNCOMMITTED
+ READ COMMITTED
 REPEATABLE READ
*+ SERIALIZABLE
access_mode PointBase supports READ ONLY and READ WRITE access

modes. The default modeis READ WRITE. It can only be
specified once. If the access modeis not specified, theniitis
implicitly READ WRITE. Inthe READ ONLY mode, no
modification to date can be made.

DIAGNOSTICS SIZE | Thediagnostics size represents the maximum

number_of conditions | number_of conditions or SQL exceptionsthat are saved for each
statement that executes. This number lists the number of
conditions that can be held at any given time in the diagnostic
area. The value must be greater than 0. A default value is defined
at implementation time. The number_of conditions can specified
only once.

READ UNCOMMITTED

This mode does not permit Read and Write access mode. It isalso known asa‘dirty read.’ In
this mode, al rows, including uncommitted rows are retrieved. For example, if transaction T1
performs one row insert, transaction T2 retrieves that row before T1 ends.

READ COMMITTED

This mode retrieves committed rows only. However, if the same SELECT statement is
executed again, the results may differ due to update from other transaction. For example, a
transaction T1 retrieves arow, another transaction T2 then updates that row and commits, and
T1 then retrieves the same row again. Transaction T1 has retrieved the same row twice, but
produced two different values.

Read and Write are permitted with more concurrency. For most users, this mode may satisfy
their needs. If atransaction isolation level is not specified inthe poi nt base. i ni file, the
default is the transaction isolation level, READ_COMMITTED.

Version 4.8 PointBase Developer 194

PointBase

REPEATABLE READ

In this mode, only committed rows are retrieved (asin the READ_COMMITTED) but without
the problem seen inthe READ_COMMITTED isolation level: if the samerow isretrieved
again in the same transaction, the exact same value is retrieved. However, if anew row is
added by another transaction and commits the insert (also delete or update), a second time
retrieval for the same select statement may include the newly inserted (also del eted or updated)
row. This phenomenon is know as a phantom read.

SERIALIZABLE

Thismodeisthe highest level possible, superior in functionality to aREPEATABLE_READ as
no phantom occurs. If aSELECT statement retrieves a collection of rowsto satisfy a condition,
and the same SELECT statement is executed again in the same transaction, then it is
guaranteed to retrieve the same set of rows with the same values.

In thismode, concurrency is reduced compared to other modes. If the number of rows retrieved
or affected by the transaction exceeds the number of locks specified in the poi nt base.i ni
file, the row level locks are converted to table level locks, further reducing the concurrency.
The default number of locks is 2000.

Example

START TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE, READ WRI TE;

START TRANSACTI ON | SOLATI ON LEVEL READ UNCOWM TTED READ ONLY

Version 4.8

PointBase Developer 195

PointBase

PointBase-Specific SQL

SHUTDOWN

This section describes non-standard SQL statements that PointBase supports. PointBase has
provided these statements to supply additional functionality for your application. Each section
representsits own SQL statement. For each of them, the section will summarize the purpose,
describe the syntax, explain the usage, and give examples of the statement. You may browse
the PointBase-specific SQL statementsto discover useful commands.

SHUTDOWN [FORCE]

SHUTDOWN,
SHUTDOW FORCE;

BACKUP

To shut down your PointBase Embedded databases, you can use the SHUTDOWN statement.
It can shut down either PointBase Embedded or PointBase Embedded - Server Option.
However, you must be the database owner or the PBSY SADMIN user, or you must have the
PBDBA role for your current role to perform the shut down.

Syntax

FORCE | It shuts down the database regardless of open client connections.

Examples

BACKUP DATABASE [ROLLFORWARD | CLASS=<user class name >] [PARAM=<user paran®]

Version 4.8

This SQL statement initiates online backup. Online backup functionality facilitates database
backup while the database application is running. To use this statement, the application must
first implement the PointBase interface, “ com.pointbase.tools.toolsBackup.” The examplein
this section describes the PointBase default implementation of thisinterface.

Online backup has many uses. You can use online backup, when you do not want to bring
down the database while taking a backup or when some critical event isrecorded in the
database, and you want to backup the database immediately. Additionally, having the online
backup facility, an application has the flexibility to copy the database to any type of storage it
wants, for example, Flash memory.

PointBase Devel oper 196

PointBase

Online backup also allowsyou to start rollforward backup by specifying the ROLLFORWARD
parameter. Rollforward backup allows you to use the backup log statement for subsequent
backups. The backup log statement will only back up logs, which contain changes since the
last backup, instead of backing up all database files. Rollforward backup can only use our
default backup implementation, which copies all filesto a directory specified in the <user
param>. Once rollforward backup is enabled, logs will not be freed until they are backed up or
rollforward is disabled. To disable rollforward backup, You may backup the database again
with rollforward disabled or use the set rollforward off statement.

Important Notes

* You may initiate this statement using PointBase Embedded.

e Only the database owner, PBSY SADMIN user, or userswith READALL or PBDBA
roles are allowed to backup the database

e During online backup, al transactions, including the one that requests write operations,
are active— but the write operation will wait for the return from copyDatabaseFiles()—
which the application must implement; whereas, the read operations continue without any
interruption if they can proceed.

e Whileonline backup isin progress the SQL statements will not get lock time-out even if
they exceed the regular lock time-out time.

« |f CREATE INDEX isin progress then online backup will wait for it to complete.

Syntax

ROLLFORWARD Enable rollforward backup.

<user class name> := <identifier> is the name of the class which implements the

CLASS= <identifier> interface, “ com.pointbase.tools.toolsBackup.” If thisis not given
in the statement then the default implementation will be used.
(See Example.)

<user param> = <identifier> isthe user parameter(s). This can be a quoted

PARAM= <identifier> | identifier in which case it can have comma separated values. If
thisisnot given in the statement then NULL will be passed to the
“copyDatabaseFiles()” method.

Example

To accomplish the online backup functionality, you must first implement the interface
“com.pointbase.tools.toolsBackup.” Once the interface isimplemented, it must bein the
classpath with the embedded database JAR when you launch the application. After launching
the application, you can initiate online backup by executing the BACKUP SQL statement.

PointBase recommends using online backup when the load on the database is light.
I mplement toolsBackup I nterface

The application needs to implement the tool sBackup interface and the code for copying the
databasefiles. The class that implements this interface needs to have a default constructor, for
example:

interface tool sBackup

public void
copyDat abaseFi |l es(String databaseFiles[], String userParam

Version 4.8 PointBase Devel oper 197

PointBase

throws Exception;

« databaseFileq[] isthe absolute filenames of all the files for this database.

e userParamisa String which the application can specify in the online backup SQL
statement that will be passed to this method. This can contain such information as the
destination directory.

Default Implementation

The class, “toolsBackupDefault,” is the PointBase default implementation for the interface,
“com.pointbase.tools.toolsBackup.” In this default implementation, you must write the code
that copies the datafilesto some destination directory. Thisimplementation does not overwrite
any files. If the destination directory contains files with the same name of the backup database
file then an Exception israised. If the userParamis NULL, then the destination directory is
“<database directory>/backup.” <database directory> isthe directory of the original database
file. If you specify the userParam, then it should be avalid existing directory. Thefile copy is
done in blocks of data and the block size is 4096.

The following code describes the PointBase default implementation, “toolsBackupDefault.”

package com poi nt base. t ool s;

i nport java.
i mport | ava.
i nport java.
i mport java.
i nport java.
i mport java.
i mport | ava.
i nport java.

. Buf f er edl nput St r eam

. Buf f er edQut put St r eam
File;

. Fil el nput Stream

. Fil eQut put Stream

. I nput St ream

.1 CExcepti on;

. Qut put St r eam

Oo0o0oo0oo0o00O0

public class tool sBackupDefault inplenents tool sBackup
static int COPY_BLOCK S| ZE = 4*1024,

public tool sBackupDefaul t()
{
}

public void copyDatabaseFiles(String[] p_databaseFil eNanes,
String p_userParans)
throws Exception

File | _databaseFil es[] = new Fil e[p_dat abaseFi | eNanes. | ength];
for (int i=0; i < p_databaseFileNanes.|ength; i++)
| _databaseFiles[i] = new Fil e(p_databaseFi | eNanmes[i]);

String destinationDir;
if (p_userParans == null)

destinationDir = | _databaseFil es[0].getParent()+ "/backup";

el se
destinationDir = p_userParans;

File fDirectory = new File(destinationDir);
if (p_userParanms == null)
if (!fDirectory.exists())

fDirectory. mkdir();
}

if (!fDirectory.exists())
throw new Exception("The destination directory "+ destinationDir + "
does not exist");

Version 4.8 PointBase Devel oper 198

PointBase

if (!fDirectory.isDirectory())
t hrow new Exception("The destination is not a directory");

/] Check if any of the files with the given database file nanes exi st
/1 in the destination
for(int i=0; i<l_databaseFiles.length; i++)

File | _destination = new Fil e(destinationDir,
| _dat abaseFiles[i].getNanme());
if (I _destination.exists())
throw new Exception("The destination directory already contains
| _destination);

file +
}
/1 Copy the database files

for(Int i=0; i<l_databaseFiles.length; i++)

File | _destination = new Fil e(destinationDir,
| _dat abaseFil es[i].getNanme());

| _destination.createNewFile();

copyFil e(| _databaseFiles[i], | _destination);

private void
copyFile(File fSource, File fDest)
throws | CException

InputStream fis
Qut put Stream fo
Fi | eQut put St ream(f Dest)

= new Buf f eredl nput St ream(new Fi | el nput Strean{f Source));
s = new Buf f eredCQut put St r ean{ new
)i
)

int iLen = (int) fSource.length();

/1l read the input byte array...

byte[] buf = new byte[COPY_BLOCK SIZE];
int toGo = ilLen;

i nt dataRead;

while(toG > 0)

toG -= (dataRead = fis.read(buf));
fos.wite(buf, 0, dataRead);
}

fos.close();
fis.close();

Include I mplementation in Classpath

Whatever the user implementation of the toolsBackup interfaceis, the class must bein the
classpath with the PointBase Embedded JAR files, when launching the application, for
example:

java -classpath c:\pbenbedded45. jar;c:\pbtool s45.jar;c:\<userinplenentation.class>;
The PointBase default implementation is located in the “ pbtools” JAR.
Execute BACKUP Statement

The following example executes the BACKUP statement using the PointBase default
implementation of the “toolsBackup” interface and specifies the destination directory, “c:/
backup/databases.”

BACKUP DATABASE PARAME"c:/ backup/ dat abases”;

Version 4.8 PointBase Devel oper 199

PointBase

The next example does not specify a destination directory, so the PointBase default
implementation copies the backup database file to, “ <database directory>/backup.” <database
directory> is the directory of the original database file.

BACKUP DATABASE CLASS="com poi nt base.tool s. t ool sBackupDefault";

The following example does not specify an implementation class of “toolsBackup” nor does it
specify adestination directory. If thisisthe case, the PointBase default implementation,
“toolsBackupDefault” is used, and the destination directory is “ <database directory>/backup.”

BACKUP DATABASE;
The following example specifies rollforward parameter with a backup directory. If thisisthe

case, the PointBase backs up all file to the destination direcory "c:/backup/databases" and
enablesrollforward.

BACKUP DATABASE ROLLFORWARD PARAME"c:/ backup/ dat abases"

BACKUP TABLE

BACKUP TABLE PARAMF' TABLES=<t abl e name>[[, <t abl e name>].] SCHEMA=<schenma nane>
[FI LENAVE=<backup file name>] [PATH=<backup directory>]

This SQL statement is an addition to the PointBase online backup statement. Table backup
copiestables to an external file in binary format instead of the text format used by the unload
command. A corresponding restore statement is provided for restoring tables. This statement
backs up only tables and not indexes or constraints. You may need to recreate indexes after a
restore. This backup works much faster than the unload command since it is doing a page level
backup instead of row level. During backup, only tables being backed up arelocked. DML is
prevented during backup, but DQL is still allowed.

Table backup may create multiple files in <database.nome>/backup directory if data exceeds
the maximum file size that the file system supports. File names start with the <database name>
+ <first table name>, the default backup name, with extension ".bak". For example, abackup
from database "sample" of table "tabl" may create sample_tabl.bak and sample tab1$[n].bak
and so on. You may specify different <backup name> or backup directory. Before backing up
tables, all files starting with this <backup name> in backup directory will be deleted, so you
should use different <backup name> to avoid confusion.

Important Notes

« All PointBase online backup semantics also apply to the backup table statement.

« Backups can only be restored to a database which has the same interna database version.

« Only tables being backed up are locked. For those tables being backed up, shared locks
are placed on the tables and locks are rel eased after the transaction is committed or rolled
back.

Version 4.8 PointBase Devel oper 200

PointBase

Syntax

Example

TABLES specifies one or more table names, table

TABLES name has no prefix with schema name

SCHEMA specifies the schema to which the table
SCHEMA belongs. Only tables from the same schema can be
backed up together.

FILENAME specifies the filename of the backup file.
The default is <database name>_<first table name>.
An external file with <FILENAME>.bak will be created

FILENAME and used as the backup file. If more external files are
needed, <FILENAME>$|[N] is used for subsequent
files.

PATH PATH specifies the directory where backup files will be

created. The default is <database.home>/backup.

The following example backs up tables tabl and tab2 to an external file "test.bak™ in directory
"test".

BACKUP TABLE PARAMF TABLES=t abl, tab2 SCHEMA=pbpublic FI LENAVE=t est PATH=test’

RESTORE TABLE

RESTORE TABLE PARAME’ FI LENAME=<backup file nane> [SCHEMA=<schema name>]

Version 4.8

[PATH=<backup directory>]"’

This SQL statement is a corresponding statement to the table backup statement. Table restore
restores backup files into the current database. Tables being restored have the same name as
the original tables, but tables can be restored to a different schema. In case you need to restore
to adifferent table name, the "alter table ... rename" statement may be used to change the table
name after restoring it. The RESTORE TABLE command restores only tables. Since indexes
are not backed up, indexes will not be automatically created in the target database. Constraints
are a'so not backed up or restored, but can be added with ALTER TABLE...ADD
CONSTRAINT.

Two scenarios in the target database may occur as follows:

« |If thetable does not exist in the target database, the table will be created and popul ated
automatically. If the restore fails, the operations undertaken to create the table will be
rolled back.

e |f tablesexist in the target database, a semantic checking which compares the schema of
existing table and restored table, will be performed. If the semantic check failed, an
exception israised. Otherwise, tables will be locked exclusively and pages from the
backup file will be restored to the current table. If indexes exist, the indexes will be re-

PointBase Devel oper 201

PointBase

built. Any datain the original table will be lost after the restore. Note that constraints, for
example referential constraint, may not be guaranteed since RESTORE won't perform
row level checking after restore.

In both cases, if the restore fails, this statement will be automatically rolled back. To ensure
rollback works efficiently, twice the number of pages of the table are required since the
original pages of the table are saved and new pages are allocated for new rows. If autocommit
is not on, you may choose commit to make the restore permanent or rollback to rollback the

restore.

Important Notes

e All PointBase online backup semantics also apply to the restore table statement.
« |If the schema name does not exist in the database, an exception will be thrown.
* Thelogged in user needs to have administrator privilege (same as BACKUP).

Syntax

FILENAME

FILENAME specifies the filename of the restore file. It
will be the same FILENAME parameter given in the
backup statement. Extension ".bak" will be appended
to the FILENAME.

SCHEMA

SCHEMA specifies the schema to which tables will be
restored. All tables will be restored to the same
schema. If not specified, the original schema name
from backup database is used.

PATH

PATH specifies the directory where backup files are
located. The default is <database.home>/backup.

Example

The following example restores tables tabl and tab2 to schema pbnew from an externa file
"test.bak" in directory "test".

BACKUP TABLE PARAME' FI LENAME=t est SCHEMA=pbnew PATH=t est’

BACKUP/RESTORE TABLE API

Backup/Restore can al so be done through streams. You may create an output stream for backup
or an input stream for restore. With this, you may be able to use special devices or third party
tools. Thisfunctionality is supported through API calls.

Version 4.8

PointBase Devel oper 202

PointBase

toolsBackupTable classis provided for performing backup and restore operations through Java
methods. toolsBackupTable implements Runnable interface, so it can be run directly or from a
new thread. You may call the backup() or restore() methods in toolsBackupTable to construct a
toolsBackupTable object and it aso indicates the operation to perform. These two methods
return atoolsBackupTable object, and you may call the run() method to start a new thread to
begin the operation.

An event listener interface, toolsBackupEventListener, isalso provided. You may implement
thisinterface to get notification of the progression and completion of this operation. An event,
toolsBackupEvent, will be sent to the event listener to indicate the status of the operation,
which can be progress, completed, failed or canceled. For progress event, it will be sent for
every 100 pages processed on both backup and restore. The total number of page processed
can be obtained from the event as well by calling getPageCount method. If no event listener is
implemented, pass null as event listener, and events won't be sent. For more detail, please refer
to toolsBackupTable javadoc.

Example

The following code snippet creates a pipe for doing backup and restore.

/1 inmport necessary classes

i mport com pi ntbase. t ool sBackupTabl e;

i mport com pi nt base. t ool sBackup

i mport com pi ntbase. t ool sBackupEvent Li st ener

/'l create a pipe for backup and restore
Pi pel nput Streamis = new Pi pel nput Strean()
Pi peQut put Stream os = new Pi peQutputStrean(is);

/] create two connections connecting to two databases
Connection Conl = DriverManager. get Connection("jdbc: poi nt base: enbedded: db1"
Connection Con2 = Driver Manager. get Connection("j dbc: poi nt base: enbedded: db2")

/1 initialize backup on table pbpublic.tabl through output stream
t ool sBackupTabl e backupObj =
t ool sBackupt abl e. backup(Conl, "pbpublic", "tabl", os, new testEventListener());

/1 start a thread for doing backup
Thread backupThread = new Thread(backupQoj);
backupThread. start();

/1 initialize restore on table pbpublic.tabl through output stream
t ool sBackupTabl e restoreChj =
t ool sBackupt abl e.restore(Con2, null, is, new testEventListener())

/1 start a thread for doing restore
Thread restoreThread = new Thread(restoreChj);
restoreThread. start();

/1 wait for threads to conplete
backupThread. j oi n()
restoreThread.join();

/1 close all streams and conections

is.close();

os.close();

Conl. cl ose();

Con2. cl ose();

cl ass testEventListener inplenments tool sBackupEventLi stener
public void processEvent(tool sBackupEvent event)

System out . println(
"CGot event with status: " + event.getStatus() +

Version 4.8 PointBase Devel oper 203

PointBase

' sqgl exception: " + ((event.get SQLException() == null) ?
null : event.get SQLException().get Message()));

BACKUP LOG

BACKUP LOG [<user paranp]

This SQL statement can only be used when rollforward is enabled. backup log statement backs
up log filesand adescription file with .rfd extention to the directory specified in <user param>.
Thisis useful when the database istoo large but does not have much update transactions. In
this case, backup logs will be alot faster than backup the entire database everytime. A
sequence number is used in the rollforward backup to indicate the order of backups. This
sequence number is added as part of the backed up filename. When the rollforward is enabl ed,
the sequence number isinitialized to 0 and is incremented by 1 for every log backup. For
example, you may see a backup file, sample$0.rfd, as the description file of database backup
with rollforward enabled of database sample and sample$l.rfd for the first log backup.

Important Note

All PointBase online backup semantics also apply to the backup log statement.

Syntax

<user param> :=
PARAM= <identifier>
<identifier> is the
user parameter(s)

This is used to set the backup directory only. If
not set, the default backup directory is
<database.home>/backup.

Example

The following example backs up logs in the directory c:/pointbas/backup.
BACKUP LOG PARAME"c: / poi nt base/ backup"

SET ROLLFORWARD

SET ROLLFORWARD OFF

Version 4.8 PointBase Devel oper 204

PointBase

This SQL statement disablesrollforward backup. If rollforward is not enabled, this statement is
no-op. Once the rollforward is disabled, you have to enable it through backup database

statement again.

ROLLFORWARD RESTORE UTILITY

java com poi nt base.tool s.tool sRestore

-url
logdir dir]

Version 4.8

url [-user user] [-password password]

[-backupdir dir] [-num ogs nunm] |-

Specify the url. User must use embedded option.

-url url User may use database name instead of url if no
database parameter is given.
Specify user name used to connect to existing
-user user

database. The default is PBPUBLIC.

-password password

Specify password used to connect to existing
database. The default is PBPUBLIC.

-backupdir dir

Specify the directory where the database backup is
located. If this directory isthe same as
database.home, it is assumed that user has pre-
copied all filesto this directory, so these files will
be used directly without copying. The .dbn files
will be used directly and .wal fileswill be renamed
to their original names and used for recovery.

-numlogs num

Specify the number of log backups. If -numlogs
parameter is not given, restore utility automatically
detects all log backups in the backup directory and
restores all of them.

-logdir dir

Specify the directory where all 1og backup files are
located. If not specified, it is assumed to be the
same as -backupdir.

Restore will be a utility instead of a SQL statement because the database will be created or
completely overwritten if one exists. User and password are used to connect to the existing
database. If the database exists, user needsto bethe DBA or owner of the database to del ete the
database. If the database is partially damaged and cannot be started, this verification is
skipped. The database will be restored in the directory specified by PointBase database.home.
This parameter can be set in the URL or in the file pointbase.ini. User may put database
backups in one directory and log backups in another directory by specifying -backupdir and -
logdir parameters, or in the same directory by specifying only -backupdir parameter. All log
backups need to be located in the same directory. Restore will not run if any backup is missing.

PointBase Devel oper 205

PointBase

User may not need to restore all log backups. Depending on the -numlogs parameter in the
restore utility, user may specify number of logs to be restored.

Example

The following example shows the sequence of events in restoring a database from directory c:/
pointbase/backup.

java com poi nt base.tool s.tool sRestore -url testnutl1l6 -backupdir "c:/pointbase/backup"

Restore Sequence:

Restored directory: \pointbase\databases
Backup directory: c:\pointbase\backup
Found 3 log backups, restoring 3 log backups
Deleting database files

Restoring database backup

Restoring log backups

Restoring log backup 1

Restoring log backup 2

Restoring log backup 3

Recovery

Restore completed successfully

Version 4.8 PointBase Devel oper 206

Appendix B: Unsupported JDBC

M ethods in PointBase

Table 1 describes the unsupported JDBC methods from the java.sgl package.

Table 1: Unsupported JDBC Methods From Java.sql Package

Java.sgl Class

Unsupported Methods

Blob

setBytes(long pos, byte[] bytes)

setBytes(long pos, byte[] bytes, int offset, int len)

setBinaryStream(long pos)

truncate(long len)

CallableStatement

getArray(int p_parameterindex)

getObject(int p_parameterindex,java.util.Map p_map)

getRef(int p_parameterindex)

setArray(int p_parameterindex,Array p_value)

setRef(int p_parameterindex,Ref p_value)

Connection

getTypeMap()

setTypeMap(java.util.Map p_map)

getHoldability()

setHol dability(int holdability)

DatabaseM etaData

getUDTs(String p_catalog,String p_schemaPattern,String p_typeNamePattern,int[]
p_types)

public boolean locatorsUpdateCopy()

Version 4.8

PointBase Developer

207

PointBase

Table 1: Unsupported JDBC Methods From Java.sql Package

Java.sgl Class Unsupported Methods

PreparedStatement setArray(int p_parameterindex,Array p_value)

setRef(int p_parameterindex,Ref p_value)

setURL (int parameterindex, URL X)

ResultSet getArray(int p_Columnl ndex)

getArray(String p_ColumnName)

getObject(int p_Columnindex,java.util.Map p_Map)

getObject(String p_ColumnName,java.util.Map p_Map)

getRef(int p_Columnindex)

getRef(String p_ColumnName)

public URL getURL (int columnlndex)

public URL getURL (String columnName)

public void updateRef(int columnindex, Ref x)

public void updateRef(String columnName, Ref x)

public void updateBlob(int columnindex, Blob x)

public void updateBlob(String columnName, Blob x)

public void updateClob(int columnindex, Clob x)

public void updateClob(String columnName, Clob x)

public void updateArray(int columnindex, Array X)

public void updateArray(String columnName, Array X)

Statement public void setCursorName(String unused)

public boolean getM oreResults(int current)

public int executeUpdate(String sql, int[] columnindexes)

public int exectueUpdate(String sgl, String[] columnNames)

public boolean execute(String sql, int[] columnindexes)

public boolean execute(String sgl, String[] columnNames)

Version 4.8 PointBase Developer 208

Version 4.8

Appendix C: Reserved Words

PointBase reserves certain words as keywords. Reserved words cannot be used, by themselves,
as an identifier for atable, column, or index, or as a correlation name defined in a SELECT
statement, unless you delimit them. A delimited identifier is an identifier in double quotes.
Any word, including keywords, can be adelimited identifier. A reserved word can be part of an
identifier, such asDEFAULT _TABLE, aslong asit is not exactly the same as the keyword by
itself.

Although CREATE TABLE (VARCHAR VARCHAR(10)) is not alegal PointBase syntax
because of theillegal use of the reserved words, “TABLE” and “VARCHAR.” The same
identifiers, however, can be legally used if they are delimited, asin CREATE TABLE
"TABLE" ("VARCHAR" VARCHAR(10)).

NOTE: The words listed here are SQL reserved words and should not be used. Some of these
keywords may not be supported in this release, but are reserved for future rel eases of
PointBase.

Reserved words in the PointBase database are;

ACTI ON
ADD
AFTER
ALL
ALTER

AND

AS

ASC
ASCENDI NG
AT

ATOM C
AUTHCORI ZATI ON
AVG

BEFORE

BEG N

BETWEEN

Bl NARY

PointBase Developer 209

PointBase

BIT
BLOB

BOOLEAN
BOTH

BY
CALL

CASCADE
CASE

CAST
CHAR

CHARACTER
CHAR_LENGTH
CHARACTER_LENGTH
CHECK

CLCB
COLUWN

COWM T
COW TTED

CONSTRAI NT
CONTAI NS
COUNT
COUNTRY

CREATE
CRGSS

CURRENT
CURRENT_DATABASE

CURRENT _DATE
CURRENT_LSN

CURRENT_PATH
CURRENT _SCHEMA
CURRENT _SESSI ON

CURRENT_TI ME
CURRENT_TI MESTAMP
CURRENT_USER

DATA
DATABASE
DATALOG

DATE
DAY

DEC

DECI MAL
DEFAULT
DEFERRABLE

Version 4.8 PointBase Developer 210

Version 4.8

PointBase

DELETE

DESC

DESCENDI NG
DETERM NI STI C

DI AGNOSTI CS
DI SCONNECT
DI STI NCT

DOUBLE
DROP
EACH

END
EXCEPT
EXECUTE
EXTERNAL

EXTRACT
FALSE
FI LTER_COLUWN

FI LTER_ROW

FLOAT
FOR

FOREI GN
FROM
FULL

FUNCTI ON

G
GETLASTLSN
GRANT
GROUP

K

HAVI NG
HOUR

I MAGE

| MVEDI ATE

I'N
I NDEX
| NDEXONLY

I NI TI ALLY
I NNER
I NOUT

| NSERT
I NT

| NTEGER

PointBase Developer

211

Version 4.8

PointBase

I NTO
IS
| SOLATI ON

JAVA

JAO N
KEY

LANGUAGE
LARGE
LEADI NG
LEFT
LENGTH
LEVEL

LI KE

LOB

LONG

LONGRAW
LOVER

LSN_CURRENT_| D
LSN_CURRENT _OFFSET
LSN_SKI P_I D
LSN_SKI P_OFFSET
LSN_START_ I D
LSN_START_OFFSET

M
MATCH
MAX
METHCD
M N

M NUTE
MODI FI ES
MONTH
NANME
NATURAL
NEW

NO

NOT
NUMBER

NUMERI C
NULL

OBJECT

OCTET_LENGTH

OF

PointBase Developer 212

Version 4.8

PointBase

QUTER
PAGESI ZE
PARAMETER
PASSWORD
PATH
PLANONLY
POSI TI ON

PRECI SI ON
PRI MARY

PRI VI LECES
PROCEDURE
PUBLI CATI ON
RAW

READ

READS

REAL
REFERENCES
REFERENCI NG

RELEASE
REPEATABLE
RESTRI CT
RETURN
RETURNS
REVCKE

Rl GHT

ROLLBACK
ROUTI NE

ROW
SAVEPO NT
SCALAR
SCHEMA
SECOND

SELECT
SERI ALI ZABLE

PointBase Developer 213

Version 4.8

PointBase

SESSI ON_USER

SET
SI GNAL

S| ZE
SMVALLI NT
SNAPSHOT

SPECI FI C
SQLSTATE
STARTSTATEMENT
STYLE
SUBSCRI PTI ON

SUBSTRI NG
SUM

SW TCHLOGFI LE
SYSDATE
SYSTI ME
SYSTI MESTAVP

TABLE
TEXT

TI ME
TI MESTAWP
TI NYI NT

TO
TRAI LI NG
TRANSACTI ON
TRI GGER
TRIM

TRUE
UNCOWM TTED

UNI ON
UNI QUE
UNI SYNC
UNKNOWK

UPDATE
UPPER
USER

USI NG

VALUES
VARBI NARY

VARCHAR
VARCHAR2

VWHEN

PointBase Developer

214

PointBase

VWHERE
W TH

VRI TE
WWORK
YEAR

Version 4.8 PointBase Developer 215

Appendix D: SQL Data Type Code
e

This section contains a mapping of SQL data types and their corresponding type code. These
code values are based on the ANSI and | SO SQL standard.

SQL Data Type Type Code
BLOB 30
BOOLEAN 16
CHARACTER 1
CHARACTER VARYING 12
CLOB 40
DATE 91
TIME 92
TIMESTAMP 93
BIGINT 9
DECIMAL 3
DOUBLE PRECISION 8
FLOAT 6
INTEGER 4
NUMERIC 2
REAL 7
SMALLINT 5
BINARY 121
VARBINARY 122
LONGVARBINARY 123

Version 4.8 PointBase Developer 216

PointBase

SQL Data Type Type Code

LONGVARCHAR 124

Version 4.8 PointBase Developer 217

	Proprietary and Trademark Information
	Table of Contents
	Preface
	Purpose
	Audience
	Release Notes
	Document Feedback
	Document Conventions Used in This Guide

	Developer’s Overview
	JDBC and PointBase
	The PointBase JDBC Driver

	SQL and PointBase
	Your Application and PointBase
	What’s New With PointBase Embedded
	PointBase Embedded (and Server Option) Enhancements

	PointBase JDBC Basic Tutorial
	Refreshing the Sample Database
	Making a Connection to PointBase
	Loading the PointBase JDBC Driver
	Connecting to the PointBase database

	Creating and Executing Static JDBC Statement
	Retrieving Row Values From Non-Scrollable Result Sets
	Closing and Committing Objects
	Rolling Back or Committing the Transaction
	Closing the Result Set
	Closing the JDBC Statement
	Closing the Connection to the Database

	PointBase JDBC Advanced Tutorial
	Creating and Executing a Dynamic JDBC Statement
	Creating a Prepared Statement
	Binding the Dynamic Variables to the Prepared Statement

	Using Result Sets
	Result Set Types, Concurrency, and Holdability
	Creating Scrollable Result Sets
	Notes on Scrollable Result Sets
	Moving the Cursor
	Setting the Direction of the Cursor in Scrollable Result Sets
	Retrieving Information About a Result Set
	Setting the Number of Returned Rows in Scrollable Result Sets
	Updating Row Values in Scrollable Result Sets
	Inserting Rows Into Scrollable Result Sets
	Deleting Rows From Scrollable Result Sets
	Viewing Changes to Current Result Sets

	Flushing the Database Log
	Performing Batch Operations
	Retrieving Data From BLOB Columns
	Retrieving Data From CLOB Columns
	Creating Functions
	External Java Methods and Functions
	Creating an External Function
	Specifying the External Function in a Stored Function
	Using the Function

	Creating Stored Procedures
	Using INOUT and OUT Parameters
	Using JDBC Wrapper Classes
	Creating an External Procedure Using JDBC Wrapper Classes
	Executing a Stored Procedure

	Connecting to Multiple Databases
	Pointbase.ini
	Transactions
	Shutdown Command
	Backup Command

	Basic SQL Data Objects
	Data Objects Within PointBase Embedded
	Database
	Database Size Limit
	Concurrent Databases
	Read-Only Support

	User
	Schema
	Previous Schema PUBLIC
	Schema Owners
	Schema Referencing
	Managing Schemas

	Table
	Derived Table
	View
	Security for Views

	Temporary Table
	Column
	IDENTITY Property for Autoincrement

	Connection Pools
	com.pointbase.jdbc.jdbcPooledDatasource
	Datasource Properties
	Connection Pool Size
	PointBase Embedded or Server Option
	Other Methods
	Creating a Datasource Object

	JNDI
	Registering Datasource with JNDI
	Retrieving from JNDI

	SQL Data Types
	CHARACTER [(length)] or CHAR [(length)]
	VARCHAR (length)
	BOOLEAN
	SMALLINT
	INTEGER or INT
	BIGINT
	DECIMAL [(p[,s])] or DEC [(p[,s])]
	NUMERIC [(p[,s])]
	REAL
	FLOAT(p)
	DOUBLE PRECISION
	DATE
	TIME
	TIMESTAMP
	CLOB [(length)] or CHARACTER LARGE OBJECT [(length)] or CHAR LARGE OBJECT [(length)] LONGVARCHAR[...
	BLOB [(length)] or BINARY LARGE OBJECT [(length)] LONGVARBINNARY[(length)] BINARY[(length)] VARBI...
	Data Conversions and Assignments

	SQL Scalar and Aggregate Functions
	SQL Scalar Numeric Functions
	SQL Scalar Character String Functions
	CONCATENATION
	SUBSTRING
	CHARACTER_LENGTH
	POSITION
	TRIM
	UPPER and LOWER

	SQL Scalar Date/Time Functions
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	EXTRACT

	SQL Scalar CAST Function
	SQL Scalar Routine Invocation
	Routine Determination

	SQL Aggregate Functions
	AVG
	COUNT
	MAX
	MIN
	SUM

	SQL Special Registers

	Indexes and Constraints
	Indexes
	Keys
	Primary Key
	Foreign Key

	Constraints
	Unique Constraint
	Referential Constraint
	Check Constraint
	Deferrable Constraint

	Index Organized Tables
	Search Conditions and Predicates
	Search Conditions
	Simple search conditions
	Values
	Operators
	Complex search conditions

	Predicates
	COMPARISON
	BETWEEN
	LIKE
	EXISTS | NOT EXISTS
	IN | NOT IN
	NULL

	Transactions and Locks
	Transactions
	Row Level Locking
	Locks and Memory

	Transaction Isolation Levels
	READ_COMMITTED
	SERIALIZABLE and REPEATABLE_READ
	Recommended Isolation Level

	Distributed Transactions
	PointBase’s Role in a DTP Environment
	Transaction Managers, Resource Managers, and Global Transactions
	Interaction Among DTP Components

	Java Transaction API (JTA)
	JDBC 2.0 Optional Package API
	Implementing javax.sql.XADataSource
	XADataSource and JNDI
	Support for XADataSource Properties
	Additional PointBase Methods

	Using PointBase in a DTP Environment
	Getting the XAResource Object
	Using the XAResource Object
	Committing Global Transactions
	Rolling Back Global Transactions
	Recovering Global Transactions
	Example

	Mixing Global and Local Transactions
	Unsupported in PointBase

	SQL Security and Privileges
	Predefined Users
	Internal_System_Administrator (ISA)
	PBSYSADMIN
	PBPUBLIC

	Granting and Revoking Privileges to Users
	GRANT Syntax
	Examples
	REVOKE Syntax

	Predefined Roles
	PBDBA Role
	READALL Role

	Granting and Revoking Privileges to Roles
	CREATE ROLE Syntax
	Examples
	GRANT ROLE Syntax
	REVOKE Syntax
	DROP ROLE Syntax
	SET ROLE Syntax

	Application Programming Interface Tools
	Load and Unload API’s
	Unload API
	Load API
	Stand-Alone or Command Line Tool

	Database Compress Tool
	Command Line Tool
	Important Note for UniSync Users

	Appendix A: SQL Reference
	Conventions
	Page Format Conventions
	Syntax Conventions

	Data Definition Language
	CREATE SCHEMA
	Syntax
	Examples

	CREATE TABLE
	Syntax
	Column_Definition Syntax
	Column_Constraints
	Table_Constraint_Definition
	Example 1
	Example 2
	Example 3
	Example 4

	CREATE VIEW
	Notes
	Syntax
	Examples

	CREATE USER
	Syntax
	Example

	CREATE ROLE
	CREATE INDEX
	Syntax
	Example1
	Example2

	CREATE FUNCTION
	Syntax
	Example

	CREATE PROCEDURE
	Syntax
	Example 1
	Example 2
	Example 3
	Example 4

	CREATE TRIGGER
	Syntax
	Security
	Examples

	ALTER TABLE
	Syntax
	Alter_Table_Action Syntax
	Examples

	ALTER USER
	Syntax
	Examples

	Dropping SQL Objects
	DROP INDEX
	Syntax
	Examples

	DROP FUNCTION or DROP PROCEDURE
	Syntax
	Examples

	DROP SCHEMA
	Syntax
	Examples

	DROP TABLE
	Syntax
	Examples

	DROP VIEW
	Notes
	Syntax
	Examples

	DROP TRIGGER
	Syntax
	Examples

	DROP USER
	Examples

	DROP ROLE

	Data Query Language and Data Manipulation Language
	SELECT
	Syntax
	Examples
	Joins
	CROSS JOIN
	INNER JOIN
	OUTER JOIN
	LEFT OUTER JOIN
	RIGHT OUTER JOIN
	UNION operator
	Subqueries

	INSERT
	Syntax
	Query_Expression
	Form 1: Table_values_constructor
	Examples
	Form 2: DEFAULT VALUES
	Examples
	Form 3: Query Specification
	Example

	UPDATE
	Syntax
	Examples

	DELETE
	Syntax
	Examples

	Data Control Language
	CALL
	Syntax
	Examples

	RETURN
	Syntax
	Examples

	SET assignment
	Syntax
	Examples

	SET PATH
	Syntax
	Examples

	SIGNAL
	Syntax
	Examples

	VALUES
	Syntax
	Examples

	SET CONSTRAINTS
	Syntax
	Examples

	Transaction Control
	SAVEPOINT
	Syntax
	Examples

	COMMIT
	Syntax
	Examples

	RELEASE SAVEPOINT
	Syntax
	Example 1
	Example 2

	ROLLBACK
	Syntax
	Examples

	SET DATALOG
	Example 1
	Example 2

	START TRANSACTION ISOLATION LEVEL
	Syntax
	READ UNCOMMITTED
	READ COMMITTED
	REPEATABLE READ
	SERIALIZABLE
	Example

	PointBase-Specific SQL
	SHUTDOWN
	Syntax
	Examples

	BACKUP
	Important Notes
	Syntax
	Example
	Default Implementation

	BACKUP TABLE
	Important Notes
	Syntax
	Example

	RESTORE TABLE
	Important Notes
	Syntax
	Example

	BACKUP/RESTORE TABLE API
	Example

	BACKUP LOG
	Important Note
	Syntax
	Example

	SET ROLLFORWARD
	ROLLFORWARD RESTORE UTILITY
	Example

	Appendix B: Unsupported JDBC Methods in PointBase
	Appendix C: Reserved Words
	Appendix D: SQL Data Type Code

